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Abstract. Let M be a Seifert fiber space with non-abelian fundamental group and admitting a triangu-
lation with t tetrahedra. We show that there is a non-abelian PSL(2,F) quotient where |F| < c(220t3120t)

for an absolute constant c > 0 and use this to show that the lens space recognition problem lies in coNP for
Seifert fiber space input. We end with a discussion of our results in the context of distinguishing lens spaces
from other 3–manifolds more generally.

1. Introduction

Fundamental groups of surfaces and 3–manifolds admit PSL(2,C) representations that provide valuable
tools for studying these low dimensional spaces. For example, hyperbolic 3–manifolds admit discrete, faithful
PSL(2,C) representations. More generally, hyperbolic manifolds and many Seifert fiber spaces admit non-
abelian (in particular non-trivial) representations into PSL(2,C). This paper will focus on Seifert fiber spaces
with infinite fundamental group. We show that these manifolds can be distinguished from the 3– sphere
(and other lens spaces) via algorithms that also produce small certificates. The Lens space recognition
problem is the problem of deciding if a given 3–manifold is a lens space (including S3). A decision problem
is said to lie in NP if an affirmative solution can be verified via certificate in polynomial time relative to
the input size (of a triangulation in this case) and we say that a problem lies in coNP if a negative solution
can be verified by such a certificate. That is, the Lens space recognition problem lies in coNP if given
a manifold M that is not a lens space, there is a certificate (for example, an explicit homomorphism to a
non-cyclic group that can be written down from a triangulation of M) which can be checked in polynomial
time.

Conjecture 1.1. Let M be a closed 3–manifold.
(1) S3 recognition lies in coNP.
(2) Lens space recognition lies in coNP.

There are no non-orientable 3–manifolds with finite fundamental groups. As we discuss in Section 2,
there is a polynomial time algorithm (relative to the size of the triangulation) to determine if a triangulation
represents an orientable or non-orientable 3–manifold. Therefore, we can distinguish non-orientable 3–
manifolds from lens spaces (including S3) in polynomial time. As a result, the subsequent arguments of this
paper concentrate on the case where M is a closed, connected and orientable 3–manifold. Then weaving
these two threads together, our main theorem addresses an important subclass of closed and connected
3–manifolds, the Seifert fiber spaces.

Theorem 1.2. For a Seifert fiber space M with non-abelian fundamental group, the Lens space recog-
nition problem lies in coNP. In particular, there is a polynomial time verifiable certificate to distinguish M
from S3.

As all of our certificates are either (non-trivial) non-abelian representations or non-cyclic abelian repre-
sentations, we also distinguish these manifolds from S1 × S2 and so we state the following direct corollary.

Corollary 1.3. For a Seifert fiber space M with non-abelian fundamental group, the S1 × S2 recognition
problem lies in coNP.

The S3 recognition problem lies in NP by work of Schleimer [19]. This work was later extended by
Lackenby and Schleimer [13] to show that the lens space recognition problem lies in NP as part of a
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larger recognition scheme for manifolds with finite fundamental group. In light of that result, determining if
the problem also lies in coNP takes on special significance as it would provide another example of a decision
problem in NP∩coNP.

Zentner [26, Theorem 11.2] proved that the S3 recognition problem is in coNP provided the Generalized
Riemann Hypothesis (GRH) is true. His result is part of a larger investigation which exhibits non-trivial
SL(2,C) representations of integral homology spheres. After showing that any integral homology sphere
with non-trivial fundamental group has a non-trivial SL(2,C) representation [26, Theorem 9.4], Zentner
employs similar methods to those of Kuperberg [11]. Conditional upon the truth of the GRH, Kuperberg
established that unknot recognition lies in coNP. More recently, Lackenby [12] removed the reliance
on GRH and proved that unknot recognition lies in coNP. It was previously known by work of Hass,
Lagarias and Pippenger [5] that unknot recognition lies in NP. Combining these results, it is now known
that unknot recognition lies in NP∩coNP, and so it is natural to ask if unknot recognition lies in P,
the set of polynomial time algorithms. In service of this goal, Lackenby has also announced that there exists
a sub-exponential time algorithm for unknot recognition.

The goal this paper is to cut down the scope of the problem of distinguishing manifolds from lens spaces.
By focusing on Seifert fiber spaces, we can remove the dependence on GRH, but not surprisingly, our methods
do employ tools from number theory (Linnik’s theorem). In particular, our main technique is to similar to
those of Kuperberg and Zentner, in that we show there is a sufficiently small finite field F and a non-abelian
representation of π1(M) into PSL(2,F). These finite fields arise as quotients of number fields by a prime
ideal. We are able to establish unconditional results because the number fields we are working with are
(nearly) cyclotomic, where current unconditional methods in number theory are sufficient.

1.1. Organization and Outline. We now present a brief overview of our proof strategy.
◦ Using [4] and an understanding of Seifert fiber spaces and their groups, we reduce the scope of the

problem to distinguishing small, prime Seifert fiber spaces with non-cyclic fundamental groups from
lens spaces. In Section 2 we provide background for computational complexity in this 3–manifold
setting and discuss distinguishing non-orientable manifolds and orientable manifolds. (As will be
discussed below, the only non-prime Seifert fiber space is RP3#RP3. Since its fundamental group
is isomorphic to Z/2Z ∗ Z/2Z, it surjects the dihedral group of order 6 (also known as PSL(2, 2)).
To satisfy the more general claim in the abstract, we point out that for any c ≥ 1 and t ≥ 1,
2 < c(220t3120t).)

◦ In Section 3, we begin by discussing background information about Seifert fiber spaces. The small,
prime, non-cyclic Seifert fiber space groups surject triangle groups Tn1,n2,n3 where nk > 1 are integers
for k = 1, 2, 3. We demonstrate that for most of these triangle groups there is a particularly nice
integral representation into PSL(2,K) where K is a number field which is “almost” the cyclotomic
field Q(ζ2n1n2n3

). The trace field of this representation has degree 1
2φ(2n1n2n3).

◦ We then use Linnik’s theorem to find a “small” prime that splits completely inK and show that in the
natural quotient the representation stays non-abelian. This gives us a non-abelian representation of
these Seifert fiber space groups into PSL(2,F) where |F| is bounded above by a polynomial function
of n1n2n3. (This covers most cases, and for the remaining cases we get a compatible bound.)

◦ Section 4 deals with converting this upper bound to an upper bound in terms of t, the number of
tetrahedra in a triangulation. We accomplish this in two main steps. First, we show that for any 3–
manifold with a triangulation with t tetrahedra, there is a presentation for π1(M) where the number
of generators, relations, and their length is governed by t. Then we translate those complexity
bounds for π1(M) into upper bounds for the degree of the trace field of a 0-dimensional component
of the PSL(2,C) character variety in terms of t.

◦ In Section 5, we reconcile these bounds. Our explicit representations of the triangle groups have
trace fields of degree 1

2φ(2n1n2n3) and we use this to translate our upper bounds for |F| from a
dependence on n1n2n3 to a dependence on t, as needed. (This plan covers most cases, and we
handle the remaining cases separately.) We conclude with a discussion of the general problem of
distinguishing 3–manifolds from lens spaces.

