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Abstract

This paper proposes a semantic description of the linear step-like temporal multi-

agent logic with the universal modality LT K.slU based on the idea of non-

reflexive non-transitive nature of time. We proved a finite model property and

projective unification for this logic.
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1. Introduction

Temporal logics have been widely used for more than half a century as
an effective tool for describing information processes and calculations [15].
Here the most significant role belongs to logical systems LT L and CT L,
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that constitute today one of the foundation in the theory of program ver-
ification [10]. The interweaving of such logics with multi-agent systems
makes it possible to model the intellectual reasoning of various nature sites,
including social ones. Examples of such logics are LT K [9], LKInd—as
a version with the induction axiom [20], LT Kr—as a logic of a reflexive
non-transitive temporal relation [16].

In the field of modern approaches to modeling multi-agent systems,
there is a lack of a consistent approach: various methods of interaction be-
tween agents, modal operators and valuations are proposed, new versions
of combining modal systems are chosen. This situation can be partially
explained by the fact that suitable (from the idea of natural modeling of
processes) combined systems, after a deeper study, turn out to be complex
and even lack some useful properties [7]. Of course, this imposes signif-
icant restrictions on the applicability of such systems in real information
projects [8].

Most temporal logics are built on the idea of reflexive transitive time,
what helps make it possible to effectively apply the developed apparatus of
modal logics in their study. However, such systems have a lot of weak points
when modeling complex systems, in which we are usually required prop-
erties of dynamism, indeterminacy, instability of the information transfer
process and taking into account possible errors in the translation process.

In addition, the participants of computational process, described as
individual agents, whose knowledge is determined by multiple relations, are
able to communicate, make decisions under the influence of public opinion
of society or their own independent views, accumulate and expand available
information and, at the same time, ”forget” or ”lose” entire segments over
time. In this regard, logical systems based on non-transitive, multiple
fragmentary relations look promising.

Among other things, the nature of time itself, as a physical process, in
many ways remains a mystery to humanity. The argument in favor of its
non-transitivity, at least from the point of view of the technical tools avail-
able to us for its modeling, is the step-by-step principle of implementing any
computational process—when at any moment we only have today’s knowl-
edge and know what actions will be taken to move to the next moment of
time. From this point of view, it is of interest to study a non-transitive and
non-reflective version of temporal logic LT L, in which, taking into account
the specified properties of relations, the temporal process is a step-like
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sequential procedure. Thereby, it seems rational to model such logics using
methods of relational semantics.

An adequate approach that allows both to enhance the expressive power
of a modal language and to bring some clarity to the process of studying
the fundamental properties of a deductive system is the universal modality
operator. In the case of non-transitive models it allow us to overcome the
limitations associated with the finiteness of the modal degree of formulas
and expresses statements that are valid ”forever” in temporal systems [14].

One of the important properties of any proposition in logic is its unifi-
cation, i.e. the ability to transform a formula into a theorem by the sub-
stitution of variables. In the case of social models, the unification process
actually separates an unconditional true fragment from the general infor-
mation of arbitrary truth values available to the agent. Among the effec-
tive approaches to solving the unification problem, the most important are
the method of projective formulas and projective approximation [12], the
method for describing complete sets of unifiers in terms of n-characteristic
models based on reduced form of formulas [19]. From the standpoint of the
social interpretation for the unification problem, it becomes clear that it is
also useful to define the boundaries of an wittingly non-unifiable fragment:
such an approach was proposed in [18] for extensions of modal logics S4
and (K4 + [□⊥ ≡ ⊥]), and later generalized for a cases of linear transitive
temporal logics of knowledge [1, 5].

It is clear that the most important task is to find maximal unifiers
that allow to build all the others. However, it is also interesting to find
minimal—ground—unifiers obtained by a substitution of constants. Often,
ground unifiers allow us expressing schemes for constructing maximal and
even the most general unifiers [11, 6], although this approach is not always
possible [13].

