
ar
X

iv
:1

90
7.

01
67

5v
3 

 [
m

at
h.

G
T

] 
 1

2 
Se

p 
20

22

On the complexity of cusped non-hyperbolicity

Robert Haraway III Neil R. Hoffman

September 13, 2022

Abstract

We show that the problem of showing that a cusped 3-manifold M

is not hyperbolic is in NP, assuming S
3
recognition is in coNP. To

this end, we show that Irreducible toroidal recognition lies in NP.

Along the way we unconditionally recover Satellite knot recognition

lying in NP. This was previously known only assuming the Generalized

Riemann Hypothesis. Our key contribution is to certify closed essential

normal surfaces as essential in polynomial time in compact orientable

irreducible ∂-irreducible triangulations. Our work is made possible by

recent work of Lackenby showing several basic decision problems in 3-

manifold topology are in NP or coNP.
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1 Introduction

1.1 Our main results

One useful property to know about a 3-manifold is whether or not it is hyperbolic—
that is, whether or not it is homeomorphic to a finite volume quotient of H3 by
a group of isometries acting properly discontinuously. The decision problem of
hyperbolicity is computable ([20, 22]), but not much is known about its com-
plexity class. We will focus on the class of cusped orientable 3-manifolds. Here
a cusped 3-manifold is a compact orientable 3-manifold with nonempty bound-
ary consisting of a finite disjoint union of tori. We stress that all 3-manifolds
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we discuss will be orientable here and throughout the paper. More specifically,
we seek to understand the complexity of certifying a negative answer to this
decision problem. The main result of this paper is as follows:

Theorem 1. Suppose S3 recognition lies in coNP. Then among cusped 3-
manifolds, hyperbolicity lies in coNP.

We have taken care to minimize our result’s dependence on a coNP solution
to S3 recognition, the decision problem to recognize S3 among triangulations
of manifolds. Of course, this problem is known to be decidable ([25, 28]) and lie
in NP ([16, 27]), but the hypothesis is about certificates for affirming a negative
result. If we restrict to the set of irreducible manifolds, we may obtain the
unconditional result:

Theorem 2. Among irreducible orientable cusped 3-manifolds, hyperbolicity
lies in coNP.

Along the way, we recover unconditionally the following theorem of Baldwin
and Sivek [2, Thm. 1.3], removing its dependence upon the Generalized Riemann
Hypothesis. We follow the convention that satellite knot recognition is
the decision problem which takes as its input a knot (here a set of n edges in
embedded in S3) and determines if it has a toroidal complement.

Theorem 3. Satellite knot recognition lies in NP.

This follows as a special case of the following theorem. We say the irre-

ducible toroidal recognition problem is the decision problem to decide if
an irreducible manifold is toroidal.

Theorem 4. Irreducible toroidal recognition lies in NP.
In other words, if T triangulates an orientable closed or cusped 3-manifold

that is also irreducible and toroidal, then there is a certificate that T is irre-
ducible and toroidal that is verifiable in time polynomial in |T |.

We structure our nonhyperbolicity certificate according to a celebrated the-
orem of Thurston. Assuming M is both irreducible and neither a solid torus nor
T2×I, Thurston [29] showed that M is either Seifert fibered, toroidal, or hyper-
bolic. Typically, the theorem below is presented adhering to that trichotomy,
but the following reformulation is more useful for disproving hyperbolicity.

Theorem 5 ([29, Thm. 2.3]). Let M be a cusped 3-manifold. M is non-
hyperbolic if and only if it admits an essential connected compact surface of
nonnegative Euler characteristic.

There are but seven connected compact surfaces of nonnegative Euler char-
acteristic: the projective plane P 2, the sphere S2, the disk D2, the Klein bottle
K2, the torus T 2, the Möbius strip M2, and finally the annulus A2. Thus, to
prove our main theorem, it will suffice to give, for any triangulation T of a non-
hyperbolic cusped 3-manifold, a certificate verifiable in time polynomial in T
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(that is, polynomial in its number of tetrahedra) that T admits such a surface.
The certificates we give are either normal such surfaces or appeals to the works
of others, which themselves appeal in no small part to normal surfaces. Thus we
will begin the body of this paper with a review of normal surfaces, and of useful
intermediate results from [1] and [21]. Then, after building up the necessary
intermediate certificates, we give the certificates advertised above. Before doing
so, however, we now give a brief review of the literature.

1.2 Brief review of some relevant literature

Haken’s foundational result that unknot recognition is decidable [13] estab-
lished the importance of algorithms in low dimensional topology using normal
surface theory. Hass, Lagarias and Pippenger [15] analyzed the complexity of
this problem and showed that unknot recognition lies in NP. Their paper
contains a number of other foundational results—namely, the bounds on the
size of fundamental and vertex normal surfaces’ coordinates—which continue to
be relied upon or imitated (for example, later in this paper).

We point the reader to [19] for many of the original solutions to important
decision problems utilizing normal surface theory, and we also point the reader
to Matveev’s book [23] for further background.

In Theorem 3 of [16], Ivanov showed, among many other things, that S1×D2

recognition lies in NP. We appeal to this result frequently. This is distinct
from unknot recognition, since in the latter problem one is allowed the
assumption during verification that the given 3-manifold is known to be irre-
ducible. One could show that S1 × D2 recognition lies in NP more or less
directly using Schleimer’s result in [27] that S3 recognition lies in NP, after
appealing to [1] as Lackenby did to take exteriors in polynomial time.

Reducibility is where we assume that S3 Recognition lies in coNP. This
assumption follows from the Generalized Riemann Hypothesis by the work
of Zentner in [31], using his own work on splicing irreducible representations
into SL(2,C), and using Kuperberg’s work in [20] on turning such represen-
tations into nonabelian representations into SL(2,Fp) for sufficiently small p;
one bounds the size required on such a prime p using the Generalized Riemann
Hypothesis.

Lackenby in [21] has shown that among irreducible cusped 3-manifolds, S1×
D2 recognition lies in coNP. In fact, much more is true—he showed that
irreducible knotted recognition lies in NP. That is, if M is irreducible
and not S1 × D2, then there is a certificate verifying both of these properties
simultaneously.

For their satellite knot certificate, in [2] Baldwin and Sivek made an ap-
peal to the work of Berge [3] and Gabai [10, 11] on classifying knots in solid
tori. However, Baldwin and Sivek got a certificate using representations into
SL(2,C). Thus, their certificate’s size bound depends on Kuperberg’s work, and
hence on the Generalized Riemann Hypothesis. Our appeals to normal surface
theory removes this dependence in a number of relevant cases. Nevertheless, we
still depend on Berge and Gabai.
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2 Background

To provide the minimal background needed in complexity theory, the reader
should consult Schleimer’s brief summary in [27]. For our purposes, a decision
problem lies in NP if there is a polynomial time verifiable certificate, or proof,
of an affirmative answer. Likewise, a decision problem lies in coNP if there is a
polynomial time verifiable certificate of a negative answer.

When constructing such a certificate, one can assume more about a given
input than one can at verification time. A trivial general example is that dur-
ing construction, one can assume the answer to the decision problem is Yes (if
the problem is in NP). But during verification, this is just what the certificate
asserts. If we were allowed to assume the answer were Yes during verification,
we could dispense with the certificate entirely. In general, during verification,
the only assumptions you can make about the input are those derivable in poly-
nomial time from the input itself and from the certificate. We gave an example
above: the distinction between unknot recognition and S1 × D2 recog-

nition. With unknot recognition, knot exteriors in S3 are all irreducible,
so one may assume irreducibility during verification. The same is not true for
S1 ×D2 recognition; the input is any triangulation, and arbitrary triangula-
tions might be reducible. To assume irreduciblity during verification, one would
have to include a short proof of it in the certificate.

We will work throughout in the PL category, and we will use the standard
kind of triangulation, defined as follows:

Definition. Given a disjoint union T of closed tetrahedra; and given a partition
Π of some subset of the faces of these tetrahedra into pairs; and, finally, for each
pair (f, f ′) in Π, given a cell-isomorphism or gluing φ(f,f ′) between f and f ′,
one may construct a cell-complex by identifying the tetrahedra along the gluings,
and remembering all this information. A cell-complex so constructed we call
a triangulation. All triangulations are constructed this way. The underlying
space of a triangulation is the topological space resulting from the identification.

A triangulation T with finitely many tetrahedra is a (material) triangula-
tion of a compact 3-manifold M when T is homeomorphic to M . This will be
the convention throughout this paper and we will use |T | to denote the number
tetrahedra in the triangulation T .

Finally, we use T (0),T (1),T (2) to denote the 0-,1- and 2-skeletons of T .

Because T is a representative of the manifold M and is indeed the input to
our algorithms, we will use T to denote the manifold of interest throughout the
paper.

Remark 6. The above definition is more permissive than the definition of a
simplicial complex, since it does not require cell-inclusion maps to be embeddings.
For instance, there is a triangulation of the 3-sphere with one tetrahedron. But
the only simplicial complex with one tetrahedron is the tetrahedron itself.

