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Abstract
We introduce local grand Lebesgue spaces, over a quasi-metric measure space
(X , d, μ), where the Lebesgue space is “aggrandized” not everywhere but only at
a given closed set F of measure zero. We show that such spaces coincide for different
choices of aggrandizers if their Matuszewska–Orlicz indices are positive. Within the
framework of such local grand Lebesgue spaces, we study the maximal operator, sin-
gular operators with standard kernel, and potential type operators. Finally, we give an
application to Dirichlet problem for the Poisson equation, taking F as the boundary
of the domain.
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1 Introduction

The grand Lebesgue spaces L p),θ (�), defined by the norm

‖ f ‖L p),θ (�) = sup
0<ε<p−1

⎛
⎝εθ

∫

�

| f (x)|p−εdx

⎞
⎠

1
p−ε

,

were introduced in [1, 2] when |�| < ∞. An approach to aggrandize Lebesgue spaces
on sets of infinite measure may be found in [3–6]. Grand spaces have been intensively
studied during the last decades; see, for instance, [7–13]. We refer also to [14] and
references therein.

We introduce a version of grand Lebesgue spaces which we call local grand
Lebesgue spaces. The word “local” means that the Lebesgue space is “aggrandized”
not everywhere but only at a given set of measure zero. We consider such spaces in
the general setting of quasi-metric measure spaces (X , d, μ). To be more precise, let
F ⊂ X be a closed set of measure zero, in particular in the Euclidean case we can
choose the boundary of a domain as the set F . We introduce the space L p),θ

F,a (X , μ)

by the norm

‖ f ‖
L p),θ
F,a (X ,μ)

:= sup
0<ε<�

εθ

⎛
⎝

∫

X

| f (x)|pa(dist(x, F))pεdμ(x)

⎞
⎠

1
p

,

where the “aggrandizer” a : [0,D] → R+,D = diam(X), is a suitable function with
a(0) = 0. Such local grand Lebesgue spaces in the Euclidean case and F consisting of
a unique point where studied in [15]. We also introduce the corresponding vanishing
local grand Lebesgue space VL p),θ

F,a (X , μ).
We prove some properties of such spaces. In particular, we consider relations

between such spaces under different choice of the function a and show that two local
grand Lebesgue spaces with aggrandizers a and b coincide if theMatuszewska–Orlicz
indices of a and b are positive. We also demonstrate that the space L p(X) is strictly
embedded into such local grand Lebesgue space when (X , d, μ) has some regularity
properties. If (X , d, μ) is of homogeneous type, within the frameworks of the spaces
L p),θ
F,a (X) and VL p),θ

F,a (X , μ), we study the maximal operator, singular operators with
standard kernel, and potential type operators. Here we used the results of the recent
papers [16, 17], where there were studied Muckenhoupt weights with singularities at
a given set which allowed us to prove the boundedness of these operators via interpo-
lation with respect to weights.

Finally, we give an application to Dirichlet problem for the Poisson equation, taking
F as the boundary of the domain, using some pointwise estimates obtained in [18].

The paper is organized as follows. In Sect. 2 we supply necessary preliminaries
on quasi-metric measure spaces and the notion of Matuszewska–Orlicz indices. In
Sect. 3 we introduce the local grand Lebesgue spaces and show that such spaces
coincide for different choices of aggrandizers if their Matuszewska–Orlicz indices
are positive. In Sect. 4 we recall the notion of lower Assouad codimension and its
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connection with power distance functions as Muckenhoupt weights. In Sect. 5 we
study the boundedness of the maximal operator, singular operators with standard
kernel, and potential operator. In Sect. 6 we give an application to Dirichlet problem
for the Laplace equation.
Notation:

– δF (x) := dist(x, F);
– NF is the lower Assouad codimension of F, see Definition 4.1;
– ‖ f ‖L p(X ,w) := ‖ f w‖L p(X);
– D := diam(X);
– T : X ↪→ Y means that T is a continuous mapping from X into Y .

