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Abstract: Scattering of excitons by free carriers is a phenomenon, which is especially important when
considering moderately to heavily doped semiconductors in low-temperature experiments, where
the interaction of excitons with acoustic and optical phonons is reduced. In this paper, we consider
the scattering of excitons by free carriers in monolayer hexagonal boron nitride encapsulated by a
dielectric medium. We describe the excitonic states by variational wave functions, modeling the
electrostatic interaction via the Rytova–Keldysh potential. Making the distinction between elastic
and inelastic scattering, the relevance of each transition between excitonic states is also considered.
Finally, we discuss the contribution of free carrier scattering to the excitonic linewidth, analyzing
both its temperature and carrier density dependence.

Keywords: exciton; linewidth; free carrier; monolayer; scattering; temperature; screening; hexagonal
boron nitride; variational

1. Introduction

Scattering between excitons and free carriers has been observed experimentally since
the 1960s in highly excited bulk semiconductors [1–8]. In these bulk semiconductor sys-
tems, the scattering cross sections have been studied previously [9,10], with the distinction
between elastic and inelastic scattering fundamental for the interpretation of the experi-
mental data.

Recently, the quality of monolayer semiconductor samples has drastically increased [11–15],
with advances in techniques such as molecular beam epitaxy [16], chemical vapor depo-
sition [17], or solution methods [18]. The improved quality of these samples allows for
a much more detailed study of excitons in mono- and few-layer materials, where well-
defined resonance peaks are experimentally identifiable even at room temperature [19–22].
This then creates the necessity of calculating and measuring the excitonic linewidth.

Several mechanisms contribute to the excitonic linewidth, such as acoustic [23] and
optical [24] phonon scattering [25], radiative recombination [26,27], as well as scattering
in semiconductor alloys [28,29]. In addition to these mechanisms, others can play a part
in determining the exciton linewidth. In this paper, we focus our attention on one of
these mechanisms, namely scattering with free carriers. This scattering mechanism can
play an important part in determining the excitonic linewidth, especially in systems with
a high density of free carriers and excitons [30], high pump fluences [31], in tunneling
experiments [32,33], or when an electric field is applied to the semiconductor [34,35]. Addi-
tionally, electron exciton scattering processes also play an important role when studying
exciton–polaron systems [36].

This paper is structured as follows. In Section 2, we briefly review the approach
outlined by Feng and Spector in Ref. [37] to the scattering between free carriers and
excitons in semiconducting quantum wells. This derivation was performed in the central
field [38] and Born approximations [39]. In Section 3, we turn our discussion to the
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total scattering cross section. We discuss the distinction between elastic and inelastic
scattering, briefly reviewing the variational exciton wave functions for various states. We
then explicitly compute the total cross section for a few select transitions, discussing the
thresholds present in inelastic scattering processes. Finally, in Section 4, we compute the
contribution to excitonic linewidth from the scattering cross section with free carriers,
analyzing its dependence on both the temperature of the system and the free carrier density
in the monolayer.

2. Free Carrier–Exciton Scattering

In this section, we follow the expressions derived by Feng and Spector in Ref. [37]
for free carrier–exciton scattering, based on assuming two-dimensional (2D) gases of
free carriers (electrons or holes) and excitons interacting with one another. The obtained
expressions are derived following the same approach as those discussed by Mott and
Massey for the general theory for tridimensional (3D) two-body collisions [40]. The cross
sections due to collisions between the carriers and excitons are then calculated using the
central field [38] and Born approximations [39].

Differential Scattering Cross Section

Let us begin by considering a two-body system consisting of an exciton and a free
carrier (electron or hole). The reduced mass of such a system is given by

M =
mc(me + mh)

mc + me + mh
, (1)

where mc/e/h is the mass of the free carrier/electron/hole.
Following the derivations by Feng and Spector [37,41] detailed in Appendix A, the

differential scattering cross section for our free carrier–exciton system is written as

I f i(θ) =
M2

2πh̄4ki

∣∣∣∣∫ d2r d2R eiq·RV(r, R)χ†
f (r)χi(r)

∣∣∣∣2, (2)

where q = ki − k f is the difference between the initial and final relative momentum of
the system, χi/ f represent the initial/final exciton wave functions, and V(r, R) represents
the interaction potential between the free carrier and the exciton. In Equation (2), r is the
relative position vector of the electron and the hole in the exciton, and R is the relative
position vector from the free carrier to the center of mass of the exciton.