Remark 7. Another notion of triangulation is ideal triangulations, which typi-
cally use fewer tetrahedra. As useful as ideal triangulations are in other contexts,

4



we eschew them here. We mention “material” triangulations only to emphasize
this. It is worth pointing out that, given an ideal triangulation T of a 3-manifold
M , one may associate a material triangulation T ′ to M in time polynomial in T
by taking a second barycentric subdivision and removing the tetrahedra around
the ideal vertices of T . A construction due to Weeks (see [30, pp. 469–470])
allows the converse operation, going from a material triangulation to an ideal
triangulation.

Remark 8. Lackenby prefers to use handle structures instead of triangulations
(for good reason; see [21, §1.3]), but we relied mainly on triangulations in this
work. These two kinds of structure are polynomially equivalent. That is, given
a handle structure H on a 3-manifold with a given total number of cells h, one
may calculate in time polynomial in h a triangulation T of the same 3-manifold,
and vice versa. Lackenby gives one such equivalence in [21]. Triangulations ad-
mitting splitting surfaces as in [4, Chapter 4] provide another such equivalence.

Our work depends on the theory of normal surfaces.

Definition. Suppose T is an orientable triangulation. All the following defini-
tions depend upon this choice of T .

A normal isotopy of a triangulation is an isotopy φ : T × I → T leaving
the triangulation invariant—i.e. such that, for every t ∈ I, the homeomorphism
x 7→ φ(x, t) is a cell-isomorphism from T to itself.

A normal disk in a tetrahedron τ of T is a properly embedded disk in τ
normally isotopic to the intersection of τ with an affine plane transverse to τ .
If it separates one vertex from the others, or links the vertex, then the disk is a
triangle. Otherwise the plane separates two pairs of vertices, and the disk is a
quadrilateral, or quad.

A normal surface in T is a properly embedded surface Σ →֒ T transverse to
T (2) such that Σ is the union of finitely many normal disks.

A link of a vertex v of T is a normal surface in T consisting of one of each
normal triangle disk linking v. These are “trivial” normal surfaces.

The normal disk set of T is the set ∆ of normal isotopy classes of normal
disks in T . It has cardinality 7 · |T |.

The (normal) coordinates of a normal surface Σ are constituted by the func-
tion xΣ : ∆ → N defined by letting xΣ(d) be the number of normal disks of Σ in
the normal isotopy class d.

The (total) weight of a PL surface Σ in T transverse to T (2) is |Σ ∩ T (1)|.

A normal surface is determined up to normal isotopy by its coordinates.
Therefore, one may combinatorially represent a normal surface via its coordi-
nates. That is to say, letting N (T ) be the set of normal isotopy classes of normal
surfaces in T , the function x· : N (T ) → N

∆(T ) taking such a class to the co-
ordinates of one of its members is not only well-defined, but also is injective.
However, it is not surjective. For instance, no normal surface Σ has xΣ(q) > 0
and xΣ(q

′) > 0 for two distinct normal isotopy types q, q′ in a single tetrahedron
of T .
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Not every surface in T is isotopic to a normal surface. However, many
surfaces important for 3-manifold topology can be so isotoped. We will also
regard those properties T (or M) that can be computed from T in polynomial
time as inherent to T . For example, if T can be distinguished from T2 × I by
a polynomial-time computable invariant such as number of cusps or homology,
we say it can be distinguished via the empty certificate. Our convention here
would be to avoid unnecessary storage of certificates in such cases.

We refer the reader to [18] for a simple “shrinking” normalization procedure
that produces normal such surfaces from non-normal ones.

The set of normal surfaces is infinite, even when considered only up to normal
isotopy. However, normal surfaces can sometimes be added together. Normal
surfaces that cannot be expressed as such a sum end up forming a finite set.
That is the class of surfaces we will focus on. While summation can be defined
strictly with respect to vectors, we use geometric sum in Lemma 31. Geometric
sum uses the following definition.

Definition. Two quads q, q′ in the same tetrahedron with different normal iso-
topy type are said to clash. A pair of normal surfaces X,Y is admissible when
no two normal quads from X and Y clash.

If S, S′ are an admissible pair of normal surfaces, then xS + xS′ is the vec-
tor of a normal surface. Briefly, this is because both xS , xS′ are solutions to
a homogeneous linear system of equations, Haken’s matching equations ; by ho-
mogeneity, xS +xS′ is therefore also a solution; and by admissibility of the pair,
the formal solution is the vector of an actual normal surface.

Haken gave a geometric construction of this surface, which construction is
called the geometric or Haken sum S + S′. Briefly, we may normally isotope S
so that S, S′ are transverse. Suppose κ is a component of S ∩ S′. Let N be a
small regular neighborhood of κ in T . We can establish a product structure on
N such that N = κ×D2 and such that for all p ∈ κ, (S∪S′)∩({p}×D2) is × in
the disc, i.e. two properly embedded arcs intersecting once in their interiors. We
can replace (S ∪S′)∩N with one of two surfaces, whose intersection with every
such {p} × D2 is instead a pair of disjoint arcs with the same four boundary
points as the ×. This resolves the intersection. Haken showed that when X,Y
are admissible, exactly one of the two resolutions produces an immersed normal
surface, i.e. a (possibly non-disjoint) union of normal discs. On performing all
such resolutions, one gets an immersed normal surface with no self-intersections,
i.e. just a normal surface. Any two such normal surfaces gotten by completely
resolving the intersections are normally isotopic. So X + Y , the geometric sum
of X and Y , is well-defined up to normal isotopy.

For Lemma 31 we note here that if [X ] and [Y ] are the classes of X and Y in
H2(T , ∂T ;Z/2Z), then [X + Y ] = [X ] + [Y ], because resolutions don’t change
Z/2Z homology. Resolutions also respect weight, so that we have wt(X + Y ) =
wt(X) + wt(Y ). Finally, X + Y has as many d-cells as X and Y combined, for
all d = 0, 1, 2. So in particular, χ(X + Y ) = χ(X) + χ(Y ).

Now we define the finite class of normal surfaces we use.
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Definition. A normal surface Σ is fundamental when, for any two normal
surfaces X,Y , we have X + Y = Σ if and only if {X,Y } = {Σ, ∅}.

A common refrain in normal surface theory is that if there is an “interest-
ing” surface, then there is a fundamental one. We first give some examples of
“interesting” surfaces. We follow that by a proposition that fits the trope. It is
of fundamental importance to this paper, and is how we structure our certificate
of non-hyperbolicity and its verification. Its proof mostly just points the reader
to [23].

Definition. Suppose T triangulates a compact 3-manifold. Suppose Σ is a
tame, connected, properly embedded surface in T .

Σ is an essential sphere when it is an sphere that does not bound a ball.
T is irreducible when it admits no essential sphere.
Σ is a compressing disk when it is a disk whose boundary is essential in ∂T .
T is ∂-irreducible when it admits no compressing disk.
T is 0-efficient when it admits no nontrivial normal surfaces of positive Euler

characteristic.
Σ is compressible when there is an essential curve γ in Σ and a tame em-

bedded disk D in T such that D ∩ Σ = γ = ∂D.
Σ is ∂-compressible when there is an essential arc α in Σ and a tame em-

bedded disk D in T and an arc β of D such that α = D ∩ Σ, β = D ∩ ∂T ,
α ∩ β = ∂α = ∂β, and α ∪ β = ∂D.

Σ is ∂-parallel when it is isotopic relative to its boundary to a subsurface of
∂T .

Σ is essential (assuming it is not a sphere) when it is incompressible, ∂-
incompressible, and not ∂-parallel.

T is toroidal when it is irreducible and ∂-irreducible and admits an essential
torus.

Proposition 9. Suppose T is an orientable material triangulation of a 3-
manifold. Let F be the set of fundamental normal surfaces in T up to normal
isotopy. Then

• if there is an embedded P 2, then there is one in F ;

• otherwise, if there is an essential S2, then there is one in F ;

• otherwise, if there is a compressing D2, then there is one in F ;

• otherwise, if there is an essential K2, then there is one in F ;

• otherwise, if there is an essential T 2, then there is one in F ;

• otherwise, if there is an essential M2, then there is one in F ;

• otherwise, if there is an essential A2, then there is one in F .

Proof. Suppose T is an orientable material triangulation. Let F be the set of
fundamental normal surfaces (up to normal isotopy).
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P 2: If T admits an embedded P 2, then by [23, Theorem 4.1.12], T admits a
fundamental such surface.

S2: Otherwise, if T admits an essential sphere, then again by [23, Theorem
4.1.12], T admits a fundamental such sphere, since T admits no embedded
P 2.

D2: Otherwise, if T admits a compressing disk, then by the proof of [23, The-
orem 4.1.13], T admits a fundamental such disk, since T is irreducible.

