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Abstract—Exploring an unfamiliar large-scale software system
is challenging, especially when based solely on source code.
While software visualizations help in gaining an overview of
a system, they generally neglect architecture knowledge in
their representations, e.g., by arranging elements along package
structures rather than functional components or locking users
in a specific abstraction only slightly above the source code. In
this paper, we introduce an automated approach for software
architecture recovery and use its results in an immersive 3D
virtual reality software visualization to aid accessing and relating
architecture knowledge. We further provide a semantic zoom that
allows a user to access and relate information both horizontally
on the same abstraction level, e.g., by following method calls,
and vertically across different abstraction levels, e.g., from a
class to its containing component. We evaluate our contribution
in a controlled experiment contrasting the usefulness regarding
software exploration and comprehension of our concepts with
those of the established CityVR visualization and the Eclipse IDE.

Index Terms—Software Visualization, Virtual Reality, Software
Architecture Recovery, Empirical Software Engineering

I. INTRODUCTION

For software engineers, establishing an understanding of a
large-scale software system is essential for starting work on
a settled project and regaining design knowledge of a legacy
system [7, 30]. The exploration of a software system ideally
starts with the system’s architecture [15] to gain both an
overview of as well as guidance through the system’s coarse-
grained structure. However, architecture documentation may
be inaccurate even for established projects or outright missing
for legacy systems [25, 30], leaving a system’s source code
as the only reliable information. Establishing a mental model
of a system’s structure from source code alone is tedious and
challenging due to large amounts of fine-grained detail and
a lack of explicitly represented coarse-grained architectural
concerns. While integrated development environments (IDEs)
and dedicated analysis tools may foster an inspection and
navigation of source code, there are few applied visualization
techniques for architectural analysis and synthesis activities [6].

Various forms of software visualization in 2D, 3D, aug-
mented reality (AR), and virtual reality (VR) visually represent
coarse-grained structures of a software system to provide
an overview and highlight particular phenomena, such as
especially large classes. Visualizations in VR seem promising
as recent research indicates that they provide for more engaging

exploration than both IDEs and standard-screen visualiza-
tions [22, 27, 24]. Many visualization techniques use elementary
software architecture information in their representation: For
example, metric values influence the depiction of individual
elements, or the package structure defines the arrangement
of elements. Although a system’s internal organization of
implementation artifacts can deviate heavily from its actual
architecture, especially when the system underwent long-
term evolution and, as a side-effect, experienced architectural
erosion [21], existing visualization techniques generally do not
consider information from advanced architecture recovery, like
conceptual components, their dependencies or control flows,
and thereby leave a crucial source of information untapped.

In this paper, we present a method for utilizing software
architecture recovery to visualize and utilize a system’s archi-
tecture as a first-level entity. Our method allows users to access
and navigate information along different abstraction levels via a
semantic zoom, from architectural component hierarchies down
to classes and methods. On each abstraction level, our method
additionally provides users with a visualization of relationships
among elements, such as dependencies among components, or
calls among methods, which enables users to efficiently retrace
and navigate along relationships.

We demonstrate our method via an implementation for
immersive VR and evaluate it in an empirical experiment
with 54 participants in which we compare its ability to
foster accessing and relating information on multiple levels of
abstraction with a standard IDE and another state-of-the-art
software visualization. Our results show that, compared to the
IDE and the state of the art, our approach provides participants
with a better overview of a subject system’s architecture, while
improving their ability to access and relate elements.

The rest of this paper is structured as follows: In Section II,
we discuss the state of the art in software visualization regarding
(its lack of) incorporating software architecture knowledge. In
Section III, we describe our method for software architecture
recovery (SAR) and how we incorporate its results into an
immersive 3D virtual reality representation. In Section IV, we
evaluate our contribution in a controlled experiment contrasting
its usefulness regarding software exploration and comprehen-
sion with those of the established CityVR visualization and the
Eclipse IDE. Finally, in Section V, we close with a conclusion
and an outlook on future work.



II. STATE OF THE ART

A software visualization provides a visual overview of a subject
system [20]. Depending on the purpose of the visualization,
it may encompass a system’s structure, behavior, evolution,
or quality [11, 33]. A visualization uses a metaphor to depict
(otherwise non-corporeal) elements of a software system in a
coherent setting. While 2D metaphors are mostly abstract, such
as graph or tree representations, 3D metaphors may range from
abstract to real-world representations, such as cities, planets,
or islands [33, 1]. Despite a plethora of different software
visualizations, we identify shortcomings regarding their use of
architectural knowledge:

Overview of Software Architecture. Existing 3D software
visualizations do not sufficiently use architecture information as
a driving first-level element of their visual structure. Instead, the
term “software architecture” is often used interchangeably with
a system’s internal organization of implementation artifacts. In
consequence, visualization elements are structured according
to folder structures, namespaces, or package hierarchies, which,
while indicative of a system’s design, do not adequately
represent a system’s architecture, e.g., in terms of its functional
components and their connections. This gap also manifests in
various surveys on 3D software visualization, where a subject
system’s architecture beyond folders, namespaces, and packages
is not among the explicitly extracted aspects that existing 3D
software visualizations address [9, 10, 16, 20, 1, 11].

Accessing Architecture on Various Abstraction Levels. Exist-
ing 3D software visualizations fixate their view on a system on
one abstraction level, usually on the level of files, classes, or
methods, where a prime aspect is the visualization of metrics
such as lines of code. For the widely used city metaphor [27,
37, 19, 35, 12, 32, 5, 22, 34], this manifests in complex large-
scale cities where architectural information is mainly used to
determine positions for a large number of buildings, while
lower level visual structure is often not available. As a result,
this leaves open potential for guiding engineers along the
abstraction levels of a subject system’s structure altogether.

