
Exploring the use of Robotics

in the learning of programming

by

Reginald Gerald Govender
(207501841)

A thesis submitted in fulfilment of the academic requirements for the
Degree of Doctor of Philosophy in Computer Science Education,

School of Education, College of Humanities
University of KwaZulu-Natal, Edgewood campus

Durban, South Africa

Supervisor: Prof. Desmond W. Govender

November 2021

ii

Abstract

Computer Programming is seen as a valuable skill in the digital era that we presently live in.

However, for the novice programmer, it is often accompanied with difficulties resulting in

negative reactions. The dawning of the Fourth Industrial Revolution has catapulted many

initiatives local and global to promote Computer Programming and Robotics. A major initiative

by the South African government is the planning and implementing of a new subject in school

to raise the awareness of coding at an early age. The lack of coding exposure and awareness

leads to little or no interest in Computer Programming related courses after schooling years.

This study focuses on exploring the learning of coding through the use of Robotics among

computer registered students with no prior coding knowledge at a University in South Africa.

Unlike the traditional use of block-based programming to introduce Computer Programming,

which is limited to screen output, the study opted to use a physical manipulative by using a

robotic element through prototype building using text-based programming, resulting in live

autonomous output of code. The Arduino kit was used as the robot element to acquire

knowledge development to the fundamental concepts of Computer Programming using the

Python programming language. Participants' coding knowledge was assessed through a series

of hands-on online activities.

Design Based Research was adopted with the integration of Kolb’s Experiential Learning

Cycle, framed within the second-generation Activity Theory. Mix methods were supported as

it is in accordance with the pragmatic paradigm favoured by Design Based Research. All data

collection took place online through workshops, surveys, questionnaires and a focus group

interview. The sample size was 75 achieving a significant partial least squares structural

equation model as a minimum of 50 participants was needed based on the ten times rule.

The results show that students acquiring a direct learning experience with text-based code with

the aid of the robotic element proved to be successful. The robot coding simplified the

assimilation of text-based coding as participants could see the execution of their code on the

prototype in reality. The eradication of the abstract nature of Computer Programming through

Robotics as a physical manipulative solidified the understanding of coding structures.

iii

Furthermore, students' belief, interest, motivation, confidence, and Mathematics skill set were

found to contribute success in Computer Programming. It was revealed that learning to code in

a text-based environment can be made fun. In addition, learning programming with the use of

the robot is effective for first time learning of text-based code. The researcher proposes that the

introduction of learning programming integrated through the building of prototypes and coding

resulting in autonomous robots enhances the learning experience of text-based code.

iv

Table of contents

Abstract .. ii

Table of contents ... iv

Dedication .. ix

Acknowledgments .. x

Preface ... xi

Declaration ... xii

List of Abbreviations .. xiii

List of Figures ... xvi

List of Tables ... xviii

PRELIMINARY RESEARCH .. 1

Chapter one: Introduction... 1

1.1 Background ... 1

1.2 Purpose of the study ... 1

1.3 Significance of the study .. 2

1.4 Research objectives .. 3

1.5 DBR overview and structure of the dissertation ... 5

1.5.1 Preliminary research .. 5

1.5.2 Prototyping ... 6

1.5.3 Assessment ... 6

Chapter two: Literature review .. 7

2.1 Introduction .. 7

2.2 Everyone’s coding .. 8

2.3 Teaching and learning of code.. 12

2.4 Styles of programming ... 12

2.5 Proficiency in coding .. 15

2.5.1 Skill expectancy ... 15

2.5.2 Lack of early exposure ... 17

v

2.5.3 Computational Thinking .. 18

2.5.4 The influence of Mathematics ... 21

2.6 Robotics .. 23

2.6.1 Why Robotics? ... 23

2.6.2 Robotics as a learning aid .. 24

2.6.3 Lego Mindstorm series .. 26

2.6.4 Arduino .. 29

2.7 Programming languages ... 30

2.7.1 Hello world .. 30

2.7.2 Python Language ... 36

2.7.3 Integrated Developmental Environment (IDE) .. 39

2.8 Setup .. 40

2.9 Workplace 2030 .. 41

2.10 Conclusion .. 41

Chapter three: Theoretical framework .. 43

3.1 Introduction .. 43

3.2 Approach to the study ... 43

3.3 Activity theory .. 47

3.4 Conclusion .. 51

Chapter four: Research design and methodology ... 53

4.1 Introduction .. 53

4.2 Design Based Research – DBR .. 53

4.3 Integrating Kolb’s Experiential Learning Cycle .. 55

4.4 Research questions ... 56

4.5 Qualitative and quantitative data .. 57

4.6 Data collection techniques .. 58

4.6.1 Pre-workshop session... 58

4.6.1.1 Pre-survey.. 58

4.6.1.2 Problem solving and logic ... 58

Part A: Pre-test based on Computational Thinking... 58

Part B: Abstract Reasoning Test .. 59

4.6.2 Workshop sessions ... 59

4.6.3 Post-workshop session: .. 60

vi

4.6.3.1 Post-survey .. 60

Selection of constructs/latent variables .. 60

4.6.3.2 Post-test based on programming ... 61

4.6.3.3 Interview.. 61

4.7 Fitting it all together ... 62

4.8 Study setting ... 64

4.8.1 Location and population .. 64

4.8.2 The pilot study ... 65

4.9 Validity, reliability and rigour .. 66

4.10 Permission and ethical considerations .. 66

4.11 Conclusion .. 67

PROTOTYPING .. 69

Chapter five: Iteration ... 69

5.1 Introduction .. 69

5.2 Pre-workshop session (excluded from the six micro cycles) 69

5.3 Micro cycle: Workshop session one ... 70

5.4 Micro cycle: Workshop session two ... 71

5.5 Micro cycle: Workshop session three ... 72

5.6 Micro cycle: Workshop session four .. 74

5.7 Micro cycle: Workshop session five .. 75

5.8 Micro cycle: Workshop session six .. 76

5.9 Composite accomplishment ratings .. 77

5.10 Conclusion .. 78

ASSESSMENT ... 79

Chapter six: Analysis and findings ... 79

6.1 Introduction .. 79

6.2 Data presentation and analysis ... 79

6.3 Pre-workshop session ... 79

6.3.1 Pre-survey .. 79

6.3.2 Questionnaire test one~ Problem solving and logic... 88

6.3.2.1 Part A: Pre-test based on Computational Thinking 88

6.3.2.2 Part B: Abstract Reasoning Test ... 102

vii

6.4 Post-workshop session .. 109

6.4.1 Post-survey ... 109

6.4.1.1 Measurement model .. 112

Indicator reliability .. 112

Convergent reliability .. 114

Discriminant validity ... 115

Heterotrait-Monotrait ratio of correlations, bootstrapping and normality.................................... 117

6.4.1.2 Structural model .. 119

Collinearity issues ... 120

Path coefficients .. 120

Significance of the relationships- t values and p values .. 122

Level of R2 .. 123

Effect size (f2) ... 125

Predictive relevance (Q2) ... 125

6.4.2 Questionnaire test two~ Post-test based on programming 127

6.6 Conclusion .. 132

Chapter seven: Discussion and conclusion... 133

7.1 Introduction .. 133

7.2 Discussion ... 134

7.3 Closing remarks .. 139

7.4 Limitation and further research .. 141

7.5 Conclusion .. 142

References ... 143

Appendices ... 176

Appendix A - Permission from Registrar ... 177

Appendix B - Informed consent letter .. 178

Appendix C - Ethical clearance .. 179

Appendix D - Turn- it- in Report ... 180

Appendix E - Editor’s Report... 181

Appendix G - Questionnaire one | Part A: Pre-test based on computational thinking 183

Appendix H - Questionnaire one| Part B: Abstract reasoning test 186

Appendix I – Pre workshop session ... 194

viii

Appendix J - Workshop session one .. 207

Appendix K – Self-evaluation workshop session one .. 213

Appendix L - Workshop session two ... 214

Appendix M – Self-evaluation workshop session two ... 220

Appendix N - Workshop session three ... 221

Appendix O – Self-evaluation workshop session three ... 226

Appendix P - Workshop session four ... 227

Appendix Q – Self-evaluation workshop session four ... 232

Appendix R - Workshop session five ... 233

Appendix S – Self-evaluation workshop session five .. 238

Appendix T - Workshop session six .. 239

Appendix U – Self-evaluation workshop session six ... 245

Appendix V – Post- survey (survey two) ... 246

Appendix W - Post survey (survey two) categorised under constructs 248

Appendix X – Post-test (questionnaire on programming language) 250

Appendix Y - Interview.. 253

Appendix Z - Interview transcript .. 254

ix

Dedication

This thesis is dedicated to my:

To my parents for the sacrifices made in difficult times and instilling in me the value of

education. Your love has moulded and made me into the person that I am today.

Dear Mum, as I would not have made it thus far without her selfless sacrifices, support and

inspiration

&

my Dad who passed away before seeing me achieve everything he knew I was capable of.

x

Acknowledgments

I would like to thank the unseen but all-knowing God for guiding me through this incredible

journey- Veni Vidi Vici!

I am grateful to my supervisor Prof D.W. Govender for his support and aspiration for me to

succeed in my studies, which has resulted in the completion of this study.

I like to thank my international mentor Prof F. Mensah from Columbia University and my local

mentor Prof A. Philips from University of KwaZulu-Natal, for their advice and thought

engaging discussions during my research.

To my colleagues in the Mathematics and Computer Science cluster and especially in the

discipline of Computer Science Education for your unwavering support.

I am thankful for my Dean Prof T. Mbisi who prompted me in joining the AALDP programme

and my fellow PhD cohort for their constructive feedback and advice.

I wish to acknowledge and thank the National Research Foundation for funding my study and

the UCDP for their support.

Most importantly a huge thank you to all the participants who were part of the study and hope

that you will continue to explore the world of coding and Robotics.

Anyone I have not mentioned please accept my apologies and my gratefulness for your support.

There is nothing more divine than education. It is only through education that one truly

becomes man. ~Plato

xi

Preface

The research untaken was supported wholly by the National Research Foundation (grant

number 122017).

The study was supported and guided by Columbia University, TC, New York City during the

researcher’s stint at the university.

The following academic articles/activities emanate from this study:

Govender, R. G. & Govender, D. W., (2020), ROBOPROG: Learning of Flowcharts through a

Gamified Experience, International Journal of Business and Management Studies, 12

(2).https://www.sobiad.org/eJOURNALS/journal_IJBM/arhieves/IJBM_2020-2ek/r-

govender.pdf

Govender, R. G., & Govender, D. W. (2021). A Physical Computing Approach to the

Introduction of Computer Programming among a Group of Pre-service Teachers. African

Journal of Research in Mathematics, Science and Technology Education, 25(1), 54-65.

https://doi.org/10.1080/18117295.2021.1924440

xii

Nov 2021

Declaration

I Reginald Gerald Govender declare that

i. The research reported in this dissertation, except where otherwise indicated, is my

original work.

ii. This dissertation has not been submitted for any degree or examination at any other

university.

iii. This dissertation does not contain other persons’ data, pictures, graphs or other

information, unless specifically acknowledged as being sourced from other persons.

iv. This dissertation does not contain other persons’ writing, unless specifically

acknowledged as being sourced from other researchers. Where other written sources

have been quoted, then:

v. tributed to them has

been referenced;

vi. where their exact words have been used, their writing has been placed inside quotation

marks, and referenced.

vii.

have indicated in detail which part of the publication was actually written by myself

alone and have fully referenced such publications.

viii. This dissertation does not contain text, graphics or tables copied and pasted from the

Internet, unless specifically acknowledged, and the source being detailed in the

dissertation and in the References sections.

Date: ………….

Reginald Gerald Govender (207501841)

xiii

List of Abbreviations

2D: Two-dimensional

3D: Three-dimensional

4IR: Fourth Industrial Revolution

AI: Artificial Intelligence

AALDP: Accelerated Academic Leadership Development Programme

APS: Admission Points Score

ART: Abstract Reasoning Test

AVE: Average Variance Extracted

CA: Cronbach’s Alpha

CB-SEM: Covariance Based-Structural Equation Modelling

CHAT: Cultural Historical Activity Theory

CI-LL: Confidence Interval-Lower Limit

CI-UL: Confidence Interval-Upper Limit

COVID-19: Coronavirus 2019

CPU: Central Processing Unit

CR: Composite Reliability

CRC: Class Responsibility Collaboration

CS: Computer Science

CT: Computational Thinking

DBE: Department of Basic Education

xiv

DBR: Design Based Research

EV3: Evolution 3

FET: Further Education Training

GET: General Education and Training

GUI: Graphical User Interface

HTMT: Heterotrait-Monotrait

ICT: Information and Communications Technology

IDE: Integrated Development Environments

IDLE: Integrated Development and Learning Environment

IEEE: Institute of Electrical and Electronics Engineers

IoT: Internet of Things

IPO: Input Processing Output

IT: Information Technology

KELC: Kolb’s Experiential Learning Cycle

LDR: Light Dependent Resistor

LED: Light Emitting Diode

LMS: Learning Management System

LV: Latent variable

MCQ: Multiple-choice questions

MIT: Massachusetts Institute of Technology

NXT: Next generation

OLS: Ordinary least squares

OOP: Object-Oriented Programming

xv

PLS-SEM: Partial Least Squares-Structural Equation Modelling

POP: Procedural-Oriented Programming

PRIMM: Predict-Run-Investigate-Modify-Make

Q-Q: Quantile-Quantile

RCX: Robotics Invention System

SD: Standard deviation

SE: Standard error

SGAT: Second-generation Activity Theory

SONA: State of the Nation Address

STEM: Science, Technology, Engineering and Mathematics

TIMSS: Trends in International Mathematics and Science Study

TOE: Task Object Event

UCDP: University Capacity Development Programme

USB: Universal Serial Bus

VIF: Variance Inflated Factor

ZPD: Zone of Proximal Development

xvi

List of Figures

Figure 1: Structure and implementation of study according to DBR... 5

Figure 2 An illustration of Alice... 9

Figure 3 An illustration of Scratch... 9

Figure 4 An illustration of Jeliot3 .. 10

Figure 5 An illustration of UUhistle .. 11

Figure 6 Cognitive levels between digital literacy, computer literary and computational

thinking and skills .. 20

Figure 7 Microsoft Windows Logo output of a square ..25

Figure 8 Code in Logo commander window .. 25

Figure 9 Turtle device .. 26

Figure 10 First generation RCX ... 27

Figure 11 Second generation NXT ... 28

Figure 12 Third generation EV3 .. 28

Figure 13 EV3 program that detects a black line .. 29

Figure 14 Arduino UNO R3 pin diagram. ... 30

Figure 15 Hello world code in Java ... 31

Figure 16 Hello world code in C.. 31

Figure 17 Hello world code in Delphi ... 32

Figure 18 Hello world code in C++ .. 32

Figure 19 Hello world code in Python ... 32

Figure 20 Hello world code in C#.. 32

Figure 21 Fibonacci code in C... 33

Figure 22 Fibonacci code in Java .. 34

Figure 23 Fibonacci code in C++ ... 34

Figure 24 Fibonacci code in C#... 34

Figure 25 Fibonacci code in Delphi .. 35

Figure 26 Fibonacci code in Python .. 35

Figure 27 Relationship between low-level and high-level language 36

Figure 28 Ranking of programming languages ... 37

Figure 29 Schematic of the PC connection with Arduino .. 40

Figure 30 An illustration of first-generation Activity Theory .. 47

xvii

Figure 31 An illustration of second-generation Activity Theory Theory 49

Figure 32 An illustration of third-generation Activity Theory ... 50

Figure 33 Second-generation Activity Theory applied in study ... 51

Figure 34 An illustration of the flow of DBR based on three phases 54

Figure 35 Linkng the philosophical principles underpinning this study.................................. 63

Figure 36 Data collection process ... 67

Figure 37 Visual overview of micro cycle one feedback .. 71

Figure 38 Visual overview of micro cycle two feedback .. 72

Figure 39 Visual overview of micro cycle three feedback .. 73

Figure 40 Visual overview of micro cycle four feedback .. 74

Figure 41 Visual overview of micro cycle five feedback .. 75

Figure 42 Visual overview of micro cycle six feedback .. 76

Figure 43 Distribution of responses from pre-survey .. 80

Figure 44 Right vs Wrong responses for Part A .. 91

Figure 45 Summary of marks for Part A ... 94

Figure 46 Distribution of marks for Part A ... 94

Figure 47 Visualisation depicting normal distribution; based on data from Table 31 97