1.2. Acknowledgements. Both authors thank the Oklahoma State Number Theory group and members
of the Oklahoma State, University of Arkansas and University of Oklahoma Topology groups for feedback
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on an early versions of this work. The first author is support by Simons Foundation grant #524123 to Neil
Hoffman. Both authors want to acknowledge the influence our common graduate advisor Alan Reid on the
occasion of his 60th birthday. That this paper applies tools from number theory to topological problems is
no accident. Moreover, we greatly appreciate his inspiration and continuing encouragement throughout our
careers. Finally, we also thank him for feedback on early version of this paper.

2. Background

Our input is a triangulation. Specifically, a triangulation T is a collection of t tetrahedra and (exactly)
2t face pairings. For simplicity, we will assume a face pairing is a permutation in S4, 0123 → abcd with
a, b, c, d ∈ {0, 1, 2, 3}. Implicitly, we will enforce the standard conditions necessary to ensure T is the
triangulation of a closed 3–manifold (without boundary): each vertex link is a 2–sphere, all edges are glued
to themselves consistently, each face is glued to a distinct face, etc. To stress that we are using triangulated
manifolds, we will often just refer our given triangulation asM since our methods apply to any triangulation
of the manifold. While there may exist slightly more efficient encoding schemes for triangulations, the scheme
above is sufficient for the methods of this paper and the size of input needed to exhibit a triangulation is on
the order of t log(t).

Two tetrahedra A and B glued across a face have the same local orientation if the ordered set of edges
{A(01), A(02), A(03)} and the ordered set of edges {B(01), B(02), B(03)} either both satisfy the right-hand
or both satisfy the left-hand rule (after fixing an ordered basis on the tangent space for one point in the
interior of A). This occurs if and only if the face pairing between A and B is orientation reversing, which
occurs when the permutation lies in S4 \A4. We say a triangulation (and manifold) is orientable if the local
orientations agree for each tetrahedron in the triangulation and a triangulation is non-orientable otherwise.

2.1. Reduction to the orientable case. We will now discuss orientation issues, so that we can safely
ignore them for the rest of the paper.

Proposition 2.1. There is a polynomial p such that given any triangulated 3–manifoldM with t tetrahedra in
the triangulation, the number of steps needed to determine if the triangulation is orientable or non-orientable
is at most p(t).

The astute reader will notice that the solution presented below is not optimal in that we actually iterate
over a tree twice. However, we still obtain a polynomial bound here.

Proof. Choose a maximal spanning tree Ω in the dual 1-skeleton M̂ (1). Since M̂ (1) has 2t edges and t
vertices, building this tree takes on the order of t log(t) steps using standard techniques in graph theory such
as Kruskal’s algorithm (see [10] and [3, Chapter 23] for further background). Each generator gi of π1(M)

corresponds to an edge ei in M̂ (1) \Ω. Choose a base point x to be a vertex in Ω and record an orientation
of the corresponding tetrahedron in the triangulation by recording the labelling of the vertices. For each
neighbor y of x in Ω, we can choose an orientation reversing face pairing to induce a relabelling of the
vertices of the tetrahedron corresponding to y. Repeat this process for adjacent vertices until all tetrahedra
are labelled. Each edge ei in M̂ (1) \ Ω corresponds to a generator of the fundamental group of M since it
extends uniquely to a loop in M̂ (1), and also carries with it an induced face pairing map. The manifold M is
orientable if this induced face pairing is orientation reversing for all i (which requires checking t+ 1 gluings)
and non-orientable if for any i the face pairing is orientation preserving (which requires checking at most
t+ 1 gluings). That the number of steps is polynomially bounded (roughly on the order of t log(t)) directly
follows. �

Since there are no non-orientable 3–manifolds with cyclic (or more generally finite) fundamental group,
Proposition 2.1 provides a polynomial time algorithm to differentiate non-orientable 3–manifolds from lens
spaces.

2.2. Storing finite groups. We begin with some basic facts about the storing finite groups and the compu-
tations necessary to perform operations. A main focus of this paper is take an input (usually a triangulation
with t tetrahedra) and produce a polynomially-sized certificate (to show the manifold is not a lens space).

Assume that G is a finitely presented group and denote by Gab the abelianization of G and Tor(Gab)
the torsion subgroup. We begin by connecting the rank of Gab and order of Tor(Gab) to the structure of a
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presentation for G. Group presentations with relations of bounded length as below will naturally arise in
the context of triangulations. We make the following observation from a first homology computation using
linear algebra.

LetG be a finitely presented group with g generators xk for k = 1, . . . , g and r relations wj = wj(x1, . . . , xg)
for j = 1, . . . , r each of length at most l. Denote by |wj |xk

the exponent sum of the generator xk in the
relation wj . Create a homogeneous linear system of equations using g variables y1, . . . , yg where the relation
wj determines the equation

∑g
i=1 |wj |xiyi = 0. Let A be the matrix with coefficients aij = |wj |xi . Denote

by N the Smith normal form of A. The abelianization of G can be determined from N as follows. Let
Nsq be the square minor of N such that nii is non-zero, so that rank(N) = rank(Nsq). It follows that
Gab ∼= Zg−rank(N) ⊕ Z/niiZ, where Z/1Z represents the trivial group, and

|Tor(Gab)| =
rank(N)∏
i=1

nii = det(Nsq).

We now bound det(Nsq). First let Asq be a square minor of A with determinant of largest magnitude.
As the computation of N from A only uses elementary matrices |det(Nsq)| ≤ | det(Asq)|. Using Hadamard’s
inequality, we have that

|det(Nsq)|2 ≤ |det(Asq)|2 ≤
rank(N)∏
i=1

‖aj‖2

where ‖aj‖ is the norm of the jth row of Asq. Our assumption that the word lengths are bounded by l
implies that ‖aj‖ ≤ l, so that det(Nsq)

2 ≤ l2r.
We now summarize many of the key observations from the above argument:

Proposition 2.2. Let G be a group with g generators and r relations each of length at most l. Then Gab

has rank at most g and |Tor(Gab)| ≤ lr.

For our purposes, the key takeaway from Proposition 2.2 is that the number of relations and their length
determines a linear upper bound on log(|Tor(Gab)|) in terms of r, when l is a constant. In particular, the
bit-size needed store torsion elements in a homology group is bounded by a linear function. As noted above,
the existence of free abelian quotients can also be quickly computed and exhibited. This implies that we can
verify that G admits any abelian quotient that is necessarily a subgroup of Gab in polynomial-time.

We can also apply similar methods in accounting to representations into PSL(2,Fp) and PSL(2,Fp2). If
we bound p by a polynomial, then we can perform the operations of +,−, · in Fp or Fp2 in polynomial-
time. This ensures we can perform operations with (cosets of) 2 × 2 matrices with entries in Fp or Fp2 in
polynomial-time. As a result of Perelman’s affirmative solution to the geometrization conjecture, lens spaces
are the the only 3–manifolds with finite cyclic fundamental group. Therefore, if H1(M) is not cyclic, we can
distinguish M from a lens space via a simple homology computation.

We now give an example of the kind of methods we will employ later in the paper.

Example 2.3. Consider the following presentation for the fundamental group of the figure-8 knot com-
plement G = 〈a, b | aba−1b−1a = baba−1b−1〉. Identify F25 with the quotient F5[x]/(x2 + 1). We define a
homomorphism from G to PSL(2,F25) by

a→ ±
Ç
x 0

0 −x

å
, b→ ±

Ç
x −x
0 −x

å
.