K2: Otherwise, if T admits an essential K2, then by irreducibility there is a
normal surface Σ isotopic to this Klein bottle, e.g. by applying the shrink-
ing procedure of [18]. Suppose Σ = S+S′. We follow an argument similar
to the proof of [23, Lemma 6.4.7]. Since T is irreducible and orientable,
and since Σ is incompressible, by [23, Lemma 3.3.30] and [23, Theorem
4.1.36], both S and S′ are connected, incompressible, and not S2 or P 2.
Hence they both have Euler characteristic 0. Also, they are closed. Since
Σ is not orientable, at least one of S, S′ is not orientable. Without loss
of generality, S is not orientable; since it is closed and χ(S) = 0, S is a
Klein bottle. If S′ is not empty, then the weight w(S) = |S ∩ T (1)| is less
than w(Σ) = |Σ ∩ T (1)|. Hence by descent on weight, one arrives at an
embedded Klein bottle Σ such that if Σ = S + S′, then one of S or S′ is
empty—that is, we arrive at a fundamental normal essential Klein bottle.

T 2: Otherwise, suppose T admits an essential T 2. By [23, Lemma 6.4.7], T
admits either a fundamental normal such surface, or a fundamental normal
Klein bottle K with K + K being an essential T 2. But this latter case
would mean K was an essential Klein bottle, contrary to assumption.
Thus T admits a fundamental normal essential T 2.

M2: Otherwise, if T admits an essential Möbius strip M2, then it admits a
normal essential band Σ, again by [18]. Just as before, if Σ = F + F ′,
then by the same lemmata, F and F ′ are connected, incompressible, ∂-
incompressible, and not S2, P 2, or D2. Hence their Euler characteristics
are 0. One of them, say F , has exactly one boundary component, and the
other F ′ is closed. If F ′ were nonorientable, then it would be an embedded
Klein bottle, contrary to assumption. Hence F is nonorientable, and is
thus an embedded Möbius band; and by the same lemmata as above is
essential, being incompressible and ∂-incompressible. By descent as above,
T admits a fundamental normal embedded Möbius band.

A2: Otherwise, if T admits an essential annulus, then it admits a normal such
annulus Σ. By [23, Lemma 6.4.8], there is a fundamental such annulus,
since T admits no Möbius band.

The following bound of Hass, Lagarias, and Pippenger improves on the mere
computability of F .
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Lemma 10 (Hass, Lagarias, Pippenger [15, Lemma 6.1(2)]). If T is a triangu-
lation of a compact 3-manifold with t tetrahedra, and F is the set of coordinates
of fundamental normal surfaces of T , then for every f ∈ F ,

max
d∈∆(T )

f(d) ≤ t · 27·t+2.

The point about this bound is that the surfaces from the previous proposition
admit representations of (bit-)size polynomial in t, since to represent a surface
one may represent its coordinates. One may represent these coordinates in
place-value notation, which only requires space proportional to the logarithm of
these coordinates.

The fact that one may represent such a normal surface with a polynomial
amount of data suggests, together with Kneser-Haken finiteness, that the topo-
logical classification of a normal surface F of total weight W ought to be at
least representable with an amount of data polynomial in T and logW . In fact,
much more is true. We have the following remarkable corollary of Agol, Hass,
and Thurston in [1, Corollary 17], another result to which we appeal frequently:

Proposition 11 (Agol, Hass, Thurston). Suppose T is a triangulation with
t tetrahedra, and suppose F is a normal surface in T of total weight W =
|F ∩ T (1)|.

There is an algorithm that, in time polynomial in T and logW , determines
the coordinate vectors of the normal isotopy types of components of F , deter-
mines the homeomorphism class of each such type, and determines how many
of each such type there are.

We also recall here a crucial intermediate result, a simple consequence of
[21, Theorem 9.3], which Baldwin and Sivek also relied upon in [2]. The result
relies on the notion of parallelity bundle. In general this is a notion to do with
handle structures. For us the particular kind of handle structure that motivates
the definition is this. Suppose Σ is a normal surface in a triangulation T . Let
C be the natural cellulation on the exterior of Σ in T . Let H be the inverted
corresponding handle structure on the underlying space of C. That is, let the
3-handles H3 of H be a small regular neighborhood of the vertices of C; and
for 0 ≤ i < 3 let the (2− i)-handles H2−i of H be a small regular neighborhood
of C(i+1) \ intH3−i in C. So 2-handles come from edges of C, 1-handles from
faces, and 0-handles from 3-cells. See Figures 1, 2, and 3.

Let F0 be H1∩∂H0 and F1 be H2∩∂H0. These are “islands” and “bridges”
in Matveev’s terminology [23, §3.4]. The choice of the letter F has nothing to
do with fundamental surfaces, either.

With these conventions we make the following definition.

Definition (Parallelity bundle). Quoting from [21, §9.2], a parallelity handle
H of H is a handle admitting “a product structure D2 × I such that

1. D2 × ∂I = H ∩Σ; [and]

2. each component of F0 ∩H and F1 ∩H is β × I for a subset β of ∂D2.”
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Figure 1: A parallelity 0-handle coming from a type IV cell

Figure 2: A parallelity 1-handle coming from a trapezoid
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Figure 3: A regular neighborhood of an interstitial arc, and the parallelity 2-
handle coming from the arc

Theorem 12 (Lackenby). There is an algorithm that takes, as its input,

(i) a triangulation T , with t tetrahedra, for a compact orientable manifold M ;
and

(ii) a vector ~S for an orientable normal surface S with no two components
normally isotopic,

and provides, as its output, the following data, in time that is bounded by a
polynomial in t · log |S ∩ T (1)|.

If M ′ is the manifold that results from decomposing along S, and S′ is the
two copies of S in ∂M ′, and B is the parallelity bundle for the pair (M ′, S′)
with its induced handle structure, then the algorithm determines the following
information: a handle structure for cl(M ′ − B) and, for each component B of
B,

(i) the genus and number of boundary components of its base surface;

(ii) whether B is a product or twisted I-bundle; and

(iii) the location of ∂vB in cl(M ′ − B).

With the above theorem we can state the following proposition. We placed
the proof of the proposition in an appendix.

Proposition 13. There is an algorithm that takes as its input both a compact
orientable connected triangulation T of t tetrahedra and a connected normal
surface S in T given as a vector, and provides as its output a triangulation of
an exterior of S, and that moreover provides this output in time polynomial in
t and |χ(S)|.
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The example of a large number of parallel normal discs in a tetrahedron
shows it is necessary for S to be connected.

We provide a proof of Proposition 13 in an appendix, since it follows fairly
easily from Lackenby’s work.

The above operation due to Lackenby can triangulate the exterior of, say, a
normal sphere of weight 2n with O(|T |+ n) tetrahedra, where T is the original
triangulation. As good as this is, it may not reduce the number of tetrahedra.
On the other hand, the crushing operation always produces a smaller triangula-
tion. This procedure was introduced by Jaco and Rubinstein in [18] and refined
by Burton in [5]. The implementation of crushing below is in some sense a
blend of the two. We omit some of Jaco and Rubinstein’s restrictive conditions
to set up a crushing procedure. This reduces the process to relatively easy-
to-implement operations at the expense of possibly over-simplifying the prime
decomposition of the manifold. In that sense, the result of crushing may not
account for all components in the prime decomposition of the exterior. How-
ever, when crushing along spheres or discs, the differences from the exterior are
well-understood and will be discussed below. Furthermore, we will only use this
operation to certify homeomorphism between a triangulation and a 0-efficient
triangulation.

Before defining crushing, we start with something more straightforward.
Suppose Σ is a normal surface in the closed triangulation T . Let Σ∗ be Σ
with a disjoint union of vertex links, so that Σ∗ contains one of each such vertex
link as a component. Then the exterior ⇂ Σ∗ of Σ∗ in T naturally inherits a
cell structure from T with interstitial cells of five types. The type I cells are
truncated tetrahedra. The type II cells are truncated half-tetrahedra, or purses.
The type III and IV cells are triangular and quadrilateral prisms, respectively.
Finally, the type V cells are tetrahedra incident to vertices of T . The interesting
components of ⇂ Σ∗ are those without type V cells. So we want to ignore cells
of type V.

Definition. If Σ is normal in T , and Σ∗ is Σ with enough vertex links added
to have one of every vertex link, then ⇂ Σ∗ with all type V cells omitted is T
cracked along Σ, for which we write $Σ.

Now, to crush, from $Σ we first throw out the cells of types III and IV in $Σ.
Next, suppose c is a type II cell of $Σ. Then c has two hexagonal faces h0, h1

incident along an edge e. Since T is closed, some hexagonal face h′
0 of a cell of

$Σ different from h0 is glued to h0. If h′
0 = h1, then we throw out c from $Σ.