S. I. Bashmakov previously described one non-reflexive non-transitive
temporal linear logic with universal modality and proved projective unifi-
cation [2]. Later, in [3] he announced the possibility of generalizing this
result for the case of logic enriched with agent’s knowledge relations. In this
work, we realized the semantic construction of a linear step-like temporal
logic of knowledge with a universal modality, proved the finite model prop-
erty and projective unification. For this logic, we introduce the notation
LT K.slU . The term ”step-like” is an interpretation of the non-reflective
non-transitive nature of the temporal relation given to logic.
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As a basic tool for describing and study the logic LT K.slU , we use the
traditional and well-studied relational Kripke semantics of possible worlds,
generalized to the case of temporal multi-agent systems. A key object
here is a LTK.slU -frame, represented by a tuple of clustered elements and
(n+ 3) binary relations specified on them.

2. Semantics for LT K.slU

There are various approaches to describing temporal logic. We will define
the logic under study as a multimodal system with the following semantics.

The alphabet of the language LLT K.slU includes a countable set of
propositional variables Prop = {p1, . . . , pn, . . . }, constants {⊤,⊥}, brack-
ets (, ), basic Boolean operations and the following set of unary modal
operators: {N,□e,□1, . . . ,□n,□U}.

The smallest set containing propositional variables from Prop and closed
under connectives from the language LLT K.slU will be standardly denoted
by For(LLT K.slU ).

LTK.slU -frame is a tuple F := ⟨W,Next, Re, R1, . . . , Rn, Ru⟩, where

• W =
⋃

t∈N Ct is a disjoing union of clusters Ct indexed by natural
numbers: Ct1 ∩ Ct2 = ∅ if t1 ̸= t2;

• Next is a (non-reflexive non-transitive) binary relation ”next natural
number”: ∀a, b ∈W : aNextb⇔ ∃t ∈ N(a ∈ Ct&b ∈ Ct+1);

• Re is a binary relation defining equivalence on each cluster:

∀a, b ∈W (aReb⇐⇒ ∃t ∈ N(a, b ∈ Ct));

• ∀i ∈ [1, n]Ri ⊆
⋃

t∈N(Ct)
2 are an agent’s knowledge relations defined

on clusters;

• Ru =W 2 is a relation of total reachability:

∀a, b ∈W : aRub.

A model on a LTK.slU -frame F is a pair M := ⟨F, V ⟩, where V is
a valuation V : Prop 7→ 2W , where Prop is a countable set of proposi-
tional variables. Then ∀a ∈ Ct ⊂ W, ∀t ∈ N truth conditions of formulas
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Figure 1. LTK.slU -frame

containing modal operators are determined in a standard way through the
corresponding relations:

• ⟨F, a⟩ ⊩V Nφ⇔ ∀b ∈ Ct+1 : ⟨F, b⟩ ⊩V φ;

• ⟨F, a⟩ ⊩V □eφ⇔ ∀b ∈ Ct : ⟨F, b⟩ ⊩V φ;

• ⟨F, a⟩ ⊩V □iφ⇔ ∀b ∈ Ct : aRi b⇒ ⟨F, b⟩ ⊩V φ;

• ⟨F, a⟩ ⊩V □Uφ⇔ ∀b ∈W : ⟨F, b⟩ ⊩V φ.

The operator □U is called a universal modality and actually sets the
truth of a formula on a model; □e is a Common Knowledge-operator on
each cluster; □1, . . . ,□n are operators of knowledge of agents that they
get on each of a frame cluster. We don’t impose any special properties on
the agent’s knowledge, except for the condition that any Ri is a certain
limitation of Re.

