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Abstract

Constraint-based (CB) metabolic models provide a mathematical framework and
scaffold for in silico cell metabolism analysis and manipulation. In the past decade,
significant efforts have been done to model human metabolism, enabled by the increased
availability of multi-omics datasets and curated genome-scale reconstructions, as well as
the development of several algorithms for context-specific model (CSM) reconstruction.
Although CSM reconstruction has revealed insights on the deregulated metabolism of
several pathologies, the process of reconstructing representative models of human tissues
still lacks benchmarks and appropriate integrated software frameworks, since many tools
required for this process are still disperse across various software platforms, some of
which are proprietary.

In this work, we address this challenge by assembling a scalable CSM reconstruction
pipeline capable of integrating transcriptomics data in CB models. We combined omics
preprocessing methods inspired by previous efforts with in-house implementations of
existing CSM algorithms and new model refinement and validation routines, all
implemented in the Troppo Python-based open-source framework. The pipeline was
validated with multi-omics datasets from the Cancer Cell Line Encyclopedia (CCLE),
also including reference fluxomics measurements for the MCF7 cell line.

We reconstructed over 6000 models based on the Human-GEM template model for
733 cell lines featured in the CCLE, using MCF7 models as reference to find the best
parameter combinations. These reference models outperform earlier studies using the
same template by comparing gene essentiality and fluxomics experiments. We also
analysed the heterogeneity of breast cancer cell lines, identifying key changes in
metabolism related to cancer aggressiveness. Despite the many challenges in CB
modelling, we demonstrate using our pipeline that combining transcriptomics data in
metabolic models can be used to investigate key metabolic shifts. Significant limitations
were found on these models ability for reliable quantitative flux prediction, thus
motivating further work in genome-wide phenotype prediction.

Author summary

Genome-scale models of human metabolism are promising tools capable of
contextualising large omics datasets within a framework that enables analysis and
manipulation of metabolic phenotypes. Despite various successes in applying these
methods to provide mechanistic hypotheses for deregulated metabolism in disease, there
is no standardized workflow to extract these models using existing methods and the
tools required to do so are mostly implemented using proprietary software.
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We have assembled a generic pipeline to extract and validate context-specific
metabolic models using multi-omics datasets and implemented it using the troppo
framework. We first validate our pipeline using MCF7 cell line models and assess their
ability to predict lethal gene knockouts as well as flux activity using multi-omics data.
We also demonstrate how this approach can be generalized for large-scale
transcriptomics datasets and used to generate insights on the metabolic heterogeneity of
cancer and relevant features for other data mining approaches. The pipeline is available
as part of an open-source framework that is generic for a variety of applications.

Introduction 1

Over the last decades, systems biology has enabled the comprehension of the different 2

layers of biological processes, enabling the interpretation of the data generated by 3

several emerging high-throughput technologies. The recent growth in both the diversity 4

and quantity of data generated by these technologies led to the need of novel approaches 5

for data processing, analysis and modelling to take full advantage of these data. 6

Genome-scale tools for genomics, transcriptomics or proteomics allowed scientists to 7

generate new approaches for experimental design and analysis, with important tools 8

such as Genome-Scale Metabolic Models (GSMMs) granting the ability of simulating 9

cellular processes and infer its phenotype, saving time and costs [1]. 10

Metabolism is one of the main fields of study for systems biology which saw a 11

significant evolution. It is crucial for the study of cellular function and its disturbance 12

may lead to several diseases, ranging from diabetes or hypertension to cancer [2, 3]. 13

Some of these problems can be diagnosed from metabolite screenings in human blood or 14

urine [4] that are being exploited to help the discovery of treatments for the 15

aforementioned diseases [5, 6]. 16

Cells can be viewed as a multi-layered system, and the representation of reactions 17

and metabolites is not enough to understand the whole metabolism. Several efforts have 18

been made in the past years to provide for the integration of other layers, such as the 19

genome or transcriptome, leading to a better understanding of other challenges, such as 20

determining the fluxes through metabolic reactions. This led to the generation of 21

GSMMs, a tool that has been heavily used in metabolic engineering [7, 8] and study of 22

metabolic diseases [9–12]. 23

Recon1 [13] was the first human GSMM, released in 2007. Since then, other 24

metabolic models, such as the Edinburgh Human Metabolic Network (EHMN) and 25

Human Metabolic Reaction (HMR) were developed, with constant revisions and 26

integration occurring with many contributions [9, 14–18]. However, the lack of 27

standardization of certain properties, such as gene or reaction nomenclature, led to 28

propagation of errors throughout the years. The most recent open-source GSMM, 29

Human-GEM, integrates the knowledge from previous models and tries to solve the main 30

problems found, resorting to a joint effort of the scientific community [19]. This model 31

comprises 13,417 reactions, 10,138 metabolites, 4164 being unique ones and 3625 genes. 32

GSMMs’ potential for phenotype simulation can be attained through 33

constraint-based modelling (CBM) methods, which allow for fast calculations over large 34

algebraic models, under the assumption of a steady state (concentration of internal 35

metabolites assumed to be constant over time), since most kinetic parameters for 36

metabolic reactions are not known. A stoichiometric matrix S depicts the main 37

structure of the model, with columns defining reactions and rows metabolites, where Sij 38

represents the coefficient of the i-th metabolite in reaction j. The assumption of the 39

steady-state can be expressed as: S · v = 0, where v is the flux distribution vector. In 40

addition to these constraints, every reaction in the model has an upper and a lower 41

bound, restraining the maximum and minimum amount of flux passing through it. 42
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These constraints define an admissible space of flux distributions, i.e. the rate at which 43

every metabolite is either produced or consumed for each reaction [20]. 44

These models can be used to support the definition of linear optimization problems, 45

setting their constraints, and allowing different formulations to be achieved through 46

appropriate objective functions over the flux distributions (v). A common approach is 47

to define an equation (pseudo-reaction) representing the growth of a cell, which will be 48

maximized [21], thus defining Flux Balance Analysis (FBA), a linear programming (LP) 49

problem [22]. Despite its limitations (gene regulation, signaling processes or metabolic 50

regulation are not taken into account), FBA has been successfully used to assess 51

wild-type phenotypes, but also the impact of gene knockouts on metabolism [23–25]. 52

Due to its simplistic and flexible approach, FBA motivated several extensions to 53

address some of its limitations and allow further analyses. One of these variants is the 54

Parsimonious enzyme usage FBA (pFBA), a method that relies on the assumption that 55

flux distributions that demand the lowest overall flux through the network and are 56

quicker to grow are selected, leading to improvements in the assumption made FBA [26]. 57