The interaction potential between the free carrier and the exciton in the central field
approximation [38] will be modeled by the Rytova–Keldysh potential [42,43], usually
employed to describe excitonic phenomena in mono- and few-layer materials and obtained
by solving the Poisson equation for a charge embedded in a thin film of vanishing thickness.
In real space, the Rytova–Keldysh potential is given by

VRK(r) =
h̄cα

ε

π

2r0

[
H0

(
ε

r
r0

)
−Y0

(
ε

r
r0

)]
, (3)

where α = 1/137 is the fine-structure constant, ε is the mean dielectric constant of the
medium above/below the layered material, H0(x) is the zeroth-order Struve function, and
Y0(x) is the zeroth-order Bessel function of the second kind. The parameter r0 corresponds
to an in–plane screening length related to the 2D polarizability of the material and can be
calculated from the single particle Hamiltonian of the system [44]. Additional contribu-
tions to this screening length can also originate from the 2D free carriers gas of varying
density [45]. In the limit of zero screening length, the Rytova–Keldysh potential becomes
the Coulomb potential. Considering again the interaction between the free carrier and the
exciton, the interaction potential is
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V(r, R) = ±[VRK(rch)−VRK(rce)], (4)

where ± distinguishes between the free carrier being a hole (+) or an electron (−), rch is
the distance between the free carrier and the hole of the exciton, and rce is the distance
between the free carrier and the electron of the exciton. These two vectors can be written
from r and R as in [37]

rch = R− σ

1 + σ
r, rce = R +

1
1 + σ

r, (5)

where σ = me/mh is the ratio between the effective electron and hole masses. Returning
to the discussion on the scattering cross section from Equation (2), the integration over
R reads ∫

d2R eiq·RV(r, R) = ±
[∫

d2R eiq·RVRK(rch)−
∫

d2R eiq·RVRK(rce)

]
, (6)

which can be computed directly [41] by performing a change in integration variables back
to rch, rce and reads

±
[
eiq σ

1+σ r cos(φr) − e−iq 1
1+σ r cos(φr)

]
2π

h̄cα

ε

1
q(1 + r0q)

, (7)

with φr as the angle between r and q, and

VRK(q) = 2π
h̄cα

ε

1
q(1 + r0q)

(8)

the Fourier transform of the Rytova–Keldysh potential. Finally, the differential scattering
cross section can be written as

I f i(θ) =
M2

2πh̄4ki

∣∣∣∣2π
h̄cα

ε

1
q(1 + r0q)

J(i→ f )
∣∣∣∣2. (9)

with the dependence on the initial and final exciton states included in J(i→ f ), defined as

J(i→ f ) =
∫ +∞

0
r dr

∫ 2π

0
dφr

[
ei σ

1+σ qr cos φr − e−i 1
1+σ qr cos φr

]
χ†

f (r)χi(r). (10)

3. Total Cross Section

Knowing the differential cross section given by Equation (9), we can now compute the
full scattering cross section. To this effect, we must simply perform an angular integration
in θ as

Qi→f =
∫ π

−π
dθ Ii→f (θ) (11)

and, explicitly substituting Equation (9), the full cross section is given by

Qi→f (ki) =
2πM2(h̄cα)2

h̄4ε2ki

∫ π

−π
dθ

∣∣∣∣ J(i→ f )
q(1 + r0q)

∣∣∣∣2. (12)

To compute this integral, however, we must first define the exciton wave functions,
which we will consider when computing Equation (10). We must also define the type
of scattering in question, as it will introduce both the specific θ dependence in q as well
as specific thresholds for the relative momentum of the free carrier–exciton system from
conservation of energy.
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3.1. Elastic Scattering

In an elastic scattering process, the exciton remains in its ground state after the collision,
meaning |ki| =

∣∣∣k f

∣∣∣. As such, we can write

q = 2
∣∣∣∣sin

(
θ

2

)∣∣∣∣ki. (13)

Additionally, we also have χ f ,i(r) = χ1s(r), where we consider a simple variational
ansatz [46,47] based on the eigenfunctions of the two-dimensional hydrogen atom [48,49]
and given by

χ1s(r) = N1se−rγ1s/2, (14)

with N1s a normalization constant given by

N1s =

[∫
rdrdθ

(
e−rγ1s/2

)2
]−1/2

=
γ1s√

2π
(15)

and γ1s a variational parameter. This variational parameter is computed by minimization
of the energy expectation value of the Wannier Equation [50]