2 Preliminaries

2.1 On quasi-metric measure spaces

By (X , d, μ) we denote a quasi-metric measure space with the quasi-distance d sat-
isfying the standard conditions:

d(x, y)≥0, d(x, y)=d(y, x), d(x, y)=0 ⇔ x= y, d(x, y)≤τ [d(x, z) + d(y, z)],
(2.1)

and by μ a regular Borel measure. The set X may be bounded or unbounded. We
denote B(x, r) = {y ∈ X : d(x, y) < r}, r > 0.

The space (X , d, μ) is said to be homogeneous, if

μB(x, 2r) ≤ CμB(x, r). (2.2)

The measure is said to satisfy the growth condition, if there exists N > 0 such that

μB(x, r) ≤ CrN , 0 < r < d, (2.3)

where N is not necessarily an integer.
As iswell known, extension of various results from theEuclidean case X = � ⊆ R

n

to the general case of (X , d, μ) often depends on the choice of the assumption (2.2)
or (2.3) for the measure μ.

We say that (X , d, μ) is N-Ahlfors regular, if there exists N > 0 such that

C−1r N ≤ μB(x, r) ≤ CrN ,

where N is not necessarily an integer.
For more details on quasi-metric measure spaces we refer, e.g., to [19, 20].
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2.2 The class G(I) of aggrandizers

Let I = (0,D) with 0 < D ≤ ∞. By L∞+ (I ) we denote the cone of non-negative
functions in L∞(I ). We define the class G(I ), following [15], as the set of functions
a ∈ L∞+ (I ) satisfying the conditions:

(1) a(t) is continuous in a neighbourhood of the origin and a(0) = 0; and
(2) inf t∈(κ,D) a(t) > 0 for every κ ∈ (0,D).

We call functions a ∈ G(I ) aggrandizers.

2.3 Matuszewska–Orlicz indices

In Sect. 3 we use the notion of Matuszewska–Orlicz indices m(a) and M(a) of a non-
negative function a introduced in [21], see also [22] where properties of these indices
are given in a form convenient for us. These indices are defined by

m(a) := sup
0<x<1

ln

(
lim
h→0

a(hx)
a(h)

)

ln x
and M(a) := sup

x>1

ln

(
lim
h→0

a(hx)
a(h)

)

ln x
.

Note also that

m(tα) = α, m

[(
ln

D · e
t

)±1
]

= 0 (D < ∞), m(tαa(t)) = α + m(a),

m(a(t)β) = βm(a), m(1/a) = −M(a),

where α ∈ R and β ∈ R+.
A non-negative function a on I is called quasi-monotone if there exist α, β ∈ R

such that a(t)t−α is almost increasing (a.i.) and a(t)t−β is almost decreasing (a.d.).
A quasi-monotone function has finite indices and m(a) = sup{α | a(t)t−α is a.i.} and
M(a) = inf{β | a(t)t−β is a.d.}. Everywhere in the sequel, when considering indices
of a function, we suppose that it is quasi-monotone near the origin.

3 Local grand Lebesgue spaces Lp),�F,a (Ä,�)

Let (X , d, μ) be a quasi-metric measure space andD := diam(X) with 0 < D ≤ ∞.

Definition 3.1 Let � be an open set in X and F ⊂ X be a closed non-empty set
with μF = 0. For a function a ∈ L∞+ (I ), we define the local grand Lebesgue space

L p),θ
F,a (�,μ), 0 < p < ∞, θ > 0, by the (quasi)-norm

‖ f ‖
L p),θ
F,a (�,μ)

:= sup
0<ε<�

εθ

⎛
⎝

∫

�

| f (x)|pa(δF (x))pεdμ(x)

⎞
⎠

1
p

, (3.1)
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where δF (x) := inf y∈F d(x, y), and

‖ f ‖
L∞),θ
F,a (�,μ)

= sup
0<ε<�

εθess sup
x∈�

| f (x)|a(δF (x))ε, 0 < � < ∞.

