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VERIFIED COMPUTATIONS FOR HYPERBOLIC 3-MANIFOLDS
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Dedicated to Professor Sadayoshi Kojima on the occasion of his 60th birthday.

Abstract. For a given cusped 3-manifoldM admitting an ideal triangulation,
we describe a method to rigorously prove that either M or a filling of M admits
a complete hyperbolic structure via verified computer calculations. Central to
our method are an implementation of interval arithmetic and Krawczyk’s Test.
These techniques represent an improvement over existing algorithms as they
are faster while accounting for error accumulation in a more direct and user
friendly way.
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1. Introduction

The study of 3-dimensional manifolds, often abbreviated by 3-manifolds, starts
with the seminal papers by H. Poincaré in 1984–1904. In the last of these six
papers, he raised a question, which became the famous Poincaré Conjecture. This
has been one of the driving forces for (low-dimensional) topology, and a great
amount of effort was spent in pursuit of a solution. After nearly a century later, in
2002–2003, G. Perelman finally reached to the end of the struggles by providing an
affirmative answer to the Geometrization Conjecture, an extended version to the
Poincaré Conjecture in [28, 29, 30]. See [23, 25] as detailed references for example.

The Geometrization Conjecture was raised by W. Thurston, who brought about
dramatic changes to the study of 3-manifolds. He introduced a geometric view in
the sense of Klein to the 3-manifold theory, and, in particular, he incorporated an
amazing application of non-Euclidean geometry, namely hyperbolic geometry into
the study of 3-manifolds.

As is well-known, every closed 2-dimensional manifold, i.e., closed surface, admits
a geometric structure, a complete Riemannian metric of constant sectional curva-
ture. Surprisingly Thurston predicted a similar situtation for the 3-dimensional case
[35]. That is, every compact orientable 3-manifold can be canonically decomposed
by cutting along essential 2-spheres and tori into the pieces, each of which admits
a locally homogeneous geometric structure. This is the Thurston’s Geometrization
Conjecture. Actually he showed that there are exactly EIGHT geometries (i.e.,
models of geometric structures) to be considered, and essentially gave a proof for
the case of 3-manifolds containing decomposing tori.

Among the eight geometries, six have been well studied and are generally under-
stood, the Seifert fibered geometries. The seventh is sol -geometry. All manifolds
admitting a sol geometric structure are torus bundles over the circle, or n-fold quo-
tients of torus bundles over the circle where n = 2, 4. By most accounts, the most
common and yet most interesting geometry occurs if a manifold M admits a hyper-
bolic structure, i.e. M admits a complete Riemannian metric of constant sectional
curvature −1 of finite volume. See [22] for a good survey.

In this paper, we describe a computer-aided practical method to rigorously prove
that a given 3-manifold admits a complete hyperbolic structure via verified calcu-
lations. This procedure is already implemented as a software and available at [11].

In the following, we give a sketch of the contents with the organization of the
paper. In the discussions that follow, we will consider only 3-manifolds that are
orientable, compact with boundary consisting of the (possibly empty) disjoint union
of tori.

Our program takes in as an initial input the combinatorial data of an ideal trian-
gulation for the compact bounded case and a surgery description for the closed or
partially filled case. From that data, as Thurston first described, we can find some
algebraic equations, called a system of Gluing equations with complex variables. If
this system of equations has a system of complex solutions with positive imaginary
parts, then the given manifold admits a hyperbolic structure. In the next section,
we will recall a concise explanation for that, mainly based on the well-known book
[3]. Note that this process has already been implemented as SnapPea by J. Weeks.
Using the kernel code by Weeks, M. Culler and N. Dunfield implemented SnapPy
which is roughly speaking, a SnapPea on python. (For further background on
SnapPy or the SnapPea kernel see the SnapPy documentation and [7]). By abusing
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notation, in this paper, when we say SnapPea, we mean the Weeks’s kernel code
of SnapPea, or the Weeks’s version of SnapPea. By SnapPy, we mean the actual
program available at [7]. SnapPea uses the Newton’s method to solve the equa-
tions, and hence, the solutions are just approximated ones. These approximated
solutions, in principle, would not prove the convergence of the Newton’s method.
Thus although SnapPea is very practical, it cannot give any rigorous mathematical
proof for a given manifold to be hyperbolic.

To prove that a given system of equations actually have a desired solution, we
employ interval arithmetic and Krawczyk’s test, both of which are explained in §3.
We will give a brief review of how to obtain mathematically rigorous conclusions
from results of numerical computations.

In §4, the actual program hikmot and its implementation will be explained.
We further explain how to use it to rigorously prove the hyperbolicity of a given
triangulated manifold.

The last two sections provide some of conclusions of our work, open problems,
and expected future work. Also we will explain one application of our work to the
study of exceptional surgeries on alternating knots, which is a joint work of a part
of the authors; Ichihara and Masai. This is followed by an appendix explaining the
argument function.
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2. Gluing equations

This section establishes our much notation for the rest of our paper. For the
most part the notation is consistent the documentation for [7] to ease the reading
of this paper’s companion computer code. For further background on the hyper-
bolic geometry used in this paper, we refer the reader to [3] and [34]. For some
details on the various methods used by SnapPy, or the SnapPea Kernel to construct
the necessary system of equations, we refer the reader to [37] and, of course, the
documentation for SnapPy [7].

As noted in the introduction, we will assume our manifolds are orientable. We
point out that our algorithm can verify the hyperbolicity of a non-orientable man-
ifold Q by establishing the hyperbolicity of the orientable double cover of Q.
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Using the upper half space as our model for hyperbolic 3-space, H3, we can
identify the ideal boundary ∂H3 with C ∪ {∞}. Also, we denote by H3 the union
H3∪∂H3. The group of orientation preserving isometries acting on H3 is identified
with PSL(2,C) in the standard way.

Refining our definition of the introduction, a 3-manifold M is said to admit a
hyperbolic structure if M ∼= H3/Γ where Γ ⊂ PSL(2,C) is discrete and the integral
of the volume form for H3 over the fundamental domain for the quotient H3/Γ is
finite. For ease of notation, when M admits a hyperbolic structure we will often
just consider it as the quotient H3/Γ.

An ideal tetrahedron T is a tetrahedron inH3 with all four vertices {z1, z2, z3, z4} ⊂
∂H3. There is an isometry γ of H3 such that γ(T ) has vertices {0, 1,∞, z}, such
that {∞, 0, 1, z} and {z1, z2, z3, z4} have the same cross ratio. Under this definition,
z is only well defined up to the choice of which ordered subset of points we send to
the ordered set 0, 1,∞. However, z is defined up to z, z−1

z and 1
1−z . Furthermore,

we can label each edge in our ideal tetrahedron by z, z−1
z and 1

1−z such that the

argument of the complex number is the dihedral angle along that edge (see Figure
1). By convention, we will choose a complex argument function, arg(w), such that
the range is (−π, π] for w ∈ C \ {0}. Also, we define log z = log |z| + i arg(z). If
w is any complex parameter associated to the edge of an ideal tetrahedron with
arg(w) < 0, we say the corresponding ideal tetrahedron is negatively oriented and
if arg(w) > 0, we say the corresponding ideal tetrahedron is positively oriented.
Ultimately, the algorithm described by this paper certifies when there is a solution
to the Gluing equations such that all tetrahedral parameters are positively oriented.

A truncated tetrahedron is constructed by removing a neighborhood of the ideal
point (see Figure 2). Technically, a cusped manifold (e.g a knot complement) is
triangulated by ideal tetrahedra and compact manifold with non-empty toroidal
boundary (e.g a knot exterior) is triangulated by truncated tetrahedra. Truncated
tetrahedra have the property that opposite dihedral angles are equal as well as the
property that all angles on a triangular face sum to π (the product of the complex
parameters is −1).