GSMMs enable the integration of several types of information, including distinct 58

omics data. A relevant application of integrating these data is the generation of 59

tissue/cell specific metabolic models [27], starting from a general GSMM, for example, 60

the Human-GEM. Indeed, these general puprpose species-level models contain 61

information for all of the known metabolic reactions present in all types of human cells. 62

While this can be useful to understand some generic processes of the human 63

metabolism, it may run short on what it may provide in specific cell types or tissues. 64

Context-specific models can be particularly useful for researching cancer metabolism, 65

since they have been shown to be able to simulate rapid growth, mutations in metabolic 66

genes and the Warburg effect (aerobic glycolysis) [28]. 67

Several methods were developed to build draft cell/tissue-specific metabolic models 68

throughout the past years, taking as inputs a template generic GSMM and different 69

types of omics data. Although these methods use different approaches, their final 70

objective is to obtain a draft model and/ or a flux distribution which tries to match the 71

omics data provided [28]. In this work, we will be focusing on the methods which 72

retrieve a sub-model from the generic one, since we want to build representative models 73

of cell lines rather than simulate a very specific condition. 74

As reviewed by Robaina-Estevéz and colleagues, these methods can be classified into 75

three families, GIMME-, iMAT- and MBA-like. The main objective in the GIMME 76

family is to try to reach fluxes obtained from the model consistent with omics data, 77

while maximizing a Required Metabolic Function (RMF), such as growth. For the 78

iMAT family, the objective is the same without the need of a RMF. For the MBA 79

family, methods try to achieve model consistency according to a predefined core of 80

reactions, which may come from literature or from the omics data (e.g. the most 81

expressed genes) [29]. It should be noted that the choice of the algorithm has an impact 82

on the quality of the reconstructed model [30–33]. Here, we will be using the FastCORE 83

(from the MBA family) [34] and tINIT (both GIMME and iMAT families) [35] to assess 84

the importance of the choice of method to reconstruct a cell/tissue-specific model. 85

The connection of expression data (transcriptomics or proteomics) to the GSMMs is 86

possible due to the gene-protein rules included in the models, which contain information 87

relating the genes encoding the enzymes associated with each reaction (if they exist), in 88

the form of Boolean expressions. However, problems that may affect the accuracy of the 89

reconstructed model, such as experimental and inherent biological noise, several possible 90

platforms to obtain expression data, bias on the process of detection and non curated 91

relationship between gene expression and reaction fluxes, are still a main concern [15]. 92

Since the steps to reconstruct tissue-specific metabolic models address a combination 93

of the aforementioned issues, it is necessary to establish a pipeline to integrate omics 94
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data (which will be referred to as “preprocessing” from now on). In the most common 95

pipelines, there are three main steps to be fulfilled [36]. The first takes into account how 96

to deal with reactions with isozymes, complexes and/or promiscuous enzymes, i.e. do 97

not have a one-to-one relationship between gene and reactions (gene mapping). The 98

second is the definition of a limit where a gene is considered either active or not 99

(thresholding). The final one is which is the order of gene mapping and thresholding 100

used in data integration. This study aims to provide a pipeline enabling to evaluate 101

their importance. 102

Another important factor to take into account when reconstructing or simulating a 103

metabolic model is the medium composition. By default, most of the GSMMs do not 104

have a predefined composition, allowing the user to define which one to use. However, 105

for most cases, it is difficult to discriminate all metabolites and their concentration, 106

possibly leading to false predictions when the model is simulated [37]. 107

It has been proven that different media can lead to changes in the phenotypic 108

behaviour of the cells, how they respond to stress and change their epigenome or 109

transcriptome. Specially in humans, there are some added components to the medium, 110

such as fetal bovine serum (FBS) whose composition is not clear and add another 111

unknown factor to how the model should behave on its presence [38]. 112

As impactful as the other raised issues, the choice of an algorithm to reconstruct a 113

tissue-specific model is another source of variability in the final model, mainly due to 114

the differences on the reconstruction algorithm principle. As a validation method for 115

the reconstructed models, they can be tested with a set of required metabolic tasks, 116

such as production of lipids and vitamins [36]. Since not all tissues require the same set 117

of tasks, some manual curation may be needed. 118

The aforementioned issues can pose challenges when reconstructing a large dataset 119

containing different cell types. An example is the NCI-60 panel, used in the work of 120

Richelle et al, which tried to overcome these issues with the integration of metabolomics 121

data to improve the quality of the reconstructed models [36]. Another approach used by 122

Robinson et al was the integration of enzyme abundance and kinetic information using a 123

different framework, the Genome-scale model with Enzymatic Constraints using Kinetic 124

and Omics data (GECKO), allowing the reduction of space of possible solutions. Even 125

though these approaches could lead to an improvement of the accuracy and consistency 126

of the models generated through algorithms for context-specific reconstructions, in both 127

cases a small number of cell types were used. Lack of data for certain cell lines was one 128

of the main limitations [19]. 129

When considering the issues described above, we understand that there are some 130

limitations that are troublesome to overcome, such as the lack of a standardization of 131

preprocessing methods, lack of certain types of omics data to fully characterize cells’ 132

metabolism (such as fluxomics) or even limitations of the methods themselves, like the 133

assumption of a steady-state or missing information for certain metabolic reactions. 134

With this in mind, we developed a generic pipeline for context-specific model 135

reconstruction, allowing to test several ways of performing data preprocessing, as well as 136

to choose the algorithm used for model extraction and validation. In a first set of 137

experiments, we applied this pipeline to generate multiple reconstructions of the MCF-7 138

breast cancer cell line using recent transcriptomics data and knockout screenings from 139

the Cancer Cell Line Encyclopedia (CCLE) [39–41], as well as fluxomics and proteomics 140

data from a recent work by Katzir et al [42]. We complemented the validation of those 141

reconstructions with analysis of gene essentiality and compared various sets of 142

parameters with robust classification metrics. 143

Through this initial analysis, we were able to identify the best-performing set of 144

parameters, which were applied to a larger case study. So, in a second set of 145

experiments, the best configurations were used to reconstruct models for the whole set 146
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of the CCLE cell lines (over 700). We validated the resulting reconstructed models with 147

