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conhecimentos e experiência. Desde já agradeço a todas as pessoas que fizeram parte deste
meu percurso académico, porque sem vocês não seria possı́vel!
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A B S T R A C T

Systems biology studies biological processes on a global scale, involving different omics. It
uses bioinformatic approaches, such as the reconstruction of genome-scale metabolic models to
understand the biological system of a cell, organism, or microbial community. Genome-scale
metabolic models are metabolic models based on the well-known stoichiometry of biochemical
reactions. It offers a whole system view, predicting the metabolic phenotype, based on the
genome and biochemical information. These models haves several applications in different
areas such as biotechnological and pharmaceutical.

Lambic beers are commercial beers from Belgium that still use old brewing styles. This
type of beer is gaining interest worldwide due to its unique flavour profile obtained by a
mixed yeast-bacteria culture fermentation. Therefore, in this thesis, the lactic acid bacterium
Pediococcus damnosus and Brettanomyces bruxellensis yeast, which play an important role in the
acidification and maturation phase of the lambic beer fermentation, will be studied. Pediococcus
damnosus is a gram-positive bacterium belonging to the lactic acid bacteria group commonly
found in brewery environments. Pediococcus damnosus produces only lactate by the sugar
metabolism, which confers an acidic and tart flavour to the beer. In turn, Brettanomyces
bruxellensis is a facultatively anaerobic yeast, also responsible for the typical aroma of lambic
beer. It uses several carbon sources and produces several volatile phenolic compounds not
desired in common fermentations crucial in this type of beer.

Usually, in nature, the microorganisms appear in communities. Thus, the study of microbial
communities is essential to understand their development, interaction and evolution. The main
aim of this thesis is to unveil the production of metabolites with flavour enhancement in the
acid lambic beer through the reconstruction and simulation of genome-scale metabolic models
for each microorganism and therefore for the microbial community composed by them, to
understand the interactions between the species and how these affects the lambic beer flavour.

Two genome-scale metabolic models were reconstructed: the model of the bacterium Pe-
diococcus damnosus and the model of the yeast Brettanomyces bruxellensis. The tool used for
model reconstruction was merlin, which automates several reconstruction processes and having
a user-friendly interface. The Pediococcus damnosus genome-scale metabolic model consists
of 809 reactions and 589 metabolites. In turn, the Brettanomyces bruxellensis genome-scale
metabolic model has 2095 reactions and 1249 metabolites. In the simulations performances, the
genome-scale metabolic models showed the ability to grow in the minimal medium provided,
as described in the literature. Furthermore, simulations predicted the production of certain
compounds, such as butanediol in the bacterium Pediococcus damnosus and 4-ethylphenol in the
yeast B. bruxellensis, which may influence the Lambic beer flavour. Interactions between the
genome-scale metabolic models, especially amino acid exchanges, were predicted. The model of
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the Pediococcus damnosus-Brettanomyces bruxellensis community was assembled using ReFramed.
The community model’s simulation results show that the interaction of these microorganisms
results in the production of compounds that may flavour and thus be responsible for the unique
flavour profile of Lambic beer.

Keywords: Genome-Scale Metabolic Model, Acid lambic beer, Microbial communities,
Pediococcus damnosus, Brettanomyces bruxellensis



R E S U M O

A biologia de sistemas estuda os processos biológicos numa escala global, envolvendo difer-
entes ómicas. Utiliza abordagens bioinformáticas, como a construção de modelos metabólicos
à escala genómica, de modo a perceber o sistema biológico de uma célula, organismo ou comu-
nidade microbiana. Os modelos metabólicos à escala genómica são baseados na estequiometria
bem conhecida das reações bioquı́micas de um dado organismo. Oferece uma perspetiva do
sistema como um todo, sendo capaz de prever o fenótipo do metabolismo, baseando-se no
genoma e em informações bioquı́micas. Estes modelos tem várias aplicações em diferentes
áreas como a indústria biotecnológcia e farmacêutica.

As cervejas lambic são cervejas comerciais tı́picas da Bélgica que ainda utilizam processos de
produção de cerveja antigos. Esta cerveja tem vindo a ganhar interesse a nı́vel mundial devido
ao seu perfil aromático único que é obtido através da fermentação de uma cultura de bactérias
e leveduras. Nesta tese serão estudadas a bactéria ácida láctica Pediococcus damnosus e a
levedura Brettanomyces bruxellensis, que possuem um papel importante nas fases de acidificação
e maturação da fermentação desta cerveja.

Pediococcus damnosus é uma bactéria gram-positiva que pretence ao grupo das bactérias
ácidas lácticas e é geralmente encontrada em ambientes de fermentação de cerveja. A bactéria
Pediococcus damnosus produz apenas lactato pelo metabolismo dos açucares, conferindo um
sabor ácido e azedo à cerveja. Por sua vez, a levedura Brettanomyces bruxellensis é uma
levedura anaeróbica facultativa, também responsável pelo aroma tı́pico da cerveja lambic.
Utiliza inúmeras fontes de carbono e produz muitos compostos fenólicos voláteis que não
são desejados em fermentações comuns, mas são cruciais neste tipo de cerveja. Geralmente,
os microrganismos aparecem na natureza, em comunidades. O estudo de comunidades
microbianas é importante para perceber o seu desenvolvimento, interação e evolução. O objetivo
desta dissertação de mestrado é encontrar metabolitos que conferem o aroma caracterı́stico
da cerveja ácida lambic, de modo a melhorar a sua produção, usando para isso construção
e simulação de modelos metabólicos à escala genómica para cada microrganismo e para
a comunidade microbiana, de forma a perceber as interações entre espécies e como estas
influenciam o aroma da cerveja lambic.

Assim foram construidos dois modelos metabólicos à escala genomA ferramenta utilizada
para a construção destes modelos metabólicos à escala genómica foi o merlin, uma vez que
automatiza varios processo de construçao e possui um interface intuitiva. O modelo metabólico
à escala genómica da bactéria Pediococcus damnosus é constituı́do por 809 reações e 589 metaboli-
tos. Por sua vez, o modelo metabólico à escala genómica da levedura Brettanomyces bruxellensis
possui 2095 reações e 1249 metabolitos. Nas simulações executadas, os modelos metabólicos à
escala genómica mostraram capacidade de crecer no meio minimo fornecido, como descrito
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na literatura. Além disso, as simulações preveram a produção de certos compostos, como
o butanodiol na bactéria Pediococcus damnosus e o 4-etilfenol na levedura B. bruxellensis, que
podem influenciar o sabor da cerveja Lambic. Foram previstas interações entre os modelos
metabólicos à escala genómica, sobretudo trocas de aminoácidos. O modelo da comunidade
Pediococcus damnosus-Brettanomyces bruxellensis foi construido usando o ReFramed. Analisando
os resultados da simulação do modelo da comunidade, pode-se concluir que a interação dos
dois microorganismos resulta na produção de compostos que tem a capcidade de conferir
sabor e assim serem responsáveis pelo aroma tão unico da cerveja lambic.

Palavras-Chave: Modelo Metabólico à Escala Genómica, Cerveja ácida lambic, Comunidades
microbiana, Pediococcus damnosus, Brettanomyces bruxellensis
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1

I N T R O D U C T I O N

1.1 Context and Motivation

Over the years, new technological approaches have been developed in order to replace tradi-
tional methods, such as experimental trials. Systems biology contributes to the development of
in silico approaches [1], using high performance technologies that bring together computational
techniques and biological big data [2]. One of the systems biology’s tools of interest is the
reconstruction, simulation, and optimization of Genome-scale metabolic models. Studies in
all omics fields have increased significantly with new next-generation sequencing techniques,
contributing to the GSMMs’ development [3].

GSMMs are based on the well-known stoichiometry of biochemical reactions and they
are used for the analysis of metabolism, simulating in silico, the phenotypic behavior of a
microorganism in a range of environmental and genetic conditions in order to achieve a certain
goal, such as the identification of potential target sites or over/under-production of compounds
with biotechnological interest [3, 4]. GSMMs can be developed using bioinformatic tools,
such as Metabolic Models Reconstruction Using Genome-Scale Information (merlin) [5] and
CarveMe [6], which automate the process [5]. This process involves five main steps: the
genome annotation, the assembly of the reactions network, the conversion of the network to
a mathematical model, and the validation of the model with biological data from previously
published or specifically designed experiments, following by a fifth stage for a prospective
use [3, 7]. Usually, GSMMs are reconstructed for single organisms, however the GSMMs
reconstruction of microbial communities has been promoted, due to the increase of interest
on microbial community composition and interactions [8]. An example is the study of the
community composition involved in the acid lambic beer fermentation.

Acidic lambic beers are among the oldest brewing types of beers still brewed. These beers
are gaining interest worldwide, not only due to their unique flavour profile (acid and fruity)
but also because its flavour is not due to pure cultures but relies on a dynamic mixed yeast-
bacteria microbial community. The increasing popularity of lambic beer has led to greater
interest in studying its fermentation in order to find new ways to improve the flavour profile
of the beer. For this, we suggest the study of microorganisms involved in the fermentation of
this type of beer, such as their metabolism, the compounds produced and their interactions.
Pediococcus damnosus (P. damnosus) and Brettanomyces bruxellensis (B. bruxellensis) are two of the

1



1.2. Objective 2

microorganisms which dominate the lambic beer fermentation processes after six months [9,
10].

P. damnosus is a lactic acid bacterium belonging to the order Lactobacillales, commonly found in
beer spoilage. It is a gram-positive bacterium, strictly fermentative, but facultatively anaerobic.
This bacterium is homofermentative, producing only lactate which confers an acidic and tart
flavour to the beer. P. damnosus, one of the microorganisms responsible for the acidification of
lambic beers, is present in the acidification and maturation phase of lambic beer production
process [10]. In the maturation stage is also present B. bruxellensis, a yeast which belongs to
the Pichiaceae family. Dekkera is the sexual (teleomorphic) form of the asexual (anamorphic)
genus Brettanomyces. This yeast is facultatively anaerobic and it can be distinguished from
common yeast species due to its cycloheximide resistance [10]. B. bruxellensis produce ethanol
by alcoholic fermentation and under aerobic conditions, being classified as Crabtree-positive
yeast [11]. B. bruxellensis plays an important role during the maturation stage of lambic beer
production because it is essential for the flavour composition [10].

The increase of the interest in bioinformatics and the development of tools led us to use it in
the study of P. damnosus and B. bruxellensis, instead of the use of traditional and laborious wet
lab methods. Thus, the reconstruction for GSMMs of each one of these organisms followed by
the reconstruction of the community model, will provide further knowledge not only about
both organisms metabolism but also the possible interactions between them, in order to achieve
the intended objective.

1.2 Objective

The main aim of this work is to build GSMMs for the bacterium P. damnosus, for the yeast B.
bruxellensis, and a community model consisting of both organisms. From this work, we expect
to add knowledge to the microorganisms, metabolism and community interactions with a final
goal of finding metabolites and/or proteins responsible for the lambic beer flavour profile. In
order to achieve this objective, the following goals need to be fulfilled:

• Obtain a high-quality functional annotation of each organism’s genome;

• Generate a draft metabolic network for each microorganism;

• Perform refinement and manual curation of the network using information gathered
from literature;

• Convert the metabolic networks to stoichiometric models;

• Validate the reconstructed models using experimental data;

• Generate the metabolic model for the microbial community composed by the two organ-
isms;

• Analyze the organisms’ and community metabolic networks to find metabolites and/or
proteins responsible for lambic beer flavour profile.



1.3. Structure of the document 3

1.3 Structure of the document

This document is structured as follows:

2 - state of the art

• Description of GSMM reconstruction of single organisms and communities;

• Computational tools used to reconstruct and simulate models;

• Overview of P. damnosus and B. bruxellensis metabolism;

• Importance of the study of microbial communities.

3 - methodology

• Description of tools and methods used in the work;

• Description of genome annotation;

• Methods used to assemble the initial draft GSMM of each organisms;

• Methodology used to determinate biomass and energy requirements.

• Methods to manually curate the model;

• Enumeration of strategies used to validate the model;

• Methods for community model assembling;

• Enumeration of strategies used in community model simulation.

4 - results and discussion

• Result of genome annotation;

• Changes in the draft GSMM through manual curation;

• Formulation of biomass and energy requirements;

• Model validation by comparing in silico simulations with experimental data;

• Community model assembling details;

• Results of community model simulations.

5 - conclusion

• Summary of the developed models;

• Possible applications of community model;

• Future perspectives.



2

S TAT E O F T H E A RT

The following chapter provides a state of the art regarding the analyses of a microbial
community present in the lambic beer fermentation. Therefore, the process of reconstruction
of GSMMs, as well as the computational tools used are described. In addition, a description
about acid lambic beer and the studied microorganisms is provided .

2.1 Background

Systems biology has gained interest over the years and has become an important way to
produce high quality scientific studies, being one of the disciplines of biological sciences [12].
The approaches developed in this area, specifically the reconstruction of GSMMs, are a great
method to study the mixed yeast-bacteria microbial community involved in the spontaneous
fermentation of acid lambic beer [8, 10]. Using bioinformatic tools, it will be possible to unveil
the production of metabolites with flavor enhancement [3], by studying the lactic acid bacterium
Pediococcus damnosus (P. damnosus) and the yeast Brettanomyces bruxellensis (B. bruxellensis) found
in lambic beer fermentation [10].

2.2 Systems biology

Bioinformatics is a discipline that combines different areas such as mathematics and biology,
responsible for the analysis and interpretation of biological data [13]. Therefore, bioinformatics
can provide valuable information for systems biology [14].

Systems biology studies biological processes at cellular, organism and more recently at a
community level on a global scale, in terms of their molecular constituents and functional in-
teractions [12], involving genomic, transcriptomic, proteomic, and metabolomic researches [14].
As an inclusive discipline, systems biology attempts to organize, evaluate and interpret data
sources in silico [15], gradually decoding detailed information of microorganisms. Moreover
this field of knowledge facilitates the metabolic engineering process, deciphering mechanisms
for the development of strains with improved phenotypes in lines derived from mutations
or adaptive laboratory evolution [1]. In metabolic engineering, organisms are designed with
improved capacities concerning the productivity of desired compounds [16]. The most effective

4
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and used tool for the study of the metabolism is the in silico reconstruction of GSMMs, being
nowadays an essential tool for this propose [7, 17].

2.3 Genome-scale metabolic models

Since Gregor Mendel discovered the laws of genetics, in which information is transmitted
between generations and determines the form and function of an organism, the genotype-
phenotype relationship has been essential in life sciences research [18]. Genomics studies have
increased significantly with the emergence of new next-generation sequencing techniques [3].
A sequenced and annotated genome of a microorganism has many potential applications such
as the reconstruction of GSMMs [4] which uses also biochemical information [4, 5], being
one of the most interesting systems biology’s tools to study the link between metabolism
and phenotype [3, 19]. Therefore, GSMM can be simulated in order to achieve a desired
goal, that may have applications in several areas such as biotechnological, medicine [20, 21],
pharmaceutical, chemical, and environmental industries, in which interest has been increasing
[21].

GSMMs are comprehensive metabolic models based on the well-known stoichiometry of
biochemical reactions, which includes all known chemical reactions and their corresponding
associated genes of a cell, organism, or microbial community [4, 22]. These models offer an ideal
view of the whole system making them a perfect tool to predict phenotypes under different
environmental and genetic conditions [4, 23, 24]. These constraint-based stoichiometric models
can also incorporate different data types such as transcriptomic, proteomic and metabolomic
information [4, 15]. Gene-Protein-Reaction (GPR) rules describe the relationship between genes
that encode enzymes catalysing reactions [22]. These GPR associations are very important in
GSMMs since they allow the phenotypic prediction consequences of a genetic modifications
[22] such as finding potential drug targets candidates and assigning functions to unknown
genes [4].

The firsts GSMMs published were used to understand the characteristics of microbial
pathogens at a genome-scale, which was followed by the use of GSMMs to develop metabolic
engineering strategies of microbial hosts for improved production of various bioproducts (for
example, products with biotechnological interest, such as L-valine production by Escherichia
coli applicable in cosmetic, pharmaceutical and animal feed industries) [21, 25]. However, the
potential of GSMMs is still being unveiled and have been also used in other aspects, such
as to contextualize the high-throughput data, to understand the complex biological phenom-
ena, to orientate the hypothesis-driven discovery, to comprehend the microbial community
relationships, and to discover network properties [24].

The first GSMM to be published was the GSMM of Haemophilus influenza in 1999 [4, 26].
Since then, great progress has been made in the reconstruction of GSMMs, and so efficiency
and quality have been significantly improved [21, 24, 27, 28]. The number of GSMMs is
greatly increasing, but more important than the quantity is the quality of these models. To
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ensure the quality of a metabolic model, validation must be made by evaluating its ability
to correctly predict the physiological characteristics of the given organism, comparing the
predicted physiological characteristics of the metabolic model with experimental data [21, 24].
Through this comparison, the accuracy and prediction capabilities of the metabolic model can
be improved. The whole process of reconstructing a GSMM is laborious and time consuming,
and has been extensively described, stimulating the reconstruction of these models [7, 23,
24, 29]. The GSMMs reconstruction is still less expensive and time-consuming than wet lab
experiments, where these models are already a common assistance [5]. Due to the increased
interest in GSMMs, there is a community effort to reduce the time of the reconstruction process,
by automating some steps and at the same time improve their quality [7, 23, 24, 29].

Therefore, the reconstruction of GSMMs continues a challenge for organisms that have a lack
of biological data and information reported in the literature, as well as with poorly studied
and uncharacterized metabolism [3], since this reconstruction process is only possible due
to the availability of annotated and sequenced genomes [15]. Hence, the poor availability of
literature and biological data remains an obstacle to the reconstruction of this type of models.
Well-studied organisms with accessible biological and experimental data, such as Escherichia
coli [30–33], already have several models available, therefore the reconstruction process is
much easier [3]. Algorithms have been developed to examine metabolic models in various
ways, for example by calculating the redistribution of metabolic flux in response to genetic
or environmental disturbances [21]. Thus, to predict flux distributions in metabolic networks
for product formation or optimal growth, for example, Flux Balance Analysis (FBA) can be
performed depending on nutritional conditions or as response to enzyme/gene knockouts [20].

GSMMs have been successfully applied to the study of single microbes, however, in recent
years has been developed extensive tools that analysis models from single strains to complex
microbial communities [34].

2.4 Reconstruction of Genome-scale metabolic models

The reconstruction of GSMM has been studied and described over the years by several
authors [5], representing two reconstruction approaches: the top-down and the bottom-up. The
latter is the most common reconstruction approach [35]. The top-down approach consists in
generating a universal model which is then manually curated. This model is ready to simulate,
and it includes a universal biomass equation, transport reactions and do not contain blocked
or unbalanced reactions. Then it is used a carving process where the universal model is used
as a template to generate GSMMs of specific organism. This process preserves all the manual
curation and the major structural properties of the original model, identifying the reactions
and metabolites predicted to be present in the given organism through homology tools and
orthology predictions. The top-down approach is a good option for organisms that do not grow
in well-defined media or their defined media is not known, because it is able to deduce their
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uptake and secretion capabilities from genetic information [35]. CarveMe is a tool example
which uses the top-down approach [35, 36].

The bottom-up approach is the traditional method where given a genome of a specific
organism and its functional annotation, based on homology tools and orthology predictions, a
draft model can be automatically reconstructed. This draft model is then extensively manually
curated. Bottom-up approach is time-consuming, including repetitive tasks. For every new
reconstruction model, the reconstruction steps must be performed [35]. The most compre-
hensive bottom-up study was published by Thiele and B. Ø. Palsson in 2010 and describes a
protocol to reconstruct a high-quality genome-scale metabolic model with about one hundred
steps which are grouped in five mains stages: Genome annotation, Manual reconstruction
refinement, Conversion to mathematical model and Network evaluation, followed by a fifth
stage for prospective use. This reconstruction is an iterative process which comprises several
steps, as represented in Figure 1 (adapted from I. Rocha et al. 2008) which can be summarised
as follows: first, the genome annotation is performed using data from different data sources.
Second, the metabolic network is refined (also using different data sources), by performing
manual curation, adding the biomass production equation, filling the gaps and adding other
constraints, such as reactions reversibility. In the third step, the reconstructed GSMM is con-
verted into a stoichiometric model (also named mathematical model). Finally, to validate the
model, the predictions are compared to experimental data. If the simulations do not agree
with the experimental data, a debugging process must be performed, repeating the metabolic
network refinement and conversion stage [4, 5, 7]. The final model should be exported in a
standard format [5], accepted by the most tools, for example, the Systems Biology Markup
Language (SBML) [37], to use the GSMM prospectively. Metabolic Models Reconstruction
Using Genome-Scale Information (merlin) is a tool which uses bottom-up approaches for GSMM
reconstruction.

2.4.1 Genome annotation

In the first stage, a draft reconstruction is generated based on the organism’s genome
annotation and in databases with biochemical information [7] such as Kyoto Encyclopedia
of Genes and Genomes (KEGG) [38] and BRaunschweig ENzyme DAtabase (BRENDA) [39].
Thus, the first step is the genome annotation whereby is collected genomic information from
different databases[7], such as National Center for Biotechnology Information Entrez Gene
(NCBI Entrez gene) [40] and Genomes OnLine Database (GOLD) [41]. E.C. numbers [42], T.C.
numbers [43] and if available, associated genes and gene product names information may
also be collected [7]. Overall, metabolic functions encoded by the genome are collected using
tools which perform Basic local alignment search tool (BLAST) [44], such as Pathway tool
[45, 46], and metabolic SearcH And Reconstruction Kit (metaSHARK) [47]. Nevertheless, a
manual curation is indispensable because genome annotation may include false information
due to missing, wrong, or incomplete annotations [7].The draft of the reconstruction, as well
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Figure 1: GSMM reconstruction iterative process.

Adapted from I. Rocha et al. 2008. Created with BioRender.com

as the cured reconstruction, depends essentially on a reliable annotation of the genome [7].
The genome annotation information was performed while the genome was sequenced, which
may not be updated, therefore it is important to download the most recent version available
[7]. Data related to gene expression regulation or genes associated to signal transduction are
not regarded for these metabolic models [7]. Typically, a re-annotation is necessary because
the collected information does not always comply with the GSMM requirements. Usually,
genes identified as metabolic have missing E.C. number [5, 7]. Thus, in the second step,
named candidate metabolic function, the metabolic genes can be automatically retrieved from
the genome annotation, using for example the gene ontology [7]. The identified genetic
products catalyse metabolic reactions that can be linked to the draft reconstruction through E.C.
numbers and biochemical reaction databases[7] such as BRENDA [39] and KEGG [38]. A list of
candidates is obtained which may not be complete or comprehensive, as many false positives
may be present, such as proteins involved in Deoxyribonucleic acid (DNA) methylation or
ribosomal Ribonucleic acid (rRNA) modification that have associated E.C. numbers but are
not normally considered in metabolic models. Therefore, manual curation will be necessary[7].
There are several databases and online resources with available data which can be very helpful
in manual curation, as is described in Table 1 (Adapted from I. Rocha et al. 2008 and Thiele
and B. Ø. Palsson 2010).
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Table 1: Online data sources used in GSMMs reconstruction*1

Database Description Reference

GOLD

GOLD is an open online resource, constantly
updated, which contains genome and

metagenome projects and their associated
metadata

[41]

NCBI

NCBI is an online repository comprising
several databases. Biomedical, biochemical and

genomic information can be retrieved from
NCBI website.

[40]

NCBI Entrez
gene

NCBI Entrez gene is a database from NCBI for
gene-specific information

[48]

KEGG
KEGG is an integrated database of genes and
genomes. It has information about systems,

genes, health and chemical compounds

[38]

BRENDA

BRENDA is the main database with enzyme
and enzyme-ligand information. This database
has manually annotated information and use

E.C. classification system.

[39]

TCDB

TCDB is a database for transport protein
research with freely accessible information

about structure, function, mechanism,
evolution and disease/medicine about all

organism types transporters. In this database
each transporter protein is identified with a

T.C. number.

[49]

MetaCyc

MetaCyc is a database of metabolic pathways
and enzymes, containing about 2749 pathways.
Thus, it is the largest cured metabolic pathways

database.

[50]

BiGG Models

BiGG Models is a repository of high-quality
GSMMs. This database includes more then one
hundred of GSMMs, which are identified by a

BiGG IDs.

[51]

Continued on next page
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Table 1 – continued from previous page

Database Description Reference

BioCyc

BioCyc is a microbial genome and metabolic
pathway collection, with information inferred

by software tools, imported from outher
databases and curated from literature. The web

portal provides tools for visualization and
analysis of the metabolic pathways

[52]

ExPASy *2

ExPASy was one of the first life science web
servers and now it is one of the main

bioinfroamtics resources fro proteomics
information. This database has evolved,

comprising a wide range of resources in many
different fields beyond proteomics, such as
genomics, phylogeny/evolution, systems

biology, population genetics and
transcriptomics.

[53]

UniProt *3

UniProt is a database of sequences and
annotations of millions proteins. UniProt

Knowledgebase (UniProtKB) is a component of
UniProt database, which comprise other two
databases: UniProtKB/TrEMBL (Translated
EMBL Nucleotide Sequence Data Library)

(TrEMBL) and UniProtKB/Swiss-Prot
(Swiss-Prot). TrEMBL has entries automatically

annotated, while the Swiss-Prot entries are
curated by a biocuration team.

[54]

*1 (Adapted from I. Rocha et al. 2008 and Thiele and B. Ø. Palsson 2010)
*2- Expert Protein Analysis System (ExPASy)

*3- Universal Protein Resource (UniProt)

2.4.2 Manual reconstruction refinement

Manual curation defines the second stage of the GSMM reconstruction whereby the entire
draft will be re-evaluated and refined. This process is important since not all annotations
have a high confidence value (low e-value) and most biochemical databases do not have
information specific to certain organisms. Adding organism-unspecific reactions, the predictive
behaviour of the model can be compromised. Moreover, at this stage, information about
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biomass composition, maintenance parameters, and growth conditions is collected in order to
provide background for simulations in the coming stages [4, 7].

Genes, Proteins and Reactions

A very important step is the GPR association. Information about GPR association usually
is provided from genome annotation through the gene function. Although verification and
refinement is necessary in order to determine if the functional protein is a heteromeric enzyme
complex, if the enzyme or the enzyme complex catalyzes more than one reaction and if more
than one protein have the same function. Databases information, such as KEGG data, and
literature search are used to collect this type of data. Afterward, spontaneous reactions, which
have at least one metabolite connecting them to the rest of the draft reconstruction, must
be included, in order to avoid dead-end metabolites (metabolites that are only reactants or
products) [4, 7].

Spontaneous Reactions

In this step, the spontaneous reactions, reactions which favours the products formation
under certain conditions, and nonenzymatic reactions, that occur spontaneously or catalysed
by small molecules, are included in the network metabolic draft. Information about these
reactions can be found in the literature and in databases such as KEGG [4, 7, 38]. Some tools
such as merlin [5, 55] and MicrobesFlux [56] can automatically add those to the draft model[4,
7].

Demand and sink reactions

Demand reactions provide compound accumulation which is not permitted in steady-state
models because of mass-balancing requirement, where for each metabolite, the influx sum
is equal to the sum of efflux. At this point, these reactions should be added for compounds
known to be produced by the target organism, for example, certain cofactors. By adding
these reactions for a certain metabolite, the blocked reactions, in which no flux passes, can
be converted into active reactions, in which flux passes. In general, most GSMMs drafts
have few demand reactions and can be temporarily added in the validation stage during
the evaluation process to test or verify certain metabolic functions. In the end, they will be
removed. Sink reactions are similar to demand reactions and reversible, supplying the network
with metabolites. These reactions are important for compounds that are not metabolized by
metabolic cellular processes, but their production is necessary. The addition of many sink
reactions can allow the model to grow without any need from medium resources and therefore
these reactions should be added with care. They are also used in the debugging process in the
validation stage, helping to identify the origin of a problem. When a gap is identified, it can be
functionally replaced by a sink reaction [7].



2.4. Reconstruction of Genome-scale metabolic models 12

Stoichiometry and Reaction directionality

The formula of each metabolite is fixed, as metabolites are generally listed with their
uncharged formula, but in the medium and cells, most are protonated or deprotonated.
Thus, the stoichiometry of the draft reconstruction reactions must be determined. Should be
considered that unbalanced reactions can synthesize protons or energy (Adenosine triphosphate
(ATP)). The reaction reversibility must be corrected using literature data or databases such as
MetaCyc [50]. If no information is available, the reaction should be considered reversible [4, 7].

Localization

In this step, information about gene and reaction localization may be obtained [4, 7].
The compartments can be predicted using algorithms such as PSORT for prokaryotes [57],
WoLF PSORT [58]for eukaryotic and LocTree [59] for both prokaryotic and eukaryotic, giving
information about the protein cellular localization based on nucleotide or amino acid sequences.
In prokaryotes, the compartments are limited to cytoplasmic and periplasmic space. In
eukaryotes, proteins can be located in various compartments, including the mitochondrion,
endoplasmic reticulum, or Golgi apparatus. For each compartment, the metabolite should be
replicated, and either name and identifier should impress each localization. The intracellular
transport reaction has to be included in the model in order to establish the connection between
compartments [4, 7].