We now begin the process of describing the gluing equations associated to a
triangulation T of a hyperbolic 3-manifold M . Ultimately, there will be n+2k+ h
equations, where n is the number of tetrahedra in T , k in the number of unfilled
cusps of M and h is the number of filled cusps of M . For convenience, we will use
the parameter m throughout this section to denote the mth equation in the set of
n+2k+h equations we construct in the following paragraphs. We will first assume
that h = 0 and then extend to the general case in §2.3. In §2.4, we give a complete
set of n+ 2k + h equations before finally providing the set of n equations that are
solved by our computer algorithm.

2.1. Edge equations. Each edge em in a triangulation T of M , is an equivalence
class of edges in the set of n tetrahedra that make up T . In this disjoint union of
tetrahedra, we fix a labeling of the edges in the jth tetrahedron by the complex

parameters: zj ,
zj−1
zj

or 1
1−zj

such that the opposite dihedral angles get the same

label. By Euler characteristic conditions, there are n equivalence classes of edges
in T , determined by the gluing identification. We can record by aj,m the number
of times an edge labeled by zj is a member of the equivalence class em. Similarly,

we can define bj,m as the number of times an edge labeled by
zj−1
zj

is part of the
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equivalence class em and finally, cj,m as the number of times an edge labeled by
1

1−zj
is part of the equivalence class em. If T̂ is a tessellation of H3 with em an edge

between 0 and ∞, then the product of all the complex parameters around em is 1
and the sum of their arguments is 2π. In fact, for any edge em there is an isometry
of H3 that sends the endpoints of em to 0 and ∞. Thus, around the mth edge, we
get the equations:

n∏

j=1

(zj)
aj,m

(
1

1− zj

)bj,m (zj − 1

zj

)cj,m

= 1,(1)

and
n∑

j=1

aj,m · arg (zj) + bj,m

(
1

1− zj

)
· arg+cj,m · arg

(
zj − 1

zj

)
= 2πi.(2)

Note for a fixed j,
∑n

ℓ=1 aj,ℓ = 2,
∑n

ℓ=1 bj,ℓ = 2, and
∑n

ℓ=1 cj,ℓ = 2, and since
each of these coefficients is non-negative, each aj,m, bj,m, or cj,m is in {0, 1, 2}.

The notation above can also be presented in a more standard way using loga-
rithms:

n∑

j=1

aj,m log (zj) + bj,m log

(
1

1− zj

)
+ cj,m log

(
zj − 1

zj

)
= 0 + 2πi.(3)

2.2. Unfilled cusp equations. Although this sets up a system of n equations with
n unknowns, this system does not specify a unique hyperbolic structure (see [34,
Theorem 5.6] for example). Instead, we must add more equations corresponding
to the k cusps of M . The construction is as follows. For the tth cusp of M there
is a peripheral torus Ct. When viewed from a cusp, any fundamental domain
for Ct can be identified with a quotient of the plane by two translations µt, λt.
Intersecting this plane, with the 2-skeleton of T̂ results the plane tessellated by
triangles. In the 1-skeleton of this tessellation, µt, λt lift to two oriented piece-wise
linear curves, which we denote by γt,m and γt,l, respectively (see Figure 3). The
following conditions ensure that Ct is the quotient having a Euclidean structure
X by a group of translations generated by µt and λt. At each vertex v along the
path γt,m or γt,l, we can take the product of dihedral angles to the right side of
the oriented curve pv. It is a consequence of [3, Lemma E.6.8], that along a path
containing #v vertices this condition is equivalent to the product of all complex
parameters the pv is (−1)#v, and so we build the mth equation corresonding to
the meridian µt as follows. For the jth tetrahedron, let (−1)#vaj,m be the number
of times the complex parameter zj is part of this product, and let (−1)#vbj,m be

the number of times the complex parameter
zj−1
zj

shows up in pv. Finally, let

(−1)#vcj,m be the number of times the complex parameter 1
1−zj

corresponds to an

angle along this product. This method yields the following 2k pairs of equations:

n∏

j=1

(zj)
aj,m

(
1

1− zj

)bj,m (zj − 1

zj

)cj,m

= 1(4)
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Figure 1. An ideal tetrahedron with vertices at 0,1, ∞, and z.

Figure 2. A truncated tetrahedron with labeled edges

and

n∑

j=1

aj,m · arg (zj) + bj,m · arg
(

1

1− zj

)
+ cj,m · arg

(
zj − 1

zj

)
= 0.(5)

The m + 1st equation will follow the same recipe but we will replace the path
determined by µt with the path determined by λt.

We note that SnapPea uses a slightly different method, however using identities

such as zj · 1
1−zj

· zj−1
zj

= −1 the equations can be seen as equivalent. Furthermore,

in the definition above the coefficients aj,m, bj,m, and cj,m would have the same sign

and have absolute value less than 4, but under the identity zj · 1
1−zj

· zj−1
zj

= −1, the

sign of the coefficients can change. Just as above, both conditions can be satisfied
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Figure 3. The fundamental domain for Ci with an identified
boundary. In this example γt,m is the path between the two dots
and the product at point p2 that contributes to the equation for
γt,m is (−1)3w1...ws, where wi denotes the complex parameter of
an edge with endpoint at the cusp.

if
n∑

j=1

aj,m log (zj) + bj,m log

(
1

1− zj

)
+ cj,m log

(
zj − 1

zj

)
= 0 + 0πi.(6)

Thus, since M has n tetrahedra and k cusps (all unfilled), we have a system of
n+ 2k equations.

2.3. Filled cusp equations. A cusped 3-manifold M can be Dehn filled along
a cusp Ct

∼= T 2 × [0,∞) if the set T 2 × (0,∞) is removed and the boundary
T 2 × {0} is identified with the boundary of a solid torus. These identifications can
be parametrized by the curve γ in π1(Ct) = 〈µj,t, λj,t|[µj,t, λj,t]〉 that gets identified
with the curve that bounds a disk in the solid torus. If M is hyperbolic, all but at
most finitely many choices of γ = pµj,t + qλj,t will yield a hyperbolic manifold by
Thurston’s Hyperbolic Dehn Surgery Theorem [34]. Furthermore, the process can
be repeated if M is filled along multiple cusps.

Denote by N a manifold that comes from filling h cusps of a manifold M . Using
the convention that M decomposes into n tetrahedra and has k cusps, we will
assume that the system of n+2k equations described above is already constructed.

Denote by ΩM the set of gluing equations for M . For each filled cusp in N ,
there is of course a corresponding unfilled cusp of M , and so assume that rth and
r + 1st equations in ΩM correspond to the meridian and longitude (respectively)
of this cusp in M . For the equation set of N , we replace these two equations by (a
simplified form of) the following:

n∏

j=1

(
(zj)

aj,r

(
1

1− zj

)bj,r (zj − 1

zj

)cj,r
)p

·
(
(zj)

aj,r+1

(
1

1− zj

)bj,r+1
(
zj − 1

zj

)cj,r+1

)q

= 1(7)

and similarly for the argument functions:



8 N.HOFFMAN, K.ICHIHARA, M.KASHIWAGI, H.MASAI, S.OISHI, AND A.TAKAYASU

p ·
n∑

j=1

(
aj,r · arg (zj) + bj,r · arg

(
1

1− zj

)
+ cj,r · arg

(
zj − 1

zj

))(8)

+ q ·
n∑

j=1

(
aj,r+1 · arg (zj) + bj,r+1 · arg

(
1

1− zj

)
+ cj,r+1 · arg

(
zj − 1

zj

))
= 2π.