CRISPR gene essentiality screens. With this work, we aim to establish a pipeline to find 148

the optimal tuning of parameters for a given dataset, to help to reconstruct a more 149

insightful tissue-specific metabolic model. An important advantage of this work is the 150

use of open-source software in all steps of the pipeline, unlike previous studies mainly 151

using proprietary software. 152

Materials and methods 153

The context-specific metabolic reconstruction (CSMR) pipeline employed in this work 154

contains four essential steps: input preprocessing (1), context-specific reconstruction (2), 155

refinement (3) and validation (4). 156

An overview of the work is present on the Figure 1. 157

Input preprocessing 158

The inputs for any context-specific reconstruction always involve a template 159

genome-scale metabolic model capable of yielding a non-zero flux distribution and only 160

containing reactions capable of carrying non-zero flux, as well as a set of omics 161

measurements integrated in the model via CSMR algorithms. 162

Model preprocessing 163

We first ensure the model is consistent by identifying blocked reactions - whose 164

maximum and minimum fluxes are null under open exchange conditions - with flux 165

variability analysis, using the find blocked reactions function from the COBRApy 166

package. We also remove any boundary metabolites - usually added to balance exchange 167

reactions - prior to running any reconstruction, gapfill, or analysis method. This model 168

must be feasible in steady-state conditions and must be capable of allowing flux through 169

the biomass pseudo-reaction. 170

Transcriptomics data as a proxy of enzyme activity 171

In this pipeline, we focus specifically on transcriptomics data that is mappable with the 172

model’s gene associations, although some methods allow integration of other data types. 173

Similarly to previous approaches [19,36, 43], we use transcriptomics data as a proxy 174

for enzyme presence and flux activity from which we can calculate reaction activity 175

scores (RAS) to serve as inputs for CSMR algorithms. These scores should ideally 176

reflect whether a given reaction in the model is likely to be present in the context 177

represented by the transcriptomics data. The work of Richelle et al. details the 178

implications of several ways to infer RASs and provides several thresholding 179

options [43], which we adapted as a part of our work. Out of the parameterization 180

choices highlighted by the authors, we focused on varying the thresholding approach 181

and GPR integration functions. 182

Using transcriptomics to characterize enzyme activity is not trivial, since the 183

relationship between messenger RNA and protein expression is not fully understood, 184

despite ongoing progress in quantifying both of these biological entities. However, 185

Nusinow et al. have recently quantified the proteome for a subset of the CCLE panel 186

and found a moderately positive correlation (mean Pearson c.c. = 0.48) between mRNA 187

and protein abundance [44]. In this work, we assume a linear relationship so that RASs 188

are calculated based on gene expression measurements. 189
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Consistency step

EFMGapfill

320 models for MCF-7
over 6400 models for all CCLE panel

Omics data from CCLE

733 cell lines

MinMax MinSum

Global Local 1 state Local 2 state

tINITFastCORE

Phentotype
Simulation Gene Essentiality Fluxomics

Validation

Text
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4
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Fig 1. Overview of the context-specific metabolic reconstruction. In (1), we preprocess
the input; first, we run the original model through a consistency step in order to remove
some dead ends in the model; after, we preprocess the data from 733 cell lines through
three different approaches to the threshold: global, local 1 state and local 2 state. In
preparation of the reconstruction, we applied both MinMax and MinSum methods to
include the gene information in the model and employed the FastCORE and tINIT
algorithms (2). There were 320 reconstructed models for MCF-7 and over 6400 for the
whole CCLE panel. Since this models may need refinement, all these models are
subjected to a gapfill algorithm, EFMGapfill (3). Finally, the models are subjected
several types of analysis, from phenotype simulation, gene essentiality to fluxomics (4).
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Scoring transcript activity from expression measurements 190

RNA-Seq technologies typically produce transcript-level measurements represented as 191

proportions of the entire transcriptome. However, we intend, for the RASs used in this 192

work, to obtain a positive or negative value relative to reference thresholds calculated 193

across all samples. To this end, we process expression measurements into transcript 194

activity scores (TASs) that can better represent this dichotomy. 195

We first define the concept of a global threshold, where the expression of all genes 196

contribute. This is useful in filtering out transcripts whose expression is low or high 197

enough for them to be assigned as inactive or active, respectively, with a high degree of 198

confidence. However, this type of thresholding does not take into account the variability 199

of measurements between transcripts. While originally available for microarray-based 200

transcriptome quantification [45], a generic expression barcode for all cell types is hard 201

to define and apply in RNA-Seq measurements, due to the different conditions in which 202

experiments are performed. 203

A local thresholding approach can also be considered to mitigate the aforementioned 204

problems. Rather than condensing the entire measurements into a single value, 205

thresholding can be performed on a per gene basis, yielding a value for each gene 206

independently. Similarly to the global thresholding approach, local thresholds can also 207

be used as a reference for fold change calculations. 208

In this pipeline, both thresholds are calculated by first determining transcript-wise 209

quantiles for various percentages (from 10% to 90%), yielding multiple sets of local 210

thresholds, one for each percentage. To convert the latter to global thresholds, we use 211

the mean value of a local threshold set to obtain a single representative value for the 212

entire expression dataset. 213

After establishing appropriate thresholds, we can then combine them to establish 214

rules that can be used to determine whether a transcript is active and calculate its TAS 215

to better represent that activity level. We implemented an approach based on the work 216

of Richelle et al [43], where transcript activity can be represented in two main states, 217

namely: 218

• Inactive: transcript expression is inactive with a high degree of confidence - 219

assigned when expression values are lower than a global lower threshold (gmin). 220

The expected TAS values will always be negative. 221

• Active: transcript expression is active with a high degree of confidence since its 222

value exceeds a global upper threshold (gmax). The expected TAS values are 223

always positive. 224

This also implies the existence of an intermediate state of uncertainty for cases 225

where transcript expression lies between the two thresholds. In these cases, we 226

distinguish between active and inactive transcripts by comparing the transcript’s 227

expression with its transcript-specific local threshold (l(y)) and the expected TAS value 228

is constrained between -1 and 1, with its sign reflecting whether it is considered active. 229

We implemented three thresholding strategies based on the work of Richelle et al [43] 230

with some minor changes to accommodate for the expected distribution of TAS values 231

across multiple states. A global thresholding strategy implies a single global threshold 232

to distinguish between active and inactive transcripts. An extension of this strategy, 233

named local 1-state, includes local thresholding for transcripts that would otherwise be 234

considered as inactive, and assigns TASs based on the ratio between expression and the 235

transcript’s local threshold. Finally, we also included a local 2-state strategy defined by 236

the usage of two thresholds and an intermediate state, as defined above. 237

TASs are then generated by calculating the ratio between measured expression 238

values and an appropriate threshold which is chosen according to the state in which the 239
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Table 1. Functions used to convert transcript expression values into transcript activity
scores, assuming x as a vector of expression levels for each transcript. The “Expression
value” column represents the condition that values in x must meet for the corresponding
reference threshold t used to calculate a ratio with the formula log(xi

t ). Finally, the
range of TAS values for each condition is detailed on the last column.
* In the local 2-state strategy, the TAS range does not start at 0 since 1 is added to the
formula in the specific case when the expression value is greater than gmax