The image of G is isomorphic to D10, the dihedral group of order 10.
In order to produce a certificate that this is valid representation, we first need to be able to store elements

in F25. We write each element as a two dimensional vector µ0 + µ1x where µ0, µ1 ∈ F5. It takes log2(5− 1)
bits to encode {0, 1, 2, 3, 4}. Hence, encoding elements in F25 takes twice that number of bits and encoding
in F5d takes d times the number of bits as it takes to encode an element in F5. More generally, a 2×2 matrix
in Fpd takes 4d(log2(p− 1)) bits to encode.

After encoding the matrices (which are the images of a, b in F25), we then check that the relation is satisfied.
In our case, the relation is length 10, so we need to preform the equivalent of 10 matrix multiplications in
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PSL(2,F25) to check that this is a valid representation. We point out that the number of generators and
relations of the group need to have size bounded by our input as they are part of the certificate.

We can also certify that this representation is non-abelian by observing that ab and ba have distinct
images in PSL(2,F25).

In summary, the certificate for this representation is composed of the image of each one of the generators
as a 2× 2 matrix in F25 and a check that the relation (or more generally relations) of the group are satisfied
by our choice of generators. We can certify that this, and any, representation is non-abelian by showing that
the images of two specified generators do not commute.

The natural generalization of the above example leads to the following proposition, which takes a finitely
presented group as input. We say the size of presentation is the length of a string that includes all the
generators and relations.

Proposition 2.4. Let G be a finitely presented group of size at most n admitting a non-trivial representation,
ρ : G → PSL(2,Fp2). There is a polynomial f1 such that If log(p) < f1(n), then there exists a second
polynomial f2, such that the number of (bit-wise) computations needed to certify that ρ(G) is a non-trivial
subgroup of PSL(2,Fp2) is at most f2(n). Moreover, if ρ(G) is a non-abelian representation, then there is a
third polynomial f3, such that we can certify that ρ(G) has a pair of non-commuting generators in at most
f3(n) computations.

In our applications, we will bound the number of generators and relations, while also keeping the relations
of bounded size which implicitly bounds the size of a presentation for G. We also point out that a non-trivial
PSL(2,Fp) representation determines a non-trivial PSL(2,Fp2) representation by inclusion.

3. Triangle groups and other quotients of 3–manifold groups

For the remainder of this paper, we assume that reader is familiar with 3–manifold topology especially
the taxonomy provided in [21]. We now provide definitions of the some of the relevant 3–manifolds discussed
in this paper.

A lens space is a space obtained by gluing two solid tori T1, T2 along their boundaries such that the curve
p[λ1] + q[µ1] (p, q relatively prime) is identified with [µ0] where µi is a curve that bounds a disk in the solid
torus Ti and λ1 is isotopic to the core of T1. In keeping with the standard conventions, we denote this
space by L(p, q). We keep the convention that a lens space has finite fundamental group ie that p 6= 0. Our
arguments also distinguish S1 × S2 from other other Seifert fiber spaces. We stress that L(1, q) ∼= S3 is a
valid lens space and our arguments that distinguish other manifolds from lens spaces distinguish S3 from
other manifolds as well.

Definition 3.1. For k = 1, 2, 3 let nk > 1 be integers. We define the triangle group

Tn1,n2,n3
= 〈x, y | xn1 , yn2 , (xy)n3〉.

The triangle group Tn1,n2,n3
is said to be hyperbolic if 1

n1
+ 1

n2
+ 1

n3
< 1, Euclidean if the sum equals 1, and

elliptic if the sum is greater than one. We will use the convention that n1 ≤ n2 ≤ n3 and use ` to denote the
quantity 2lcm(n1, n2, n3).

We refer the reader to [21] and [7] for background information on 3–manifolds and Seifert fiber spaces in
particular. A Seifert fiber space M is a 3–manifold with a decomposition of M into disjoint circles. In light
of Proposition 2.1, we will only consider orientable Seifert fiber spaces. A 3–manifold M is prime if for every
M ∼= M1#M2, either M1

∼= S3 or M2
∼= S3. The only orientable, non-prime Seifert fiber space is RP3#RP3.

We say the Seifert fiber space M is non-cyclic if π1(M) is (non-trivial and) non-cyclic. The set of orientable
Seifert fiber spaces with cyclic fundamental group consists of S1 × S2 and lens spaces. In particular, if M is
non-cyclic, then M 6∼= S3. In summary, the set of orientable prime, non-cyclic Seifert fiber spaces includes all
Seifert fiber spaces except RP3#RP3, S1 × S2 and lens spaces. Unless underscoring for clarity, we consider
only orientable M in our discussion of Seifert fiber spaces.

The 3–manifolds RP3#RP3 and S1×S2 can be distinguished from lens spaces via homology in polynomial
time, so our subsequent treatment in Section 5 to show that the lens space recognition problem is in coNP
applies to these special cases. In addition, we can distinguish S1 × S2 and RP3#RP3 from prime, non-cyclic
Seifert fiber spaces and from one another via polynomial time verifiable certificates (see [6, Theorem 3]).
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A 3–manifold is called small if it does not contain a closed essential surface. Any 3–manifold that is
not small can be distinguished from a lens space using the essential surface as the certificate, which can
be verified in polynomial time as we discuss in Section 5. Therefore, we focus on small Seifert fiber spaces,
which can be characterized by their fundamental groups. Elliptic 3–manifolds are those (orientable, geometric
3–manifolds) which have finite fundamental group.

LetM be an orientable, small, prime, non-cyclic Seifert fiber space with base orbifold B. SinceM is small
and in particular atoroidal, it follows from Jaco and Shalen’s work that B is either an S2 with three cone
points or B is RP2 with one cone point (see [9, IV.2.5 and Lemma IV.2.6]). In the second case,M also admits
a Seifert fibration over S2(2, 2, p) (for example see [21, p. 356]). To see thatM being small implies the bound
on exceptional fibers, assume the genus is positive or there are more than three cone points. Then there is
an embedded curve in the base orbifold such that it and all of its powers are homotopically non-trivial. (In
the case that the underlying space of B is S2, this curve is separating and has a least two cone points on
either side of it.) The lift of this curve into M does not intersect the exceptional fibers, ensuring that it is
an incompressible torus. As such M would not be small. Since M is orientable, if the base orbifold were S3
with 0, 1, or 2 cone points then M would be either a lens space or S1 × S2. Therefore, M has base orbifold
of the form B = S2(n1, n2, n3) for integers nk ≥ 2. The fundamental group π1(M) surjects πorb1 (B) (see [21,
Lemma 3.2] for example). Since πorb1 (S2(n1, n2, n3)) ∼= Tn1,n2,n3

, we conclude that π1(M) surjects Tn1,n2,n3
.

For a small, prime, non-cyclic Seifert fiber space M , if M is elliptic, the base orbifold B is elliptic. If
M is not elliptic, then B is hyperbolic or Euclidean. This coincides with the terminology in Definition 3.1
for the associated triangle groups. We now make this connection explicit (see [21], also [20] for further
background). The elliptic triangle groups are the finite triangle groups. These are the Tn1,n2,n3

associated
to triples (n1, n2, n3) equal to (2, 3, 3), (2, 3, 4), (2, 3, 5), and (2, 2,m) for m ≥ 2. If M is a non-cyclic elliptic
Seifert fiber space, then π1(M) surjects (at least) one of these elliptic triangle groups.