We can also express these equations using logarithms.

p

n∑

j=1

aj,r log (zj) + bj,r log

(
1

1− zj

)
+ cj,r log

(
zj − 1

zj

)
+

q

n∑

j=1

aj,r+1 log (zj) + bj,r+1 log

(
1

1− zj

)
+ cj,r+1 log

(
zj − 1

zj

)
= 0 + 2πi.(9)

Again, to show that a given triangulation of N corresponds to a hyperbolic
structure, the solution set to these equations must be 0 dimensional and have at
least one solution corresponding to all positively oriented tetrahedra. However,
in the case where N has filled cusps, the solution corresponds to an incomplete
hyperbolic structure. We refer the reader to [3, §E.6-iv] for the details of how to
extend this to a complete hyperbolic structure.

2.4. Full set of equations. In the paragraphs above, there are two equivalent
sets of equations. The equations with polynomials and arguments we will call
the rectangular equations and the equations with logarithms we will call the log
equations. For a manifold N with n tetrahedra, k unfilled cusps and h filled cusps,
then there are n+2k+h log equations needed to be solved and n+2k+ h pairs of
polynomial and argument equations. It is common to combine the features of both
of these equations in a often more convenient form by removing the third term in
each summand of the log equations (see [3, page 235] for example).





n∑

j=1

(aj,m − cj,m) log (zj) + (−bj,m + cj,m) log (1− zj) + cj,m · πi = ǫm





n+2k+h

m=1

.

(10)

Here, the constant term ǫm is 0 if the equation corresponds to an unfilled cusp and
2πi otherwise. Finally, Equation 10 can be expressed as polynomial and argument
equations as follows:





n∏

j=1

(zj)
(aj,m−cj,m) · (1− zj)

(−bj,m+cj,m) =

n∏

j=1

(−1)cj,m





n+2k+h

m=1

and

(11)





n∑

j=1

arg((zj)
(aj,m−cj,m)) + arg((1 − zj)

(−bj,m+cj,m)) = ǫm −
n∑

j=1

cj,m · πi





n+2k+h

m=1
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where just as above, we choose ǫm to be 2πi for equations corresponding to edges
or filled cusps and 0 in the case of an unfilled cusp. This structure is unique by the
following result of Thurston. It is essentially a direct consequence of [34, Corollary
5.7.3], however, we present as follows to better fit the discussion of this section.

Theorem 2.1 (Thurston). If the gluing equations admit a solution, each of whose
imaginary part is positive (positive solution, in short), then M admits a complete
hyperbolic structure of finite volume. Furthermore the structure is determined by the
solution and is unique up to homeomorphism and re-triangulation of the manifold.

Also, to ease the notation we define αj,m = aj,m− cj,m and βj,m = −bj,m+ cj,m.
Furthermore, we can define (n+ 2k + h)× 2n matrix ΛM as follows:

ΛM =




α1,1 · · · αn,1 β1,1 · · · βn,1

...
. . .

...
...

. . .
...

α1,n+2k+h · · · αn,n+2k+h β1,n+2k+h · · · βn,n+2k+h


 .(12)

The numbering of the equations in this section most closely describes the num-
bering convention of SnapPea. However, in the computer argument that follows,
we start by changing the order of the equations such that for a manifold M with
n tetrahedra, k unfilled cusps, and h filled cusps, equations n, such that the first n
equations correspond to edge equations, the next 2k equations correspond to un-
filled cusps and the final h equations correspond to filled cusps. Namely, we can

make a new matrix Λ̂M such that the first k + h rows are selected from rows of
ΛM corresponding to either filled cusps or meridian equations of unfilled cusps and
then choose a set of n− (k+ h) equations such that the corresponding rows of ΛM

have maximal rank, finally denote by S, the total set of rows of selected to form

Λ̂M . The following theorem of Neumann and Zagier [27] shows that if the gluing

equations admit a positive solution, then Λ̂M has rank n (see also [26, Lemma 2.4]
and [3, E.6.ii-iv]).

Theorem 2.2 (Neumann & Zagier [27]). If M and the associated triangulation

correspond to a hyperbolic structure, Λ̂M has rank n. Furthermore, in this case,
solutions to the following equations





n∏

j=1

(zj)
αj,m · (1− zj)

βj,m = γm =

n∏

j=1

(−1)cj,m





m∈S

and(13)





n∑

j=1

arg((zj)
αj,m) + arg((1− zj)

βj,m) = ǫm −
n∑

j=1

cj,m · πi





m∈S

form a zero dimensional algebraic set.

As it suffices to solve only the equations (both polynomial and argument) of
in the theorem above, the remainder of this paper will be dedicated to verifying
that a solution to the system of equations in (13) can be obtained from a suitable
approximation. Also, we have taken care to define the right hand side of (13),
especially with regard to the right hand side of the argument equations. We make
the following remark to justify this attention.
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Remark. By [3, Lemma E.6.3], there is no need to check the argument condition
for any equation corresponding to an edge. However, this condition must be checked
for any equation coming from a filled or unfilled cusp. For example, the complete
solution to the equations for the census manifold m007, is also a solution to the
polynomial part of the rectangular equations for m007(3, 1), but the argument
condition of the equation corresponding to the filled cusp is not satisfied by that
solution.

3. Krawczyk’s Test

In this section, we present an algorithm which performs a mathematically rig-
orous numerical existence test for solutions of gluing equations (11). In such an
algorithm, one must deal with all errors in numerical computation including trun-
cation errors and rounding errors. In usual numerical computations, one uses the
floating-point arithmetic. The floating-point arithmetic approximates the real and
complex arithmetic. It is well-known that it may occur a rounding error in every
floating-point operation. Thus, it is necessary to discuss how to obtain mathemat-
ically rigorous conclusions from results of numerical computations based on the
floating-point arithmetic. For that purpose, the idea of interval arithmetics is use-
ful. Historically, the concept of interval arithmetic has been proposed in 1950’s
[32, 33, 24]. Since then, a lot of work has been done in this area (see [19, 24, 31] for
example). In the following, we first review how to implement the interval arithmetic
by using the floating-point arithmetic. In the end of this section, a simple example
treating the gluing equation is shown for demonstration.

3.1. Brief Review of Interval Analysis. Let us write an interval on the set of
real numbers, R, as X := {x ∈ R : x ≤ x ≤ x, x, x ∈ R} = [x, x]. We denote the
set of such intervals by IR. The midpoint of the interval: mid(X) ∈ R is defined by

mid(X) :=
x+ x

2
.

The radius of the interval X is defined by

rad(X) :=
x− x

2
.

Let us assume that a unary operation u : R → R and a binary operation ◦ : R×R →
R are defined. Most unary operations we consider here are standard functions.
Then, we can extend these operations to an unary operation ũ : IR → IR and
a binary operation ◦̃ : IR × IR → IR, including basic four arithmetic operations
◦ ∈ {+,−, ·, /}, by

(14) ũ(X) := {u(x) : x ∈ X}

and

(15) X ◦̃Y := {x ◦ y : x ∈ X, y ∈ Y },

respectively. Here, X , Y ∈ IR. Although in order to calculate four basic operations
◦̃ ∈ {+,−, ·, /}, which are called the interval arithmetics, it seems to need infinitely
many computations, only finitely many calculations of end points of intervals are
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sufficient. Namely, the interval arithmetic can be executed by

X + Y =
[
x+ y, x+ y

]

X − Y =
[
x− y, x− y

]

X · Y =
[
min{x · y, x · y, x · y, x · y},max{x · y, x · y, x · y, x · y}

]

X/Y = X ·
[
1

y
,
1

y

]
, (0 6∈ Y )

for X = [x, x] and Y = [y, y].
An interval vector is defined as m-tuple of interval entries satisfying

X := {x ∈ R
m : xi ∈ Xi for 1 ≤ i ≤ m}

for Xi ∈ IR, which is the Cartesian product of one-dimensional intervals. The set of
interval vectors is denoted by IRm. The set of interval matrices IRm×m is defined
similarly. The midpoint and the radius of an interval vector or an interval matrix
are also defined component-wisely. For example, letting A ∈ IRm×n be an interval
matrix, the mid(A) is defined by

mid(A) =




mid(a11) · · · mid(a1n)
...