Relating Architecture Elements. There exist only few 3D
software visualization approaches that both incorporate a sys-
tem’s architecture while allowing to switch between abstraction
levels. Most notably, Balzer et al. [4, 2, 3] use a metaphor
of hierarchically nested semi-transparent bubbles, starting on
architectural level. Based on that, they establish a semantic
zoom that enriches elements with more fine-grained information
when moving the virtual camera closer. However, while this
can strengthen users’ overview on architecture level, including
their ability to relate elements, it does not provide them with
this overview once zoomed in on a fine-grained level, which
has an impact on viewers’ orientation and their ability to retrace
relations between elements on architecture level.

III. IMMERSIVE SOFTWARE ARCHAEOLOGY

The goal of our software visualization method is to foster the
exploration of an unfamiliar software system by aiding users
with accessing and relating information on and across design
and architecture level. Figure 1 shows an overview of that. As
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Fig. 1. Overview of our method for utilizing software architecture recovery to
provide a visualization with semantic zoom along multiple abstraction levels.

a system’s implementation artifacts are the only reliable source
of information, our method conducts an automated software
structure analysis based on only the source code of a system
(box A in Figure 1), yielding the ground-truth structure of a
system’s design as well as, based on that, an estimation of its
higher-level architectural structure. With the design of a system,
we refer to its implementation in terms of constructs such as
classifiers (i.e., classes, interfaces, etc.) and their constituents –
commonly explicit in source code through designated language
constructs. With the architecture of a system, we refer to a
hierarchical organization of its design-level structure in cohesive
components – generally only implicit in source code. While
our concepts are applicable for systems implemented in object-
oriented programming languages in general, we demonstrate
them on Java-based systems and terminology in this paper.

We visualize the structure resulting from our analysis via
an immersive software visualization in VR (box B in Figure
1). To provide engineers’ with access to information on all
abstraction levels of the resulting structure, we establish a
semantic zoom that lets users interactively switch between ab-
straction levels while always providing them with an overview.
To furthermore foster engineers’ ability to retrace relations
between elements on different abstraction levels, our method
incorporates an interactive visualization of relationship graphs
along the semantic zoom. Thereby, we address both horizontal
relations on the same abstraction level, such as dependencies
among components or calls among methods, as well as vertical
relations across different abstraction levels, i.e., containment
relations, such as between a component and a classifier.

A. Automated Software Structure Analysis
Our method encompasses an automated analysis of a system’s
static structure (cf. A in Figure 1). This analysis consists
of two subsequent steps which populate a software structure
model. The first step is an analysis of the system’s design



on the basis of its source code (Section III-A1). The second
step is a software architecture recovery procedure based on the
results of the recovered design of the system (Section III-A2).

1) Software Design Analysis: In the first step of our
software structure analysis, our method utilizes a parser
to automatically extract design-level information explicitly
available in the source code of a subject system. This process
lifts information about all classifiers and members of a
system into a model structure – an excerpt from our concrete
metamodel is available in our online appendix1. For members
with statement bodies, the software design analysis gathers
metrics such as their respective number of expressions and
cognitive complexity [8]. Subsequently, the analysis extracts
dependencies among classifiers and calls among members. The
resulting model structure encompasses the ground-truth design-
level structure of an entire system, including a classifier-level
dependency graph and a member-level call graph.

2) Software Architecture Recovery (SAR): The second
step during our software structure analysis is an SAR that
establishes an architecture-level software structure model. For
that purpose, we devise an unsupervised software clustering
procedure that organizes a subject system’s implementation
artifacts in a hierarchy of cohesive functional components. Our
procedure operates based on the results of the software design
analysis described above. However, in contrast to the design
analysis, an SAR procedure, automated or not, cannot draw
on explicitly available information. Instead, it needs to recover
implicit high-level connections between software elements
and is therefore driven by heuristics and best guesses [18].
The method we present in this paper serves as an exemplary
demonstration of an unsupervised SAR procedure. If a project’s
specifics call for a dedicated solution, our SAR procedure can
be replaced with a suitable alternative procedure yielding a
hierarchical organization of implementation artifacts.

A prime goal of our overall software visualization method is
to provide engineers with an overview of a system’s architecture
along multiple levels of abstraction. Because a hierarchical
structure supports engineers in their thought process [25], we
design our SAR procedure to recover a system’s architecture
on multiple abstraction levels in form of nested hierarchies of
components. To foster the discovery of correlations in the
source code of a system, these components should be as
cohesive as possible, i.e., they should group together what
is strongly interrelated. Depending on the level of abstraction
they capture, we distinguish between three kinds of components
in our model structure. We define bottom-level components
as components that contain classifiers directly but do not
contain sub-components. For higher level components, we
distinguish between top-level components and intermediate
components. We define both as components that do no contain
classifiers directly, but instead an arbitrary amount of sub-
components. Top-level components are the root components
in a component hierarchy, whereas intermediate components
represent the abstraction levels in between top-level components

1https://gitlab.com/immersive-software-archaeology/publication-vissoft22
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Fig. 2. Upper area: Simplified representation of our exemplary software
clustering procedure. Similarities between classifiers are represented via spatial
distances. Lower area: Representation of the respective clustering results when
populated in a software structure model (member-level structure omitted).
Please note how the cluster structure in the upper area is translated into the
component structure in the lower area (indicated by light-grey arrows).

and bottom-level components. Intermediate components can
be nested, allowing for arbitrarily high hierarchical structures.