We say that a formula φ is true in the model M := ⟨F, V ⟩ (we denote
F ⊩V φ) if V (φ) =W . A formula φ is valid on the frame F (F ⊩ φ) if φ is
true in all its models. Finally, φ is valid on the class of frames K (K ⊩ φ),
if φ is valid on any frame F ∈ K. Recall that a class of frames is called
characteristic for a logic L iff all theorems of a logic are valid on all frames
from this class. Let K be the class of all LTK.slU -frames.

We will call a frame F adequate to a logic L if for any formula φ ∈ L
it is true that F ⊩ φ.

A linear step-like temporal multi-agent logic with universal modality
LT K.slU is a multimodal logic, defined as follows

LT K.slU := {φ ∈ For(LLT K.slU ) |∀F ∈ K : F ⊩ φ}.
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3. Finite model property of LT K.slU

A modal degree d(α) of a formula α in LT K.slU is a number of nested
non-reflexive non-transitive modal operators N in α:

d(p) = 0, p ∈ Prop; d(◦α) = d(α), where ◦ ∈ {¬,□e,□U ,□i};
d(α⊙ β) = max(d(α); d(β)), where ⊙ ∈ {∨,∧}; d(Nα) = d(α) + 1.

A length d(α) of a formula α of the logic LT K.slU is defined as follows:
l(p) = 0 where p ∈ Prop; l(α ◦ β) = l(α) + l(β) + 1, where ◦ ∈ {∧,∨};
l(•α) = l(α) + 1, where • ∈ {N,¬,□e,□U ,□i}.

An important property of logical systems is a finite model property,
which allows us to operate with simpler finite models, instead of their
infinite variants. A logic L is said to have finite model property, if L is
complete with respect to the class of finite frames.

In order to prove that the logic LT K.slU has the finite model property,
we define a p-morphic mapping of an infinite LT K.slU -modelM to a finite-
by-time one, and then, using the technique of filtering clusters, we construct
a model with clusters of finite cardinality on the p-morphic version. This
section proves that such a model will preserve the truth of formulas in our
logic.

3.1. p-morphism for LT K.slU

A map f from a frame F := ⟨W,Next, Re, R1, . . . , Rn, Ru⟩ onto a frame
F ′ := ⟨W ′, R′

e, R
′
1, . . . , R

′
n, R

′
u⟩ is called a p-morphism, if the following

conditions hold ∀a, b ∈W∀R ⊆ {Next, Re, R1, . . . , Rn, Ru}:

1. aRb⇒ f(a)R′f(b);

2. f(a)R′f(b) ⇒ ∃c ∈W [aRc ∧ f(c) = f(b)].

Now we define the finite by the time (by the number of clusters) model
N as follows:

N :=

〈 ⋃
j∈[1,k+1]

Cj ,Next′, R′
e, R

′
1, . . . , R

′
n, R

′
u, V

′

〉
,

where for some LT K.slU -modelM = ⟨W,Next, Re, R1, . . . , Rn, Ru, V ⟩ the
following conditions are satisfied:
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•
⋃

j∈[1,k] Cj ⊂ W are finite number of clusters, Ck+1 is a singleton
cluster;

• R′
e, R

′
1, . . . , R

′
n are given as limitations of corresponding relations

Re, R1, . . . , Rn on clusters
⋃

j∈[1,k] Cj supplemented by the following

conditions ∀R ∈ {Re, R1, . . . , Rn}:

∀a, b ∈W \ {C1, . . . , Ck}ifaRb, then a = b ∈ Ck+1&aR
′b;

• R′
u coincides on clusters C1, . . . , Ck with the relation Ru, and for

elements out of these clusters it is given as follows:

∀a ∈W \ {C1, . . . , Ck}∀b ∈W if aRub, then a ∈ Ck+1&aR
′
ub.

• Next′ is defined as follows: ∀a ∈ {C1, . . . , Ck} if aNextb, then b ∈
{C2, . . . , Ck+1}, and ∀a ∈W \ {C1, . . . , Ck}, ∀b ∈W if aNextb, then
a, b ∈ Ck+1&aNext′b;

• V ′(p) = V (p) ∩
⋃

j∈[1,k] Cj for p ∈ Prop.