Strategy Expression value Reference threshold TAS range

Global x ≥ 0 gmax ]−∞,∞[

Local 1-state
x ≤ gmax gmax ]−∞, 0[
x ≥ gmax l(y) ]−∞,∞[

Local 2-state
x ≥ gmax gmax [1,∞]*
x ≤ gmin gmin ]−∞, 0[

gmin ≤ x < gmax l(y) [−1, 1]

transcript is assigned. A detailed description of the formulae used in each state for the 240

three employed strategies can be found on Table 1. 241

Inferring reaction activity from transcript scores 242

The TASs from the aforementioned strategies are then converted to RASs using the 243

gene-protein-reaction (GPR) rules provided with the model. GPR rules are Boolean 244

expressions that describe, for a given reaction, which combinations of transcripts are 245

involved with the synthesis of one or more enzymes capable of catalyzing it. These rules 246

are often expressed or can be converted into disjunctive normal form, where multiple 247

conjunctions (expressions with the AND operator) denoting the various enzymes or 248

isoforms involved are bound by a disjunction (OR operator). 249

RASs must be presented as continuous scores and, thus, the Boolean operators in 250

GPR rules must be replaced with numerical values. We replaced AND operators with a 251

minimum function - an enzyme’s activity is limited by the lowest expressed 252

transcript/subunit - while OR operations could be replaced with either sum or 253

maximum functions. When using sum, we assume the reaction activity correlates with 254

the combined activity of all enzymes and isoforms catalyzing it, while the maximum 255

function equates reaction activity with the highest expressed enzyme’s score. 256

Model reconstruction 257

Normalizing inputs for context-specific reconstruction algorithms 258

This step includes conversion of RASs into inputs accepted by the different CSMR 259

algorithms, given their diverse nature, and we have implemented two alternatives to 260

perform this conversion in our routines. Although our pipeline is generic, we have 261

chosen the FASTCORE [34] and tINIT [46] algorithms for context-specific model 262

reconstruction. 263

Methods such as tINIT, where scores mirror the reactions’ states as present or 264

absent, can take RAS as input without any further processing. On the other hand, 265

algorithms such as FASTCORE require a set of core reactions as input. In this case, a 266

further threshold must be applied for these to be obtained. In our work, we emphasized 267

the division between positive and negative scores to represent activity, and as such, core 268

reactions are those with a RAS above 0. 269
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Algorithm output and post-processing 270

With the inputs appropriately adapted, the output of each algorithm is always a binary 271

vector r of size n (equal to the number of reactions in the template model), indicating 272

reactions’ presence. Indeed, this vector includes Boolean flags indicating whether each 273

reaction should be kept or removed in the context-specific model. 274

The models generated by the CSMR algorithms are then checked for consistency 275

with expected phenotypes. For each of these models, we knockout (set lower and upper 276

bounds to 0) reactions flagged for removal before to perform any simulation or analysis. 277

We first check whether the model is capable of allowing non-zero flux through the 278

biomass reaction, to ensure lethality can be tested. When growth medium formulations 279

are available, we can additionally ensure that the model is feasible and capable of 280

growth if the compounds present in growth media are the only ones allowed to be 281

consumed. This is achieved by constraining exchange reactions that do not involve 282

medium metabolites to only allow positive flux values, thus only allowing medium 283

metabolites to be consumed by the model. 284

Refinement 285

When the preliminary checks described above fail, gap fill approaches can be employed 286

to infer sets of missing reactions that can expand the solution space and enable 287

expected phenotypes. 288

Elementary flux mode-based gap filling approach 289

Gap filling was performed using a novel EFMGapfill approach, which was implemented 290

in the troppo Python package. This algorithm leverages efficient elementary flux mode 291

(EFM) enumeration algorithms to find minimal sets of active fluxes required for 292

feasibility under a specific condition. Assuming a stoichiometric matrix S of m 293

metabolites and n fluxes, the flux vector v and an identically sized vector y, and a set 294

K of reactions available to fill gaps, the LP formulation employed in EFMGapfill can be 295

defined as follows: 296

min
∑
p∈K

yk (1)

s.t.
n∑

j=1

Si,j · vj = 0 (∀i ∈ {1, ...,m}) (2)

yk −Mvk ≥ 0 (∀k ∈ 1, ..., n) (3)

vk − yk ≥ 0 (∀k ∈ 1, ..., n) (4)

vk ≥ 0 (∀k ∈ 1, ..., n) (5)

v ∈ <n
0+, y ∈ {0, 1},M = 106

(LP1)

(6)

In the formulation represented in LP1, constraint 1 defines the steady-state 297

constraint, similarly to other CB approaches, such as FBA. Constraints 2 and 3 298

associate the binary variables in y to the fluxes in the vector v. In this expanded 299

solution space, the variables in y will hold a value of 1 if their associated flux in the 300

vector v is greater than 1. Otherwise, both variables are set to 0. These variables and 301

indicator constraints are then used to discretize fluxes into active and inactive states. 302

The objective function is dependent on the set of reactions K available for the 303

algorithm to add as a gap filling solution, although the objective is always to minimize 304

the sum of a subset of the vector y whose indices are contained in K. 305
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We adapt the input K according to a Boolean vector r (a set of reaction indices). K 306

will have all reactions from the template model not included in r. The vector r is 307

typically the output of a previously determined CSMR reconstruction. Furthermore, we 308

also define and constrain an objective reaction u (usually the biomass pseudo-reaction) 309

to always carry non-zero flux, representing a phenotype that is expected to be 310

maintained upon tailoring the model to the subset of reactions in r. 311

We identified two possible gap filling scenarios that can be accomplished using this 312

approach. In the first, we do not assume constraints on external metabolite exchanges 313

and thus, we also exclude these reactions from K. The resulting solution from our gap 314

filling approach is the smallest set of intracellular reactions not found in r that should 315

be included so that the context-specific model is capable of carrying flux through u. 316