In particular,wemay choose the boundary of� as the set F (assuming thatμ(∂�) =
0). In the case the set F consists of a single point x0 ∈ �, we use the notation
F0 := {x0}.

Note that the space L∞),θ
F,a (�) contains, in general, unbounded functions. Let, for

simplicity, X = R
n and � be a bounded domain in R

n . Then

(
ln

2D

|x − x0|
)γ

∈ L∞),θ
F,a (�)

under the conditions x0 ∈ F , a ∈ G(I ), m(a) > 0, and γ ≤ θ . It is worth pointing
out that a p = ∞-version of the usual well-known grand spaces was studied in [23].

The embedding

L p(�,μ) ↪→ L p),θ
F,a (�,μ), 0 < p ≤ ∞, θ > 0,

holds, whenever a ∈ L∞+ (I ).

To ensure that the local grand space L p),θ
F,a (�,μ) is larger than L p(�,μ), we should

restrict the choice of functions a(t), mainly by the assumption that a(0) = 0. In most
of the statements, we assume that a ∈ G(I ).

The norm (3.1) is equivalent to

sup
0<ε<�

εθ

⎛
⎜⎝

∫

δF (x)<s

| f (x)|pa(δF (x))pεdμ(x)

⎞
⎟⎠

1
p

+
⎛
⎜⎝

∫

δF (x)≥s

| f (x)|pdμ(x)

⎞
⎟⎠

1
p

, (3.2)

for every s ∈ (0,D).
The norm in the Lemma 3.2 is written as ‖ f ‖

L p),θ
F,a;�(�,μ)

to underline dependence

on the range for ε.

Lemma 3.2 The space L p),θ
F,a (�,μ) does not depend on the choice of �, up to equiva-

lence of norms

‖ f ‖
L p),θ
F,a;�1 (�,μ)

≤ ‖ f ‖
L p),θ
F,a;�2 (�,μ)

≤ C‖ f ‖
L p),θ
F,a;�1 (�,μ)

, 0 < �1 < �2 < ∞, (3.3)

where C = max

{
1, 1

�θ
1‖a‖�1

L∞
sup�1≤ε<�2

εθ‖a‖ε
L∞

}
.
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Proof The proof is straightforward. ��

The corresponding vanishing space VL p),θ
F,a (�,μ) is defined as the set of functions

f ∈ L p),θ
F,a (�,μ) such that

lim
ε→0

εθ p
∫

�

| f (x)|pa(δF (x))pεdμ(x) = 0.

3.1 Basic properties

The spaces L p),θ
F,a (�,μ) do not depend much on the “properly chosen” aggrandizer a,

as shown in Theorem 3.4. First, we prove the following lemma on embedding between
such spaces.

Lemma 3.3 The following is valid:

(1) If there exists a number α > 0 such that a(t) ≤ Cb(t)α, t ∈ I , then

L p),θ
F,b (�,μ) ↪→ L p),θ

F,a (�,μ).

(2) If the function a is almost increasing near the origin, and F1 and F2 are closed
non-empty sets such that F1 ⊆ F2 ⊂ �, then

L p),θ
F1,a

(�,μ) ↪→ L p),θ
F2,a

(�,μ).

Proof To show (1) it suffices to use Lemma 3.2. The proof of (2) follows from noticing
that δF2(x) ≤ δF1(x) and then it remains to use the fact that a is almost increasing. ��
Theorem 3.4 Let a and b be quasi-monotone functions on (0, κ), for some κ ∈ (0,D).
If m(a) > 0 and m(b) > 0, then

L p),θ
F,a (�) = L p),θ

F,b (�),

up to equivalence of norms.