. . .
...

mid(am1) · · · mid(amn)


 ∈ R

m×n

for aij ∈ IR.
Now we shall discuss how to solve the system of gluing equations (11) via interval

arithmetic. The system (11) can be rewritten as

n∏

j=1

z
αj,m

j (1− zj)
βj,m = γm, m = 1, · · · , n.

Note that as discussed in §2.4, αj,m, βj,m, γm ∈ Z. Theorem 2.2 states that the
system of equations (11) has at most n-independent equations. To compute the
matrix S in Theorem 2.2, we need to compute the ranks of matrices. Note that if
we compute the rank naively, it involves a lot of calculations and hence it is not
very easy to rigorously compute the rank. An efficient way to conjecture the rank
of a matrix A is to use the singular value decomposition of A because the rank is
equal to the number of non-zero singular values. In actual numerical computation,
one can only have approximated singular values. Thus, we set a threshold δ > 0,
which on the order of 10−8. Then, if all singular values are greater than δ, then
we can expect that a given matrix has full rank. We can thus compute a candidate
of S by choosing n − k rows of ΛM one by one so that at each step the resulting
matrix has full rank. In the event that our threshold was too big and we can not
find any candidate, we randomize the triangulation of M with SnapPy and try to
solve another system of gluing equations.

We assume here that we have successfully selected a candidate of S and hence,

Λ̂M ∈ Rn×2n in Theorem 2.2.
Setting α+

j,m = max{αj,m, 0}, α−
j,m = −min{αj,m, 0}, β+

j,m = max{βj,m, 0}, and
β−
j,m = −min{βj,m, 0}, we can rewrite selected n equations corresponding to Λ̂M
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as

(16)

n∏

j=1

z
α+

j,m

j (1− zj)
β+

j,m −
n∏

j=1

z
α−

j,m

j (1− zj)
β−

j,mγk = 0, k = 1, · · · , n.

For z = (z1, · · · , zn) ∈ Cn, the gluing equation (16) can be rewritten as g(z) = 0,
where g is a mapping from Cn onto itself. Setting zj = x2j−1 + ix2j (j = 1, · · · , n),
we can rewrite (16) further as

(17) f(x) = 0,

where f : R2n → R2n is a differentiable nonlinear real mapping. Let us put m = 2n.
Based on this preparation, we now discuss how to use the interval arithmetic to

prove the existence and local uniqueness of a solution for (17) in the interval vector
X ∈ IRm. Let c ∈ X be an approximation of a solution of f(x) = 0. We introduce
a simplified Newton mapping s : Rm → Rm for the mapping f by

(18) s(x) := x−Rf(x),

where R ∈ Rm×m is a certain matrix. Usually, R is chosen to be an approximate
inverse of f ′(c). If R is invertible, f(x) = 0 and s(x) = x becomes equivalent. From
the contraction mapping principle, if we can show s to be a contraction mapping
from X into itself, say s is a contraction on X , for short, then we can prove the
existence and local uniqueness of solution for (17) on X provided that R is invert-
ible. To check whether s is a contraction on X , usually Newton-Kantorovich type
theorem [14] is applied. For the finite dimensional case, so-called Krawczyk test
[15, 16, 31] is often used, since in many cases its implementation is straightforward
and easy compared with the direct application of Newton-Kantorovich type theo-
rem. For equation (17), we will show it is the case. So-called Krawczyk’s mapping
K : IRm → IRm, a map proposed in [15], with respect to the gluing equation (17)
is defined by

K(X) = c−Rf(c) + (I −Rf ′(X))(X − c),(19)

where I ∈ Rm×m is a unit matrix. We note that K(X) is a mean value form
of s. If we consider s(X) based on the naive interval extension, which is just
obtained by replacing the basic four arithmetic operation on reals with those of
intervals, it follows that s(X) ⊃ X so that we cannot expect s(X) ⊂ int(X). Here,
int(X) = {x = (x1, · · · , xm) ∈ X : xi < xi < xi (i = 1, · · · ,m)}. On the contrary
to this

K(X) ⊂ int(X)

can be expected. Indeed, the following theorem holds, which states a sufficient
condition that there exists a solution of (17) which is unique in X . On the basis of
Krawczyk’s mapping [15], Krawczyk’s test is established by S.M. Rump [31].

Theorem 3.1 (Krawczyk’s test). For a given interval X ∈ IRm, let int(X) be the
interior of X. If the condition

K(X) ⊂ int(X)(20)

holds, then there uniquely exists an exact solution x∗ of (17) in X. Furthermore, it
is also shown that R and all matrices C ∈ f ′(X) including f ′(x∗) are nonsingular.

In the following, we discuss how to implement Krawczyk’s test using the floating-
point arithmetic.
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3.2. Machine Interval Arithmetic. While there exist many definitions of float-
ing point systems, in order to simplify the discussion, we consider the floating-point
number system obeying IEEE 754 standard [13]. Let F be a set of IEEE 754 double
precision floating-point numbers. In IEEE 754 standard, four rounding operations
from R to F are defined. The rounding to the nearest fl : R → F is one of them.
This is defined through

|fl(x) − x| = min{|c− x| : c ∈ F}
for x ∈ R with |x| ≤ max{|a| : a ∈ F}. As well as rounding to nearest, IEEE
754 standard defines the rounding towards −∞, fldown : R → F, and the rounding
towards ∞, flup : R → F, by

fldown(x) := max{c ∈ F : c ≤ x}
and

flup(x) := min{c ∈ F : x ≤ c},
respectively. Although we omit the explanation, IEEE 754 also defines rounding
towards zero. It is known that almost all CPUs including Intel processors are
designed to satisfy IEEE 754 standards.

Let IF ⊂ IR denote the set of intervals with floating-point end points: {[x, x] :
x, x ∈ F, x ≤ x}. We define a rounding @ : IR → IF by

@([x, x]) := [fldown(x), flup(x)].

Using this, the basic four arithmetic operations of intervalsX,Y ∈ IF, � : IF×IF →
IF, are defined by

X � Y := @(X ◦ Y ),

where ◦ ∈ {+,−, ·, /}. This is called a machine interval arithmetic. The inter-
val vectors and matrices with floating-point end points IFm, IFm×m are also the
Cartesian product of one-dimensional intervals.

Although we introduce this notation to stress the operations the computer is
actually perfroming, one of the advantages of interval arithmetic is that one can
overwrite a computer’s calls for the basic operations of arithmetic with the defini-
tions above. Similarly, for the remainder of the paper, we will suppress the notation
� in favor of the less cumbersome {+,−, ·, /}.

Since the gluing equation (17) is based on the basic four arithmetic operations, we
can replace each arithmetic by its corresponding interval arithmetic. Then, by this
replacement, we can construct mappings F : IFm → IFm and F ′ : IFm → IFm×m

for any X ∈ IFm satisfying

(21) F (X) ⊃ {f(x) : ∀x ∈ X},
and

(22) F ′(X) ⊃ {f ′(x) : ∀x ∈ X} ,
respectively, where f ′(x) is the derivative of f . A map satisfying (21) (resp. (22))
is called an interval extension of f ∈ Rm → Rm (resp. f ′ ∈ Rm → Rm×m). To
compute F ′(X), we use so-called automatic differentiation, which we will explain
in §3.3.