H = − h̄2c2

2µ
∇2 + VRK(r), (16)

with VRK(r) the Rytova–Keldysh potential.
With this ansatz, we can directly substitute the wave function into J(i→ f ), given by

Equation (10), and obtain

Jelast(q) = J(1s→ 1s) = γ3
1s

 1[(
σ

1+σ q
)2

+ γ2
1s

]3/2 −
1[(

1
1+σ q

)2
+ γ2

1s

]3/2

 (17)

after integration. This is then substituted into Equation (12), reading

Qelast(ki) =
2πM2(h̄cα)2

h̄4ε2ki

∫ π

−π
dθ

∣∣∣∣ Jelast(q)
q(1 + r0q)

∣∣∣∣2, (18)

where q is given by Equation (13). This integral has no analytical solution and must be
computed numerically.

To finalize the computation of the elastic cross section, we must choose a set of
material specific parameters. We consider those corresponding to monolayer hexagonal
boron–nitride (hBN) encapsulated in fused quartz, with dielectric constant ε = 3.8 [51].
The electron and hole masses in this material are me = 0.83 m0, mh = 0.63 m0 [52], with m0
the electron rest mass, and screening length r0 = 10 Å [53]. This material was chosen, as
both the screening length and the electron/hole masses are known accurately. The obtained
variational energy for the 1s excitonic state is E1s = −58.9 meV.

Varying the initial relative wave vector, we obtain the plot of the total elastic cross
section from Equation (12) in Figure 1. We can see that the cross section for electron
scattering is always larger than that for hole scattering, as expected from the fact that the
reduced mass of the system is larger when the free carrier considered is an electron. A very
quick increase from zero relative momentum up to a global maximum is also observed,
consistent with the results of Feng and Spector [41] for elastic scattering.
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Figure 1. Total elastic cross section for electron–exciton (black) and hole–exciton (red) scattering in
hBN encapsulated in fused quartz as a function of the initial relative wave vector.

3.2. Inelastic Scattering

Let us now consider inelastic scattering between free carriers and the exciton. The
relative momenta is now given by

q2 = k2
f + k2

i − 2kik f cos(θ), (19)

with k f obtained from the conservation of energy as

k2
f = k2

i −
2M
h̄2 (E f − Ei). (20)

Here, E f /i is the energy of the final/initial state of the exciton, respectively. Substitut-
ing this relation into Equation (19), we obtain

q2 = 2k2
i −

2M
h̄2 ∆ f ,i − 2k2

i

√
1− 2M

h̄2

∆ f ,i

k2
i

cos(θ), (21)

with ∆ f ,i = E f − Ei. A threshold in ki below which no scattering is allowed, is immediately
evident, obtained from Equation (21) as

kmin =

√
2M
h̄2 (E f − Ei). (22)

Below this threshold, there is not enough energy in the scattering process to allow the
jump between excitonic states i→ f .

Besides knowing the energies of the final states, we must also know their wave
functions. These are obtained [46–48] in a similar form to Equation (14) and are given by

χ2s(r) = N2s

(
1− r

d

)
e−rγ2s/2, χ2p±(r) = N2pre±iθe−rγ2p/2, (23)

where γ2s, γ2p are variational parameters, N2s,N2p are normalization constants given by

N2s =
2γ2

2s
√

π
√

3γ2
1s − 2γ1sγ2s + 3γ2

2s

, N2p =
γ2

2p

2
√

3π
, (24)

and d is a parameter obtained by imposing orthogonality between χ1s and χ2s, given by
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d =
4

γ1s + γ2s
. (25)

These wave functions, together with the 1s wave function, are plotted in Figure 2 for
monolayer hBN encapsulated in fused quartz.

1s

2s

2p

0 50 100 150 200

0.000

0.002

0.004

0.006

Figure 2. Radial probability density for the 1s (blue), 2s (orange), and 2p (green) states as described by the
variational wave functions of Equations (14) and (23) in a hBN monolayer encapsulated in fused quartz.