Proof It suffices to refer to (3.2) and the fact that, for an arbitrarily small η > 0, there
are constants c(η) and C(η) such that

c(η)t M(a)+η ≤ a(t) ≤ C(η)tm(a)−η, t ∈ (0, κ),

see [22, Sect. 6], and apply Lemma 3.3. ��
Remark 3.5 Positivity of Matuszewska–Orlicz indices in Theorem 3.4 is, in general,
necessary: as shown in the Euclidean case in [15] the spaces defined by a(t) ∼ t and
b(t) ∼ 1

ln(1/t) near the origin are different, see [15, Lemma 2.7].
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One can be interested in the strict embedding

L p(�,μ) � L p),θ
F,a (�,μ). (3.4)

By Lemma 3.3 (2) it suffices to consider the case F = {x0}.We start with the following
lemma, where neither growth nor doubling condition are assumed.

Lemma 3.6 The function

u(x) = [μ(B(x0, d(x, x0)))]−
1
p , x0 ∈ �, (3.5)

does not belong to L p(�,μ), 0 < p < ∞.

Proof Suppose that u ∈ L p(�,μ). Then

∫

B(x0,r)

u(x)pdμ(x) =
∫

B(x0,r)

1

μ(B(x0, d(x, x0)))
dμ(x)

≥ 1

μ(B(x0, r))

∫

B(x0,r)

dμ(x) = 1. (3.6)

This contradicts the absolute continuity of the norm in L1(�,μ), see [24, Theorem
12.34]. ��
Theorem 3.7 Let μ satisfy μ(B(x0, r)) ∼ rγ as r → 0 for some x0 ∈ F, θ ≥ 1/p,
and m(a) > 0. Then the embedding (3.4) is strict.

Proof It suffices to consider the case F = {x0} by Lemma 3.3 (2) and we can also
take a(t) ≡ t for small values of t by Theorem 3.4. In view of Lemma 3.6, it remains
to show that u ∈ L p),θ

{x0},a(�,μ). We have

S := εθ p
∫

�

u(x)pd(x, x0)
εpdμ(x) ∼ εθ p

∫

�

d(x, x0)
εp−γ dμ(x).

We can use the norm in equivalence form (3.2) so we can replace� by B(x0, r). Using
dyadic decomposition, we obtain

S � εθ p
∞∑
k=0

∫

2−k−1r<d(x0,x)≤2−kr

d(x0, x)
εp−γ dμ(x)

� εθ p
∞∑
k=0

(2−kr)εp−γ

∫

B(x0,2−kr)

dμ(x)
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� εθ p
∞∑
k=0

(2−εp)k ∼ εθ p

1 − 2−εp

∼ εθ p−1,

which completes the proof. ��

4 Power of distances as Muckenhoupt weights

In the study of operators of grand local Lebesgue spaces we will use the important
Proposition 4.3. We now recall some definitions and introduce the corresponding
notations.

Definition 4.1 (Lower Assouad codimension) Let F ⊂ X and

Fr :={x ∈ X | δF (x) < r}.

The lower Assouad codimension, denoted by NF , is the supremum of all ν ≥ 0 for
which there exists a constant C ≥ 1 such that

μ(Fr ∩ B(x, R))

μB(x, R)
≤ C

( r

R

)ν

,

for every x ∈ F and all 0 < r < R < 2 diam(X).

Note thatNF > 0 implies that μF = 0, see [17, p. 6]. For more information about
Assouad dimension; see, e.g., [25, 26] and the references given there.

Definition 4.2 (Muckenhoupt weights) For 1 < p < ∞, the class Ap(X) is defined
as the set of all weights w on X such that

[w]Ap := sup
B⊂X

⎛
⎝ 1

μB

∫

B

wdμ

⎞
⎠

⎛
⎝ 1

μB

∫

B

w
− 1

p−1 dμ

⎞
⎠

p−1

< ∞,

where the supremum is taken with respect to all balls B in X . For p = 1, the class
A1(X) is defined by the condition Mw(x) ≤ Cw(x), where M is the maximal oper-
ator, see (5.1); we denote [w]A1 := ess sup

x∈X
Mw(x)
w(x) .