Another prime consideration for our SAR procedure is to
split a subject system up into components that are small so
that their detailed visualization does not overwhelm a viewer,
yet large enough to result in component hierarchies as small
and simple as possible. To achieve both, we employ a divisive
hierarchical clustering technique that can be configured with a
hard lower limit and a soft upper limit for cluster sizes. Figure
2 depicts an example application of that technique. Initially,
it groups all classifiers of a system in one root cluster (cf.
first row in the upper area of Figure 2). It then iteratively
breaks down clusters that exceed the upper limit for cluster
sizes. Rows 2 to 4 in the upper area of Figure 2 illustrate these
iterations in the given example (the upper limit in the example
is set to 3, the lower limit is set to 2). As subroutine for the
splits, we choose the DBSCAN algorithm (“Density-Based
Spatial Clustering of Applications with Noise” [13]), because
thereby (i) we can directly influence the upper limit for cluster
sizes, (ii) we can detect noise, i.e., in our case, classifiers which
are loosely coupled with the rest of the system and, therefore,
need special treatment, and (iii) we calculate clusters purely
based on the similarity between their containment, which, in
our case, ensures cohesiveness among the clustered classifiers.

To achieve a high degree of cohesiveness within the
clusters computed by our technique, we measure the similarity
between clusters in terms of the summarized weight of their
dependencies. These are calculated by aggregating the weight
of all direct dependencies between their contained classifiers.

Once the dividing iterations of our technique are completed,
the resulting hierarchy contains clusters that lay within the
specified limits for cluster sizes as well as noise singleton

https://gitlab.com/immersive-software-archaeology/publication-vissoft22
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Fig. 3. Transformation of a software structure model to our solar system metaphor. The illustration continues the example given in Figure 2.

clusters (cf. row 3 in the upper area of Figure 2). As a last step,
our technique therefore performs a post-processing procedure
that merges noise singleton clusters with neighboring clusters.
The bottom row in the upper area of Figure 2 shows the
result of that process in the given example. These clusters are
then translated into a hierarchy of components accordingly, as
exemplarily depicted in the lower area of Figure 2.

Cluster Labeling. Finally, our SAR procedure labels compo-
nents on all hierarchy levels with the most frequently occurring
words in the names of their contained classifiers and members.
It extracts words based on typical naming conventions, e.g.,
“exampleName” results in labels “example” and “name”.

B. Immersive Virtual Reality Visualization
We present a 3D software visualization method that builds
upon the software structure analysis presented in Section III-A
to visualize a subject system’s architecture and design on
multiple levels of abstraction. It guides users along a system’s
architectural structure via a semantic zoom, while fostering
detail inspection via interactive visualizations of relationships
among classifiers and components. This step is summarized
in box B in Figure 1. In the following, we elaborate on
these concepts, backed up by examples from our prototype
implementation Immersive Software Archaeology (ISA).

1) Architectural Overview: To guide users’ exploration of
a subject system along its architecture, we establish a real-
world metaphor that provides users with an overview of the
system’s architecture across multiple levels of abstraction. To
achieve this, we visually represent the structures recovered by
our software structure analysis in form of a solar system with
planets, continents, cities, and buildings.

Figure 3 conceptually depicts an example instance of our
solar system metaphor along with its software structure model.
Top-level components are represented as planets, bottom-
level components are represented as cities with classifiers as
buildings, where each city receives a piece of land to be located
on. Intermediate components determine how cities are grouped
together on a planet so that they form larger land masses,
resulting in continents that are separated by water. Internally,
these form hierarchies similar to real-world continents and
their sub compositions in countries, regions, and so on, which
allows representing even deep component nesting.

The three screenshots in the upper area of Figure 4 depict
our VR implementation of this architectural overview in the
tool ISA. The left-hand side of the figure maps the semantic
zoom levels to the primarily visualized constituents of our

metaphor. Screenshots a and b show the overview on system
level. Screenshot c shows a close-up view of the surface
of a planet, where cities form continents according to the
represented component hierarchy.

2) Semantic Zoom: When entering our visualization, a user
is initially presented with the architectural overview of a subject
system (cf. upper screenshots in Figure 4). They can navigate
through the architectural overview along its different levels of
abstraction by freely inspecting elements. For instance, a user
might inspect a system on planet level, find interest in a planet,
and inspect its cities, similar to how Screenshot c depicts it.

To inspect a city and its buildings in-depth, our method
incorporates a semantic zoom that provides a semantically
enriched view of a selected city with more details regarding
design-level elements such as methods, cf. lower area of Figure
4. While the architectural overview puts a user in the role of
an overseeing observer, using the semantic zoom locates the
user within a city on the surface of a planet where they can
explore design-level structure from a first-person perspective.

In the design-level view, buildings are semantically enriched
with further structural information to allow users to visually
scan classifiers with regard to member-level metrics and,
thereby, quickly spot phenomena such as particularly complex
or large-scale methods. Therefore, buildings are composed
of visually distinguishable floors with varying heights and
diameters, similar to how their software counterparts have
varying lengths and complexity. The constructors and methods
of a classifier are represented as the floors of a building, where
metrics drive the floor’s shape. For the height of a floor, we
use the number of expressions of the respective method or
constructor. For the diameter of a floor, we use its cognitive
complexity [8]. Abstract methods are visualized as construction
sites, giving the impression of a raw and incomplete structure.
Users can interact with buildings and thereby browse through
the source code of resp. classifiers (Screenshot f in Figure 4).