Otherwise, let φ0 be the cell-isomorphism pairing h′
0 to h0 for $Σ. Likewise,

let φ1 be the cell-isomorphism similarly pairing h1 to h′
1 for $Σ. Finally, let φc

be the cell-isomorphism from h0 to h1 that “folds along” their common edge
e. We throw out c, and replace φ0, φ1 with the single face-pairing φ1 ◦ φc ◦ φ0.
Throwing out type II cells this way, we eventually get a cellulation with only
type I cells. At this point, we just cone off the triangulated boundary to get a
triangulation.

Definition. This final coned-off triangulation is T crushed along Σ, which we
write as !Σ.

12



Crushing along a sphere or disc at most can do the following to a triangula-
tion see [5, Cor. 5]:

Theorem 14 (Burton). Suppose T is a 3-triangulation containing no two-sided
P 2. Let S be a normal sphere or disc in T . Let TJR be T crushed along S. Then
TJR is a valid 3-triangulation obtained from T by zero or more of the following
operations:

• undoing connected sums, i.e. surgering along spheres;

• cutting open along properly embedded discs;

• filling boundary spheres with 3-balls;

• deleting components homeomorphic to D3, S3, RP 3, L(3, 1), S2 × S1, or
S2×̃S1.

3 Certificates

3.1 Three-sphere certificates

Rubinstein and Thompson both describe algorithms for 3-sphere recognition
[25, 28]. Later, it was shown that such algorithms could also produce an appro-
priately sized certificate affirming a manifold is indeed S3.

Theorem 15 (Ivanov [16], Schleimer [27]). S3 recognition lies in NP.

The companion question remains open.

Conjecture 1. S3 recognition lies in coNP.

Zentner [31, Theorem 11.2] proved the following, providing strong evidence
for the conjecture.

Theorem 16 (Zentner). S3 recognition lies in coNP, provided that the Gen-
eralized Riemann Hypothesis holds.

3.2 Isomorphism signatures

It may happen on occasion that we will want our triangulations to have a par-
ticular form—for instance, we may want to have a triangulation that induces a
one-vertex triangulation on a boundary component. One may simplify a trian-
gulation to have such properties in polynomial time, and then one may generate
certificates for the simplified triangulation. However, these are not certificates
for the original triangulation.

To promote these certificates to certificates of the original triangulation, it
suffices to give a polynomial-sized certificate that the simplified triangulation
triangulates the same underlying manifold as does the old triangulation. It is
almost obvious that one may do this for polynomial-length sequences of Pachner
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moves, layerings, close-the-book moves, and other “atomic” modifications of
triangulations. However, it is not clear how to name such a sequence in a
way that is invariant under isomorphism of the triangulation. Moreover, a
representation of, say, a normal surface in a triangulation as a vector of numbers
requires some choice of ordering on the normal disk-types in that triangulation.
One can consistently specify a natural such ordering given an ordering of the
tetrahedra of the triangulation, and given, for each tetrahedron, an ordering of
its vertices. But then to use that vector as a certificate, one must make sure to
make that particular collection of choices of ordering for one’s triangulation.

Therefore, following [27, §3], let us say that a triangulation together with
such choices is a labelled triangulation. Let two such structures be equivalent
when there is an isomorphism between the triangulations preserving the order-
ings (or labellings). In [6] Burton has constructed a injective signature function
from the set of equivalence classes of labelled triangulations to the set of bit-
sequences; and has constructed a function, the isomorphism signature function,
from the class of labelled triangulations to the set of bit-sequences, whose level
classes are in bijection with combinatorial isomorphism classes of triangulations ;
and, most importantly for us, these functions may be computed in polynomial
time in their inputs. This gives canonical ways of putting coordinates on normal
surfaces and other such objects in triangulations.

Therefore, throughout the work below, we assume that every triangulation
is labelled, and in fact has the labelling whose signature is its isomorphism
signature, which is just the lexicographic minimum of the set of signatures
over all its possible labellings—we assume it has its canonical labelling. When
implementing the algorithms below, the first thing one should do with a newly
constructed triangulation or with an input triangulation is to endow it with its
canonical labelling.

3.3 Simplifying triangulations

A standard “close-the-book-and-layer” algorithm (e.g. the algorithm in [8], close cusps.c)
returns, in time polynomial in T , a new triangulation T ′ such that T ′ has at
most three more tetrahedra in each boundary component than T and such that
T ′ induces one-vertex triangulations on ∂T ′; and also returns a proof P of size
polynomial in T that T and T ′ are homeomorphic. The proof is, as described
above, a sequence of triples (σ, i, b), where σ is an isomorphism signature, i is
a number indicating a boundary edge, and b is a bit indicating whether to fold
along that boundary edge or layer along it. This allows one to promote, as
above, a polynomial-sized certificate of a property of T ′ to a polynomial-sized
certificate of a property of T .

As simple as the above algorithm is, it has this disadvantage, that it increases
the number of tetrahedra. If the given triangulation is assumed to be irreducible
and ∂-irreducible, then one can do much better via crushing to a 0-efficient tri-
angulation. The following are essentially restatements and summaries of results
from [18].

14



Lemma 17. Suppose T is a compact material triangulation that is not 0-
efficient. Then T admits a fundamental surface Σ that is either an embedded
P 2, a non-vertex-linking S2, or a non-vertex-linking D2.

Proof. Suppose T is a compact material triangulation that is not 0-efficient.
Then T admits a connected non-vertex-linking normal surface Σ with χ(Σ) > 0.
Suppose Σ = X + Y for nonempty normal surfaces X,Y 6= 0. Then χ(Σ) =
χ(X) + χ(Y ) > 0. Hence either χ(X) > 0 or χ(Y ) > 0. Thus some component
k of X or Y has χ(k) > 0. Now, since Σ is connected and non-vertex-linking,
no component of X or Y is a vertex link. Hence in particular, k is not a vertex
link. However, since X and Y are nonempty, |k ∩ T (1)| < |Σ ∩ T (1)|. Thus by
descent on |Σ∩T (1)| (the weight of Σ), T admits a connected non-vertex-linking
fundamental surface Σ with χ(Σ) > 0. The lemma follows.

The existence of the 0-efficient triangulation in the next proposition can be
established by [18, Proposition 5.9, Theorem 5.17]; the certificate is essentially
due to Schleimer (see [27, Theorem 16.1]).

Proposition 18. Suppose T is a triangulation of a compact, orientable, P 2-
irreducible, ∂-irreducible 3-manifold.

Then there is a 0-efficient triangulation T ′ of the same 3-manifold with
|T ′| ≤ |T |, and also there is a certificate that T ∼= T ′ verifiable in polynomial
time.

Note carefully that we do not claim there is a polynomial-size certificate that
the 0-efficient triangulation T ′ is in fact 0-efficient—we only provide a certificate
that T ∼= T ′.

This is also not the most computationally efficient way to go about the
certification. Instead we have tried to give a simple certification.

Proof. Suppose T is a triangulation of a compact, orientable, P 2-irreducible,
∂-irreducible 3-manifold.

Define a sequence of triangulations T0, · · · , Tk and k < |T | homeomorphic
to T as follows. Start with i = 0 and Ti = T . When we find Ti is 0-efficient, we
set k = i and stop. Otherwise, by Lemma 17 there is a fundamental nontrivial
normal surface Σi with χ(Σi) > 0. Since Ti is P 2-irreducible, Σi is not an
embedded projective plane. So Σi is either a sphere or a disc. The proof of
Theorem 14 shows that in fact the crushing !Σi is not just gotten from Ti by
the given collection of operations, but from Ti surgered along Σi. So let T ′

i+1

be Ti surgered along Σi. Since Ti is P 2-irreducible, some component Ti+1 of
T ′
i+1 is homeomorphic to Ti. Let Si+1 be the other component. Then Si+1 is

either S3 or D3 according as Σi is S
2 or D2. Use Proposition 13 to triangulate

the exterior of Σi, then cone off the appropriate sphere boundary component to
triangulate Si+1. Let Ci+1 be a certificate from Theorem 15 that Si+1 is S3 or
that the double of Si+1 is S3, according as Σi is S2 or D2. Next, let Ri+1 be
the part of the crushing !Σi coming from applying the operations of Theorem
14 to Ti+1. Then by the irreducibility conditions on Ti and thus Ti+1, and
by Theorem 14, either Ri+1 is homeomorphic to Ti+1 or Ri+1 is empty. In the
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former case, let Ti+1 = Ri+1. In the latter case, Ri+1 is either S
3, D3, or L(3, 1);

we set Ti+1, respectively, to the triangulation with isomorphism signature either
bkaagb, bGab, or cMcabbjak. (The first two have one tetrahedron; the third has
two. All three are 0-efficient.)

By Theorem 15 and Lemma 10, the size of each pair (Ti,Σi, Ci) is bounded
above by p(|Ti|) for some polynomial p. We may assume p is increasing. Crush-
ing a triangulation along a nontrivial normal surface yields a triangulation with
strictly fewer tetrahedra. Hence p(|Ti|) ≤ p(|T |). So the size of the sequence of
these pairs is at most |T | · p(|T |), a polynomial in |T |.