The Propositions 4.3 and 4.4 were proved in [17, Theorem 3.4]. It is noteworthy
to mention that in [16, Theorem 7] a similar result was obtained, although requiring
stronger assumptions on both X and F in terms of Ahlfors regularity.

Proposition 4.3 Let (X , d, μ) be homogeneous, F be a closed non-empty set, and
1 < p < ∞. Then

−NF < β < (p − 1)NF ⇒ δ
β
F ∈ Ap(X),
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where δF (x) = d(x, F) and NF is the lower Assouad codimension of the set F .

Proposition 4.4 Let (X , d, μ) be homogeneous and F be a closed non-empty set. Then

−NF < β ≤ 0 ⇒ δ
β
F ∈ A1(X),

where δF (x) = d(x, F) and NF is the lower Assouad codimension of the set F .

In the study of operators in Sect. 5 we will base ourselves on Propositions 4.3
and 4.4. Note that, in applications, when the set F is supplied with a positive measure
ν, the Proposition 4.5 is more practical. To this end, we need the following definition.

By Fs = {F} we denote the family of sets F ⊂ X satisfying the conditions:

(1) F is closed;
(2) μF = 0; and
(3) the set F ⊂ X is s-Ahlfors regular with respect to the s-dimensional Hausdorff

measure.

Proposition 4.5 ([16, Theorem 7]) Let (X , d, μ) be a homogeneous quasi-metric mea-
sure space N-Ahlfors regular and F ∈ Fs , with s < N. Then δ

β
F ∈ Ap(X) for

−(N − s) < β < (N − s)(p − 1), where Ap(X) is the Muckenhoupt class.

In the case where X is N -Ahlfors regular and F ∈ Fs , then Proposition 4.3 turns
into Proposition 4.5. Non-trivial examples of fractal spaces X and sets F may be found
in [16].

Statements of the type of lemma below are known, see for instance [27, Lemma
3.5].

Lemma 4.6 Let (X , d, μ) be homogeneous, F be a closed non-empty set, andw(x) :=
δF (x). If wβ ∈ Ap(X) then w̃β ∈ Ap(X), where

w̃(x) =
{

w(x), δF (x) < 1,

1, δF (x) ≥ 1.

5 On operators in local grand Lebesgue spaces

We start with the simple statement.

Theorem 5.1 Let T : L p(X , δε
F ) → Lq(X , δε

F ) be a bounded sublinear operator,
uniformly in ε ∈ (0, ε0), for some ε0 > 0. Then, for a quasi-monotone function a with
m(a) > 0, we have T : L p),θ

F,a (X) ↪→ Lq),θ
F,a (X) and T : VL p),θ

F,a (X) ↪→ VLq),θ
F,a (X).

Proof By Theorem 3.4, in the definition of the local grand space, we can replace a(t)
by a(t) ≡ t when D < ∞ and by a(t) ≡ min{t, 1} when D = ∞. After that, the
statement becomes obvious. ��
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Concerning the boundedness of operators in grand local Lebesgue spaces, we note
that one of the principal technical tools, i.e., the Stein–Weiss interpolation theorem,
remains valid in the general setting of arbitrary quasi-metric measure spaces, see [28,
Cor. 2.2] or [29, 17 and 120 pp.].