Maintaining Orientation. A shortcoming of existing semantic
zooms in 3D software visualizations is that once having zoomed
in, users lack an overview of the overall system structure
(Section II). To address this challenge, we devise concepts that
put design-level information in context with the overall system
structure. For one, regardless of where a user is located in our
visualization, they can always interact with the architectural
overview, as depicted in the upper area of Figure 4. While
the user is located in the design-level view, the architectural
overview additionally highlights the currently visited city. In
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our prototype implementation, this is achieved via an orange
arrow as depicted in Screenshot c in Figure 4. For another,
while users are located in the design-level view, our method
additionally projects a subject system’s planet structure in the
sky above the visited city (Screenshot d ). This strengthens
users’ immersion into the metaphor while subtly providing
contextual information on other parts of a system, for example
via connecting lines according to element interrelations.

3) Relationships: Our method visualizes relationships
among elements on different levels of abstraction, embedded
into its semantic zoom. We distinguish between vertical
relations that express containment, horizontal relations which
are either based on references in code or on membership in a
common parent structure and cross-hierarchical relations which
are horizontal relations across components.

Vertical Relations. On design level, vertical relations are
explicitly available in the source code of elements, for example
by the member declarations of a classifier. On architecture level,
vertical relations (i.e., what classifiers belong to a component,
in what higher-level component is a component contained) need
to be estimated based on the explicitly available information on
horizontal and vertical relations on design level. Our method
explicitly encodes vertical relations on all abstraction levels
via the hierarchical organization of its visual elements. These
follow a vertical path through the hierarchy of the solar system,
e.g., as a building in a city on a continent. Thereby, our method
encodes vertical relationships directly into its visual structure,
allowing users to retrace these via the semantic zoom.

Horizontal Relations. Our method explicitly incorporates two
kinds of relations among elements on the same abstraction level:
sibling relations and reference relations. Sibling relations are
relations among elements based on their common containment
in a structure, for example, two members of the same classifier
as two floors in the same building. Reference relations are
based on references in the source code, for example, the call
of a method. We distinguish between incoming and outgoing
reference relations to or from elements.

In the design-level view, our method visualizes reference
relations on design level, for example among buildings.
Visualized relations can be calls among the members of
represented classifiers or dependencies among classifiers. These
can be adopted as-is from the ground-truth design level of the
visualized software structure model. Besides being useful with
regard to sibling relations, the grouping of heavily interrelated
buildings in the same city helps with navigating along reference
relations on city level because information is more quickly
accessible. Screenshot e in Figure 4 shows an example of
horizontal city-level relations in our prototype implementation,
where the interrelated buildings are part of the same city.

On architecture level, our method visualizes reference
relations on a more abstract level. Therefore, it determines
the reference relations between components by agglomerating
the dependencies or calls between their contained classifiers
and sub-components accordingly. These are represented as lines
between the respective planets, continents, and cities in the
architectural overview. The user can choose the granularity level
on which architecture-level relations are visualized. Screenshot
b in Figure 4 shows our prototype implementation of this on

the example of outgoing dependencies as blue lines from a
selected city, agglomerated to city level.

Cross-Hierarchical Relations. Horizontal relations among
elements across different components are a ubiquitous part
of every software system. They constitute to the relationship
between their parent components. We refer to them as cross-
hierarchical relations. In our visualization, cross-hierarchical
relations manifest in form of relations among buildings across
different cities and among cities across different continents and
planets. Cross-hierarchical relations follow a path through the
hierarchical structure of a system’s architecture along its levels
of abstraction. Therefore, they represent not only horizontal
relations among elements, e.g., two buildings, but also diagonal
relations, e.g., between a building and the city.

In the architectural overview, cross-hierarchical relations are
visualized as lines that connect related elements along a path



TABLE I
STATE-OF-THE-ART VR SOFTWARE VISUALIZATION TOOLS FOR JAVA

SYSTEMS AND THEIR FULFILLMENT OF OUR INCLUSION CRITERIA.

Tool CJava Copen Ccode

IslandViz [23, 29]
VR FlyThruCode [26]
VR City [34]
SEE / EvoStreets [31]
ExplorViz [14]
CityVR [22]

through the visualization’s visual hierarchy, such as the blue
lines shown in Screenshot b . In the design-level view, cross-
hierarchical relations from or to buildings in the visited city
are visualized as lines originating from the respective building,
pointing to a location in the planets projected into the sky
as shown in Screenshot d . Thereby, our method embeds the
visualization of reference relations into the different levels of
architectural abstraction and across the semantic zoom.

4) VR Interaction: VR as a medium for 3D software
visualization can foster a more engaging exploration and easier
interaction as compared to a standard screen [22, 27, 24, 36].
However, VR visualizations need to provide users with means
for orientation and navigation purposes in their virtual world. To
achieve that, our method incorporates VR interaction concepts
that we elaborate on in the following.

Interactable Elements. The architectural overview of our
method displays a solar system in a room-scale size (cf. Figure
4). Users can move back and forth between the planets and
interact with them in various ways. They can place individual
planets in their hands to intuitively change the point of view
from which a planet is regarded. That allows to optically
zoom in on structure (as done in Screenshot c ), allowing for
alternative viewing angles while improving users’ ability to
inspect coarse-grained visual structure closer.