To simplify notation, we will denote a finite frame defining such a model

N as Ffin :=
〈⋃

j∈[1,k+1] Cj ,Next′, R′
e, R

′
1, . . . , R

′
n, R

′
u

〉
. For consistency,

we denote an infinite LTK.slU -frame here as Finf .

Figure 2. An infinite frame Finf and a finite frame Ffin

Theorem 3.1. Any Ffin is a p-morphic image of Finf .

Proof: Let f be a mapping of infinite LTK.slU -frame
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Finf = ⟨W,Next, Re, R1, . . . , Rn, Ru⟩

onto a finite

Ffin =

〈 ⋃
j∈[1,k+1]

Cj ,Next′, R′
e, R

′
1, . . . , R

′
n, R

′
u

〉
,

given as follows:

1. ∀x ∈
⋃

j∈[1,k] Cj f(x) = x;

2. ∀x ∈W \
⋃

j∈[1,k] Cj f(x) = y, where y ∈ Ck+1.

Let us prove that the mapping f is a p-morphism. For this, it is nec-
essary to show the correctness of the given mapping, with respect to the
points (1.) and (2.) of the definition.

(1.) ∀a, b ∈W if aNextb, hence by the definition of Next, a ∈ Ci and
b ∈ Ci+1. If b ∈ {C2, . . . , Ck}, then f(a) = a, f(b) = b and f(a)Next′f(b).
If b ∈W \ {C1, . . . , Ck}, then f(a), f(b) ∈ Ck+1 and f(a)Next′f(b).

If aReb and a, b ∈ Ci ⊂ {C1, . . . , Ck} then f(a)R′
ef(b). If Ci ∈ W \

{C1, . . . , Ck}, then f(a) = f(b) = y ∈ Ck+1.
By virtue of Ri ⊆ Re∀i ∈ [1, . . . , n], for relations R′

1, . . . , R
′
n proof is

similar to Re.
By definition, Ru = W 2 and then ∀a, b ∈ {C1, . . . , Ck} f(a)R′

uf(b). If
a ∈ W \ {C1, . . . , Ck} or b ∈ W \ {C1, . . . , Ck}, then f(a) = yR′

uf(b) or
f(a)R′

uy = f(b). Respectively, y ∈ Ck+1.
(2.) ∀a, b ∈W if f(a)Next′f(b), then the following cases are possible:

• if f(a)Next′f(b), then, by definition Next′, f(a) ∈ Ci, f(b) ∈ Ci+1,
where i + 1 ∈ [2, . . . , k]. In this case f(a) = a, and for f(b) two
options are possible:

– when f(b) ∈ {C2, . . . , Ck}, b = c and aNextc;

– when f(b) ∈ Ck+1&f(a) ∈ Ck, as c we take ∀c ∈ Ck+1, then
aNextc.

• if f(a), f(b) ∈ Ck+1, then a ∈ Cj , b ∈ Cj+1(where {Cj , Cj+1} ⊂
W \ {C1, . . . , Ck}) and then as c we take ∀x ∈ Cj+1. In this case
f(c) = f(b) ∈ Ck+1 ⊂ Ffin.
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∀a, b ∈W if f(a)R′
ef(b), then two options are possible:

– if f(a), f(b) ∈ Ci, where i ∈ {1, . . . , k}, then aReb, where a, b ∈
Ci, i ∈ [1, . . . , k]. In this case c ∈ Ci;

– if f(a), f(b) ∈ Ck+1, then aReb and a, b ∈W \ {C1, . . . , Ck}.

In the case of Ri, the proof trivially repeats the reasoning for Re.

∀a, b ∈Wf(a)R′
uf(b), therefore, as c we can take any element of W .

Therefore, any finite frame Ffin is a p-morphic image of Finf .