The Euclidean and hyperbolic triangle groups are infinite, and so B and also M are infinite as well. The
Euclidean triangle groups are those associated to the triples (2, 4, 4), (2, 3, 6), and (3, 3, 3) and manifolds
with Euclidean or Nil geometry surject these triangle groups. Finally, if the triangle group is hyperbolic, the
Seifert fiber space coincides with „�PSL(2,R) or H2 × R geometries.

This discussion can be summarized by the following proposition.

Proposition 3.2. Let M be an orientable, prime, non-cyclic Seifert fiber space. Then either M contains
an embedded, essential torus or M is a small Seifert fiber space and π1(M) surjects a triangle group.

As will be discussed later, this allows us to consider three cases of prime, non-cyclic Seifert fiber spaces:
M is not small, π1(M) surjects a hyperbolic triangle group, and π1(M) surjects a non-hyperbolic triangle
group. We first focus on the case when M is a small Seifert fiber space, specifically when π1(M) surjects a
hyperbolic triangle group. We will reconcile the remaining cases later in Proposition 3.10.

3.1. PSL(2,R) Representations of Triangle Groups. We now give an explicit integral PSL(2,R) repre-
sentation of a hyperbolic triangle group. A feature of this representation is that it is contained in a number
field of minimal or near minimal possible degree.

For a set of integers S = {si}i∈I , we say the greatest common divisor of S, gcd(S), is the greatest integer
d such that d|si for all i ∈ I. For a fixed integer n ≥ 1 let ζn = exp(2πi/n) and define cn = cos(2π/n) so
that 2cn = ζn + ζ−1n . We will use values of the form cos(2π/2m) instead of cos(2π/m) in our construction
as it would lead to an element of order 2 being central otherwise.

We now prove a lemma which will be useful later.

Lemma 3.3. If dk divides nk for k = 1, 2, 3 then Tn1,n2,n3
surjects Td1,d2,d3 . In particular, Tn1,n2,n3

surjects
Z/dZ× Z/dZ where d = gcd(n1, n2, n3).

Proof. The surjection from Tn1,n2,n3 as above to Td1,d2,d3 = 〈ξ, η | ξd1 , ηd2 , (ξη)d3〉 is given by x 7→ ξ and
y 7→ η. Therefore, Tn1,n2,n3

surjects Td,d,d whose abelianization is Z/dZ× Z/dZ. �

We now collect some useful concepts. Let G be a subgroup of PSL(2,C) (or SL(2,C)). We call a number
field K the field of definition of G if G < PSL(2,K) and there is no number field L ⊂ K such that
G < PSL(2, L). The trace field of G is Q(tr(g) : g ∈ G) and is a number field in many known cases including
when G is (the image of) a triangle group, and when H3/G is a finite volume 3–manifold. If the number
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Figure 1. A fundamental domain for T3,4,5 with the above construction.

field K is the field of definition of G, then the trace field is a subfield of K. For any number field K, we use
OK to denote the ring of integers in K. We say the group G is rigid (in PSL(2,C)) if all discrete and faithful
representations of G into PSL(2,C) are conjugate (in Isom(H3)). Therefore, for a rigid group the trace fields
of all discrete and faithful representations are the same up to complex conjugation, and therefore identical
for real fields. Alan Reid pointed out to us that representations similar to those given below were studied by
Waterman and Maclachlan in [23]. The difference between the constructions is that our Mn is the inverse
of their A and C and we choose specific conjugations so that our matrix entries are algebraic integers.

Definition 3.4. Let nk ≥ 2 be integers for k = 1, 2, 3 and let r be a root of

r2 + 2r(c2n1
− c2n2

) + 2(1− 2c2n1
c2n2
− c2n3

).

For any integer n > 1 define

Mn = ±
Ç

2c2n 1

−1 0

å
and Tr = ±

Ç
1 r

0 1

å
.

Further, define % : Tn1,n2,n3
→ PSL(2,C) by x 7→Mn1

, y 7→ TrMn2
T−1r .

We will show in Proposition 3.5 that this is a well-defined PSL(2,R) representation. Explicitly, this
definition gives

%(x) = ±
Ç

2c2n1
1

−1 0

å
, %(y) = ±

Ç
2c2n2

− r r2 − 2rc2n2
+ 1

−1 r

å
,

and

%(xy) = ±
Ç
−2rc2n1 + 4c2n1c2n2 − 1 2r2c2n1 − 4rc2n1c2n2 + r + 2c2n1

r − 2c2n2
−r2 + 2rc2n2

− 1

å
.

To prove Proposition 3.8, and show that modulo a well-chosen prime ideal this is non-abelian the following
will be useful as well,

%(yx) = ±
Ç

4c2n1
c2n2
− 2rc2n1

− r2 + 2rc2n2
− 1 2c2n2

− r
−2c2n1 − r −1

å
.

We now show that this is a discrete and faithful PSL(2,R) representation and we compute the field of
definition and trace field for this representation.

Proposition 3.5. Let n1 ≤ n2 ≤ n3 be positive integers with 1
n1

+ 1
n2

+ 1
n3
< 1 and let ` = 2 lcm(n1, n2, n3).

The following hold, where K = Q(c`, r) the totally real subfield of Q(ζ`, r)
7



(1) % is a rigid, discrete and faithful representation of Tn1,n2,n3 into PSL(2,OK).
(2) K is the field of definition of %(Tn1,n2,n3).
(3) Q(c`) is the trace field of %(Tn1,n2,n3

).
(4) [K : Q] is φ(`)/2 or φ(`) depending on whether r ∈ Q(c`) or not.
(5) The PSL(2,C) character variety for Tn1,n2,n3

is a finite set of points.

Proof. Let T = Tn1,n2,n3
. We begin by showing that r as defined is real. This occurs when the discriminant

of the defining quadratic, as a function of r, is not negative. Therefore, it is enough to verify that

4(c2n1 − c2n2)2 − 4(2− 4c2n1c2n2 − 2c2n3) ≥ 0.

This is equivalent to showing that

(∗) (c2n1
+ c2n2

)2 + 2c2n3
≥ 2.

Recall that n1 ≤ n2 ≤ n3 and 1
n1

+ 1
n2

+ 1
n3
< 1. When n1 ≥ 3 all cosines are at least 1/2 and the left hand

side of (∗) is at least 2 and so the expression is satisfied. Therefore it suffices to consider the case when n1 = 2,
so that n2 ≥ 3 by the hyperbolic condition. If n2 = 3 then n3 ≥ 7 and (∗) holds as cos(2π/2n3) ≥ 7/8.
Similarly, if n2 = 4 then n3 ≥ 5 and (∗) is satisfied as cos(2π/2n3) ≥ 3/4. Finally, if n2 ≥ 5 then n3 ≥ 5,
so that cos(2π/10) > 0.8 and its square is at least 0.65 therefore, (c2n1

+ c2n2
)2 + 2c2n3

≥ 2.25 as needed.
Therefore r is real.

Next, we verify that the orders of %(x), %(y), and %(xy) are n1, n2, and n3, respectively. We use the fact
that in PSL(2,C), for an integer n > 0 elements with the following traces have order n: ±2 cos(2πl/2n)
where gcd(l, 2n) = 1 and additionally for odd n, ±2 cos(2πl/n) where gcd(l, n) = 1. The fact that the order
of %(x) is n1 and the order of %(y) is n2 follows from this. The trace of %(xy) is

±
(
− 2 + 2r(c2n2

− c2n1
) + 4c2n1

c2n2
− r2

)
and %(xy) has order n3 when this trace is ±2c2n3 . Therefore, for r as indicated the order of %(xy) is n3.