3.2.1. 1s→ 2s Transitions

We will first consider 1s → 2s transitions. To compute J2s = J(1s→ 2s), we recall
Equation (10) and, after integration, obtain

J2s =
3γ1s(γ1s + γ2s)γ

2
2s√

6γ2
1s − 4γ1sγ2s + 6γ2

2s

 q2( σ
1+σ

)2[
q2
(

σ
1+σ

)2
+
(

γ1s+γ2s
2

)2
]5/2 −

q2
(

1
1+σ

)2

[
q2
(

1
1+σ

)2
+
(

γ1s+γ2s
2

)2
]5/2

,

where q is obtained from Equation (21) as

q2 = 2k2
i −

2M
h̄2 ∆2s,1s − 2k2

i

√
1− 2M

h̄2
∆2s,1s

k2
i

cos(θ). (26)

As discussed above, the energy of the 2s state is obtained by minimization of the Wannier
equation with the variational wave functions, and its value is E2s = −8.83 meV for our system.

Explicitly computing the thresholds from Equation (22), we obtain kmin = 0.0833 Å
−1

for

electron–exciton scattering and kmin = 0.0760 Å
−1

for hole–exciton scattering.

3.2.2. 1s→ 2p Transitions

For computing J(1s→ 2p±) following Equation (10), we must consider the distinction
between p± states. This is, however, not important, as the two states are degenerate, and
the two integrals J(1s→ 2p+), J(1s→ 2p−) are, in fact, equal. As such, we take into
account the two 2p states by multiplying the total cross section by an angular momentum
degeneracy factor g` = 2.

Explicitly, J2p = J(1s→ 2p) is given by

J2p =
3γ1sγ2

2p
(
γ1s + γ2p

)
2
√

6

 iq σ
1+σ[

q2
(

σ
1+σ

)2
+
(

γ1s+γ2p
2

)2
]5/2 +

iq 1
1+σ[

q2
(

1
1+σ

)2
+
(

γ1s+γ2p
2

)2
]5/2

.
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The relative momentum q is defined analogously to Equation (26), with the only factor
missing being the energy of the 2p± states.

For our system, this energy is E2p = −10.2 meV. As such, the thresholds from

Equation (22) are now kmin = 0.0822 Å
−1

for electron–exciton scattering and kmin = 0.0749 Å
−1

for hole–exciton scattering.

3.3. Joint Elastic and Inelastic Scattering

Finally, we consider the joint contribution to the scattering cross section from both elastic
and inelastic scattering. This cross section will, therefore, involve a sum over final states,
where only the 1s→ 1s contribution originates from elastic scattering processes. Explicitly,
and for an arbitrary set of final exciton states f , the total scattering cross section is given by

QTotal = ∑
f

Q1s→ f . (27)

For the three transitions discussed previously, the sum in Equation (27) is restricted
and is explicitly written as

QTotal = Q1s→1s + Q1s→2s + Q1s→2p. (28)

This total scattering cross section is plotted in Figure 3 for both types of free carriers,
together with the dashed lines representing the thresholds for the inelastic scattering
processes considered.

Analyzing Figure 3, we can see that, when the same scattering process is allowed for
both types of free carriers, electron–exciton scattering has a cross section roughly 1.5×
larger. This trend is, however, inverted between the threshold momentum for hole–exciton
1s → 2p scattering, and the threshold momentum for electron–exciton 1s → 2p, i.e.,

between ki = 0.0749 Å
−1

and ki = 0.0822 Å
−1

. In this momentum range, the dominant
1s→ 2p process is already allowed for hole–exciton scattering, leading to a vastly superior
cross section relative to that for electron–exciton scattering.

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

0.5

1

5

10

50

100

500

Figure 3. Total cross section for electron–exciton (black) and hole–exciton (red) scattering in hBN
encapsulated in fused quartz as a function of the initial relative wave vector. Vertical dashed lines
represent the electron–exciton and hole–exciton scattering thresholds for the 1s → 2p transition,

located at kmin,e− = 0.0822 Å
−1

and kmin,h = 0.0749 Å
−1

.

The final threshold included, visible in Figure 3 as the dashed purple lines, originates
from 1s → 3d scattering, as E3d = −3.74 meV is the lowest energy state after 2s. These

take place at kmin = 0.0875 Å
−1

for electron–exciton scattering and kmin = 0.0798 Å
−1

for
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hole–exciton scattering. These are, however, much smaller than the peaks in Figure 3,
similar to what was observed in Ref. [37], and are invisible in Figure 3.