An alternative scenario may arise where the set of reactions r must not be 317

manipulated, but the model still requires gap filling to predict growth. The growth 318

medium, rather than the enzyme content of this model must be the target for 319

manipulation. In this case, all intracellular reactions not in r must be constrained and 320

exchange reactions must be split into forward and reverse reactions carrying flux in 321

opposite directions. To find the minimal set of extracellular metabolites required for the 322

model to carry flux through u, the set K must be defined as the set of reverse exchange 323

reactions in the model. 324

Validation 325

An important question arising from any CSMR process is ensuring the reconstructed 326

models are capable of capturing the metabolic context of the cell or tissue, as 327

represented by their corresponding omics measurements. Although literature review 328

may reveal expected behaviours and phenotypes associated with the specific context to 329

be modeled, a truly systematic validation of these models can only be achieved with 330

large-scale datasets covering a wide range of measured biological entities. Such 331

experiments should clearly point out the effect of perturbations that can be mapped 332

onto the model on cell metabolism so that simulated fluxes become directly comparable. 333

In this section, we describe how gene knockout screens and fluxomics can be integrated 334

in our pipeline to validate these models. 335

Gene essentiality 336

Gene essentiality screens, such as those performed with CRISPR, provide a directly 337

quantifiable measurement of the impact of gene deletions on cell viability, which can be 338

modeled on CBMs through metabolic tasks [19]. The biomass objective function, 339

included in most human models, groups most of these tasks’ demands by aggregating 340

the necessary components for cell division and maintenance. Given the computational 341

demand of checking multiple gene knockouts for each task and each omics sample, we 342

will focus on predicting lethal gene knockouts using the biomass objective function as a 343

measure of cell growth. 344

The CBM workflow used to predict essential genes uses GPRs to determine the set 345

of reactions to exclude given a knocked-out gene g. To this end, we first obtain a 346

mapping ω(g, r), which evaluates the GPR expression of reaction r with every gene 347

marked as active, except for g. To apply the gene knockout, we must first determine the 348

set K = {r|r ∈ R,∀¬ω(g, r)}, which identifies the reactions that are disabled upon 349

deletion of g; then, we set the lower and upper bounds of each reaction in K to 0. 350

Adding these constraints to the model, the simulation can be run using FBA, yielding 351

predicted growth rates for each gene deletion. 352

Finally, flux distributions resulting from gene knockouts can be evaluated. It is 353

useful to always compare predicted mutant growth rates with wild-type levels. We 354
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considered several growth rate thresholds based on the wild-type value to represent 355

viability, although previous studies have considered growth rates below 0.1% of the 356

predicted wild-type rate to imply lethality. Additionally, infeasible solutions are 357

considered as non-viable. We then discretize each gene knockout’s result as essential or 358

non-essential and compare them with the experimental screening. 359

We used Matthews’ correlation coefficient (MCC) to assess the predictive ability of
our models. The multiclass definition of MCC as implemented in the scikit-learn
package is presented on Equation 7, assuming a generic classifier to predict

K

classes, t as a vector with the amount of true positives and p the vector with the 360

amount of predictions each class k, while c is the total amount of true positive samples 361

for all classes and s is the number of samples. 362

MCC =
c× s−

∑K
k pk × tk√

(s2 −
∑K

k p2k)× (s2 −
∑K

k t2k)
(7)

Predicted fluxes 363

Alternatively, flux distributions obtained from the model using an appropriate 364

phenotype prediction method can be directly compared with experimentally measured 365

fluxes, obtained from techniques such as isotope labeling coupled with metabolic flux 366

analysis. In this work, we employ parsimonious enzyme usage flux balance analysis 367

(pFBA) to predict phenotypes using our context-specific reconstructions. We have 368

chosen this method since it requires no prior knowledge and reduces the admissible 369

solution space of FBA by assuming cells not only attempt to achieve the predefined cell 370

objective, but also minimise the overall sum of metabolic fluxes to do so. 371

A key limitation in using CB models to predict flux values is the lack of reliable 372

measurements for substrate uptake fluxes. This directly influences the predicted growth 373

rate and intracellular fluxes. A more reliable comparison can be made by discretizing 374

flux values into three classes: forward active, if the flux is positive, reverse active if it is 375

negative (flux is active, but carried in the reverse direction), or null when there is no 376

flux. Although less precise, this discards the usage of experimentally measured external 377

metabolite consumption rates. The model’s predictive ability can then be ascertained 378

by using metrics suitable for multiclass predictive models such as Matthews’ correlation 379

coefficient or weighted F1 scores. 380

Flux analysis 381

Models reconstructed using our pipeline yielded flux distributions obtained from pFBA 382

that were used for further analyses. Before applying decomposition methods, statistical 383

tests or using these data for classification tasks, we first scaled flux values to avoid 384

numerical issues. To achieve this, we transformed the entire dataset by applying a 385

sigmoid function s(x) (Equation 8) that maintains flux signs, but brings very large 386

values closer. Standardization was not performed as keeping the flux sign intact allows 387

for proper interpretation of these values regarding alternative flux modes associated 388

with the same reaction. 389

s(x) = a ·
(

k

k + eix

)
+ 1 (8)

Relevant fluxes were selected before using supervised or unsupervised algorithms by 390

eliminating fluxes with low variance. Furthermore, we also select an arbitrary number of 391
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features ranked by their significance in explaining the variance of the data relative to a 392

discrete clinical feature using one-way ANOVA tests. 393

One of the methods used to analyse predicted fluxes is Principal Component 394

Analysis (PCA), which we used to further reduce the high-dimensionality of the 395

metabolic model’s solution space. We also inspected principal component loadings to 396

identify groups of fluxes that were relevant with the clinical features in the biological 397

samples from which the models were reconstructed. 398

Finally, we also used predicted fluxes to train supervised learning classifiers. We 399

used Random Forest classifiers with varying number of Decision Tree estimators. K-fold 400

cross-validation (CV) was used to assess the classifiers’ predictive performance using 401

Matthews’ correlation coefficient as our metric. In some instances, we trained classifiers 402

using several pFBA flux distributions for the same cell line. To avoid the inclusion of 403

models from the same cell line in both training and testing folds, we have implemented 404

a custom k-fold CV routine that splits datasets by cell lines rather than by individual 405

flux distributions. 406

Software availability 407

The software featured in this work was developed using the Python programming 408

language. Although compatibility between language sub-versions should not cause any 409

problems, we recommend using Python 3.6 and above. The entire source-code to 410

perform all steps of the pipeline featured in this work is accessible through the GitHub 411

repository at https://github.com/BioSystemsUM/human_ts_models/. The packages 412

cobamp, troppo, cobrapy, pandas, seaborn, scikit-learn and matplotlib libraries are 413

required to replicate the results and analysis featured in this work. 414

A significant part of our model reconstruction pipeline has been implemented using 415

the troppo framework [47], developed in-house but freely available for the community. 416