The organization of our visualization’s coarse-grain structure
in floating planets and their continents enables our method
to draw connecting lines among them with more degrees
of freedom as compared to a layout that follows a flat 2-
dimensional surface. Connecting lines can make use of all three
available dimensions, which provides flexibility while reducing
occlusion with other elements. We strengthen this effect further
by making the visualization interactable, by enabling users to
place planets in their hand, moving and rotating them freely,
and thereby influencing the 3D paths of connections.

Information Canvases. To access detail information and
further interaction possibilities on demand, our method enables
users to open information canvases when interacting with
planets, continents, cities, and buildings (see Figure 4 f ) in the
virtual world, both in the architectural overview and the design-
level view. Because diegetic user interfaces have a positive
effect on the immersion and usability of VR tools [28], we
design all information canvases as diegetic interfaces which we
embed into our visual metaphor. When opening an information
canvas, it is attached to the user’s arm where they can carry it
around or detach and fixate it in space.

IV. EVALUATION

We conduct a controlled experiment with 54 participants in
which we compare our approach with existing tools used for
software exploration, to evaluate in what sense our approach
fosters users’ ability to access and relate information on an
unfamiliar large-scale software system on and across design
and architecture level. Specifically, our experiment investigates
three research questions, corresponding to key activities that
contribute to the exploration of an unfamiliar software system.
RQ1: In what sense do the different tools facilitate accessing

information on software elements such as methods, classes,
or components?

RQ2: In what sense do the different tools facilitate establishing
horizontal relations between software elements on the same
abstraction level?

RQ3: In what sense do the different tools facilitate establishing
vertical relations between software elements across different
abstraction levels?

A. Subject System
We chose the large-scale open source legacy Java system
ArgoUML (∼1.800 classes) as subject for our experiment.
ArgoUML is a graphical editor for creating, editing, and
exporting diagrams of the Unified Modeling Language (UML).
ArgoUML was used in prior software visualization evaluations,
e.g., for the evaluation of CityVR [22] or Softwarenaut [17].

B. Software Exploration Tools
We implement our method in a VR visualization tool called
Immersive Software Archaeology2 (ISA). ISA consists of an
extensible analysis back-end integrated into the Eclipse IDE
and a stand-alone VR visualization front-end.

As comparison for our method, we choose representatives
from two kinds of software comprehension tools: As an IDE
is common to explore software, we include Eclipse3 as a
widely used representative. Features in Eclipse relevant for our
experiment are a GOTO navigation (jump to declarations when
clicking), a text search (find occurrences of text in files), a
package explorer (show a system’s organization in packages),
and a call hierarchy (show incoming calls to elements).

For a comparison with the state of the art, we include a VR
software visualization that satisfies the following criteria:
CJava is able to visualize plain Java systems, i.e., does not

require a specific architecture or underlying framework.
Copen is openly available (for replicability of the experiment),

i.e., is accessible for download and free of charge.
Ccode provides access to the source code of a subject system.

Table I gives an overview of existing VR software visual-
ization tools and their respective fulfillment of our inclusion
criteria. We pre-filtered existing tools that do not visualize
Java code or that do not come with native VR support. As
CityVR by Merino et al. [22] is the only tool that fulfills all
our criteria, we include it as a representative for state-of-the-art

2https://gitlab.com/immersive-software-archaeology
3https://www.eclipse.org/

https://gitlab.com/immersive-software-archaeology
https://www.eclipse.org/
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Fig. 5. Overview of the experiment procedure.

VR software visualizations. CityVR immerses a user into a
room-scale VR representation of a software system via the
information city metaphor, where classes are represented as
buildings and packages draw the city layout by forming slightly
elevated, hierarchically nested districts. CityVR allows users
to scroll through the source code of a class or interface by
interacting with the respective building.

C. Experiment Procedure

We divided the experiment into three phases as depicted in
Figure 5 where participants receive tool-specific training and
tool-unspecific tasks. Each participant is assigned to one of
the three tools randomly. To make the experiment consistent
across participants, we created documents and videos for all
instructions and tasks, which can be accessed via our online
appendix1. Each experiment run takes ca. 35 to 45 minutes.

1 Entry Survey. Each participant starts the experiment
with an entry survey1 with questions on experience with VR,
programming proficiency (both in general and with Java), and
prior contact with the subject system ArgoUML.

2 Tool-Specific Training. We present each participant with
a training video on how to operate their tool, e.g., navigating
through implementation artifacts and accessing source code.
Subsequently we provide participants access to their tool and
briefly let them familiarize themselves with the tool.

3 Tool Session. We provide each participant with five
consecutive tasks to complete, which are identical across all
participants and tools. The tool session is structured as a dialog
between the experiment instructor (i.e., the main author of
this paper) and one participant at a time. The experiment
instructor reads out one task after another, in between which
the participant solves them. At the same time, the experiment
instructor provides guidance where necessary, following a
pre-defined tool-specific catalogue1. We record audio of the
conversation between the experiment instructor and participants
as well as video of their interaction with the provided tool via a
screen-recording (of either the IDE window or VR viewpoint).
Participants are asked to think aloud during the entire session.

D. Tasks

To allow for comparison, we designed tasks for the investigated
tools so that they each emulate a focused examination of
the same part of the subject system, i.e., ArgoUML’s code
generation feature. Table II lists a shortened version of the
tasks investigated throughout the tool session, along with the
research questions and exploration activity they address.