Now let us prove that any formula refutable on LT K.slU -model M is
refuted also on N .

Theorem 3.2. Let M = ⟨Finf , V ⟩ be an infinite by time LTK.slU -model,
α is an arbitrary formula with the modal degree d(α) = m,m ∈ ω.

Then ∀x ∈
⋃

j∈[1,k−m] Cj ⊂ Finf (m < k) it is true:

⟨M,x⟩ ⊮ α⇔ ⟨N, x⟩ ⊮ α,

where N = ⟨Ffin, V
′⟩ = ⟨

⋃
j∈[1,k+1] Cj ,Next′, R′

e, R
′
u, R

′
1, . . . , R

′
n, V

′⟩.

Proof: Let us prove that it is true for all formulas in LT K.slU . The proof
is by induction on the length of the formula α.

The induction base l(α) = 0 corresponds to the case α = p. Obviously,
in this case the modal degree is also equal to 0 and the statement is true
∀x ∈

⋃
j∈[1,k] Cj .

Suppose the statement of the theorem is true ∀β: l(β) < t, i.e. ⟨M,x⟩ ⊮
β ⇔ ⟨N, x⟩ ⊮ β. Let us prove for l(α) = t.

The cases α ∈ {¬φ,□Uφ,□eφ,□iφ,φ∨ψ,φ∧ψ} satisfy the conditions
of inductive hypothesis due to the fact that the modal degree of the formula
α is not increased by adding operators {¬,□U ,□e,□i} to the subformula
φ of less length, and is potentially increased by adding {∨,∧} only up to
the value of max(d(φ), d(ψ)), where φ and ψ are also shorter in length (by
the definitions of the truth values of such formulas).

!α = Nφ, l(φ) = l(α)−1 and d(α) = d(φ)+1. By inductive hypothesis,
⟨M,x⟩ ⊮ φ ⇔ ⟨N, x⟩ ⊮ φ, where x ∈

⋃
j∈[2,k−(m−1)] Cj . By the definition

of N , it’s true, that ∀x ∈ Ci⟨M,x⟩ ⊩ Nφ ⇔ ∀y ∈ Ci+1 (i.e. xNexty)
⟨M,y⟩ ⊩ φ, hence, ∃x ∈ Ci⟨M,x⟩ ⊮ Nφ ⇔ ∃y ∈ Ci+1 ⟨M,y⟩ ⊮ φ. Then
∀x̂ ∈

⋃
j∈[1,k−m] Cj ⟨M, x̂⟩ ⊮ Nφ⇔ ⟨N, x̂⟩ ⊮ Nφ.
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4. Filtration for LT K.slU

To build a final finite model that is adequate to our logic, we apply the filter-
ing technique to the frame Ffin. LetM = ⟨W,Next, Re, R1, . . . , Rn, Ru, V ⟩
be a model, built on the infinite LTK.slU -frame defined above, Φ ⊆
For(LLT K.slU ) is a set of formulas that is closed wrt sub-formulas. We
define an equivalence relation ≡Φ on clusters from W as follows: ∀t ∈
N, ∀x, y ∈ Ct

x≡Φy ⇐⇒ [∀α ∈ Φ(⟨M,x⟩ ⊩ α⇔ ⟨M,y⟩ ⊩ α)].

In accordance with this definition, below we will use the notation

• V ar(Φ) for a set of all variables of formulas from Φ;

• [x]≡Φ
:= {y ∈W |x≡Φy} for equivalence classes;

• WΦ := {[x]≡Φ |∀x ∈W} for a set of all such classes;

• CjΦ := {[x]≡Φ |∀x ∈ Cj ⊂ Ffin}, j ∈ [1, k+1], for each cluster of such
classes obtained from each cluster of Ffin.