Biomass equation

Thereafter, the biomass composition is determined. Biomass reaction considers all known
biomass constituents such as DNA, Ribonucleic Acid (RNA), proteins, lipids, carbohydrates
and cofactors, and their fractional contributions to the overall cellular biomass. Biomass
composition of an organism should be determined experimentally with cells growing in log
phase, to obtain a more detailed composition. This reaction is very important for in silico
simulations, where maximizing growth is the objective, because if a biomass precursor is not
taking into account, synthesis reactions may not be needed for growth, affecting the essentiality
reactions and their associated genes. The unit of all biomass precursor fractions is mmol per
gram of dry weight (mmol/gDW), so the biomass reaction unit is per hour (h-1) . Thus, the
sum of the molar fraction of each precursor corresponds to the required to produce 1 g of dry
cell weight. The biomass reaction can be represented by equation 1 [4, 7]:

p

∑
k=1

Ck.Xk −→ Biomass (1)

Where,

• Ck represents the coefficient of the metabolite Xk.

However, in the absence of experimental data, the information obtained through genome
annotation and from phylogenetically related organisms has to be taken into account. In turn,
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GSMMs of phylogenetically close organisms can be used as a template to define biomass
composition [3].

Energy requirements

The growth associated ATP maintenance reaction considers the energy in ATP form neces-
sary for cell replication, embracing macromolecular synthesis and it must be added to the draft
reconstruction. This energy requirement reaction should be determined experimentally, but if
there is no experimental data available, it can be estimated by calculating the energy required
for each macromolecular synthesis. The non-growth associated ATP maintenance reaction
should be also added and represents cellular non-growth associated ATP requirements, by
ATP hydrolysis. When no experimental data for energy requirements is available, the reaction
values can be estimated from related organisms data or by fitting the model results to growth
rate data [4, 7].

Growth requirements

The information about growth medium requirements should be collected. These require-
ments include metabolites present and if there are any auxotrophies, base medium (e.g. water,
protons, ions) and rich medium compositions. This information is very relevant and crucial for
the simulation and evaluation of the model. Uptake or secretion rates should be collected too,
if available. The identification of growth requirements can be obtained by doing experimental
work or by literature research [4, 7].

Manual Curation and Metabolic Network Assembly

In the reconstruction assembly, the reactions are evaluated in their metabolic context,
identifying missing gene annotations in order to simplify the gap analysis and to debug the
validation stage. Manual curation will also identify and obtain additional information about
certain reactions which can be added to the model, or simply noted so that they can be easily
recovered if necessary. Then metabolic function is verified using information about metabolic
genes retrieved from genome annotation. This analysis must be supported by experimental data
or literature, due to possible errors or incomplete genome annotation. Thus, the information
about organisms phylogenetically close is used, when no organism-specific information can be
found in the literature, receiving a lower confidence score to be easily identified in the case of
possible problems during future simulations. Certain reactions that contain generic terms such
as protein or electron acceptor must be excluded, because they are not specific enough. In this
stage, it is important to identify the substrate and cofactor specificity, using organism-unspecific
databases [4, 7], such as KEGG [38] and BRENDA [39] or organism-specific databases, such as
EcoCyc [60], which list information about the enzymes and can have information about kinetic
parameters (BRENDA [39] ), and substrate and cofactor utilization (BioCyc [52]). Often, this
curation is very time-consuming, and requires an intensive literature search [4, 7].
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Before the next stage, the metabolites should be associated with at least one of the following
identifiers: Chemical Entities of Biological Interest (ChEBI) [61], KEGG [38], Biochemical,
Genetic and Genomic (BiGG) [51], ModelSEED [62, 63], or PubChem [40], in order to be
recognized by software tools and even by other scientists [4, 7].

2.4.3 Converting the metabolic network to a stoichiometric model

In the third stage, commonly named conversion from reconstruction to a mathematical
model, the GSMM reconstruction is converted into a mathematical format and certain specific
constraints are defined. The conversion process is defined in three main steps. Firstly, a
mathematical representation of the model is developed, more properly of the metabolic
network reactions list, through the construction of a stoichiometric matrix, called S matrix,
in which the columns represent the reactions while the lines represent the metabolites. A
metabolic network of M metabolites and N reactions can be represented as in equation 2 [4, 7]:

N

∑
j=1

Si j.vj = 0, i = 1, ...M (2)

Where,

• vj represents the rate of a reaction j;

• Si j represents the stoichiometric coefficient of a metabolite i in a reaction j;

• i represents a metabolite concentration;

• j represents a reaction.

The values of the matrix represent the coefficients, where the reagents of each reaction are
defined with a negative coefficient, while the products have a positive value. Metabolites
that participate in, at least, one reaction have at least one non-zero entry in the S matrix. As
mentioned before, a state of mass conservation is assumed, i.e. a steady-state [4, 7], which can
be described as in equation 3:

S.v = 0 (3)

Where,

• S corresponds to the stoichiometric matrix S(MxN);

• v corresponds to a vector of reaction fluxes.

The limits of the system are defined, adding an exchange reaction to all metabolites that can
be secreted or consumed by the target cell. These exchange reactions can be used in future
simulations to define environmental conditions such as carbon sources. Finally, restrictions
must be added to the mathematical model, such as thermodynamics or reaction directionality
and enzymatic capacity. Then, as the GSMM reconstruction must be in a computer readable
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format, these constraints are represented as inequalities by imposing a flux range for each
reaction. Lower and upper bounds are defined to represent the model constraints in the
inequalities [4, 7], as shown in equation 4:

αj ≤ vj ≤ β j, j = 1, ...N (4)

Where,

• vj represents the flux vector;

• αj represents the lower bound;

• β j the upper bound.

To represent a reversible reaction the lower bound of the inequality can be -10000, represent-
ing minus infinity, and the upper bound can be defined as 10000, corresponding to plus infinity.
To represent an irreversible reaction, one of the bounds is defined as zero. If the maximum
and/or minimum of flux values are known, these should be set in the constraints as upper
and/or lower bounds, respectively [4, 7].

Thus, a condition-specific model is obtained. Thereby, the set of solutions obtained will
decrease and will be more confined, more stable and more viable [4, 7]. For the simulation’s
performances, the mathematical representation of the model should be saved in a standard and
computational-friendly format, for example, SBML [37]. Some computational tools specialized
in model simulations [4, 7] such as OptFlux [64] or COnstraint-Based Reconstruction and
Analysis (COBRA) toolbox [65] need to be used in order to validate the model.

2.4.4 Metabolic model validation

The model evaluation, which is also called debugging mode, represents the fourth stage of
GSMM reconstruction. In this stage, the model is verified, evaluated and validated. The model
obtained in the previous stage is tested, among others, for its ability to synthesize biomass
precursors, which is essential for cell survival. This evaluation identifies missing metabolic
functions, namely network gaps, which are added by repeating the stage of curation and
conversion. Consequently, the reconstruction process is considered an iterative procedure.
Therefore, it is important to know when to stop the iterative process and to know when a
reconstruction has been completed. This decision is normally based on the objective of the
reconstruction [4, 7].

Initially, several reactions and functions are expected to be missing from the model, leading
to dead-end metabolite production. So, a first gap analysis is done and then through intensive
literature research and maybe a genome re-annotation, candidate genes and reactions are
identified in order to fill the gaps. There are at least two approaches for identifying gaps in the
reconstruction. In connectivity-based approach, it is possible to count the non-zero inputs on
each line of the S matrix and identify the metabolites, which are only produced or consumed. A
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second approach is based on the functionality of the model, in which the ability of the models
to transport flux through each network reaction is tested, thus identifying blocked reactions,
which are associated with one or more dead-end metabolites. For gap filling, KEGG [38] maps,
biochemical textbooks, or other available biochemical maps can be used as resources in order
to identify the metabolic pathway of the dead-end metabolites. A gap should be filled to assure
the model’s functionality (for example, biomass precursor synthesis reaction), to allow the
model to perform a function that the organism is able to do, or when there is experimental
evidence that a reaction is present in the organism. When no information is available, a gap
reaction should be filled if necessary to ensure that the model is functional, because if the
reaction is falsely added, the predictive capacity of the model can be affected [4, 7].

At this point, the model must be tested for its ability to produce each biomass component,
initially in a standard medium condition and then in other growth media, i.e. in all known
growth conditions of the target organism. Under most of these conditions, the model should
be capable to synthesize biomass, otherwise, missing functions can be identified. By-products
secretion information is very helpful to evaluate the phenotype simulated by the model. If
this information is available, it must be added to the model, in order to further refine it. To
identify other gap fillings, blocked reactions need to be determined [4, 7], for example through
FVA [66]. Depending on the function of the blocked reactions, they can be connected to the
model network. In the next step, a simulation with a single gene deletion can be performed.
The analysis between the in silico results and the experimental data can provide a model
improvement and consequently an improvement in its predictive capacity. A matrix with
false positive and false negative predictions is constructed. A possible explanation to false
positives is the missing of regulatory rules, reactions falsely included and/or an incomplete
biomass reaction. The false negatives can be explained by missing metabolic transport reactions
and missing enzyme reactions. At this point, the model has been tested for its ability to, for
example, produce biomass and to grow under certain conditions [4, 7]. So now, the model must
be tested if it can reproduce the known inabilities of the organism. If any errors are detected,
caused by falsely added reactions or missing information, they should be corrected doing
literature research. Finally, the growth rate is quantitatively evaluated. A too slow growth
indicates that at least one biomass precursor cannot be adequately synthesized. Whereas, a
higher growth rate has many possible explanations and there is not a general rule for the
corrections. Values of the energy necessary for growth wrongly estimated, missing or incorrect
constraints, such as missing regulation or incorrect reaction directionality, and also falsely
added reactions are among the reasons for a higher growth rate than expected [4, 7].

Validation and simulation methodology

After the construction of the mathematical model and the constraints applied, phenotype
and behaviour can be predicted, for each environmental condition established [4, 7]. In order
to predict exchange fluxes, Metabolic Flux Analysis (MFA) can be performed. MFA is an
approach used to estimate some intracellular fluxes of a defined metabolic network when other
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experimentally measured fluxes are given as input. It allows the user to perceive the metabolism
balance, that is, the way that the organism can convert substrates into biomass and chemicals,
and its ability to predict the model metabolic capability after genetic or environmental changes.
MFA is useful for predicting possible metabolic limitations [4, 67].

A commonly used approach to evaluate the model predictive potential is FBA, which uses
linear programming and in a steady-state system determines the optimal reactions flux dis-
tribution through the optimization of an objective function, satisfying the set of restrictions
imposed. FBA calculates the metabolite flux through the metabolic network, thus being able
to predict organism growth rates or production rates of a metabolite with biotechnological
interest. This approach is a restriction-based method and therefore restrictions are first imposed
on a biochemical system, defining a space of possible phenotypes or solutions, and then an
objective function is determined in order to be optimized within that space to determine the
most likely phenotypic state of the system. The objective function can be the maximization
of biomass production/growth rate, the minimization of energy use or the maximization of
the production of the final product of interest, among others. The set of restrictions can be
divided into four categories: physical-chemical (such as mass conservation), topological (such
as compartmentalization and spatial restrictions associated with metabolites or enzymes), envi-
ronmental (such as media composition, pH, temperature), and thermodynamic (for example
reversibility of the reaction) [4, 68–70]. However, for the same objective function, it is possible to
obtain a set of several optimal solutions with different fluxes distributions. In these cases, other
simulation methods such as parsimonious Flux Balance Analysis (pFBA) should be used. pFBA
was developed as an extension of FBA which, using the set of optimal solutions calculated by
the FBA, selects the solution that minimizes the sum of all the flows. In a biological sense will
correspond to the solution that maximizes the objective function, usually the maximization
of the biomass production, using the minimum of resources required [71, 72]. The linear
programming problem of FBA can be represented as in equation 5:

Maximize Z

subject to S · v = 0

αj ≤ vj ≤ β j, j = 1, ..., N

(5)

Where,

• Z is the linear objective function;

• v is the flux vector;

• S is the stoichiometric matrix;

• αj and β j is the lower and upper bound, respectively.

After the model has been evaluated and considered to be realistic, other simulation tests can
be performed. FVA is a simulation method used to test the robustness of a metabolic model.
This approach finds the minimum and maximum flux of the model reactions, calculating the
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range of flux variability which reaches optimal as well as sub-optimal objective states. It is
commonly used in the optimization of antibiotic production [7, 66]. To simulate the phenotype
of mutants, two algorithms are frequently used: Minimization of metabolic adjustment (MOMA)
and Regulatory on–off minimization (ROOM) [4, 68]. MOMA is a quadratic programming
algorithm based on the same FBA stoichiometric constraints, but the assumption of optimality
for gene deletions is not justifiable. It tends to minimize the distance between wild type
and mutant flux distributions [4, 68, 73, 74]. In turn, ROOM is also quadratic programming
algorithm and predicts the organism metabolic steady-state after gene knockout. ROOM differs
from MOMA once it tends to minimize the number of significant changes in flux distribution
from the wild-type flux distribution [4, 68, 74, 75].

2.4.5 Applications

GSMMs are very useful, having a wide variety of different applications, such as predicting
phenotypic behaviour under various genetic and environmental conditions, analysing the
robustness of a network [4], improving the production of chemicals and materials, predicting
drug targets and enzyme functions, analyzing pan-reactome, modeling interaction among
multiple cells or organisms and understanding human diseases [76]. In the final stage, as the
desired in silico capacity and the necessary content has been reached, the GSMM reconstruction
can be used in a prospective form, applying it to a scientific study, such as the case of the
unveiling of the lambic beer flavour[4, 7].

In conclusion, the complete reconstruction of a GSMM is a long and laborious process.
Therefore, the development of bioinformatics and software tools was necessary and can greatly
accelerate the reconstruction process by automating some steps [5].

2.5 Genome-scale metabolic models reconstruction tools

Over the years, the interest in reconstructing high-quality GSMM has been increasing and
therefore the number of new tools developed for GSMMs reconstruction has also increased [7,
36]. Several GSMMs reconstruction tools have been developed to accelerate the reconstruction
process by automating several steps and tasks, such as draft network generation and formula-
tion of biomass equation [5, 36]. There is no perfect tool, each one has its own disadvantages
and advantages, and the strengths in some tools can be the weaknesses in others. Some features
have the same great performance in the different tools, such as in the use of updated databases
and resources and in the continuous software maintenance [36]. Although in other features,
all tools have a low performance, for example in traceability or automatic refinement using
experimental data. In Table 2 (adapted from Mendoza et al. 2019), seven different GSMMs
reconstruction tools and their main features are listed. These tools were chosen because they
cover most of the software platforms available for free [36].
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In 2019, Mendoza et al. [36] evaluated these seven tools. For example, when the automatic
reconstruction process was tested, ModelSEED [62, 63] and CarveMe [6] were considered as
outstanding while merlin [77] as poor because users should infer more in metabolic network
refinement in order to get a model ready to perform simulations [36]. But on the other hand,
merlin [5, 77] was considered as outstanding concerning the workspace for manual curation
and information provided to help users during this stage. In this feature, CarveMe [6] and
ModelSEED [62, 63] were assessed as poor, as they do not provide further information or a
workspace for manual refinement and curation. ModelSEED [62, 63] and CarveMe [6] are
examples of tools that can use media composition to fill the network gaps [36]. Pathway
Tools [45] and AUtomatic REconstruction of MEtabolic models (AuReMe)[78], besides media
composition, can also utilize known metabolic compounds. However, the use of biolog
phenotype arrays, knockout experiments and different types of omics data, such proteomic, to
automatically curate the draft model is not yet performed by any of the tools listed in Table 2

[36].
AuReMe [78], MetaDraft [79] and Reconstruction, Analysis and Visualization of Metabolic

Networks (RAVEN) [80] are capable to use and import metabolic networks, using level 3 SBML
files [81], but AuReMe [78] generates networks with slightly differences when level 2 SBML
files [82] is used [36]. In relation to outputs, MetaDraft [79], merlin [5, 77] and RAVEN [80]
are able to export the networks in level 3 SBML files with flux balance constraints annotations
[83], SBML groups [84] and Minimum information requested in the annotation of biochemical
models (MIRIAM) [85] compliant controlled vocabularies annotations [36]. CarveMe is only
able to reconstruct models for prokaryotics [6], while the other six tools can reconstruct models
for prokaryotics and eukaryotic organisms [5, 36, 77].

AuReMe [78] has traceability as a priority, keeping a register of changes made in the draft
network. Its workspace is a command line. This tool is a good option to reconstruct high-
quality drafts models, where models for a phylogenetically close species are available because
the time required to obtain a manually curated model of high-quality is reduced [36]. AuReMe
[78] also has some disadvantages such as the interface which is not user-friendly and it does
not provide good assistance for manual refinement [36]. In turn, CarveMe [6] which also uses
a command-line to reconstruct GSMMs, is one of the faster tools, providing GSMMs ready to
be validated and simulated. However, many reactions must be checked manually because the
gap-filling procedure is automatic and it can include reactions that are not really present in
the organism [36]. Based on Python, CarveMe [6] can also be performed to study microbial
communities[6]. The workspace is not suitable for manual refinment making this reconstruction
step difficult to handle [36]. merlin [5, 55, 77] is an user-friendly Java™tool that has useful
features such as the automatic genome re-annotation through BLAST or HMMER and a
platform provided for manual refinement, guiding the user through the entire reconstruction
process. Reactions localization can be automatically predicted as well as GPR associations
[5, 36, 77]. merlin [5, 55, 77] has a feature which creates a pseudo biomass reaction with
estimated values for proteins, DNA, RNA and cofactors [77]. Another reconstruction tool is
MetaDraft [79], a user-friendly tool, which is Python-based and was designed to reconstruct
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GSMMs from previously curated models [36]. MetaDraft [79] is more robust for handling
models and very suitable for non-specialists due to the graphical user interface but is not
good for manual curation [36]. In turn, ModelSEED [62, 63] has a short computational time
to get a draft GSMM and it is able for the reconstruction of plant and microbial community
models [36]. ModelSEED [62, 63] can fill automatically the gaps, but the reactions must be
checked. Therefore, the draft obtained is ready for be validated and simulated. This tool is
able to identify GPR associations, to automatically predict reactions localization and generate
a biomass reaction [5, 36]. Nevertheless, ModelSEED [62, 63] does not provide a platform
with good assistance for manual curation [36]. Pathway Tools [45] is a software to reconstruct
and curate GSMMs and has an outstanding user-friendly interface [36], which provides a
suitable workspace for manual curation. One of the disadvantages of this tool is that the final
reconstructed models do not have all the fields required [36]. Finally, RAVEN [80] is a GSMMs
reconstruction and curation tool which requires the use of the commercial tool MatLab®[5,
36]. It allows several reconstructions to be generated with great parameter flexibility and it
is appropriate for model reconstructions of less studied organisms because it is possible to
integrate information from KEGG and MetaCyc databases. The available interface for manual
refinement is not good, which is a disadvantage [36]. RAVEN [80] is also able to predict
automatically reactions localization [5].

Therefore, merlin [5, 55, 77] can be considered one of the most complete reconstruction tools
because provides a user-friendly interface, facilitating manual curation which is indispensable
in any reconstruction process. Moreover, has access to updated databases and resources. The
reconstructed model obtained has all the fields required and can be exported in standard
formats [5, 36, 77]. Additionally, merlin [5, 55, 77] provides excellent features that will help in
the reconstruction process such as the automatic annotation, GPR association identification,
reaction localization prediction and estimation of a pseudo biomass equation [5, 77].

There are some tools for automatic gap filling, for example, FastGapFilling and GapFind/-
GapFill [86, 87]. FastGapFilling uses only Linear Programming (LP) [86, 87] and is capable to
integrate gap-filling and, flux and stoichiometric consistency [87]. This tool creates a linear
problem with all reactions, where an objective function is defined based on their weighted
fluxes, and the biomass reaction has a variable weight, not using an integer variable. While the
algorithm increases the biomass flux, it minimizes the weighted minimum sum of fluxes from
new reactions [86]. GapFind/GapFill find gaps, for example metabolites unable to be produced,
and fills the network, for example, adding reactions to the model in order to produce the
metabolites [86]. This tool uses Mixed-Integer Linear Programming (MILP), which computes a
minimum set of reactions to add, making it computationally expensive when the candidate
reactions set is large. This approach is also used to integrate transcriptomic data into GSMMs
in order to simulate the model under a certain physiological state [21, 86]. For both tools, the
reactions added to fill the gaps may be analysed and validated for each organism [86].
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Table 2: GSMMs reconstruction tools and their main features *

Reconstruction
tool

Mapping
method

Reactions
source

Associated
databases

Version
Type of
software

Reference

AuReMe
Pantograph

(Inparanoid and
OrthoMCL)

Template
model(s)

BiGG-
MetaCyc

1.2.4
Command

line
[78]

CarveMe

Diamond,
eggNOG-mapper
[88] (should be

run externally by
the user)

Template
model

BiGG 1.2.1
Command

line
[6]

merlin

Mapping from
annotation with
BLAST [44] or
HMMER [89]

Database KEGG 3.8
Standalone

interface
[55, 77]

MetaDraft
Autograph

(Inparanoid)
Template
model(s)

BiGG 0.9.2
Standalone

interface
[79]

ModelSEED

Annotation
ontology map

from RAST [90]
data

Template
model

ModelSEED 2.2–2.4
Online
service

[62, 63]

Pathway Tools Pathologic Database MetaCyc 22
Standalone

interface
[46]

RAVEN

Autograph-type
method from
BLASTP [91]

and Bidirectional
BLASTP

Database-
Template
model(s)

KEGG-
MetaCyc

2.0.1
Command

line
[80]

* (Adapted from Mendoza et al. 2019)

FastGapFilling is considered more efficient because has to solve only a few LP problems,
whereas MILP-based approaches needs to solve several LP problems, requiring much more
computation time [86].

Although there are already some tools to facilitate and improve model reconstruction and
simulation, it is still a time consuming and laborious process. So, there are some features
that should be improved such as, algorithms that include genes and reactions in the models,
through the use of experimental data. The lack of experimental information is one of the
biggest problems, specially in respect to biomass composition since the quality of the model is
compromised and hence its ability to accurately predict phenotypes [36].
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2.6 Simulation tools

After the reconstruction process, models must be validated and simulated. Tools with no
simulation features need the use of additional software such as COBRA Toolbox [65], OptFlux
[64], ReFramed [92] and MEWpy [93]. COBRA is a framework that allows an integrative analysis
of systems biology data and a quantitative prediction of viable phenotypes. COBRA Toolbox
[65] is a software of interoperable COBRA methods, with applications in biology, biomedicine
and biotechnology, because it has functions that can implement COBRA protocols to any
biochemical network [65]. However, COBRA Toolbox methods require MatLab®to be used.
COBRA for Python (COBRApy) is a Python package that allows the user to access the methods
of COBRA Toolbox [65], and therefore does not require MatLab®[94] in contrast with COBRA
Toolbox versions [65]. COBRApy facilitates the representation of the biological processes of
metabolism and gene expression[94]. Nevertheless, COBRA Toolbox [65] has several tools and
methods with different objectives, namely, visualization and reconstruction of network models,
integration of omics data, metabolic engineering, gap-filling and FBA [65]. OptFlux [64] is an
open-source software and user friendly, being the first tool to identify Metabolic Engineering
targets using Evolutionary Algorithms/Simulated Annealing Metaheuristics or the previous
algorithm proposed by OptKnock [64, 95]. It also allows stoichiometric metabolic models to
simulate wild type and mutants phenotypes of an organism, using different methods, such
as FBA, MOMA or ROOM [64]. It performs MFA by calculating the admissible flux space
given measured fluxes set, and also it can analyze the pathways by calculating Elementary
Flux Modes [64, 96]. OptFlux has several methods for simplification of the model and other
pre-processing operations in order to optimize algorithms [64]. OptFlux allows the analysis of
the model structure through a visualization module, which is compatible with the Cell Designer
layout information [64, 97]. ReFramed [92] implements several constraint-based simulation
methods including FBA, pFBA, MOMA , and contains interfaces to other COBRA libraries, such
as escher, COBRApy, and optlang. In addition is possible to construct GSMMs for microbial
communities [92] from existing ones and simulate them using the methods implemented.
In specific for microbial communities, SteadyCom can be used to [98]. MEWpy [93] is an
integrated Metabolic Engineering Workbench for strain design optimization, developed in
Python [93]. For simulations, it allows the simulation of different types of models (such as
metabolic, kinetic, community and Gecko), considering different phenotypes [93]. In the
optimization process, it uses Evolutionary Computation based on the optimization of strain
design by doing a knock out or forging an over/under expression in reactions, genes or
enzymes. ReFramed [92] and COBRApy are the simulation environments that are currently
available in MEWpy [93].
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2.7 Acid lambic Beer

Belgium is known for its traditional spontaneous mixed fermentation beers, such as lambic
beers [10, 99]. Originally brewed in Belgium, lambic beer is one of the oldest types of beer still
produced today [10, 100, 101]. Becoming increasingly popular around the world, this Belgian
beer has a unique alcoholic flavour profile characterised by a refreshing acidity with fruity notes
and little residual carbohydrates [102]. Prominently more acidic and weakly carbonated, the
characteristic flavours and aromas of this beer are created using distinct microorganisms [10],
such as Enterobacteriaceae, Pediococcus and Brettanomyces , unable to be obtained by pure culture
fermentations [10, 100, 101]. As mentioned before, sour beers are gaining interest worldwide
[10], especially in the United States of America [100], and thus, the American craft-brewing
beers are quite similar to the method of lambic beer production [100].

Lambic beer is traditionally produced during the winter by inoculating the wort in an open
coolship. The lambic beer fermentation is a very long process that can last several years [99,
100, 103] (up three years [102]). This beer is characterized by its unique flavour, rich and
complex associated with the rich microbial flora involving bacteria and yeasts that thrives
throughout the fermentation [10, 100, 103]. In the production of lambic beer, the necessary
microorganisms are obtained through the air and the successful production depends on the
low temperature which is important to prevent the growth of undesired microorganisms [10,
100]. The fermentation and maturation phases of this type of beers take place in horizontal oak
or brown barrels, contributing to microbial inoculation [10, 100]. In lambic beer production, the
extraction of wood compounds has no interest, unlike the production of port wine and whiskey,
so the old barrels are reused, preserving the resident microbiota [10, 100]. B. bruxellensis yeast
and P. damnosus Lactic acid bacterium, which are related to the beer maturation phase, have
been isolated from lambic beer barrels [10, 100]. Since the casks are used constantly and they
are only cleaned superficially with high pressure water between production batches, these
microorganisms are probably originated from previous lambic beer production processes [10,
100]. P. damnosus has been identified as a key microorganism in the fermentation of lambic
beer [100, 104–106] and B. bruxellensis has been identified by Kufferath and Van Laer in 1921 as
the yeast that confers to lambic beer its characteristic flavour [100].

The beer is composed of many (about eight hundred) different volatile and semi- volatile
compounds, but only a few are active flavourings (between ten and thirty) [108].

2.7.1 Acid lambic beer production

Lambic acid beer is produced through the spontaneous fermentation of the wort (water,
barley malt, unmalted wheat, and aged dry hops [102]) in horizontal wooden casks [102],
performed together with different species of yeasts, for example species of Brettanomyces and
Candida genus, and by some bacterias, such as Acetic acid bacteria (AAB) and LAB [100, 109].
The lambic beer production starts with the wort preparation, which is a mixture of barley malt
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and unmalted wheat, in a proportion of approximately 60-40, respectively [100, 109]. After
the addition of yeast culture, spontaneous fermentation is initiated, but it is performed by
microorganisms from the environment and/or from the previous beer. The cooked wort is
cooled overnight in open recipients. In the next day, the wort that was inoculated during the
night is transferred to wooden barrels, initializing the fermentation which can last up to two
years, with temperatures between 0 and 25ºC, because the room atmosphere is not regulated
and therefore depend on the seasons. Lambic is the resulting product and a refermentation of
this product gives rise to another type of beer called gueuze. Therefore, lambic is considered
the basis for other types of beers [100, 109].

This production is usually performed in the coldest months to avoid contamination, starting
the wort fermentation in September and finishing in April of the following year. The total
duration of lambic beer fermentation can take up to three years [100, 109].

The production of lambic beer can be divided into four phases, each characterized by the
action of specific microorganisms [100, 109], as observed in figures 2 and 3 (both adapted from
Spitaels et al. 2014):

1. Enterobacterial phase - During the cooling of the wort and during the first month of
fermentation, it predominates microorganisms such as Enterobacteriaceae (Enterobacter,
Escherichia, Klebsiella, Hafnia, Citrobacter and non-fermental maltose yeasts (e.g. Kloeckera
apiculata). LAB are minimally present. Thus, butanediol, dimethyl sulfide and formate
production prevail, with lower production of ethanol, acetic acid and lactic acid [10, 100,
109];

2. Saccharomyces phase - After glucose exhaustion, the non-fermental maltose yeasts dis-
appear, the pH decreases below 4.4 and the ethanol concentration increases above 2%,
completely inhibiting the activity of Enterobacteria. This stage is the main one of alcoholic
fermentation, dominated by Saccharomyces (Saccharomyces cerevisiae, Saccharomyces pastori-
anus, Saccharomyces bayanus) which has an important role in the total attenuation of the
wort. Fermentation is not as intense as in a normal beer, which may be due to the fact
that Enterobacteria have consumed various amino acids and peptides at the beginning of
wort’s fermentation. In this phase prevails the production of ethanol, higher alcohols and
esters [10, 100, 109];

3. Acidification phase - After about four months of fermentation, the LAB, especially P.
damnosus, and the AAB such as Acetobacter and Gluconobacter, appear in large quantities
in the wort, leading to the production of lactic acid and acetic acid. The number of
LAB reaches its peak during the transition from spring to summer, corresponding
to the time between the sixth and the eighth month of fermentation, because these
microorganisms need higher temperatures for their growth. Brettanomyces yeasts, in
particular B. bruxellensis, replaces Saccharomyces yeasts, approximately in the eighth
month. B. bruxellensis is responsible for the further fermentation of the wort, occurring in
lambic fermentation for another eight months. The acidification phase is characterized by
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the strong production of acid compounds such as lactate, ethyl lactate and also, but to a
lesser extent, the production of acetate, ethyl acetate, diacetyl and isobutyrate [10, 100,
109];

4. The maturation phase - Approximately after ten months of fermentation, the number of
LAB decreases gradually, as does the activity of Brettanomyces, which decreases later.
In this phase occurs the fermentation of superior dextrins, the reduction of diacetyl
and dimethylsulfide and the wort is gradually attenuated. The beer maturation takes
about one year and therefore the number of LAB increases again with the increase of
temperature, coinciding with the hottest summer months, corresponding to the second
year of fermentation [10, 100, 109].