4. Scattering Contribution to Exciton Linewidth

To conclude our study of the scattering of excitons with free carriers in layered materi-
als, we will now discuss the contribution from these scattering processes to the excitonic
linewidth. This will provide a point of comparison against experimental studies [54].
Although other phenomena will also contribute to this linewidth, such as radiative life-
times [27] and phonon scattering [25], the dependence of the free carrier scattering on
both temperature and carrier density should provide a good distinction of the various
contributing processes. As hBN is a large bandgap insulator, carrier doping in this material
is usually performed chemically by diluting impurities [55–58].

The contribution to the excitonic linewidth from free carrier scattering is given
by [24,59–61]

ΓTotal = ∑
f

2h̄2

πM

∫ ∞

0
dk k2 f

(
mc + me + mh

me + mh
k
)

Q1s→ f , (29)

where Q1s→ f is, as described earlier, the scattering cross section associated with a specific
transition from the excitonic ground state to a final state f . As we are summing over final
states f , and only Q1s→ f depends on the final state, this is equivalent to switching the sum
over final states and the integral and writing

ΓTotal =
2h̄2

πM

∫ ∞

0
dk k2nF

(
mc + me + mh

me + mh
k
)

QTotal, (30)

where QTotal is the total scattering cross section as plotted in Figure 3. Here, nF(k) is the
Fermi–Dirac distribution for free carriers, given by

nF(k) =
1

e
Ek−EF

kBT + 1
(31)

where the dispersion relation is given by

Ek =
h̄2

2mc
k2 (32)

and the Fermi energy is

EF = 2π
h̄2

2mc
n, (33)

with n the area density of free carriers. We consider carrier densities up to a maximum of
1012 cm−2, where the average separation of free carriers dc = 2(πn)−1/2 is still larger but
already of the order of the root mean square (RMS) exciton radius, given by

rRMS;n =
∫ ∞

0

∫ 2π

0
rdrdθ ψn(r, θ)†r2ψn(r, θ). (34)

For the two excitonic states most relevant to the scattering cross section, 1s and 2p,
the RMS exciton radius is rRMS;1s = 19.5 Å and rRMS;2p = 73.2 Å, respectively, while the
average separation between free carriers is dc = 113 Å.

As before, we must compute the integral of Equation (30) numerically. The specific
methodology for the discretization of Equation (30) is discussed in Appendix B. Choosing
a Gauss–Legendre quadrature [62] of size N = 450, the results for the contribution of
scattering with free carriers to the excitonic linewidth are presented in Figure 4 as a
function of temperature for free carrier area densities of n = 109 cm−2 and n = 1012 cm−2.
In Figure 5, we present the excitonic linewidth as a function of the free carrier area density



Appl. Sci. 2022, 12, 7872 9 of 15

for four distinct values of the temperature T between 10 K and 300 K. As expected, the
excitonic linewidth contribution increases with both temperature and carrier density as
these phenomena increase the kinetic energy of the carriers and their proximity, respectively.

0 50 100 150 200 250 300
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0 20 40 60 80100
0.0
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0.4

0.6

0.8
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0 20 40 60 80100
0.0

0.2
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0.8

Figure 4. Contribution to exciton linewidth from scattering with free carriers as a function of the
temperature at constant free carrier area density n = 109 cm−2 (left) and n = 1012 cm−2 (right).
Insets show the low–temperature region of the plot for clarity.
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Figure 5. Contribution to exciton linewidth from scattering with free carriers as a function of the free
carrier area density at constant temperature T = 10 K (top-left), T = 100 K (top-right), T = 200 K
(bottom-left), and T = 300 K (bottom-right).

5. Conclusions

In this paper, we studied the effects of scattering between free carriers and excitons in
monolayer materials and its contribution to the excitonic linewidth. To this end, we began
by reviewing the general form of the expressions for the differential cross section between
free carriers and excitons in two dimensions [37], as well as the inclusion of screening in
the differential cross section. Briefly reviewing the computation of variational functions for
the exciton wave functions, we discussed both elastic and inelastic scattering processes.
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While elastic scattering was the sole contributor to the scattering cross section for low
relative momentum, inelastic 1s → 2p scattering dominated the total cross section when
allowed by conservation of energy. This dominant scattering had a maximum cross section
roughly 40 times larger than that of elastic scattering, as seen in Figure 3. Considering inelastic
scattering processes to higher energy states, namely 2s and 3d, their amplitude was negligible
when compared to the dominant process (roughly 400 times smaller). This dominant behavior
of 1s→ 2p transitions was very similar to what was presented in Figures 2 and 9 of Ref. [37],
although the specific ratios were highly dependent on the electron and hole masses.