In Task T1, participants access design level information
by seeking a specific Java class, given a description of its
functionality (RQ1). In Task T2, participants access design
level information by seeking a specific Java interface, given its
(non-qualified) name, before relating it horizontally with the
class found in T1 (RQ1 & RQ2). While solving T1, participants
encounter the interface they will search in T2 (without knowing
it) via references in code. We keep track of whether they notice
this in Task T2. As the solutions for both tasks T1 and T2 are
prerequisites for their subsequent tasks, we provide users with
help in case they cannot solve the tasks independently. While
doing so, we measure the amount of guidance needed for each
participant according to a scheme, i.e., [none] no help needed,
[minor] the participant required a reiterated explanation from
the training video, and [major] the participant cannot solve
the task in time and receives the solution. Furthermore, in T2,
we measure the accuracy of participants’ understanding of the
relation between the two elements via a three-point grading
scheme that awards one point for each of the following insights:

• There exists a relation between the elements
• The class (T1) maintains instances of the interface (T2)
• ... and maps these to meta information

In Task T3, participants horizontally relate design-level infor-
mation broadly, i.e., they investigate all incoming calls to two
elements (RQ2). We identify patterns in participants’ answers
to T3 in terms of three categories:

• Participant finds no related classes
• Participant finds only a limited set of classes, e.g., only

classes in the same package, city district, or planet
• Participant finds classes all across the system

In Task T4, participants vertically relate design level informa-
tion to architecture level information by defining a functional
component based on the insight gained via the three prior tasks
(RQ3). The depictions in Table II visually sketch the different
tasks in a simplified way. Lastly, in Task T5, participants are
asked to establish a horizontal relation between architecture
level information (RQ2). This aspect is particularly difficult
to compare between the different tools as, of the three tested
approaches, only ours explicitly works on architecture level.
As a compromise, we therefore ask participants to delimit the
component asked for in T4 with the rest of the system, i.e., how
heavily is it related with other parts of the system horizontally.

E. Participants

We recruited 56 participants but excluded two: one did not
finish the exit survey, another had knowledge on ArgoUML’s
inner workings (on code level). All remaining participants are
students and staff from the IT University of Copenhagen: 22
are Bachelor’s students, 20 are Master’s students, 9 are PhD
students, and 3 are postdoctoral researchers. We distributed
participants evenly across the three evaluated tools, i.e., 18
participants for each tool. Among the resulting groups, partici-
pants’ prior experience levels with VR, general programming,
and Java are balanced, each ranging from novices to experts.



TABLE II
SHORTENED VERSION OF THE TOOL SESSION TASKS OF OUR EXPERIMENT. THE COMPLETE TASK SHEET IS ACCESSIBLE VIA OUR ONLINE APPENDIX1 .

ID Task Instructions (shortened) Investigated Research Questions
Simplified
Depiction

T1

There is one class in ArgoUML that is responsible for managing ArgoUML’s code gene-
rators. Find that class, read its source code, and briefly describe how it works.
(Solution: GeneratorManager)

RQ1: Accessing information on
design level.

T2

Investigate whether a statement from an outdated version of ArgoUML’s documentation
is still valid. Search for an interface called CodeGenerator.
How are the CodeGenerator and GeneratorManager (Task T1) related?

RQ1 & RQ2: Accessing and ho-
rizontally relating information on
design level (in depth).

T3

Investigate which other parts of ArgoUML use the code generation functionality. Identify
and list all classes that access functionality of the GeneratorManager and
CodeGenerator (i.e., call methods, access fields, etc.)

RQ2: Relating information on
design level horizontally (broadly).

T4
Starting with the GeneratorManager and CodeGenerator, identify and list all
classes and interfaces that you think belong to ArgoUML’s code generation component.

RQ3: Relating information ver-
tically, i.e., between design and
architecture level.

T5

Make an estimation on how much effort it would require to remove the code generation
component (as you defined it in T4) from ArgoUML altogether (Likert-scale).
Explain your estimation briefly (short text).

RQ2: Relating information ho-
rizontally on architecture level.

F. Findings

In the following, we both present results and discuss their
implications separately for each of the posed research questions.
Furthermore, summarized results are depicted in Figure 6 and
detailed results are available via our online appendix1. To
shorten explanations, we refer to participant groups for indi-
vidual tools via abbreviations: groupIDE (Eclipse), groupSOTA
(state-of-the-art visualization CityVR), groupISA (Immersive
Software Archaeology; our implementation).

RQ1: Accessing Information (T1 & T2). To solve T1, groupIDE
employed a mixture of Eclipse’s text search (13 of 18) and an
exploration via the system’s package structure (12 of 18), where
7 participants use both. We observed that several participants
could not match the classes and interfaces they inspected with
their respective location in the system’s package hierarchy. For
instance, although most participants (12 of 18) remembered to
have encountered the interface searched in T2 while solving
T1, 11 participants could not locate it in the package hierarchy
and, instead, used the text search to solve T2.

Solving tasks T1 and T2 each required groupSOTA to find
one specific building in the visualized city. During their search,
all 18 participants were drawn to particularly large buildings.
While this let them explore various classes throughout the entire
system, the building searched in T1 was not among these for
any participant. To solve T2, most participants (14) made use of
the city layout to narrow down their search, i.e., they assumed
the searched building was in proximity to the building found
in T1. While only few (3 of 18) participants could solve T2,
we observe that, in contrast to the IDE, groupSOTA developed
an overview of where in the visualization elements are located.