Figure 48 Q-Q Plot Mathematical Literacy .. 101

Figure 49 Q-Q Plot Pure Mathematics ... 102

Figure 50 Summary of scores for Part B: ART .. 104

Figure 51 Q-Q Plot Part B: ART ... 105

Figure 52 Spread of Part B: ART scores .. 108

Figure 53 The initial form of the model .. 111

Figure 54 Model showing valid path loadings .. 113

Figure 55 Visual representation of path coefficients ... 121

Figure 56 R Square values (R2) and inner model depicting t values. 124

Figure 57 Right vs Wrong responses for programming test .. 128

Figure 58 Summary of marks for Programming test ... 129

xviii

List of Tables

Table 1 National count of Grade 12 learners enrolled in IT at schools 18

Table 2 Use of Python code in the private sector .. 38

Table 3 Kolb’s Experiential Learning Cycle vs the DBR prototyping phase 56

Table 4 Data instruments versus research questions .. 62

Table 5 Overview of micro cycle one feedback ... 70

Table 6 Overview of micro cycle two feedback ... 72

Table 7 Overview of micro cycle three feedback .. 73

Table 8 Overview of micro cycle four feedback..74

Table 9 Overview of micro cycle five feedback .. 75

Table 10 Overview of micro cycle six feedback ... 76

Table 11 Composite accomplishment ratings based on the majority responses 77

Table 12 Reliability statistics of non-reverse coded items... 81

Table 13 Reliability statistics of reverse coded items .. 81

Table 14 Response to item 1. I have an interest in programming ... 82

Table 15 Response to item 2. I lack a basic mathematical background. 83

Table 16 Response to item 3. I think programming is too technical.. 83

Table 17 Response to item 4. I can succeed in learning Computer Programming. 84

Table 18 Response to item 5. I am good at problem solving. .. 85

Table 19 Response to item 6. I think it would be interesting to use programming to solve

problems. .. 85

Table 20 Response to item 7. From my own understanding of programming, it is boring. 86

Table 21 Response to item 8. My perception of programming is that it is difficult to learn. .. 86

Table 22 Response to item 9. I think programming is hard. .. 87

Table 23 Response to item 10. I have an interest in microcontrollers (robotic element). 87

Table 24 Bibliographic information .. 88

Table 25 Overall summary response from Part A (pre-test) ... 89

Table 26 Distribution of Part A (pre-test) marks obtained (out of 10) 90

Table 27 Summary of responses to question one ... 92

Table 28 Summary of responses to question nine .. 92

Table 29 Summary of responses to question ten .. 92

xix

Table 30 Five-point number summary with mean and standard deviation (SD) for Part A

(pre-test) ... 93

Table 31 Standardisation of values (raw marks out of 10) .. 95

Table 32 Differences depending on the type of Mathematics vs MCQ mark obtained using

descriptive statistics ... 98

Table 33 Mark distribution based on percentage weighting per mark obtained 98

Table 34 Descriptive statistics based on the type of mathematics .. 99

Table 35 Calculation of the skewness z-value and kurtosis z-value 100

Table 36 Shapiro-Wilk test of normality .. 101

Table 37 Five-point number summary with mean and SD Part B ... 103

Table 38 Kolmogorov-Smirnov test of normality... 104

Table 39 One-sample t-test .. 107

Table 40 Pearson correlation .. 108

Table 41 Set of hypotheses based on model ... 112

Table 42 Measurement model including LV (construct) reliability and validity 115

Table 43 Discriminant Validity- indicator item cross loading .. 116

Table 44 Discriminant Validity- Fornell and Larcker criterion .. 117

Table 45 Assessing Normality- Univariate and multivariate skewness and kurtosis 118

Table 46 Assessing Normality- Mardia's multivariate skewness and kurtosis 118

Table 47 Discriminant Validity- HTMT ... 119

Table 48 Structural model- Variance Inflated Factor ... 120

Table 49 Path coefficients .. 121

Table 50 Direct relationships for Hypothesis testing .. 122

Table 51 R Square (R2) values ... 123

Table 52 Effect Size (f square) ... 125

Table 53 Construct Cross validated Redundancy .. 126

Table 54 Overall summary response from post- test ... 127

Table 55 Distribution of post-test marks obtained (out of 10)... 128

Table 56 Five-point number summary with mean and SD for programming test (post-test) 129

Table 57 Paired Samples Statistics .. 130

Table 58 Paired Samples Test (pre-test versus post-test) ... 130

1

PRELIMINARY RESEARCH

Chapter one: Introduction
“Learning to write programs stretches your mind, and helps you think better, creates a way of thinking about

things that I think is helpful in all domains.” ~ Bill Gates

1.1 Background

South Africa continues to endure a critical shortage of digital skills, including computer

programmers (Lategan, 2020; Maisiri & van Dyk, 2021; Malinga, 2021). Computer

Programming1 can be viewed as a series of instructions given to the computer to perform

technical tasks. Further, as described by Akcay et al. (2018), programming code is a language

for “describing computation and expressing a set of instructions on what tasks a computer

needs to execute” (p. 1). It would seem that the greatest challenge faced by most students is the

understanding of programming basics. This is especially true for novice programmers with no

formal learning of programming; or those in their first year of study at tertiary level with no

prior exposure at school level (Lo et al., 2015; Saeli et al., 2011). Furthermore, the teaching of

programming is classified as difficult, since computer programs and algorithms are complex

constructs that require abstract thinking. Consequently, these concepts and processes are often

regarded as difficult to teach and learn (Bati et al., 2014; Mendes et al., 2012; Olsson et al.,

2015). In recent years much attention has been given to Robotics and coding (SONA, 2019). It

is possible that learning to code using robotics could be a strategy to alleviate the difficulties

and challenges that learning programming presents.

1.2 Purpose of the study

Numerous strategies have been employed to introduce students to programming, to simplify

the process and make understanding easy. Such strategies include visualisation tools and GUI

environments to enhance understanding. However, such methods have not always proven

effective (Kalelioglu & Gülbahar, 2014; Olsson et al., 2015; Tanrikulu & Schaefer, 2011;

Techapalokul & Tilevich, 2017). There is limited research on best practices in learning to

program and therefore the need for this study. The selected programming language used in this

1 “Computer programming” and “coding” are used interchangeable in this study.

2

research is Python, as it is one of the most widely adopted general-purpose high-level

programming languages (Summerfield, 2010).

As reported by Shein (2015), more people use Python as an “introductory programming

language because it has a very large set of highly useful libraries that have been built over the

years” (p. 19). This study used the Python language in a procedural paradigm to introduce

students to the basic principles of programming together with the use of a robot element

offering prototype building as an educational tool. Other paradigms, like object-oriented

approaches, may not be ideal for introducing programming basics (Govender & Govender,

2016). It was hoped that the proposed strategy would allow the acquisition of knowledge about

text-based programming seamless, achieving better results than with other past strategies.

Factors such as motivation, interest and belief in the subject content are essential for student

success, as these factors make the content interesting and appealing. Therefore, this study

focuses on a strategy that enhances best practices for learning programming.

1.3 Significance of the study

With the dawn of the Fourth Industrial Revolution (4IR), the South African government has

emphasised the skills needed for the future, including coding and Robotics, through its Vision

2030 (Ramaphosa, 2019). These skills prepare young people for future jobs and boost the

national economy and demand for South Africa in the global market.

Coding is considered to be difficult to assimilate and requires many years to master (Robins et

al., 2003). It would seem to necessitate a complex set of cognitive activities that demand the

development of problem-solving and decision-making skills, as well as logical reasoning.

Furthermore, the verbose programming language and Integrated Development Environments

(IDE) do little to make it easier (Chen et al., 2017).

In South Africa, there is a lack of early exposure to the fundamentals of coding, let alone

Robotics, resulting in no foundation that could lead further perusal or interest. This is in

contrast to other specialisation subjects in school, such as, geography, physical science, biology,

history, etc., where subject content in the prior phases lays a foundation for these subjects in

the Further Education Training (FET) phase. Coding as a subject (Information Technology)

3

can only be selected in the later years of schooling, at the FET phase2, making the Zone of

Proximal Development (ZPD) difficult to scaffold.

In accordance with the constructivist approach, ZPD can be described as knowledge that a

student can attain (by building on prior knowledge) with the assistance of facilitation to

scaffold student development across the ‘gap’ between what is known and the construction of

new knowledge (Vygotsky, 1978).

Students who lack prior exposure to programming cannot build new knowledge from any

foundation, thereby adding to the abstract nature of the subject. As a result, many students may

avoid fields at tertiary level that involve Computer Programming, due to their lack of prior

exposure and, thus, a foundation in the subject. Computer Programming courses are sometimes

perceived as uninteresting and demotivating, leading to high dropout rates (Lin & Kuo, 2010).

In contrast, there have been innovative methods for learning programming over the years,

including block-based coding (Erol & Kurt, 2017; Tanrikulu & Schaefer, 2011). Block-based

coding is limited to 2D animation on the computer screen and restricts creativity due to its non-

text-based setup. Hence, the competent computer programmer must, ultimately, be able to

demonstrate proficiency in a text-based environment.

This study acts as a guide for consultation by the DBE when considering the development of

new subjects that will introduce digital skills by incorporating Robotics and coding.

Furthermore, the study seeks to promote and provide an innovative method to introduce

Computer Programming through the use of Robotics. In doing so, the research offers a practical

solution to developing scarce skills for the 4IR, and raising awareness among tertiary students.

In response to the above-mentioned key-significance areas of the study, the researcher’s

intention was to explore the use of Robotics in the learning of basic coding using a text-based

environment.

1.4 Research objectives

There is no fool-proof strategy for the introduction of programming to attain programming

knowledge. Therefore, the following questions arise: What are the best practices for

2 FET phase consists of Grades 10, 11 and 12 which are the final three school finishing years.

4

teaching/learning programming? How can the teaching of programming be promoted among

students at tertiary level since programming is perceived as being difficult?

The proposed study sets out the following aims/objectives:

1. An alternative educational tool: To explore the use of Robotics to enhance the learning

of Computer Programming.

The robot kit provides a hands-on approach to programming (i.e., physical computing)

since the student designs, programs and executes the code in reality on the prototype

rather than in a 2D representation on a screen.

2. Problem solving and reasoning: To explore external factor/s that contribute to the

learning of Computer Programming.

It is well documented in literature that internal issues around learning and

understanding programming exist, such as the programming paradigm preference, the

programming language used and the programming style (Dmitrieva et al., 2019;

Hendrix & Weeks, 2018; Hourani et al., 2019; Husain et al., 2016; Kurdi, 2013;

Nasrawt & Lam, 2019; Samuel, 2017). However, there are contradictory accounts of

external factors such as students’ mathematical background, development of

Computational Thinking, higher-order thinking skills, etc., that would deem a student

proficient in Computer Programming (Bubica and Boljat, 2015; Elaine, 2013; Kurland,

1989; Pea & Rosen, 2018).

3. Easy to understand: To assess the effectiveness of Robotics in the understanding of

Computer Programming.

This study used the programming of Robotics to introduce the basics of programming

using a text-based environment rather than a block-based environment. The goal was

that students would acquire a direct learning experience with text-based code in the

hope of simplifying the learning process of programming.

5

1.5 DBR overview and structure of the dissertation

The three phases of Design Based Research (DBR) will be superimposed onto the structure of

this dissertation as follow (Figure 1):

Note. Overview of study according to Design Based Research

This study is structured into the following seven chapters under the three phases of DBR.

1.5.1 Preliminary research

Chapter one – Introduction introduces the study, discusses the background, scope and

context. It presents the rationale and significance of the study by unpacking the purpose, focus

and objectives. This chapter concludes with an overview of the study.

Chapter two – Literature review presents a literature review to gain a retrospective of the

research by offering a corpus of relevant literature that guided and supported this study.

Chapter three – Theoretical framework presents a comprehensive write-up of the theoretical

framework employed for this study, which is Activity Theory. A historical outline of the

development of Activity Theory and its application to the research study is discussed. Pertinent

literature that underpins the pragmatic paradigm that grounds the study will also be discussed

in this chapter.

Rationale of study
Literature review
Theoretical/ conceptual
framework
Data collection: pre-
survey (Appendix F) and
pre-test Questionnaire A
(Appendices G and H)

Seven online workshop
sessions (pre-workshop +
six sessions) (Appendices
I, J, L, N, P, R, T)
Each workshop session
grounded by the Kolb’s
Experiential Learning
Cycle
Data collection: self-
evaluaton (Appendices K,
M, O, Q, S, U)

Data collection: post-
survey (Appendix V), post-
test Questionnaire B
(Appendix X), and focus
group interview
(Appendix Y)
Data analysis
Presentation of findings
Discussion and conclusion

Prelimary
research Prototyping Assessment

Figure 1: Structure and implementation of study according to DBR

6

Chapter four – Research design and methodology outlines the research methodology used

in this study, which is Design Based Research (DBR). It presents a systematic methodology

and how the methods were applied in the research. In addition, the data collection instruments,

location, ethical considerations and informed consent are discussed in chronological order. The

chapter also outlines and justifies the research design and the trustworthiness or rigor of the

study.

1.5.2 Prototyping

Chapter five – Iteration provides a discussion around each workshop session. For coherence

purposes and in accordance with DBR, the analysis and discussion of each workshop,

represented as cycles, appear in this chapter.

1.5.3 Assessment

Chapter six – Analysis and findings present and discuss the data analysis report and findings.

The analysis includes data collected during the preliminary stage and the current assessment

stage in accordance with DBR.

Chapter seven – Discussion and conclusion presents a holistic discussion highlighting the

findings across all data collected, providing recommendations and suggestions for further

research and a summative conclusion.

7

Chapter two: Literature review
“Talk is cheap. Show me the code.” ~ Linus Torvalds

2.1 Introduction

As South Africa embraces the Fourth Industrial Revolution (4IR), we need to prepare the future

workforce with skills that are pertinent to the country's development. Among these skills,

Computer Programming is essential in this Digital Age. According to the Royal Society Report

(2012), Computer Science (CS) can be described as “the scientific discipline, encompassing

principles such as algorithms, data structures, programming, systems architecture, design; and

problem-solving” (p. 5). Bubnó et al. (2014) point out that Computer Programming is the core

learning goal of any CS course. Similarly, Lo et al. (2015) state that “programming is a

fundamental ability for Computer Science majors” (p. 225). Aspects of CS, particularly

programming, can be found in some of the following courses offered at tertiary level like

computer engineering, forensics, networking, cybersecurity, database administration,

information security, technology, software engineering and web development. Saeli et al.

(2011) point out that “programming is only one of the topics concerning the teaching of

Informatics” (p. 74).

According to Margulieux et al. (2016), the problems with programming in education are

twofold. Firstly, the techniques for teaching programming are relatively undeveloped as

compared with other disciplines. The teaching of CS is based on industry practices; thus, most

CS teaching methodologies are not informed by educational psychology (Knox et al., 1996).

Secondly, the number of teachers qualified to teach programming is insufficient. Generally, the

topics covered in a core programming syllabus, whether at school or tertiary level, focus on the

student’s development of algorithms (flowchart and pseudocode), Input Processing Output

(IPO) charts, Task Object Event (TOE) charts, case diagrams, and debugging techniques like

trace tables. This includes decomposing problems into strands, reasoning, developing

systematic plans, and debugging steps repeatedly until a refined solution is reached. A

programmer can choose different approaches to writing a program since there is no single

approach to problem solving in this context. Programming demands complex cognitive skills

involving a mix of procedural and conceptual understanding, out-of-the-box thinking, non-

linear reasoning, and a no-one solution fits all stance (Lahtinen et al., 2005; Olsson et al., 2015).

8

In addition, the nature of CS incorporates ways of thinking such as Computational Thinking

(CT), following rigorous processes and non-routine methods.

2.2 Everyone’s coding

Computing courses and CS as a science discipline, particularly programming, have gained

immense attention in recent years (Azad et al., 2018; Javidi & Sheybani, 2018; Yadav et al.,

2016). As pointed out by Xinogalos et al., (2018), “the course with the title Introduction to

Programming or similar exists almost in all bachelor studies of Computer Science, and

Information and Communications Technology (ICT)” (p. 288). Consequently, learning an

appropriate programming language during the first course in CS, is of paramount importance.