To verify that the sequence establishes a homeomorphism from T to Tk, it
suffices to verify that the sequence establishes a homeomorphism from Ti to
Ti+1 for each 0 ≤ i < k. To that end, first we verify that Σi is a sphere or disc
in polynomial time using Proposition 11; then use Proposition 13 as above to
surger along Σi then use Ci to verify in polynomial time that the appropriate
component of the surgery is S3 orD3. This establishes that the other component
of the surgery (not yet constructed) is homeomorphic to Ti. Next determine the
part Ri+1 of the crushing corresponding to this other component in polynomial
time. If Ri+1 is nonempty, verify in polynomial time that Ri+1 is isomorphic
to Ti+1. Otherwise, let K(M) be the predicate on 3-manifolds M that “M is
gotten from ∅ by finitely many operations of Theorem 14.” By Theorem 14 we
have proven K(Ri+1), and therefore K(Ti). If Ti+1 has isomorphism signature
bkaagb, which we can test in polynomial time, then we verify that Ti is closed
and a homology S3. The only such manifold satisfying K is S3 itself. Since
Ti+1 is homeomorphic to S3, Ti is homeomorphic to Ti+1. Similar arguments
hold for bGab and cMcabbjak.

3.4 Closed essential surface certificates

To certify a manifold is toroidal, we need to give a certificate that a torus or
Klein bottle is essential. In an earlier version of this paper, we gave examples
of such certificates. We also conjectured the following.

Theorem 19. Handlebody recognition is in coNP among irreducible 3-
manifolds, and Handlebody recognition is in coNP modulo GRH.

After we posted this version, Marc Lackenby kindly pointed out the following
theorems from the latest revision of [21] can be used to prove Theorem 19:

Theorem 20 ([21, Thm. 1.5]). Thurston norm of a homology class is
in NP.

Theorem 21 ([21, Thm. 1.6]). The decision problem irreducibility of a

compact orientable 3-manifold with toroidal boundary and b1 > 0
is in NP.

Theorem 22 ([21, Thm. 1.7]). Incompressible boundary is in NP ∩ coNP.
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Definition. Recall that, for any compact oriented 3-manifold M , the function
χ− : H2(M,∂M ;Z) → Z defined as

χ−([F ]) = min
F∈[F ]

{χ−(F )}

is called the Thurston norm, where the minimum is taken over all oriented prop-
erly embedded surfaces F in the homology class [F ], where χ−(S) = max(0,−χ(S))
for connected surfaces S, and where in general χ−(F ) is the sum of χ−(S) over
all components S of F .

In general χ− is only a pseudonorm, but we still call it the Thurston norm.

We prove Theorem 19 below. We then found that it is straightforward to use
it and Lackenby’s new results to prove Theorems 23 and 24, and Corollary 25.
The following theorem is included both for the sake of completeness and to use
a framing device to discuss these other two results. (We thank Nathan Dunfield
for a conversation in which he brought the problem of I-bundle recognition to
our attention.)

Theorem 23. For every compact surface Σ, Σ × I recognition and Σ ×̃ I
recognition are in NP.

Theorem 24. For every compact surface Σ, Σ × I recognition and Σ ×̃ I
recognition are in coNP among orientable irreducible 3-manifolds.

Corollary 25. Closed essential surface recognition is in NP ∩ coNP
for normal surfaces Σ in connected, orientable, irreducible, ∂-irreducible 3-
manifolds.

Note carefully that in Theorems 23 and 24 and Corollary 25, the size of the
certificate returned by the algorithm is polynomial in the input triangulation
and in |χ(Σ)|, and in the case of Corollary 25 also polynomial in the bit-size of
Σ, i.e. logwt(Σ). It may be possible to make Corollary 25 depend polynomially
only on the bit-size, but we do not pursue that here.

The careful reader will note that the NP portion of Theorem 23 follows al-
most immediately from the normal-almost-normal sweepout certificates in sec-
tion 6 of Schleimer’s 2001 PhD thesis [26]. Moreover, it is relatively easy to show
from Theorem 3 of [16] that one can extend the T2 × I recognition algorithm of
[14] to show that T2× I recognition is in NP. We regard these approaches as
more viable for implementation with current software libraries like Regina (see
[7]). However, the result also follows directly from Lackenby’s work, so for ease
of reference we rely on [21].

We turn to the proofs of these results now.

Theorem 19. Let T be a triangulation with boundary F a genus g surface.
Suppose T is not a handlebody of genus g.

IfH1(T ,Z) 6∼= Zg, then T is not a handlebody. Since homology is computable
in polynomial time, T may be verified not to be a handlebody in polynomial
time, with no certificate necessary.
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Otherwise, we start out assuming T is irreducible and will address the re-
ducible case afterward.

In the irreducible case, find a maximal set D̂ of non-isotopic normal (sic)
compressing disks in T . By the work of Jaco and Tollefson, specifically [19,
Theorem 6.2], we may arrange that the disks of D̂ are all fundamental surfaces.
(This is because Jaco and Tollefson construct vertex-normal disks. Briefly, a
vertex-normal disk S is a normal disk admitting no sum of the form S+· · ·+S =
X+Y with X,Y not consisting of disjoint copies of S. Vertex-normal disks are
always fundamental.) So by Lemma 10 and Haken finiteness, the union of these
disks has polynomial bit-size. By Proposition 13 above, construct on the exterior
T − D̂ a triangulation T̂ of size polynomial in |T |.

Suppose every component of T̂ had β1 = 0. Then each component would
have a sphere boundary component. By irreducibility, each component would
be a ball, and T would be a handlebody, contrary to assumption. So some
component K of T̂ has β1 > 0, and is irreducible. If ∂K were compressible, then
it would admit a compressing disk. This would imply that T would admit yet
another normal disk disjoint from D̂ and not normally isotopic to any element
of D̂, contrary to the maximality of D̂. Thus ∂K is incompressible. We may
construct a certificate cinc of this fact of size polynomial in |T | by Theorem 22.
Together, we contend D̂, T̂ , K, and cinc constitute a certificate that T is not a
handlebody.

Finally, if T is reducible, then we run the standard argument of constructing
a polynomially sized reduction along a reducing sphere using Proposition 13
above, coning off the sphere’s sides, and applying [31, Theorem 11.2], which
depends upon GRH.

To verify an empty certificate, just determine whether or not T is a homology
handlebody. If not, the certificate is verified; otherwise, the verification fails. To
verify the certificate constructed when T is an irreducible homology handlebody,
verify that T surgers along D̂ into T̂ ; then verify that K is a component of
T̂ ; then verify that cinc is a certificate that ∂K is incompressible. All these
verifications may be performed in time polynomial in the sizes of the certificates.
By [1] we may verify as well that D̂ is a disjoint union of discs. Thus we may
verify that K is gotten from T by surgering along discs. But we have also
verified that K has incompressible boundary. Furthermore, we may calculate
β1(K); if it is 0, the verification fails. Otherwise, β1(K) > 0. There is no
handlebody with β1 > 0 and with incompressible boundary. Hence K is not
a handlebody. However, surgering a handlebody along a disc always produces
another handlebody (or two). Hence T cannot be a handlebody. Thus the given
certificate demonstrates T is not a handlebody.

Finally, to verify the reducibility certificate, verify that the given surface is
a sphere, that the reduction along that sphere is as given in the certificate, and
that the reduction is nontrivial using the verification of [31, Theorem 11.2].

Theorem 23. Suppose Σ is a compact surface.
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First, suppose T triangulates a manifold of the form Σ × I, with Σ ori-
entable. If Σ has nonempty boundary, then T is a handlebody with the same
Euler characteristic as Σ. Theorem 3 of [16] provides a certificate hT that T
is a handlebody. To verify that T triangulates Σ × I, verify with hT that T
is a handlebody, then check, in polynomial time, that T has the same Euler
characteristic as Σ. On the other hand, if Σ is closed, then (T , ∅) is a product
sutured manifold. Let H be the handle structure dual to T , i.e. the handle
structure gotten from thickening the dual spine of T . One may construct this
handle structure in time polynomial in |T |. Then H is of uniform type, as re-
quired in Theorem 12.1 of [21], since its 0-handles’ intersection patterns with
the 1- and 2-handles are subtetrahedral (in fact, tetrahedral, being the duals
of the tetrahedra of the triangulation). So Theorem 12.1 of [21] applies, and
(H, ∅) admits a polynomial-time verifiable certificate psT that it is a product
sutured manifold. To verify that T triangulates Σ × I, verify with psT that
it is a product sutured manifold, then check, in polynomial time, that its two
boundary components are homeomorphic to Σ.

Second, suppose that T triangulates a twisted I-bundle Σ×̃I with Σ nonori-
entable. Again, if Σ has nonempty boundary, one may verify the product as
before using Ivanov’s handlebody certificate. If instead Σ is closed, then T ad-
mits a double cover T̃ ∼= Σ̃× I that is a product I-bundle over the orientation
cover of Σ. One may certify that T̃ is Σ̃× I, and this constitutes a proof that T
is Σ×̃I. Thus, Σ × I recognition and Σ×̃I recognition are in NP among
orientable 3-manifolds.