Figure 2: Bacteria present in lambic beer isolated from two different agar culture media.

- Bacteria were isolated in two different agar media namely Man-Rogosa-Sharpe (MRS) and Violet red bile
glucose (VRBG). The isolates’ number is given between brackets.
Adapted from Spitaels et al. 2014 [100].

The lambic beer fermentation process has a worldwide great interest, and therefore the study
of the microbial community present in its production is important. Therefore, in this work we
will study the LAB P. damnosus and B. bruxellensis yeast, which play an important role in the
final stages of fermentation, being isolated in the acidification and maturation phase [10, 100,
109].
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Figure 3: Yeasts present in lambic beer isolated from two different agar culture media.

- Yeats were isolated in two different agar media namely DYPAI (2% glucose, 0.5% yeast extract, 1% peptone
and 1.5% agar; weight/volume) and UBAGI which is a general yeast agar isolation medium for beer environment.
The isolates’ number is given between brackets.
Adapted from Spitaels et al. 2014 [100].

2.8 Lactic acid bacteria

LAB are a group of Gram-positive bacteria, which metabolize sugars, converting them
mostly into lactic acid [110]. Classified in the Firmicutes phylum, class Bacilli and order
Lactobacillales, the LAB belong to several genera, including Pediococcus, Lactobacillus, Lactococcus,
Streptococcus, Oenococcus and Enterococcus [110, 111], as shown in Table 3. LAB are defined by a
ubiquitous and heterogenous family of microorganisms, characterized by similar metabolic
capabilities [112]. Non-spore forming bacteria and microaerophilic, LAB can be cocci or rods,
having a high tolerance for low pH. Being considered as catalase-negative and fastidious
organisms, these bacteria reside in several different habitats, including human cavities, such as
gastrointestinal or oral cavity, as well as plants, meat, vegetables and processed dairy products
[111, 112]. With a low DNA content of G+C [111, 112], they are strictly fermentative and
facultatively anaerobic [10]. LAB are characterized by the production of growth inhibition
substances such as diacyls, hydrogen peroxide and bacteriocins, which have a preservative
and antimicrobial action, preventing the proliferation of bacteria and pathogens responsible
for the spoilage of food, also acting in the control of human pathogens [111]. Nevertheless,
more information is needed on the LAB antimicrobial potential against human pathogens,
especially in the current era where antibiotic resistance is increasing. Therefore, through the
new technologies, it is important to characterize and identify new LAB strains that have more
powerful antimicrobial activities [111].
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LAB belong to the most important microorganisms used in food fermentations, being
extensively used in food industry as promoters in the fermentation of, for example, fruit,
drinks, meat, vegetables and milk, playing a key role in food preservation, as well as in the
development of the texture and taste of food, improving them [110, 111]. Since they are present
in the gastrointestinal tract, some species of this bacteria group are used as probiotics, because
they are of human origin and confer beneficial effects on human health [112].

To obtain energy, LAB ferment carbohydrates and as the final electron acceptor, it utilizes
endogenous carbon sources instead of oxygen [111]. They are protected against oxygen by-
products, for example, hydrogen peroxide by peroxidases, considered thereby as aerotolerants
[111]. LAB has an optimal growth at pH between 5.5 and 5.8 [111], with a temperature range
from 30ºC, corresponding to mesophilic LAB species, to a maximum of 45ºC, being considered
as thermophilic LAB species [10]. The nutritional requirements of these bacteria are complex for
macromolecules, nucleotides and amino acids as well as vitamins and minerals [111]. Based on
the fermentation end-products, these microorganisms can be classified into homofermentatives
and heterofermentatives [111]. When the main product produced by LAB through fermentation
of sugars is lactate, the microorganism is homofermentative, whereas heterofermentatives LAB,
besides lactate, produce carbon dioxide and acetic acid or alcohol [111].

Several LAB genomes have been sequenced and are available to public users, leading to
advances in industry, based on genome analysis [113]. Thus, the knowledge on LAB has greatly
increased, contributing to the industrial progress of the LAB applications [113]. As mention
in the section 2.3, GSMM has become a necessary tool to study and design new improved
strains in order to achieve desired goals [113]. Nevertheless, few GSMMs for LAB strains have
been reconstructed, being the first GSMM for Lactococcus lactis (Lc. lactis) ssp. Lactis IL1403,
composed by 621 reactions and 509 metabolites [113, 114]. Thereafter, metabolic models of
other LAB were also reconstructed such as Lactobacillus plantarum (Lb. plantarum), Streptococcus
thermophilus and Bifidobacterium prausnitzii [113].

LAB are present in the acid lambic beers fermentation, characterising the acidification phase
of the traditional production process, between two and ten months of fermentation and the
maturation process [10]. They are responsible for the acidic tart flavour of the beer due to
their lactic acid production, making them indispensable because acidity is one of the main
characteristics of lambic beer [10]. Lactobacillus brevis and P. damnosus are microorganisms
belonging to the LAB that are often found in beers fermentation, especially the second one
which plays a very important role in lambic beer fermentation [10]. Other spontaneously
fermented acidic beers, such as American coolship ales (American beer which use the same
production process of the Belgian lambic beer) and red-brown acidic ales, also require LAB in
their microbiota core, participating in their fermentation and consequent production [10].
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Table 3: Number of classified species of the LAB genus based on Taxonomy NCBI Database

Genus Number of classified species Reference

Lactobacillus 224

[115]

Lactococcus 16

[116]

Leuconostoc 16

[117]

Pediococcus 11

[118]

Streptococcus 128

[119]

Aerococcus 8

[120]

Alloiococcus 1

[121]

Carnobacterium 12

[122]

Dolosigranulum 1

[123]

Enterococcus 63

[124]

Oenococcus 4

[125]

Tetragenococcus 6

[126]

Vagococcus 13

[127]

Weissella 25

[128]

2.8.1 Pediococcus damnosus

P. damnosus is a Gram-positive bacterium belonging to LAB group, which was previously
identified as Pediococcus cerevisiae (P. cerevisiae) [10, 129]. The genus Pediococcus belong to
the Lactobacillacea family [129] and it is composed of eleven species [130] among Pediococcus
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acidilactici, Pediococcus pentosaceus, P. damnosus and Pediococcus parvulus [129]. The strains which
were formerly known as P. cerevisiae, are currently distributed by three different species: P.
damnosus, Pediococcus acidilactici and Pediococcus pentosaceus [129]. Vandamme et al. in 2014

verified the clustering of the genus Pediococcus among Lactobacillus, through analysis of the 16S
rRNA [131]. Thus, in the same year, Franz et al. confirmed through a phylogenetic relationship
analysis based on 16S rRNA, that Pediococcus is phylogentically closer to Lactobacillus genus,
being the Lb. plantarum one of the Lactobacillus species most similar to P. damnosus [132]. Also in
2014, Wassenaar and Lukjancenko established a phylogenetic tree of species from Lactobacillus
genus and other LABs. Interpreting this tree and using Lb. plantarum as a reference, Lc. lactis
and Streptococcus thermophilus are other species from different genera that are phylogenetically
close to P. damnosus [133].

Over the years, the P. damnosus genome has been sequenced. There are nine published
genomes from different strains: TMW 2.1532 [134], TMW 2.1535 [134], TMW 2.125 [134],
TMW 2.1639 [134], TMW 2.1643 [134], VTT E-123212 [135], VTT E-123216 [135], P58 [135], and
LMG28219 [136]. Overall, the genome size ranges from 2.07 Mega base pairs (Mbp) to 2.27

Mbp and the Guanine-cytosine (GC) percentage is between 38.1 and 38.9 [134–136].
P. damnosus is a facultative anaerobic and an immotile bacterium which does not sporulate

under any provided culture conditions [129]. Is considered as a homofermentative LAB
specie, since only lactate is produced by the sugar metabolism [10, 129]. Due to the lack of a
respiratory chain, P. damnosus has to reduce the pyruvate for NAD+ recuperation by the action
of a lactate dehydrogenase enzyme in the Embden-Meyerhof-Parnas pathway [10, 129, 134].
Besides producing the D- and L-lactate configuration, P. damnosus also produces acetoin or
a diacetyl which are responsible for the sarcina odour in spoiled beers [132, 137, 138]. The
optimal growth temperature of this specie is 22ºC and it has an optimum growth pH of 5.5
[129, 139]. P. damnosus cannot grow in an environment with a NaCl concentration of 4%, a
temperature above 35ºC, or at a pH of 8.5 [129, 139]. Ribose, arabinose, xylose, rhamnose,
starch and lactose are not metabolizing by these bacteria, mostly fermenting glucose, fructose,
cellobiose, mannose and galactose and only some strains can hydrolyze maltose, trehalose
and sucrose [129, 132, 137, 138]. This LAB species is capable to split sucrose into glucose and
fructose due to the sucrose-6-phosphate hydrolase gene and also it could convert L-malic acid
in L-lactate by the malolactic enzyme [140]. P. damnosus is chemo-organotrophic and has a
complex growth factor as well as amino acid requirements [139], from the twenty amino acids,
P. damnosus is auxotrophic to all amino acids except for asparagine and glutamine [141, 142].
Needs nicotinic acid, pantothenic acid, biotin, riboflavin and pyridoxine for growth, not being
able to use ammonium as a source of nitrogen [139, 141, 142].

P. damnosus is found in brewery environments, occurring in wine, beer and cider [10, 129].
Therefore, it has a great research interest and many studies have been reported that P. damnosus
produces EPSs and bacteriocins, specifically pediocins [129]. EPSs contributes to a unique
physicochemical property applied in food industry, being responsible for the food viscosity
and contributing to many biological activities, such as anti-oxidation, anti-bacterial, cholesterol-
lowering, immunoregulatory function, anti-tumor, anti-coagulant and even antiviral activities
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[143]. Pediocins are bacteriocins produced by species of the genus Pediococcus, such as P.
damnosus [129]. They have a bactericidal effect to sensitive Gram-positive bacteria. Pediocins
have an important application in food industry too, due to their preservative property [129].
Implementation of pediocins as preserving food offer better solutions because it is a natural
compound which protects food against undesired pathogens, and is well accepted by the
consumers [129]. Besides its preservative feature, pediocins have an antimicrobial property
which can be used as complements of antibiotics, facing the bacterial resistance [129], as studies
have shown for nisin [144–146].

Despite the lack of information about the cell wall composition of P. damnosus, there are
several studies on LAB. Therefore, based on the cell structure of gram-positive bacteria and
LAB studies, it is possible to suppose that P. damnosus has a cell wall composed by three major
components: Teichoic acids (TAs), Peptidoglycan and polysaccharides [110, 147]. An adapted
scheme from Delcour et al. of P. damnosus cell wall is illustated in figure 4.

Figure 4: Cell wall structure of Pediococcus damnosus.

The plasma membrane has proteins integrated and it is covered by a PG multilayer. There are also present
WTA, LTA and neutral polysaccharides.
Adapted from Delcour et al. 1999 [147]. Created with BioRender.com.
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TA are presented in the cell wall of several Gram-positive bacteria [110]. In 2005, Fujii et al.
has reported the presence of two types of TA in P. damnosus: WTAs and LTAs . Nevertheless,
no studies about the composition of these cell wall compounds have been published. The
structure and abundance of WTA and LTA differ between species and strains, and also
depend on the medium in which the bacteria grow [147]. Usually, the structure of a WTA
are a poly-glycerophosphate or a poly-ribitolphosphate chain, covalently linked to PG via
a linkage unit of a disaccharide and a glycerol-phosphate unit [110]. Based on a study of
P. cerevisiae WTAs [149], P. damnosus have WTA composed by poly-glycerophosphate chain
instead of poly-ribitolphosphate chain [110, 149]. In turn, LTA are composed by a poly-
glycerophosphate attached to a glycolipid anchor, typically a diglucosyldiacylglycerol [110].
The poly-glycerophosphate repeating unit has D-Alanine or monosaccharides substitutions in
both WTA and LTA, being glucose the major saccharide found in P. cerevisiae WTAs. [110, 149].
Figure 5 shows a schematic representation of both WTA (a) and LTA (b) structures. These TA
are very important to cell wall functionality playing different and important roles. Due to their
anionic character and also their distribution on cell wall, the enzymes function properly, being
responsible for generating a pH gradient along the cell wall. In addition, TA are responsible
for maintaining cell morphology and controlling autolysins. The recognition of bacteriophages
and the interaction with the host immune system as well as their colonization is part of the role
played by TA. The D-Alanine substitutions have an important impact on cell wall functionality
because they modify the TAs charge [110, 147].

(a) WTA

(b) LTA

Figure 5: Both WTA and LTA structures represented schematically.

Adapted from Chapot-Chartier and Kulakauskas 2014 [110].
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PG, also called murein [147], is a polymer composed by a glycan chain of N-acetylglucosamine
(GlcNAc) and N-acetylmuramic acid (MurNAc) linked alternately via β -1,4 linkages. A pen-
tapeptide made of L- and D-aminoacids is attached on the lactyl group of MurNAc [110, 147].
In LAB, this peptide is composed by L-Ala-γ-D-Glu-X-D-Ala, where the X represent a di-amino
acid which differs from species to species [110]. In P. damnosus, the di-amino acid is L-Lysine
and D-Aspartate, and this latter is used in the interpeptide cross-bridge [110, 132, 137, 138], as
represented in Figure 6.

Figure 6: PG scheme of P. damnosus.

L-Ala = L-Alanine; D-Glu = D-Glutamate; L-Lys = L-Lysine; D-Ala = D-Alanine; D-Asp = D-Aspartate
Adapted from Chapot-Chartier and Kulakauskas 2014 [110]. Created with BioRender.com.

As mentioned before, P. damnosus produces EPSs which has important industrial applications
[129, 143]. This cell wall compound is composed by sugar (or derivatives) monosaccharide
residues and it can be associated to cell surface or secreted into the extracellular environment
[110, 143, 150]. EPSs are classified into homopolysaccharides, if the polymer is formed of
identical monosaccharides; and heteropolysaccharides, if two or more types of monosaccharides
are present [143, 150]. The EPSs of P. damnosus are homopolysaccharides composed by a
trisaccharide repeating unit of D-glucose, forming a β-glucan structure [151–153], as shown in
Figure 7:

Figure 7: EPS structure of P. damnosus.

Glc = Glucose
Adapted from Dueñas-Chasco et al. 1997 [151].
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2.9 Brettanomyces bruxellensis

The fourth phase of the lambic beer production process, after eight months of fermentation,
is characterized by the presence of Brettanomyces yeasts [10]. B. bruxellensis is facultatively
anaerobic [10], ethanol and sulfur dioxide tolerant [154, 155], resistant to cycloheximide [10]
and produces ethanol by alcoholic fermentation [156]. Dekkera is the teleomorphic form
(sexual) of the anamorphic (asexual) genus Brettanomyces. Presently, this genus incorporates six
species, namely the anamorphs Brettanomyces anomalus, B. bruxellensis, Brettanomyces custersianus,
Brettanomyces naardenensis, Brettanomyces nanus, and Brettanomyces acidodurans [10, 157]. The
first four species also have teleomorphs form, named as Dekkera anomala [10, 158], Dekkera
bruxellensis [10, 159], Dekkera custersiana [160] and Dekkera naardenensis [161]. In 1996, Cai et al.
constructed a phylogenetic tree based on 18S RNA, using the neighbor-joining method, where
it can be verified that Candida albicans (C. albicans), Candida tropicalis (C. tropicalis), Kluyveromyces
lactis (K. lactis), Candida glabrata (C. glabrata) and Saccharomyces cerevisiae (S. cerevisiae) are
phylogenetically close species to B. bruxellensis.

Currently, there are five B. bruxellensis genomes published from different strains: UCD 2041

[163], AWRI1613 [164], NRRL Y-12961 [165], AWRI1499 [166] and CBS 2499 [167]. Nevertheless,
there are twelve genomes assembly and annotation reports published in NCBI [168]. The
genomes size ranges from 11.77 Mbp to 26.99 Mbp and the GC percentage is between 39.80

and 41.60 [163–167].
B. bruxellensis was first taxonomically named and described in 1921 by Kufferath and Van

Laer, in a study about lambic beer. This yeast plays an important role during the final
maturation stage of lambic beer process production, being responsible for its typical aroma
and, attenuation and over-attenuation [10]. It is possible to obtain a better over-attenuation if
LAB is also present which indicates a synergistic effect [10]. B. bruxellensis produces several
volatile phenolic compounds which is undesired in wine, but crucial in lambic beer [10, 169,
170]. Subsequently, this yeast has been isolated from other alcoholic fermentations such as
wine and tequila, from soft drinks and even dairy products [10]. B. bruxellensis metabolism is
nutritionally efficient, making it capable of surviving to the severe conditions during lambic
beer production process [10]. In the maturation phase, a biofilm is formed, preventing oxygen
influx and thereby inhibiting beer oxidation, which is produced by B. bruxellensis and other
yeast such as Candida and Pichia [10]. The secondary fermentation of lambic beer, which starts
in the maturation phase, is facilitated by B. bruxellensis, contributing to the flavour profile [10].
P. damnosus and B. bruxellensis metabolise the dextrins that were not consumed by Saccharomyces
yeasts, taking part in the development of the acidity and flavour of the lambic beer [10].

The optimal growth temperature of B. bruxellensis ranges from 25 to 28ºC [10], and it is
resistant at low pH values such as between 1.5 and 2 [156]. Is resistant to large variations
of pH and temperature, hence, under oxygen limited conditions, it may also have an energy
efficient metabolism [154]. B. bruxellensis express a negative Pasteur effect, also named Custer
effect, inhibiting the alcoholic fermentation under anaerobic conditions and stimulating it in
presence of oxygen [10]. Thereby, when a B. bruxellensis yeast is in an aerobic environment
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and is introduced in an anaerobic environment, glycolysis is temporarily stopped, introducing
a transitional lag phase before the slow restart of glucose fermentation [10]. The Custer
effect mechanism is not yet unveiled, but there is a consensus hypothesis [10]. Acetaldehyde
is continually converted, in an irreversible way, into acetic acid, using a NAD+-dependent
aldehyde dehydrogenase, and subsequently continuous NAD+ drainage occurs [10]. Due
to the lack of NAD+, glycolysis is forced to stop [10]. Anaerobically, B. bruxellensis cannot
restore the redox imbalance by re-oxidation of NADH to NAD+ via the glycerol pathway,
since the glycerol 3-phosphate phosphatase activity is limited or none, resulting in lag phase
[10]. The yeast circumvented this phase by the recuperation of NAD+ via the production
of other reduced metabolites such as ammonium and ethyl derivates (e.g. 4-ethylphenol)
[10, 169, 170]. Furthermore, B. bruxellensis is a Crabtree-positive yeast, producing ethanol
through carbohydrates degradation, in the presence of high carbohydrate conditions and under
aerobic conditions [10]. Acetic acid is another product produce by B. bruxellensis in an aerobic
environment [10]. Nevertheless, under oxygen limitation B. bruxellensis favours alcoholic
fermentation, while in aerobic conditions, oxidative metabolism seems to be stimulated and
consequently the acetic acid production levels increase closer to those of ethanol [156]. B.
bruxellensis utilize several carbon sources [171] which include glucose, fructose, maltose and
mannose [154]. As nitrogen sources, this Brettanomyces species uptake ammonium, proline,
arginine, other amino acids, nitrate and nitrite [154]. B. bruxellensis is considered a yeast with
low nutritional requirements as it can appear when nutrients are scarce [154]. Unlike other
common yeasts, B. bruxellensis is capable to survive and be well adapted to post fermentation
conditions [154].

The yeast cell wall is an essential structure for the maintenance of cell integrity and viability,
protecting the cell against osmotic and mechanical stress, and controlling its permeability [172].
There is not much information available about the B. bruxellensis cell wall. Therefore, it was
presumed based on studies about the cell wall of other yeasts such as S. cerevisiae [173, 174]
and C. albicans [172]. The yeast cell wall structure is composed by different layers where the
most conserved structure is the inner layer. Major components of these cell walls are chitin,
β-1,3-glucan, β-1,6-glucan and mannan [172, 173]. Chitin represents 1% to 3% of wall mass and
it is synthesized from GlcNAc with a polymerization degree of 120 [172, 173, 175]. Located
in the inner layer of the cell wall, is important to the cell stability [176] and it can be found
free, linked to β-1,3-glucan mainly present in the neck between mother and daughter cell and,
in lesser amounts, it occurs in lateral walls attached to β-1,6-glucan, which are bounded to
mannan and β-1,3-glucan[172, 173].

Representing 50% to 60% of cell wall dry weight, glucans are the most important polysaccha-
ride of this yeast structure. β-1,3-glucan is the main glucan polymer accounting for about 80%
of all glucans whereas β-1,6-glucan only accounts for about 20% [172, 173]. The latter plays an
important role as a linker of the different cell wall components, contributing to its stability [175,
177], and the β-1,3-glucan although its biological function is still unknown, it confers some
elasticity to the cell wall structure [174, 177]. They have different degrees of polymerization
where β-1,3-glucan has 1500 and β-1,6-glucan has 150 [174, 175].
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Finally, mannan represents 40% of the dry weight wall mass and has different important
biological functions such as signal transmission, cellular protection, maintenance of the cell
shape, reorganization of cell wall components and is also responsible for the adhesion process
[172, 175]. Figure 8 shows a scheme of the cell wall structure of the yeast B. bruxellensis.

Figure 8: Scheme of the cell wall structure of Brettanomyces bruxellensis.

Adapted from Garcia-Rubio et al. 2020 [172]. Created with BioRender.com.

2.10 Microbial communities

In nature, microorganisms usually appear in communities [20]. Understanding how mi-
crobes interact and how this interaction influences the community dynamics and robustness,
as well as the individual genotype affects ecosystems properties, is a huge challenge [20].
With the advance of meta-omics methods, it becomes easier to characterize, in a detailed way,
microbial communities [20]. The use of GSMMs to study microbial communities enhances the
development of new applications [34], such as probiotic design for restoring a diseased intesti-
nal microbiota [178]. Moreover, it enables a better understanding of microbial communities,
creating new insights about their development, interaction and evolution [34]. The application
of GSMMs to communities is more complex because it is considered not only all metabolic
reactions of each microorganism, but also the exchange of metabolites between species and/or
biomass abundance of each microorganism [20]. Additionally, growth nutrient requirements
are specific for each species, and in a community can occur metabolic cross-feeding, nutrient
competition, or nutrients uptake from the environment [20]. Selective pressures in single
organisms can influence the metabolic interactions between species which can force the shape
of microbial communities’ structure [20].
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2.10.1 Microbial community models

Microbial communities are very important for many ecosystems, for health and for several
different industries. Therefore, is necessary to reconstruct predictive models of microbial
communities in order to understand its structure and function [34]. To study microbial
communities, methods including evolutionary models, thermodynamically based models,
Lotka-Volterra models, non-linear regression models and stoichiometric modelling (such
as GSMM) have been used [179]. As mentioned above, GSMMs have been successfully
implemented to study of single organisms and consequently, methods and tools have been
developed over the years to be applied in complex microbial communities. In 2007, Stolyar
et al. published the first community model of the mutualistic relationship between Desulfovibrio
vulgaris and Methanococcus maripaludis [34]. Identically to single-organism models, community
modelling is based on top-down or bottom-up approaches, which are defined as Population-
level models (PLMs) and Individual-based models (IBMs) respectively [179]. PLMs instead of
directly describing the microorganisms in a community, describe the changes at the population
level and therefore they are classified as top-down. IBMs are considered bottom-up because they
describe the individual behavior of each microorganism present in order to predict the behavior
of the community [181]. In general, PLMs should be used when homogeneous environmental
conditions are considered and IBMs should be applied to heterogeneous environments [179].

Population-level models

PLMs are traditionally used in microbial systems modelling. These models use a mass
action approach generating simple models of interaction between different species, being
typically applied to reveal general explanations about the communities [181]. Thus, PLMs can
be used as a first step to study in detail a complex system or to study, for example, the tendency
to create oscillatory population dynamics in predator-prey systems. Conversely, is not advisable
for ecosystem management because it does not adequately predict specific populations in
specific ecosystems [181]. PLMs are based on ordinary differential equations, when applied to
spatially homogeneous environments, or partial differential equations for spatially structured
environments. This type of modelling considers the dynamics of resources or assumes a density
that depends on the growth rate, representing that at a higher population density the resources
deplete faster. PLM has provided important knowledge on microbial ecology, for example in
the study of biofilms, where it is possible to simulate density distributions over time [181].

PLMs are able to simulate the system dynamics, such as changes in the microbial distribution
of a certain population. Although to verify such changes at the individual level of the
microorganisms present in the community is not possible [181].

Individual-based models

Unlike PLMs, IBMs simulate the behavior of microorganisms on an individual level, as well
as the changes they cause in the environment and how they respond to it. In this way, this
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approach can overcome the limitations of PLMs. Individual-based modeling assumes that the
action of each microorganism determines the properties of the population or community, i.e.,
any change at the population level arises from all interactions between individuals and the
environment. IBMs describe the interactions, activities and properties of each microorganism
and may therefore include:

• As interactions: competition, synergy or parasite among community microorganisms;

• As activities: substrate absorption rate, secretion rate or synthesis of new biomass;

• And as properties: biomass, size or physiological state of the microbe.

These characteristics should be classified as continuous and based on equations, such as
growth kinetic models, or discrete and based on rules, such as describing cell division. IBMs
have advantages over PLMs when the objective is to make individual simulations, to simulate
specific interactions or adaptive behavior, which are important features in microbial ecology.
Although to evaluate behavior at the population level, PLMs are more advisable even because
they are typically simpler models.

2.10.2 Microbial community models construction

Over the years, methods to reconstruct GSMMs of microbial communities have been
developed. These methods can be divided into constraint-based methods and topological
methods, embracing several different approaches. The main approaches will be described below.
First, the approaches belonging to the constraint-based methods will be discussed, starting with
compartmentalization. Compartmentalization was the first approach developed for modelling
microbial communities and is still the most used. This framework is a logical extension of the
compartmentalization method used for eukaryotic GSMM. It combines multiple species-level
GSMM generating a large stoichiometric matrix with a defined compartment for each species,
transport reactions for the metabolic fluxes between species and normally it is inserted in a
major compartment as a representation of the microbial community environment [34, 179, 182].
FBA is used to estimate growth rate and metabolite fluxes, by defining a linear objective function
based on the weighted combination of the biomass equation for each species, which relies on
experimental data. This framework allows the study of growth limits as well as of metabolite
fluxes according to the metabolic network structure [34]. For commensalism or mutualism
relationships between species it allows the computational design of environment and media
conditions [34, 179, 180, 183] and it can also be used to understand the impact of a microbiotic
on host metabolism [34, 179, 180, 184, 185]. As mentioned above, the first community GSMM
used this approach and it depicted a mutalistic interaction between Desulfovibrio vulgaris and
Methanococcus maripaludis [34, 180]. It was also implemented in others studies such as to
understand the host-pathogen relationship between Mycobacterium tuberculosis and an alveolar
macrophage [34, 179, 184] and to predict the competitive and cooperative potential among
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several pairs of species [8, 34]. The compartmentalization framework may limit several analyses
that could be performed. Due to steady-state constraints in FBA, it is forced an assumption
of balanced growth, therefore metabolic accumulation in a certain environment is not take
into account. Another limitation is to assume that each species in the community grows
optimally, because the objective function defined in the FBA problem is the combination of
the objective functions of each species. Finally, the quantity of species in the community is
assumed to be fixed, not representing changes in the microorganism abundance in response to
their interactions [34].

Another approach is based on community objectives, which is an approach implemented in
the OptCom tool and it is considered as an extension of the compartmentalization strategy, but
it uses an objective function defined at the community level [34, 179, 186]. Throught a nested,
bi-level optimization, it is able to simulate several metabolic interactions such as mutualism,
synergism, commensalism, parasitism and competition [34, 179]. A main advantage of this
approach is the ability to verify and interpret trade-offs between the microorganisms and
community objectives. Overall, OptCom allows the exploration of several types of communities
and their interactions, respecting the trade-offs between objectives [34, 186]. This tool was
used in different studies, including the simulation of two gut bacteria interactions - one an
acetate producer and other an acetate consumer and butyrate producer [187]. FVA was used in
order to obtain a range of flux values for shared metabolites (acetate, in this study case) and
subsequently to explore these possibilities [34, 187]. OptCom is expensive at computational-
level and due to the nonlinear constraints, it is not appropriate to certain optimizations solvers.
This approach is sensitive to the optimization functions and flux constraints that are defined by
the user. Therefore it is not advisable the use of this tool for poorly defined communities with
metabolic interactions not well known [34, 186].