The fundamental domain for ρ(T ) as pictured in Figure 1 is consistent with the description of triangle
groups described in [18, IX.C], which is discrete, rigid, and faithful.

All entries of %(x) and %(y) are integral and the minimal polynomial for r over Q(c2n1
, c2n2

, c2n3
) = Q(c`)

is monic, so all entries of %(T ) are integral. This shows that %(T ) ⊂ PSL(2,OK), completing the proof of
(1).

Next, we will prove (2). This follows from the fact that for either solution r of its defining quadratic,
the matrices defining % confirm that the entries of %(x) and %(y) are contained in Q(c2n1

, c2n2
, c2n3

, r) which
equals Q(c`, r). It suffices to see that K is the smallest field containing the entries of %(T ). The values
±2c2n1

, ±2c2n2
and ±2c2n3

are traces of %(x), %(y) and %(xy). Therefore these values are contained in the
field of definition. Moreover, since ±(r− 2c2n2) is the (2, 1) entry of %(xy) and 2c2n2 is contained in the field
of definition, so is r. It follows that K is the field of definition.

The trace field is generated by the traces of %(x), %(y) and %(xy) (see [16, Eqn. (3.25)]). As such, the
trace field for %(T ) equals Q(c2n1

, c2n2
, c2n3

) = Q(c`), proving (3).
The field Q(c`) is the totally real subfield of Q(ζ`), and so K = Q(c`, r) is the totally real subfield of

Q(ζ`, r). As such, since [Q(ζ`) : Q] = φ(`) the degree [Q(ζ`, r) : Q] = φ(`) or 2φ(`) depending on whether
r ∈ Q(ζ`) or not. Therefore, [K : Q] = φ(`)/2 or φ(`) depending on whether r ∈ Q(c`) or not. This proves
(4).

It remains to show (5). Let ρ be a representation of T into PSL(2,C) with associated character χρ : T → C
defined by χρ(γ) = tr(ρ(γ))2 for all γ ∈ T . Since T is a two generator group, the character variety is
isomorphic to the set of characters {χρ(x), χρ(y), χρ(xy)}. The group relations for T specify that the orders
of x, y and xy are n1, n2, and n3, respectively so that the orders of ρ(x), ρ(y) and ρ(xy) must be divisors of
these nk. Translating this as a trace condition, the character variety is determined by solutions to

χρ(x) = 4 cos(2πl1/2n1)2, χρ(y) = 4 cos(2πl2/2n2)2, χρ(xy) = 4 cos(2πl3/2n3)2

where lk divides nk, (when nk is odd we also consider solutions equalling 4(cos(2πlk/nk))2). As such, it
consists of a finite number of points. �
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Remark 3.6. It seems likely that [Q(c`, r) : Q(c`)] = 2 for all choices of n1, n2, n3. To show this index
equals 2 it is sufficient to find a non-real embedding of Q(c`, r). Such an embedding exists if there is an
integer l with gcd(l, `) = 1 and(

cos(2πl/2n2) + cos(2πl/2n3)
)2

+ 2 cos(2πl/2n3) < 2.

A SageMath [22] computation (available as an ancillary file) confirms the fields are different for all of the 170
cases where 1

n1
+ 1

n2
+ 1

n3
< 1 and ni ≤ 19. In fact, Waterman and Maclachlan point out in [23, Theorem 3]

that for very similar representations only at most finitely many triples can have the fields being equal.

Lemma 3.7. Assume n > 2.
(1) |NQ(ζ2n)/Q(2c2n)| equals p2 if n is twice a power of the prime p, and 1 otherwise.
(2) |NQ(ζ2n)/Q(2c2n − 2)| equals 4 if n is a power of 2, and 1 otherwise.

Proof. For an integer k ≥ 1, let Φk denote the kth cyclotomic polynomial, and define

Xk =
∏

(e2πil/k + 1), Yk =
∏

(e2πil/k − 1)

where the products are over all integers l between 1 and k − 1 with gcd(l, k) = 1. Therefore, Xk = Φk(−1)
and Yk = ±Φk(1). By [2], Φk(−1) is −2 when k = 1, 0 when k = 2, p when k = 2pe where p is a prime,
and 1 otherwise. Similarly, Φk(1) equals 1 if k is not a prime power and p if k is a power of the prime p
(see [14] page 73). Let N denote the field norm NQ(ζ2n)/Q. The statement will follow upon showing that
N(2c2n − 2) = Y 2

2n, and N(2c2n) = X2
n if n is even, and equals Xn if n is odd. Let ζ = ζ2n = e2πi/2n and

recall that 2c2n = ζ + ζ−1.
First we prove (1). Since ζ is a unit of norm 1, N(2c2n) = N(ζ2 + 1) and

N(ζ2 + 1) =
∏

(e2(2πil/2n) + 1) =
∏

(e2πil/n + 1)

where the l values are those integers between 1 and 2n with gcd(l, 2n) = 1. First, assume that n is even so
that gcd(l, 2n) = 1 occurs exactly when gcd(l, n) = 1. The l values above are all integers l′ between 1 and
n with l′ relatively prime to n, and additionally all l′ + n values for these l′. The terms for a l′ value and
a l′ + n value are the same, so this norm equals X2

n. When n is odd, gcd(l, 2n) = 1 occurs exactly when
gcd(l, n) = 1 and l is odd. A complete set of such l modulo 2n reduces to all l relatively prime to n modulo
n. Therefore, the norm is Xn in this case.

Now we prove (2). Consider 2c2n − 2 = ζ + ζ−1 − 2 = ζ−1(ζ − 1)2. Since ζ is a unit of norm 1,
N(2c2n − 2) = N(ζ − 1)2. We now compute

N(ζ − 1) =
∏

(e2πil/2n − 1)

where the product is over all integers l between 1 and 2n with gcd(l, 2n) = 1. This is Y2n as needed. �

The following proposition uses the notation established in Definition 3.4 and Proposition 3.5.

Proposition 3.8. Let π be a prime ideal in OK and let %̄ denote the image of % under the reduction modulo
π map. If gcd(n1, n2, n3) = 1, 1

n1
+ 1

n2
+ 1

n3
< 1, and π lies over a rational prime p ≡ 1 (mod `) then the

image %̄(Tn1,n2,n3
) is non-abelian.

Proof. Use ≡ to denote reduction modulo π. By the definition of `, it follows that for k = 1, 2, 3, the integers
2 and nk are coprime to p and therefore are units modulo π. By Lemma 3.7, for n > 2 the norm of 2c2n is
either ±1 or ±q2 where ±q2 occurs only when 2n is twice a power of the prime q. Therefore any such q is
coprime to p as well, and 2c2nk

is a unit in the quotient for k = 1, 2, 3. We will show that %̄ is non-abelian
by showing that %̄(xy) 6= %̄(yx). As we are working in PSL(2,C) we will consider the + and − solution in
terms of the (reduction of the) matrices given above.