This software package provides an environment for omics data processing and 417

subsequent integration with constraint-based metabolic models. This software is 418

structured around two main parts: the omics layer handles data parsing, labeling and 419

normalization, as well as mappings to previously loaded constraint-based metabolic 420

models; the reconstruction layer contains routines to easily adapt omics inputs into 421

appropriate reaction-level scores and run context-specific model reconstruction 422

algorithms using novel implementations of existing methods. 423

We also used the cobrapy package [48] to read genome-scale metabolic models in the 424

standardized Systems Biology Markup Language (SBML) format, manipulate their 425

content and predict phenotypes using pFBA. The IBM® ILOG® CPLEX®1 (version 426

12.8) solver was used for all CB analysis and CSMR methods involving linear 427

programming optimization problems, with or without mixed-integer constraints. Some 428

parts of the omics data processing pipeline were performed using the pandas package. 429

These routines have been generalized and included in the source-code of this work as 430

auxiliary functions, although most parts of the input preprocessing pipeline are fully 431

accessible through troppo. 432

The remaining parts of the context-specific model reconstruction have also been 433

implemented in several components of troppo. Both fastCORE and tINIT algorithms 434

used in this work were run using in-house implementations, which had been validated in 435

a previous work [47]. The EFMGapfill approach is a novel addition to this software 436

package and was implemented using an in-house implementation of the k-shortest EFM 437

enumeration already available as part of cobamp [49]. This package was also used to run 438

these routines with multiprocessing support whenever applicable. 439

1https://www.ibm.com/analytics/cplex-optimizer
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The plots featured in this work were generated using the matplotlib and seaborn 440

libraries. 441

Results 442

Our first study evaluated the influence of different input processing methods on model 443

reconstruction, using the MCF7 breast cancer cell line as a case study. We validated the 444

predictive ability of each parameter setup through a comparison of predictions from the 445

reconstructed models with expected phenotypes from gene deletion screens and 446

fluxomics measurements. This cell line was chosen due to its common use in many 447

previous studies, from which a large quantity of knowledge and omics data can be 448

accessed. 449

In a second stage, using knowledge from these MCF7 models, we selected the best 450

performing preprocessing options for each algorithm, and reconstructed various models 451

for all cell lines, validating them with gene essentiality predictions. In the absence of 452

fluxomics measurements, we also assessed whether such models could be used to 453

generate relevant information for other tasks by using the result of several pFBA 454

simulations as features for supervised machine learning approaches. 455

Case-study setup 456

We used the Human-GEM (version 1.5.0) genome-scale metabolic reconstruction as our 457

template model, stemming from a recent effort by Robinson et al. to provide a 458

consensus metabolic model for Homo sapiens [19]. The model consists of 13417 459

reactions associated with a total of 3625 genes and 4164 unique metabolites, integrating 460

knowledge from previous reconstructions. The model and auxiliary reaction and 461

metabolite tables were downloaded from the corresponding version release on the 462

GitHub repository at https://github.com/SysBioChalmers/Human-GEM. 463

The experimental data used in this work was obtained from two different sources. 464

The Cancer Cell Line Encyclopedia provides RNA-seq transcriptomics data for over 465

56000 genes across 1270 unique cell lines. These expression values are represented in 466

transcripts per million (TPM) and are already pre-processed using standardized GTEx 467

pipelines. TAS calculations were performed across the entire dataset, although the only 468

integrated scores were those whose associated genes were mapped to the template 469

metabolic model. 470

These datasets are complemented with the Achilles dataset, characterizing lethal 471

effects of over 18000 gene knockouts through CRISPR experiments [40,41]. Gene 472

essentiality scores from this experiment were generated using CERES [41] and processed 473

further until these scores are normalized so that -1 and 0 represent, respectively, the 474

median essential and non-essential gene knockout effects. For this work, we considered 475

five essentiality thresholds evenly distributed across the range between -1.5 and -0.5. As 476

of the first quarter of 2020, 739 cell lines had been included in the Achilles dataset [50], 477

which we then selected as the candidates for our large-scale model reconstruction effort. 478

Gene/transcript nomenclature was converted using the latest HUGO Gene 479

Nomenclature Committee approved symbol mappings whenever needed [51]. 480

Fluxomics measurements for MCF7 cell lines were obtained as part of the dataset 481

used in the analysis of the work of Katzir et al. [42], where time-series LC-MS 482

metabolomics were used to estimate the rates of 44 reactions in three growth media 483

conditions. Despite being originally mapped to the reactions in the Recon 1 GSMM, we 484

processed the data and matched these flux measurements and reaction directionality 485

with the Human-GEM template model. 486
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Table 2. Required parameters for model reconstruction and possible options from
which to choose from (separated by commas).

Parameter Options

Algorithm FASTCORE, tINIT
gmin quantile 10th, 25th, 50th, 75th, 90th
gmax quantile 25th, 50th, 75th, 90th
Local quantile 10th, 25th, 50th, 75th, 90th

Integration functions
AND minimum
OR maximum, sum

Reconstruction of MCF7 cell line models 487

We first reconstructed models of the MCF7 cancer cell line by considering every possible 488

combination of the parameters displayed on Table 2, excluding invalid combinations. In 489

addition to these models, we included a MCF7 cell line reconstruction featured in the 490

work of Robinson et al. as a baseline comparison [19]. 491

We obtained 320 models from this reconstruction effort and assessed their ability to 492

correctly predict essential genes and flux activity. To understand the influence of 493

parameterization on the models’ performance, we observed the distribution of values 494

across multiple parameter options and evaluated parameter importance numerically 495

using a linear regression. 496

Gene essentiality predictions 497

The results summarized on Figure 2 show that global thresholds have a greater impact 498

on gene essentiality predictions, since the local 1-state strategy, which places a greater 499

emphasis on local thresholding leads to worse gene essentiality predictions. Additionally, 500

the average of all models reconstructed using the global thresholding strategy is close to 501

that found in local 2-state models. 502

Despite this similarity when comparing the average of all models for each strategy, 503

the best predictions were achieved using the local 2-state strategy, which is a clear 504

indicator that a combination of both thresholding approaches are useful to estimate 505

RASs. Although the performance achieved using the local 2-state strategy could be 506

attributed to the usage of two (rather than one) global thresholds, we observed that the 507

gmin parameter has a negligible influence on the models’ predictive performance, which 508

supports our claim that, in fact, both local and global thresholds have a positive effect 509

when combined into the same TAS calculation strategy. 510

We were also able to infer some of the properties associated with the dataset, where 511

gmax and local thresholds at the 25th percentile seem to have the most positive effect 512

on predictive ability in all models. Although the CERES score threshold representing 513

the median essential gene knockout was set at -1, our models show slightly increased 514

predictive power at -0.75. 515

Aside from data preprocessing related parameters, we have found the best parameter 516

combinations are to use the tINIT algorithm in conjunction with the maximum function 517

as replacement for the AND operator. We also observed that refining the model with 518