Similar to groupSOTA, solving tasks T1 and T2 each required
groupISA to find one specific building in the solar system. To
solve T1, all 18 participants explored the planet structure of the
architectural overview. We notice that, similar to groupSOTA,
participants in groupISA were drawn to large structures, i.e.,

large planets, continents, and large buildings on planet surfaces.
However, to solve T1, almost all participants (17 of 18) utilized
the text search to locate occurrences of elements with promising
names. We observe that the word occurrence tags helped
participants with prioritizing their exploration and search results.
Notably, groupISA approached T2 vastly different than they
approached T1. That is, to solve T2, only 5 participants used
the text search, while all others started exploring the city they
have previously entered to solve T1 by inspecting buildings
and utilizing the relationship graphs.

When comparing the IDE with our method in terms of
participants’ ability to solve T1 and T2 (i.e., required no help
or only a reminder on tool functionality), we observe only
minor differences, despite participants’ familiarity with IDEs
and 2D interfaces. That is an identical performance in T1 and a
better performance of our method in T2 where 3 participants in
groupIDE did not solve the task whereas it is 0 for our method.

Discussion. An IDE locates users on a low abstraction level
where they are able to access and manipulate design-level
information. Our observations and results support that this can
cause a lack of overview. The goal of the state-of-the-art city
metaphor visualization is to provide its users with an extensive
view on design-level information, where city layout and shapes
of elements are driven by metrics. In our experiment, we find
that this impedes participants’ access to information other
than finding outliers according to the represented metrics (cf.
required guidance for tasks T1 and T2 in Figure 6). We conclude
that, by grouping interrelated elements into the same structures
(e.g., buildings in the same city, cities on the same continent),
our method allows for easier access to information on similar
functionality as compared to grouping elements based purely
on a package hierarchy (as done in the IDE and state-of-the-art
visualization). This shows especially in participants’ approach
to solving task T2, where our method relieved participants of
finding relevant software elements for the most part.
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Fig. 6. Quantitative evaluation results from the different experiment phases.

RQ2: Relating Information Horizontally. We investigate RQ2
via T2 and T3 on design level and via T5 on architecture level.

Design Level. To solve T2, participants in groupIDE generally
related elements via reading code. Only 1 participant used
Eclipse’s call hierarchy feature. In contrast, to solve T3, 15
participants used the call hierarchy feature whereas 3 instead
used the text search. As a result, 13 participants were able
to find all requested horizontal relations on design level,
5 participants found only relations to elements within the
same package as the investigated class and interface (see
Figure 6). We observe that participants in groupIDE were
generally not satisfied with the tool support they received for
relating elements horizontally, e.g., they needed to query the call
hierarchy for each member individually. As a consequence, one
participant approached T3 by deleting elements, recompiling
the system, and inspecting all files with compilation errors.

Participants in groupSOTA relied on reading code because the
respective tool does not visualize relations specifically. While
15 participants did not solve T3, they generally solved T2 in
more detail than participants using other tools (see Figure 6).

To solve T2, 11 participants in groupISA based their answer
on the relationship graphs. The remaining 7 participants solved
the task by reading through the class’ source code. Overall, a
majority of participants in groupISA answered T2 not in much
detail, i.e., 10 participants score only 1 point. At the same time,
we observe that only 1 participant using our tool is not able to
establish a relation at all, while it were 3 participants of each
of the other tools. To solve T3, all participants in groupISA (no
exception) made use of the relationship graphs. As a result,
16 of 18 participants are able to find all relationships, while 2
participants miss classes located on other planets.

Architecture Level. In their answers to Task T5, we generally
notice that groupIDE based their explanations on code constructs
(mainly classes) while groupSOTA based their answers on visual
elements (buildings and city districts). On the other hand,

while most participants in groupISA use code constructs (mainly
classes), some mix them with visual elements (continents and
planets) when describing architectural structure.

Similar to groupIDE, multiple participants in groupSOTA
answer T5 based on direct observations in the visualization
(e.g., assuming few interrelations of a classifier with other parts
of the system because its city district was small).

While multiple participants in groupISA equally used visual
elements in their explanations, those with decisive answers on
architectural concerns had a clear tendency towards using the
relationship graph to argue on various abstraction levels, i.e.,
intra-component connections of classes (buildings in same city)
as well as inter-component connections (buildings in different
cities). In contrast to the other tools, some participants have
very concrete ideas regarding the size of the code generation
component and how it is related with the rest of the system.

Discussion. While the call hierarchy and GOTO navigation
allow quick traversal of the system’s call graph, several
participants in groupIDE mentioned that these features were not
ideal for a broad investigation of relations on classifier level
such as in T3. We conclude that an IDE operates on a lower
level of abstraction than ideal for horizontally relating elements
on a higher level than members, even when inspecting only one
specific feature as emulated by T3. On architecture level (T5),
this shortcoming manifests in vague or incomplete answers.

The state-of-the-art visualization used in our experiment does
not include an explicit visualization of relationships. Thus, we
cannot discuss its suitability for fostering the exploration of
such. However, it allows for conclusions towards the benefits
and drawbacks of an explicit visualization of relationships
as encompassed in our method. Relying on establishing a
relationship purely based on code resulted in more accurate
description of groupSOTA as compared to groupISA in T2
where the elements to relate where known and available, but
significantly worse results in T3 where the elements to relate
were unknown (cf. Figure 6). This translates to architectural
level, i.e., because they could not solve T3, groupSOTA reported
a lack of overview when solving T5.