We begin by considering the case when n1 = 2 and assume that %̄(xy) ≡ %̄(yx). First, consider the −
solution. From the (2, 1) entries of %̄(xy) and %̄(yx), 2c2n2

≡ 0, so that r2 ≡ −2 from the (1, 1) entries.
The defining equation for r reduces to r2 + 2(1 − c2n3

) ≡ 0 and we conclude that 2c2n3
≡ 0 as well. As

such, p divides NQ(ζ2n2
)/Q(2cn2) and NQ(ζ2n3

)/Q(2cn3). By Lemma 3.7, since π and n2n3 are relatively
prime, we conclude that n2 = n3 = 2 so that nk = 2 for k = 1, 2, 3 contradicting the assumption that
gcd(n1, n2, n3) = 1. Next, consider the + solution. The (1, 1) and (1, 2) entries of %̄(xy) ≡ %̄(yx) imply that
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2r ≡ 2c2n2 and r(r − 2c2n2) ≡ 0. Since the quotient is a field either r ≡ 0 or r ≡ 2c2n2 . In the second case,
since 2r ≡ 2c2n2 we conclude that 2c2n2 ≡ r ≡ 0. In either case r ≡ 0 and therefore 2c2n2 ≡ 0 as well. The
defining equation for r implies that 2 − 2c2n3

≡ 0. By Lemma 3.7 we conclude that p = 2 which cannot
occur.

Now we assume that nk > 2 for k = 1, 2, 3. The image is non-trivial since %̄(x) has off-diagonal entries
equal to ±1. Consider the − solution. By equating the (2, 1) entries, we have that 2c2n2 ≡ −2c2n1 . Using this
to substitute for 2c2n2 the (1, 2) entries imply that 2c2n1r(r + 2c2n1) ≡ 0. The quotient is a field. It follows
that either r ≡ 0 or r ≡ −2c2n1

. If r ≡ 0 then the (2, 2) entries imply that 2 ≡ 0 and so p = 2, which cannot
occur. If r ≡ −2c2n1

then the (2, 2) entries imply that 4c22n1
−1 ≡ 0. This factors as (2c2n1

+1)(2c2n1
−1) ≡ 0

so that 2c2n1
≡ ±1 and r ≡ ∓1. With this, the (2, 2) entries imply that 1 ≡ 0 which cannot happen.

Consider the + solution. The (2, 2) entries imply that r(r − 2c2n2
) ≡ 0 and so r ≡ 0 or r ≡ 2c2n2

.
First consider the case when r ≡ 0. Then the (2, 1) entries imply that 2c2n2 ≡ 2c2n1 . Since r ≡ 0, the
Tr matrix is trivial and %̄(x) = %̄(y) and the image is cyclic. Therefore, %(x)n1 = 1, %(y)n2 = %(x)n2 = 1
and %(xy)n3 = %(x)2n3 = 1, and the order of the cyclic quotient divides gcd(n1, n2, 2n3). By assumption
gcd(n1, n2, n3) = 1, so we need only consider when 2 = gcd(n1, n2, 2n3). Modulo π, this cyclic group is
generated by

%̄(x) ≡
Ç

2c2n1
1

−1 0

å
.

For this to have order 2, 2c2n1
≡ 0 and so p | NQ(ζ`)/Q(2c2n1

). By Lemma 3.7, this norm is ±1 unless
n1 is prime, whence the norm is ±n21. By construction, p is coprime to 2n1 giving a contradiction. It
remains to assume that r ≡ 2c2n2 . The (2, 1) entries imply that 2c2n2 ≡ −2c2n1 . By substituting the r and
2c2n2

values in the minimal polynomial for r with −2c2n1
, we see that 2c2n3

− 2 ≡ 0. Therefore p divides
NQ(ζ2n3

)/Q(2c2n3
− 2). By Lemma 3.7, the norm is ±1 if n3 is not a power of 2 and is ±4 otherwise. This

implies that p = 2 which is a contradiction. �

We now prove that there is a non-trivial representation of any triangle group Tn1,n2,n3
into PSL(2,F) for

a small order finite field F. Here, we assume that gcd(n1, n2, n3) = 1; by Lemma 3.3 if gcd(n1, n2, n3) = d
then Tn1,n2,n3

surjects the non-cyclic group Z/dZ× Z/dZ.

Theorem 3.9. Let nk ≥ 2 be integers for k = 1, 2, 3, ` = 2lcm(n1, n2, n3), and 1
n1

+ 1
n2

+ 1
n3
< 1. There is an

effectively computable c > 0 and a field F with |F| ≤ c`10 such that Tn1,n2,n3
has a non-trivial representation

into PSL(2,F). If gcd(n1, n2, n3) = 1 then this representation is non-abelian.

Proof. Let T = Tn1,n2,n3
. By Xylouris’s improvement upon Linnik’s theorem, there is an effectively com-

putable constant c as above and prime p ≡ 1 (mod `) with p ≤ c`5. (This is proven in Theorem 2.1 of his
doctoral thesis [25]. In [24] he demonstrates an exponent of 5.18.) The congruence condition on p ensures
that p splits completely in Q(ζ`), and therefore p splits completely in Q(c`) ⊂ Q(ζ`). (See [17] Chapter 3
Corollary of Theorem 26 on page 78 for details about splitting and congruences in cyclotomic extensions.)
Let r be as defined in Proposition 3.5. Since K = Q(c`, r) equals Q(c`) or is a quadratic extension of Q(c`)
then any prime ideal π in OK lying over p has NK/Q(π) = p or p2. Proposition 3.5 shows that % is a represen-
tation of T into PSL(2,OK). Upon composing with the reduction modulo π map we have a homomorphism
%̄ of T into PSL(2,F) where F = OK/π has order p or p2. Putting this together, %̄(T ) < PSL(2,F) where
|F| ≤ (c`5)2.

This representation is non-trivial since the (1, 2) and (2, 1) entries ofMn are the units ±1 which survive the
reduction modulo π mapping. By Proposition 3.8 the representation is non-abelian if gcd(n1, n2, n3) = 1. �

A relatively straight-forward analysis handles the cases 1
n1

+ 1
n2

+ 1
n3
≥ 1. Just as above, the following

argument also produces small quotients. In this case, we can be more specific about these quotients. Namely,
they are either Z/2Z × Z/2Z,Z/3Z × Z/3Z, or PSL(2,F) with |F| ≤ n23. The group Z/pZ × Z/pZ embeds
in PSL(2,Fp2), so all of these images are contained in PSL(2,F) for |F| ≤ c`10 as in Theorem 3.9. We have
chosen to remark on the non-cyclic abelian quotients separately because homology can be quickly computed
directly.

Proposition 3.10. Let nk ≥ 2 be integers for k = 1, 2, 3 and assume that 1
n1

+ 1
n2

+ 1
n3
≥ 1. One of the

following holds
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(1) Tn1,n2,n3 surjects a non-cyclic abelian group of order at most 9, or
(2) Tn1,n2,n3

has a non-abelian representation into PSL(2,F) with |F| ≤ n23.