Before getting to the proof of Theorem 24 we give the following character-
izing lemma.

Lemma 26. Let Σ be a closed orientable surface. Let M be an irreducible
orientable 3-manifold with integer homology equivalent to Σ× I.

M is homeomorphic to Σ× I if and only if χ− = 0 on all H2(M,∂M ;Z).

Proof. Suppose an oriented irreducible 3-manifold M is an integral homology
Σ× I.

For the only-if-direction, suppose M is homeomorphic to Σ× I. Then every
element of H2(M,∂M ;Z) is representable with a disjoint union of annuli, which
has Thurston norm 0. So χ− = 0 on H2(M,∂M ;Z).

For the if-direction, suppose χ− = 0 on all H2(M,∂M ;Z). First recall
the long exact sequence in homology for the pair (M,∂M). We have that
j∗ : H2(M ;Z) → H2(M,∂M ;Z) is identically 0, since M is an integer homology
Σ × I. So closed surfaces are nullhomologous in H2(M,∂M ;Z). Moreover,
∂2 : H2(M,∂M ;Z) → H1(∂M ;Z) is injective. Likewise, j∗ : H1(M ;Z) →
H1(M,∂M ;Z) is also identically 0. Thus H2(M,∂M ;Z) ≃ im ∂2 = ker i∂∗,
where i∂∗ : H1(∂M ;Z) → H1(M ;Z). Also, curves in ∂M nullhomologous in M
are nullhomologous in ∂M .

Now, let B be a basis for H2(M,∂M ;Z). Suppose b ∈ B. Then χ−(b) = 0.
Let Ab be an oriented properly embedded surface with

[Ab] = b, χ−(Ab) = 0. (1)
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All the components of Ab are oriented and hence orientable. Any closed
components of Ab are nullhomologous in H2(M,∂M ;Z), and are spheres or
tori. Omitting them preserves (1). The boundary of any disc in Ab is nullho-
mologous in M , and therefore nullhomologous in ∂M . Thus any disc in Ab is
nullhomologous in H2(M,∂M ;Z). Thus omitting discs also preserves (1). So
we may assume Ab is a disjoint union of annuli.

Suppose A is an oriented recurrent annulus properly embedded in M , i.e. an
annulus with ∂A lying all on one boundary component. Then i∗(∂2([A])) = 0.
Let Σ± be the boundary components ofM . On each of the subspacesH1(Σ±;Z),
the map i∗ restricts to an isomorphism. Therefore ∂2([A]) = 0. Thus ∂A bounds
an oriented surface in ∂M . Attaching that surface to A yields a closed surface
homologous to A in H2(M,∂M ;Z). So [A] = 0 in H2(M,∂M ;Z). Thus we may
omit recurrent annuli from Ab preserving (1).

Finally, suppose γ is a boundary component of a non-recurrent annulus A
properly embedded in M such that γ is nullhomologous in M . Then γ is null-
homologous in ∂M . Therefore γ bounds an oriented surface Y in ∂M such that
Y ∪ A is an oriented surface homologous to A in H2(M,∂M ;Z). Pushing this
surface off from that boundary component of M yields a surface bounded by the
other boundary curve of A. The same argument now applies to that boundary
curve, so that A is homologous to a closed surface in H2(M,∂M ;Z). Thus A
is nullhomologous. Therefore we may omit any annulus with a nullhomologous
boundary curve from Ab preserving (1).

Let A be the set of all the oriented annulus components of all the Ab. Let [A]
be the set of all their homology classes. Then the span of [A] is H2(M,∂M ;Z)
since B is a basis. Select a new basis from [A], and let A′ be the set of the cor-
responding annuli. We may isotope these annuli so that they are all transverse.
By a standard argument, after isotoping the annuli to lie in minimal position,
they only intersect in core curves or essential arcs.

Suppose two distinct annuli A,A′ intersect in a core curve. One resolution of
this intersection curve yields two recurrent annuli. That means [∂A] = ±[∂A′].
That is, ∂2([A]) = ±∂2([A

′]). Since ∂2 is injective, that means [A] = ±[A′]. This
contradicts [A] being a basis. So no two distinct annuli intersect in core curves.
Hence, after isotoping the annuli to lie in minimal position, they intersect only
in essential arcs.

Now, the union of their boundary curves on ∂M is filling. That is, its
complement consists of discs. Let X be a regular neighborhood of the union
of ∂M with these annuli. The boundary of X consists of ∂M and spheres. By
irreducibility the spheres must bound balls, and they must bound them away
from ∂M . Hence M is Σ× I.

Theorem 24. Suppose first that Σ is orientable.
Suppose T is a triangulation of a compact orientable irreducible 3-manifold

that is not Σ× I.
If T is not an integer homology Σ× I, we can use the empty certificate.
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Otherwise T is an integer homology Σ× I. Let Σ+ be one of the boundary
components of M . Select a basis for H1(Σ+;Z/2Z) every element of which is
represented by a simple closed normal curve intersecting every edge of Σ+ at
most once. Let Γ be a set consisting of one such curve from each homology class
in the basis. Picking some orientation of these curves, we get a basis B+ for
H1(Σ+;Z) of size polynomial in T and |χ(Σ)|.

Let i± : Σ± → M be the inclusions. By assumption, these induce iso-
morphisms on homology. Define the map k : H1(Σ+;Z) → H1(∂M ;Z) by
k(c) = c− i−1

−∗(i+∗(c)). Then B′ = {k(b+) | b+ ∈ B+} is a basis for ker i∗, where
i∗ : H1(∂M ;Z) → H1(M ;Z). However, by the long exact sequence of the pair
(M,∂M), since M is a homology Σ × I, ker i∗ = im ∂2. So B′′ = ∂−1

2 (B′) is a
basis for H2(M,∂M ;Z). Since B+ had size polynomial in T and |χ(Σ)|, and
since the above maps on homology and their inverses are representable with
matrices with polynomially many coefficients of polynomial size, likewise B′′

has size polynomial in T and |χ(Σ)|.
Since T is an orientable irreducible integer homology Σ× I but isn’t Σ× I,

by the if-direction of Lemma 26, χ− is not identically 0 on H2(M,∂M ;Z).
Therefore, χ− is not identically 0 on B′′. So we may pick an element b ∈
B′′ with χ−(b) > 0. A natural isomorphism L : H2(M,∂M ;Z) → H1(M ;Z)
representable by a matrix of polynomially many coefficients of polynomial size
is given by Lefschetz duality. (Theorem 20 is phrased in terms of H1(M ;Z), not
H2(M,∂M ;Z).) So L(b) is of size polynomial in T and b, i.e. in T and |χ(Σ)|.
By Theorem 20, there is a certificate C verifiable in time polynomial in T and
L(b), i.e. in T and χ(Σ), that χ−(b) > 0.

To verify, suppose one is given T , and either an empty certificate, or a
simplicial 1-cocycle η and a certificate C that χ−(L(η)) > 0. If the certificate
is empty, check in time polynomial in T and |χ(Σ)| that the integral homology
of T differs from Σ× I. If that is verified, then T is not Σ× I. Otherwise, use
C to check in time polynomial in T and |χ(Σ)| that χ−(L(η)) > 0. If that is
verified, then by the only-if direction of Lemma 26, T is not Σ× I.

Finally, if Σ is nonorientable, we may verify that T is not Σ×̃I by showing
either that T does not admit a double cover, or by showing that its unique
connected double cover is not Σ× I.

We remind the reader that the verification in the above proof does not as-
sume T is irreducible. Only the construction of the certificate makes that as-
sumption.

Corollary 25. Suppose Σ is a closed essential normal surface in T with T ori-
entable, irreducible, and ∂-irreducible. That is, suppose Σ is incompressible and
not boundary parallel. (Σ is automatically ∂-incompressible, being closed, and
this is why we restrict to the closed case.) If Σ is nonorientable, its normal
double is its orientation cover, and is essential if and only if Σ is. Thus we may
assume Σ is orientable. To certify Σ is incompressible, take a polynomial-time
verifiable triangulation T ′ of its exterior with Proposition 13, and use Theorem
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22 to verify that T ′ has incompressible boundary. To show Σ is not boundary-
parallel, either show that T ′ is connected, or for both components of T ′ use
Theorem 24 to verify that they are not Σ× I. The latter certificate will be veri-
fiable in time polynomial in T ′ and Σ, which is polynomial in T and Σ.

3.5 Toroidality

We now consider the other decision problems discussed in the introduction. We
begin with Theorem 4, on toroidality. First we require the following proposition.

Proposition 27. Toroidal recognition lies in NP among compact, con-
nected, irreducible, ∂-irreducible, orientable 3-manifolds admitting no essential
Klein bottles.