Dynamic analysis is also an approach which belongs to the constraint-based methods. This
dynamic approach relies on dFBA where the fluxes of metabolite consumption/production
rates are integrated over time, allowing the accumulation or depletion of compounds, in contrast
to FBA which assumes a steady-state condition. dFBA allows to simulate changes in metabolite
consumption and production over time, as well as shifts in biomass and in metabolism as
response to environmental changes. To implement dFBA is necessary kinetic parameters,
specially related to uptake rates of certain metabolites, such as oxygen or glycose, which are
considered limiting metabolites. Thus, this method provides an entire time course whereby the
adaptation to modifications at conditions level and nutrients availability is described, instead
of a static snapshot of metabolites states as it is obtained by FBA [34, 179, 188, 189]. To perform
a dynamic analysis, an extended version of OptCom has been developed [186]. Thereby a
community objective function must be defined and the fluxes bounds of interspecies interactions
must also be set as well as the proper known kinetic parameters [34, 179]. dFBA is often used
to optimize community to produce a specific compound [189, 190] or to understand and study
the behaviour of a biofilm [191]. It can also be used to estimate biomass production or shifts in
nutrient concentrations due to, for example, metabolites diffusion between compartments [192],
or to study the emergent biosynthetic capacity of a community [193]. This approach was also
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implemented to explore the interactions between Escherichia coli strains [194] and to simulate the
response of a two bacteria community to nutrient modulation [195]. dFBA should be used to
model small communities with well-defined characteristics. Being an underexplored approach,
it allows to obtain information about many communities and can take into account their spatial
dynamics. One of the advantages is that it does not require as many initial assumptions as
FBA although is more computational demanding due to increases in computations over time.
Moreover, is based on kinetic parameters, information that is more difficult to obtain [34, 179].

Lastly, there is a constraint-based method approach named enzyme soup which is a com-
pletely different approach from the others presented. As the name suggests, the microbial
community is treated as an enzyme soup [179], in which reactions are not identified to the
different microorganisms. Therefore, no boundary concept between species is assumed. In
an enzyme soup community GSMM, the enzymes are annotated according to a meta-omic
dataset and the associated reactions are clustered, forming a single set [34, 179, 196]. Thus,
these reactions are not divided by species. The biomass equation has a general formulation
that represents the biomass of the whole community, since the various components are shared
by the community [179]. In the first studies developed with this method, the constraints
associated with reactions stoichiometry were not considered and therefore the differences
between networks reconstructed from different metagenomic data were examined. Recently,
methods of analysis based on constraints, such as FBA, have been used to predict biomass
production and substrate consumption [34, 197]. Due to its assumptions, this method focuses
on exploiting the metabolic potential of the microbial community and not on interactions
between species [34, 179, 197]. Thus, with the support of experimental meta-omic data, the
application of this approach to large and complex communities is quite easy [34, 197]. In 2015,
Tobalina et al. [198] applied this approach to the study of a naphthalene-degrading community
[34, 179]. In order to obtain more detailed and specific solutions within defined boundaries,
other approaches, such as compartmentalization, can be used. In 2009, Taffs et al. [199] used
different modelling approaches, including compartmentalization and enzyme soup, to study
the interaction between three microbial guilds. The enzymatic soup approach is advised when
a priori knowledge of a community is limited [34, 199]. It must be considered that using this
method, the precision decreases due to the absence of boundaries between microorganisms.
Therefore, the main advantage is the lack knowledge about the community needed, being well
applicable to communities that are poorly studied or poorly understood [34].

The reconstruction of community-level GSMMs using the topological method uses ap-
proaches such as graph-based, network expansion and comparative. In order to identify
patterns of competition and cooperation between species, graph-based methods have been
developed [34, 179, 200, 201]. A graph of all substrate-product pairs is generated from the stoi-
chiometric matrix of the GSMM. Thus, seed sets of each GSMM are identified at species-level
and species-specific limits are maintained. The graph shows connections between metabolites
with direction from substrates to products but does not contain information about stoichiom-
etry. Metabolites which are consumed but not produced are called seed sets and they are
represented by nodes with an in-degree/out-degree rate equal to zero and therefore, must be
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supplied to the metabolic network [34, 179, 200]. By evaluating this set of seeds for several
species it is possible to unveil the metabolic basis and then estimate the competition or co-
operation potential between species [201]. Although it shows that species tend to coexist in
nature with mutual competitors, the graph-based method is not useful for predicting fluxes
because it ignores the stoichiometry of reactions. Taking this into account, it is advised for
more generalised analyses of network similarity and for draft models with low accuracy for
FBA problems or similar analyses [34, 179].

On the other hand, network expansion is an agglomerative algorithm that exploits the
metabolic potential of any set of reactions [34, 179, 202]. Initially the algorithm receives as input
a set of metabolites designated as the environment and then, the reactions that can use these
metabolites as substrates are added to the metabolic network. The network is interactively
expanded: as the products of the reactions added in the previous step become available, new
reactions that have part of the metabolites’ set as substrate present in the network are added [34,
203]. In order to extend this approach to a microbial community-level analysis, the reaction sets
of the two microorganisms are considered and it is assumed that any intermediate metabolites
can be shared. Thus, the network expansion is done by conjugating the reactions set of each
microorganism. This approach is used to identify emergent properties such as biosynthetic
capabilities, of many microorganisms’ pairs. For example, this approach is a good choice to
study microbes that together produce certain metabolites that are not synthesised by any of
the parent species. This approach presents a great advantage over the graph-based method
since it preserves the reactions stoichiometric information. Moreover, it is advisable to identify
the compounds produced from a given set of substrates and consequently using a specific set
of reactions. Furthermore, it is also advised to identify the essential reactions of a species or
community in a given environment and thus understand which reactions are redundant in the
metabolic network [34, 179, 203, 204].

The comparative approach focuses on identifying functional differences between GSMMs
[34]. This approach has already been applied in some studies, as in the comparative analysis
between two species of the genus Burkholderia [205] and between two strains of the species
Lactobacillus casei [206]. These comparative analyses facilitate the identification of functional
properties of species present in large communities and thus understand redundancy as well as
the differences between the metabolic capacity of the microorganisms present in the community
[34]. For example, in the first study mentioned, exclusive reactions associated with each species
of the genus Brukholderia were revealed, as well as metabolic differences associated with the
capacity to produce the virulence factor [205]. In the second study, the result obtained was of
great industrial importance and it showed functional differences between strains of Lactobacillus
casei [206]. The comparative approach ignores the interactions between microorganisms in
a community and therefore the only objective is to find the functional differences between
different GSMMs. Therefore, this approach is not advisable for studies based on the interaction
between species [34].

In addition, to build metabolic community models, RedCom approach allows to build a
reduced model of a balanced microbial community [207]. Based on the compartmentalization
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model approach [34, 179, 207], has shown a higher predictive power compared to the full
community models [207]. As mentioned in section 2.6, ReFramed also allows the community
GSMM assembly and simulation. SteadyCom can be used in ReFramed tool [92, 98].

Simulation methods specific for microbial communities have also been developed [20].
Community Flux Balance Analysis (cFBA) is a simulation method that was translated of FBA
for single species to microbial communities and requires a few constraints which are specific to
the community. In steady-state and with an exponential growth rate that needs to be fixed,
cFBA predicts the values of biomass, the distribution of the intra- and extracellular fluxes and
metabolic exchanges of all the microorganisms present in the community. Thereby, this method
predicts, under specific environmental conditions, the optimal flux distribution, growth rate
as well as the abundance of all organisms involved, the exchange fluxes between organisms
and the environment where is the microbial community [20]. Another simulation method
is dynamic Flux Balance Analysis (dFBA) which is also an extension of FBA. It allows the
simulation, analysis and optimization of microorganism models in several environmental
contexts. This method has been extended to the study of microbial communities where each
microbe has the GSMM available. The GSMM are incorporated in a dynamic model, providing
predictions of dynamic changes in metabolism, interaction between species and metabolites
concentrations [188, 208, 209].

Dynamic Multispecies Metabolic Modeling (DyMMM) is a tool that is performing in Mat-
Lab®and it is based on dFBA [195, 210]. Dynamic Flux Balance Analysis laboratory (DFBAlab)
is a simulation tool similar to DyMMM, also based in dFBA. In order to obtain unique exchange
fluxes, it uses a feasibility problem of linear program to prevent infeasible linear programs
while the simulation is running [210]. Other tool based on dFBA is µbialSim that allows
the simulation of microbiomes under batch and chemostat conditions. Due to the numerical
integration scheme which does not require additional objectives or compounds’ pre-allocation,
it provides simulations with high numerical accuracy [211]. OptCom simulation tool allows
the simulation of microbial communities with any number of microorganisms. Based on FBA,
it relies on multiple objective structures in order to be able to understand the individual and
community interactions and behavior [186]. In turn, SteadyCom is an optimization framework
to microbial communities that predicts metabolic flux distributions in a steady state. Is compat-
ible with FVA and can predict the microbial community composition in a certain environment
[98]. MICOM is a Python package which use strategies based on COBRApy Python package.
This tool integrates GSMMs with information about import flux bounds and abundance values
estimated from genetic information. Assuming that growth rates and relative abundances in
the microbial community are at steady state, MICOM predicts in silico exchanges between
microorganisms and their environment, as well as ecological interactions within communities.
Other features are the prediction and formulation of assumptions about the interference of en-
vironmental conditions on metabolic interactions. MICOM mathematical formulation is similar
to OptCom and SteadyCom frameworks’ formulation [212]. An example of an optimization
approaches is OptDeg which requires two objective functions [213]. Finally, Species Metabolic
Interaction Analysis (SMETANA) is a MILP method which allows the prediction of community
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resource competition and metabolic cross-feeding by assembling a microbial community model
from the single-species models [214].

Finally, all modelling approaches have their advantages and disadvantages, consequently
the best option is to use a combination of various modelling and experimental approaches [34,
179].

To unveil the flavour profile of lambic beer it is necessary to study the microorganisms
present in the lambic beer production process, which requires a mixed yeast-bacteria microbial
community [10], and it is also important to study the community interactions, in order to
understand the metabolites which confer flavour and how the interaction between species
influence the taste of the beer.
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M E T H O D O L O G Y

The Methodology used in the reconstruction of GSMMs is described in the current chapter.

3.1 Tools

The GSMMs were reconstructed using merlin, which is an open-source Java™computational
tool. Besides having an user-friendly interface, merlin contains several tools that automate some
reconstruction steps, thus allowing a semi-automated reconstruction [5, 55].

To test the synthesis of biomass precursors a merlin’s feature named Biological networks
constraint-based In Silico Optimization (BioISO) [215] was used. The tool used to validate
both GSMMs was MEWpy [93] using ReFramed [92] as simulation environments, namely to
assemble the community model, and COBRApy [94] for pFBA simulations.

SMETANA [214] was used to predict community interactions and SteadyCom to predict the
abundance of which organism under certain environmental conditions [98].

3.2 Genome files

The RefSeq assembly genome files of Pediococcus damnosus LMG 28219, with NCBI assembly
accession number ASM96287v1, were retrieved automatically using a merlin framework that
needs only the organism NCBI taxonomy ID (1448143).

For the yeast Brettanomyces bruxellensis with NCBI taxonomy ID of 5007, the assembly genome
files from GenBank where used, which has the NCBI assembly accession number of dekkera v2.

3.3 Genome annotation

The first stage of the GSMMs reconstruction process is genome annotation. Providing the
NCBI Taxonomy Identifier, merlin can import genome data files from the NCBI database. High
quality models require high quality homology results, and merlin stores and provides a friendly
interface facilitating annotation review. Therefore, a homology search was performed for each
coding sequence encountered in the genome using BLAST [44] with the default parameters [5,
55].

43
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merlin displays an enzymes board with data correspondent to organisms’ genome functional
annotation. The score calculated by merlin, which considers both hits frequency and source
organism taxonomy, was automatically associated to each gene, and also a status, a name, a
product and an E.C. number, if available. Another merlin’s feature named automatic workflow
was used to obtain more reliable genome functional annotation. This tool annotates and confers
a confidence label to each gene with at least one homologous gene associated with an E.C.
number based on hits revision status and source organisms. The user selects an ordered list of
organisms which usually are phylogenetically close organisms. This feature starts by searching
for the first organism chosen in the BLAST results, creating an interactive process: if a match
is found, the candidate gene is annotated according to hit’s information; otherwise the next
organism of the list is considered. Since BLAST results are organized according to databases
and reviewed genes were found to be more reliable than unreviewed genes, the automatic
workflow was performed for Swiss-Prot results and then for TrEMBL [5, 55].

Tables 4 and 5 represent the data used in the automatic workflow tool performed against
Swiss-Prot and TrEMBL, for each organism. The organisms’ list was created based on phyloge-
netic proximity and the availability of information on the organism. The first entry is the species
used in this work, and the second is its genus. In sections 2.8.1 and 2.9, the phylogenetically
closest species and genera were discussed.

Table 4: Automatic workflow data for P. damnosus GSMM.

Organism Confidence label e-Value

Pediococcus damnosus A 1.00E-20

genus Pediococcus B 1.00E-20

Lactobacillus palntarum C 1.00E-20

genus Lactobacillus D 1.00E-30

Lactococcus lactis E 1.00E-30

Lactococcus lactis subsp. Cremosis F 1.00E-30

genus Lactococcus G 1.00E-30

Streptococccus thermophilus H 1.00E-40

genus Streptococcus I 1.00E-40

Therefore, after integrating the enzymes functional annotation, a draft GSMM has been
generated.

3.4 Metabolic network reconstruction

The second stage of the GSMMs reconstruction process is the assembling the metabolic
network. The methods used are described in the following sections.
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Table 5: Automatic workflow data for B. bruxellensis GSMM.

Organism Confidence label e-Value

Brettanomyces bruxellensis A 1.00E-20

genus Brettanomyces B 1.00E-20

genus Debaryomyces C 1.00E-20

genus Candida D 1.00E-30

genus Kluyveromyces E 1.00E-30

genus Saccharomyces F 1.00E-30

genus Yarrowia G 1.00E-30

genus Schizosaccharomyces H 1.00E-40

genus Cryptococcus I 1.00E-40

3.4.1 Metabolic data

First, it is necessary to collect metabolic data including metabolites, enzymes, reactions and
pathways information. merlin retrieved this data from KEGG. In addition, spontaneous reactions
were retrieved and automatically integrated into the model, which was later complemented by
integrating enzyme and transporter annotations.

3.4.2 Transport reactions and exchanges reactions

The Transport Systems Tracker (TranSyT) is a tool implemented in merlin that generates
and integrates transport reactions, using TCDB as the primary information source. This tool
also retrieves data from MetaCyc and KEGG to complete information of the entries found in
TCDB [216]. TranSyT identifies genes that encode transport systems as well the corresponding
transported compounds. Therefore, transport reactions are automatically created with their
Gene-Protein-Reaction (GPR) associations [55, 216]. Besides these reactions, other transport
reactions were added to the model, with the following reasoning:

• If a metabolite belongs to the growth medium, but there is no uptake reaction associated
to the metabolite in the model;

• If there is experimental or literature data that validates the production of a specific
metabolite, but there are no excretion reactions associated;

• If a transport system is described in the literature, for example, transport reactions
between mitochondria compartment and cytoplasm compartment, but TranSyT did not
predict and therefore was not included automatically;

• If a metabolite is transported by simple diffusion.
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Databases such as TCDB and BiGG were used to retrieve data about mechanisms, substrates
and genes associated with manually added transport reactions. Nevertheless, some transport
reactions were added without a gene association to ensure model functionality due to lack of
information.

Since there are metabolites in the outside compartment, exchange reactions were automati-
cally generated. These exchange reactions are responsible for defining the culture medium and
other environmental conditions by manipulating the reactions’ bounds.

3.4.3 Gene-Protein-Reactions associations

GPR associations are mandatory to reconstruct a high-quality GSMM as these affect simula-
tions and future applications, such as mutant phenotype predictions. As mentioned in section
2.4.2, these associations are defined according to literature and databases [4, 7]. Hence, merlin
has an automatic tool that generates GPR rules using KEGG Orthology data. All reactions
with enzymes are analysed against KEGG orthologues database. The associated genes were
evaluated for each orthologue, and a homology search was performed against the whole
genome [5, 55].

3.5 Biomass and Energy requirements

The biomass reaction in GSMMs represents the cell composition of an organism. A high-
quality formulation is essential to avoid future problems in the model validation stage. As
aforementioned in section 2.4.2, biomass composition should be defined by experimental data
from literature. However, in the absence of information about biomass composition, these data
can be obtained from the organism’s genome (specifically, amino acids, deoxynucleotides and
nucleotides) or adapted from studies of phylogenetically close organisms.

For both P. damnosus GSMM and B. bruxellensis GSMM, the biomass equations represent each
macromolecule’s relative abundance in a cell, where the reactants are complex macromolecules
with a specific stoichiometric coefficient defined as grams of macromolecule per gram of
biomass. For both organisms, no information was found in the literature about the composition
of their biomass. Therefore, experimental data of closely related organisms was used as a
template. For the LAB P. damnosus, experimental data from Lb. plantarum WCFS1 [217] model
and Lc. lactis ssp. lactis IL1403 [114] model was used. In turn, for the yeast B. bruxellensis
C. tropicalis [218] model, C. glabrata [219], K. lactis [220] model and S. cerevisiae S288C [221]
experimental data was used.

merlin has a feature named e-biomass equation, which automatically creates a draft biomass
reaction and four other reactions, each representing the synthesis of DNA, RNA, protein and
cofactor in a pseudo-pathway labelled ”Biomass pathway”. Using the genome files, this tool
can determine the contents of deoxynucleotide, nucleotide and amino acid for the synthesis of
DNA, RNA and protein, respectively [5, 55, 222].
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Finally, the precursors of the automatically generated cofactor reaction belong to a prede-
fined set showed to be present in prokaryotic organisms [223], although these were changed
according to literature and network metabolic capabilities.

The complex macromolecules included in the biomass reaction of P. damnosus are DNA,
RNA, protein, lipids, Exopolysaccharide (EPS), Peptidoglycan (PG), Wall teichoic acid (WTA),
Lipoteichoic acid (LTA) and cofactors [114, 217]. The precursors of EPS and PG were defined
based on literature [110, 114, 132, 137, 138, 147, 217], as well as the lipid, WTA and LTA
composition [110, 114, 147, 149, 217]. Lastly, the cofactors and vitamins were set from merlin
and literature [224].

In B. bruxellensis, biomass reactions include DNA, RNA, protein, lipids, carbohydrates
and cofactors [218–220]. The composition of lipids and carbohydrates was defined based
on literature [172–176]. Cofactors and vitamins compositions were based on merlin cofactor
template reaction, C. glabrata and K. lactis experimental data [219, 220].

Although fatty acids are not directly included in the biomass reaction, they are components
present in the synthesis of lipids and TA (in the case of the P. damnosus). Therefore, in the
biomass pathway, a reaction representing the composition of fatty acids was added in each
model, where the product of the reaction is a generic fatty acid metabolite. In the bacterium
model, the fatty acids were defined based on literature [114, 217, 225]. In the B. bruxellensis
model, these components were also determined based on literature [219–221]. The molecular
weight of the fatty acid metabolite corresponds to the average weight of all fatty acids present
in each organism, allowing to determine the molecular weight of both lipids and TA (in the
case of the P. damnosus).

Due to a lack of information on energy requirements for P. damnosus and B. bruxellensis, the
growth-associated energy and the non-growth-associated energy requirements were recovered
from experimental data from Lb. plantarum WCFS1 for P. damnosus and S. cerevisiae iMM904

[221] for B. bruxellensis. The growth-associated energy was added to the biomass reaction and
the non-growth-associated energy was included in the ATP hydrolysis reaction, defining the
lower and upper bounds according to the set value. These energy requirements values can be
adjusted in the model validation stage according to experimental data on growth rate.

3.6 Manual Curation

During the manual curation stage, different strategies described in the following sections
were employed.

3.6.1 Reactions directionality and balance

After the metabolic data has been loaded, the draft model shows the KEGG reactions with
default reversibility. The reversibility was corrected usind merlin’s ”Correct Reversibility” tool
that automatically corrects the reactions’ reversibility and directionality. For this work, the
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”GramPositive” and ”Fungi” options for P. damnosus and B. bruxellensis, were respectively
selected [5, 55]. However, several reactions were manually curated using different databases
such as MetaCyc, BRENDA, and BiGG to obtain a feasible and high-quality model.

3.6.2 Growth Medium

A literature search was performed to determine a Chemically Defined Medium (CDM) for
both organisms. A minimal growth medium was defined for each organism containing all the
necessary compounds. This medium includes carbon, nitrogen, sulfur and phosphorus sources,
and all the auxotrophies of each species. The minimal CDM of P. damnosus and B. bruxellensis
is available in support material (Table S3).

As mentioned before, in a metabolic model, the growth medium is defined by constraining
the exchange reactions bounds:

• For metabolites present in the CDM, the lower bound was set to -10000, and the upper
bound was maintained as 10000;

• For the growth-limiting source (e.g. carbon), the lower bound correspond to an uptake
value described in the literature or obtained from experimental data;

• Finally, for anaerobiosis simulation, the lower bound of the oxygen exchange reaction is
zero, whereas, in aerobiosis simulations, the lower bound can be defined by a specific
uptake value or unconstraining oxygen uptake.

3.6.3 Model troubleshooting

Several gaps compromised the synthesis of multiple biomass precursors. Therefore, a tool
implemented in merlin named BioISO was used to identify and solve these gaps. Using BioISO,
if a biomass precursor is not being synthesized or is not available in the defined medium, a
traceback was generated identifying gaps, such as errors in genome annotation, absence of
specific enzymatic or transport reactions and incorrect reversibility or direction of reactions.
Once the gap is identified, a search in databases (KEGG, BRENDA, MetaCyc and BiGG) and
literature was performed to solve the problem. Thus, an iterative process is developed and
repeated until all biomass precursors can be synthesized [5, 55, 215].

3.6.4 Gap-Filling

Although the draft GSMM can produce biomass, there are still many gaps and dead-end
metabolites, which affects the model feasibility. For this gap-filling performance, a merlin tool
named ”Blocked reactions” was used. This tool evaluates the model connectivity and identifies
reactions which consume or produce dead-end metabolites. merlin’s ”Draw in Browser” feature
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opens a selected KEGG pathway map on the web browser with all enzymes, reactions, and
dead-end metabolites present in the model highlighted, making it easy to detect gaps [5, 55].
Figure 9 shows the ”Pentose phosphate pathway” as example of output in which each E.C.
number was highlighted with different colours. More information in O. Dias et al. and Capela
et al. [5, 55].

Figure 9: Example of a KEGG pathway map (”Pentose phosphate pathway”) coloured by merlin’s ”Draw in
browser” tool.

Metabolic information was collected for each organism, especially for pathways containing
blocked reactions and dead-end metabolites. This information was retrieved from the literature
and different databases.

3.6.5 Reactions balance

merlin has a tool named ”Unbalanced reactions” which allows their identification [5, 55].
Information on reaction stoichiometry metabolites formula was collected and the stoichiometry
of unbalanced reactions was corrected, as shown below:

• Metabolites with variable formula: If metabolites are essential to keep model functionality,
it was maintained. Example: ”Fatty acid” and ”Acyl carrier-protein”;
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• Metabolites without a formula or with a wrong one : In merlin’s ”Metabolites” board,
add or correct the formula based on information retrieved from literature or reviewed
databases;

• Polymerization reactions, where Polymer + Monomer −→ Polymer : Remove the polymer
from the reactants, Monomer −→ Polymer, and correct the metabolites formulas and
reaction stoichiometry;

• Despolymerization reactions, where Polymer −→ Polymer + Monomer : Remove the
polymer from the products, Polymer −→ Monomer, and correct the metabolites formulas
and reaction stoichiometry;

• Generic reactions : Remove the reaction.

3.6.6 Compartmentalization

The compartments of an organism can be predicted using algorithms such as PSORTb3

[57], WolfPsort [58] or LocTree3 [59], according to the organism’s characteristics. Therefore,
for the bacterium P. damnosus, PSORTb3 [57] was used, while for the yeast B. bruxellensis the
WoLFPSORT [58] was used. The prediction results were loaded into merlin, allowing the
integration of the compartments’ annotation. Thus, the compartments were assigned to the
reactions in the model [5, 55].

3.7 Model validation

Once a feasible model is obtained, the model validation stage begins. Using pFBA, several
simulations were performed for each model and the results were compared qualitatively and, if
possible, quantitatively with the data described in the literature. The models were considered
validated when the predicted values were in agreement with the literature values. The aspects
evaluated in the model validation stage for both organisms were the following:

• No growth and no reactions flux when no medium is supplied;

• Growth under aerobic and anaerobic conditions since both organism are facultatively
anaerobic;

• Growth in different carbon sources;

• Growth in different nitrogen sources for B. bruxellensis model;

• Amino acid auxothrophies.

The bounds of the exchange reactions were changed to simulate these different environ-
mental conditions, and simulations were performed using the MEWpy framework [93].
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3.7.1 No uptake

First, each model was not supplemented with any medium to test the model viability. The
model should not produce any metabolites with no medium provided and no reactions should
have flux. Hence, all exchange reactions were set to zero on the lower bound and 10000 for the
upper bound.

3.7.2 Minimal Medium

Providing a minimal defined medium, each model was simulated under aerobic and
anaerobic conditions. In all simulations, glucose was the carbon source and the limiting nutient.
Under anaerobic conditions, the value of O2 was restricting to zero, i.e. the lower bound was
set to zero. Whereas under aerobic conditions, for P. damnosus model, the exchange reaction
was left unbounded, but for B. bruxellensis model, an uptake value was defined.

P. damnosus

In 1954, Jensen and Seeley described a minimal defined medium for P. damnosus. In Table
6, the aerobic and anaerobic environmental conditions for a minimal medium are detailed
[141]. Amino acids uptake values were retrieved from Lc. lactis ssp. lactis IL1403 [114] model
simulations.

B. bruxellensis

In 2016, Von Cosmos and C. G. Edwards described a minimal defined medium for B.
bruxellensis. In Table 7, the aerobic and anaerobic environmental conditions for a minimal
medium are detailed [226]. It was necessary, for anaerobic conditions, to supply medium
with some unsaturated fatty acids and sterols present in the biomass equation, based on the
procedure described in the literature [220].

3.7.3 Different carbon sources

The models’ predictive capabilities using different carbon sources were tested. Under
the minimal medium changing only the carbon source (glucose), several simulations were
performed and evaluated qualitatively for aerobic and anaerobic conditions.

P. damnosus

In 2002 and 2006, Carr et al. and Hammes and Hertel, respectively, studied the capabilities
of P. damnosus to ferment different carbon sources [138, 227]. Since P. damnosus shows similar
behaviour under aerobic and anaerobic conditions, it was assumed that under anaerobic
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conditions, the ability to ferment and grow is the same as under aerobic conditions, as shown
in Table 8.

B. bruxellensis

In 1998 and later in 2016, M. T. Smith and B. D. Smith and Divol, respectively, evaluated the
ability of B. bruxellensis to grow on different carbon sources. Table 9 shows the information
presented in these studies [154, 228]. According to literature, B. bruxellensis can grow on
different carbon sources in aerobiosis and anaerobiosis [154, 228].

3.7.4 Different nitrogen sources

M. T. Smith and B. D. Smith and Divol also studied the growth profile of B. bruxellensis
on different nitrogen sources under both aerobic and anaerobic conditions [154, 228]. The
following Table 10 shows different nitrogen sources and the B. bruxellensis’ ability to grow.

3.7.5 Amino acid auxothrophies

The bacterium P. damnosus is auxotrophic for almost all amino acids [141], while for B.
bruxellensis, auxotrophy has only been reported for three amino acids [226]. Besides testing the
auxotrophy of amino acids, the need for other compounds present in the minimal medium
was also evaluated. Therefore, several simulations were performed, in which single deletions
of the minimal medium components were performed.

After validation, the GSMMs are ready to be applied in scientific studies in context of several
areas. In this case, from the two GSMMs, a community GSMM will be reconstructed to analyse
the unique flavour of lambic beer further.

3.8 Community model

Firstly, the interactions between the single models of each organism were predicted using
the SMETANA [214] tool and then compared with the simulation results. The community
model was reconstructed using ReFramed [92], based on the compartmentalization method
described in section 2.10.2. Based on the minimum media used for validating each model, the
community simulation was performed using COBRApy [94]. Since the aim of the community
model reconstruction is the study of lambic beer flavour, the environment in which the P.
damnosus and B. bruxellensis are present was considered. As these microorganisms are mostly
active during the acidification and maturation phase of the beer, which takes place in horizontal
wooden barrels [102], the simulation was performed in aerobic conditions, with restricted
oxygen value. Finally, the abundance of each microorganism in the community was predicted
using SteadyCom [98].
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Table 6: Environmental conditions used to simulate in a minimal medium for P. damnosus.