The extended Krawczyk mapping KF : IFm → IFm is defined by

KF (X) := c− RF (c) + (I −RF ′(X))(X − c).
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Obviously KF (X) ⊃ K(X) holds for any X ∈ IFm. Thus, if KF (X) ⊂ int(X),
then K(X) ⊂ int(X) is satisfied. Therefore, if we can find computable interval
extension F of f , which is the case of the gluing equation (17) as mentioned above,
we can have computable Krawczyk’s test KF (X) ⊂ int(X). Now we consider how
to choose the candidate interval X ∈ IF

m on which s may be contractive. Let
c ∈ Fm be an approximate solution of (17) given by a certain numerical method,
e.g. Newton’s method via SnapPea. For a given vector x = (x1, · · · , xm) ∈ Fm, let
us define the maximum norm of x by ‖x‖∞ := max1≤i≤m |xi|. In our code named
hikmot, we choose

X =




[c1 − r, c1 + r]
[c2 − r, c2 + r]

...
[cm − r, cm + r]


 ,(23)

as a candidate interval, where r := 2‖Rf(c)‖∞

3.3. Automatic differentiation. Now, we explain how to calculateKF (X) for an
interval vectorX ∈ IFm. Most of the difficulty comes from the evaluation of F ′(X).
Therefore, we now explain how to calculate F ′(X) for X ∈ IFm. For calculating
F ′(X), one may consider using symbolic computation. However, the computation
costs easily become too high to get useful results. There is a reasonable alternative,
a notion called the automatic differentiation, which enables us to calculate F ′(X)
in a mathematically rigorous way. Although there are several ways of implementing
automatic differentiation, we here explain a method called bottom up automatic
differentiation. For its implementation, we first prepare an automatic differentiation
object, which is a pair of a data structure and set of operations among the objects
in that structure. The data structure of an automatic differentiation object is

(d0, d1, d2, · · · , dm) ∈ IF
m+1.

We now define several operators on this data structure. Let u : R → R be a
unary operation and U : IR → IR be its interval extension. We assume u is a
differentiable map. We denote the derivative of u by u′ : R → R. Note that the
derivative u′ we use here will be computed by hand and expressed in terms of the
standard operations. Let U ′ : IR → IR denote an interval extension of u′. Then,
we define a map Ũ(p) : IFm+1 → IFm+1 which will be associate to u in the bottom
up automatic differentiation as a map that maps p = (p0, p1, · · · , pm) ∈ IF

m+1 to

Ũ(p) = (r0, r1, · · · , rm) ∈ IFm+1, where

r0 := U(p0),

ri := U ′(p0)pi (i = 1, · · · ,m).

Next, let b : R× R → R be a differentiable binary operation: (x, y) 7→ b(x, y). The
interval extension of b is denoted by B : IR × IR → IR. We prepare by hands
partial derivatives ∂xb : R × R → R and ∂yb : R × R → R of b with respect to
x and y respectively. For example, Table 1 shows ∂xB(p0, q0) and ∂yB(p0, q0) for
basic four arithmetic operations. Let ∂xB : IR× IR → IR and ∂yB : IR× IR → IR

denote the interval extensions of ∂xb and ∂yb respectively. We now define a map

B̃ : IF
m+1 × IF

m+1 → IF
m+1, which will be associated to B in the automatic
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differentiation as follows: for p = (p0, p1, · · · , pm), q = (q0, q1, · · · , qm) ∈ IFm+1,

we define B̃(p, q) = (r0, r1, · · · , rm) by

r0 := B(p0, q0),

ri := ∂xB(p0, q0)pi + ∂yB(p0, q0)qi (i = 1, · · · ,m).

Table 1. Partial derivative of basic four arithmetic operations

∂xB(p0, q0) ∂yB(p0, q0)
p+ q 1 1
p− q 1 −1
p · q q0 p0
p/q 1/q0 −p0/q

2
0

Based on the above discussion, let us now consider a map f = (f1, · · · , fm)T

with fi : R
m → R (i = 1, · · · ,m) being differentiable functions of x = (x1, · · · , xm).

We assume that for the calculation of the value f(x), we have an algorithm which
consists of differentiable unary operations and differentiable binary operations. Now
we will explain how to calculate F ′(X) for X = (X1, · · · , Xm) ∈ IFm. Let Fi :
IRm → IR be the interval extension of fi. For j = 1, · · · ,m, we denote partial
derivatives of fi by ∂xj

fi : Rm → R whose interval extensions are defined by

∂xj
Fi : IR

m → IR. We define X̃ ∈ IFm×(m+1) by

X̃ =




X̃1

X̃2

...

X̃m


 =




X1 [1, 1] [0, 0] · · · [0, 0]
X2 [0, 0] [1, 1] · · · [0, 0]
...

...
...

. . .
...

Xm [0, 0] [0, 0] · · · [1, 1]




for X̃i ∈ IF
m+1. Starting with X̃ , replacing each operation in the algorithm for

calculating the function f by operations of the bottom up automatic differentiation,
we have an extension of F as

F̃ (X̃) =




F1(X) ∂x1
F1(X) ∂x2

F1(X) · · · ∂xm
F1(X)

F2(X) ∂x1
F2(X) ∂x2

F2(X) · · · ∂xm
F2(X)

...
...

...
. . .

...
Fm(X) ∂x1

Fm(X) ∂x2
Fm(X) · · · ∂xm

Fm(X)


 ∈ IF

m×(m+1),

where F̃ : IFm×(m+1) → IFm×(m+1). A submatrix of F̃ (X̃) consists of the second
column to the last column of matrix is nothing but F ′(X).

3.4. Complex arithmetic. We will now show how to compute F̃ (X̃) using the
complex mapping g in (16). For i = 1, · · · , n, a data structure of complex object is
defined by

(24) Z̃i =
(
X̃2i−1, X̃2i

)
∈ IF

(m+1)×2

for a pair of automatic differentiation objects X̃2i−1 and X̃2i. For given z =
(zre, zim) and w = (wre, wim), zre, zim, wre, wim ∈ IF

m+1, the basic four arithmetic
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operations between z and w are defined by

z + w := (zre + wre, zim + wim) ,

z − w := (zre − wre, zim − wim) ,

z · w := (zrewre − zimwim, zrewim + zimwre) ,

z

w
:=

(
zrewre + zimwim

w2
re + w2

im

,
zimwre − zrewim

w2
re + w2

im

)
.

Here, these expressions +,−, ·, / are defined through the operations of the automatic
differentiation.

Let us denote the relation (24) by

X̃ = idC→R(Z̃).

or

Z̃ = idR→C(X̃).

Replacing all operations for calculating the complex function g by operations of
the bottom up automatic differentiation mixed with complex transformation, we
can define an extension of g by G̃ : IFn×((m+1)×2) → IFn×((m+1)×2). Using G̃,
F̃ (X̃) can be calculated as

F̃ (X̃) = idC→R

(
G̃
(
idR→C

(
X̃
)))

.

3.5. Example. As an example, we shall consider the rectangular equation for the
census manifold 4 1(5,1). Assume that indices αj,m, βj,m, and γm are given by

{αj,m} =

(
5 9
2 2

)
, {βj,m} =

(
0 −7
−1 −1

)
, {γm} =

(
−1
1

)
.

Then the gluing equation (16) becomes

(25)

{
z51(1− z1)

0z92(1 − z2)
−7 = −1,

z21(1− z1)
−1z22(1 − z2)

−1 = 1,
⇐⇒

{
z51z

9
2 + (1− z2)

7 = 0,
z21z

2
2 − (1− z1)(1 − z2) = 0.

The equation (25) can be written as g(z) = 0, where g : C2 → C2 is defined by

g1(z) = z51z
9
2 + (1 − z2)

7

g2(z) = z21z
2
2 − (1 − z1)(1− z2).

Assuming that an approximate solution1 of g(z) = 0 is given by

z̃ =

(
0.1295310113154524+ 0.3730313363875791i
4.6374476446382840+ 1.6871823157824217i

)
.