After discussing the relation between the total scattering cross section and the excitonic
linewidth, we considered its dependence on both temperature and free carrier density. First,
looking at the exciton linewidth for reasonable values of the carrier density in layered mate-
rials [63–65], namely 109 cm−2 and 1012 cm−2, we observed that the difference in linewidth
between the two regimes was clearly noticeable as the linewidth became finite at T = 0 K
for larger carrier densities. Additionally, the contribution from exciton–hole scattering
became larger than that of electron–exciton scattering slightly earlier at a higher carrier
density, namely at T & 150 K for n = 109 cm−2 and at T ≈ 140 K for n = 1012 cm−2. Fur-
ther increasing the carrier density to values above 1013 cm−2 would produce even greater
differences. These higher carrier densities would already imply an average free carrier
separation dc much smaller than the RMS exciton radius for the 2p excitonic state, which
would make more complex excitonic phenomena, such as biexcitons and trions [66–69],
increasingly significant.

Regarding the excitonic linewidth at fixed temperatures, the free carrier scatter-
ing contribution remained in the 0.5–20 meV range for temperatures between 100 and
300 K. For temperatures in this range, the computed linewidth remained essentially con-
stant at a temperature-dependent value as the carrier density increased until roughly
n ≈ 1011 cm−2. Past n ≈ 1011 cm−2, the computed linewidth rapidly increased for all
values of the temperature, although the growth occurred sooner and faster for lower
temperatures, as can be seen in the top-left plot of Figure 5 for T = 10 K.

From these results, it should be feasible to measure the free-carrier scattering contribu-
tion to the excitonic linewidth, as good quality samples of both hBN and transition metal
dichalcogenides have been grown in the past that presented excitonic linewidths in this
order of magnitude [11–15].

Author Contributions: Formal analysis, M.F.C.M.Q.; Supervision, N.M.R.P.; Writing—original draft,
M.F.C.M.Q.; Writing—review & editing, N.M.R.P. All authors have read and agreed to the published
version of the manuscript.

Funding: M.F.C.M.Q. acknowledges the International Nanotechnology Laboratory (INL) and the
Portuguese Foundation for Science and Technology (FCT) for the Quantum Portugal Initiative (QPI)
grant SFRH/BD/151114/2021. N.M.R.P. acknowledges support by the Portuguese Foundation
for Science and Technology (FCT) in the framework of the Strategic Funding UIDB/04650/2020,
COMPETE 2020, PORTUGAL 2020, FEDER, and FCT through projects PTDC/FIS-MAC/2045/2021,
EXPL/FIS-MAC/0953/ 2021, and from the European Commission through the project Graphene
Driven Revolutions in ICT and Beyond (Ref. No. 881603, CORE 3).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

hBN hexagonal boron nitride
RMS root mean squared



Appl. Sci. 2022, 12, 7872 11 of 15

Appendix A. Derivation of Differential Scattering Cross Section

For the derivation of the differential scattering cross section of Equation (2), we follow
closely the derivation performed by Feng and Spector [41]. We consider an encounter
between two bodies A (free carrier) and B (exciton), which are in their ground state prior to
the collision. The reduced mass of this system is M = mAmB

mA+mB
. Prior to the collision, the

internal motions of each of the two bodies are given by their independent Hamiltonians

HAχA,n(rA) = EA,nχA,n(rA), HBχB,m(rB) = EB,mχB,m(rB), (A1)

where χA,n/χB,m are the independent wave functions for the internal motion of the two
bodies A/B in the states n/m, respectively, and EA,n/EB,m their energies. In the absence of
the interaction of the two bodies, their relative motion is given by[

− h̄2

2M
∇2 − 1

2
Mv2

]
F11(R) = 0, (A2)

with v and R the relative velocity and position of the two particles and F11(R) the part of
the wave function related to the relative motion of the particles in their ground state.