Furthermore, Papert (1980) elaborates that programming shares deep notions of disciplines

such as Science, Mathematics, Technology and Model Building. Thus, courses not related

directly to computers, can include Computer Programming, such as Engineering, Analytics or

Business. There is a growing popularity of Computer Programming, due to initiatives such as

Computer Science for All in the United States of America, Computing at School in the United

Kingdom, Digital Technologies in Australia and Africa Code Week in Africa. There is the hour

to code campaign on a global platform that offers an online (https://hourofcode.com) interface

to promote Computer Programming. As remarked by Combéfis et al. (2016), “learning of

programming, and more generally, of Computer Science concepts is now reaching the public

at large. It is not only reserved for people who studied Informatics or programming anymore”

(p. 39).

There is a popular trend to move away from text-based coding to a more visual graphical coding

that offers a Graphical User Interface (GUI) with the drop and dragging of blocks, colourful

connectors and sometimes based on gamification principles. This coding style is commonly

referred to as block-based programming (Homer & Noble, 2017; Inayama & Hosobe, 2018;

Rodríguez et al., 2017). Integrated Development Environment (IDE) or workflow is a software

editor that is used to create programs. Block-based coding IDEs offer a non-text-based interface

to create code like Alice (Figure 2, next page), Beetle blocks, Codingame, Code Flights,

Leekwars, Kodu, and Scratch (Figure 3, next page). Calao et al. (2015) argue that such non-

text base programming languages have aroused the interest of the educational community in

9

coding, but not simply for learning code, but as a tool to develop other skills and motivation

among students.

Note. A snippet of the Alice software.

Note. A snippet of the Scratch software.

The exposure to block-based programming provides a visual graphical experience of coding.

However, it can offer a lenient expectation of Computer Programming. There could be

challenges when one transits to a text-based language (Chetty & Barlow-Jones, 2012) due to

the lack of authenticity when coding with a block-based editor rather than a text-based editor.

Figure 2

An illustration of Alice

Figure 3

An illustration of Scratch

10

Block-based programming environments offer highly graphically interfaces that are popular

for introducing young children and beginners to programming.

However, mastery of text-based programming continues to be the educational goal for students

who aim to program into their teenage years and beyond (Kölling et al., 2015). The

transitioning from block-based programming to text-based programming forms a significant

gap between the two editing styles and presents a difficult challenge in the learning and

teaching of programming. Many studies have reported a successful transition from block-based

programming to text-based programming (Boldbaatar & Sendurur, 2018; Armoni et al., 2015),

but have also reported difficulties when students attempt to transfer concepts from block-based

to text-based programming (Chetty & Barlow-Jones, 2012; Kölling et al., 2015).

The very essence of program code is an execution of a well-designed algorithm. There are a

number of program visualisation and simulation tools that can illustrate program-code

execution steps and runtime behaviour. As pointed out by Calao et al. (2015) and Rajala et al.

(2008), such tools have proven to bring about an improvement of students’ experiences in

introductory programming courses at school and at tertiary level. Such visualisation tools

include Jeliot3 (Figure 4), UUhistle (Figure 5, next page) for Python, JIVE for Java, and

Teaching Machine for C++.

Note. A snippet of the Jeloit3.

Figure 4

An illustration of Jeliot3

11

Note. A snippet of the UUhistle.

Learning how to code consists of a two-phase learning process – firstly familiarising oneself

with the IDE, and secondly understanding the general syntax of the programming language.

Any Computer Programming language consists of common key concepts such as variables,

data types and recursive structures, which are not only important for coding, but also for

Mathematics and Physics (Derus & Ali, 2012; Miles, 2016; Rogalsi & Samurca, 1993). It is

well-known that such subject concepts can be challenging to teach with traditional teaching

styles such as chalk and talk, more so relating to the programming language, making it difficult

to comprehend (Bubica & Boljat, 2015). Although chalk-and-talk pedagogy lacks interactive

learning engagement, this problem cannot be mitigated by the incorporation of pedagogies that

use ICTs like multimedia, projector, clickers, etc. These, are not sufficient to make Computer

Programming easy. Amid the two-phase learning process, one needs to develop a strong

understanding of the syntax of the programming language and develop problem-solving

abilities. Research carried out by Bubica and Boljat (2015) found that students who enrolled in

a CS introductory course achieved much lower than their lecturer’s expectation. A similar study

carried by Utting et al. (2013) produced similar results. Computer Programming structures

requiring verbose syntax can be too abstract for the new programmer. In addition, the lack of

physical representation, with only a mental representation of the code available until execution

provides a visual representation, can also present challenges for the programmer.

Figure 5

An illustration of UUhistle

12

2.3 Teaching and learning of code

While there might be a global trend towards learning to program, it is vital to train a significant

number of computing teachers so they are well equipped (Chandler, 2017; Gal-Ezer &

Stephenson, 2010; Lye & Koh, 2014; Ni & Guzdial, 2012). Programming modules in CS

Education play a major role in developing a successful CS teacher. Knowledge of programming

is essential for CS and is a core skill that a computer scientist should be competent in. The

complexities of coding structures and concepts such as variables, loops, arrays, functions and

syntax can be barriers to learning programming (Topalli & Cagiltay, 2018). However, the

known knowledge, experience and skills that students possess when they first start

programming are likely to facilitate the acquisition of programming knowledge and skills. This

known knowledge is captured in the construct of the Zone of Proximal Developmental (ZPD),

which is related to work by Vygotsky. Such knowledge and skills include natural language

competencies, various reasoning skills and prior mental exercises that involved abstract

thought.

Tending towards collaborative learning, the peer-to-peer pedagogical method has many

benefits for learning programming. It stimulates creative thinking, which contributes to swiftly

finding a solution to the programming problem (Govender & Govender, 2016; Padmanabhuni

et al., 2012; Porter et al., 2016). Thus, in practice, it is crucial to embrace and encourage such

pedagogy. However, the downside of peer-to-peer learning is that students may differ in their

degree of understanding of code. Although this is the core advantage of collaboration among

students, some students may be hindered in their progress due to their peers not having the

same level of understanding and skill. A case study by Leyk et al. (2017) suggested that careful

implementation and planning are needed for peer-to-peer learning to prove successful. As

pointed out by Govender & Govender (2016), “not all learning and teaching environments are

conducive to implementing peer-to-peer” (pg. 64).

2.4 Styles of programming

Distinguishing the level and complexity of programming style falls into two broad categories,

namely, sequential and parallel programming. Sequential programming involves one

instruction at a time carried out in a linear sequence as opposed to multiple instructions. The

latter describes parallel programming where instructions are carried out concurrently. The

13

programming style has a huge impact, especially in scientific, engineering and commercial

sectors (Feng et al., 2017). The type of environment should determine Central Processing Unit

(CPU) utilisation and program efficiency at run-time.

There are different programming trends, namely, imperative, procedural, declarative, reflective

structured, object-oriented, functional, etc. (Samuel, 2017). These trends or approaches to

programming are termed paradigms. According to Samuel (2017), “the Object-Oriented

Programming (OOP) paradigm can be considered as the dominant programming paradigm” (p.

38). On the other hand, Procedural-Oriented Programming (POP) is found to be the more

common and favoured approach (Zuhud et al., 2013). As stated by Samuel (2017), “most

widely and extensively used programming paradigms are Object-Oriented and Procedural-

Oriented (Husain et al., 2016; Samuel, 2017). However, it is important to note that Hendrix

and Weeks (2018) argue that POP is better suited to beginners. Similarly, a study by Husain et

al. (2016) recommends POP at an earlier stage with a later switch over to OOP later. This

switch, known as an Object-Later approach, has proved to be the best when teaching beginner

programmers (Dmitrieva et al., 2019). This could mainly be due to the fact that POP will not

require as much abstract or complex thought as OOP, and that the foundations of basic

programming structures can be mastered before transitioning to OOP. Many academic planning

committees face a predicament about which programming paradigm and language to use in

a ripple effect as one progress and

develops as a computer programmer.

These two commonly used paradigms, POP and OOP, both utilise high-level programming

languages to solve problems and are largely dependent on the language used (Dmitrieva et al.,

2019; Kurdi, 2013). Paradigms are simply a design concept or ideology and are not directly

related to any particular programming language. The OOP paradigm focuses on data, revolves

around classes and objects, and follows principles of inheritance, abstraction, encapsulation

and polymorphism. Some common examples of languages that can be coded using an OOP

approach are Java, C++, Python, R (Dmitrieva et al., 2019; Hendrix & Weeks, 2018; Samuel,

2017; Zuhud et al., 2013).

Object-Oriented Programming follows a bottom-up approach for designing a program (Kühn

& Cazzola, 2016). The primary focus is on the data, achieved by dividing a program into

methods that are bundled within the objects. As remarked by Samuel (2017), “Object-Oriented

14

Programming is an engineering approach for building software systems which are based on

concepts of classes and objects that are used for modelling the real-world entities, which

changes the focus of attention from code to data” (p. 40). For example, a Car main class/unit

will probably derive properties from a blueprint (object) class/unit called Vehicle; thus, the

programmer will start from the basics and develop a more complex design. Finally,

communication between the driver/main class and blueprint/object classes is created, which

enhances data security and modularity and avoids redundancy.

The POP paradigm follows a step-by-step approach that breaks down a task into variables,

routines, and subroutines through a sequence of instructions. Execution systematically takes

place and the program is divided into small parts called functions. Then it follows a series of

computational steps to be carried out in order. It follows a top-down approach to solve a

problem (Kühn & Cazzola, 2016). The solution is divided up into functions that are required

to accomplish the task. Typical languages include C and GO (Nanz & Furia, 2015; Zuhud,

2013). As mentioned earlier, some programming languages can be coded following many

paradigms; for example, a Python solution can be approached in object-oriented, imperative,

functional, procedural or reflective paradigms (Ferrari et al., 2016; Nanz & Furia, 2015).

Multiple studies have reported that students face difficulties transitioning from POP to OOP

and less likely vice versa (Biju, 2013; Govender, 2010; Liu et al., 2016; Nasrawt & Lam, 2019).

As contended by White & Sivitanides (2005), “learning to program in an object-oriented style

seems to be very difficult after being used to a procedural style” (p.333). Object-Oriented

Programming is generally considered difficult to comprehend. This is likely due to its design

concept, coupled with abstraction, encapsulation, polymorphisms and inheritance that affect

the coding design, structure and style (Hourani et al., 2019). The complexity of OOP is more

applicable to the student able to make a paradigm shift from POP to OOP, since it appears to

require more cognitive power. However, a study by White & Sivitanides (2005) argued that

“cognitive requirements are not the cause for the difficulty in shifting from procedural to OOP”

(p.333). They advocate that the interference of learning POP prior to learning OOP makes the

transition difficult. Thus, the move away from of POP is favoured, and many universities have

opted to teach their first programming course in OOP (Al-Jepoori & Bennett, 2018; Hosanee

& Panchoo, 2015; Kölling, 1999; White & Sivitanides, 2005).

15

In either case, OOP remains a problem as students have difficulties in comprehending the

essence of OOP, and thus perform dismally. Even though there are well research approaches

that make OOP easy, it remains a challenge (Hosanee & Panchoo, 2015).

A study by Stueben (2018) reports that there is no substantial difference between OOP and

POP in terms of productivity. In general, programming is done with a fusion of approaches.

For example, in OOP one can subdivide the problem by examining the objects, which is a top-

down approach; followed by polishing the code and merging those into the final program,

which is a bottom-up approach. This study chose to utilise a POP to introduce students to

programming. In support of this choice, OOP is cumbersome for small projects (Huang et al.,

2018) and first-time programmers (Dmitrieva et al., 2019); thus, the nature of the paradigm

will not be appreciated to its full potential.

The study will focus on the introductory programming concepts (further discussed in Chapter

four: Research design and methodology and Chapter five: Iteration): data types, variables,

arguments, iteration, conditions and calculations. As concluded in a comparative study by

Dmitrieva et al. (2019), the introduction of programming using POP followed by OOP, as

compared with just using OOP, was imperative as it provided the necessary knowledge and

skills required for OOP.

2.5 Proficiency in coding

2.5.1 Skill expectancy

Computer Programming has always been challenging, especially to novices (Bati et al., 2014;

Lo et al., 2015; Olsson et al., 2015;). As remarked by Saeli et al. (2011), “programming is a

skill that is considered hard to learn and even after two years of instruction” (p. 74). In the

earlier years of programming, Sleeman (1986) likened Computer Programming to Latin in the

curriculum. As this description is supported by Lions and Peña (2016), Latin was by no means

an easy language to learn. However, it is peculiar that Computer Programming is seen as a

challenging learning curve since there are many other complex subjects. The art of

programming can translate from one language to another, like English to isiZulu or Afrikaans,

while keeping the meaning intact.

16

This means that, if programming based on a particular language is understood, the same

concepts can be applied in another language with only the syntax of the language changing.

Some of the expected skills one needs to develop to become a programmer, and which may

explain the steep learning curve, are as follows:

 Being able to error detect, debug code (Lee et al., 2018);

 Being able to develop CT skills (Barr & Stephenson, 2011; Voogt et al., 2015;);

 Being a problem solver (Mead et al., 2006; Xinogalos et al., 2018);

 Being able to translate a problem solution into the required syntax of the chosen

programming language by forming a program (Tsai et al., 2019; Yoshiaki et al., 2015);

 Being able to engage in structured thinking, which involves being able to plan, construct

and manage the use of IPO charts, Algorithms (pseudocode and flowcharts), UML

diagrams, case diagrams, etc. (Calderon et al., 2015; Soloway, 1986);

 Being able to interpret larger entities of a program instead of smaller details (Hamzah

et al., 2019);

 Being able to recognise that a problem may have many different solutions; thus, no one

solution fits all problems (Bogdan, 2018; Martin & Soares, 2017), but they will all have

something in common;

 Being able to identify which code structure to use and when to use it (Bau et al., 2017),

and its efficiency (Fagan, 2002).

Computer Programming can be challenging because the skills, as listed above, involve one to

think on an abstract level. Unfortunately, South African learners are often not afforded the

opportunity to develop the core knowledge and skills needed for profiencies, creating a learning

gap that becomes evident when they get to tertiary level. The South African component of

TIMSS (Trends in International Mathematics and Science Study) has assessed Mathematics

and Science achievements among students since 1995.

The latest TIMSS conducted in 2015 found that Grade 9 levels showed notable improvements

in Mathematics at the lower and higher end of achievement scores as compared with a prior

study in 2011 (Reddy et al., 2016). Even though South Africa showed improvement in its

performance in Mathematics scores since 2003, it is still a concern to see that South Africa

remains at the lower end of the rank order as compared with other countries.

17

As remarked Reddy et al. (2016), “South Africa is one of the lower performing countries in

Mathematics in comparison with other participating countries, and the national average falls

short of the lowest international benchmark set by TIMSS” (p. 16).

These learners likely lack cognitive progression, which enhances abstract thought

development. They, therefore, struggle with abstract concepts when presented with subjects

such as Computer Programming. Students sometimes develop a superficial understanding, but

when posed with a computer program problem that requires a conceptual understanding, they

can encounter difficulties. It becomes a challenge to determine which program constructs and

procedures to utilise in solving the problem. Learners who are not cognitively ready for the

abstract and complex thinking required for Computer Programming at tertiary level experience

programming as challenging, especially weaker academic school leavers with no prior

exposure to Computer Programming (Olsson et al., 2015).

2.5.2 Lack of early exposure

None of the school subjects in the South African GET3 (General Education and Training) phase

expose the learner to Computer Programming knowledge. The first exposure to Computer

Programming is in the FET4 (Further Education and Training) phase at Grade 10, provided that

the learner selects the subject Information Technology (IT). Information Technology is unlike

many other subjects in the FET phase, which build on prior knowledge from GET phase

subjects. For example, Physical Science offered in the FET phase succeeds Natural Sciences

from the GET phase and, likewise, History and Geography replaces Social Sciences.

These GET phase subjects lay a foundation and prepare learners for the FET phase. It is crucial

to emphasise that an IT learner in the FET phase does not have any prior knowledge of coding.

As a result, learners are more likely to select subjects that are familiar and relatable to their

previous learning experiences. This is illustrated in Table 1, which shows a general decline

over a ten-year period in the number of schools offering IT and in the enrolment of learners at

Grade 12, the school finishing grade.

3 Grades 6-8 late primary school to early high school
4 Grades 10-12 late high school

18

Table 1

National count of Grade 12 learners enrolled in IT at schools

Year National schools National learners

2018 333 4108
2017 323 4095
2016 340 4346
2015 349 4326
2014 371 4820
2013 346 4874
2012 359 4428
2011 353 4313
2010 381 4884
2009 425 6246
2008 439 6787

Note. Figures extracted from the Department of Basic Education (DBE Annual Report, 2018).