To get only finite clusters, we define a model filtered by a set Φ ⊆
For(LLT K.slU )

NΦ =

〈 ⋃
j∈[1,k+1]

CjΦ ,Next′Φ, R
′
eΦ , R

′
1Φ , . . . , R

′
nΦ
, R′

uΦ
, V ′

Φ

〉

based on a version of model N with a p-morphic frame Ffin and additional
following filtration of clusters:

1. ∀p ∈ V ar(Φ) [V ′
Φ(p) = {[a]≡Φ |⟨N, a⟩ ⊩ p}];

2. ∀a, b ∈ {
⋃

j∈[1,k+1] Cj}, ∀R′ ∈ [Next′, R′
e, R

′
1, . . . , R

′
n, R

′
u] (aR′b ⇒

[a]≡Φ
R′

Φ[b]≡Φ
);

3. ∀a, b ∈ {
⋃

j∈[1,k+1] CjΦ}

(a) ∀l ∈ {e, 1, . . . , n, u} ([a]≡ΦR
′
lΦ
[b]≡Φ =⇒ [∀□lα ⊆ Φ ⟨N, a⟩ ⊩

□lα⇒ ⟨N, b⟩ ⊩ α]);

(b) [a]≡Φ
Next′Φ[b]≡Φ

=⇒ ([∀Nα ⊆ Φ ⟨N, a⟩ ⊩ Nα⇒ ⟨N, b⟩ ⊩ α]).
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Well-known conditions for building the minimal and maximal filtration
can also be applied in our case:
— the minimal filtration

Nmin
Φ =

〈 ⋃
j∈[1,k+1]

CjΦ ,Next′min
Φ , R′min

eΦ , R′min
1Φ , . . . , R′min

nΦ
, R′min

uΦ
, V ′

Φ

〉
,

where

• ∀l ∈ {e, 1, . . . , n, u} R′min
lΦ

= {([a]≡Φ
, [b]≡Φ

)|(a, b) ∈ R′
l},

• Next′min = {([a]≡Φ
, [b]≡Φ

)|(a, b) ∈ Next′};
— the maximal filtration

Nmax
Φ =

〈 ⋃
j∈[1,k+1]

CjΦ ,Next′max
Φ , R′max

eΦ , R′max
1Φ , . . . , R′max

nΦ
, R′max

uΦ
, V ′

Φ

〉
,

where

• ∀l ∈ {e, 1, . . . , n, u} : [a]≡ΦR
′max
lΦ

[b]≡Φ ⇔ [∀□lα ⊆ Φ(⟨N, a⟩ ⊩ □lα⇒
⟨N, b⟩ ⊩ α)],

• [a]≡ΦNext′max
Φ [b]≡Φ ⇔ ([∀Nα ⊆ Φ ⟨N, a⟩ ⊩ Nα⇒ ⟨N, b⟩ ⊩ α]).

Due to the choice of the set Φ, the finiteness of the number of relations
on a frame and all pairwise variants of their intersections, the clusters CtΦ

obtained as a result of the proposed filtration are also will always have finite
cardinality. By virtue of the construction of a filtered model, we assume
the true following

Lemma 4.1. Let N = ⟨
⋃

j∈[1,k+1] Cj ,Next′, R′
e, R

′
u, R

′
1, . . . , R

′
n, V

′⟩ be a p-
morphic model N of a LT K.slU -model M , Φ ⊆ For(LLT K.slU ) is a closed
wrt subformulas set of formulas whose modal degree does not exceed m
(m ∈ ω, k > m),

NΦ =

〈 ⋃
j∈[1,k+1]

CjΦ ,Next′Φ, R
′
eΦ , R

′
1Φ , . . . , R

′
nΦ
, R′

uΦ
, V ′

Φ

〉
be a filtered variant of the model N to the set Φ. Then ∀x ∈

⋃
j∈[1,k−m] Cj,

∀α ∈ Φ:
⟨N, x⟩ ⊮ α⇔ ⟨NΦ, x⟩ ⊮ α.