Proposition 5.2 ([28, Cor. 2.2]) Assume that 0 ≤ p0, p1, q0, q1 ≤ ∞ and that

T :
(
L p0(X , w

1/p0
0 ), L p1(X , w

1/p1
1 )

)
→

(
Lq0(X , σ

1/q0
0 ), Lq1(X , σ

1/q1
1 )

)

is a continuous linear operator. Then

T : L pθ (X , w
1/pθ

θ ) ↪→ Lqθ (X , σ
1/qθ

θ ),

where

1

pθ

= 1 − θ

p0
+ θ

p1
,

1

qθ

= 1 − θ

q0
+ θ

q1
, wθ = w

(1−θ)
p
p0

0 w
θ

p
p1

1 , σθ = σ
(1−θ)

q
q0

0 σ
θ

q
q1

1 ,

0 < θ < 1 and

‖T ‖
L pθ (X ,w

1/pθ
θ )→Lqθ (X ,σ

1/qθ
θ )

≤ C max
i=0,1

‖T ‖
L pi (X ,w

1/pi
i )→Lqi (X ,σ

1/qi
i )

.

5.1 Maximal operator

Recall that the maximal operator is defined as

M f (x) := sup
r>0

1

μB(x, r)

∫

B(x,r)

| f (y)|dμ(y). (5.1)

For 1 < p < ∞ and w ∈ Ap(X), we have

‖M f ‖L p(X ,w1/p) ≤ C[w]
1

p−1
Ap

‖ f ‖L p(X ,w1/p) , (5.2)

where the constantC does not depend on the weightw or the function f ; see, e.g. [30].
In the case p = ∞, for the space L∞(X , w) := { f | ess supx∈X | f (x)|w(x) < ∞},
we have the following lemma, where

[1/w]A1 = ess sup
x∈X

w(x)M (1/w) (x).

Lemma 5.3 The maximal operator M is bounded in L∞(X , w) if and only if 1/w ∈
A1(X) and

‖M f ‖L∞(X ,w) ≤ C [1/w]A1
‖ f ‖L∞(X ,w) . (5.3)
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Proof Sufficiency: We have M(1/w) ≤ c/w, so that

wM f (x) = wM

(
w f

w

)
≤ ‖w f ‖L∞(X) · wM

(
1

w

)
≤ C ‖ f ‖L∞(X ,w) .

Necessity: Choose f0 = 1/w ∈ L∞(X , w). Then ‖M f0‖L∞(X ,μ) ≤ C ‖ f0‖L∞(X ,w)

yields ess supx∈Xw(x)M (1/w) (x) ≤ c < ∞, i.e., 1/w ∈ A1(X). ��
Theorem 5.4 Let (X , d, μ) be homogeneous, F be a closed non-empty set, NF > 0,
1 < p ≤ ∞, θ > 0, a ∈ G(0,D), D = diam(X), and m(a) > 0. Then

M : L p),θ
F,a (X , μ) ↪→ L p),θ

F,a (X , μ),

and

M : VL p),θ
F,a (X , μ) ↪→ VL p),θ

F,a (X , μ).

Proof By Theorem 3.4, in the definition of the local grand space, we can replace a(t)
by a(t) ≡ t whenD < ∞ and by a(t) ≡ min{t, 1} whenD = ∞. For simplicity, we
take D < ∞.

By Proposition 4.3, under the choice ε0 < NF/p′, we have that δ
εp
F ∈ Ap(X), for

all ε such that 0 < ε < ε0. Take ξ such that ε0 p < ξ < (p − 1)NF . From (5.2), the
inequality [wα]Ap ≤ [w]αAp

, 0 < α < 1, and [w]Ap ≥ 1, we have

‖M‖L p

δ
εp
F

(X)→L p

δ
εp
F

(X) ≤ C[δεp
F ]

1
p−1
Ap

≤ C[δξ
F ]

εp
ξ(p−1)
Ap

≤ C[δξ
F ]

1
p−1
Ap

,

where the constants C do not depend on ε. The result now follows from Theorem 5.1.
Arguments for p = ∞ are similar, being based on Lemma 5.3 and Proposition 4.4.