Compound Formula KEGG ID
Aerobic conditions Anaerobic conditions

Lower bound Upper bound Lower bound Upper bound

Adenine C5H5N5 C00147 -10000 10000 -10000 10000

alpha-D-Glucose C6H12O6 C00267 -1.9 10000 -1.9 10000

Biotin C10H16N2O3S C00120 -10000 10000 -10000 10000

Fe3+ Fe C14819 -10000 10000 -10000 10000

Folinic acid C20H23N7O7 C03479 -10000 10000 -10000 10000

Glycine C2H5NO2 C00037 -0.2 10000 -0.2 10000

Guanine C5H5N5O C00242 -10000 10000 -10000 10000

L-Alanine C3H7NO2 C00041 -0.2 10000 -0.2 10000

L-Arginine C6H14N4O2 C00062 -0.2 10000 -0.2 10000

L-Aspartate C4H7NO4 C00049 -0.2 10000 -0.2 10000

L-Cysteine C3H7NO2S C00097 -0.2 10000 -0.2 10000

L-Glutamate C5H9NO4 C00025 -0.2 10000 -0.2 10000

L-Histidine C6H9N3O2 C00135 -0.2 10000 -0.2 10000

L-Isoleucine C6H13NO2 C00407 -0.2 10000 -0.2 10000

L-Leucine C6H13NO2 C00123 -0.2 10000 -0.2 10000

L-Lysine C6H3N2O2 C00047 -0.2 10000 -0.2 10000

L-Methionine C5H11NO2S C00073 -0.2 10000 -0.2 10000

L-Phenylalanine C9H11NO2 C00079 -0.2 10000 -0.2 10000

L-Proline C5H9NO2 C00148 -0.2 10000 -0.2 10000

L-Serine C3H7NO3 C00065 -0.2 10000 -0.2 10000

L-Threonine C4H9NO3 C00188 -0.2 10000 -0.2 10000

L-Tryptophan C11H12N2O2 C00078 -0.2 10000 -0.2 10000

L-Tyrosine C9H11NO3 C00082 -0.2 10000 -0.2 10000

L-Valine C5H11NO2 C00183 -0.2 10000 -0.2 10000

Nicotinate C6H5NO2 C00253 -10000 10000 -10000 10000

Orthophosphate H3PO4 C00009 -10000 10000 -10000 10000

Pantothenate C9H17NO5 C00864 -10000 10000 -10000 10000

Pyridoxine C8H11NO3 C00314 -10000 10000 -10000 10000

Riboflavin C17H20N4O6 C00255 -10000 10000 -10000 10000

Thymine C5H6N2O2 C00178 -10000 10000 -10000 10000

Uracil C4H4N2O2 C00106 -10000 10000 -10000 10000

Xanthine C5H4N4O2 C00385 -10000 10000 -10000 10000

Oxygen O2 C00007 -10000 10000 0 10000

Adapted from Jensen and Seeley 1954 [141] and Oliveira et al. 2005 [114].
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Table 7: Environmental conditions used to simulate in a minimal medium for B. bruxellensis.

Compound Formula KEGG ID
Aerobic conditions Anaerobic conditions

Lower bound Upper bound Lower bound Upper bound

(9Z)-Hexadecenoic acid C16H30O2 C08362 0 10000 -10000 10000

(9Z)-Octadecenoic acid C18H34O2 C00712 0 10000 -10000 10000

(9Z)-Tetradecenoic acid C14H26O2 C08322 0 10000 -10000 10000

4-Aminobenzoate C7H7NO2 C00568 -10000 10000 -10000 10000

alpha-D-Glucose C6HC12O6 C00267 -2.6 10000 -1.8 10000

Ammonia NH3 C00014 -10000 10000 -10000 10000

Biotin C10H16N2O3S C00120 -10000 10000 -10000 10000

Ergosterol C28H44O C01694 0 10000 -10000 10000

Fe2+ Fe C14818 -10000 10000 -10000 10000

Folate C19H19N7O6 C00504 -10000 10000 -10000 10000

Lanosterol C30H50O C01724 0 10000 -10000 10000

L-Histidine C6H9N3O2 C00135 -0.2 10000 -0.2 10000

Linoleate C18H32O2 C01595 0 10000 -10000 10000

L-Methionine C5H11NO2S C00073 -0.2 10000 -0.2 10000

L-Tryptophan C11H12N2O2 C00078 -0.2 10000 -0.2 10000

Molybdate H2MoO4 C06232 -10000 10000 -10000 10000

myo-Inositol C6H12O6 C00137 -10000 10000 -10000 10000

Nicotinate C6H5NO2 C00253 -10000 10000 -10000 10000

Orthophosphate H3PO4 C00009 -10000 10000 -10000 10000

Pantothenate C9H17NO5 C00864 -10000 10000 -10000 10000

Pyridoxal C8H9NO3 C00250 -10000 10000 -10000 10000

Riboflavin C17H20N4O6 C00255 -10000 10000 -10000 10000

Sulfate H2SO4 C00059 -10000 10000 -10000 10000

Thiamine C12H17N4OS C00378 -10000 10000 -10000 10000

Zymosterol C27H44O C05437 0 10000 -10000 10000

Oxygen O2 C00007 -0.1 10000 0 10000

Adapted from Von Cosmos and C. G. Edwards 2016 [226] and O. Dias et al. 2014 [220].
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Table 8: List of the different carbon sources used to simulate under aerobic and anaerobic conditions, for P.
damnosus.

Compound Formula KEGG ID Experimental data

alpha,alpha-Trehalose C12H22O11 C01083 +/-

alpha-D-Glucose C6H12O6 C00267 +

Cellobiose C12H22O11 C00185 +

D-Fructose C6H12O6 C00095 +

D-Galactose C6H12O6 C00124 +/-

D-Mannose C6H12O6 C00159 +

Sucrose C12H22O11 C00089 +/-

Dextrin (C12H20O10)n C00721 -

D-Ribose C5H10O5 C00121 -

D-Xylose C5H10O5 C00181 -

Glycerol C3H8O3 C00116 -

Lactose C12H22O11 C00243 -

L-Rhamnose C6H12O5 C00507 -

Starch (C12H20O10)n C00369 -

Note: (+), the organism grow in the medium; (-), the organism do not grow in the medium; (+/-),
some strains grow in the medium, but others do not.

Adapted from Carr et al. 2002 [138] and Hammes and Hertel 2006 [227].
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Table 9: List of the different carbon sources used to simulate under aerobic and anaerobic conditions, for B.
bruxellensis.

Compound Formula KEGG ID Experimental data

alpha,alpha-Trehalose C12H22O11 C01083 +/-

alpha-D-Glucose C6H12O6 C00267 +

D-Fructose C6H12O6 C00095 +

D-Galactose C6H12O6 C00124 +/-

D-Mannose C6H12O6 C00159 +

D-Ribose C5H10O5 C00121 -

Glycerol C3H8O3 C00116 +/-

Lactose C12H22O11 C00243 -

L-Rhamnose C6H12O5 C00507 -

Maltose C12H22O11 C00208 +/-

Raffinose C18H32O16 C00492 +/-

Starch (C12H20O10)n C00369 -

Note: (+), the organism grow in the medium; (-), the organism do not grow in the medium; (+/-),
some strains grow in the medium, but others do not.

Adapted from B. D. Smith and Divol 2016 [154] and M. T. Smith 1998 [228].

Table 10: List of the different nitrogen sources used to simulate under aerobic conditions, for B. bruxellensis.

Compound Formula KEGG ID
Experimental data

Aerobic conditions Anaerobic conditions

Ammonia NH3 C00014 + +

L-Arginine C6H14N4O2 C00062 + +

L-Cystein C3H7NO2S C00097 + -

L-Glutamate C5H9NO4 C00025 + +

L-Methionine C5H11NO2S C00073 + +/-

L-Proline C5H9NO2 C00148 + +/-*1

L-Tryptophan C11H12N2O2 C00078 + -

Nitrate HNO3 C00244 +*2 +*2

Nitrite HNO2 C00088 + +

Note: (+), the organism grow in the medium; (-), the organism do not grow in the medium; (+/-),
some strains grow in the medium, but others do not.

Adapted from B. D. Smith and Divol 2016 [154] and M. T. Smith 1998 [228].
*1- Crauwels et al. 2015 [229],Conterno et al. 2006 [230];

*2-A. R. Borneman et al. 2014 [231].
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R E S U LT S A N D D I S C U S S I O N

The results of GSMMs reconstruction are presented and discussed in the current chapter.

4.1 Genome annotation

P. damnosus

The genome annotation identified 840 candidate genes out of 2023 genes encoded in P.
damnosus LMG 28219 genome, in which 461 genes were annotated with reviewed information
and the remaining 379 annotated based on unreviewed annotations. The automatic workflow
results are described in Figure 10, reporting gene count for each label split by both Swiss-Prot
and TrEMBL databases.

Figure 10: Automatic workflow results for P. damnosus GSMM.
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B. bruxellensis

The genome annotation performed identifies 1200 candidate genes out of 4304 genes en-
coded in B. bruxellensis genome, in which 1182 genes were annotated with reviewed information,
whereas 18 were annotated based on unreviewed annotations. Figure 11 exhibits the automatic
workflow results where the gene counts are present for each label and database.

Figure 11: Automatic workflow results for B. bruxellensis GSMM.

The P. damnosus model contains 514 different E.C. numbers, whereas 748 E.C. numbers are
annotated for B. bruxellensis. In 2015, Snauwaert et al. analysed the draft genome sequence of P.
damnosus and identified four Coding sequence (CDS) (AH70 07835, AH70 01405, AH70 01410,
and AH70 01415) involved in EPS biosynthesis. However, these CDS are not present in the
genome annotation due to assembly file updates [136].

Table 11 shows the enzymes distribution among EC classes in P. damnosus and B. bruxellensis.
In both models, transferases and hydrolases are the most common classes and, therefore, the
most represented. With values between 2% and 3%, translocases is the least represented class.

Representing 14 % for P. damnosus model and 15% B. bruxellensis model, oxidoreductases
catalyse the reduction and oxidation of many substrates [232, 233]. Lactate dehydrogenase,
alcohol dehydrogenase and acetaldehyde dehydrogenase are enzymes that belong to this class.
Genes encoding L-lactate and D-lactate dehydrogenase, essential enzymes for P. damnosus
metabolism, were identified in the genome since they are involved in producing both lactate
isomers, as reported in the literature [132, 137, 138]. Alcohol dehydrogenase and acetaldehyde
dehydrogenase catalyse the reactions of ethanol and acetate production, respectively, from
acetaldehyde. Therefore, these enzymes are essential for the B. bruxellensis metabolism. Genes
encoding both enzymes were identified in agreement with the literature [154].
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Table 11: Percentage of enzymes present in each model according to the E.C. number classification system.

E.C. number class
Percentage of E.C. numbers (%)

P. damnosus B. bruxellensis

E.C. 1: Oxidoreductases 11.4% 15.8%

E.C. 2: Transferases 33.1% 37.1%

E.C. 3: Hydrolases 34.2% 32.1%

E.C. 4: Lyases 5.3% 4.4%

E.C. 5: Isomerases 5.7% 3.2%

E.C. 6: Ligases 7.6% 5.1%

E.C. 7: Translocases 2.7% 2.3%

Between 33% and 38%, transferases is one of the most representative classes in both mod-
els. Phosphate transferring enzymes (E.C. 2.7) represents around 50% of this class in both
models. This subclass of enzymes is associated with nucleotide metabolism and carbohydrate
phosphorylation [232, 233].

The other class which is also one of the most representative is hydrolases. These enzymes
are important for the catabolism of molecules such as amino acids, carbohydrates and lipids.
This E.C. class catalyses mostly hydrolysis reactions, acting on different bounds such as ester
bounds (E.C. 3.1), sugar bounds (E.C. 3.2) and peptide bounds (E.C. 3.4) [232, 233].

Lyases catalyze the breaking of chemical bounds between a carbon atom and another atom,
such as oxygen, without resorting to hydrolysis or oxidation mechanisms. Enzymes from this
class play an essential role in glycolysis (e.g. E.C. 4.2.1.11 - Phosphopyruvate hydratase) and,
acetic acid and ethanol fermentation (e.g. E.C. 4.1.1.1 -pyruvate decarboxylase) [232, 233].

Isomerases represents 5.7% and 3.2% in P. damnosus and B. bruxellensis respectively. This
class includes epimerases, mutases and racemases [232, 233]. The latter is responsible for the
conversion of L- amino acids to their respective D- isomer. To the P. damnosus model, D-alanine
and D-aspartate are necessary for the biosynthesis of PG, a biomass component.

With a representation of 7.6% for P. damnosus and 5.1% for B. bruxellensis, ligases have the role
of attaching two molecules or part of them, being involved in condensation reactions. In both
models, the predominant subclasses are E.C. 6.1 and E.C. 6.3. The E.C. 6.1 groups the enzymes
responsible for tRNA (transfer Ribonucleic acid) acylation, the amino acid-tRNA ligases present
in the ”Aminoacyl-tRNA biosynthesis” pathway. In turn, the ligases that catalyze the formation
of carbon-nitrogen bounds are grouped in the subclass E.C. 6.3, playing an essential role in
amino acids biosynthesis [232, 233].

Finally, translocases represent values below three for both models. This recent E.C. class is
involved in the translocation of ions and molecules across membranes. It is often associated
with ATP hydrolysis. The ATPases belong to the translocases class, being only present in the
B.bruxellensis, as there is no scientific evidence of the presence of ATPase in P. damnosus. The
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low value of the specific growth rate for this bacterium, mentioned in section 4.5.2, could also
be justified by the absence of the ATPase mechanism [234].

4.2 Metabolic network reconstruction

The assembly of the metabolic network starts with collecting metabolite data such as
metabolites, enzymes, reactions, and pathways information based on genome annotation. This
process was automated by merlin and the results are shown in Table 12.

Table 12: Draft GSMMs details.

Draft GSMMs Reactions Metabolites Pathways

P. damnosus 985 1066 116

B. bruxellensis 2230 1698 126

4.2.1 Compartmentalization

After performing PSORTb 3.0 tool for the P. damnosus model, four compartments were
identified: cytoplasm (928 proteins), cytoplasmic membrane (598 proteins), cell wall (26

proteins) and extracellular space (35 proteins). Although the localization of 436 protein was
not possible to predict, so it was assumed as cytoplasmatic. However, the reactions and
metabolites are only located in three of these compartments. Enzymatic and spontaneous
reactions and the metabolites involved are located in the cytoplasm, transport reactions in the
cytoplasmatic membrane and exchange reactions and their metabolites in extracellular space.
In the B. bruxellensis model, WOLFPSORT predicts nine compartments: cytoplasm (717 protein),
cytoskeleton ( 38 protein), nuclear ( 2087 protein), endoplasmic reticulum ( 26 protein), Golgi
apparatus ( 6 protein), peroxisome ( 4 protein), cytoplasmic membrane ( 519 protein), and
extracellular space ( 152 protein). It was impossible to identify the localization of 58 proteins
in the B. bruxellensis model, these proteins were assumed as cytoplasmic. Furthermore, all
proteins located in the cytoskeleton were also considered cytoplasmic.

4.2.2 Transport Reactions

In the P. damnosus GSMM, TranSyT identified 129 transport reactions, whereas in the B.
bruxellensis GSMM was identified 495 transport reactions. However, 23 transport reactions was
added to the P. damnosus GSMM, based on literature information, including four simple diffu-
sion reactions, six uniporter reactions involved in the minimal medium uptake, six reactions
that allow the uptake or secretion of sugars and two reactions which secrete compounds of
interest. In the B. bruxellensis, 240 reactions were added according to experimental data and
information found in the literature. As TranSyT only predicted transport reactions between
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extracellular space and cytoplasm, the added reactions to B. bruxellensis GSMM include 99

reactions involved in transport to the mitochondrion, 19 involved in the transport to nucleus,
45 responsible for transport to the peroxisome, three with the transport to the Golgi apparatus,
24 with the transport to the endoplasmic reticulum, and 16 responsible for the transport to the
vacuole (compartment added, as there is scientific evidence that B. bruxellensis stores amino
acids in the vacuole [235, 236]). In both models, most of the transport reactions were added
without associated genes, as these reactions were essential to the model. All changes were
based on literature and databases:

• Reactions for the uptake of compounds from the minimal medium [141, 226];

• Reactions for the compounds secretion, for which there is scientific evidence of their
production (e.g. Acetoin in P. damnosus [132, 137, 138] and 4-ethylphenol in B. bruxellensis
[10]);

• Reactions between compartments cytoplasmic and extracellular space in B. bruxellenis
GSMM (e.g. Transport of compounds participating in the Krebs cycle which takes place
in the mitochondrial matrix [237]);

• Reactions involved in the uptake of metabolites used as carbon or nitrogen source (e.g.
Trehalose transport reaction in P. damnosus [138, 227] and glycerol in B. bruxellensis [154,
228]).

Table 13 describes the number of transport reactions obtained with TranSyT and the added
reactions for each GSMM grouped according to the T.C. number classification system.

Table 13: Distribution of transport mechanism in each model according to the T.C. number classification
system.

T.C. class
TranSyT results Transport reactions added

P. damnosus B. bruxellensis P. damnosus B. bruxellensis

T.C. 1: Channels 7 16 4 41

T.C. 2: Secondary transporters 71 363 13 183

T.C. 3: ABC-binding cassette 30 116 2 16

T.C. 4: Group translocators (PTS) 21 0 3 0

T.C. 5: Electron carriers 0 0 0 0

The transport of several simple compounds, such as oxygen, water, orthophosphate and
ammonia, is performed through channels. The metabolites cross the membrane by passive
diffusion or facilitated diffusion, involving no energy consumption [238]. The transport mecha-
nism classified as T.C. 2 uses active transport and can be divided into uniporter, symporter
and even antiporter. The uniporter mechanism transports a single type of compound across
the membrane through of a protein integrated with the membrane, and it can also operate
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through facilitated diffusion. On the other hand, the symporter mechanism uses an integrated
membrane protein to transport two metabolites across the membrane in the same direction,
unlike the antiporter mechanism, which transports two metabolites in opposite directions.

Table 14 shows the number of reactions obtained by TranSyT and the number of reactions
added, for each organism, grouped according to their subclass [239].

Table 14: Distribution of transport reactions according to T.C. 2 subclass.

T.C. class
TranSyT results Transport reactions added

P. damnosus B. bruxellensis P. damnosus B. bruxellensis

Uniporter 9 115 8 124

Symporter 56 199 5 36

Antiporter 8 49 0 22

The third T.C. class uses the ABC-binding cassette mechanism, transporting amino acids,
sugars, lipids and other metabolites through a system that consumes ATP [240]. As shown
in Table 13, T.C. 4 is very common in bacteria and is responsible for the transport of free
sugars. The PTS mechanism uses phosphoenolpyruvate as a phosphate donor, converting the
sugar into a sugar-phosphate, which is then converted into glucose 6-phosphate, following the
Embden-Meyerhof-Parnas pathway [241].

4.3 Biomass and Energy requirements

4.3.1 P. damnosus

As mentioned before, P. damnosus has a reaction of the biomass with nine macromolecules
entities. Due to the lack of information, the macromolecules and their respective fraction were
defined based on the existing Lb. plantarum WCFS1 [217] model, Lc. lactis ssp. lactis IL1403

[114] model, and literature [110, 147]. The protein, DNA, RNA, lipid, PG and EPS contents
were obtained from the average of the Lb. plantarum WCFS1 [217] and Lc. lactis ssp. lactis
IL1403 [114] models. The value of the WTA fraction was taken from Lb. plantarum WCFS1

[217] model as this was experimentally calculated. Likewise, the LTA and cofactor values were
obtained experimentally in the reconstruction of the Lc. lactis ssp. lactis IL1403 [114] model
and therefore, the stoichiometry of these entities were deduced to P. damnosus model. Table 15

presents the biomass composition of Lb. plantarum WCFS1 [217], Lc. lactis ssp. lactis IL1403

[114] models, and the inferred macromolecules and their respective calculated fraction of P.
damnosus model.

As there is no experimental information about the content of each macromolecule, it was
assumed that P. damnosus has a protein content of 34% of the biomass, EPS represents 10%
of the biomass, PG content is about 12%, lipids represent a value of 0.05 %, WTA and LTA
account for a value around 22% and cofactors represents around 6% of the biomass.
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Table 15: Biomass composition of Lb. plantarum WCFS1 [217], Lc. lactis ssp. lactis IL1403 [114] and P.
damnosus models.

Macromolecule Lb. plantarum L. lactis Source P. damnosus

DNA 0.019 0.023 Average 0.020

RNA 0.090 0.107 Average 0.093

Protein 0.261 0.460 Average 0.339

Lipids 0.063 0.034 Average 0.046

EPS 0.099 0.120 Average 0.103

Peptidoglycan 0.145 0.118 Average 0.123

WTA 0.138 Lb. plantarum WCFS1 0.138

LTA 0.041 0.080
Lc. lactis ssp. lactis IL1403

0.080

Cofactors/vitamins/rest 0.144 0.058 0.058

Adapted from Oliveira et al. 2005 [114] and Teusink et al. 2006 [217].

Tables 16 and 17 summarise the DNA and RNA synthesis reactions obtained using the
e-biomass equation merlin’s tool [222]. The deoxyribonucleotide and ribonucleotide compositions
are represented in the triphosphate form. The coefficients of these reactions are in millimoles
of molecule necessary to produce one mole of macromolecule. These values were determined
using the P. damnosus genome.

Table 16: DNA synthesis reaction for P. damnosus model created with merlin.

Reactants

Precursor KEGG ID Coefficient (mmol/molDNA)

dCTP C00458 0.164

dATP C00131 0.335

dTTP C00459 0.305

dGTP C00286 0.196

Products

Diphosphate C00013 1.000

DNA 1.000

The protein synthesis reaction was also generated through the e-biomass equation merlin’s
tool [222] that uses the P. damnosus proteomics data. Table 18 shows the amino acid content
obtained.
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Table 17: RNA synthesis reaction for P. damnosus model created with merlin.

Reactants

Precursor KEGG ID Coefficient (mmol/molRNA)

ATP C00002 0.270

GTP C00044 0.292

UTP C00075 0.211

CTP C00063 0.227

Products

Diphosphate C00013 1.000

RNA 1.000

Table 18: Protein composition for P. damnosus model provided by merlin.

Precursor KEGG ID Coefficient (mmol/gProtein)

Glutaminyl-tRNA C02282 0.403

Glycyl-tRNA(Gly) C02412 0.580

L-Alanyl-tRNA(Ala) C00886 0.659

L-Arginyl-tRNA(Arg) C02163 0.346

L-Asparaginyl-tRNA(Asn) C03402 0.459

L-Aspartyl-tRNA(Asp) C02984 0.516

L-Cysteinyl-tRNA(Cys) C03125 0.042

L-Glutamyl-tRNA(Glu) C02987 0.473

L-Histidyl-tRNA(His) C02988 0.197

L-Isoleucyl-tRNA(Ile) C03127 0.642

L-Leucyl-tRNA(Leu) C02047 0.852

L-Lysyl-tRNA(Lys) C01931 0.644

L-Methionyl-tRNA(Met) C02430 0.234

L-Phenylalanyl-tRNA(Phe) C03511 0.3929

L-Prolyl-tRNA(Pro) C02702 0.314

L-Seryl-tRNA(Ser) C02553 0.573

L-Threonyl-tRNA(Thr) C02992 0.569

L-Tryptophanyl-tRNA(Trp) C03512 0.092

L-Tyrosyl-tRNA(Tyr) C02839 0.322

L-Valyl-tRNA(Val) C02554 0.629
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Fatty acids are not directly represented in the biomass equation but are essential for the
composition of lipids and LTA. The fatty acids composition was obtained using experimental
data [225], Lb. plantarum WCFS1 [217] model, and Lc. lactis ssp. lactis IL1403 [114] model.
Thus, a compound representing the average fatty acid composition was created and included
in the model, named ”e-Fatty acid”. In the following Table 19, the fatty acid composition of P.
damnosus is described. The coefficient was calculated based on the Lb. plantarum WCFS1 [217]
and Lc. lactis ssp. lactis IL1403 [114] model values average.

Table 19: Fatty acid composition of P. damnosus GSMM.

Precursor Formula KEGG iD gPrecursor/gFatty acid Reference

Tetradecanoic acid (14:0) C14H28O2 C06424 0.061 [114, 217]

Hexadecanoic acid (16:0) C16H32O2 C00249 0.278 [114, 217, 225]

Hexadecenoic acid (16:1) C16H30O2 C08362 0.074 [114, 217, 225]

Octadecanoic acid (18:0) C18H36O2 C01530 0.016 [114, 217]

Octadecenoic acid (18:1) C18H34O2 C00712 0.379 [114, 217, 225]

Methylene octadecanoic acid (cyc 19:0) C19H36O2 0.192 [114, 217, 225]

Methylene octadecanoic acid (cyc 19:0) is a cyclopropane fatty acid commonly found in
LAB, associated with cell membrane stability and acid shock resistance [242–245]. Due to the
phylogenetic proximity to lactobacilli species and the results obtained by Beverly et al. in 1997,
this cyclopropane fatty acid may be lactobacillic acid (11, 12 methylene octadecanoic acid)
or dihydrosterculic acid (9, 10-methylene octadecanoic acid) [225, 242–244]. As there is no
specific information about this cyclopropane for P. damnosus, a generic compound (Methylene
octadecanoic acid (cyc 19:0)) was assumed to be produced from octadecenoic acid, and S-
adenosylmethionine [243, 246] as the synthesis mechanism is similar.

The e-Lipid metabolite incorporates metabolites necessary for the cell wall composition.
Specifically the phospholipids molecules contain several fatty acid chains and therefore depend
on their synthesis. Thus, an average reaction of fatty acids synthesis was created and the
coefficients of each precursor were determined based on Lb. plantarum WCFS1 [217], and Lc.
lactis ssp. lactis IL1403 [114] models.

The lipid composition of P. damnosus, described in Table 20 is specifically phospholipidic.
The components and their coefficients were determined based on the Lb. plantarum WCFS1

[217], and Lc. lactis ssp. lactis IL1403 [114] models. Phosphatidylglycerol is the most abun-
dant precursor and it participates in the biosynthesis of the other two phospholipids. The
3-O-L-Lysyl-1-O-phosphatidylglycerol is obtained from phosphatidylglycerol through a lysyl-
transferase (E.C. 2.3.2.3), and cardiolipin is also produced from phosphatidylglycerol through
the action of cardiolipin synthase (E.C. 2.7.8.-).

A synthesis reaction of PG, an important cell wall component, was manually created based
on literature [110, 132, 137, 138], as described in section 2.8.1. PG consists of a glycan chain of
GlcNAc and MurNAc linked to a pentapeptide of L-alanine, D- glutamate, L-lysine, D-aspartate
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Table 20: Lipid composition of P. damnosus GSMM.

Precursor Formula KEGG ID gPrecursor/gLipid

Cardiolipin C13H18O17P2R4 C05980 0.036

3-O-L-Lysyl-1-O-phosphatidylglycerol C14H25N2O11PR2 C04482 0.252

Phosphatidylglycerol C8H13O10PR2 C00344 0.712

and D-alanine. Table 21 shows the final metabolite of the ”Peptidoglycan biosynthesis” pathway,
composed of all the mentioned precursors .

Table 21: Peptidoglycan composition of P. damnosus GSMM.

Precursor Formula KEGG ID molPrecursor/PG gPrecursor/gPG

Undecaprenyl-diphospho-N-acetylmuramoyl-

C95H156N8O28P2 C05898 1 1-(N-acetylglucosamine)- L-alanyl-D-glutamyl

-meso-2,6-diaminopimeloyl-D-alanyl-D-alanine

As mentioned in section 2.8.1, P. damnosus produces EPSs, a molecule that has important
industrial applications [129, 143]. EPSs are homopolysaccharides composed of three molecules
of D-glucose, forming a β-glucan structure [151–153].The EPS composition is described in Table
22.

Table 22: Exopolysaccharide composition of P. damnosus GSMM.

Precursor Formula KEGG ID molPrecursor/EPS gPrecursor/gEPS

UDP-glucose C15H24N2O17P2 C00029 3 1

The genes involved in EPS biosynthesis were not found in the genome annotation. However,
in 2015, Snauwaert et al. [136] identified four CDS (AH70 07835, AH70 01405, AH70 01410,
and AH70 01415) responsible after analysing the draft genome for the EPS production. As
mentioned in section 4.1, the genes are not present in the model because the assembly files
have been updated in the meantime.

Based on the literature [110, 147–149], Lb. plantarum WCFS1 [217] model and the Lc. lactis
ssp. lactis IL1403 [114] model, the WTA and LTA composition and their coefficients were
determined, as shown in Tables 23 and 24, respectively. In section 2.8.1, the precursors of WTA
and LTA were discussed. Therefore, WTA is composed of a poly-glycerophosphate covalently
attached to PG through a disaccharide linkage and a glycerol-phosphate. In contrast, LTA is
composed of a poly-glycerophosphate linked to a diglucosyldiacylglycerol. The mole fraction
of each precursor of WTA entity was determined based on the B. subtillis 168 [247] model.
Table 24 shows the final LTA metabolite of the ”Glycerolipid metabolism” pathway composed
of all the precursors mentioned.
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Table 23: Wall teichoic acids composition of P. damnosus GSMM.

Precursor Formula KEGG ID molPercursor/WTA gPrecursor/gWTA

CDP-glycerol C12H21N3O13P2 C00513 45 0.640

UDP-glucose C15H24N2O17P2 C00029 15 0.224

UDP-N-acetyl-alpha-D-glucosamine C17H27N3O17P2 C00043 1 0.019

D-Alanine C3H7NO2 C00133 15 0.098

UDP-N-acetyl-D-mannosamine C17H27N3O17P2 C01170 1 0.019

Table 24: Lipoteichoic acid composition of P. damnosus GSMM.

Precursor Formula KEGG ID molPrecursor/LTA gPrecursor/gLTA

Glycerophosphoglycoglycerolipid C20H33O20P(C18H34O2)2 C20897 1 1

e-biomass equation merlin’s tool [222] also generates a Cofactor synthesis reaction that included
universal organic compounds essential for prokaryotic organism. Therefore, based on Lb.
plantarum WCFS1 [217] model, Lc. lactis ssp. lactis IL1403 [114] model and in the literature
[224], the precursors were filtered according to available information and described in Table 25.

Table 25: Cofactors composition of P. damnosus GSMM obtained from merlin, Teusink et al. [217] and Xavier
et al. [224]

.

Precursor KEGG ID mmol/gCofactor

Biotin C00120 0.315

CoA C00010 0.100

di-trans,poly-cis-Undecaprenyl diphosphate C04574 0.083

FAD C00016 0.098

FMN C00061 0.169

Glutathione C00051 0.250

NAD+ C00003 0.116

NADPH C00005 0.103

Pyridoxal phosphate C00018 0.311

Riboflavin C00255 0.204

S-Adenosyl-L-methionine C00019 0.193

Tetrahydrofolate C00101 0.173

Thiamin monophosphate C01081 0.223
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Due to lack of information about the energy requirements of P.damnosus, the Lb. plantarum
WCFS1 [217] values were used as reference. The value for growth-associated energy was 56

mmol h-1 gDW
-1 (based on total ATP production on the basis of lactate and acetate data) and

the non-growth-associated energy was 0.6 mmol h-1gDW
-1.