Proof. Suppose T is a triangulation of a compact, connected, irreducible, ∂-
irreducible, orientable 3-manifold that has no Klein bottle and is toroidal. By
Proposition 9, there is a fundamental essential torus F in T . By Lemma 10, F
is representable in size polynomial in T . By Proposition 13, we may construct
a triangulation T ′ of the exterior of F in time polynomial in the sizes of T and
F , hence in time polynomial in T .

If T ′ is connected, then T ′ is ∂-irreducible, since T is ∂-irreducible and F is
essential. Lackenby’s Theorem 22 provides a certificate that T ′ is ∂-irreducible.
Given such a certificate, we can verify that F is incompressible in time polyno-
mial in T , and hence that T is toroidal.

Otherwise, since F is essential and T is connected, T ′ has two components,
L and R, neither of which is homeomorphic to T2 × I, neither of which is
homeomorphic to S1 × D2, and both of which are irreducible (and hence ∂-
irreducible, not being S1 × D2). The certificate we return is the quintuple
(F,LT , RT , LD, RD), where LT , RT are the certificates guaranteed by Theorem
24 that L and R are not T2×I, and where LD, RD are the certificates guaranteed
by Theorems 21 and 22 that L,R are irreducible and are not solid tori. By
Theorem 24 and Lackenby’s Theorems 21 and 22, verifying these certificates
takes time polynomial in T ′, and hence polynomial in T . This verifies that T
is toroidal.

We may now prove a theorem asserted in the introduction.

Theorem 4. Suppose T is a triangulation of a connected, orientable, irreducible,
∂-irreducible, toroidal 3-manifold. Either T contains an essential Klein bottle or
not. If it does, then by Proposition 9 there is a fundamental one. Corollary 25
produces a certificate verifiable in time polynomial in T that this Klein bottle is
essential. Otherwise, since T is toroidal, by Proposition 27 there is a certificate
verifiable in time polynomial in T that T contains an essential torus. In the
latter case we already have a proof of toroidality. In the former case, the double
of the Klein bottle is a torus. Since the Klein bottle is essential, the torus is
necessarily essential. Since the Klein bottle is fundamental, the torus has size
polynomial in T . Either option is a certificate of toroidality.
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Since T admits an essential torus, b1(T ) > 0. So a certificate of irreducibility
follows immediately from Lackenby’s work, stated here as Theorem 21.

Corollary 3 follows immediately; it only requires going from a knot diagram
to a triangulation, which is a standard argument of Hass, Lagarias, and Pip-
penger [15, Lemma 7.1]. This result was achieved by Baldwin and Sivek in [2]
under the additional assumption of the Generalized Riemann Hypothesis.

3.6 Essential Möbius strips and annuli

We now discuss the final situations: when the manifold contains an essential
Möbius strip or annulus.

Proposition 28. Suppose a compact, orientable, P 2-irreducible, ∂-irreducible
triangulation T has no essential tori or Klein bottles. If T admits a properly
embedded Möbius strip, then there is a certificate of this fact verifiable in time
polynomial in T .

Proof. Suppose T admits an embedded Möbius strip M .
If M is compressible, then T admits an embedded P 2, contrary to P 2-

irreducibility. If M is incompressible but is ∂-compressible, let D be a ∂-
compressing disk for M . Then surgering M along D yields another disk Z.
Since M is incompressible, Z is a compressing disk for ∂T , contrary to ∂-
irreducibility. Thus M must be incompressible and ∂-irreducible. Therefore M
is not ∂-parallel, and hence M is essential. By Proposition 9 there is a funda-
mental normal embedded Möbius strip µ in T . By Lemma 10 and Proposition
11, µ constitutes a certificate verifiable in time polynomial in T that T admits
an embedded Möbius strip.

The following is the main result of this subsection.

Proposition 29. Suppose T is compact and orientable.
Suppose further that T has no essential surfaces of nonnegative Euler char-

acteristic apart from annuli.
If T admits an essential embedded annulus, there is a certificate verifiable in

time polynomial in T of this fact.

We prove this at the conclusion of this subsection, using the following three
results.

Lemma 30. Suppose a 0-efficient triangulation T admits a non-separating an-
nulus A. Then A is essential.

This holds simply because inessential annuli are separating in irreducible,
∂-irreducible 3-manifolds.

We now show that if a non-separating annulus exists in the manifold, there
is one of manageable size for our purposes.
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Lemma 31. Suppose T is compact, orientable, and 0-efficient. Suppose further
that T has no essential surfaces of nonnegative Euler characteristic apart from
annuli. Finally, suppose T admits a non-separating annulus.

Then T admits a fundamental non-separating annulus.

Proof. Suppose A is a non-separating annulus in T . Being essential by Lemma
30, A must admit an isotopic normal representative, the isotopy coming from
the normalization procedure of [18] and the fact that T is irreducible and ∂-
irreducible by assumption. Suppose that A = X + Y for nontrivial normal
surfaces X,Y , such that X ∩ Y has a minimal number of components. By a
standard trick (see for example [23, Lem. 3.3.30]), we may assume X and Y are
both connected. Let [·] denote the homology class in H2(T , ∂T ;Z/2Z). Then
[A] = [X + Y ] = [X ] + [Y ], since Haken sum respects Z/2Z homology. Since
A is nonseparating, [A] 6= 0. Therefore, without loss of generality, [X ] 6= 0.
Since [X ] 6= 0 and T is orientable, X is nonseparating. Since T is 0-efficient,
χ(X) = χ(Y ) = 0. Suppose X were not an essential annulus. Then a minimal
genus representative of [X ] would be a nonseparating surface of nonnegative
Euler characteristic different from an annulus, contrary to assumption. So X is
an essential annulus. Finally, since wt(A) = wt(X) + wt(Y ) and wt(Y ) > 0 by
nontriviality, wt(X) < wt(A). The result follows by descent on weight.

The following proposition handles one of the final cases we need to deal with,
an essential separating annulus.

Proposition 32. Suppose an orientable, irreducible, ∂-irreducible 3-manifold
T is obtained by identifying two solid tori along two disjoint annuli in their
boundaries, and has one boundary component, a torus. Let A be the annulus in
T gotten by identifying these annuli.

Then T is Seifert fibered over the disk with two exceptional fibers, and A is
an essential annulus fibered by regular fibers.

Proof. Call the annuli of the solid tori α and β.
Suppose first that α and β are π1-injective in their respective components.

Then the S1 × D2 components admit Seifert fiberings such that α and β are
fibered by regular fibers. If either α or β is longitudinal in its component, then T
would be S1×D2, and hence be ∂-reducible, contrary to assumption. Therefore,
neither α nor β is longitudinal. Thus, both the Seifert fiberings have exceptional
fibers. Therefore, T is Seifert fibered over a disk with two exceptional fibers,
and A is an essential annulus fibered by regular fibers.

Thus to conclude the proof it will suffice to assume not both α and β are
π1-injective in their components, and derive a contradiction. As before, if but
one of them were π1-injective, then T would have a compressible boundary
component, contrary to ∂-irreducibility. Thus, suppose both α and β are not
π1-injective in their respective components. If either were meridional, then T
would admit a non-separating sphere, contrary to irreducibility. Thus we may
assume both α and β are trivial. But in this case, T would have two boundary
components.
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We may now conclude this subsection with a proof of its main result.

Prop. 29. Suppose T has no essential surfaces of nonnegative Euler character-
istic, except for essential annuli. By Theorems 21 and 22 there is a certificate
cI that T is a compact irreducible ∂-irreducible 3-manifold verifiable in time
polynomial in T .

If T admits a nonseparating annulus, then by Lemma 31, T admits a funda-
mental such annulus A. By Proposition 13, one may construct a triangulation
T ′ of T − A from A and T in time polynomial in T and log |A ∩ T (1)|. By
Proposition 13 and Lemma 30, since T ′ is connected, cI constitutes a certificate
that A is essential. Thus, (A, cI) together constitute a certificate that T admits
an essential annulus. Since A and cI have size polynomial in T , this certificate
has size polynomial in T .

Otherwise, T admits an essential separating annulus A. Since A is separat-
ing, ∂A ⊂ T for some boundary torus T of T . A regular neighborhood of A∪T
in T has two torus boundary components T ′, T ′′. Since T has no essential tori,
T ′, T ′′ are compressible. They must compress away from T to spheres S, S′.
Since T is irreducible, these spheres must bound balls away from T . Thus in
fact T ′, T ′′ bound solid tori away from T . Hence A separates T into two solid
tori. Since A is essential in T , the core of A is incompressible in each solid
torus. Hence this core induces Seifert fiberings in these solid tori. Therefore T
is Seifert-fibered over a disk with two exceptional fibers, with A being a vertical
annulus. If T admits a horizontal essential annulus, then T is either T2 × I or
K2×̃I; since T has but one boundary component, T must be K2×̃I. But we
assumed T admitted no Klein bottle, a contradiction. Thus essential annuli in
T are vertical. By Proposition 9 T admits a fundamental essential annulus A,
and by the above argument, A is vertical. Thus T −A is two solid tori, and T
fits the conditions of Proposition 32. Now, by Proposition 13 we may triangu-
late T − A by T ′ given A and T in time polynomial in T and log |A ∩ T (1)|,
and by [16, Theorem 3], we may construct a certificate ct that T ′ is two solid
tori, verifiable in time polynomial in T ′, and hence polynomial in T . Thus, cI
and ct together constitute a proof that A is essential, by Proposition 32. So
(A, cI , ct) constitutes a certificate that T admits an essential annulus. Since A
and cI have size polynomial in T , and since ct has size polynomial in T ′, and
hence polynomial in T , this certificate has size polynomial in T .