The lack of exposure from GET to FET impacts the future of the learner’s tertiary education

and field of specialisation after school. This suggests a sense of inadequacy and reluctance to

further studies in Computer Programming and related fields. This reluctance is likely to be

exacerbated if IT was not selected as a FET subject.

There are numerous approaches to the learning of programming that can make it more easily

and simply understood. For example, simulation software, gamified learning environments

(Olsson et al., 2015), pair programming (Govender & Govender, 2016), test-first approach

(Doshi & Patil, 2016), test-driven approach (Erdogmus et al., 2005), read before write

approach, Predict-Run-Investigate-Modify-Make (PRIMM) (Sentance & Waite, 2017); and

Class Responsibility Collaboration cards (CRC) (Börstler & Schulte, 2005). Even though there

are varying approaches, there is still no agreement about the best approach to the introduction

of coding (Cazzola & Olivares, 2015; Plonka et al., 2015; Thota & Whitfield, 2010). This study

hopes to provide an approach that is relevant in the Digital Age and creates a positive influence

on the learning of programming.

2.5.3 Computational Thinking

To reach a solution to a problem, the student needs to be well-grounded and acquainted with

the necessary basic structures in programming. García-Peñalvo (2018) states that

“computational thinking can be based on programming, Robotics, control of devices, wearable

19

or simply unplugged concepts, that is, without any technology and aimed at developing a way

to solve problems” (p. 18). This engenders the problem-solving skills and higher-order thinking

skills that one needs to develop when learning how to code, which is also strongly related to

Mathematics and other scientific fields. Computational Thinking (CT) is an essential skill that

needs to be nurtured as it encapsulates other relevant thinking skills that are crucial for a

programmer. Algorithmic thinking can be considered a type of mathematical thinking needed

for the execution of performing a set of steps. Moreover, it is noted that CT embeds algorithmic

thinking (Jacob et al., 2018). The theorisation of CT was popularised by Wing (2006) as “a

way of solving problems, designing systems; and understanding human behaviour that draws

on concepts fundamental to computer science” (p. 33).

Consensus on a precise definition of CT has not yet been reached (Barr & Stephenson, 2011;

Grover & Pea, 2013). In general, however, scholars agree that four elements form the common

core of CT:

 Decomposition is breaking down a complex problem into manageable easier parts.

These smaller parts can be solved and designed individually since they are simpler to

work with;

 Pattern recognition involves an analysis that sifts out similarities and trends that form

a repetitive sequence. These patterns can help solve complex problems more efficiently;

 Abstraction is the removal of unnecessary parts of a problem. This filtering-out process

ignores the non-essentials and focuses on the relevant characteristic so that the solution

works on multiple problems;

 Algorithmic design is the step-by-step instruction or set of rules to solve a problem

(Kalelioglu et al., 2016; Romero et al., 2017; Turchi et al., 2019).

Computational Thinking is an important skill for a new programmer as it facilitates the

understanding of the problem and the design/build of the code. It can be agreed from the above

four elements that constitute CT, that knowing how to use a computing device or being

computer literate does not by any means relate to CT.

Computational Thinking is not exclusively associated with computer/technology activities.

Although CT was popularised in the 2000s, it was not a new term. Seminal work by Seymour

Papert explains CT as a series of steps for finding solutions to problems related to computer

system designs, but also that it can be applied to real-world phenomena (Cansu & Cansu, 2019).

20

However, when CT is used in a computer context, skills like digital literacy and computer

literacy can be a starting point for the development of CT skills. Figure 6 depicts the

relationship between various cognitive levels, showing that CT resides in the inner core of the

relationship levels.

Note. Visual illustration created by Author.

Computational Thinking requires efficient and well-thought-out decisions, problem-solving

practices and exercising different thinking systems (Weintrop et al., 2016). As mentioned, CT

is not a skill exclusively related to CS, as the problem-solving process may be generalised and

transferred to a wide variety of problems (García-Peñalvo, 2018). Thus, CT is by no means

synonymous with Computer Programming, but rather a way of thinking that is not exclusive to

a person trained in a computer discipline. As remarked by García-Peñalvo (2018), learning

activities based on STEM (Science, Technology, Engineering and Mathematics), require the

development of CT. There is also a clear distinction between CS and CT, as Denning (2009)

pointed out, as the latter contributes only a subset of skills possessed by a Computer Scientist.

He derived four components in CS: programming, engineering of systems, modelling and

applying. It is important to point out that CT is not part of Computer Programming, but rather

Computer Programming is part of CT (Figure 6).

Coding

Figure 6

Cognitive levels between digital literacy, computer literary and computational thinking and skills

21

2.5.4 The influence of Mathematics

Mathematics comprises various disciplines such as arithmetic, trigonometry, geometry,

calculus, measurement, etc. Mathematics is essential in the development of technology and it

is a universal mode of reasoning, logic and constructive thought. Science, Technology,

Engineering and Mathematics (STEM) subjects require the exercise and development of CT

(García-Peñalvo, 2018), which develop the knowledge needed in specialised fields like

architecture, commerce, aviation, etc. As agreed in Agenda 2063, of those who enter tertiary

institutions 70% should graduate in STEM subjects (SONA, 2019). It can be concluded that

the fundamentals of Mathematics are essential when learning Computer Programming, as the

two subjects share the same cognitive stance (Elaine, 2013). Computer Programming, if not

CS as a discipline, is rooted in the fundamental definitions, axioms, theorems and proof

techniques of Mathematics. In essence, Mathematics provides a language for working with

ideas relevant to CS (ACM/IEEE-CS, 2009). Furthermore, Rosen (2018) confirms that discrete

Mathematics is essential in Computer Science, Engineering and other disciplines since it covers

topics like logic, number theory, counting, algorithms, cryptography and number sequences.

Conversely, programming concepts such as algorithmic constructs like flow statements (if…

else, case, for… do, repeat… until, while, etc.), variables, data types, etc., are deeply rooted in

Mathematics and CT (Lie et al., 2017).

In a seasoned view, Graham et al., (1989) stated that “I would advise the casual student to stay

away from this course” (p. 107) in reference to learning Mathematics as a foundation for CS.

It is relevant to note that computers were first developed to help solve difficult mathematical

problems, and date back to the first computer, the Abacus. According to Misfeldt and Ejsing-

Duun (2015), Computer Programming and Mathematics should be viewed as closely connected

disciplines since the first computers were conceptualised and built by mathematicians. The

Abacus eventually evolved over the centuries to be replaced by the electronic calculator: a tool

used to calculate complex Mathematics. As remarked by Lie et al., (2017), from a “historical

point of view, computers were constructed to perform mathematical computations” (p. 29).

It would seem that Mathematics is a commodity necessary to learn how to program. Some of

the mathematical content explored in Computer Programming are number sequences,

frequency, abundant numbers, deficient numbers, perfect numbers, triangular numbers,

squares, cubes, palindromes, factorials, Fibonacci numbers, maximum and minimum common

22

divider of two numbers, prime and composite numbers, to mention a few. The use of computers

has perpetuated the belief that programming is the domain of the strong Mathematics adepts.

Findings by Bubica and Boljat (2015) establish that assessing university programming students

based on those who have previous experience of programming at school and those who have

poor Mathematics knowledge, has proven to be ineffective. Thus, indicating that Mathematics

might not be the essential element needed to understand programming. However, Pea & Kurlan

(2018) are adamant that Mathematics and programming skills are related once general

intelligence is factored out. This gives rise to what is defined as general intelligence, and does

this omit one’s mathematical ability? However, Mathematics is still seen as an effective

benchmark of having the required cognitive level to learn Procedural-Oriented Programming

(POP) (Soykan & Kanbul, 2018; White & Sivitanides, 2003).

Some intuitions have adopted new approaches to the pre-requisites that must be met for a

student to register for a Computer Programming course. Jackson and Miller (2009) emphasise

that students must possess the ability to think abstractly since most enter the course with

minimal mathematical knowledge, or only school-leaving Mathematics. Hence, all first-year

applicants are required to complete two calculus modules. Along similar lines, ACM/IEEE-

CS (2013) strongly suggests that all undergraduate courses in CS must include Mathematics as

part of the curricula; however, it was noted that such requirements vary by institution due to

several factors.

Among South African universities, the general pre-requisite into a course with Computer

Programming is that the school leaver must have achieved at least a level 5 or 6 in Mathematics

(Stellenbosch University handbook, 2019; University of Cape Town handbook, 2019;

University of Kwa-Zulu Natal, 2019; University of the Witwatersrand handbook, 2019). This

includes disciplines such as CS, CS Education, and Information Technology – all of which

contain Computer Programming modules.

The link between Mathematics and Computer Programming has led to some countries like

France to make Computer Programming compulsory in the school curriculum, similar to

Mathematics and language studies (Pea & Kurland, 1984). On the other hand, in recent times,

countries like England and Sweden have linked programming to design and engineering

subjects in schools (Misfeldt & Ejsing-Duun, 2015). Along similar lines, the National Council

23

of Teachers of Mathematics (2016) has announced that many states in America allow CS

courses with particular emphasis on Computer Programming to satisfy either a Mathematics or

a science course requirement. Furthermore, Saeli et al. (2011) state that in the “Netherlands,

Informatics has been defined as a new generation discipline, because it is linked with

Mathematics, Physics, Engineering, Linguistics, Philosophy, Psychology, Economy, Business,

and Social Sciences” (p. 74). The use of Robotics and Mathematics have a history together as

a result of the seminal work by Papert. According to Papert (1980) Robotics are to be used to,

“externalize learner’s ideas and to make mathematical concepts more accessible to reflection

(p.145). This has significant implications for visual reasoning in Mathematics. Papert’s work

dealt with the Logo turtle program and geometric figures.

2.6 Robotics

2.6.1 Why Robotics?

The conception and design of robotics was begun in the 1950s by George Devol, who created

a robot called Unimate (Gasparetto & Scalera, 2019). In the Digital Age, we harmoniously

interact with robotics and Artificial Intelligence (AI) systems on a daily basis without being

aware of such encounters, as such interactions have become a norm in our daily lives. Robotics

and AI are used in assembly plants, automatic opening and closing doors, boom-gate detection,

and voice control commands on smartphones such as Siri, Alexa and Cortana. The use of

robotic equipment is found in many work sectors whereby humans assign them tasks that

facilitate their work (Gasparetto & Scalera, 2019; Othman et al., 2018).

In summary, Robotics are machines that are instructed to carry out tasks that a human would

normally perform. There are some cases where Robotics are used to perform tasks that are too

dangerous or hazardous to human beings (Moniruzzaman et al., 2018). Such cases include

bomb diffusion, military tactics, a rescue mission in rough terrains, exploration of unknown

regions, etc.

Humanoid development is active on a progressive scale in many parts of the world. Humanoids

are systems that, in appearance, resemble a human and have a highly interactive bodily

autonomy. Famous humanoids such as Honda’s Asimo, and Atlas by Boston Dynamics, are

well known in the Robotics community. However, more recently, the development of Sophia

24

has gripped the attention of many. Sophia was created by Hansen Technologies and is the first

Robotic AI system to gain citizenship in a county (Kalra & Chadha, 2018; Weller, 2017).

The use of ICTs in education are becoming more readily available and intertwined with

learning environments, and are changing the landscape in which one learns. As South Africa

moves from the Third to the Fourth Industrial Revolution, increasing attention is being given

to technological advancements such as Robotics, AI, Big data and the Internet of Things (IoT),

to mention a few. It is vital to integrate such advancements into learning since the current

generation should learn about skills that are relevant to Workplace 2030 and future economy

growth (further discussed in sub chapter 2.9 Workplace 2030).

2.6.2 Robotics as a learning aid

As mentioned earlier, robot-based activities started with the work of Seymour Papert. This

involved the learning of Geometry and Logo platforms under the pedagogical framework of

Constructionism. The focal point being an unintentional learning encounter on how to code

using the Logo platform while learning Geometry. The Logo platform consisted of special

words like fd- forward, rt- right turn, etc., that used to control the actions of an arrow referred

to as ‘turtle’. Figure 7 depicts a drawing of a square. The code for the output in Figure 7 is

shown in the commander window in Figure 8.

25

In the 1960s, Papert and the MIT (Massachusetts Institute of Technology) AI laboratories saw

the dawn of the physical turtle device, which had a pencil attached for drawing (Figure 9).

According to Papert (1980), the turtle is seen as a metaphor, an "object-to-think-with" (p. 12).

Figure 7

Microsoft Windows Logo output of a square

Figure 8

Code in Logo commander window

26

Figure 9

Turtle device

Note. Extracted from http://cyberneticzoo.com/cyberneticanimals/1969-the-logo-turtle-seymour-papert-marvin-
minsky-et-al-american/

After many years it is important to note that there were some key limitations with this early

robotic device: a lack of mobility since it had to be connected with a cord; no additional sensors;

and a non-modular design. There is a scarcity of studies examining the use of Robotics in the

classroom (Toh et al., 2016) and coding in a text-based editor. The studies that do involve

robots and the learning of code focus on elementary level programming. Thus, utilising block-

based environments similar to that of Scratch. In addition, many studies, if not all, target the

development of thinking skills, problem-solving skills, motivation (Chin et al., 2014; Karim et

al., 2016) and teamwork (Toh et al., 2016) of students. Therefore, this study will explore a

unique way to introduce text-based programming by using Robotics as an educational tool to

make coding concepts in text-based programming simple to understand while developing

students’ interests in programming.

2.6.3 Lego Mindstorm series

Several robot kits of different types and brands are available on the educational market. The

activities with robots involving design-build, problem-solving, block-based programming and

engineering skills have gained much popularity (Karp et al., 2010; Kucuk & Sisman, 2017;

Toh et al., 2016; Varney et al., 2012). The Mindstorm series is a set of buildable and

programmable robotic kits made by Lego. The Lego Mindstorm provides a stable interface,

strongly built components, and a modular design. It appears that most of Papert’s work over

the years, if not all, was intended for the development of the Lego Mindstorm series (Catlin et

al., 2018; Chesher, 2018; Resnick et al., 1988).

27

The Lego Mindstorm kit is provided with a microcontroller (usually referred to as the

intelligent brick) modular motors, sensors and Lego bricks. There are two size motors supplied

(large and medium) which can be moved in rotations, degrees or seconds. Each motor has the

ability to read in data, such as, the state of the motor, whether moving or stalled, and the number

of degrees rotated. The sensors read in data from their immediate surroundings and feed the

data to the intelligent brick. The colour, ultrasonic, gyroscope, touch and light sensor are

commonly supplied with the kits (Aslam et al., 2018; Kovács, 2019).

There are three generations of Lego Mindstorm, namely RCX (Robotics Invention System),

NXT (next generation) and EV3 (evolution 3). Each generation has its design with different

parts and intended use. Coupled with the modular design of the intelligent brick, the motors

and the sensors, accuracy has been progressively improved in the latest Lego Mindstorm, the

EV3. The releases are as follows:

RCX (Figure 10) launched in January 1998 with four available kits. One basic kit, one

educational kit, and two upgraded versions of the basic kit;

NXT (Figure 11) launched in August 2006 with three kits available. One basic kit, an

upgraded version of the basic kit and an educational kit;

EV3 (Figure 12) launched in September 2013. Currently, two kits are available, a basic

kit and an educational core kit (Aslam et al., 2018; Catlin et al., 2018; Kovács, 2019;

Kuncoro et al., 2018). *5

5 During this study, Lego had launched the Robot Inventor in 2020, which is said to replace the EV3.

Figure 10

First generation RCX

28

Each kit is supplied with the

Lego Mindstorm programming software (IDE) allows the user to create code and upload it to

the intelligent brick. The programming software has a rich GUI design allowing actions of the

brick to be created by dragging and dropping blocks together to make a program. Figure 13

(next page) shows an exemplar program using Lego Mindstorm programming software.

Figure 11

Second generation NXT

Figure 12

Third generation EV3

29

The block-based code in Figure 13 runs in an infinite loop that sets the steering direction of

motors B and C (wheels) -30 (left) at 20% power. The colour sensor continuously reads in data;

once the colour black is detected, the program splits into two streams of blocks that run

simultaneously. The first stream contains one block that outputs a motor horn noise while, at

the same time, the second stream sets the steering direction of motors B and C +30 (right) at

20% power until the colour white is picked up. This process continues in an infinite loop until

the user terminates the process. In summary, the program keeps the robot off the black line.