Proof. The possible triples are (2, 3, 6), (2, 4, 4), (3, 3, 3), (2, 3, 3), (2, 3, 4), (2, 3, 5) or (2, 2,m) with m ≥ 3.
In the spherical cases,

T2,3,3 ∼= PSL(2,F3), T2,3,4 < S4
∼= PSL(2,F9), T2,3,5 ∼= PSL(2,F5)

all with non-abelian image.
For the Euclidean cases, T2,3,6 surjects T2,3,3, T2,4,4 surjects the non-cyclic group Z/2Z×Z/2Z, and T3,3,3

surjects the non-cyclic group Z/3Z×Z/3Z. It remains to consider the triangle group T2,2,m with m ≥ 3 odd
as otherwise T2,2,m surjects Z/2Z× Z/2Z. The triangle group T2,2,m is isomorphic to the dihedral group

D2m = 〈s1, s2 | s21 = sm2 , s1s2 = s−12 s1〉

by x 7→ s1, xy 7→ s2. Let p be any prime divisor of m, π a prime in Z[i] lying over p, and F = Z[i]/π. Define
ρ : T2,2,m → PSL(2,F) by

x 7→ ±
Ç
i 0

0 −i

å
, y 7→ ±

Ç
i i

0 −i

å
, so that xy 7→ ±

Ç
1 1

0 1

å
and yx 7→ ±

Ç
1 −1

0 1

å
Then we have that ρ(x) and ρ(y) are order 2 and ρ(xy) is order p. We observe that ρ(yx) 6= ρ(xy) as

otherwise π | 2i and so p = 2 divides m which is not the case. We conclude that T2,2,m is isomorphic to a
non-abelian subgroup of PSL(2,F) where |F| ≤ m2. �

We point out that the characteristic of |F| in the above proof is at most n3.

4. Degree bounds and triangulations of 3–manifolds

This section describes some basic properties of the representations of closed manifold groups. First, note
that given a triangulation of a closed 3–manifold M with t tetrahedra and v vertices, there is a 1-vertex
triangulation of the same manifold with t or fewer tetrahedra [8, Theorems 5.5, 5.6, and 5.14]. We point out
that if M ∼= S3, then there is 1-vertex triangulation of S3 with one tetrahedron.

The following proposition combines the arguments worked out in [1, Theorem 6.12 and Exercise 6.3] with
the existence of a 1-vertex triangulation for M .

Proposition 4.1. Let M be a triangulated, closed, orientable 3–manifold admitting a triangulation with t
tetrahedra. Then there exists a (not necessarily minimal) presentation of π1(M) with at most t+1 generators
and at most 2t relations each of length at most 3.

The presentation obtained in this manner has the advantage that the relations are the same length. We
will use t, the number of tetrahedra in a triangulation T as our measure of the complexity of M . We
are interested in non-abelian representations. As such, we are interested in non-elementary subgroups of
PSL(2,C). We call a subgroup G of PSL(2,C) elementary if the action of G on C has at least one point
with finite orbit. Otherwise, we say it is non-elementary. Non-elementary groups are non-abelian.

We now bound the degree of the trace field of certain ρ(G) < PSL(2,C) by a function of t. We will then
apply this bound to our triangle group representations % of Seifert fiber space groups from Definition 3.4 in
Section 3. As in the proof of Proposition 3.5, our proof below makes use of the PSL(2,C) character variety
of the (finitely presented) group G, which we define as the set

{χρ | ρ : G→ PSL(2,C)}

where the character is the function χρ : G→ C defined by χρ(g) = (tr(ρ(g)))2. This set is a complex affine
algebraic set defined over Q.

Lemma 4.2. Let G be a group with at most t+ 1 generators and at most 2t relations each of length at most
3. Let X be an irreducible component of the PSL(2,C) character variety of G of dimension 0, such that
the representations corresponding to X are non-elementary. For any representation ρ : G→ PSL(2,C) with
χρ ∈ X, the degree of the trace field of ρ(G) is bounded above by 2t−136t.
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Proof. We will label the generators of ρ(G) as ξk and we will assume that the first two generators in our
presentation generate a non-elementary subgroup (that is they do not commute and do not have a common
fixed point). After conjugating the image of ρ(G) if necessary, we may assume that each generator is of the
form

γ1 = ±
Ç
α1 1

0 α−11

å
, γ2 = ±

Ç
α2 0

γ2 α−12

å
, and γk = ±

Ç
αk βk

γk δk

å
for k > 2. The field L = Q({αk, βk, γk, δk}k≥1) is necessarily a number field, since dimCX = 0 and is the field
of definition of ρ. Let R(G) be the (restricted) representation variety of G determined by representations of
this type. That is, R(G) is the set of all such representations of G. The set RX(G) = {ρ ∈ R(G) : χρ ∈ X}
is zero-dimensional by the triple transitively of PSL(2,C) and the fact that X has dimension 0.

The variety RX(G) is determined by the determinant equations and the relation equations. There are t−1
equations for the determinants, αkδk − βkγk − 1 = 0, which have degree 2. Each of the t+ 1 relations gives
4 equations, one per matrix entry. We only need 3 of these equations per relation, since the fourth entry is
determined by the fact that all matrices have determinant 1. Thus, there are at most 6t equations we need
to use coming from the relations and t− 1 equations of degree 2 coming from the determinant condition.

We conclude that there are at most t − 1 degree 2 equations and 6t degree 3 equations which cut out
a 0 dimensional variety whose entries are in the number field L. By repeatedly applying resultants then
appealing to Bezout’s theorem, [L : Q] ≤ 2t−136t.

The degree of the trace field of ρ(G) is also bounded above by 2t−136t since tr(ρ(G)) ⊂ L. �

5. An algorithm to distinguish small Seifert fiber spaces from lens spaces

In this section, we provide a method for distinguishing a small, non-cyclic Seifert fiber spaceM from a lens
space and S1×S2. If an orientable Seifert fiber space is not small, then it is toroidal. By work of Scott, Jaco
and Shalen summarized in Proposition 3.2, the base orbifold forM is of the form S2(n1, n2, n3). In particular,
a Seifert fiber space with base orbifold RP2(p) also admits a Seifert fibration with base orbifold S2(2, 2, p). By
[4, Theorem 4], such a toroidal manifold can be distinguished from spaces with cyclic fundamental group in
polynomial time. As discussed in Section 2.2, if the Seifert fiber space is small and non-cyclic the certificate
required in Theorem 1.2 is a non-abelian representation to PSL(2,F) or non-cyclic homology, which can be
verified in polynomial time. Specifically, by Proposition 3.2 if M is a small, prime, non-cyclic Seifert fiber
space then π1(M) surjects a triangle group Tn1,n2,n3

. By Lemma 3.3 if gcd(n1, n2, n3) > 1 then M has
non-cyclic homology. Theorem 3.9 guarantees a non-abelian representation to PSL(2,F) if the base orbifold
is hyperbolic and gcd(n1, n2, n3) = 1. In the remaining case where gcd(n1, n2, n3) = 1 and the base orbifold
is non-hyperbolic Proposition 3.10 guarantees bounded non-cyclic homology or a non-abelian representation
to PSL(2,F) for F small. Below we make these statements precise.

Algorithm 5.1 Distinguish M , an orientable, small, non-cyclic Seifert fiber space from a lens space
Input: A triangulation of M , a small, non-cyclic Seifert fiber space, into t tetrahedra. Note that the base
orbifold is of the form S2(n1, n2, n3).
Step 1: Compute the homology of M and check if H1(M) is cyclic. If not, return the homology.
Step 2: (H1(M) is cyclic.) Enumerate primes {p} until π1(M) admits a non-trivial, non-abelian
PSL(2,Fp2) representation.

In Step 2 of Algorithm 5.1, four cases are possible: the base orbifold is hyperbolic, the base orbifold is
S2(2, 2,m), the base orbifold is Euclidean or the base orbifold is spherical but not S2(2, 2,m). In the latter
three cases, Proposition 3.10 determines bounds on size of the non-cyclic representation. These bounds are
related to the triangle group data. Parametrizing these bounds in terms of t and dealing with the hyperbolic
case will occupy the remainder of this paper.