EFMGapfill to allow growth using only the defined growth media metabolites as 519

substrate did not result in better gene essentiality predictions. 520

Flux activity predictions 521

We also performed a similar assessment on the ability of our models to correctly predict 522

reaction activity and directions for the MCF7 cell line under three growth medium 523
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Fig 2. Overview of the influence of parameterization on the models’ performance when
predicting essential genes as determined by their MCC. Bottom left: MCC value
distribution for each thresholding strategy (horizontal axis) and algorithm combination
(coloured box and whiskers). Top left: MCC value distribution for each CERES score
threshold (horizontal axis) and algorithm combination (coloured box and whiskers).
Right: Linear coefficients for each individual parameter value on a regression model
aimed at predicting MCC values. Each parameter variable was one-hot encoded as
multiple binary variables.
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compositions with associated fluxomics measurements. For each parameter combination, 524

we generated three corresponding predictions using the growth medium as an additional 525

flux constraint and calculated the MCC between the measured and predicted flux 526

activities. 527

In Figure 3A, we can see that most parameters affect flux and essentiality 528

predictions similarly. The best performing strategies are still those based on global and 529

local thresholding with 2 states. In both algorithms, we also observed that constraining 530

nutrient uptake to the metabolites that could be matched with the growth medium led 531

to higher predictive power. 532

The relationship between average MCC and its standard deviation is shown in 533

Figure 3B where we can observe that FASTCORE reconstructed models were able to 534

reach the highest correlation with the experimental fluxomics data, although they are 535

more sensitive to parameterization. INIT, on the other hand, showed higher average 536

MCC values across all parameter combinations with less dispersion and yielded models 537

that rank closer when evaluated with this metric. We also compared our models with a 538

baseline MCF7 cell line model featured in the work of Robinson et al. [19], which ranks 539

significantly lower than our best FASTCORE and INIT models. 540

Overall, we did not significantly improve the predictions when considering a direct 541

comparison of active fluxes between simulation and experimental quantification, 542

although we identified some key reconstruction parameters that influence the 543

context-specific model’s performance. 544

FASTCORE appears as the more consistent tool to extract context-appropriate sets 545

of reactions from a template model. Due to its low computational demand, these 546

reconstructions can be repeated with alternative parameters or to sample large amounts 547

of models. tINIT, on the other hand, shows great potential to yield high-quality 548

context-specific models, but thresholding parameters seem to heavily affect predictive 549

ability. 550

Large-scale metabolism reconstructions of cancer cell lines 551

We used 10 of the highest scoring parameter combinations from the MCF7 cell line case 552

study to reconstruct the entire panel of cell lines available in CCLE with associated 553

gene knockout effect screens (n=739). A similar reconstruction pipeline was employed 554

in this larger case study, although we did not perform gap filling relative to the growth 555

medium, due to heavy computational demand and an expected negative impact in 556

phenotype predictions. 557

Predictive performance assessment 558

The results summarized on Figure 4 depict our large-scale results which show similar 559

predictive accuracy to those reconstructed for MCF7 cell lines. There are slight 560

differences in gene essentiality prediction performance between the 10 selected 561

parameter combinations, with tINIT models reconstructed displaying slightly higher 562

scores. In all of these scenarios, the selected pipeline parameterization choices improved 563

gene essentiality predictions, when comparing with the models reconstructed in the 564

work of Robinson et al, which asserts the importance of using more complex scoring 565

strategies involving global and local thresholds. 566

The CERES score characterizing gene essentiality in the CRISPR experiments is 567

undoubtedly the parameter that affects these predictions the most, with the best results 568

obtained at a threshold of -0.75. This finding along with the overall low MCC values 569

found with our approaches can be due to several factors. On the one hand, the biomass 570

equation is a generalized assumption of the metabolites needed for cell growth, and thus, 571

is not tailored for each specific cell line. The lack of more exact constraints on model 572
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Fig 3. Overview of the influence of parameterization on the models’ performance when
predicting flux activity and using MCC as the evaluation metric. Top (A): Linear
coefficients for each individual parameter value on a regression model aimed at
predicting MCC values for each parameter combination. Each parameter variable was
one-hot encoded as multiple binary variables. Bottom (B): Relationship between
average MCC value and standard deviation for each group of 3 simulations (conditions)
that make up a single parameter combination. Different colors represent different
algorithms and/or baseline comparison models.
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Fig 4. Overview of the predictive capability of the models reconstructed for each
CCLE cell line. Left: MCC value distribution for all models in each lethal gene effect
threshold. Right: Distribution of MCC values for each parameter combination selected
for large scale reconstruction of CCLE models. The percentage value at the end of each
thresholding strategy description represents the proportion of cell line models that could
be successfully reconstructed.

uptake also results in gene knockouts that either do not affect flux through the biomass 573

pseudo-reaction or completely inhibit it, which by itself elicits the usage of a threshold 574

since a direct correlation between CERES scores and growth can not be found using 575

constraint-based models. 576

Exploring metabolic variability in breast cancer 577

We used the models and their respective predicted fluxes to explore the metabolic 578

heterogeneity among various breast cancer cell lines. To do so, we retrieved molecular 579

subtype annotations from the DepMap repository and used PCA to project these flux 580

distributions using reduced features and obtain relevant information on the flux patterns 581

present in different breast cancer subtypes. These results are summarized on Figure 5. 582

The subset of models belonging to breast cancer were extracted and the 200 fluxes 583

with most statistically significant differences among subtypes were used to decompose 584

the dataset. We included all reconstructed models, regardless of their parameters, and 585

reduced the latent space to 3 principal components (PCs) capable of explaining 33% of 586

the observed variance. The loadings of each principal component were obtained, with 587

each flux being summarised in their corresponding pathways by calculating the average 588

of the absolute ratios between the weights of each flux and the maximum observed 589

values in the PC loadings. 590

Firstly, we can conclude that the decomposition of predicted fluxes can adequately 591

distinguish between major molecular subtypes of breast cancer. The second PC (PC2) 592

marks a good distinction between basal and luminal cell lines and correlates with 593

reported prognosis and aggressiveness [52], with luminal BCs with better prognosis 594

assigned to positive values as opposed to basal BCs which appear in this PC as negative 595

values. 596

Lipid metabolism is typically deregulated in breast cancer and we were able to 597

identify changes in fatty acid synthesis, with long-chain fatty-acid CoA ligase (ACSL1) 598

and fatty acid desaturase (FADS) activity, as well as increased arachidonic acid 599

production negatively correlated with the values in PC2. ACSL1 in particular has been 600

reported as being transcriptionally upregulated in several breast cancer subtypes [53], 601

and although it is not specific to basal BC, its expression has been shown to negatively 602
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Fig 5. Cell line models reconstructed for breast cancer cell lines and projected in lower
dimensions through the usage of PCA. The left figure shows the first PC against the
second, while the right figure displays the second PC against the third, in the horizontal
and vertical axes, respectively.