Our candidate interval X ∈ IF4 is chosen by

X =




[0.1295310113154227, 0.1295310113154820]
[0.3730313363875496, 0.3730313363876089]
[4.6374476446382538, 4.6374476446383142]
[1.6871823157823886, 1.6871823157824481]


 .

1 The decimal notation of approximate solution may include a rounding error when printing to

the screen. The exact value of the approximate solution is described as ((0x1.09478e0b57659×2−3 )
+(0x1.7dfbed38abdae×2−2)i, (0x1.28cbf134a88de×22 )+(0x1.afeb2e24accfd×20)i) in the hexa-
decimal. In the rest of the paper, we note that the decimal numbers might include some rounding
errors.
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The Krawczyk mapping of X is calculated as

KF (X) =




[0.1295310113154520, 0.1295310113154527]
[0.3730313363875788, 0.3730313363875796]
[4.6374476446382680, 4.6374476446382999]
[1.6871823157824033, 1.6871823157824335]


 .

Thus, KF (X) ⊂ int(X) holds. Since we obtain the sufficient condition of the
computable Krawczyk’s test, the existence of a unique solution of (25) in X is
proved.

4. Verification package

In this section, we explain our package hikmot (v1.0.0) that verifies the hyperbol-
icity of a given manifold M . Our package is available at [11]. We will first explain
the main algorithm, and then give instructions on how to use our package.

4.1. The main algorithm. We here explain how hikmot proves the hyperbolicity
of a given triangulated manifold. We call a triangulation with positively oriented
approximated solutions by SnapPea a good triangulation. In the parlance of Snap-
Pea, a good triangulation corresponds to an approximation with solution type ‘all
tetrahedra positively oriented’. First we assume that there is a good triangulation
for M . A rough picture of our verification package is shown in Algorithm 1.

Algorithm 1 Verify hyperbolicity of M

Require: M has a good triangulation.
Ensure: M admits hyperbolic metric of finite volume.
Apply Krawczyk’s test to the approximated SnapPea’s solution for (7).
if The convergence has been verified and the imaginary parts of the solutions are
all positive then

Check arguments condition (8).
if The arguments condition is also satisfied. then
return [True, the set of intervals that contains rigorous solutions].

end if

end if

return [False, a collection of empty sets].

We will now explain

• how we apply Krawczyk’s test, and
• how to check argument condition (8),

in detail. Note that we use the machine interval arithmetic for every computation.
Given a good triangulation, we first apply Newton’s method five more times to

the approximated solution by SnapPea to get a more precise solution. Then we
apply Krawczyk’s test (Theorem 3.1) to the Krawczyk mapping KF and the set of
intervals X explained in (19) and (23) respectively. If the condition (20), that is
KF (X) ⊂ int(X) in Theorem 3.1 holds, then we make a list L = [True, X ]. This
means that our verification of the convergence of Newton’s method have succeeded
and X is a set of intervals each contains the rigorous shape of a tetrahedron. If
Krawczyk’s test fails, we put L = [False, E] where E is a collection of the empty
sets.
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Next, we will explain how to check argument condition (8). We first assume that
Krawczyk’s test has succeeded, i.e. L[0] = True. We will use the set X = L[1] of
intervals. First we note that the sum of arguments is in Z · 2πi. Hence to check the
argument condition (8), we only need to ensure that the sum of arguments contains
only desired value. We have prepared the function atan2 whose input is an interval
IC of complex numbers and output is an interval of real numbers that contains the
set {arg(z) | z ∈ IC}. Essentially we have used the theory of Taylor expansion.
See appendix A for more detail about this atan2. Then by using our atan2, we
compute the sum of arguments and then check if the resulting interval contains
only our desired value. Thus we can verify that our solution satisfies condition (8).

If L[0] = True and the argument condition (8) is ensured, then we have a proof
that M is a hyperbolic 3-manifold of finite volume and our package hikmot returns
L = [True, X ]. Otherwise, i.e. if L[0] = False or (8) is not satisfied, then we return
L′ = [False, E].

Note that even if our verification fails for a given triangulation, it is still possible
that the manifold M has other good triangulations whose solutions can be verified
by our package. In practice, we

• randomize triangulations of M in order to get another good triangulation,
and

• try to verify the hyperbolicity by using Krawczyk’s test

several times.

Remark. By using X = L[1] of the set of intervals for shapes of tetrahedra, in
principle, we can compute other invariants with rigorous error control.

4.2. Contents of our package, hikmot. Our package hikmot contains 3 folders
and 1 python files and README.txt . First, the folder “python src” contains

• hikmot.py, the main file of our program. The function verify hyperbolicity
in hikmot.py is the one that proves the hyperbolicity of a given triangulated
manifold, see §4.1.

• interval.py, complex.py, and ftostr.py files that prepare interval arithmetic,
see §3.1.

• rank.py, we use this file to guess the rank of S in Theorem 2.2, see also
§3.1.

• manifold.py, this is file has been adapted from a file originially written by
Bruno Martelli [20].

The folder “cpp src” contains

• the folder “kv”, that is a set of header files(autodif.hpp, hwround.hpp,
make-candidate.hpp, complex.hpp, interval-vector.hpp, interval.hpp, matrix-
inversion.hpp, convert.hpp, kraw-approx.hpp, rdouble.hpp)

• krawczyk.cc, this implements Krawczyk’s test, see §3.

We will use setup.py to install our package, see next subsection.

4.3. How to use the package. In this section, we explain how to use our package
on Linux or Mac machine.

We assume that SnapPy has been installed as a python module (see the docu-
mentation of [7] for installation instructions). We also assume boost [4] has been
installed. Our package depends on the OS, CPU and compiler. Therefore, users
need to compile the code on the machines, which they will use.
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Installing command: To install hikmot as a python module, use the command
as a superuser;

• python setup.py install

This will automatically compile our code. We would like to thank Nathan Dunfield
for writing setup.py, which eases the installation process.
To use the code:

(1) Install the code.
(2) Run python and import snappy and hikmot.
(3) The module hikmot.verify hyperbolicity(M , print data) is the verifier.

(a) M should be a SnapPy’s manifold with solution type “all tetrahedra
positively oriented”.

(b) If print data = True, then it prints out several data.

The function hikmot.verify hyperbolicity returns a list L = [“True” or “False”,
X or E] where X (resp. E) is a set intervals of tetrahedra shapes (resp. empty
sets) as explained in section 4.
Sample: On a python interpreter, we can use our codes as follows.

>>> import snappy

>>> import hikmot

>>> M = snappy.Manifold('4_1(5,1)')

>>> L = hikmot.verify_hyperbolicity(M)

>>> L[0]

True

>>>L[1]
[([0.12953101131545199,0.12953101131545273])+([0.37303133638757879,0.37303133638757963])i,

([4.6374476446382679,4.6374476446383])+([1.6871823157824032,1.6871823157824335])i]

>>> M.tetrahedra shapes('rect')

[(0.12953101131545247+0.3730313363875793j),

(4.637447644638281+1.6871823157824253j)]

5. Applications

5.1. Census manifolds. SnapPy has several censuses of manifolds (see the docu-
mentation of [7] for the list of censuses). In this section we report a computer aided
verification of the hyperbolicity of manifolds in several censuses.

Theorem 5.1. All the manifolds in OrientableCuspedCensus [5] are hyperbolic.

Proof. We use VerifyCuspedCensus.py, (available at [11]) that applies our package
to every manifold in OrientableCuspedCensus. Here we summarize the result.

% python VerifyCuspedCensus.py,
Out of 17661 manifolds in the closed census, 17661 are hyperbolic and 0
remain.