4.3.2 B. bruxellensis

B. bruxellensis has a reaction of the biomass with six macromolecules entities. Both macro-
molecules and their respective fraction were defined based on the existing C. tropicalis [218], C.
glabrata [219], K. lactis [220] and S. cerevisiae S288C [221] models. Table 26 presents the inferred
macromolecules and their respective calculated fraction. The fractions of each macromolecule
were obtained by averaging the stoichiometry of the precursors in the other models.

Table 26: Biomass composition of C. tropicalis [218], C. glabrata [219], K. lactis [220], S. cerevisiae S288C
[221] and B. bruxellensis models.

Macromolecule S. cerevisiae C. tropicalis C. glabrata K. lactis Source B. bruxellensis

RNA 0.063 0.063 0.059 0.04959 Average 0.058

DNA 0.004 0.004 0.0037 0.00328 Average 0.004

Cofactor 0.0087 0.01338 Average 0.011

Protein 0.461 0.53 0.5046 0.26765 Average 0.438

Lipids 0.029 0.0395 0.0502 0.00064 Average 0.030

Carbohydrates 0.407 0.4 0.3738 0.14504 Average 0.459

Due to the lack of experimental information about the specific biomass composition, literature
data was considered and it was assumed that protein represents around 44% of the biomass,
carbohydrates account for a value of 46%, RNA and DNA content is approximately 0.06%,
lipids represent a value of 0.03% and cofactors are responsible for 0.01% of the biomass, as
shown in Table 26.

In Tables 27 and 28, the DNA and RNA synthesis reactions are summarised. The DNA
synthesis reaction was obtained using the e-biomass equation merlin’s tool [222]. As these
reactions are generated using the B. bruxellensis genome, and no genomic information on RNA
is available in the assembly files, the RNA synthesis reaction was defined based on C. glabrata
[219]. The coefficients of these reactions are in millimoles of molecules necessary to produce
one mole of macromolecule.

The e-biomass equation merlin’s tool [222] also generated the protein synthesis reaction, using
the B. bruxellensis proteomics data. Table 29 shows the protein composition, namely amino acid
content obtained.

Although not represented directly in the biomass reaction, fatty acids are essential for lipid
and phospholipid biosynthesis. In 1992, Razes et al. [248] analysed and quantified the fatty
acids from two strains of B. bruxellensis: D. bruxellensis intermedia and D. bruxellensis lambicus.
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Table 27: DNA synthesis reaction for B. bruxellensis model created with merlin.

Reactants

Metabolite KEGG ID Coefficient (mmol/molDNA)

dCTP C00458 0.365

dATP C00131 0.125

dTTP C00459 0.161

dGTP C00286 0.349

Products

Diphosphate C00013 1.000

DNA 1.00

Table 28: RNA synthesis reaction for B. bruxellensis model obtained from N. Xu et al. [219].

Reactants

Metabolite KEGG ID Coefficient (mmol/molRNA)

ATP C00002 0.351

GTP C00044 0.113

UTP C00075 0.399

CTP C00063 0.137

Products

Diphosphate C00013 1.000

RNA 1.000

Years later, in 2015, Galafassi et al. [249] quantified some of these fatty acids from another strain
of B. bruxellensis. Thus, the composition of the fatty acids from B. bruxellensis was determined,
as well as their mole fraction by averaging the experimental values reported in the mentioned
studies.

The ”e-Lipid” metabolite incorporates phospholipids and sterols, which are essential for cell
viability. Although representing a small part of the lipids, sterols are involved in plasma mem-
brane fluidity [251], having phospholipids as the most representative species. Phospholipids
contain several fatty acid chains and are thus dependent on their synthesis. The precursors
and their coefficients values were determined based on C. glabrata [219] and S. cerevisiae S288C
[221] models. Table 31 summarises the lipid composition of B. bruxellensis GSMM.

The cell wall components were added to ”e-Carbohydrates” reaction. As discussed in section
2.9, the cell wall is composed mainly of chitin, β-1,3-glucan, β-1,6-glucan and mannan [172,
173]. Whereas β-1,3-glucan has 1500 degrees of polymerization, β-1,6-glucan has 150 and chitin
has 120, based on S. cerevisiae cell wall components [175].
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Table 29: Protein composition reaction for B. bruxellensis model provided by merlin.

Precursor KEGG ID Coefficient (mmol/gProtein)

Glutaminyl-tRNA C02282 0.330

Glycyl-tRNA(Gly) C02412 0.505

L-Alanyl-tRNA(Ala) C00886 0.543

L-Arginyl-tRNA(Arg) C02163 0.453

L-Asparaginyl-tRNA(Asn) C03402 0.453

L-Aspartyl-tRNA(Asp) C02984 0.529

L-Cysteinyl-tRNA(Cys) C03125 0.124

L-Glutamyl-tRNA(Glu) C02987 0.572

L-Histidyl-tRNA(His) C02988 0.185

L-Isoleucyl-tRNA(Ile) C03127 0.555

L-Leucyl-tRNA(Leu) C02047 0.827

L-Lysyl-tRNA(Lys) C01931 0.656

L-Methionyl-tRNA(Met) C02430 0.203

L-Phenylalanyl-tRNA(Phe) C03511 0.387

L-Prolyl-tRNA(Pro) C02702 0.371

L-Seryl-tRNA(Ser) C02553 0.779

L-Threonyl-tRNA(Thr) C02992 0.477

L-Tryptophanyl-tRNA(Trp) C03512 0.090

L-Tyrosyl-tRNA(Tyr) C02839 0.310

L-Valyl-tRNA(Val) C02554 0.523

B. bruxellensis seems to have only glucose and mannose in its biomass [252]. Therefore, based
on literature and in C. glabrata [219], and S. cerevisiae S288C [221] models, the ”e-Carbohydrate”
reaction was formulated, as shown in Table 32.

Cofactor reaction synthesis was generated by e-biomass equation merlin’s tool [222]. Never-
theless manual curation was performed according to the cofactors reported in the literature
[253, 254], C. tropicalis [218], C. glabrata [219], K. lactis [220] and S. cerevisiae S288C [221] models.
Although molybdenium is not present in S. cerevisiae, B. bruxellensis requires it to reduce nitrate
[253]. Table 33 shows the precursors of cofactors reaction and the coefficient of each precursor.
As heme is not synthesised in the absence of oxygen, two cofactor reactions had to be created.
The ubiquinone present in B. bruxellensis is 95% ubiquinone-9 [254]; thus, it was assumed as
the only metabolic species in the model .

Due to a lack of information on the energy requirements of B. bruxellensis, the K. lactis [220]
model was used for reference. In the model validation stage, these parameters were adjusted.
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Table 30: Fatty acid composition of B. bruxellensis GSMM.

Precursor Formula KEGG ID Molar fraction Reference

Octanoic acid C8:0 C8H16O2 C06423 0.0008 [248]

Decanoic acid C10:0 C10H20O2 C01571 0.0112 [248]

Dodecanoic acid C12:0 C12H24O2 C02679 0.0345 [248, 250]

Tetradecanoic acid C14:0 C14H28O2 C06424 0.0158 [248–250]

(9E)-Tetradecenoic acid C14:1 C14H26O2 0.0063 [248, 250]

Hexadecanoic acid (Palmitic acid) C16:0 C16H32O2 C00249 0.2007 [248–250]

(9Z)-Hexadecenoic acid (palmitoleic acid) C16:1 C16H30O2 C08362 0.3695 [248–250]

Octadecanoic acid (Stearic acid) C18:0 C18H36O2 C01530 0.0826 [248–250]

(9Z)-Octadecenoic acid (oleic acid) C18:1 C18H34O2 C00712 0.1774 [248–250]

(9Z,12Z)-Octadecadienoic acid (linoleic acid) C18:2 C18H32O2 C01595 0.0957 [248–250]

Long-chain fatty acid (Icosanoic acid) C20:0 C20H40O2 C06425 0.0055 [248, 249]

Table 31: Lipid composition of B. bruxellensis GSMM.

Precursor Formula KEGG ID gPrecursor/gLipid

Cardiolipin C13H18O17P2R4 C05980 0.051

Phosphatidate C5H7O8PR2 C00416 0.021

Phosphatidylglycerol C8H13O10PR2 C00344 0.003

Phosphatidylethanolamine C7H12NO8PR2 C00350 0.095

Phosphatidylserine C8H12NO10PR2 C02737 0.038

Phosphatidylcholine C10H18NO8PR2 C00157 0.227

1-Phosphatidyl-D-myo-inositol C11H17O13PR2 C01194 0.177

Triacylglycerol C6H5O6R C00422 0.366

Zymosterol C27H44O C05437 0.009

Ergosterol C28H44O C01694 0.010

Lanosterol C30H50O C01724 0.002

Squalene C30H50 C00751 0.001

The value for growth-associated energy was 59 mmol h-1 gDW
-1 and the non-growth-associated

energy was 2 mmol h-1gDW
-1.

4.4 Manual Curation

The current section presents all the changes made to both models during the model curation.
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Table 32: Carbohydrates composition of B. bruxellensis GSMM.

Precursor Formula KEGG ID gPrecursor/gCarbohydrates

UDP-glucose C15H24N2O17P2 C00029 0.000244

GDP-mannose C16H25N5O16P2 C00096 0.00013

Mannan C6H10O5 C00464 0.000517

1,3-beta-D-Glucan C9000H15000O7500 C00965 0.975215

1,6-beta-D-Glucan C900H1500O750 C02493 0.019902

Chitin C960H1560N120O600 C00461 0.003991

Table 33: Cofactors composition of B. bruxellensis GSMM.

Precursor Formula KEGG ID
mmolPrecursor/gCofactor Reference

Aerobiosis Anaerobiosis

Biotin C10H16N2O3S C00120 0.273 0.292 merlin/[219]

CoA C21H36N7O16P3S C00010 0.087 0.093 merlin/[220]

FAD C27H33N9O15P2 C00016 0.085 0.091 merlin/[219]

FMN C17H21N4O9P C00061 0.146 0.157 merlin/[219]

Glutathione C10H17N3O6S C00051 0.217 0.232 merlin/[220]

Heme C34H32FeN4O4 C00032 0.108 merlin/[220]

Molybdenum C10H12MoN5O8PS2 C18237 0.128 0.137 [253]

NAD+ C21H28N7O14P2 C00003 0.100 0.108 merlin/[219]

NADPH C21H30N7O17P3 C00005 0.089 0.096 merlin/[219]

Pyridoxal Phosphate C8H10NO6P C00018 0.270 0.289 merlin/[219]

Riboflavin C17H20N4O6 C00255 0.177 0.190 merlin/[221]

S-adenosyl-L-methionine C15H22N6O5S C00019 0.167 0.179 merlin

Tetrahydrofolate C19H23N7O6 C00101 0.150 0.160 merlin/[220]

Thiamin Diphosphate C12H19N4O7P2S C00068 0.157 0.168 merlin/[219]

Ubiquinone-9 C54H82O4 C01967 0.084 0.090 merlin/[254]

4.4.1 Reversibility and directionality

For both draft models, merlin’s automatic correction of reactions reversibility tool was used.
Then, manual curation was performed because the production of several biomass precursors
was compromised. Thus, in P. damnosus’ GSMM a total of 155 reactions were corrected: 148 to
irreversible and seven to reversible. A total of 266 reactions was corrected in the B. bruxellensis
GSMM, where 215 reactions to irreversible, and 51 reactions to reversible.
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4.4.2 Gap-Filling

Both drafts contained gaps specifically in the cofactors, lipids and amino acids biosynthesis
pathways. After the compartmentalization process, in both models several reactions were
duplicated and present in several compartments. Overall, 40 reactions were added to the P.
damnosus model, and 337 reactions were removed. Whereas for the B. bruxellensis model 48

reactions were added and 669 removed. In P. damnosus’ genome annotation, 29 E.C. numbers
were modified, whereas for B. bruxellensis 37 E.C. numbers were changed (support material
Table S1 and Table S2). Therefore, reactions added without an associated gene were always
supported by scientific evidence in the literature.

As mentioned in section 2.8.1, P. damnosus can produce acetoin and diacetyl. Thus, the
ADU72 1545 gene was reanotated to E.C. 2.2.1.6 and R02946, which is catalysed by the
enzyme E.C. 1.1.1.4, was added without an associated gene [132, 137, 138]. In P. damnosus’
model, an alternative pathway to ”One carbon pool by folate” was added since the metabolite
Tertahydropteroyltri-L-glutamate was being consumed but not produced. Hence, according to
Shane in 1989 [255], seven reactions were added to obtain a model with a connected network.

For P. damnosus’ model to produce the fatty acids, reactions catalysed by the enzymes E.C.
4.2.1.59, E.C. 1.3.1.9, and E.C. 1.14.19.2 were added, without associated genes, as these enzymes
are not annotated in the genome. Beverly et al. in 1997 [225] reported that a cyclopropane fatty
acid, methylene octadecanoic acid (cyc 19:0), is present in P. damnosus. Therefore, based on
phylogenetics proximity, this cyclopropane fatty acid may be lactobacillic acid (11, 12 methylene
octadecanoic acid) or dihydrosterculic acid (9, 10-methylene octadecanoic acid) identified in
many Lactobacilli and associated with cell membrane stability and acid shock resistance [242–
245, 256]. This two methylene octadecanoic acids have similar production mechanisms: S-
adenosylmethionine is required as methyl donor, generating also S-adenosylhomocysteine. The
Autoinducer-2, which can be found in several gram-positive and gram-negative bacteria [246],
was produced to convert S-adenosylhomocysteine to homocysteine, maintaining the model
in a pseudo-steady state. This Autoinducer-2 is a quorum-sensing signaling molecule and
quorum-sensing signaling has been identified in pediocins [257]. A transport reaction for this
compound was added and associated to T.C. number 2.A.86.

In B. bruxellensis’ model, there are five unsaturated fatty acids in the fatty acid synthesis
reaction. Thus, due to the lack of information in KEGG, 38 reactions based on the S. cerevisiae
S288C [221] model were added, in order to synthesise these fatty acids. The E.C. numbers
involved in the fatty acid biosynthesis are present in the model, thus all the added reactions
have associated genes. Althought, the E.C. 6.4.1.2, the E.C. 3.1.2.21 and E.C. 1.14.19.2 were
required in the ”Fatty acid biosynthesis” pathway. Since they are not annotated in genome
annotation, the reactions catalysed by them were added without associated genes.

As already mentioned, B. bruxellensis needs a molybdenum cofactor to reduce nitrate [253].
R12621 and a sink reaction for metabolite 5-Deoxy-D-ribose (C22288) were added to obtain a
model with a connected network, according to Escherichia coli str. K-12 substr. MG1655 model
[33], since 5’-Deoxyadenosine (C05198) was a dead-end.
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B. bruxellensis does not appear to have any 4-hydroxybenzoate synthesis mechanisms, nor
is it one of the essential metabolites in the minimal medium. Thus, it was assumed that the
biosynthesis process of ubiquinone-9 occurs from the 4-aminobenzoate. This mechanism was
considered similar to the ubiquinone-6 biosynthesis mechanism from para-aminobenzoate
reported in S. cerevisiae and described in the literature [258].

There is scientific evidence that B. bruxellensis produces volatile phenols namely 4-ethylphenol,
4-ethylguaiacol, 4-vinylphenol (or 4-hydroxystyrene) and 4-vinylguaiacol . The p-coumaric
acid, ferulic acid and caffeic acid are converted into hydroxystyrenes (4-vinylguaicol, 4-
vinylphenol) wich are then reduced into ethyl derivatives(4-ethylphenol, 4-ethylguaiacol)
[169, 170]. Although enzymes responsible for biosynthesis of these compounds are not avail-
able in the genome annotation, six reactions without associated genes were added: RXN25879

and RXN25875 (ModelSEED ID), R11071, R02952, R03366 and R07826. Only these last three
reactions are associated with complete E.C. numbers.

4.4.3 GPR

merlin’s tool established 110 and 191 GPR rules for P. damnosus and B. bruxellensis GSMMs,
respectively.

Therefore, the GSMMs are cured and ready for the validation process. Table 34 shows
GSMMs details.

Table 34: GSMMs details.

GSMMs Reactions Metabolites Pathways

P. damnosus 809 589 67

B. bruxellensis 2095 1249 79

Tables S4 and S5 (support material) show the pathways present in each model and the
respective number of reactions.

4.5 Model validation

In this section, the results obtained during the P. damnosus and B. bruxellensis model
validation are shown.
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4.5.1 No uptake

The first simulation for both models verifies if the model can produce biomass even if the
medium provides no metabolites. Therefore, the lower bounds of all the exchange reactions
were set to zero, and the biomass growth rate obtained for both models was zero, not having
any reaction with flux. Consequently, the models proceed to next validation stage.

4.5.2 Minimal Medium

P. damnosus

At a minimal medium, the growth rate of P. damnosus was calculated based on experimental
data obtained from the literature [142]. This growth rate was obtained under anaerobic
conditions. Still, since P. damnosus does not appear to have oxidative phosphorylation (no
information about oxidative phosphorylation was found, and the genome annotation did not
contain any information about enzymes involved in this pathway), the same specific growth
rate for anaerobiosis and aerobiosis was considered . The specific growth rate experimentally
determined was 0.04h-1 [142]. As mentioned in 2.8.1, P. damnosus can produce L- and D-lactate,
diacetyl (such as butanedione), and acetoin [132, 137, 138]. During model validation, the
non-growth-associated energy was set to 0.60 mmol h-1gDW

-1 and the growth-associated energy
requirements to 56 mmol gDW

-1. The uptake value for glucose was set to -1.9 mmol h-1 gDW
-1,

whereas the amino acids uptake value was set to -0.2 mmol h-1 gDW
-1 according to Lb. plantarum

WCFS1 [217]. The exchange reactions bounds of the remaining metabolites were defined as
unconstrained, i.e. with values of -10000 mmol h-1gDW

-1 for the lower bound and 10000 mmol
h-1gDW

-1 for the upper bound. The simulations were performed using mainly pFBA. Yet,
whenever a specific compound was not produced, contradicting the experimental data, FVA
was performed (Table 37). If the maximum value obtained in the FVA is different from zero, it
means that the model can produce the metabolite under these conditions and thus validate the
model. Tables 35 and 36 show the consumption and production values, and the compounds
produced under aerobic and anaerobic conditions.

During in silico simulations, the two lactate configurations can not be secreted simultane-
ously. However, the model is capable of producing both. Acetoin is completely converted
to butanedione; hence not secreted in pFBA simulations. The degradation of L-cysteine by
cysteine-S-conjugate beta-lyase originates hydrogen sulfide and ammonia, which are secreted.
Thereby, the P. damnosus model can produce the expectable metabolites in a minimal medium,
being apt for the simulation using different carbon sources.

B. bruxellensis

In 2011, Rozpedowska et al. [11] calculated the specific growth rate of B. bruxellensis
under aerobic and anaerobic conditions in a minimal defined medium including the secreted
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Table 35: In silico consumption rates of metabolites present in the minimal medium by P. damnosus model.

Metabolite KEGG ID

Consumption rate

Metabolite KEGG ID

Consumption rate

(mmol h-1 gDW
-1) (mmol h-1 gDW

-1)

Aerobiosis Anaerobiosis Aerobiosis Anaerobiosis

Adenine C00147 0.0054 0.0054 L-Phenylalanine C00079 0.0054 0.0053

Biotin C00120 0.0007 0.0007 L-Proline C00148 0.0043 0.0043

D-Glucose C00031 1.9000 1.9000 L-Serine C00065 0.0148 0.0147

Fe3
+ C14819 0.0000 0.0010 L-Threonine C00188 0.0078 0.078

Folinic acid C03479 0.0004 0.004 L-Tryptophan C00078 0.0013 0.0013

Glycine C00037 0.0000 0.0000 L-Tyrosine C00082 0.0044 0.0044

Guanine C00242 0.0039 0.0039 L-Valine C00183 0.0086 0.0086

L-Alanine C00041 0.0245 0.0244 Nicotinate C00253 0.0005 0.0005

L-Arginine C00062 0.0047 0.0047 Orthophosphate C00009 0.0000 0.0691

L-Aspartate C00049 0.0185 0.0184 Oxygen C00007 0.0140 0.0000

L-Cysteine C00097 0.2000 0.2000 Pantothenate C00864 0.0002 0.0002

L-Glutamate C00025 0.0151 0.0151 Pyridoxine C00314 0.0012 0.0012

L-Histidine C00135 0.0032 0.0032 Riboflavin C00255 0.0011 0.0011

L-Isoleucine C00407 0.0088 0.0088 Thymine C00178 0.0000 0.0000

L-Leucine C00123 0.0116 0.0116 Uracil C00106 0.0148 0.0148

L-Lysine C00047 0.0088 0.0087 Xanthine C00385 0.0000 0.0000

L-Methionine C00073 0.0036 0.0036

compounds. In aerobiosis, B. bruxellensis has a specific growth rate of 0.12 h-1, and besides
ethanol, acetate is also secreted. Under anaerobic conditions, the specific growth rate is 0.07

h-1, and ethanol and a small amount of glycerol are secreted [11]. As discussed in section 2.9,
B. bruxellensis produces volatile phenols such as 4-ethylphenol [10, 169, 170]. In aerobiosis, the
lower bound of the oxygen exchange reaction was constrained to -0.1 mmol h-1gDW

-1 as the
experimental data for specific growth rate was obtained in an environment with a controlled
dissolved oxygen concentration [11]. The exchange reactions of the three amino acids present
in the minimal medium were restricted to -0.2 mmol h-1gDW

-1. The glucose uptake was defined
as -2.6 mmol h-1gDW

-1. In anaerobiosis, the exchange reactions bounds of the sterols and
unsaturated fatty acids included in B. bruxellensis biomass were defined as unconstrained, with
the lower bound value of -10000 mmol h-1gDW

-1 and the upper bound value of 10000 mmol
h-1gDW

-1, as reported in the literature [220]. The exchange reactions bounds of the three amino
acids were restricted as in aerobiosis, and the glucose uptake was set to -1.8 mmol h-1gDW

-1 .
The exchange reactions bounds of the remaining metabolites present in the minimal medium
were not restricted, having values of -10000 mmol h-1gDW

-1 for lower bound and 10000 mmol
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Table 36: In silico secreted compounds by P. damnosus model, in a minimal medium.

Metabolite Formula KEGG ID

Production rate

(mmol h-1 gDW
-1)

Aerobiosis Anaerobiosis

D/L-Lactate C3H6O3 C00256/C00186 3.437 3.446

(R,R)-Butane-2,3-diol C4H10O2 C03044 0.106 0.104

Ammonia NH3 C00014 0.174 0.175

Autoinducer2 0.002 0.002

Biomass 0.040 0.040

Fe2
+ Fe C14818 0.000 0.001

H+ H C00080 0.400 0.385

HCO3
- HCO3 C00288 0.416 0.399

Hydrogensulfide H2S C00283 0.198 0.198

Table 37: FVA results - P. damnosus

Metabolite Formula KEGG ID
Aerobiosis Anaerobiosis

Minimum Maximum Minimum Maximum

D-Lactate C3H6O3 C00256 0 3.880 0 3.884

L-Lactate C3H6O3 C00186 0 3.880 0 3.884

(R)-Acetoin C4H8O2 C00810 0 0.380 0 0.240

h-1gDW
-1 for upper bound, for both aerobic and anaerobic conditions. During model validation,

the non-growth-associated energy requirements were redefined to 0.45 mmol h-1gDW
-1 and

the growth-associated energy to 10 mmol gDW
-1 by fitting the model results to experimental

data on growth rate. Therefore, after setting all constraints, the model was simulated using
pFBA. FVA was used to check if the model is capable of producing a particular metabolite that
should have been excreted in the simulation with pFBA (Table 40), for example glycerol in
anaerobiosis and acetate in aerobiosis. Tables 38 and 39 show the uptake and export fluxes and
the compounds produced, under aerobic an anaerobic conditions.

The exchange reactions to L-homoserine and phosphatidylcholine were constrained to zero,
i.e. the exchange reactions lower bound was set to zero; otherwise, these metabolites would
be secreted, leading to a not expected flux diversion. In aerobiosis, acetate is not secreted by
pFBA simulation because acetaldehyde is converted to ethanol. In anaerobiosis, glycerol was
not secreted in pFBA simulation, but the FVA analysis noted that it could be produced and
excreted.
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Table 38: In silico consumption rates of metabolites present in the minimal medium by B. bruxellensis

Metabolite KEGG ID

Consumption rate

Metabolite KEGG ID

Consumption rate

(mmol h-1 gDW
-1) (mmol h-1 gDW

-1)

Aerobiosis Anaerobiosis Aerobiosis Anaerobiosis

(9Z)-Hexadecenoic
acid

C08362 — 0.00262 L-Methionine C00073 0.01822 0.01113

(9Z)-Octadecenoic
acid

C00712 — 0.00126 L-Tryptophan C00078 0.04563 0.00286

(9Z)-Tetradecenoic
acid

C08322 — 0.00005 Molybdate C06232 0.00018 0.00012

4-Aminobenzoate C00568 0.00000 0.00000 myo-Inositol C00137 0.00070 0.00043

Ammonia C00014 0.59806 0.41319 Nicotinate C00253 0.00027 0.00018

Biotin C00120 0.00039 0.00025 Orthophosphate C00009 0.03046 0.01863

D-Glucose C00031 2.60000 1.80000 Oxygen C00007 0.10000 0.00000

Ergosterol C01694 — 0.00005 Pantothenate C00864 0.00012 0.00008

Fe2
+ C14818 0.00015 0.00000 Pyridoxal C00250 0.00038 0.00025

Folate C00504 0.00021 0.00014 Riboflavin C00255 0.00058 0.00038

Lanosterol C01724 — 0.00001 Sulfate C00059 0.00000 0.00000

L-Histidine C00135 0.00971 0.00590 Thiamine C00378 0.00022 0.00015

Linoleate C01595 — 0.00068 Zymosterol C05437 — 0.00005

Table 39: In silico secreted compounds by B. bruxellensis model in a minimal medium.

Metabolite Formula KEGG ID

Production rate

(mmol h-1 gDW
-1)

Aerobiosis Anaerobiosis

4-Ethylguaiacol C9H12O2 62465 (PubChem CID) 0.00430 0.00270

5-Deoxy-D-ribose: C5H10O4 C22288 0.00018 0.00012

Biomass 0.12001 —

Biomass Anaerobic — 0.07295

CO2 CO2 C00011 2.69726 1.81735

Ethanol C2H6O C00469 3.22081 2.24316

H2O H2O C00001 2.07351 1.43500

HCO3
- HCO3 C00288 0.47414 0.26955

Succinate C4H6O4 C00042 0.44337 0.36847
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Table 40: FVA results- B. bruxellensis

Metabolite Formula KEGG ID
Aerobiosis Anaerobiosis

Minimum Maximum Minimum Maximum

Glycerol C3H8O3 C00116 0.000 0.360

Acetate C2H4O2 C00033 0.000 0.539

4.5.3 Different carbon sources

To evaluate the growth of both models in different carbon sources, simulations using
minimal medium were preformed in aerobiosis and anaerobiosis. During these simulations,
the carbon source (initially glucose) were changed but the uptake rate was maintained. Due
to the lack of information for both organisms, only a qualitative comparison was performed
between the in silico simulation results and experimental data. Therefore, if the growth rate is
greater than zero, the model can grow.

P. damnosus

The different carbon sources [138, 227] are listed in section 3.7.3. Table 41 shows the in silico
simulation results.

Analyzing the results, the P. damnosus model grew on seven of the different carbon sources
used, namely alpha,alpha-trehalose, cellobiose, D-fructose, D-galactose, D-glucose, D-mannose
and sucrose. When alpha,alpha-trehalose, galactose and sucrose were used as the main
carbon source, the experimental data showed that only a few strains could grow [138, 227].
Notwithstanding that fact, this model was able to grow in such a carbon source. With the other
carbon sources used in the simulation, the model could not produce biomass. The simulation
with glycerol as a carbon source was considered infeasible, and the model has no exchange
reactions for the other carbon sources. In general, the P. damnosus GSMM showed a phenotype
behaviour similar to the literature.

B. bruxellensis

B. bruxellensis grows on carbon sources other than glucose [154, 228], as mentioned in
section 3.7.3. The in silico simulation results are available in Table 42,

Experimental data show that B. bruxellensis grows in media with D-fructose, D-glucose and
D-mannose as single carbon sources, both in aerobiosis and anaerobiosis. According to the
literature, some strains do not grow on a medium with glycerol, D-galactose or alpha,alpha-
trehalose as the carbon source. Both aerobiosis and anaerobiosis simulations showed that the
model could produce biomass only when alpha,alpha-trehalose was the carbon source. In the
case of glycerol, the model simulation was infeasible under anaerobic conditions, while no
biomass was produced in aerobic conditions. When the carbon source is D-fructose, D-glucose
and D-mannose, the model exhibited growth in aerobic and anaerobic conditions. These results
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Table 41: P.damnosus GSMM in silico simulation under different carbons sources using pFBA.