impact survival rates. Moreover, previous studies have also shown that arachidonic acid 603

promotes tumor cell migration in a basal B BC cell line [54], which further reinforces 604

the association of PC2 with poor prognosis. 605

Another important finding was the negative correlation of PC2 with mitochondrial 606

citrate carrier (SLC25A1) activity. This transporter plays a fundamental role in 607

maintaining mitochondrial activity in high proliferating cells [55] and is highly expressed 608

in triple-negative breast cancer (TNBC), corroborating the hypothesis that PC2 depicts 609

a gradient of cancer aggressiveness. 610

Predicted metabolic fluxes as relevant features 611

The lack of fluxomics data for the whole set of cell lines featured in DepMap does not 612

allow to carry out a large-scale systematic comparison of the pFBA flux distribution 613

predictions with experimental data. However, we set out to assess whether or not these 614

predicted fluxes could be useful in predicting several clinical features associated with 615

each sample. To do so, we established a supervised classification task, where the 616

disease’s primary location would be predicted using various datasets, namely, (1) 617

standardized expression values (TPM from RNASeq) using the entire gene set, as well 618

as only those genes that can be integrated in the metabolic model, (2) TASs generated 619

for each sample, (3) predicted fluxes (using pFBA over reconstructed models) and (4) 620

the reaction presence (binary) from the CSMR algorithm outputs. Our results on this 621

task are summarized on Figure 6. 622

Classifiers trained with standardized transcriptomics data showed good relative 623

performance (MCC mean=0.570, sd=0.038) with the subset corresponding to metabolic 624

genes only slightly outperforming it. Processing these data and generating TASs slightly 625

increased predictive capabilities (MCC mean=0.594, sd=0.030), which further justifies 626

applying our preprocessing workflows before analysing and integrating omics data. 627

However, the outputs of CSMR algorithms, namely, the presence or absence of each 628

reaction resulted in models capable of predicting a cancer cell line’s primary site with 629

an average MCC of 0.525 (sd=0.031). Furthermore, pFBA simulations resulted in even 630

worse classifiers that could only reach an average MCC of 0.298 (sd=0.042). 631

Overall, our results show that context-specific model reconstruction and flux balance 632
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analysis approaches are not yet consistent enough for accurate quantitative flux 633

predictions, as predicted metabolic fluxes by themselves did not appear to be relevant 634

features for complex classification tasks. 635

Discussion 636

We built upon several previous efforts to generate constraint-based models of 637

differentiated human tissues, being capable of assembling a generic pipeline that can be 638

useful in standardizing the process of integrating transcriptomics data into human 639

metabolic models for the scientific community. Furthermore, this pipeline is available as 640

part of an open-source software tool providing a generic framework for the 641

implementation of context-specific model reconstruction tasks. 642

We were able to leverage large-scale multi-omics experiments with cancer cell lines 643

and a state-of-the-art human metabolic reconstruction to generate meaningful models 644

capable of capturing the metabolic diversity among, and within, multiple types of 645

cancer. We were also able to validate the models using experimentally determined 646

essential genes and fluxomics data. 647

The usage of decomposition methods to understand flux predictions allowed us to 648

establish a link between metabolic phenotypes and breast cancer prognosis, and by 649

making use of the interpretability of constraint-based models, we were also able to 650

pinpoint key enzymes and metabolites associated with dysregulated growth. This elicits 651

the potential for similar approaches to assist in contextualizing transcriptomics profiles 652

into metabolic phenotypes, with the purpose of understanding the intricate mechanisms 653

responsible for human diseases, especially for personalized medicine applications. 654

The availability of metabolomics and proteomics data still pales in comparison with 655

RNA-Seq technologies used for transcriptomics quantification. As such, we have 656

developed this work to only consider the latter omics type, and we argue that the 657

reconstruction of models based on transcriptomics data results in computational tools 658

that can be more easily adapted to a clinical setting since they do not rely on 659

generating multiple omics datasets. However, we have also built the computational 660

tools, namely troppo, in a way that these datasets can be easily integrated and used 661

with appropriate methods. 662

Although encouraging, our results show the difficulty in closing the gap between 663

experimentally measured and predicted fluxes. We argue that there is value in building 664

representative models using gene expression alone, since the techniques used to obtain 665

these measurements are far more ubiquitous and less costly. However, naturally, this 666

lack of information implies some limitations when interpreting the model. This was 667

evident when using model simulations to predict a cell line’s disease, where classifiers 668

trained with these predictions displayed poor predictive performance. 669

In the absence of precise exo-metabolome uptake or secretion rates, CBMs in their 670

original definition, are merely capable of predicting metabolic pathways on a discrete 671

level, and thus, flux distributions must always be interpreted relative to a given original 672
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state or model context rather than assuming these fluxes are numerically comparable. A 673

related challenge also appears when considering the biomass objective function, which is 674

usually too generic to describe different tissue types, and hinders the ability for these 675

approaches to generate meaningful models for cells whose metabolic objective is difficult 676

to define. 677

Recent works that have incorporated exo-metabolite measurements [36], metabolic 678

task protection and alternative formalisms to include more complex parameters [19], 679

have reached better Pearson correlation coefficients with fluxomics measurements, 680

although with smaller case studies. Another important aspect would be to expand the 681

scope of constraint-based models to also include regulation and signal transduction 682

enabling predictions of metabolic fluxes that can be contextualized with their 683

corresponding regulators. 684

We must, additionally, acknowledge the importance of using a fluxomics data source 685

for a reference cell line to serve as a basis for subsequent reconstructions, since it allows 686

us to find ideal sets of parameters for larger-scale efforts. In this work, this led to a 687

significant decrease in computational resource usage, as well as a better choice of 688

parameters without exhaustive reconstructions. 689

The implementation of this complex pipeline in a modular framework allows for the 690

usage of different methods that might fit a particular purpose. Previous works have 691

reported the heterogeneity in outputs from various CSMR algorithms and our case 692

study clearly shows that this choice impacts the type of phenotypes to predict and, as 693

such, we extended troppo in such a way that reconstructing a context-specific metabolic 694

model is a simple task, even for users with limited programming skills 695
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