��

5.2 Singular operators

We consider the Calderón–Zygmund singular operator K with the standard kernel,
as defined in [19] and [20, p. 502]. Let k : X × X \ {(x, x) | x ∈ X} → R be a
measurable function satisfying the conditions:

|k(x, y)| � 1

μB(x, d(x, y))
, x, y ∈ X , x �= y;

and

|k(x1, y) − k(x2, y)| + |k(y, x1) − k(y, x2)| � ω

(
d(x2, x1)

d(x2, y)

)
1

μB(x2, d(x2, y))
,
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for every x1, x2 ∈ X such that d(x2, y) � d(x1, x2). Here ω is a positive, non-
decreasing function on (0,∞) satisfying the �2-condition (i.e., ω(2t) ≤ cω(t) for all
t > 0 and some c > 0 independent of t) and the Dini condition

∫ 1
0

ω(t)
t dt < ∞. We

also assume as well that for some p0, 1 < p0 < ∞, and all f ∈ L p0(X) the limit

K f (x) := lim
ε→0+

∫

X\B(x,ε)

k(x, y) f (y)dy

exists a.e. and that the operator K is bounded in L p0(X).
The following proposition was proved in [31], see also [20, Theorem A, p. 503].

Proposition 5.5 Let (X , d, μ) be a space of homogeneous type and 1 < p < ∞. If
w ∈ Ap(X), then the operator K is bounded in L p(X , w1/p).

Note that the boundedness of the Calderón–Zygmund operators in L p(X , w) fol-
lows from the boundedness of the maximal operator M in L p(X , w) and [L p(X , w)]′
by the known arguments, see e.g. [32, Lemma 3.2].

Theorem 5.6 Let (X , d, μ) be homogeneous, F be a closed non-empty set, NF > 0,
1 < p < ∞, θ > 0, a ∈ G(0,D), D = diam(X), and m(a) > 0. Then, under the
assumptions of Proposition 5.5,

K : L p),θ
F,a (X , μ) ↪→ L p),θ

F,a (X , μ)

and

K : VL p),θ
F,a (X , μ) ↪→ VL p),θ

F,a (X , μ).

Proof We apply the interpolation Proposition 5.2 with p0 = p1 = p, w0(x) ≡ 1, and
w

p
1 (x) = δF (x)pε0 , corresponding to the cases ε = 0 and ε = ε0 in the definition of

the norm of the space. We also keep in mind that one can replace � by ε0, according to
Lemma 3.2. The boundedness of the Calderón–Zygmund operator, at the endpoints,
follows from Proposition 4.3 (taking ε0 < NF/p′) and the boundedness of the operator
K in the space L p(X , w1/p), w ∈ Ap(X), see Proposition 5.5. ��

Corollary 5.7 Let X = � ⊂ R
n be an open set satisfying the doubling condition

and μ the Lebesgue measure. Let ∂� denote the boundary of � and assume that
N∂� > 0. Then the maximal operator M and the Calderón–Zygmund operators K
from Proposition 5.5, related to �, are bounded in the space L p),θ

∂�,a if a ∈ G(I ) and
m(a) > 0.

Note that, in the case of “nice” boundaries, the codimension is always positive and
equals to n − 1 in case of Lipschitz boundary.
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5.3 Potential operators

For α > 0, the Riesz potential I α is defined by

I α f (x) =
∫

X

f (y)d(x, y)α

μB(x, d(x, y))
dμ(y).

For a given η > 0, we say that μ satisfies a reverse doubling condition if

μB(y, r)

μB(x, R)
≤ C

( r

R

)η

(5.4)

holds, whenever B(y, r) ⊂ B(x, R) ⊂ X .
The following proposition was proved in [17, Theorem 4.1], see also [33] for the

optimal exponent for the Ap constant in the Euclidean case.