2.6.4 Arduino

The Arduino microcontroller board was first launched in 2005 in Italy (Barrett, 2020). There

are many variations of the microcontroller board due to Arduino being an open-source

hardware and software company. Compared with Lego and similar kits, Arduino provides a

cost-effective way for people to code and design prototypes 6 that can interact with the

immediate environment. Arduino kits are generally supplied with the single-board

microcontroller, LEDs (Light-Emitting Diodes), LDRs (Light Dependent Resistors), jumper

wires, resistors, pin headers, a breadboard, a 9V power connector, and USB (Universal Serial

Bus) connector. One of the most popular Arduino microcontroller boards is the UNO R3. The

UNO R3 board (Figure 14, next page) has 14 digital pins, six analogue pins and can produce

either a 3.3V or 5V output from a USB or power connector.

6 A prototype is an early model which is used for test purposes.

Figure 13

EV3 program that detects a black line

30

Note. Adapted from https://www.elprocus.com/what-is-arduino-uno-r3-pin-diagram-specification-and-
applications/

Unlike commercially based educational robot kits that are difficult to modify mechanically and

electronically despite their modular structure, Arduino allows for such flexibility (Pérez &

López, 2019). Arduino has various add-on sensors and actuators that can be connected to the

microcontroller and coded in the default Arduino language and IDE. The Arduino language

requires a steep learning curve which can hold back many users (Russell et al., 2020). The

Arduino language is based upon C and C++. The programming of the microcontroller forms

the basics of Robotics. Hence, it is autonomous in its immediate surrounding environment.

There are many add-on libraries to the Arduino IDE providing unrestricted access due to the

open-source community.

2.7 Programming languages

2.7.1 Hello world

There are many different programming languages used to teach programming. Some of the

most popular include Java, C, Python, and C++ (Mannila & Raadt, 2006; Sebesta, 2016;

Hendrix & Weeks, 2018). Every programming language has its own syntax set; that is the rules

one would adhere to when typing code. To select the best programming language can be

difficult, as pointed out by Nanz and Furia (2015): “the question on which is the best

programming language is often asked, but well-founded answers are not easily available” (p.

Figure 14

Arduino UNO R3 pin diagram.

31

779). For this reason, this study presents the code for two tasks in some popular programming

languages. The first task examines Hello World, which does not involve any calculations; this

code outputs text on the screen. The second task is the Fibonacci sequence which demands

some complex calculations coupled with nested coding constructs.

In Figures 15 to 20, the famous Hello World program is examined in some of the common

programming languages like Java (Figure 15), C (Figure 16), Delphi (Figure 17), C++ (Figure

18), Python (Figure 19) and C # (Figure 20). The Hello World program is generally the first

program that students code in during an introductory programming course.

Java

public class HelloWorld

{

public static void main(String[] args)

{

System.out.println("Hello, World!");

}

}

C

#include <stdio.h>

int main()

{

 printf("Hello World");

 return 0;

}

Figure 15

Hello world code in Java

Figure 16

Hello world code in C

32

The Python (Figure 19) programming language has the least lines of code from the selected

programming languages. The code is as follows: print ("Hello, World!"), which is

Delphi

program HelloWorld;

begin

 Writeln('Hello, world!');

end.

Python

print("Hello, World!")

C++

int main()

{

 std::cout << "Hello, world!";

 return 0;

}

C#
using System;

class Program

{

 public static void Main(string[] args)

 {

 Console.WriteLine("Hello, world!");

 }

}

Figure 17

Hello world code in Delphi

Figure 18

Hello world code in C++

Figure 19

Hello world code in Python

Figure 20

Hello world code in C#

33

all that is needed to display Hello world! on the screen. The fundamental difference between

C and C++ is that C is procedural-based (Dmitrieva et al., 2019). This means it does not support

the coding of classes and objects. Java (Figure 15), C (Figure 16), C++ (Figure 18) and C#

(Figure 20) all seem to be verbose and heavily laden with syntax due to the syntactical need

for parenthesis, round brackets, semi-colons and apostrophes. Java and C# seem to share very

similar syntactical structures. A study carried by Farag et al. (2013) compared the effectiveness

of C++ among a control group and Java among an experimental group. There were no

significant differences between the groups regarding academic results and gratification. This is

because both languages are based on C and C++ (Dmitrieva et al., 2019).

Python uses indenting to recognise the beginning and end of code structures compared with the

parenthesis in the other languages. Except for Delphi, which does not require parenthesis as

compared with Java, C, C++ and C#, it utilises the actual words begin and end. Overall, it can

be said that Python is a coding language with less typing, requiring however its own syntactic

needs.

The Fibonacci sequence is a well-known number pattern used in introductory courses in

Computer Programming. The pattern starts with 1, followed by 1, and continues to add the

current term to the previous term to get the next term which is 2; 3; 5; 8 and so on. In the code

segments (Figure 21-26), the user enters n as the number of terms that must be generated for

the Fibonacci sequence.

C
long long int fibb(int n)
{
 int fnow = 0, fnext = 1, tempf;
 while(--n>0)

{
 tempf = fnow + fnext;
 fnow = fnext;
 fnext = tempf;
 }
 return fnext;
}

Figure 21

Fibonacci code in C

34

Java
public static long itFibN(int n)
{
 long ans = 0;
 long n1 = 0;
 long n2 = 1;
 if (n < 2)
 return n;
 for(n--; n > 0; n--)
 {
 ans = n1 + n2;
 n1 = n2;
 n2 = ans;
 }
 return ans;
}

C++
#include <iostream>
int main(int target)
{
 unsigned int a = 1, b = 1;
 for(unsigned int n = 3; n <= target; ++n)
 {
 unsigned int fib = a + b;
 std::cout << "F("<< n << ") = " << fib << std::endl;
 a = b;
 b = fib;
 }
 return 0;
}

C#
public static ulong Fib(uint x)
{
 if (x == 0) return 0;
 ulong prev = 0;
 ulong next = 1;
 for (int i = 1; i < x; i++)
 {
 ulong sum = prev + next;
 prev = next;
 next = sum;
 }
 return next;
}

Figure 23

Fibonacci code in C++

Figure 24

Fibonacci code in C#

Figure 22

Fibonacci code in Java

35

Examining the code indicates that Delphi (Figure 25) uses the most lines of code, whereas C

(Figure 21) and Python (Figure 26) uses the least number of lines to code for the Fibonacci

sequence. Despite the differing number of lines of code, a study conducted by Xinogalos et al.

(2017) found that, between Delphi and C, there was no statistical significance as to which

programming language should be used to teach and learn, since students encountered the same

level of difficulty with both. This indicates that fewer lines of code do not mean an easy level

of understanding. Likewise, more lines of code do not necessarily imply a difficult level of

Delphi
function Fib(inum: integer):String;
var num, first, second, next, c:Integer;
toString:String;
begin
 first := 0;
 second := 1;
 C:=0;
 num:=inum;
 while C<num do
 begin
 if C<=1 then
 begin
 next:=C;
 end else
 begin
 next:=first+second;
 first:=second;
 second:=next;
 end;
 inc(C);
 toString:=toString+IntToStr(next)+#9;
 end;
 result:= toString ;
end;

Python
def fibIter(n):
 if n < 2:
 return n
 fibPrev = 1
 fib = 1
 for num in xrange(2, n):
 fibPrev, fib = fib, fib + fibPrev
 return fib

Figure 26

Fibonacci code in Python

Figure 25

Fibonacci code in Delphi

36

understanding. The iteration structures and the algorithmic problem solving leading to the

calculation of the Fibonacci numbers remain the same across all selected programming

languages. When coding in Python, it is important to note that one does not need to declare

data types (Nasrawt & Lam, 2019); this means type errors are not likely to occur. Due to the

indenting system utilised in Python to mark the begin and end, this provides less visual clutter

as compared with the other programming languages. It is important to point out that the semi-

colon is used to denote the end of a line in the selected programming languages, except for

Python, which recognises that if code appears on a new line visually, then it must denote a new

line. This makes better sense than using a semi-colon, thus earning Python the title of being a

truly high-level language. High-level programming languages are closer or similar to human

languages and further away from machine language (Dmitrieva et al., 2019).

Figure 27 depicts the relationship between low-level language and human understanding,

indicating the level of abstraction related to the language level. A high-level language is closer

to human languages and is alien to a computer. Whereas low-level language is difficult to debug

and understand (Chapman & Irwin, 2015), but takes up less storage space (Comer, 2017).

Note. The structure of low-level language is similar to the processor's instructions hence referred to as machine
code.

2.7.2 Python Language

Python was developed in the 1980s and first released in 1991 by Dutch programmer Guido van

Rossum; and has been increasing in popularity as a recommended language for programming

(Dmitrieva et al., 2019; Sharma, 2018; Xinogalos et al., 2017).

Closer to human language

Figure 27

Relationship between low-level and high-level language

37

Note. Extract from the Economist, 26 July 2018.

The Economist (2018) reported that Python is becoming the world’s most popular coding

language and will soon overtake C, C++ and Java. As can be seen in Figure 28 under US

Google searches for coding languages, Python is steadily increasing in popularity. Python is

rated first on the IEEE (Institute of Electrical and Electronics Engineers) spectrum ranking

2021 programming language rating and is reported as the fastest growing programming

language (Cass, 2021).

This increase could be because Python is a scripting language that takes less time to develop

when compared with C++ and Java; and programs written in Python are often shorter than

equivalent programs written in other languages because of the built-in high-level data types

and its dynamic typing (Shein, 2015).

Python was selected as the programming language used in this study. Mannila & Raadt (2006)

provide reasonable evidence that Python is the preferred programming language for learning.

In addition, Shein (2015) states that “once someone grasps the logic behind Python, the

concepts can be more easily transferred to other languages” (p. 19). Nevertheless, a study by

Figure 28

Ranking of programming languages

38

) found that the first programming language used for coding is not

significant if the performance is the only measure of standard. Since the results from two non-

parametric tests showed no significant differences in the language used and academic

achievement.

In another study by Xinogalos et al. (2017) two groups of students were surveyed – twenty-

eight without prior programming experience and twenty-seven with some prior experience.

The results showed that both groups considered Python as a suitable first programming

language. This preference was probably because Python is regarded as a multi-paradigm

language with a simple and straightforward syntax, while its popularity in the private sector is

growing (Shein, 2015).

An example of Python coding in the private sector can be illustrated by a study that investigated

the learning of Python as a first programming language among biomedical students with no

prior programming experience (Chapman & Irwin, 2015). The students used Python code in a

software editor package for data science, analysis and visualization. Key findings (Table 2),

where 4 = Agree and 5 = Strongly agree, were in favour of Python as compared with other

programming languages.

Table 2

Use of Python code in the private sector

Statement 1 2 3 4 5

Learning Python was valuable for helping me subsequently learn additional

programming language(s)
1 1 3 12 9

Learning Python was valuable for my career development 0 1 1 10 14

Note. Usefulness of learning Python (data extracted from Chapman & Irwin, 2015, p. 15).

Python supports multiple paradigms (Dmitrieva et al., 2019) and has a simpler syntactical

structure that provides students with the opportunity to learn various programming languages

(Lo et al., 2015). Consequently, Python is favoured as the first language for learning for

novices. Python is one of the most widely adopted high-level programming languages

(Summerfield, 2010). Shein (2015) added that more people use Python as an “introductory

39

programming language because it has a very large set of highly useful libraries that have been

built over the years” (p. 19). On the other hand, languages such as C, C++ or Java, are the first

learning languages for novices designing real applications; and are therefore popular in

industry (Lo et al., 2015). However, the complex syntax of these languages is challenging for

novices (Kalelioglu & Gülbahar, 2014), as mentioned in section 2.7.1 Hello World. In contrast,

Python has some robust characteristics that make it an ideal language for novice programmers

(Tollervey, 2015), such as, ease of learning, the existence of an interactive shell that allows

programs to execute efficiently, the existence of various libraries, portability and installation

flexibility. Action research aimed at reducing the dropout rate after introductory courses to

Computer Programming through the use of Python language reported an improvement of 77%

of students passing and progressing (Yadin, 2011). Yadin (2011) adds that Python’s simple

syntax allows students to focus on algorithm designs and problem solving. This is further

supported by Dmitrieva et al. (2019), who states that “Python can be definitely recommended

to be used on the first level of study to receive initial programming skills, as well as the second

level of study while learning object-oriented programming” (p. 203).

2.7.3 Integrated Developmental Environment (IDE)

There is no single IDE (Integrated Developmental Environment) that is compatible with all the

available programming languages (Zayour & Hajjdiab, 2013). This reiterates the two-phase

learning process mentioned earlier – learning how to use the IDE and learning the coding

language. The IDE used can have a potential impact on the learning process – the individual

can direct all their efforts in understanding how to use the IDE and overlook learning about the

programming language. As a consequence, this prevents proper learning of the programming

language.

Therefore, the choice of IDE that is used is very important. Some factors that need to be

considered when choosing an IDE include: Does it support the design of GUI components or

text-base only? Does it have predictive auto-completion? Is the program open-source? Does it

have any additional syntax? Are debug and trace features available?

The IDE chosen for Python was Integrated Development and Learning Environment (IDLE).

The Python IDLE is the default environment that is installed with the Python language package.

The default mode when opening IDLE is Python shell. Through the shell window, the user can

type and execute code and also create individual Python files (.py) for each set of code.

40

2.8 Setup 7

This study makes use of the Arduino UNO R3 microcontroller and Python programming

language. The UNO R3 required some setup so that the firmware was able to understand the

Python code, rather than its default Arduino language. This was achieved by loading library

package PyFirmata to the microcontroller. PyFirmata allows the Python code to be interpreted

on the Arduino UNO R3 microcontroller.

It is important to note that reference to the COM port number, which represents the PC port

that the microcontroller is connected to, must be made within the Python code. This ensures

that the UNO R3 is in a ready state mode waiting for instructions from the PC. The schematics

of an UNO R3 loaded with PyFirmata connected via USB to a PC running IDLE are shown in

Figure 29.

During the first connection to the PC, the Arduino UNO R3 drivers are installed automatically

to the PC. Instead of being USB powered, the UNO R3 can be operated on a separate 9V battery

power. However, for convince, only the USB connection was used as it serves two purposes:

providing power to the microcontroller and as a medium for data transfer. In Figure 29, the PC

is like the client and the UNO R3 is the server. This type of client-server setup can allow the

communication of multiple servers with a single client through different ports. The text-based

program is transferred from the client to the server, which gets interpreted and executed. The

execution of the output can involve an unlimited number of sensors and actuators running

simultaneously.

7 The original plan was to use the LEGO EV3 and Python in a form of a face-to-face workshop. However, due
to the COVID-19 pandemic and cost factors, the researcher supplied each participant with an Arduino kit and
the workshop took place on an online platform.

Figure 29

Schematic of the PC connection with Arduino

USB connection

PC

User program
(IDLE)

Python code

UNO R3

PyFirmata

Interprets Execute actions

41

2.9 Workplace 2030

Currently we are experiencing a transition towards 4IR on the African continent, which

includes the promotion and unveiling of AI, Big Data, Robotics and other related developments.

In readiness to “ensure that South Africa effectively embraces the Fourth Industrial Revolution,

the President has appointed a task team to focus on the Fourth Industrial Revolution” (SONA,

2019). As society begins to change, concomitant changes can be expected in terms of the types

of knowledge and skills needed for the future. Thus, educational decision makers have a

responsibility to explore new avenues to keep learning relevant. Consequently, it is necessary

to explore new ways of introducing concepts such as programming to programming students

in the 21st century. As the need to learn in a manner different from their predecessors, future

graduates of today need to learn how to apply, design and understand in practice. This study

will explore a new style of programming introduction at a tertiary level, which aims to bridge

the gap for students who lack prior programming knowledge.

As mentioned in the SONA (2019), key jobs in South Africa where progress is being made are:

installation, repair, maintenance jobs and digital/tech jobs like coding and data analytics. Thus,

the study is in alignment with goals set out by the South African Government. As remarked by

the President of South Africa in the SONA (2019) that “…Framework for Skills for a Changing

World, we are expanding the training of both educators and learners to respond to emerging

technologies including the internet of things, robotics and artificial intelligence” (p. 25).

2.10 Conclusion

Coding and Robotics are among the most valuable set of skills needed for the Fourth Industrial

Revolution. Such digital skills are essential to enable graduates to integrate into the world of

work. Instead of rote learning, the future generation needs skills development in unstructured

problem solving and reasoning. These critical skills, coupled with coding and Robotics, will

drive economic growth into the future.