20 N.HOFFMAN, K.ICHIHARA, M.KASHIWAGI, H.MASAI, S.OISHI, AND A.TAKAYASU

So these manifolds remain: []

On Mac OS X 10.6.8 with Intel Core 2 Duo of speed 2.13 GHz, it takes about 8
minutes. �

We also verified the hyperbolicity of manifolds in Hodgson-Weeks closed census
[10].

Theorem 5.2. All the manifolds in OrientableClosedCensus are hyperbolic.

Proof. For several manifolds in this SnapPy census, it is difficult to find good trian-
gulations. The census contains 11031 manifolds and among them we can find good
triangulations for 10989 manifolds either directly or by randomization of triangu-
lations. Then our package proves the hyperbolicity of those 10989 manifolds. For
the remaining of 42 manifolds, we will use the list, dehn.gz, which came with the
older versions of SnapPea. The list contains several surgery descriptions for each
manifold in the census and often yields other good triangulations. More specifically,
by looking at surgery descriptions on the list dehn.gz and randomization, among
42 manifolds, we get good triangulations and our package proves the hyperbolicity
for 38 of 42, with only [m007(3,1), m135(1,3), v3377(-1,2), v2808(-5,1)] remaining.
Here, we are using SnapPea’s notation. For example, m007(3,1) is a closed mani-
fold obtained by filling 1-cusped manifld m007 with slope (3,1). For the remaining
four manifolds, we apply Algorithm 2 to get good triangulations. The authors were
informed the main idea of Algorithm 2 by Craig Hodgson. Note that in practice,
we also randomize triangulations at each step of Algorithm 2. We can find a good
triangulation by this code for [m135(1,3), v3377(-1,2), v2808(-5,1)] and our veri-
fication package works for those triangulations and proves the hyperbolicity. For
m007(3,1), we need to take covering of degree 3. Since the first homology of m007
is Z ⊕ Z/3Z, there is a covering N of degree 3 with 3 cusps. Then by filling each
cusp of N by the slope (3,1), we have a degree 3 covering N ′ of m007(3,1). Then by
applying Algorithm 2 to N ′, we can get a good triangulation. Our package proves
the hyperbolicity of N ′ and hence m007(3,1) is hyperbolic. �

Remark. The randomization function on SnapPea utilizes rand() function of c
language. The function rand() depends on compiler and machine. For the proof of
Theorem 5.2, we used Mac machine with OS 10.7.5. For the repeatability, we pre-
pared the set ClosedManifolds.zip (available at [11]) of closed manifolds with good
triangulations, each corresponds to a manifold in OrientableClosedCensus. One
can check the hyperbolicity of those manifolds, by using VerifyClosedCensus.py,
also available at [11].

Finally, hikmot.verify hyperbolicity(M,print data = False, save data=True) gen-
erates a file for M that gives all of the internal data used to compute Krawczyk’s
test (Theorem 3.1), which is the key step of our verification scheme. Thus, in prin-
ciple, one can just use the data from this file together with an independent scheme
that rigorously does computations with this data to comfirm that Krawczyk’s test
yields a contraction mapping, and hence verify the hyperbolicity of the manifold
M .

5.2. Exceptional surgeries on alternating knots. Two of the authors, Ichi-
hara and Masai, applied the method developed in this paper to study exceptional
surgeries on alternating knots in the 3-sphere S3.
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Algorithm 2 Find positive solutions by drilling out

Require: M is a closed manifold with a surgery description.
Ensure: M has a good triangulation.
while We can find a short closed geodesic γ ⊂ M do

Drill out γ to get M \ γ,
Take filled triangulation N of M \ γ,
Fill the cusp of N by the slope (1, 0).
(By the above procedure, we forget original surgery description and get new
surgery description.)
if N has positively oriented solution. then
return [True, N ]

end if

end while

return False.

A knot is an embedded circle in S3, and it is represented by a diagram on the
plane, meaning that, a projected image with under-over information at each double
point. A knot is called alternating if it admits a diagram with alternatively arranged
over-crossings and under-crossings running along it.

From a given knot in S3, by removing its tubular neighborhood and gluing solid
torus back, one can obtain a “new” closed orientable 3-manifold. Such an operation
is called a Dehn surgery on the given knot. The homeomorphism type of the 3-
manifold so obtained is determined by the isotopy class of the loop bounding a disk
in the attached solid torus, which is called the surgery slope.

Due to pioneering works by Thurston [34], all but at most finitely many Dehn
surgeries on a hyperbolic knot yield hyperbolic manifolds. Here a knot is called
hyperbolic if its complement admits a complete Riemannian metric of constant
sectional curvature −1 of finite volume. In view of this, such an exceptional case,
that is, a Dehn surgery on a hyperbolic knot giving a non-hyperbolic manifold, is
called an exceptional surgery. There are many of results about the classification of
exceptional surgeries on knots. See [2] for a survey.

In [12], Ichihara and Masai applied our package in this paper to the study of
exceptional surgeries on hyperbolic alternating knots, and achieved a complete clas-
sification.

Here we include a rough sketch of this work. In theory, a result of [17] implies
that there are only finitely many links (i.e., disjoint unions of knots) so that if
one could classify exceptional surgeries on those links completely, then a complete
classification of exceptional surgeries on all hyperbolic alternating knots is obtained.

Unfortunately the number of such links is in the millions. Thus the first task
is to reduce the number of such links. We now explain an outline of this step.
The links correspond to reduced alternating diagrams of alternating knots, and are
filtered in terms of the complexity of the diagrams defined by Lackenby, called the
twist number. In the same paper, Lackenby proved that the alternating knots with
the reduced alternating diagrams of twist number more than 8 have no exceptional
surgeries. Further the knots with the alternating diagrams of twist number at
most 5 are shown to be arborscent knots, for which the classification of exceptional
surgeries is almost known. See [12] for more details. Therefore our target is the
knots with the alternating diagrams of twist number t satisfying 6 ≤ t ≤ 8. At this
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point, however, the number of the corresponding links is more than 120000. To
reduce the number of the links further, we applied some technique using essential
laminations in the link exteriors, based on the result obtained by Wu [38]. After
that, we have about remaining 30000 links.

For each of the link, we apply a computer-aided approach to get a classification
of exceptional surgeries on the link, essentially developed in [20]. (As noted before,
the actual code is available in the web page of B. Martelli, one of the authors of [20].)
Their method is based on the so-called 6-theorem obtained by Agol [1] and Lackenby
[17], and seems very efficient in practice. The key point is to compute the “length”
of the surgery slope on a horotorus in hyperbolic link compliments. Actually, the
length is more than 6 implies the corresponding surgery is not exceptional due to
6-theorem. However, at the time of writing, the procedure obtained in [20] mainly
depends upon the Moser’s work and utilizes floating point arithmetic. Hence we
modified their code with using interval arithmetic and our package developed in
this paper.

The final problem is about the computational time. For each individual link, our
procedure have to be applied recursively, since the links have several components.
For example, in the worst case, for one link, we have to apply our procedure to more
than 1400 cusped manifolds. It then takes more than 2 hours in single standard per-
sonal computer. Therefore we used a super-computer, called “TSUBAME” [21, 36],
set in Tokyo Institute of Technology. Consequently, after all computations, which
took about a day in computational time in TSUBAME, we could do verify that
there are no links among those we have targeted which have exceptional surgeries.

6. Advantages over existing methods

The algorithm described in this paper is an improvement over existing methods
used in 3-manifold topology in three key ways: the control over error, the ease of
extending these computations to other topological invariants, and the ability to
implement for large scale verifications. For the purposes of this section, we will
compare this method, based on the Krawczyk test, to an implementation of the
Kontorovich test popular in the study of 3-manifold topology [26], and finally an
exact arithmetic algorithm.