By virtue of Theorem 2 and Lemma 1, we conclude the finite model
property for LT K.slU .
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5. Unification in LT K.slU

5.1. Definitions of unification theory

A formula φ(p1, . . . , ps) is called unifiable in logic L, if ∃σ : pi 7→ σi for
every pi ∈ V ar(φ), s.t. σ(φ) = φ(σ1, . . . , σs) ∈ L. A substitution σ
is called unifier of φ. A ground unifier is a constant substitution (i.e.
gu : pi 7→ {⊤,⊥},∀pi ∈ V ar(φ)).

The preorder relation is defined on the set of unifiers: an unifier σ of
φ(p1, . . . , ps) is called more general than σ1 in L, if there is a substitution
γ, s.t. for any pi: σ

1(pi) ≡ γ(σ(pi)) ∈ L (σ1 ⪯ σ).
An unifier σ of φ(p1, . . . , ps) is said to be maximal, if for any other σi,

either σi ⪯ σ, or (σi ⪯̸ σ)&(σ ⪯̸ σi). If σ is more general than any other,
it is called a most general (mgu, for short).

A set of unifiers CU for a formula φ is called complete in L, if for any
unifier σ of φ there is σ1 ∈ CU : σ ⪯ σ1.

In general, the existence of infinite sequences of unifiers with respect
to a given preorder is possible. If such chains are admissible, the formula
(and hence all logic) has a nullary unification type. In other cases, when
ascending chains are terminated in a finite number of steps, unification is
infinitary (case of a countable number of maximal unifiers for some for-
mula), finitary (case of a finite number of maximal ones for all formulas)
or unitary (in case of the existence of mgu for all formulas) type.

A formula φ(p1, . . . , ps) is called projective in L, if there is an unifier τ
of φ, s.t. □φ → [pi ≡ τ(pi)] ∈ L for all pi ∈ V ar(φ). An unifier with such
specified properties is called projective.

As was proved by S. Ghilardi [12], the projective unifier defines mgu
of a formula (and, accordingly, CU). Consequently, having established the
projectivity of unification in logic, we will obtain a universal scheme for
constructing an mgu and a unitary type of unification. The importance
of this approach is reinforced by a corollary from a projective unification,
which guarantees almost structural completeness of logic [17].

5.2. Projective unification in LT K.slU

To study the unification properties in LT K.slU we need to redefine the no-
tion of a projective formula because of the non-transitive and non-reflective
nature of the temporal operatorN . Let’s do it through the universal modal-
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ity □U : φ(p1, . . . , ps) is called projective in LT K.slU , if there is an unifier
τ for φ, s.t. □Uφ→ [pi ≡ τ(pi)] ∈ LT K.slU for all pi ∈ V ar(φ).

As the following theorem shows, unifiability of an arbitrary formula
φ(p1, . . . , ps) in LT K.slU can be effectively establish using constant sub-
stitutions: ∀pi ∈ V ar(φ) σ(pi) ∈ {⊤,⊥}.

Theorem 5.1. If a formula φ is unifiable in LT K.slU , then φ has a ground
unifier.

Proof: The proof of this theorem is similar to the proof in [4] for the case
of pretabular extensions of S4. Here we describe a sketch of the proof and
supplement it with some important comments.

Let’s take an arbitrary unifiable in L formula φ(p1, . . . , ps) and
δ1(q1, . . . , qr), . . . , δs(q1, . . . , qr) is its unifier. Then it is true that

δ(φ) := φ(δ1(q1, . . . , qr), . . . , δs(q1, . . . , qr)) ∈ L.