It is widely accepted that Computer Programming is complex, challenging and students dislike

the course, resulting in poor performance and motivation (Chen et al., 2017). Studies found in

the literature reveal that the difficulty in learning programming initiates from the complexity

of coding structures such as variables, loops, arrays, functions and syntax in programming

languages. These complexities may become barriers to learning programming and diminish

student motivation.

42

Studies also reveal that many research projects have been carried out incorporating Robotics

and programming in a block-based environment. In most cases, the focus was on developing

reasoning and logic and not programming. Those studies that did focus on programming did

so in a block-based style environment, mostly with young students. As reviewed, this

programming style can be misleading when the individual is later introduced later to text-based

programming. The advantage of programming environments that offer a drop-drag interface

(block-based) allows one to focus more on logic and reasoning than coding. This is achieved

because the programming environment is not based on a particular programming language, so

there is no verbose text-based programming and thus no syntax.

This study opts to explore a move away from classical learning platforms, such as block-based

programming and computer visualisation tools, towards a more reformed approach using

robots to introduce programming.

This approach envisions the use of a real-time three-dimensional learning experience of

Computer Programming, rather than an artificial two-dimensional experience on a computer

screen. The type of pedagogy required for Computer Programming should be demonstrative

and practical in nature, which this study aims to achieve through the use of Robotics as an

educational tool (robot coding). Since it is clearly argued in the literature that there is no single

most-suitable methodology for the introduction to programming, it is hoped that the strategy

employed in this study will yield an authentic experience to facilitate the development of

programming knowledge – unlike with block-based programming.

Many of the studies reviewed did not sufficiently adhere to the requirements for rigorous

education research. Thus, there remains a dearth of empirical studies on the potential of

learning Computer Programming through Robotics. The existing literature on the learning of

text-based coding says very little about the use of Robotics, indicating a gap in the literature

and the rationale for this study. This study aims to reduce the research gap between text-based

coding and Robotics to achieve the objectives using the Arduino, PyFirmata and Python

language. Despite many well-researched and grounded approaches that offer strategies to

simplify and make the introduction to programming easy and simple to the novice, they have

not proven to be the most effective and efficient. Therefore, introducing the student to basic

constructs of programming using Robotics may influence their learning and understanding of

coding, which is what this study sets out to explore.

The next chapter presents the theoretical framework that underpinned this study.

43

Chapter three: Theoretical framework
“There is an intimate and necessary relation between the process of

actual experience and education.” ~ John Dewey

3.1 Introduction

This chapter engages with the relevant theories that apply to the study. Theoretical frameworks

guide the research by relying on formal theories, thus playing a pivotal role in the generation

of data, interpretation and findings (Osanloo & Grant, 2016). This study explored the use of

Robotics in the learning of programming and was supported by two theoretical frameworks,

Activity Theory and Kolb’s Experiential Learning. Engeström (2001) contends that there are

three generations of Activity Theory: first-generation, second-generation, and third-generation

Activity Theory, which has evolved over the years.

The practical nature of this study – involving Robotics and coding – needed ideally to be

underpinned by a pragmatic paradigm. Pragmatic knowledge is rooted in the theoretical

framework of Engeström’s second-generation Activity Theory; and integrated with Kolb’s

Experiential Learning Cycle. This chapter begins with an account of how Deweyan pragmatism

was adapted for the study by outlining the study’s broader philosophical approach, followed

by an exploration of Activity Theory. For reasons of plausibility and coherence, some theories

will be dealt with in the next chapter (Chapter four: Research design and methodology), where

their relevance will be contextualised.

3.2 Approach to the study

The pivotal axis of this study is the pragmatic paradigm – an approach that is often associated

with mixed-methods research (Feilzer, 2010). Pragmatism offers an alternative worldview to

those of positivists, interpretivists and critics, while focusing on the problem to be researched

and the consequences of that research (Feilzer, 2010; Kivunja & Kuyini, 2017). Hence, it is

research that develops through its design. The history of pragmatism spans many decades and

is known for being ill-defined and open to many interpretations (Rorty, 1991), as it can be used

as a framework or a paradigm. The development of pragmatism stems from a social science

research movement influenced by Charles Peirce from 1839-1914, William James from 1842-

1910 and John Dewey from 1859-1952 (Revez & Borges, 2018).

44

There is a distinction between pragmatism used as a framework and as a paradigm, the latter

having been advocated by the work of John Dewey (Lincoln et al., 2011). This study draws

upon the interpretations of Deweyan pragmatism. As stated by Revez and Borges (2018), the

“Deweyan pragmatism offers a sensible, practical explanation” (p. 6). Pragmatism is accepted

as a paradigm, according to Feilzer (2010), and maintains that “there are singular and multiple

realities that are open to empirical inquiry and orient itself toward solving practical problems

in the real world” (pg. 8). Dewey (1925) likens the pragmatist view to existential reality, which

is a reference to an experiential world with different layers, some objective, some subjective

and some a mixture of both. John Dewy referred to human transactions as experiences, since

the view of the world for the inquirer is a continuous transaction between researchers as actors

within their environment (Dewey, 1925; Dewey, 1905). Thus, in this transaction (the study),

the inquirer (the researcher) behaves in a way that adjusts the surroundings (learning of

Computer Programming) and monitors the consequences of these actions. Dewey did not

classify these as separate entities, but rather regarded this interactive relationship between the

world and actors as one; and constituting reality.

Lincoln et al. (2011) point out that the major philosophical element that cuts across different

paradigms is ontology, referring to the question of what constitutes reality. The ontology or

nature of reality of the pragmatic view is determined by real-life social issues (Creswell et al.,

2011; Feilzer, 2010). As in real life, reality is constantly changing and interpreted in its

usefulness in new unpredictable situations. As aligned to this study, pragmatism addresses the

problems associated with learning to code and how they can be resolved. As remarked by

Creswell (2003), pragmatist researchers focus on the “what” and “how” of the research problem

(p.11). Pragmatism is not devoted to one system of philosophy, unlike the objective and

measurable reality of positivism; and the subjectivity of interpretivism and criticism, which

adhere to a set of prescribing methods (Kivunja & Kuyini, 2017). Pragmatism favours research

through a designed theoretical perspective, thus making it a real-world practice-oriented

paradigm.

According to Dewey (1925), paradigms based on objectivism and subjectivism derive from the

same homogeny since they seek to find the truth, whether it is an objective truth or relative

truth of multiple realities. The pragmatic approach relies on reasoning that combines both

induction and deduction (Morgan, 2014) and emphasises inter-subjectivity (Merriam, 1998),

which captures the relationship between the subjective and objective approaches of qualitative

45

and quantitative enquiry respectively. Pragmatism is an approach that uses the logical process

of abduction, as well as deduction and induction (Revez & Borges, 2018). Deduction is

achieved by reaching a conclusion from generally accepted data, while induction leads to

generalisation based on the known data. On the other hand, abduction is formed by selecting

the best explanation given the known data (Thomas & Georg, 1995). As pointed out by Yin

(2014) and Merriam (1998), when concepts are abstract, it is important to utilise processes that

help interpret, sort and manage information. This will lead to findings that convey clarity and

relevance to the study.

Epistemological issues centre on the process of knowing and knowledge (Lincoln et al., 2011).

The epistemological stance of pragmatism is that the nature of knowledge is determined by the

method for solving a problem, thus allowing for change, which is an underlying principle.

Hence, the researcher is allowed the freedom to choose the necessary methods to reach the

objectives of the study (Revez & Borges, 2018). According to Dewey (1929), a “spectator

theory of knowledge” (p. 163) that promotes an objectivist stance, ought to be rejected in

pragmatism as the researcher or inquirer is an integral part of the inquiry experienced through

their actions. Thus, a subjectivist approach favoured by interpretivists where the inquirer’s or

researcher’s subjective knowledge plays an essential role in knowing should also be rejected.

Pragmatism does not place emphasis on the researcher nor the world, since the researcher is

part of a particular inquiry experience or regarded as a parameter in the interaction with the

world (Dewey, 1929; Dewey, 1925). Furthermore, Dewey asserted that the outcomes of a

pragmatist study are only warranted within the context or the unique set of parameters of the

inquiry. Likewise, the outcomes in this study are warranted within the context of learning

programming with Robotics within the parameters of this study.

Pragmatism has been advocated as the underlying philosophical stance for mixed-methods

research (Morgan, 2014; Teddlie & Tashakkori, 2011). Such methods include interaction,

experimenting, questionnaires, focus-group interviews, observations, open-ended questions,

surveys, data mining, usability testing, physical prototyping, etc., thus favouring a mixed-

method methodology that includes a collection of quantitative and qualitative data. According

to Creswell and Clark (2011), pragmatism is oriented towards “what works” (p. 42) and it

assumes there is no single scientific method that is able to discover the truth (Morgan, 2014).

Furthermore, Howe (1988) argues that “no incompatibility between quantitative and qualitative

methods exists at either the level of practice, or that of epistemology, and that there are thus no

46

good reasons for educational researchers to fear forging ahead with “what works” (p. 10). The

use of a mixed-methods approach allowed for a complete understanding of the results during

the analytical and interpretation phases of this study. This was achieved through triangulation,

which assisted in validating the results obtained from different methods (further discussed in

Chapter four: Research design and methodology).

It can be concluded that pragmatic research aims to act on a situation, rather than simply

describing it. In addition, pragmatic research acts on the propositional knowledge that will be

implemented in similar future situations. After all, the pragmatic paradigm is problem-centred

and based on real-world practice. The argument is that pragmatism is essential to explain how

design-driven research approaches can facilitate change and enhance creativity (Collatto et al.,

2018). As explained by Feilzer (2010), the “pragmatic approach to problem-solving in the

social world offers an alternative, and more reflexive guide to research design and grounded

research” (p. 7). Dewey (1929) advocates that research be regarded as a type of experience in

the world. This study is founded on the basis that the researcher is presented with an unresolved

situation (way/method of learning Computer Programming) where wonted actions (block-

based programming and use of computer visualisation tools) do provide an effective resolution

to the situation. This means that the researcher needs to identify the problem and introduce an

intentional change (use of Robotics) that will result in resolution. To conclude, research

grounded in a pragmatic paradigm will have the following characteristics, set out by Kivunja

and Kuyini (2017):

 “A rejection of the positivist notion that social science inquiry can uncover the ‘truth’

about the real world;

 An emphasis on ‘workability’ in research;

 The use of ‘what works’ to allow the researcher to address the questions being

investigated, with minimum concern as to whether the questions are wholly quantitative

or qualitative in nature;

 Adoption of a worldview that allows for a research design and methodology that are

best suited to the purpose of the study;

 Utilising lines of action that are best suited to studying the phenomenon being

investigated;

 A rejection of the need to locate your study either in a positivist (postpositivist)

paradigm or an interpretivist (constructivist) paradigm;

47

Seeking to utilise the best approaches to gaining knowledge using any methodology

that helps with knowledge discovery;

Choice of research methods depending on the purpose of the research; and

A search for useful points of connection within the research project that facilitate

understanding of the situation” (p. 36).

3.3 Activity theory

The theoretical framework applied to this study was founded by Russian psychologist

Vygotsky and his student Leontiev and was initiated in the 1920s and 1930s (Clemmensena et

al., 2016; Engeström, 2001). It is recommended that Activity theory creates an ideal framework

for HCI (Human Computer Interaction) research (Clemmensena et al., 2016; Jonassen &

Ronrer-Murphy, 1999; Kuutti, 1996), thus, making Activity Theory relevant to the study that

utilised Artificial Intelligence (Robotics) in learning how to code. Activity Theory builds on

Vygotsky’s cultural-historical psychology, CHAT (Cultural Historical Activity Theory) and

has evolved through three generations of research (Engeström, 2001). Activity Theory is not a

methodology but a philosophical framework that aids in studying different forms of human

praxis as developmental processes at an individual and social level (Jonassen & Rohrer-

Murphy, 1999). Activity Theory is founded on the premise that human activity is purposefully

carried out by a set of actions through the use of artefacts/tools, which can be physical or

psychological (Engeström, 2001). This premise led to the development of first-generation

Activity Theory, illustrated in Figure 30, with bi-directional arrows showing the flexibility of

movement centered around the idea of mediation, where the artefact is a tool used to mediate

learning.

Note. Adapted from Engeström (2001).

Figure 30

An illustration of first-generation Activity Theory

48

The subject is the individual within the learning environment working towards the object, the

purpose of the actions. The object, in turn leads to the outcome, which is the result that the

environment seeks to create. The subject generally is aware of the outcome but may not be

consciously aware of their motives (Carvalho et al., 2015). Therefore, this can possibly lead to

self-discovery learning, where learning and knowledge building takes place concomitantly.

The subject refers to the individual who will acquire the relevant knowledge and the object

relates to the motive, which is unplanned and through sense making results in the outcome

(Engeström, 2001).

The actions of the subject are mediated by the tools. The artefact resembles any tool, physical

or symbolic, such as machines, equipment, speaking, writing, gestures, music, etc., and that

mediates the interaction between subject and object. Activity Theory focuses on how one

utilises tools in a multidimensional social context to achieve specific objects that lead to the

anticipated outcomes. As remarked by Carvalho et al. (2015), “the activity is directed at a

motive” (p. 167); in other words, the motive refers to the object that the subject pursues.

Objects are the immediate results of actions, whereas outcomes are the products that emerge

from the activity system. As pointed out by Carvalho et al. (2015), the activity is the basic unit

of analysis for all human efforts. The activity is considered as a meaningful interaction between

subject, artefact and object, as a process during which mutual change is accomplished. This is

aligned to the principles of the pragmatic paradigm whereby some sort of invention introduces

a change to a situation, which results in resolution. However, first-generation Activity Theory

excluded the social context, which is the collaboration with others. As remarked by Engeström

(2001), “the limitation of the first generation was that the unit of analysis remained individually

focused” (p. 134). This led to three elements being added to the first model by Leontiev around

1978, which resulted in the bi-directional SGAT as illustrated in Figure 31 (next page).

49

Note. Adapted from Engeström (2001).

The three elements, also known as actors, that were added to the complexity of the first

generation, were rules (referring to practices, learning, collaboration, etc.); a community

(referring to the learning group, school, institution, profession, community, society, etc.); and

division of labor (referring to the division of work between students, co-students, tutors,

mentors, supervisors, managers, etc.). Thus, rules, community and division of labor have a

critical influence on the actions that eventually lead to the outcome. It is noted that within the

second generation, the first generation (represented by the upper triangle) focused on the

individual, but is now supported by and grounded in rules, community and division of labor.

However, despite modifications to first-generation Activity Theory, which led to a more

refined complex second generation, a third generation of the model was required to take

account of two or more activities sharing a common outcome (as illustrated in Figure 32).

When learning new concepts and material, outcomes can and should overlap – constantly

building on prior knowledge (ZPD or Zone of Proximal Development) and reinforcing what

has been learnt. As Hasan (1999) remarked, it is possible to realise the same activity by

different sets of actions and operations, and the same actions can be part of different activities

simultaneously aimed at similar or different outcomes. It is important to note that literature

reveals that the third-generation model had sparked academic debate on Activity Theory and

Actor-Network Theory due to the boundary crossing regarding the outcomes (Engeström,

2001).

Figure 31

An illustration of second-generation Activity Theory

50

It can be said that the Activity Theory can be related directly or indirectly to many philosophical

concepts. As remarked, the assumptions of Activity Theory are accordant with constructivism

and situated learning (Jonassen & Rohrer-Murphy, 1999).

Note. Adapted from Engeström (2001).

The bi-directional complexity of the third-generation model is clearly depicted in Figure 32.

The objects from the two activities move to object 1 and object 2, a jointly shared space that

leads to the common outcome. Engeström (2001) explained that “the object of activity is a

moving target, not reducible to conscious short-term goals” (p.136). Thus, third-generation

Activity Theory does not support a ‘shortcut’ or easy learning pathway to attaining the required

knowledge.

Second-generation Activity Theory was deemed appropriate for understanding the use of

Robotics in acquiring the knowledge for programming, since the study required a theoretical

framework that accounted for human and mediating artefactual influences on achieving a

common outcome, i.e., learning how to program in a system where the tool, rules, community,

division of labour and object remain unaltered. The need for overlapping objects was not

necessary. In addition, it is widely viewed that human knowledge is formed after the

completion of an activity.