The code associated to [26] is available via the website in the citation. In that
specific implementation, the eigenvalues of a conjugate transpose matrix are com-
puted via solving a characteristic polynomial. The eigenvalues need to be computed
to high precision because they are used to bound the size of a neighborhood of the
approximate solution that contains an exact solution.

However, an undesirable amount of precision loss can occur during this com-
putaiton of eigenvalues. It is well known that given n× n matrices A = {aij} and
Aǫ = {âij} such that |aij − âij | ≤ ǫ for all pairs, i, j, the minimum of difference
the eigenvalues for A and Aǫ can be at least n

√
ǫ. To be more explicit, choose A

to the matrix with ones along the main and submain diagonal and let Aǫ be the
matrix with ones along the main and submain diagonal and ǫ in the (n, 1)-entry.
In this case, the eigenvalues of A are all 1 and the eigenvalues of Aǫ are of the form
1− ζn n

√
ǫ where ζn is an n-th root of unity.

Despite this potential for precision loss in [26] as described above, it is doubtful
that a small complexity 3-manifold exploits such an error in order to a false cer-
tificate of hyperbolicity via that computation. More concretely, we point out that
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every manifold verified in [26] has also been verified by the methods of this paper
(including the large links of Leininger [18], which have 32 and 44 tetrahedra).

The second feature of the interval arithmetic technique is that the computer
keeps track of the accumulated error throughout the computation. Therefore, the
same techniques of computation allow for further rigorously computed invariants
coming from the solutions to the gluing equations. In principle, any computation
that Snappea preforms can be made rigorous using the techniques of this paper.

Finally, a third method exists for rigorous computer verification of hyperbolicity,
namely snap, which uses an exact arithmetic algorithm (see [8, 6]). Snap is able to
verify the exact hyperbolic structure by representing algebraic numbers exactly and
algebraically solve the polynomial equations of a manifold (13). With this data,
the user can compute arithmetic data related to hyperbolic 3-manifolds (which our
methods cannot). However, the exact arithmetic methods are designed principally
for the computations of this arithmetic data, and so the methods of this paper
are more efficient to rigorously verify hyperbolicity. For instance, using the snap
software would be less practical than our methods for a large scale verification
involving large sets of manifolds with relatively high numbers of tetrahedra such as
the computation preformed in [12]. In addition, snap does not report the error on
its “non-arithmetic” computations, such as volume or parabolic length. Therefore,
a separate argument addressing such error would have to be derived one is able to
claim rigorous computations using data from snap.

Appendix A. Verified computations for arg(z)

In this appendix, we describe how to rigorously compute arg(z) for z = x+iy ∈ C

using the floating-point arithmetic. The complex argument of z is defined by

arg(z) := atan2(y, x).

Here, atan2(y, x) is one of commonly used mathematical functions in programming
languages including C, C++, JAVA etc., and defined by Table 2. In this table, the

Table 2. Definition of atan2(y, x)

Conditions for x and y atan2(y, x)

y ≤ x, y > −x arctan(y/x)

y > x, y > −x π
2 − arctan(x/y)

y > x, y ≤ −x, y ≥ 0 π + arctan(y/x)

y > x, y ≤ −x, y < 0 −π + arctan(y/x)

y ≤ x, y ≤ −x −π
2 − arctan(x/y)

arctan function is assumed to have the range (−π
2 ,

π
2 ). Here, we first show how to

rigorously evaluate an interval extension of arctan function. Then, based on this
we present a rigorous method of evaluating atan2 function.

A.1. Arctangent. First, we show how to construct an interval extension of arctan
function. It is seen from Table 2 that the evaluation of arctan(x) for x ∈ F reduces

to that for arctan function on the interval [−(
√
2 − 1),

√
2 − 1]. On the interval
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{x : |x| ≤
√
2−1}, an interval inclusion of arctan(x) is obtained from the Maclaurin

expansion with remainder term:

(26) arctan(x) ∈ x− 1

3
x3 +

1

5
x5 − 1

7
x7 + · · ·+ 1

n
[−1, 1]xn

with n being chosen as ∣∣∣∣
1

n
[−1, 1]xn

∣∣∣∣ ≤ 2−53.

Calculating the right-hand side of (26) with interval arithmetic, we define atan point :
F → IF by

atan point(x) := x− 1

3
x3 +

1

5
x5 − 1

7
x7 + · · ·+ 1

n
[−1, 1]xn.

For I = [a, b] ∈ IF, we define I = a and I = b respectively. Then, an interval
extension Arctan : IF → IF is given by

Arctan(X) :=
[
atan point(X), atan point(X)

]
∈ IF.

A.2. Evaluation of arg(z). Next, we show how to construct an interval extension
of atan2 function whose range is assumed to be (−π, π]. For x, y ∈ F, let us denote
Iy/x := [fldown(y/x), flup(y/x)] and Ix/y := [fldown(x/y), flup(x/y)]. Furthermore,
[π2 ] and [π] denote the interval inclusion of π

2 and π respectively. An interval
inclusion of atan2(y, x), which is denoted by atan2 point(y, x), can be calculated
through Arctan function defined above. Namely, Table 3 shows a realization:

Table 3. Realization of atan2 point(y, x)

Conditions for x and y atan2 point(y, x)

y ≤ x, y > −x Arctan(Iy/x)

y > x, y > −x [π2 ]−Arctan(Ix/y)

y > x, y ≤ −x, y ≥ 0 [π] + Arctan(Iy/x)

y > x, y ≤ −x, y < 0 −[π] + Arctan(Iy/x)

y ≤ x, y ≤ −x −[π2 ]−Arctan(Ix/y)

For Iy, Ix ∈ IF, Table 4 shows a realization of Atan2 : IF× IF → IF, which is a
kind of interval extension of atan2 function. It is easily seen from Table 4, Atan2
function is an interval extension of atan2 function except the case of Ix 6∋ 0, Iy ∋ 0,

and Ix < 0. In this case, a natural interval extension of atan2 function becomes
the union of the following two intervals:

[
−[π], atan2 point(Iy , Ix)

]
and

[
atan2 point(Iy , Ix), [π]

]
.

Since this makes the algorithm multivalued, we modify the algorithm to return a
single interval for such Iy and Ix:

Atan2(Iy, Ix) =
[
atan2 point(Iy, Ix), 2[π] + atan2 point(Iy, Ix)

]
.

It is just a change of expression so that this modification does not cause any con-
fusion.
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Table 4. Atan2(Iy , Ix)

Conditions for Ix and Iy Atan2(Iy, Ix)

Ix ∋ 0, Iy ∋ 0
[
−[π], [π]

]

Ix ∋ 0, Iy 6∋ 0, Iy > 0
[
atan2 point(Iy, Ix), atan2 point(Iy, Ix)

]

Ix ∋ 0, Iy 6∋ 0, Iy < 0
[
atan2 point(Iy, Ix), atan2 point(Iy, Ix)

]

Ix 6∋ 0, Iy ∋ 0, Ix > 0
[
atan2 point(Iy, Ix), atan2 point(Iy, Ix)

]

Ix 6∋ 0, Iy ∋ 0, Ix < 0
[
atan2 point(Iy, Ix), 2[π] + atan2 point(Iy , Ix)

]

Ix 6∋ 0, Iy 6∋ 0, Ix > 0, Iy > 0
[
atan2 point(Iy, Ix), atan2 point(Iy, Ix)

]

Ix 6∋ 0, Iy 6∋ 0, Ix > 0, Iy < 0
[
atan2 point(Iy, Ix), atan2 point(Iy, Ix)

]

Ix 6∋ 0, Iy 6∋ 0, Ix < 0, Iy > 0
[
atan2 point(Iy, Ix), atan2 point(Iy, Ix)

]

Ix 6∋ 0, Iy 6∋ 0, Ix < 0, Iy < 0
[
atan2 point(Iy, Ix), atan2 point(Iy, Ix)

]
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