Proposition 5.8 Let α > 0. Assume that the reverse doubling condition (5.4) holds
with the exponent η = α and that there exists Q > α such that μB ≥ crad(B)Q for
all balls B ⊂ X. Let ∅ �= F ⊂ X be a closed set, 1 < p < Q/α, and β ∈ R be such
that

− NF
p

p�
< β < NF (p − 1), (5.5)

where p� := Qp
Q−α p and NF is the lower Assouad codimension of F. Then

I α : L p(X , δF (·) β
p ) ↪→ L p�

(X , δF (·) β
p ),

Theorem 5.9 Let (X , d, μ) be homogeneous, F be a closed non-empty set, NF > 0,
1 < p < ∞, θ > 0, a ∈ G(0,D), D = diam(X), and m(a) > 0. Then, under the
assumptions of Proposition 5.8,

I α : L p),θ
F,a (X , μ) ↪→ L p�),θ

F,a (X , μ)

and

I α : VL p),θ
F,a (X , μ) ↪→ VL p�),θ

F,a (X , μ).

Proof The proof follows closely the one given in Theorem 5.6. We apply the inter-
polation Proposition 5.2 with p0 = p, p1 = p�, w0(x) = σ0(x) ≡ 1, w

p
0 (x) =

δF (x)pε0 , and w
p�

1 = δF (x)p
�ε0 . The boundedness of the Riesz potential operator

at the endpoints is given in Proposition 5.8, under the choice ε0 < NF/p′ for the
L p1(X , w

1/p1
1 ) → Lq1(X , σ

1/q1
1 )-boundedness. This completes the proof. ��
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6 An application to Dirichlet problem

In this section we give an application to Dirichlet problem basing ourselves on some
results from [18] for classical weighted Lebesgue spaces. Recall that the Dirichlet
problem is given by {

−�u = f , �,

u = 0, ∂�.
(6.1)

The operator K ji is defined as

K ji f (x) = lim
ε→0

∫

|x−y|>ε

∂ j i�(x − y) f (y)dy, (6.2)

where

�(x) :=
{

− 1
2π ln |x |, n = 2,
1

n(n−2)ωn

1
|x |n−2 , n ≥ 3,

and the corresponding maximal singular operator K ∗
j i by

K ∗
j i f (x) = sup

ε>0

∣∣∣∣∣∣∣

∫

|x−y|>ε

∂ j i�(x − y) f (y)dy

∣∣∣∣∣∣∣
. (6.3)

The following pointwise estimate was obtained in [18, Lemma 2.3].

Proposition 6.1 Let � be a bounded C2 domain. There exists a constant C depending
only on n and � such that, for any x ∈ �,

|u(x)| + |∂ j u(x)| ≤ CM f (x),

|∂ j i u(x)| ≤ C(K ∗
j i f (x) + M f (x) + | f (x)|),

where M is the maximal operator and K ∗
j i is defined in (6.3).

We now introduce the Sobolev grand local space Wk,p),θ
F,a (�) as

‖ f ‖
Wk,p),θ

F,a (�)
=

( ∑
|α|≤k

‖∂α f ‖p

L p),θ
F,a (�)

) 1
p

< ∞.

In the following theorem, the set F may be any closed non-empty set withNF > 0
in �, although the most interesting case seems to be when F = ∂�.
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Theorem 6.2 Let � ⊂ R
n be a bounded C2 domain, 1 < p < ∞, F ⊂ � be a closed

non-empty set, NF > 0, θ > 0, a ∈ G(I ), and m(a) > 0. If u is the solution of
problem (6.1), then there exists a constant C depending only on n and � such that

‖u‖
W 2,p),θ

F,a (�)
≤ C ‖ f ‖

L p),θ
F,a (�)

. (6.4)

Proof The result follows immediately from thepointwise inequalities fromProposition
6.1 and the boundedness of the maximal and the maximal singular operators. The
boundedness of the maximal operator is given in Theorem 5.4 and the boundedness
of the maximal singular operator follows from the known estimate

∫

Rn

K ∗ f (x)pw(x)dx ≤ Cp,w

∫

Rn

M f (x)pw(x)dx, w ∈ Ap,

where K ∗ is the maximal singular operator related with the singular operator K , see
[34, Theorem 2, p. 205]. ��
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