However, Jonassen and Rohrer-Murphy (1999) state that “Activity Theory posits that

conscious learning emerges from activity (performance), not as a precursor to it” (p. 62). Thus,

this theory provides a different view on human thinking and activity. Second-generation

Activity Theory was implemented in this study, as illustrated in Figure 33.

Figure 32

An illustration of third-generation Activity Theory

51

Note. An illustration of the second-generation Activity Theory applied to this study.

The participants had to complete an activity with the outcome of attaining Computer

Programming knowledge. The activity was divided into sub-activities. As confirmed by

Carvalho et al. (2015), “the activity is not a static entity” (p.167), in the sense of Activity

Theory. Kolb’s Experiential Learning Cycle was integrated as a philosophical enhancement to

the research methodology, further discussed in the next chapter, sub chapter 4.7 Fitting all

together.

3.4 Conclusion

This chapter discussed the theoretical underpinning of this study. Being practical in nature

through the use of Robotics in the learning of programming, the study needed to be grounded

in a suitable paradigm.

An account of why the study is deemed as a pragmatic study, grounded in Deweyan pragmatism

is provided. In addition, it established the rationale for the use of Activity Theory as a

framework. It was shown that the overlapping of objects was not necessary, so second-

Figure 33

Second-generation Activity Theory applied in study

52

generation Activity theory was deemed best suited. This chapter closes with an illustration of

the second-generation Activity Theory that was implemented to provide a meaningful

framework by which to describe the exploration of Robotics in the learning of programming.

Having established the paradigm and theoretical framework, the next chapter describes and

discusses the methods used in this study. This includes Design Based Research (DBR)

methodology and the integration of Kolb’s Experiential Learning Cycle.

53

Chapter four: Research design and methodology
“Programs must be written for people to read, and only incidentally

for machines to execute.” ~ Harold Abelson

4.1 Introduction

The previous chapter outlined the epistemology and ontology underpinning the study; as well

as the theoretical frameworks that informed the study, arguing for the choice of second-

generation Activity Theory. Although this is not the conventional format for capturing aspects

of methodology, reasons for using this approach were given in Chapter 4 (Theoretical

framework).

The current chapter provides a synthesis of the nature of research undertaken, the research tools

used to gather information and how the collected data was analysed. It starts by presenting the

research design and methodology starting with the design of the study, which is based on DBR

(Design-Based Research), Kolb’s Experiential Learning Cycle, data collection tools and finally

an overview of how everything integrates and aligns to the objectives set out.

4.2 Design Based Research – DBR

Aligned to the pragmatic paradigm, the Design Based Research (DBR) was selected for the

research design. Design Based Research is closely aligned, and complementary to, the

pragmatic paradigm (Alghamdi & Li, 2013; Cochrane et al., 2017; Owens et al., 2015). Design

Based Research is founded on Design Science Research (DSR), but unlike DSR, it strikes a

balance between theory and practice. The value of theory is appraised by the extent to which

principles inform and improve practice. As remarked by Bakker and van Eerde (2015) “design-

based research (DBR) can be characterised as research in which the design of educational

materials (e.g., computer tools, learning activities or a professional development program) is a

crucial part of the research … the design of learning environments is interwoven with the

testing or developing of theory” (p.430). Along similar lines Plomp (2013) states that DBR sets

out to “design and develop an intervention (such as programs, teaching-learning strategies and

materials, products and systems) as a solution to a complex educational problem; as well as to

advance our knowledge about the characteristics of these interventions and the processes to

design; and develop them – or alternatively to design and develop educational interventions”

(p.15).

54

As highlighted earlier, Computer Programming is complex and abstract, thus qualifying for a

DBR methodology as used in this study. As remarked by Plomp and Nieveen (2013) “design-

based research also may contribute to the growth of human capacity for subsequent educational

reform” (p.182).

DBR comprises three distinct phases: the preliminary research phase; the prototyping phase;

and the assessment phase (Clark, 2015). It is worthy to note that most literature points to

research carried out by Thomas Reeves, a scholar in learning, design, and technology who

offers a modified version of DBR with four phases (Reeves, 2000; Reeves, 2006). An important

consideration was which principle of DBR to base the study on: three phases or four phases?

Goff and Getenet (2017) offer an extensive practical examination of DBR based on both

principles. These authors found that three phases were suitable for research where the

“researcher included the creation of particular teaching and learning materials and methods

designed to realise participants’ learning gains” (p.112). Thus, the three-phase principle was

selected for the current study, which sets out to accomplish the use of Robotics to harness

students' programming knowledge. Therefore, the study will adhere to the three distinct stages

as illustrated in Figure 34 as derived from the work of Plomp (2009) and Nieveen (2009), and

advocated by Palalas and Wark (2017); Clark (2015); and Abdallah (2013).

Note. Author created illustration.

The preliminary research phase requires a needs and context analysis for the study (Plomp,

2013). This includes a review of relevant literature that sets the platform for the study and other

key theories that underpin the study, such as the development of the conceptual/theoretical

framework.

The prototyping phase is also known as the iterative design phase. This phase consists of a

series of iterations, each being a micro cycle of the research, followed by formative evaluation

(Plomp, 2013).

Figure 34

An illustration of the flow of DBR based on three phases

55

These iterations can be accomplished with the use of the same tool, but for different group of

participants; the same group of participants but a different/progressed tool; or a different group

of participants with different/progressed tools (Clark, 2015).

The assessment phase involves an overall summative evaluation (Plomp, 2013), concluding if

the solution or intervention meets the pre-determined specifications of solving the problem.

This will entail evaluating the findings against the achievement of the objectives set for the

study.

4.3 Integrating Kolb’s Experiential Learning Cycle

As indicated in the previous chapter, Kolb’s Experiential Learning Cycle is discussed in this

chapter to create coherence. A short online course, hosted on a Learning Management System

(LMS) platform and consisting of six online workshop sessions, formed part of the data

collection process. Kolb’s Experiential Learning Cycle (KELC) was infused into the DBR

model. The second phase of DBR was the prototyping phase, an iterative process where each

workshop session represented a micro cycle that followed the principles of KELC. KELC

postulates that learning occurs in four stages, forming a cycle in the following order:

1. Concrete experience: Involves active engagement or experience;

2. Reflective observation: Reflecting on the activity or experience;

3. Abstract conceptualisation: Gaining knowledge from the experience; and

4. Active experimentation: Testing out the acquired skills or abilities (Kolb & Kolb, 2018;

Kolb, 2015).

Each iterative process is a micro cycle in the form of a workshop session involving coding,

designing and testing prototypes using the Arduino robot kit. Each of the six workshops

consisted of three activities:

 Activity 1: A guided step-by-step activity that introduced and explored a programming

concept;

 Activity 2: A semi-guided self-discovery programming mission that formed the foundation

of the next activity; and

 Activity 3: A task based on Activity A and Activity B. This final activity was completed

without any help.

56

Each of the six workshops was designed to continuously build on the previous, thus targeting

the Zone of Proximal Development and building on existing knowledge.

It was important to facilitate the learning online using a set learning path created in LMS and

with criteria in place to prevent the skipping of workshops or activities. The integration of

KELC with the DBR prototyping phase is summed up in Table 3. This table shows how

Activities 1, 2 and 3 are linked to KELC. Activity 1, provided the participant with an encounter

with a concrete experience. While reflective observation and abstract conceptualisation are

encountered in Activity 2. Lastly, Activity 3 allowed for active experimentation.

Table 3

Kolb’s Experiential Learning Cycle vs the DBR prototyping phase

Kolb’s Experiential Learning Cycle
Prototyping – micro cycle

(workshop)

Concrete experience Activity 1

Reflective observation
Activity 2

Abstract conceptualisation

Active experimentation Activity 3

Note. Kolb’s Experiential Learning Cycle imposed on the three activities per workshop.

4.4 Research questions

There is no strategy to the introduction of programming guaranteed to lead to the attainment of

programming knowledge. Therefore, the following questions arise: What are the best practices

for learning programming? In light of the fact that students at tertiary level perceive

programming as difficult, the researcher asks: How can the learning of programming be

promoted?

To recap, the study sets out the following objectives:

1. An alternative educational tool: To explore the use of Robotics to enhance the learning of

Computer Programming.

The Arduino robot kit offered a hands-on approach to programming (physical computing) since

the student designs, programs and executes the code in reality on the prototype rather than in a

2D representation on a screen.

57

2. Problem solving and reasoning: To explore external factor/s that contribute towards the

learning of Computer Programming.

It is well documented in the literature (Chapter 2) that internal issues around the learning and

understanding of programming exist, such as programming paradigm preference, the

programming language used and programming style. However, there are contradictory

accounts of external factors such as students’ Mathematics background, development of

Computational Thinking, higher-order thinking skills, etc., that may impact student proficiency

in Computer Programming.

3. Easy to understand: To assess the effectiveness of Robotics in the understanding of

Computer Programming.

This study used the programming of Robotics to introduce the basics of programming; using a

text-based environment rather than a block-based environment. This approach was used to

provide students with a direct learning experience of text-based code, and to simplify the

learning of programming.

In line with the study’s purpose and objectives, the following questions were formulated:

1. What are students’ perceptions of Robotics when learning to program?

2. Does a high rational ability contribute to attaining programing knowledge?

3. How does the use of Robotics contribute to the understanding of programming?

4.5 Qualitative and quantitative data

As mentioned earlier, the pragmatic paradigm underpins DBR. Thus, according to pragmatism,

a researcher should use whichever methods work best for data collection. This study was

carried out using mixed-methods data collection, which combines qualitative and quantitative

methods.

There are three types of mixed-methods approaches: firstly, where qualitative and quantitative

data are equally important; secondly, where qualitative is dominant over quantitative; and

thirdly, where quantitative is dominant over qualitative (Check & Shutt, 2012). The third type

58

was used in this study as the large number of participants allowed for the use of inferential

statistics.

Nonetheless, qualitative data was used to complement the quantitative data in order to provide

a deeper understanding and explain the results in relation to the objectives. Furthermore, the

collection of both data types allowed for the construction of detailed descriptions and complete

explanations.

4.6 Data collection techniques

In order to answer the research questions and achieve the study’s objectives, data was gathered

using the following data collection instruments8: surveys, questionnaires and an interview.

4.6.1 Pre-workshop session

4.6.1.1 Pre-survey

A 5-point, 10-item Likert scale survey entitled Computer Programming survey one (Appendix

F) consisted of items that served as a pre-survey to capture the participant’s self-efficacy,

perceptions and attitude towards programming and Robotics. This data collection instrument

was administered first to prevent any prior influence from other instruments that might have

affected an individual response to programming.

4.6.1.2 Problem solving and logic

Questionnaire test one consisted of close-ended responses. This instrument was split into two

parts, Part A (Appendix G) and Part B (Appendix H).

Part A: Pre-test based on Computational Thinking

This part of the questionnaire (Appendix G) captured bibliographic information about

participants, followed by multiple-choice questions (MCQ) consisting of 10 items. These

questions were based on reasoning and logic, which were set to determine the individual’s

problem-solving ability. These MCQs were aligned to concepts the participant would be likely

to encounter during the workshop sessions.

8 Given the COVID-19 pandemic all data was collected online by means of online forms via the Moodle and
Google Forms.

59

Part B: Abstract Reasoning Test

An Abstract Reasoning Test (ART) with 25 items (Appendix H) made up Part B. This test took

the form of a psychometric test, which dates back to psychologists Charles Spearmen's work

around the 1920s (Chen et al., 2019).

Spearmen indicated that intelligence is made up mainly of a g (general ability) factor, which is

determined by mechanical, spatial, numerical and verbal factors referred to as s (specific

ability) factors.

Abstract Reasoning Tests (ARTs) use symbols and shapes instead of words and numbers. All

participants were given 25 minutes to answer the test, ensuring all participants had equal time

for completion.

Holistically, Questionnaire test one, responds directly to research question two. This was

achieved when coupled with data captured from the biographic section, such as Mathematics

background, multiple-choice responses and the ART score.

4.6.2 Workshop sessions

There were six online workshop sessions (Appendix J, L, N, P, R and T), each comfortably

completed within an hour, that covered programming aspects through robot (educational tool)

coding using the Arduino kit. In addition to the six workshop sessions, an introductory

workshop (Appendix I) served the purpose of familiarising participants with the components

and software environment. Each participant received their own personal Arduino kit. The

workshops were hosted online allowing for queries and communication among peers to be

posted on a forum, in accordance with the pragmatic paradigm's social aspect. Forums were

setup for each workshop session. Although a workshop session could be completed within an

hour, each workshop ran for a week giving participants the flexibility of completing the

activities at any time during that week. The full solutions for Activity 3 (no help given) in each

workshop were made available at the end of the week via the discussion forum. Therefore,

allowance was made for tally of participants who had queries or encountered problems during

the week. Most importantly, it gave participants a chance to access feedback from the forums

and to fix their prototypes or code in order to reach a successful solution.

These six workshops served as micro-cycles in the iteration process, which is in accordance

with the prototyping phase of DBR. Workshop sessions 1, 2 and 3 introduced the basics of

60

programming: syntax, input, output, if statements, for loops, and while loops. Workshop

sessions 4, 5 and 6 provided consolidation and further exploration of the robotic components.

At the end of each micro cycle, participants were prompted to complete a self-formative

evaluation in the form of a 5-point Likert scale: 1 - Very difficult, 2 - Difficult, 3 - Neutral, 4 -

Easy and 5 - Very easy.

Each online workshop session started with a guided step-by-step activity taking participants

through an activity: Activity 1, followed by a semi guided self-explorative activity; Activity 2

and a no-help activity; and Activity 3. All activities involved hands-on interaction with the

Python programming language in a text-based environment. The core purpose of the micro

cycles was to expose participants to the intervention, and to help formulate meaningful data

used to respond to the research questions.

4.6.3 Post-workshop session:

4.6.3.1 Post-survey

A 5-point 30-item Likert scale survey called Computer Programming survey two (Appendix

V) was administered at the end of the six workshop sessions and served as a post-survey to

capture the immediate afterthoughts of Computer Programming using the Arduino robot. To

collate and give structure to the survey, items were formed based on the six constructs. Each

construct comprised 5 items. These constructs or latent variables (LVs) were found via

literature (Chapter 2: Literature review) to be contributing factors to an individual's coding

knowledge.

Selection of constructs/latent variables

Regression analysis carried out in a study by Tsai et al. (2019) revealed that Mathematics was

a positively correlated predictor of programming knowledge. The correlation was found in pre-

test and post-test. Additionally, an individual’s motivation to learn Computer Programming is

a crucial factor in their acquisition of programming knowledge. As Carbone et al. (2009)

elaborate, those students who exhibited motivation “usually undertook to learn programming

in their own time, sometimes prior to the course commencing, working hard at developing their

skills” (p. 4). As pointed out earlier (Chapter 2: Literature review), Computer Programming

can be perceived as difficult and intimidating, especially text-based language-specific

61

programming. A study carried out by Blanchard et al. (2019) found that “hybrid programming9

environments can help to transition students from blocks to text-based programming while

minimising negative perceptions of programming” (p. 25).

Thus, a student’s belief about coding is an important factor that contributes to their

programming knowledge. This study, being practical and hands-on in nature, had the potential

to build and maintain students’ interest in Computer Programming.

As remarked by Biggers et al. (2008), “highly interactive hands-on introductory CS courses …

provide a broader overview of potential CS” (p. 406). An individual’s interest in coding can

thus affect their knowledge of programming. Students enrolled in a programming course are

prone to show anxiety, such as, being less confident – especially if they do not have prior

computer experience (Byrne & Lyons, 2001). Similarly, from a comparative study between

coding IDEs, Daly (2011) commented that “learning abstract programming concepts and

programming in an environment … can cause students to become frustrated, lose confidence”

(p.23). Therefore, confidence in learning coding has a potential effect on the development of

programming knowledge.

Based on the corpus of the literature reviewed, the survey design took into account the

following six constructs that have been shown to influence knowledge of coding: student

confidence in their ability to learn programming; student interest in programming; student

motivation to use Robotics; student intrinsic belief that they can solve problems; student

perception of mathematical influence on programming; and student knowledge of

programming through the use of Robotics (Appendix W).

4.6.3.2 Post-test based on programming

A closed-ended questionnaire called Questionnaire two (Appendix X) was based directly on

the programming language whereby concepts covered were used to gauge participants'

understanding. This instrument was made up of ten multiple-choice questions (MCQs).

4.6.3.3 Interview

Focus-group interviews are planned discussions where the researcher uses a set sequence of

questions to probe for participants’ insights on a particular topic (Krueger & Casey, 2015).