Metabolite KEGG ID Experimental data
Biomass h-1

Aerobiosis Anaerobiosis

alpha,alpha-Trehalose C01083 +/- 0.112 0.112

Cellobiose C00185 + 0.088 0.088

Dextrin C00721 - NA NA

D-Fructose C00095 + 0.040 0.040

D-Galactose C00124 +/- 0.040 0.040

D-Glucose C00031 + 0.040 0.040

D-Mannose C00159 + 0.040 0.040

D-Ribose C00121 - NA NA

D-Xylose C00181 - NA NA

Glycerol C00116 - infeasible infeasible

Lactose C00243 - NA NA

L-Rhamnose C00507 - NA NA

Starch C00369 - NA NA

Sucrose C00089 +/- 0.088 0.088

NOTE: (+), the organism grow in the medium; (-), the organism do not grow in the medium; (+/-),
some strains grow in the medium, but others do not. NA: no exchange reaction in the model

are corroborated by the data reported in the literature. For the remaining carbon sources, the
model did not show any exchange reactions, and therefore there was no biomass production as
expected.

4.5.4 Different nitrogen sources

B. bruxellensis can grow in different nitrogen sources. Considering the same uptake rate
of ammonia, the models were simulated with different nitrogen sources in aerobiosis and
anaerobiosis [154, 228]. Due to the lack of information, a qualitative comparison between the in
silico simulation results and experimental data was performed.

The different nitrogen sources are listed in section 3.7.4. The growth in some nitrogen
sources depends on oxygen presence. Table 43 shows the in silico simulation results under
aerobic and anaerobic conditions.
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Table 42: B. bruxellensis GSMM pFBA in silico simulation under different carbons sources.

Metabolite KEGG ID Experimental data
Biomass h-1

Aerobiosis Anaerobiosis

alpha,alpha-Trehalose C01083 +/- 0.240 0.156

D-Fructose C00095 + 0.120 0.073

D-Galactose C00124 +/- NA NA

D-Glucose C00031 + 0.120 0.073

D-Mannose C00159 + 0.120 0.073

D-Ribose C00121 - NA NA

Glycerol C00116 +/- 0.000 infeasible

Lactose C00243 - NA NA

L-Rhamnose C00507 - NA NA

Maltose C00208 +/- 0.240 0.156

Raffinose C00492 +/- NA NA

Starch C00369 - NA NA

NOTE: (+), the organism grow in the medium; (-), the organism do not grow in the medium; (+/-),
some strains grow in the medium, but others do not. NA: no exchange reaction in the model

In aerobiosis, B. bruxellensis can use as nitrogen source all metabolites shown in Table 10

(section 3.7.4). In turn, the simulations provided results following the experimental data since
the B. bruxellensis GSMM produced biomass for all the different nitrogen sources used.

Under anaerobic conditions, B. bruxellensis does not grow when L-cystein and L-tryptophan
are used as nitrogen sources. The simulations performed using these amino acids as nitrogen
sources demonstrated that the B. bruxellensis GSMM could not produce biomass for either of
them. In the case of L-methionine or L-proline as nitrogen sources, only a few strains can grow.
The simulations’ results report that the B. bruxellensis GSMM can grow when L-proline is used
as nitrogen source but cannot produce biomass from L-methionine. For the remaining nitrogen
sources, the model produced biomass, confirming the data obtained in the literature.

4.5.5 Minimal medium test

Tables 44 and 45 show that although some compounds do not seem to be essential in
in silico simulations, all interfere in biomass production. For B. bruxellensis model, it can be
conclued that B. bruxellensis GSMM is auxotrophic for three amino acids, both in silico and in
vivo. In silico, the P. damnosus GSMM does not seem to be auxotrophic for some amino acids in
a defined minimal medium.
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Table 43: B. bruxellensis GSMM pFBA in silico simulation under different nitrogen sources in aerobiosis and
anaerobiosis.

Metabolite KEGG ID
Aerobiosis Anaerobiosis

Experimental data Biomass (h-1) Experimental data Biomass (h-1)

Ammonia C00014 + 0.120 + 0.073

L-Arginine C00062 + 0.134 + 0.816

L-Cystein C00097 + 0.036 - 0.000

L-Glutamate C00025 + 1.317 + 1.311

L-Methionine C00073 + 0.036 +/- 0.000

L-Proline C00148 + 0.132 +/- *1 0.080

L-Tryptophan C00078 + 0.036 - 0.000

Nitrate C00244 + *2 0.153 + *2 0.096

Nitrite C00088 + 0.153 + 0.096

NOTE: (+), the organism grow in the medium; (-), the organism do not grow in the medium; +/-,
some strains grow in the medium, but others do not.

*1- Crauwels et al. 2015 [229],Conterno et al. 2006 [230];
*2-A. R. Borneman et al. 2014 [231].

Overall, the GSMM simulation results matched the experimental data. Thus, the P. damnosus
GSMM and B. bruxellensis GSMM were considered validated.

4.6 Community models

The interaction’s prediction, the assembly of the P. damnosus and B. bruxellensis community
model and the simulations results are described in this section.

4.6.1 Interactions predictions

After validating both GSMMs, SMETANA [214] was used to analyse the interactions
between P. damnosus and B. bruxellensis. The predicted interactions are presented in Table 46.

All the predicted interactions had B. bruxellensis as donor and P. damnosus as the receiver.
Most of the interactions are amino acid exchanges, making sense since P. damnosus is aux-
otrophic for many amino acids while B. bruxellensis can synthesize almost all the ones it
needs. Vitamins like riboflavin and nicotinate and the cofactor S-adenosyl-L-methionine are
other metabolites predicted to be exchanged between the models. In sum, there are predicted
exchanges from B. bruxellensis GSMM to P. damnosus GSMM of metabolites that are important
and necessary for its metabolism.
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4.6.2 Community model reconstruction

The community model was reconstructed using ReFramed. All reactions and metabolites
were assigned with a suffix referring to the model, as the latter were treated as compartments.
Exchange reactions named ”pool”, representing the exchanges between extracellular medium
with the community were also added. The community model presents 3045 reactions and 1979

metabolites.

4.6.3 Community model simulation

Due to the lack of information on the P. damnosus and B. bruxellensis community, only
two simulations were performed under aerobic conditions with restricted oxygen uptake,
considering lambic beer the conditions. Using the set of minimal media used in the validation
process of each model (Table S3 of support material) as environmental conditions, the first
simulation was performed in COBRApy using pFBA. In all simulations, the lower bound value
of the amino acid exchange reactions was set to -0.2 mmol h-1gDW

-1, for oxygen was -0.1 mmol
h-1gDW

-1, for glucose was -2 mmol h-1gDW
-1 and for the exchange reactions of the remaining

metabolites represented in Table S3 of Support material was -10000 mmol h-1gDW
-1. These

uptake values were based on the values used in the GSMM validation process in section 4.5.
The metabolites consumed and their rate of consumption are shown in Table 47, while Table 48

shows the metabolites secreted and their production rates.

The simulation results showed a community growth rate of 0.0495 h-1, a value close to
the specific growth rate of P. damnosus. Volatile phenols, which are aromatic compounds
produced by B. bruxellensis, were secreted. D-Lactate results from the lactic acid fermentation
of P. damnosus and ethanol from the ethanol fermentation of B. bruxellensis.

A new simulation was performed as many amino acids are being excreted, and B. bruxellensis
is only auxotrophic for three amino acids. From the minimal medium set (represented in Table
S3 in Support material), the amino acids L-histidine, L-methionine, and L-tryptophan kept
the lower bound value of their exchange reactions of -0.2 mmol h-1gDW

-1. The lower bounds
of the exchange reactions of the remaining amino acids were set to zero. Tables 49 and 50

show the metabolites consumed and secreted, as well as the consumption and production rates,
respectively.

In this simulation only L-alanine was secreted. The B. bruxellensis GSMM produced L-
alanine and most of it was consumed by the P. damnosus GSMM. Although ethanol and D-lactate
are not secreted, volatile phenol 4-ethylguaiacol and succinate are still secreted. The latter
is produced by the B. bruxellensis and results from the reaction catalyzed by succinate-CoA
ligase in the Krebs cycle. Also produced by the B. bruxellensis, the secreted carbon dioxide
originates from isocitrate dehydrogenase in the Krebs cycle and the pyruvate dehydrogenase
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action. The community growth rate was 0.39 h-1, keeping close to the specific growth rate of
the P. damnosus.

4.6.4 Interactions analysis

The interactions which occurred in the simulations are shown in Tables 51 and 52. Further
analyzing the results, in both simulations, there were reciprocal interactions between the
GSMMs, which SMETANA did not predict. Several amino acids were exchanged in the
community in both simulations, mostly produced by B. bruxellensis GSMM and consumed by P.
damnosus GSMM. It is noteworthy that in both simulations, B. bruxellensis GSMM consumed
D-lactate produced by P. damnosus GSMM. The B. bruxellensis GSMM used D-lactate to produce
pyruvate and 2-hydroxyglutarate in a reaction catalyzed by (R)-2-hydroxyglutarate-pyruvate
transhydrogenase, a characterized enzyme in S. cerevisiae [259]. Nevertheless, the interactions
obtained match those predicted by SMETANA.

4.6.5 Microorganism abundance

After community model simulation, the abundance of each microorganism was assumed
using SteadyCom, which is implemented in Reframed. Steadycom was run three times:

1. Firstly, the lower bounds of all exchange reactions present in the community model was
set to -10000 mmol h-1gDW

-1 (open drains);

2. Secondly, SteadyCom was performed with the minimum media set as environmental
conditions;

3. And lastly, the environmental conditions were changed to a minimal medium with only
three amino acids.

Tables 53, 54, and 55 describe the results obtained. SteadyComVA was also run to evaluate
the abundance variance of each microorganism in the community.

When analyzing the results, all performances predict the existence of only one microor-
ganism. In the first and second performances, community growth was verified, although
SteadyComVA showed that the abundance of the B. bruxellensis GSMM model did not change.
On the other hand, in the performance with a minimal medium with only three amino acids,
the results report that there was no community growth. The SteadyCom limitations justify
these results, as there are no obligatory cross-feeding interactions.

The GSMMs xml files can be found in the following link:
https://nextcloud.bio.di.uminho.pt/s/jH8STJQTN22qtDB
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Table 44: Minimal medium test P. damnosus - Biomass values (h-1).

Metabolite KEGG ID
Biomass h-1

Aerobiosis Anaerobiosis

Adenine C00147 0.040141 0.040199

Biotin C00120 0.000000 0.000000

D-Glucose C00031 infeasible infeasible

Fe3
+ C14819 0.000000 0.040269

Folinic acid C03479 0.000000 0.000000

Glycine C00037 0.040162 0.040269

Guanine C00242 0.040056 0.040171

L-Alanine C00041 0.000000 0.000000

L-Arginine C00062 0.039941 0.039973

L-Aspartate C00049 0.000000 0.000000

L-Cysteine C00097 0.000000 0.000000

L-Glutamate C00025 0.000000 0.000000

L-Histidine C00135 0.000000 0.000000

L-Isoleucine C00407 0.000000 0.000000

L-Leucine C00123 0.000000 0.000000

L-Lysine C00047 0.040053 0.040053

L-Methionine C00073 0.040120 0.040177

L-Phenylalanine C00079 0.000000 0.000000

L-Proline C00148 0.040146 0.040215

L-Serine C00065 0.040162 0.040269

L-Threonine C00188 0.000000 0.000000

L-Tryptophan C00078 0.000000 0.000000

L-Tyrosine C00082 0.000000 0.000000

L-Valine C00183 0.000000 0.000000

Nicotinate C00253 0.000000 0.000000

Orthophosphate C00009 0.000000 0.000000

Pantothenate C00864 0.000000 0.000000

Pyridoxine C00314 0.000000 0.000000

Riboflavin C00255 0.000000 0.000000

Thymine C00178 0.040162 0.040269

Uracil C00106 0.000000 0.000000

Xanthine C00385 0.040162 0.040269
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Table 45: Minimal medium test B. bruxellensis - Biomass values (h-1).

Metabolit KEGG ID
Biomass h-1

Aerobiosis Anaerobiosis

(9Z)-Hexadecenoic acid C08362 — 0.00000

(9Z)-Octadecenoic acid C00712 — 0.00000

(9Z)-Tetradecenoic acid C08322 — 0.00000

4-Aminobenzoate C00568 0.12001 0.07293

Ammonia C00014 0.03558 0.00000

Biotin C00120 0.00000 0.00000

D-Glucose C00031 infeasible infeasible

Ergosterol C01694 — 0.00000

Fe2
+ C14818 0.00000 0.07295

Folate C00504 0.11989 0.07286

Lanosterol C01724 — 0.00000

L-Histidine C00135 0.00000 0.00000

Linoleate C01595 — 0.07286

L-Methionine C00073 0.00000 0.00000

L-Tryptophan C00078 0.00000 0.00000

Molybdate C06232 0.00000 0.00000

myo-Inositol C00137 0.00000 0.00000

Nicotinate C00253 0.11993 0.00000

Orthophosphate C00009 0.00000 0.00000

Pantothenate C00864 0.12000 0.07293

Pyridoxal C00250 0.00000 0.00000

Riboflavin C00255 0.11976 0.07279

Sulfate C00059 0.12001 0.07293

Thiamine C00378 0.00000 0.00000

Zymosterol C05437 — 0.00000
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Table 46: Predicted interactions between P. damnosus and B. bruxellensis.

Metabolite KEGG ID Receiver Donor

(R)-Pantothenate C00864 P. damnosus B. bruxellensis

4-Phospho-L-aspartate C03082 P. damnosus B. bruxellensis

alpha-D-Glucose C00267 P. damnosus B. bruxellensis

CO2 C00011 P. damnosus B. bruxellensis

D-Alanine C00133 P. damnosus B. bruxellensis

D-Frutose C00095 P. damnosus B. bruxellensis

D-Glucose C00031 P. damnosus B. bruxellensis

Diphosphate C00013 P. damnosus B. bruxellensis

Glycine C00037 P. damnosus B. bruxellensis

H+ C00080 P. damnosus B. bruxellensis

Hydrogen sulfide C00283 P. damnosus B. bruxellensis

L-Alanine C00041 P. damnosus B. bruxellensis

L-Asparagine C00152 P. damnosus B. bruxellensis

L-Aspartate C00049 P. damnosus B. bruxellensis

L-Cystein C00097 P. damnosus B. bruxellensis

L-Glutamate C00025 P. damnosus B. bruxellensis

L-Glutamate 5-semialdehyde C01165 P. damnosus B. bruxellensis

L-Glutamine C00064 P. damnosus B. bruxellensis

L-Homocysteine C00155 P. damnosus B. bruxellensis

L-Isoleucine C00407 P. damnosus B. bruxellensis

L-Leucine C00123 P. damnosus B. bruxellensis

L-Phenylalanine C00079 P. damnosus B. bruxellensis

L-Serine C00065 P. damnosus B. bruxellensis

L-Threonine C00188 P. damnosus B. bruxellensis

L-Tyrosine C00082 P. damnosus B. bruxellensis

L-Valine C00183 P. damnosus B. bruxellensis

N-Carbamoyl-L-aspartate C00438 P. damnosus B. bruxellensis

Nicotinate C00253 P. damnosus B. bruxellensis

Ornithine C00077 P. damnosus B. bruxellensis

Orthophosphate C00009 P. damnosus B. bruxellensis

Riboflavin C00255 P. damnosus B. bruxellensis

S-Adenosyl-L-methionine C00019 P. damnosus B. bruxellensis

Urea C00086 P. damnosus B. bruxellensis
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Table 47: Community GSMM pFBA in silico consumption rates of metabolites present in the minimal medium
set by the P. damnosus-B. bruxellensis community model.

Metabolite KEGG ID
Consumption rate

(mmol h-1 gDW
-1)

Adenine C00147 0.0105

Ammonia C00014 0.2873

Biotin C00120 0.0011

D-Glucose C00031 2.0000

Fe3
+ C14819 10.9117

Folate C00504 0.0006

Glycine C00037 0.2000

Guanine C00242 0.0062

L-Arginine C00062 0.2000

L-Aspartate C00049 0.2000

L-Glutamate C00025 0.2000

L-Histidine C00135 0.0073

L-Isoleucine C00407 0.0228

L-Leucine C00123 0.0322

L-Lysine C00047 0.0256

L-Methionine C00073 0.0137

L-Phenylalanine C00079 0.0150

L-Proline C00148 0.2000

L-Serine C00065 0.2000

L-Threonine C00188 0.2000

L-Tryptophan C00078 0.0035

L-Tyrosine C00082 0.2000

Molybdate C06232 0.0001

myo-Inositol C00137 0.0003

Nicotinate C00253 0.0007

Orthophosphate C00009 0.8570

Oxygen C00007 0.1000

Pantothenate C00864 0.0003

Pyridoxal C00250 0.0002

Pyridoxine C00314 0.0009

Riboflavin C00255 0.0016

Thiamine C00378 0.0009

Uracil C00106 0.0182
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Table 48: Community GSMM pFBA in silico secreted compounds by the P. damnosus-B. bruxellensis community
model in the minimal medium set.

Metabolite KEGG ID
Production rate

(mmol h-1 gDW
-1)

CO2 C00011 3.4860

D-Lactate C00256 0.0863

4-Ethylphenol C13637 0.1844

Biomass 0.0990

Diphosphate C00013 0.3800

Ethanol C00469 0.1801

Fe2
+ C14818 10.9116

H+ C00080 10.6974

L-Alanine C00041 1.4052

L-Homoserine C00263 0.0047

L-Valine C00183 0.3491

4-Ethylguaiacol 62465 (PubChem ID) 0.0035

Succinate C00042 1.1799

Urea C00086 0.1844

Community Growth 0.0495
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Table 49: In silico consumption rates of metabolites present in a minimal medium with only three amino acids
by the P. damnosus-B. bruxellensis community model.

Metabolite KEGG ID
Consumption rate

(mmol h-1 gDW
-1)

Adenine C00147 0.00849

Ammonia C00014 1.31123

Biotin C00120 0.00086

D-Glucose C00031 2.00000

Fe3
+ C14819 14.16228

Folate C00504 0.00047

Guanine C00242 0.00500

L-Histidine C00135 0.00591

L-Methionine C00073 0.01107

L-Tryptophan C00078 0.02752

Molybdate C06232 0.00006

myo-Inositol C00137 0.00023

Nicotinate C00253 0.00060

Orthophosphate C00009 1.26406

Oxygen C00007 0.10000

Pantothenate C00864 0.00027

Pyridoxal C00250 0.00013

Pyridoxine C00314 0.00072

Riboflavin C00255 0.00129

Thiamine C00378 0.00075

Uracil C00106 0.01471
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Table 50: In silico secreted compounds by the P. damnosus-B. bruxellensis community model in a minimal
medium with only three amino acids.

Metabolite KEGG ID
Production rate

(mmol h-1 gDW
-1)

CO2 C00011 3.488

Fe2
+ C14818 14.162

Succinate C00042 0.708

Biomass 0.080

4-Ethylguaiacol 62465 (PubChem ID) 0.003

H+ C00080 14.005

L-Alanine C00041 0.972

Diphosphate C00013 0.593

Community Growth 0.039

Table 51: Interactions of P. damnosus-B. bruxellensis community model in minimal medium set simulation.

Meatbolite KEGG ID Donor Receiver

D-Lactate C00256 P. damnosus B. bruxellensis

L-Aspartate C00049 B. bruxellensis P. damnosus

L-Asparagine C00152 B. bruxellensis P. damnosus

L-Glutamine C00064 B. bruxellensis P. damnosus

Carbamate C01563 B. bruxellensis P. damnosus

4-Phospho-L-aspartate C03082 B. bruxellensis P. damnosus

CO2 C00011 B. bruxellensis P. damnosus

L-Ornithine C00773 B. bruxellensis P. damnosus

L-Cysteine C00097 B. bruxellensis P. damnosus

S-Adenosyl-L-methionine C00019 B. bruxellensis P. damnosus

L-Glutamate 5-semialdehyde C01165 B. bruxellensis P. damnosus
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Table 52: Interactions of P. damnosus-B. bruxellensis community model resulting from the simulation in a
minimal medium with only three amino acids.

Meatbolite KEGG ID Donor Receiver

D-Lactate C00256 P. damnosus B. bruxellensis

Glycerol C00116 P. damnosus B. bruxellensis

L-Proline C00148 P. damnosus B. bruxellensis

Phosphatidate C00416 P. damnosus B. bruxellensis

HCO3
- C00288 P. damnosus B. bruxellensis

L-Threonine C00188 B. bruxellensis P. damnosus

L-Leucine C00123 B. bruxellensis P. damnosus

L-Aspartate C00049 B. bruxellensis P. damnosus

L-Asparagine C00152 B. bruxellensis P. damnosus

L-Phenylalanine C00079 B. bruxellensis P. damnosus

L-Glutamine C00064 B. bruxellensis P. damnosus

L-Isoleucine C00407 B. bruxellensis P. damnosus

L-Alanine C00041 B. bruxellensis P. damnosus

4-Phospho-L-aspartate C03082 B. bruxellensis P. damnosus

D-Alanine C00133 B. bruxellensis P. damnosus

CO2 C00011 B. bruxellensis P. damnosus

L-Ornithine C00065 B. bruxellensis P. damnosus

L-Serine C00077 B. bruxellensis P. damnosus

L-Cysteine C00097 B. bruxellensis P. damnosus

L-Tyrosine C00082 B. bruxellensis P. damnosus

L-Arginine C00062 B. bruxellensis P. damnosus

S-Adenosyl-L-methionine C00019 B. bruxellensis P. damnosus

Glycine C00037 B. bruxellensis P. damnosus

L-Lysine C00047 B. bruxellensis P. damnosus

L-Valine C00183 B. bruxellensis P. damnosus
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Table 53: SteadyCom results - open drains.

SteadyCom

Community growth 29.35 h-1

B. bruxellensis GSMM 0

P. damnosus GSMM 1

SteadyComVA Minimum Maximum

B. bruxellensis GSMM 0 0

P. damnosus GSMM 1 1

Table 54: SteadyCom results - minimal medium set.

SteadyCom

Community growth 0.11 h-1

B. bruxellensis GSMM 0

P. damnosus GSMM 1

SteadyComVA Minimum Maximum

B. bruxellensis GSMM 0 0

P. damnosus GSMM 1 1

Table 55: SteadyCom results - minimal medium with only three amino acids.

SteadyCom

Community growth 0 h-1

B. bruxellensis GSMM 0

P. damnosus GSMM 1

SteadyComVA Minimum Maximum

B. bruxellensis GSMM 0 1

P. damnosus GSMM 0 1
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C O N C L U S I O N A N D F U T U R E P E R S P E C T I V E S

Lambic beer is one of the oldest types of beer still produced nowadays, and the composition
of its unique flavour is of enormous interest. As mentioned before, this flavour is due to the
co-occurrence of different microorganisms which composition also varies throughout almost
two years of fermentation. Part of the microbial community present in the last stages of this
fermentation was studied in the thesis. The present work showed some insight about the
metabolism of the lactic acid bacterium P. damnosus and the yeast B. bruxellensis as for the
possible interactions between the two and flavour enhancers possibly present in Lambic beer.

A GSMM 809 reactions and 589 metabolites was obtained for P. damnosus, whereas B. brux-
ellensis’ GSMM has 2095 reactions and 1249 metabolites. The validation showed phenotypic
predictions in agreement with available data for both models. The P. damnosus GSMM simula-
tions showed that the model grew in minimal medium, aerobically, and anaerobically. Specific
growth rates in these conditions and the utilization of different carbon sources were consistent
with literature data. The production of D-Lactate and L-Lactate, and the production of acetoin
or diacetyl were confirmed. Auxotrophy was also analyzed, and the model seems not to be
auxotrophic for certain metabolites in the minimal experimental medium.

The B. bruxellensis GSMM simulations showed the yeast’s ability to grow in the reported
minimal medium aerobically and anaerobically, and ethanol production. Simulations with
FVA showed that the B. bruxellensis GSMM could produce acetate and glycerol from minimal
medium, in agreement with experimental data. All simulations predicted the production of
volatile phenols, aromatic compounds present in wines and beers that contribute to flavour.
On the other hand, succinate production, which is usually used as an acidity regulator in
beverages, was predicted. Thus, this model brings new insights into this yeast’s role in the
final stage of Lambic beer production that might be associated with the flavour’s acidification.

Microbial community simulations revealed that B. bruxellensis is responsible for producing
amino acids for P. damnosus, which seems to have a passive role in the community. In fact, in
the last stage of Lambic beer fermentation, the number of LAB decreases gradually, which
seems to be correctly predicted. Predictions showed that aromatic amino acids and aspartate
are the most probable amino acids exchanged between the two organisms, therefore the most
common in the medium, unveiling that these metabolites are somewhat responsible for the
unique flavour of the Lambic beer. The community model simulation predicted the production
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of compounds such as 4-ethylguaiacol, succinate, ethanol, and lactate that can also influence
the Lambic beer flavour.

With this work, we were able to predict the role of two microorganisms in the last stage of
Lambic beer fermentation. For future work, it would be interesting to study the other stages in
microbial community composition, the role of each organism present in those communities,
and its influence on the Lambic beer flavour composition. We used only three approaches
of microbial community simulation in this work. It would be interesting to use specifically
dynamic simulation approaches, such as dFBA, to understand the organism’s behaviour over
time and metabolite consumption and production profiles. Since the assembly files used for
the P. damnosus GSMM reconstruction have been updated, the model should be adjusted. The
SteadyCom results should also be improved.
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[151] Dueñas-Chasco, M. T., Rodrıguez-Carvajal, M. A., Mateo, P. T., Franco-Rodrıguez, G.,

Espartero, J., Irastorza-Iribas, A., & Gil-Serrano, A. M. (1997). Structural analysis of the

exopolysaccharide produced by Pediococcus damnosus 2.6. Carbohydrate research, 303(4),

453–458.

[152] Lambo-Fodje, A., Leeman, M., Wahlund, K.-G., Nyman, M., Öste, R., & Larsson, H. (2007).

Molar mass and rheological characterisation of an exopolysaccharide from Pediococcus damno-

sus 2.6. Carbohydrate polymers, 68(3), 577–586.

[153] Liu, S.-Q. (2002). Malolactic fermentation in wine–beyond deacidification. Journal of applied

microbiology, 92(4), 589–601.

[154] Smith, B. D., & Divol, B. (2016). Brettanomyces bruxellensis, a survivalist prepared for the

wine apocalypse and other beverages. Food microbiology, 59, 161–175.

[155] Avramova, M., Cibrario, A., Peltier, E., Coton, M., Coton, E., Schacherer, J., Spano, G.,

Capozzi, V., Blaiotta, G., Salin, F. et al. (2018). Brettanomyces bruxellensis population

survey reveals a diploid-triploid complex structured according to substrate of isolation and

geographical distribution. Scientific reports, 8(1), 1–13.

[156] de Barros Pita, W., Teles, G. H., Peña-Moreno, I. C., da Silva, J. M., Ribeiro, K. C., & de

Morais Junior, M. A. (2019). The biotechnological potential of the yeast Dekkera bruxellensis.

World Journal of Microbiology and Biotechnology, 35(7), 103.

[157] Taxonomy browser (Brettanomyces) [(Accessed on 09/05/2020)]. (n.d.).

[158] Taxonomy browser (Brettanomyces anomalus) [(Accessed on 09/05/2020)]. (n.d.).

[159] Taxonomy browser (Brettanomyces bruxellensis) [(Accessed on 09/05/2020)]. (n.d.).

[160] Taxonomy browser (Brettanomyces custersianus) [(Accessed on 09/05/2020)]. (n.d.).

[161] Taxonomy browser (Brettanomyces naardenensis) [(Accessed on 09/05/2020)]. (n.d.).

[162] Cai, J., Roberts, I. N., & COLLINS, M. D. (1996). Phylogenetic relationships among members of

the ascomycetous yeast genera Brettanomyces, Debaryomyces, Dekkera, and Kluyveromyces

deduced by small-subunit rrna gene sequences. International Journal of Systematic and

Evolutionary Microbiology, 46(2), 542–549.

[163] Roach, M. J., & Borneman, A. R. (2020). New genome assemblies reveal patterns of do-

mestication and adaptation across Brettanomyces (Dekkera) species. BMC genomics, 21(1),

1–14.



106

[164] Varela, C., Bartel, C., Onetto, C., & Borneman, A. (2020). Targeted gene deletion in

Brettanomyces bruxellensis with an expression-free crispr-cas9 system. Applied Microbiology

and Biotechnology, 104(16), 7105–7115.

[165] Haase, M. A., Kominek, J., Opulente, D. A., Shen, X.-X., LaBella, A. L., Zhou, X., DeVirgilio,

J., Hulfachor, A. B., Kurtzman, C. P., Rokas, A. et al. (2021). Repeated horizontal gene

transfer of GALactose metabolism genes violates dollo’s law of irreversible loss. Genetics,

217(2), iyaa012.

[166] Curtin, C. D., Borneman, A. R., Chambers, P. J., & Pretorius, I. S. (2012). De-novo assembly

and analysis of the heterozygous triploid genome of the wine spoilage yeast Dekkera bruxellensis

awri1499. PLOS one, 7(3), e33840.

[167] Pǐskur, J., Ling, Z., Marcet-Houben, M., Ishchuk, O. P., Aerts, A., LaButti, K., Copeland, A.,

Lindquist, E., Barry, K., Compagno, C. et al. (2012). The genome of wine yeast Dekkera

bruxellensis provides a tool to explore its food-related properties. International journal of food

microbiology, 157(2), 202–209.

[168] Genome list - genome - ncbi [(Accessed on 07/01/2021)]. (n.d.).

[169] Oelofse, A., Lonvaud-Funel, A., & Du Toit, M. (2009). Molecular identification of Bret-

tanomyces bruxellensis strains isolated from red wines and volatile phenol production. Food

microbiology, 26(4), 377–385.

[170] Kheir, J., Salameh, D., Strehaiano, P., Brandam, C., & Lteif, R. (2013). Impact of volatile

phenols and their precursors on wine quality and control measures of brettanomyces/dekkera

yeasts. European Food Research and Technology, 237(5), 655–671.