With the relationship graphs provided by our method,
participants in groupISA across all programming experience
levels were able to relate elements across abstraction levels.
On design level, this shows in T2 where only 1 participant
was not able to establish a relation and in T3 where only 2
participants missed relations to the investigated elements (see.
Figure 6). In extension to our answer to RQ1, we conclude
that by easing the access to information via the grouping
of interrelated elements, our method also fosters establishing
horizontal relations. Participants in groupISA generally provided
better arguments (see above) for their answers to T5 as
compared to groupIDE and groupSOTA, indicating that they
developed a better overview of the system’s architecture.

RQ3: Relating Information Vertically. To solve T4, partici-
pants in groupIDE used intersecting combinations of exploring
the system’s package hierarchy (8), reading through code (9),
the text search (5), the call hierarchy (9), and deleting classifiers
to see which other elements break (2). While 5 participants



answered T4 very broadly, i.e., 3 pointed to an entire package
containing hundreds of classes while 2 based their answer
entirely on a search term with hundreds of matching classes,
4 participants were very restrictive, i.e., included only 2 or
3 classes. One participant stated to miss detail knowledge to
formulate a sensible answer and did not answer the task. In
contrast, 4 participants in groupIDE solved T4 thoroughly by
reading through several classifiers in a bottom-up approach.

Participants in groupSOTA answered T4 superficially by either
pointing to city districts (Java packages) or including only the
two core classifiers (provided in the task description of T4).
One participant did not know how to solve the task at all.

Similar to T3, participants in groupISA made use of the
dependency graph to solve T4. Generally, they expanded upon
their answers to T3 by retracing additional references. That
is, 17 out of 18 participants in groupISA vertically related
classifiers to the asked component based on relationships with
the provided core classifiers. However, similar to groupIDE,
we observe disparate inclusion criteria, i.e., some participants
included all classifiers that have any form of relation to the core
classifiers, others were more selective and additionally took
class names and source code into account. Only 4 participants
read through source code as a part of that process.

Discussion. Participants in groupIDE were generally unde-
cided how to approach establishing a vertical relationship
between the asked component and its containment. This mirrors
in the variety of different IDE features used (11 participants
used 2 or more different features) and the varying degree of
detail in participants’ answers, ranging from a handful of classes
to packages with hundreds of classes. While we, the authors of
this paper, are not aware of the subject system’s ground-truth
architecture, it is safe to assume that the asked component’s
actual size is not in the range of hundreds of classes. Building
up on our previous conclusions, we attribute these estimations
to a missing overview on the system’s architecture.

Although the used state-of-the-art tool is slim in its feature
set (does not visualize relations, allows access to only one
class at a time), it provided equally many participants with
good enough of an architectural overview to give an answer
to T4 as the IDE. Also, while participants in groupSOTA all
provide superficial answers based on city districts (packages),
their answers generally encompassed more sensible amounts
of classifiers than the answers of a majority of groupIDE.

The differences in the vertical relation approach of partici-
pants in groupISA were considerably less far apart than those in
the other groups, especially than those in groupIDE. Because 17
out of 18 participants in groupISA vertically related classifiers to
a component based on their relationship with the core classifiers
of the component, they formed more cohesive and sensible
components than the participants in the other groups.

G. Threats to Validity
Construct Validity is concerned with the extent to which
an experiment setup actually investigates the subject of the
experiment. Our experiment subject was to assess the suitability
of different tools for the exploration of an unfamiliar large-scale

software system. We formulated three research questions to
investigate that and constructed experiment tasks accordingly,
on the basis of a real-world software system. While RQ1 and
RQ2 are addressed by two and three tasks respectively, RQ3
is addressed by only one task, because we investigate it in
depth on architecture level (what classes make up a component)
rather than on design level (what members belong to a class).

Internal Validity is concerned with uncontrolled influences
that falsely indicate a causal relationship. We minimized this
risk by assuring similar conditions for each experiment run with
the used tool and its medium as dependent variables. To achieve
that, we randomly grouped participants to the three tools while
providing the same tasks across all groups. The resulting groups
were equally divided regarding experiences in relevant aspects,
i.e., prior experience with VR and programming1. We designed
the tasks of our experiment to not favor textual or visual
representations. Furthermore, we provided each participant
with a short training video for their assigned tool1.

External Validity is concerned with the degree to which
experimental results can be generalized to settings other than
in the experiment. Despite multiple international students from
Asia, the vast majority of participants in our experiment were
of Northern European origin. With 18 participants per group
(54 in total), our results would be more conclusive with a
larger sample size. Furthermore, because we recruited mostly
students (no practitioners with professional experience), our
results hold for a rather inexperienced audience. However, a
large majority of our participants declared to program regularly
(80.4% program at least once a week) and to be experienced
with Java (82.1% self-assessed to at least medium experience
on a 5-step Likert scale)1. We argue that this is indeed an
interesting target audience for our method, as it resembles
young professionals – a group of people that will have to work
with the legacy code produced by current working professionals.

V. CONCLUSION AND FUTURE WORK

We presented an approach for analyzing and visualizing large-
scale software systems for the purpose of their comprehension.
In a controlled experiment with 54 participants, we compare
its ability to support users with key aspects of software
comprehension with an IDE and a state-of-the-art VR software
visualization. Our results show that our approach provides
engineers with easier access to information, including a better
overview of a system’s architecture and relationships among
elements on all encompassed abstraction levels.

In the future, we will enable engineers to refine the recovered
architecture according to their mental model by reorganizing
the architectural structure within our visualization, e.g., to
adjust component boundaries. Furthermore, we plan to foster
engineers’ exploration of a system’s structure via additional
software characteristics, such as a system’s behavior or quality.
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