The complete wave equation for this system is given by[
− h̄2

2M
∇2 − 1

2
Mv2 + HA − EA,1 + HB − EB,1 + V(R, rA, rB)

]
Ψ(R, rA, rB) = 0, (A3)

where V(R, rA, rB) is the interaction potential between the two particles. The wave function
can then be expanded in terms of the basis functions χA,n/χB,m, reading

Ψ(R, rA, rB) = ∑
n,m

Fnm(R)χA,n(rA)χB,m(rB), (A4)

meaning that Fnm(R) must obey[
∇2 + k2

]
Fnm(R) =

2M
h̄2

∫
drAdrB V(rA, rB, R)Ψ(rA, rB, R)χ∗An(rA)χ

∗
Bm(rB), (A5)

where

k2 =
2M
h̄2

[
1
2

Mv2 + EA,1 − EA,n + EB,1 − EB,m

]
. (A6)

The relation in Equation (A6) immediately leads to the thresholds for inelastic scatter-
ing, as k being real implies 1

2 Mv2 > EA,n − EA,1 + EB,m − EB,1.
The solution to Equation (A5) reads

Fnm(R) =
−iM
2h̄2

∫
drAdrBdR′ V

(
rA, rB, R′

)
Ψ
(
R′, rA, rB

)
χ∗A,n(rA)χ

∗
B,m(rB)H1

0
(
k
∣∣R− R′

∣∣), (A7)

where H1
0(k|R− R′|) is the Hankel function of the first kind, which is the solution to

Equation (A2). This function satisfies the boundary condition that, for R� R′, the solution
represents an outgoing circular wave.

Following an identical procedure to that which is used to apply the Born approxima-
tion in a 3D system, the asymptotic regime as R→ ∞ for Fnm(R) reads

Fnm(R)→ eik0·R +
eik·R
√

R
fnm(θ), (A8)

where it was assumed that the asymptotic form of the solution is the sum of an incoming
plane wave and an outgoing circular wave. In Equation (A8), k0/k are the initial/final
wave vectors for the scattered particles, respectively, and
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fnm(θ) = −
Meiπ/4√

2πkh̄2

∫
drAdrBdR′ ei(k0−k)·R′V

(
rA, rB, R′

)
χ∗A,n(rA)χA,1(rA)χ

∗
B,m(rB)χB,1(rB). (A9)

The 2D differential scattering cross section is, analogously to that of a 3D system, given
by [41]

In,m(θ) =
k
k0
| fnm(θ)|2

=
M2

2πk0h̄4

∣∣∣∣∫ drAdrBdR′ eiq·R′V
(
rA, rB, R′

)
χ∗A,n(rA)χA,1(rA)χ

∗
B,m(rB)χB,1(rB)

∣∣∣∣2,
(A10)

with q = k0 − k. Finally, recalling that the free carrier (electron or hole) has no internal
structure, the sum of the internal energies of the system reduces to that of the exciton.
Furthermore, Equation (A10) can be simplified further by assuming a central field approxi-
mation, reading

In,m(θ) =
M2

2πk0h̄4

∣∣∣∣∫ drdR′ eiq·R′V
(
r, R′

)
χ∗n(r)χ1(r)

∣∣∣∣2, (A11)

where χ is now the wave function of the exciton, r is the relative position of the electron
and hole in the exciton, and R′ is the relative position from the free carrier to the center of
mass of the exciton.

Appendix B. Computation of Scattering Contribution to Excitonic Linewidth

We begin by changing the integration limits [0,+∞) to a finite limit, in this case [0, 1],
via a change in variables defined as k = tan

(
πx
2
)
. With this change in variables, the integral

of Equation (30) reads

ΓTotal =
2h̄2

πM

∫ 1

0
dx

dk
dx

k(x)2nF

(
mc + me + mh

me + mh
k(x)

)
QTotal(k(x)). (A12)

We can then define a grid of points xi for our discretization, meaning that

ΓTotal =
2h̄2

πM

N

∑
i=1

wi
dk
dxi

k2
i nF

(
mc + me + mh

me + mh
ki

)
QTotal(ki), (A13)

where N is the number of points considered in the discretization, wi is the weight function
of the quadrature in question, and the discretized variables are defined as qi ≡ q(xi),
and dk

dxi
≡ dk

dx

∣∣∣
x=xi

. For the numerical quadrature, we employ a Gauss–Legendre quadra-

ture [62], defined as ∫ b

a
f (x)dx ≈

N

∑
i=1

f (xi)wi,

where

xi =
a + b + (b− a)ξi

2
, wi =

b− a(
1− ξ2

i
)[ dPN(x)

dx

∣∣∣
x=ξi

]2 ,

with ξi the i-th zero of the Legendre polynomial PN(x).
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