Any substitution of variables q1, . . . , qr to constants ci ∈ {⊤,⊥}(i ∈
[1, r]) preserves truth values of the formula δ(φ), because of δ(φ) ∈ L.
In particular, φ(gu(p1), . . . , gu(ps)) ∈ L, where gu(pi) := δi(c1, . . . , cr) ∈
{⊤,⊥}, is a partial case of δ(φ). Therefore, any substitution of this form
is a ground unifier of φ. To check the existence of such an substitution
for arbitrary formula ψ(p1, . . . , ps), it suffices to consider no more than 2s

substitutions of {⊤,⊥} instead of all pi. If among them there is one s.t.
ψ(gu(p1), . . . , gu(ps)) ≡L ⊤, then ψ is unifiable in L and gu is its ground
unifier. If for all 2s options gu(ψ) /∈ L, then ψ doesn’t have a ground unifier
and therefore any other unifier in L.

We are now ready to prove the main result of this work.

Theorem 5.2. Any formula unifiable in LT K.slU is projective.

Proof: Let φ(p1, . . . , ps) be unifiable in LT K.slU . Then ∀pi ∈ V ar(φ)
we define the following substitution σ(pi):

σ(pi) := (□Uφ ∧ pi) ∨ (¬□Uφ ∧ gu(pi)),

where gu(p1), . . . , gu(ps) is an arbitrary ground unifier for φ(p1, . . . , ps).
Let’s take an arbitrary LTK.slU -model M := ⟨F, V ⟩. If σ is an unifier

for φ, then σ(φ) ∈ LT K.slU and ∀x ∈ F ⟨M,x⟩ ⊩ σ(φ). Let us prove that
σ is indeed an unifier for φ in LT K.slU .
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1. If ∀x ∈ F : ⟨M,x⟩ ⊩ φ, then ⟨M,x⟩ ⊩V □Uφ and, therefore, the
second disjunctive member will be refuted on x. If ⟨M,x⟩ ⊩ pi, then
⟨M,x⟩ ⊩ □Uφ ∧ pi, hence, ⟨M,x⟩ ⊩ σ(pi). If ⟨M,x⟩ ⊩ ¬pi, then ⟨M,x⟩ ⊮
□Uφ∧pi and, therefore, ⟨M,x⟩ ⊩ ¬σ(pi). As a consequence, the truth value
φ(p1, . . . , ps) on an arbitrary element x wrt V coincides with the truth value
φ(σ(p1), . . . , σ(ps)) on the same element with the same valuation V and,
in this case, ⟨M,x⟩ ⊩ σ(φ).

2. If ∃x ∈ F : ⟨M,x⟩ ⊩ ¬φ, then ⟨M,x⟩ ⊮ □Uφ. In this case, the second
disjunctive member can be valid, but the first is refuted on x. Then truth
values of all σ(pi) on x coincide with gu(pi) (i.e. σ(φ) ≡ gu(φ)), and since
⟨M,x⟩ ⊩ gu(φ) (due to the choice of the ground unifier gu(φ) ∈ LT K.slU ),
again ⟨M,x⟩ ⊩ σ(φ). Hence, σ(φ) ∈ LT K.slU for φ unifiable in LT K.slU .

Let us prove that σ(φ) is a projective unifier. By the definition, if σ(pi)
is a projective unifier for φ, we obtain the following: ∀pi ∈ V ar(φ)

□Uφ→ (pi ↔ [(□Uφ ∧ pi) ∨ (¬□Uφ ∧ gu(pi))]) ∈ LT K.slU . (5.1)

Suppose the opposite: let σ not be a projective unifier and hence 5.1 is
refuted at some model. Then it is not difficult to verify that if the premise
of the implication is true, it is impossible to refute the conclusion, and
therefore we get a contradiction.

Consequently, σ is a projective unifier for φ in LT K.slU , so φ is a
projective formula.

From the proved theorems and mentioned results by S. Ghilardi, hold

Corollary 5.3. Let φ be an arbitrary unifiable formula in LT K.slU .
Then

1. σ(pi) := (□Uφ ∧ pi) ∨ (¬□Uφ ∧ gu(pi)) is a projective unifier and,
hence, mgu for φ;

2. The logic LT K.slU has a unitary unification type.
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