3.7 Non-hyperbolicity

We end this section on certificates with the main theorem stated in the intro-
duction, following the outline of Proposition 9.

Thm. 1. Suppose T is a compact orientable triangulation and ∂T is a nonempty
union of tori, and suppose T is not hyperbolic. Then by Theorem 5, T admits
an essential surface of nonnegative Euler characteristic.

If T admits an embedded projective plane, then by Proposition 9 it admits
a fundamental normal such surface Σ. Σ itself constitutes a proof against hy-
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perbolicity, verifiable as an embedded projective plane in time polynomial in T
by the bounds of Lemma 10 and the algorithm of Proposition 11.

Otherwise, if T admits an essential sphere, then by Proposition 9, since it
has no embedded projective plane, it admits a fundamental normal essential
sphere Σ. If Σ is non-separating, then Σ on its own constitutes a proof against
hyperbolicity, verifiable in time polynomial in T by the bounds of Lemma 10 the
algorithm of Proposition 11, and the exterior algorithm of Proposition 13, since
one may determine whether or not a triangulation (in this case, the exterior
of Σ) is connected in time polynomial in the triangulation. Otherwise, the
exterior T ′ = T −Σ has two components L′ and R′; cap them off with balls to
get the connect-summands L and R of T . By assumption S3 recognition is
in coNP, so there are certificates cL and cR verifiable in time polynomial in L
and R, and hence in T , that L and R are not S3. Thus (Σ, cL, cR) constitutes
a certificate verifiable in time polynomial in T that T is reducible, and hence is
not hyperbolic.

Otherwise, if T admits a compressing disk, then by irreducibility, T must be
a solid torus. There is a certificate cd that T is a solid torus verifiable in time
polynomial in T by Theorem 3 of [16].

Otherwise, if T admits an essential Klein bottle or torus, then by Corollary
25 there is a certificate cess of this fact verifiable in time polynomial in T .

Otherwise, if T admits an essential Möbius strip, then by Proposition 28,
there is a certificate cm of this fact verifiable in time polynomial in T .

Otherwise, and finally, if T admits an essential annulus, then by Proposition
29, either there is a certificate ca of this fact verifiable in time polynomial in T ,
or there is a certificate ca verifiable in time polynomial in T that T splits along
an annulus into two solid tori.

In all of the above cases, the given certificates show that T is not hyperbolic.
If T has none of these surfaces, then since T is Haken, having nonempty

torus boundary, by a well-known result of Thurston (Theorem 5) T is hyperbolic
contrary to assumption.

4 Discussion

One initial remark is that in practice, one would want to use vertex-normal
surfaces instead of fundamental normal surfaces. Reproving the above results
for vertex-normal surfaces would be a useful next task to do.

In the course of showing that S3
recognition lies in coNP modulo the

Generalized Riemann Hypothesis [31, Theorem 11.2], a good bit of the proof is
allocated to constructing irreducible SL(2,C) representations of toroidal man-
ifold groups. Theorem 4 removes the need for splicing, and hence reduces one
to the case of closed, irreducible, atoroidal 3-manifolds—that is, by Perelman’s
resolution to Thurston’s Geometrization Conjecture, it reduces one to geometric
3-manifolds. We can further assume that the manifold is small, i.e. it does not

26



contain an incompressible surface of positive genus. Otherwise, we can use an
incompressible surface which is given by a fundamental normal surface, together
with Theorem 22 as a certificate of incompressibility, that the manifold is not
S3. Thus, if the following conjecture is true, then S3 recognition is in fact in
coNP, and the results of this paper are unconditionally true.

Conjecture 2. If T triangulates a small geometric integral homology sphere,
and T is not S3, then there is a proof that T is not S3 of length polynomial in
T . That is, among small geometric integral homology spheres, S3 recognition

is coNP.

As mentioned above, Zentner’s work specifically [31, Theorem 11.2] combines
with Kuperberg’s work to give a proof of this conjecture, assuming the Gener-
alized Riemann Hypothesis. To remove this assumption, it seems a promising
line of inquiry to approach this first by considering small Seifert spaces, for the
hyperbolic integral homology spheres will likely prove much more difficult to
verify.

We will conclude with a discussion of the affirmative problem. As mentioned
in the introduction, a 3-manifold M is said to be hyperbolic if M ∼= H3/Γ,
such that vol(H3/Γ) < ∞ and Γ is a subgroup of the isometry group acting
properly discontinuously. Now, an ideal triangulation T of M admits a strict
angle structure if it determines a map from R3n → Rn that corresponds each
pair of opposite edges in a tetrahedron are assigned a positive number, the
dihedral angle, such that all (six) dihedral angles in a tetrahedron sum to 2π
and all all dihedral angles in an edge class of T sum to 2π. Thus, an angle
structure is a solution to a system of linear equations that lies in the positive
cone of the solution space. Work of Casson and Rivin [24] (see also [9]) shows
that the existence of such a structure rules out each of the obstructions to non-
hyperbolicity, so that a strict angle structure on T implies the hyperbolicity
of M . We point out that if a triangulation supports an angle structure, an
argument analogous to Lemma 10 shows there is a fundamental solution to the
angle structure equations that can be verified in polynomial time. The relevant
question is then “Which triangulations support angle structures?” To determine
how far an input triangulation T is from a triangulation that supports an angle
structure, we ask the following question:

Question 33. Is there a polynomial P such that for any ideal triangulation T
of a cusped hyperbolic 3-manifold, there is an ideal triangulation T ′ supporting
a strict angle structure that is connected to T by at most P (|T |) 2-3 and 3-2
moves?

An affirmative answer to that question together with an affirmative answer
to Conjecture 2 would provide an affirmative answer to the following:

Question 34. Is the Hyperbolicity problem for cusped manifolds in NP ∩
coNP?
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Appendix

Prop. 13. Let B be the parallelity bundle for the handle structure on M ′ =
cl(T \ S) inherited from T as defined above. Let X be cl(M ′ − B). Let V be
B ∩ X . Then V is the common frontier of B and X in M ′. Now, X is the
union of the non-parallelity 0-handles of the (inverted) handle structure. The
non-parallelity 0-handles have two isomorphism types: a truncated octahedron,
and a hexagonal prism. V is the union of the vertical 4-sided 2-cells of these
non-parallelity 0-handles (i.e. those 4-sided 2-cells not lying on S). There are
at least 4 · t and at most 6 · t such 2-cells in X , the maximum occurring when
S has a normal quad in every tetrahedron. Therefore, V can be triangulated
in time linear in t. Moreover X can be triangulated in time linear in t agreeing
with the triangulation on V .

It remains to triangulate B in time linear in t and |χ(S)| in a way agreeing
with V . Note that V has a number of components linear in t. Since V is the
frontier of B in M ′, B has at most as many components as V . Suppose B is any
component of B. The algorithm of Theorem 12 yields for B the given data from
items (i)–(iii). The data from (iii) indicates how to identify the frontier of B in
M ′ with a component of V . So it will suffice to show B can be triangulated in
polynomial time.

The data from (i) and (ii) identify the homeomorphism type of B in polyno-
mial time. Now, B is an I-bundle over a base surface ΣB. The data from (i) and
(ii) identifies the homeomorphism type of ΣB since T is orientable. Now ΣB

is doubly-covered by a unique subsurface Q of S, such that B is the mapping
cylinder of the double-cover. Then χ(Q) = 2 · χ(ΣB). Let Θ be formed from Q
by filling in all boundary components bounding discs in S disjoint from Q. We
have χ(Θ) ≥ χ(S) and χ(Θ) = χ(Q)+d where d is the number of discs filled in.
The number of boundary components of Q is at most twice |π0(V )|, which is lin-
ear in t. So d has an upper bound linear in t. Thus χ(Q) = χ(Θ)−d ≥ χ(S)−d
has a lower bound linear in t and χ(S). Hence χ(ΣB) has such a lower bound.
Consequently, |χ(ΣB)| has an upper bound linear in t and |χ(S)|. Since ΣB is
connected, this means ΣB can be triangulated with a number of triangles linear
in t and |χ(S)|. Therefore B can be triangulated with a number of tetrahedra
linear in t and |χ(S)|, a polynomial as desired.
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