Long and Reid (see [15, Proof of Theorem 1.2]) show the existence of non-trivial, non-abelian PSL(2,Fp)
representations for infinitely many primes p via quaternion algebras. Here p is any split prime in the trace
field ofM . Their method does not require prescreening by the homology check in Step 1, and does not bound
the size of p. Theorem 5.2 below provides a direct proof that such a PSL(2,Fp) or PSL(2,Fp2) representation
exists in this setting and bounds the size of p. To use the non-trivial PSL(2,Fp) or PSL(2,Fp2) representation
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as a suitable certificate it is enough that log(p) is bounded by a globally defined polynomial parametrized
by t as log(p) (plus some constant) bounds the bit-size of the entries of those matricies (see Section 2.2).

We begin with a few lemmas. First, we give the following bound on n in terms of φ(n)2.

Lemma 5.1. Let n > 2 be an integer. Then φ(n) < n ≤ φ(n)2 where φ denotes Euler’s function.

Proof. By definition φ(n) = n
∏
p|n(1 − 1

p ) where the product is over distinct primes dividing n. It suffices
to show that n ≤ φ(n)2. Since φ(n) is multiplicative it’s enough to show that for an integer k ≥ 1 and a
prime p that pk ≤ φ(pk)2 unless p = 2 and k = 1. Since φ(pk)2 = p2k−2(p− 1)2 it is elementary to see that
if p 6= 2, then

pk ≤ p2k−2(p− 1)2 = φ(pk)2.

If p = 2 this inequality holds for k > 1. �

We are now ready to prove our main technical result. The proof of our main theorem, Theorem 1.2,
follows after. The key ingredients of this theorem have already been established, and we now reconcile the
bounds discussed above in Proposition 3.5 and Lemma 4.2 to establish a connection between the number
of tetrahedra in a triangulation of a small, non-cyclic Seifert fiber space and the size of a small congruence
quotient.

Theorem 5.2. Assume that M is an orientable, closed, small, non-cyclic Seifert fiber space admitting a
triangulation with t tetrahedra. Then either π1(M) surjects a non-cyclic abelian group of order at most
24t324t or π1(M) surjects a (non-trivial) non-abelian subgroup of PSL(2,F) where |F| < c(220t3120t) for some
effectively computable c > 0.

Proof. IfM ∼= RP3#RP3, then π1(M) surjects Z/2Z×Z/2Z and the claim is satisfied. Otherwise, we assume
M is prime. As usual, we use t to denote the number of tetrahedra in our triangulation T . Since M 6∼= S3,
by [8, Theorems 5.5, 5.6, and 5.14] either T is a 1-vertex triangulation of there is a 1-vertex triangulation
with at most t tetrahedra. Therefore we can assume that T is a 1-vertex triangulation.

By the discussion in Section 3, the base orbifold is of the form S2(n1, n2, n3) and π1(M) surjects Tn1,n2,n3 .
Let ` = 2lcm(n1, n2, n3) and d = gcd(n1, n2, n3).

First we assume that the base orbifold is hyperbolic. We begin by showing that ` is bounded above
by 22t312t. By Proposition 3.5, K = Q(c`, r) is the field of definition of the representation % given in
Definition 3.4 and Q(c`) is the trace field with [Q(c`) : Q] = 1

2φ(`). Moreover, by Proposition 3.5 this
representation is rigid and the corresponding component of the character variety has dimension 0. By
Lemma 4.2,

[Q(c`) : Q] ≤ 2t−136t.

By Lemma 5.1, 1
2`

1
2 ≤ 1

2φ(`) and since 1
2φ(`) = [Q(c`) : Q] we have

1
2`

1
2 ≤ 1

2φ(`) = [Q(c`) : Q] ≤ 2t−136t

which implies our claimed bound for `.
If d > 1, then by Lemma 3.3, Tn1,n2,n3

surjects Z/dZ× Z/dZ. Since this is abelian we conclude that the
integral homology of π1(M) contains a subgroup isomorphic to Z/dZ×Z/dZ. By the above, ` ≤ 22t312t and
since d < ` the statement follows.

If d = 1, by the above ` ≤ 22t312t. By Theorem 3.9 there is an effectively computable c′ > 0 and a field F
with |F| ≤ c′`10 such that Tn1,n2,n3 has a non-abelian representation into PSL(2,F). The statement follows
from combining these bounds.

It remains to consider the case when the base orbifold is not hyperbolic. By Proposition 3.10 unless the
base orbifold is S3(2, 2,m) for m ≥ 3 odd, π1(M) has a non-abelian representation into PSL(2,F) with
|F| ≤ 9 or surjects a non-cyclic abelian group of order at most 9. In the case when the base orbifold is
S3(2, 2,m) for m ≥ 3 odd, π1(M) has a non-abelian representation into PSL(2,F) with |F| ≤ m2 (again
by Proposition 3.10). It suffices to show that in this case m ≤ 36t so that |F| ≤ 312t. The image of this
representation is isomorphic to the dihedral group of order 2m and so π1(M) contains an index 2 subgroup.
Therefore M has a double cover M̃ , such that |π1(M̃)ab| surjects Z/mZ. Since M̃ is a double cover, and
M has a triangulation with t tetrahedra, M̃ has a triangulation with at most 2t tetrahedra. Therefore M̃
has a 1-vertex triangulation with at most 2t tetrahedra. Therefore, by Proposition 4.1 we can construct a
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presentation for π1(M̃) with at most 2t+1 generators and 4t relations each of length 3. We note that π1(M)

and π1(M̃) are elliptic manifolds, and therefore have finite fundamental group and finite homology. Using
Proposition 2.2, for example, we conclude that |π1(M̃)ab| ≤ 34t, so that m ≤ 34t. �

We now prove the main theorem.

Proof of Theorem 1.2. Let t be the number of tetrahedra in a triangulation of M . By Proposition 2.1 there
is a polynomial time algorithm in t to determine whether M is orientable or non-orientable. Therefore we
can distinguish non-orientable 3–manifolds from lens spaces. We now assume thatM is orientable. The only
two orientable reducible Seifert fiber spaces are RP3#RP3 and S1 × S2. Both S1 × S2 recognition and
RP3#RP3 recognition problems lie in NP (see [6, Theorem 3]). These certificates can then be used to
certify that M is not a lens space. (More concretely, if M ∼= RP3#RP3, H1(M) ∼= Z/2Z×Z/2Z.) Therefore
it suffices to consider orientable, prime, non-cyclic M .

If M is not small, then it is toroidal and we appeal to [4, Theorem 4], which certifies that M is not a
lens space via a polynomial time verifiable certificate with input of size t. Finally, we may assume that M
is orientable, small, prime, and non-cyclic. We combine the results from Theorem 5.2 and Proposition 2.4
to prove that such a certificate exists. �

Corollary 1.3 immediately follows from the arguments stated above.

Remark 5.3. Although not Seifert fiber spaces, we point out that only one Sol manifold has cyclic homology
(see [21] for example). In the one case of cyclic homology, the double cover has homology Z/5Z × Z. So if
M admits Sol geometry, the homology of the manifold or its double cover serves as a certificate that M is
neither a lens space nor S1 × S2.

In light of our results, to prove part 1) of Conjecture 1.1 it is enough to show that S3 recognition
lies in coNP for hyperbolic integral homology spheres. We anticipate that the extension to lens space
recognition will be considerably more difficult. However our initial discussions on the Seifert fiber space
case began by seeking a sufficiently small, non-trivial PSL(2,F) representation. We later realized our methods
apply in the more general setting as described above.
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