[171] Dias, L., Pereira-da-Silva, S., Tavares, M., Malfeito-Ferreira, M., & Loureiro, V. (2003). Factors

affecting the production of 4-ethylphenol by the yeast Dekkera bruxellensis in enological

conditions. Food Microbiology, 20(4), 377–384.

[172] Garcia-Rubio, R., de Oliveira, H. C., Rivera, J., & Trevijano-Contador, N. (2020). The fungal

cell wall: Candida, Cryptococcus, and Aspergillus species. Frontiers in microbiology, 10, 2993.

[173] Orlean, P. (2012). Architecture and biosynthesis of the Saccharomyces cerevisiae cell wall.

Genetics, 192(3), 775–818.

[174] Klis, F. M., Boorsma, A., & De Groot, P. W. (2006). Cell wall construction in Saccharomyces

cerevisiae. Yeast, 23(3), 185–202.

[175] Lipke, P. N., & Ovalle, R. (1998). Cell wall architecture in yeast: New structure and new

challenges. Journal of bacteriology, 180(15), 3735–3740.

[176] Brown, H. E., Esher, S. K., & Alspaugh, J. A. (2019). Chitin: A “hidden figure” in the fungal

cell wall. The Fungal Cell Wall, 83–111.

[177] Aimanianda, V., Clavaud, C., Simenel, C., Fontaine, T., Delepierre, M., & Latgé, J.-P. (2009).
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[210] Gomez, J. A., Höffner, K., & Barton, P. I. (2014). DFBAlab: A fast and reliable MATLAB

code for dynamic flux balance analysis. BMC bioinformatics, 15(1), 409.

[211] Popp, D., & Centler, F. (2020). mµBialSim: Constraint-based dynamic simulation of complex

microbiomes. Frontiers in Bioengineering and Biotechnology, 8.

[212] Diener, C., Gibbons, S. M., & Resendis-Antonio, O. (2020). MICOM: Metagenome-scale

modeling to infer metabolic interactions in the gut microbiota. MSystems, 5(1).

[213] Koch, S., Benndorf, D., Fronk, K., Reichl, U., & Klamt, S. (2016). Predicting compositions

of microbial communities from stoichiometric models with applications for the biogas process.

Biotechnology for biofuels, 9(1), 1–16.

[214] Zelezniak, A., Andrejev, S., Ponomarova, O., Mende, D. R., Bork, P., & Patil, K. R. (2015).

Metabolic dependencies drive species co-occurrence in diverse microbial communities. Pro-

ceedings of the National Academy of Sciences, 112(20), 6449–6454.

[215] Cruz, F., Capela, J., Ferreira, E. C., Rocha, M., & Dias, O. (2021). BioISO: An objective-

oriented application for assisting the curation of genome-scale metabolic models. bioRxiv.

[216] Lagoa, D., Faria, J. L., Liu, F., Cunha, E., Henry, C., & Dias, O. (2021). Transyt, the transport

systems tracker. bioRxiv.

[217] Teusink, B., Wiersma, A., Molenaar, D., Francke, C., De Vos, W. M., Siezen, R. J., & Smid,

E. J. (2006). Analysis of growth of Lactobacillus plantarum wcfs1 on a complex medium using

a genome-scale metabolic model. Journal of Biological Chemistry, 281(52), 40041–40048.

[218] Mishra, P., Park, G.-Y., Lakshmanan, M., Lee, H.-S., Lee, H., Chang, M. W., Ching, C. B.,

Ahn, J., & Lee, D.-Y. (2016). Genome-scale metabolic modeling and in silico analysis of lipid

accumulating yeast Candida tropicalis for dicarboxylic acid production. Biotechnology and

bioengineering, 113(9), 1993–2004.

[219] Xu, N., Liu, L., Zou, W., Liu, J., Hua, Q., & Chen, J. (2013). Reconstruction and analysis

of the genome-scale metabolic network of Candida glabrata. Molecular BioSystems, 9(2),

205–216.

[220] Dias, O., Pereira, R., Gombert, A. K., Ferreira, E. C., & Rocha, I. (2014). Iod907, the first

genome-scale metabolic model for the milk yeast Kluyveromyces lactis. Biotechnology journal,

9(6), 776–790.

[221] Mo, M. L., Palsson, B. Ø., & Herrg̊ard, M. J. (2009). Connecting extracellular metabolomic

measurements to intracellular flux states in yeast. BMC systems biology, 3(1), 1–17.

[222] Santos, S., & Rocha, I. (2016). Estimation of biomass composition from genomic and

transcriptomic information. Journal of integrative bioinformatics, 13(2), 1–14.

[223] Xavier, J. C., Patil, K. R., & Rocha, I. (2017). Integration of biomass formulations of

genome-scale metabolic models with experimental data reveals universally essential cofactors

in prokaryotes. Metabolic engineering, 39, 200–208.



110

[224] Xavier, J. C., Patil, K. R., & Rocha, I. (2018). Metabolic models and gene essentiality data

reveal essential and conserved metabolism in prokaryotes. PLoS computational biology, 14(11),

e1006556.

[225] Beverly, M. B., Basile, F., & Voorhees, K. J. (1997). Fatty acid analysis of beer spoiling

microorganisms using pyrolysis mass spectrometry. Journal of the American Society of Brewing

Chemists, 55(2), 79–82.

[226] Von Cosmos, N. H., & Edwards, C. G. (2016). Use of nutritional requirements for Brettanomyces

bruxellensis to limit infections in wine. Fermentation, 2(3), 17.

[227] Hammes, W. P., & Hertel, C. (2006). The genera Lactobacillus and Carnobacterium. Prokary-

otes, 4, 320–403.

[228] Smith, M. T. (1998). Dekkera van der walt. The yeasts (pp. 174–177). Elsevier.

[229] Crauwels, S., Van Assche, A., de Jonge, R., Borneman, A., Verreth, C., De Samblanx, G.,

Marchal, K., Van de Peer, Y., Willems, K., Verstrepen, K. et al. (2015). Comparative phenomics

and targeted use of genomics reveals variation in carbon and nitrogen assimilation among

different Brettanomyces bruxellensis strains. Applied microbiology and biotechnology, 99(21),

9123–9134.

[230] Conterno, L., Joseph, C. L., Arvik, T. J., Henick-Kling, T., & Bisson, L. F. (2006). Genetic

and physiological characterization of Brettanomyces bruxellensis strains isolated from wines.

American Journal of Enology and Viticulture, 57(2), 139–147.

[231] Borneman, A. R., Zeppel, R., Chambers, P. J., & Curtin, C. D. (2014). Insights into the

Dekkera bruxellensis genomic landscape: Comparative genomics reveals variations in ploidy

and nutrient utilisation potential amongst wine isolates. PLoS genetics, 10(2), e1004161.

[232] de Souza Vandenberghe, L. P., Karp, S. G., Pagnoncelli, M. G. B., von Linsingen Tavares, M.,

Junior, N. L., Diestra, K. V., Viesser, J. A., & Soccol, C. R. (2020). Classification of enzymes

and catalytic properties. Biomass, biofuels, biochemicals (pp. 11–30). Elsevier.

[233] McDonald, A. G., Boyce, S., & Tipton, K. F. (2015). Enzyme classification and nomenclature.

eLS, 1–11.

[234] of Biochemistry, I.-I. U., & Biology, M. (2018). Translocases (ec 7): A new ec class [(Accessed

on 07/15/2021)].

[235] Godoy, L., Vera-Wolf, P., Martinez, C., Ugalde, J. A., & Ganga, M. A. (2016). Comparative

transcriptome assembly and genome-guided profiling for Brettanomyces bruxellensis lamap2480

during p-coumaric acid stress. Scientific reports, 6(1), 1–13.

[236] Capusoni, C., Arioli, S., Zambelli, P., Moktaduzzaman, M., Mora, D., & Compagno, C.

(2016). Effects of oxygen availability on acetic acid tolerance and intracellular ph in Dekkera

bruxellensis. Applied and environmental microbiology, 82(15), 4673–4681.

[237] Ryan, D. G., Frezza, C., & O’Neill, L. A. (2021). Tca cycle signalling and the evolution of

eukaryotes. Current opinion in biotechnology, 68, 72–88.

[238] Busch, W., & Saier, M. H. (2002). The transporter classification (tc) system, 2002. Critical

reviews in biochemistry and molecular biology, 37(5), 287–337.

[239] Wolfersberger, M. G. (1994). Uniporters, symporters and antiporters. The Journal of experi-

mental biology, 196(1), 5–6.



111

[240] Locher, K. P. (2009). Structure and mechanism of atp-binding cassette transporters. Philo-

sophical Transactions of the Royal Society B: Biological Sciences, 364(1514), 239–245.

[241] Chang, A. B., Lin, R., Studley, W. K., Tran, C. V., & Saier, M. H., Jr. (2004). Phylogeny

as a guide to structure and function of membrane transport proteins. Molecular membrane

biology, 21(3), 171–181.

[242] Teixeira, P. (2014). Lactobacillus brevis. In BATT, Carl, A.; TORTORELLO, Mary-Lou (eds.)

- Encyclopedia of Food Microbiology. Reino Unido: Academic Press.

[243] Caligiani, A., & Lolli, V. (2018). Cyclic fatty acids in food: An under investigated class of

fatty acids. Biochemistry and Health Benefits of Fatty Acids, 2018.

[244] Lolli, V., Zanardi, E., Moloney, A. P., & Caligiani, A. (2020). An overview on cyclic fatty acids

as biomarkers of quality and authenticity in the meat sector. Foods, 9(12), 1756.

[245] Jones, S. E., Whitehead, K., Saulnier, D., Thomas, C. M., Versalovic, J., & Britton, R. A.

(2011). Cyclopropane fatty acid synthase mutants of probiotic human-derived Lactobacillus

reuteri are defective in tnf inhibition. Gut microbes, 2(2), 69–79.

[246] Buck, B., Azcarate-Peril, M., & Klaenhammer, T. (2009). Role of autoinducer-2 on the

adhesion ability of Lactobacillus acidophilus. Journal of applied microbiology, 107(1), 269–

279.

[247] Henry, C. S., Zinner, J. F., Cohoon, M. P., & Stevens, R. L. (2009). I bsu1103: A new

genome-scale metabolic model of Bacillus subtilis based on seed annotations. Genome biology,

10(6), 1–15.

[248] Razes, N., Garcia-Jares, C., Larue, F., & Lonvaud-Funel, A. (1992). Differentiation between

fermenting and spoilage yeasts in wine by total free fatty acid analysis. Journal of the Science

of Food and Agriculture, 59(3), 351–357.

[249] Galafassi, S., Toscano, M., Vigentini, I., Zambelli, P., Simonetti, P., Foschino, R., & Compagno,

C. (2015). Cold exposure affects carbohydrates and lipid metabolism, and induces hog1p

phosphorylation in Dekkera bruxellensis strain cbs 2499. Antonie van Leeuwenhoek, 107(5),

1145–1153.

[250] Oosthuizen, A., Kock, J., Viljoen, B., Muller, H., & Lategan, P. (1987). The value of long-chain

fatty acid composition in the identification of some brewery yeasts. Journal of the Institute of

Brewing, 93(3), 174–176.

[251] Conterno, L., Aprea, E., Franceschi, P., Viola, R., & Vrhovsek, U. (2013). Overview of

Dekkera bruxellensis behaviour in an ethanol-rich environment using untargeted and targeted

metabolomic approaches. Food research international, 51(2), 670–678.

[252] Giovani, G., Rosi, I., & Bertuccioli, M. (2012). Quantification and characterization of cell wall

polysaccharides released by non-saccharomyces yeast strains during alcoholic fermentation.

International journal of food microbiology, 160(2), 113–118.

[253] Perli, T., van der Vorm, D. N., Wassink, M., van den Broek, M., Pronk, J. T., & Daran, J.-M.

(2021). Engineering heterologous molybdenum-cofactor-biosynthesis and nitrate-assimilation

pathways enables nitrate utilization by Saccharomyces cerevisiae. Metabolic Engineering, 65,

11–29.



112

[254] BILLON-GRAND, G. (1987). Minor ubiquinones of the yeast coenzyme q system: Importance

in the taxonomy of the yeasts. The Journal of General and Applied Microbiology, 33(5),

381–390.

[255] Shane, B. (1989). Folylpolyglutamate synthesis and role in the regulation of one-carbon

metabolism. Vitamins & Hormones, 45, 263–335.

[256] Yan, X., Gu, S., Cui, X., Shi, Y., Wen, S., Chen, H., & Ge, J. (2019). Antimicrobial, anti-

adhesive and anti-biofilm potential of biosurfactants isolated from Pediococcus acidilactici and

Lactobacillus plantarum against Staphylococcus aureus cmcc26003. Microbial pathogenesis,

127, 12–20.

[257] Chanos, P., & Mygind, T. (2016). Co-culture-inducible bacteriocin production in lactic acid

bacteria. Applied microbiology and biotechnology, 100(10), 4297–4308.

[258] Marbois, B., Xie, L. X., Choi, S., Hirano, K., Hyman, K., & Clarke, C. F. (2010). Para-

aminobenzoic acid is a precursor in coenzyme q6 biosynthesis in Saccharomyces cerevisiae.

Journal of Biological Chemistry, 285(36), 27827–27838.

[259] Becker-Kettern, J., Paczia, N., Conrotte, J.-F., Kay, D. P., Guignard, C., Jung, P. P., &

Linster, C. L. (2016). Saccharomyces cerevisiae forms d-2-hydroxyglutarate and couples its

degradation to d-lactate formation via a cytosolic transhydrogenase*. Journal of Biological

Chemistry, 291(12), 6036–6058.



A
S U P P O RT M AT E R I A L

In this additional chapter, all support data was attached.

Table S4: P. damnosus GSMM pathways

Pathway name Number of reactions

2-Oxocarboxylic acid metabolism
5

Alanine, aspartate and glutamate metabolism
13

Amino sugar and nucleotide sugar metabolism
19

Aminoacyl-tRNA biosynthesis
21

Arginine and proline metabolism
6

Arginine biosynthesis
6

Biomass Pathway
13

Biosynthesis of amino acids
53

Biosynthesis of antibiotics
80

Biosynthesis of secondary metabolites
97

Butanoate metabolism
5

C5-Branched dibasic acid metabolism
2

Continued on next page
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Table S4 – continued from previous page

Pathway name Number of reactions

Carbapenem biosynthesis
3

Carbon fixation pathways in prokaryotes
14

Carbon metabolism
50

Citrate cycle (TCA cycle)
4

Cyanoamino acid metabolism
4

Cysteine and methionine metabolism
19

D-Alanine metabolism
2

D-Glutamine and D-glutamate metabolism
4

Drains pathway
87

Fatty acid biosynthesis
51

Fatty acid metabolism
44

Folate biosynthesis
12

Fructose and mannose metabolism
10

Galactose metabolism
15

Glutathione metabolism
10

Glycerolipid metabolism
14

Glycerophospholipid metabolism
12

Continued on next page
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Table S4 – continued from previous page

Pathway name Number of reactions

Glycine, serine and threonine metabolism
13

Glycolysis / Gluconeogenesis
19

Glyoxylate and dicarboxylate metabolism
10

Inositol phosphate metabolism
2

Lysine biosynthesis
14

Metabolic pathways
322

Metabolism of xenobiotics by cytochrome P450

4

Methane metabolism
9

Microbial metabolism in diverse environments
78

Monobactam biosynthesis
5

Nicotinate and nicotinamide metabolism
7

Nitrogen metabolism
3

Non enzymatic
1

One carbon pool by folate
20

Oxidative phosphorylation
1

Pantothenate and CoA biosynthesis
8

Pentose and glucuronate interconversions
4

Continued on next page
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Table S4 – continued from previous page

Pathway name Number of reactions

Pentose phosphate pathway
17

Peptidoglycan biosynthesis
11

Porphyrin and chlorophyll metabolism
3

Propanoate metabolism
3

Purine metabolism
41

Pyrimidine metabolism
54

Pyruvate metabolism
15

Riboflavin metabolism
2

Selenocompound metabolism
1

Spontaneous
13

Starch and sucrose metabolism
11

Sulfur metabolism
6

Synthesis and degradation of ketone bodies
2

Terpenoid backbone biosynthesis
10

Thiamine metabolism
7

Transporters pathway
152

Tryptophan metabolism
1

Continued on next page
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Table S4 – continued from previous page

Pathway name Number of reactions

Ubiquinone and other terpenoid-quinone
biosynthesis

4

Valine, leucine and isoleucine biosynthesis
2

Valine, leucine and isoleucine degradation
2

Vitamin B6 metabolism
5

Table S5: B. bruxellensis GSMM pathways

Pathway name Number of reactions

2-Oxocarboxylic acid metabolism
68

Alanine, aspartate and glutamate metabolism
29

alpha-Linolenic acid metabolism
2

Amino sugar and nucleotide sugar metabolism
23

Aminoacyl-tRNA biosynthesis
20

Arginine and proline metabolism
39

Arginine biosynthesis
22

beta-Alanine metabolism
9

Biomass Pathway
12

Biosynthesis of amino acids
118

Biosynthesis of secondary metabolites
309

Continued on next page
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Table S5 – continued from previous page

Pathway name Number of reactions

Biosynthesis of unsaturated fatty acids
26

Butanoate metabolism
16

Carbapenem biosynthesis
6

Carbon metabolism
100

Citrate cycle (TCA cycle)
29

Cysteine and methionine metabolism
32

D-Alanine metabolism
1

D-Glutamine and D-glutamate metabolism
5

Drains pathway
213

Ether lipid metabolism
2

Fatty acid biosynthesis
129

Fatty acid degradation
59

Fatty acid elongation
25

Fatty acid metabolism
143

Folate biosynthesis
25

Fructose and mannose metabolism
19

Galactose metabolism
4

Continued on next page
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Table S5 – continued from previous page

Pathway name Number of reactions

Glutathione metabolism
17

Glycerolipid metabolism
18

Glycerophospholipid metabolism
44

Glycine, serine and threonine metabolism
36

Glycolysis / Gluconeogenesis
31

Glyoxylate and dicarboxylate metabolism
27

Histidine metabolism
2

Inositol phosphate metabolism
16

Linoleic acid metabolism
1

Lipoic acid metabolism
3

Lysine biosynthesis
16

Lysine degradation
14

Metabolic pathways
863

Methane metabolism
22

Microbial metabolism in diverse environments
153

Monobactam biosynthesis
2

Nicotinate and nicotinamide metabolism
24

Continued on next page



120

Table S5 – continued from previous page

Pathway name Number of reactions

Nitrogen metabolism
14

Non enzymatic
4

One carbon pool by folate
31

Oxidative phosphorylation
13

Pantothenate and CoA biosynthesis
25

Penicillin and cephalosporin biosynthesis
1

Pentose and glucuronate interconversions
7

Pentose phosphate pathway
16

Phenylalanine metabolism
1

Phenylalanine, tyrosine and tryptophan
biosynthesis

22

Phenylpropanoid biosynthesis
4

Porphyrin and chlorophyll metabolism
10

Propanoate metabolism
8

Purine metabolism
80

Pyrimidine metabolism
49

Pyruvate metabolism
44

Retinol metabolism
2

Continued on next page
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Table S5 – continued from previous page

Pathway name Number of reactions

Riboflavin metabolism
15

Selenocompound metabolism
5

Sesquiterpenoid and triterpenoid biosynthesis
6

Sphingolipid metabolism
20

Spontaneous
11

Starch and sucrose metabolism
21

Steroid biosynthesis
21

Sulfur metabolism
8

Terpenoid backbone biosynthesis
15

Thiamine metabolism
10

Transporters pathway
735

Tryptophan metabolism
17

Tyrosine metabolism
6

Ubiquinone and other terpenoid-quinone
biosynthesis

13

Valine, leucine and isoleucine biosynthesis
24

Valine, leucine and isoleucine degradation
11

Vitamin B6 metabolism
9
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Table S1: Corrections made in genome annotation of P. damnosus.

Gene E.C. number(s) Correct annotation

ADU72 0297 2.7.1.144 2.7.1.56

ADU72 0454 3.6.1.27 3.1.3.4

ADU72 0686 1.-.-.- 1.1.1.21

ADU72 0879 3.2.1.85 3.2.1.86

ADU72 0909 3.2.-.- 3.2.2.1

ADU72 1025 1.8.1.7 1.8.1.12

ADU72 1082 1.-.-.- 1.1.1.140

ADU72 1252 2.7.1.- 2.7.1.192

ADU72 1303 1.6.5.5 2.3.1.41

ADU72 1373 1.2.3.3 2.2.1.6

ADU72 1439 5.1.3.21 5.1.3.3

ADU72 1441 3.2.1.20 3.2.1.10

ADU72 1830 4.4.1.13 2.5.1.48

ADU72 1864 2.7.8.- 2.7.8.20

ADU72 1870 2.4.1.- 2.4.1.208

BSQ38 01560 2.7.1.49, 2.7.4.7 2.5.1.3, 2.7.1.49, 2.7.4.7

BSQ38 02925 3.2.-.- 3.2.2.3

BSQ38 06370 1.6.99.3 1.11.1.1

BSQ38 06860 2.4.1.216 2.4.1.8

BSQ38 08415 4.4.1.13 4.4.1.1

WP 046870966.1 2.7.8.-

WP 046870975.1 5.1.1.21 2.6.1.13

WP 046870990.1 1.1.1.- 1.1.1.65

WP 046871029.1 3.2.1.20 3.2.1.93

WP 046871283.1 2.7.1.76 2.7.1.76, 2.7.1.74

WP 046872192.1 6.4.1.2, 6.3.4.14 6.4.1.1

WP 046872327.1 4.1.2.- 4.1.2.9

WP 075168953.1 2.7.-.- 4.1.1.1

WP 080945549.1 3.1.1.31
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Table S2: Corrections made in genome annotation of B. bruxellensis.

Gene E.C. number(s) Correct annotation

BN3033 LOCUS1058 1.1.1.168 1.1.1.283

BN3033 LOCUS1081 2.5.1.- 2.5.1.141

BN3033 LOCUS1166 2.7.1.67 2.7.1.154

BN3033 LOCUS12 4.1.1.36

BN3033 LOCUS1289 2.3.1.- 2.3.1.30, 2.3.1.31

BN3033 LOCUS1423 2.4.1.15 3.1.3.12

BN3033 LOCUS15 1.14.13.-, 3.5.-.- 1.14.99.60

BN3033 LOCUS154 1.1.1.4 1.1.1.9, 1.1.1.-, 1.1.1.14

BN3033 LOCUS2062 2.3.1.- 2.3.1.20

BN3033 LOCUS2147 2.5.1.47, 2.5.1.49 5.1.1.1

BN3033 LOCUS2205 1.18.1.6 1.18.1.2

BN3033 LOCUS2259 2.5.1.16 2.5.1.22

BN3033 LOCUS2281 3.1.4.-

BN3033 LOCUS2310 1.1.1.307 1.1.1.156

BN3033 LOCUS2567 3.5.1.- 3.5.1.-, 3.5.1.23

BN3033 LOCUS2739 4.1.99.12 3.5.4.25, 4.1.99.12

BN3033 LOCUS2825 1.1.1.3 1.1.1.3, 2.7.2.4

BN3033 LOCUS2865 1.1.1.41 1.1.1.286

BN3033 LOCUS3052 2.3.3.14 2.3.3.-, 2.3.3.14, 2.3.3.10

BN3033 LOCUS3123 2.1.2.10

BN3033 LOCUS322 2.5.1.- 2.5.1.84

BN3033 LOCUS3251 1.1.1.168 1.1.1.21

BN3033 LOCUS3395 3.6.1.13

BN3033 LOCUS3582 3.5.1.- 3.5.1.-, 3.5.1.23

BN3033 LOCUS3704 2.3.1.9 2.3.1.16, 3.1.2.1, 3.1.2.2, 3.1.2.-, 2.3.1.9

BN3033 LOCUS3748 3.1.3.64 3.1.3.95, 3.1.3.64

BN3033 LOCUS3753 1.-.-.- 1.14.18.5

BN3033 LOCUS3823 2.7.-.- 2.7.1.31

BN3033 LOCUS3853 2.10.1.1 2.10.1.1, 2.7.7.75

BN3033 LOCUS3934 3.1.1.- 3.1.1.32, 3.1.1.4

BN3033 LOCUS3959 1.5.3.17

BN3033 LOCUS4054 4.2.1.36 4.2.1.114

BN3033 LOCUS496 1.2.1.- 1.2.1.95

BN3033 LOCUS613 1.1.1.41 1.1.1.85

BN3033 LOCUS684 2.6.1.44 2.6.1.51, 2.6.1.44

BN3033 LOCUS785 1.2.1.41 1.2.1.41, 2.7.2.11

BN3033 LOCUS905 3.1.3.41 3.1.3.3, 3.1.3.74
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Table S3: Minimal defined medium of P. damnosus and B. bruxellensis.

Pediococcus damnosus Brettanomyces bruxellensis

Compound Formula KEGG ID Compound Formula KEGG ID

Adenine C5H5N5 C00147 4-Aminobenzoate C7H7NO2 C00568

alpha-D-Glucose C6H12O6 C00267 alpha-D-Glucose C6H12O6 C00267

Biotin C10H16N2O3S C00120 Ammonia NH3 C00014

Fe3
+ Fe C14819 Biotin C10H16N2O3S C00120

Folinic acid C20H23N7O7 C03479 Fe2
+ Fe C14818

Glycine C2H5NO2 C00037 Folate C19H19N7O6 C00504

Guanine C5H5N5O C00242 L-Histidine C6H9N3O2 C00135

L-Alanine C3H7NO2 C00041 Linoleate C18H32O2 C01595

L-Arginine C6H14N4O2 C00062 L-Methionine C5H11NO2S C00073

L-Aspartate C4H7NO4 C00049 L-Tryptophan C11H12N2O2 C00078

L-Cysteine C3H7NO2S C00097 Molybdate H2MoO4 C06232

L-Glutamate C5H9NO4 C00025 myo-Inositol C6H12O6 C00137

L-Histidine C6H9N3O2 C00135 Nicotinate C6H5NO2 C00253

L-Isoleucine C6H13NO2 C00407 Orthophosphate H3PO4 C00009

L-Leucine C6H13NO2 C00123 Pantothenate C9H17NO5 C00864

L-Lysine C6H14N2O2 C00047 Pyridoxal C8H9NO3 C00250

L-Methionine C5H11NO2S C00073 Riboflavin C17H20N4O6 C00255

L-Phenylalanine C9H11NO2 C00079 Sulfate H2SO4 C00059

L-Proline C5H9NO2 C00148 Thiamine C12H17N4OS C00378

L-Serine C3H7NO3 C00065

L-Threonine C4H9NO3 C00188

L-Tryptophan C11H12N2O2 C00078

L-Tyrosine C9H11NO3 C00082

L-Valine C5H11NO2 C00183

Nicotinate C6H5NO2 C00253

Orthophosphate H3PO4 C00009

Pantothenate C9H17NO5 C00864

Pyridoxine C8H11NO3 C00314

Riboflavin C17H20N4O6 C00255

Thymine C5H6N2O2 C00178

Uracil C4H4N2O2 C00106

Xanthine C5H4N4O2 C00385


	1 Introduction
	1.1 Context and Motivation
	1.2 Objective
	1.3 Structure of the document

	2 State of the art
	2.1 Background
	2.2 Systems biology
	2.3 Genome-scale metabolic models
	2.4 Reconstruction of Genome-scale metabolic models
	2.4.1 Genome annotation
	2.4.2 Manual reconstruction refinement
	2.4.3 Converting the metabolic network to a stoichiometric model
	2.4.4 Metabolic model validation
	2.4.5 Applications

	2.5 Genome-scale metabolic models reconstruction tools
	2.6 Simulation tools
	2.7 Acid lambic Beer
	2.7.1 Acid lambic beer production

	2.8 Lactic acid bacteria
	2.8.1 Pediococcus damnosus

	2.9 Brettanomyces bruxellensis
	2.10 Microbial communities
	2.10.1 Microbial community models
	2.10.2 Microbial community models construction


	3 Methodology
	3.1 Tools
	3.2 Genome files
	3.3 Genome annotation
	3.4 Metabolic network reconstruction
	3.4.1 Metabolic data
	3.4.2 Transport reactions and exchanges reactions
	3.4.3 Gene-Protein-Reactions associations

	3.5 Biomass and Energy requirements
	3.6 Manual Curation
	3.6.1 Reactions directionality and balance
	3.6.2 Growth Medium
	3.6.3 Model troubleshooting
	3.6.4 Gap-Filling
	3.6.5 Reactions balance
	3.6.6 Compartmentalization

	3.7 Model validation
	3.7.1 No uptake
	3.7.2 Minimal Medium
	3.7.3 Different carbon sources
	3.7.4 Different nitrogen sources
	3.7.5 Amino acid auxothrophies

	3.8 Community model

	4 Results and Discussion
	4.1 Genome annotation
	4.2 Metabolic network reconstruction
	4.2.1 Compartmentalization
	4.2.2 Transport Reactions

	4.3 Biomass and Energy requirements
	4.3.1 P. damnosus
	4.3.2 B. bruxellensis

	4.4 Manual Curation
	4.4.1 Reversibility and directionality
	4.4.2 Gap-Filling
	4.4.3 GPR

	4.5 Model validation
	4.5.1 No uptake
	4.5.2 Minimal Medium
	4.5.3 Different carbon sources
	4.5.4 Different nitrogen sources
	4.5.5 Minimal medium test

	4.6 Community models
	4.6.1 Interactions predictions
	4.6.2 Community model reconstruction
	4.6.3 Community model simulation
	4.6.4 Interactions analysis
	4.6.5 Microorganism abundance


	5 Conclusion and future perspectives
	Bibliography
	A Support material