9 A mix of text-base and block-base environments

62

Eight leading questions made up the interview, which lasted approximately 45 minutes. The

focus-group interview was held on Zoom10, with participants who volunteered to be part of the

discussion.

The interview (Appendix Y) was conducted after the six workshops, as this prompted in-depth

explanations that provided more information on participants’ experiences of learning code

through the use of the Arduino robot. To prevent the risk of some participants dominating the

discussion, the chair (researcher) encouraged every participant to share their views, thus

contributing equally to the discussion.

4.7 Fitting it all together

It was important that the appropriate data collection instruments were used to respond to each

research question. Table 4 below describes the data collection instrument/s and how they were

used to answer the respective research question/s.

Table 4

Data instruments versus research questions

Data instrument Research question/s

i. The pre-survey: A 5-point Likert scale questionnaire that served as
a pre-survey at the start of the study to capture the participant’s
self-efficacy perceptions and attitude towards programming.

RQ1
RQ3

ii. Questionnaire test one: This problem solving and logic
questionnaire had two parts: Part A (pre-test based on
Computational Thinking) a 10-item multiple-choice pre-test; and
Part B (Abstract Reasoning Test) a psychometric test. Both
instruments were based on principles that set to determine the
individual’s problem-solving skills and logical reasoning.

RQ2

iii. Micro cycles: Six workshop sessions (excludes pre-survey), each
running for about an hour covering aspects of programming using
the Arduino robot kit. Participants worked online and posted
queries in accordance with the social aspect of the pragmatic
paradigm. The six workshops also served as the iteration process
in accordance with the prototyping phase of DBR. After each
workshop session, a self-evaluation in the form of a Likert scale
was completed by each participant.

RQ3

iv. Questionnaire test two: A post-test based directly on the
programming language used and concepts covered to gauge
participants’ understanding.

RQ2

10 Zoom is an online platform that allows video and audio communication.

63

v. The post-survey: A 5-point Likert scale questionnaire at the end of
the study served as a post-survey to capture participants’
afterthoughts about programming using the robot.

RQ1
RQ3

vi. The focus-group interview: A focus-group interview in the form of
a discussion.

RQ1, RQ2 and RQ3

Figure 35 provides a visual explanation of the philosophical principles that underpin this study.

Second-generation Activity Theory conforms to Design Based Research methodology. In

addition, Kolb’s Experiential Learning Cycle was superimposed onto the prototyping phase of

DBR. At the same time, the entire philosophical system in this study was viewed through the

lens of the pragmatic paradigm.

Note. The illustration depicts how the second-generation Activity Theory, DBR and Kolb’s Experiential Learning
Cycle were integrated for this study.

Figure 35

Linking the philosophical principles underpinning this study

64

As mentioned earlier, the study used the Arduino UNO R3 kit, and each participant was

provided with a kit. The kit contained several different types of components in addition to the

UNO R3 microcontroller board, such as: a breadboard, jumper wires, resistors including a

Light Dependant Resistor (LDR), Light Emitting Diodes (LEDs), buttons, a buzzer, actuators,

and sensors (like flame sensors, tilt sensors, etc.). The IDE chosen was Python IDLE because

of its design and simplicity of use. Many different programming languages are used to teach

programming. Some of the most popular include Java, C, Python, and C++ (Hendrix & Weeks,

2018; Sebesta, 2016). However, Mannila and Raadt (2006) provided good evidence in their

study that Python is the preferred programming language for learning. In addition, Shein (2016)

states that “once someone grasps the logic behind Python, the concepts can be more easily

transferred to other languages” (p. 19). As mentioned earlier, the Python programming

language was used in the study.

4.8 Study setting

4.8.1 Location and population

The site for this study was one university campus in KwaZulu-Natal, South Africa. The study

adopted a combination of non-probability sampling techniques, namely quota and purposeful

sampling. At this campus, students are registered mainly for a four-year Bachelor of Education

degree (B.Ed.). Students registered in any computer-related course were included in the study

population. Quota sampling was used on the study population. Quota sampling establishes

certain pre-requisites known as strata, which are considered important in selecting the sample

(Descombe, 2014).

An invite was sent to all members of the study population via email and SMS (School

Messaging System). SMS is a communication service hosted by the University that filters the

intended receivers, hence possible participants. Participants needed to meet the following quota

to be selected:

1. Registered in a computer course/module; and

2. No exposure to Computer Programming during the duration of the degree.

It was anticipated that the sample will most likely be made up of first-year students who had

just started a computer course and no prior exposure to Computer Programming at the

university. It is mandatory for students registered in the B.Ed. programme to complete a

65

computer endorsement course to ascertain who can specialise in Computer Science (focus on

programming) or Information Systems (focus on user applications). Hence, the second quota

or criterion was crucial in selecting the sample, which was not limited to B.Ed. students. The

selection of participants with prior university Computer Programming comprised a second

sample that allowed for a comparison with the first sample, i.e., those participants with no

Computer Programming at all. To determine the appropriate sample size from the population,

the ten-times rule was followed. The ten-times rule was especially important for the post-

survey (Computer Programming survey two) that contained six constructs, each with 5 items

forming 5 LVs. Therefore, in order to develop a significant PLS SEM, the minimum sample

required = 5 * 10 = 50.

4.8.2 The pilot study

A pilot study allows for the testing and refining of the data collection instruments before the

actual data is collected during the main study (Cohen et al., 2002; Descombe, 2014). The pilot

study allows for the checking of data instruments to ensure they are reasonable and have no

defects or ambiguity. As a result of the pilot study, a few typographical errors were corrected

and, most importantly, two issues related to time management were addressed. The necessary

changes and modifications were made to ensure that no problems were encountered during the

main data collection event. The process of conducting the pilot study ensures the reliability,

validity, and practicability of using the data collection tools (Cohen et al., 2002). In regards to

time management, two issues were encountered during the pilot study. Firstly, building and

then coding the prototype required extra time. Thus, participants were given a week to complete

the three activities that made up a workshop session in the main study. This provided sufficient

time and offered flexibility to the participant to complete the workshop at any time during the

week, given that it was done online. Secondly, the surveys, questionnaires and setup needed a

separate time allocation for completion. This would allow participants to respond to the surveys

and questionnaires without interfering with the workshop session – wasting no time in starting

the activities, and not tiring participants. To overcome this problem, a pre-workshop session

was added, which was dedicated to the pre-survey, Questionnaire A and the setup before

workshop session one (first micro cycle) in the following week. (As mentioned earlier, each

workshop session spanned a week). Similarly, Questionnaire B and the post-survey were

completed in a separate session, reducing participant anxiety.

66

4.9 Validity, reliability and rigour

DBR is regarded as practical research. Thus, to ensure that the study meets the requirements

for research rigour, objectivity, validity and reliability (Alghamdi & Li, 2013) form an integral

part of the study. The issue of objectivity can be contentious in a DBR study where the

researcher plays multiple roles, e.g., that of a developer, designer, facilitator and evaluator

(Clark, 2015). However, this issue can be mitigated by the use of a mixed-methods, thus

promoting triangulation (Goff & Getenet, 2017). Mixed-methods research helps to reduce bias

in the research procedures and interpretation of results. Dikko (2016) posit that “one way to

ensure that validity is achieved in any research is to conduct a pilot study of research

instruments” (p. 521). Lincoln and Guba (1985) note that no validity exists without reliability;

thus, ensuring validity also ensures reliability. Hence, reliability and validity are intertwined

concepts that are juxtaposed. The validity of research as stated by Bertram and Christiansen

(2014), is “the extent to which we trust the research” (p.42).

External validity is the extent to which the findings can be applied to the wider population, i.e.,

the extent to which the findings can be generalised (Bakker & van Eerde, 2015); while internal

validity is the extent to which the conclusion correctly portrays the data collected (Ford et al.,

2017). Alghamdi and Li (2013) posit that DBR cannot be generalised from a sample to a larger

population because it is regarded as contextualised research, which relies on thick description

for analysis. However, the mixed-methods approach used allowed for triangulation of data,

thus increasing the external validity, and hence the generalisability, of the findings. Reliability

of a study refers to the extent to which the same results would be produced by multiple

occurrences of the same study (Bertram & Christiansen, 2014). In this study, the prototyping

phase and the iterative cycles of DBR promoted reliability, adding to the robustness of the

research findings.

4.10 Permission and ethical considerations

A letter requesting permission to use the study population was sent to the registrar of the

university (Appendix A). All participants who accepted the invitation signed a consent form

(Appendix B). The consent form outlined the details of the study with the option of

withdrawing at any stage of the research. Prior to any letters being sent out, full ethical

clearance was obtained to conduct this research (Appendix C). The duration of the data

collection was eight weeks, with one session per week (pre-workshop session, six micro cycles

67

and post-workshop session). The use of pseudonyms guaranteed the anonymity and

confidentiality of participants. The participants in the study were given pseudonyms starting

with P1, P2, P311, etc.

4.11 Conclusion

The study is practical in nature, whereby it proposes a solution to the learning of code, followed

by the testing of this solution. Since this is a developing solution to the learning of

programming (an intervention), the study follows the methods advocated by Design Based

Research (DBR). The DBR methodology used is described in detail in the next chapter, which

also details how the Arduino robot kit and code were set up and used by the participants to

enhance their learning of Computer Programming. Figure 36 illustrates the arrangement of the

data collection process.

Note. Author illustration of research process.

To summarise, this study used surveys, questionnaires, workshops and an interview to collect

data, thus ensuring triangulation. Being a pragmatic study, a DBR design was used employing

mixed-methods data collection. Questionnaire surveys were used to produce quantitative data

11 The P stands for programmer

Figure 36

Data collection process

68

that could be evaluative, followed by group discussion interviews that produced qualitative

descriptive data to solidify the findings. The piloting of the data collection tools, assisted in

identifying and removing errors, such as, changing to the appropriate layout and determining a

sufficient period for completion of each workshop. The use of quantitative and qualitative data

collection techniques enhances triangulation by affirming or negating results. This, in turn

strengthens the body of knowledge arising from this study. These multiple methods of data

collected and triangulation serve to enhance the validity and reliability of the study’s findings.

69

PROTOTYPING

Chapter five: Iteration
“The role of the teacher is to create the conditions for invention rather than

provide ready-made knowledge.” ~ Seymour Papert

5.1 Introduction

The previous chapter presented the research methods employed in this study to attain the

research objectives and address the research questions. The data collection instruments used

were described, namely, 5-point Likert scale surveys, questionnaires and six online workshops

comprised of three activities each (Activity 1, 2 and 3). This chapter provides an overview and

analysis of each workshop, which represents an iteration according to Kolb's Experiential

Learning Cycle, and which is merged into DBR’s prototyping phase. The activities in each

workshop were designed around Kolb’s Experiential Learning Cycle. Activity 1 was guided,

providing a concrete experience. Activity 2 was semi-guided/self-discovery, allowing for

reflective observation and abstract conceptualisation. Lastly, Activity 3 was unguided,

providing active experimentation. Each online workshop and its three activities represented a

micro cycle that plays a crucial role in developing and nurturing an individual’s understanding

of programming through the use of robotic elements (electronic components). In total, there

were seven workshops, six micro cycles and one introduction. After each cycle, participants

were made to rate their accomplishments based on the three activities. The rating system was

in the form of a Likert scale with 1 - Very difficult, 2 - Difficult, 3 - Neutral, 4 - Easy, and 5 -

Very easy. Each workshop session was designed to gradually increase cognitive demand as one

progressed through the three activities.

5.2 Pre-workshop session (excluded from the six micro cycles)

This session (Appendix I) was excluded from the iteration as its purpose was to familiarise

participants with the IDLE (Integrated Development and Learning Environment), Python

language, and the setup. In addition, the background to Computer Programming and an

introduction to coding was covered. Most importantly, the session familiarised participants

with the Arduino components that were given to them.

70

5.3 Micro cycle: Workshop session one

In this workshop (Appendix J), participants were acquainted with the components of the

Arduino kit. This included the exploration of the microcontroller, breadboard and jumper

cables. Participants started coding their first program called Hello world while familiarising

themselves with the Python language. The highlight of this introduction workshop was the use

of the for-loop structure in controlling a LED switching ON following the display of Hello

world on the PC screen.

Table 5

Overview of micro cycle one feedback

Activity 1: Getting to

know the hardware

Activity 2:

Hello world

Activity 3: Blinking

LED

 1 - Very difficult 1% 1% 5%

2 - Difficult 5% 11% 16%

3 - Neutral 23% 21% 36%

4 - Easy 37% 44% 29%

5 - Very easy 33% 23% 13%

100% 100% 100%

Note. Feedback based on self-evaluation for workshop session one (Appendix K).

71

Note. A graphical representation of the responses to the three activities in micro cycle one.

The majority of participants found Activity 2 to be Easy (44%), followed by Activity 1 being

Easy (37%) and Neutral for Activity 3 (36%).

5.4 Micro cycle: Workshop session two

On the basis that participants were now familiar with the Arduino UNO R3, IDLE and basic

Python code setup, this session (Appendix L) introduced user input and conditional statements

(if statement). The highlight of this session was coding a traffic robot system prototype using

red, yellow and green LEDs.

1- Very difficult

2- Difficult

3- Neutral4- Easy

5- Very Easy

Mirco cycle one feedback

Activity 1: Getting to know the hardware Activity 2: Hello world Activity 3: Blinking LED

Figure 37

Visual overview of micro cycle one feedback

72

Table 6

Overview of micro cycle two feedback

Activity 1:

User control

Activity 2:

Blinking LED

Activity 3:

Traffic lights

1- Very difficult 1% 0% 7%

2- Difficult 4% 8% 17%

3- Neutral 28% 25% 33%

4- Easy 31% 45% 21%

5- Very easy 36% 21% 21%

100% 100% 100%

Note. Feedback based on self-evaluation for workshop session two (Appendix M).

Note. A graphical representation of the responses to the three activities in micro cycle two.

The majority of participants found Activity 2 to be Easy (45%), followed by Activity 1 being

Very easy (36%) and, lastly, Activity 3 being Neutral (33%).

5.5 Micro cycle: Workshop session three

This session (Appendix N) furthered the use of the looping structures by emphasising and

introducing the while-loop structure. Participants were made to code nested structures. The

1- Very difficult

2- Difficult

3- Neutral4- Easy

5- Very Easy

Mirco cycle two feedback

Activity 1: User control Activity 2: Blinking LED Activity 3: Traffic lights

Figure 38

Visual overview of micro cycle two feedback

73

highlight in this session was creating a night sensor prototype using an LDR (Light Dependent

Resistor).

Table 7

Overview of micro cycle three feedback

Activity 1: Reading

the LDR value

Activity 2: Continuous

reading of LDR values

Activity 3:

Night sensor

1- Very difficult 0% 0% 7%

2- Difficult 1% 9% 21%

3- Neutral 36% 28% 37%

4- Easy 29% 28% 27%

5- Very easy 33% 35% 8%

100% 100% 100%

Note. Feedback based on self-evaluation for workshop session three (Appendix O).

Note. A graphical representation of the responses to the three activities in micro cycle three.

The majority of participants found Activity 3 to be Neutral (37%), followed by Activity 1 being

Neutral (36%) and, lastly, Activity 2 being Very easy (35%).

1- Very difficult

2- Difficult

3- Neutral4- Easy

5- Very Easy

Mirco cycle three feedback

Activity 1: Reading the LDR value Activity 2: Continuous reading of LDR values

Activity 3: Night sensor

Figure 39

Visual overview of micro cycle three feedback

74

5.6 Micro cycle: Workshop session four

Session four (Appendix P) reinforced the need for looping structures while using different

Arduino parts. The highlight in this session was creating a fire alarm by building a prototype

using a flame sensor and a buzzer.

Table 8

Overview of micro cycle four feedback

Activity 1:

Buzzer tone

Activity 2:

Flame Sensor

Activity 3:

Fire alarm

1- Very difficult 1% 0% 4%

2- Difficult 4% 13% 25%

3- Neutral 23% 21% 27%

4- Easy 21% 23% 39%

5- Very easy 51% 43% 5%

100% 100% 100%

Note. Feedback based on self-evaluation for workshop session four (Appendix Q).

Note. A graphical representation of the responses to the three activities in micro cycle four.

Figure 40

Visual overview of micro cycle four feedback

1- Very difficult

2- Difficult

3- Neutral4- Easy

5- Very Easy

Micro cycle four feedback

Activity 1: Buzzer tone Activity 2: Flame Sensor Activity 3: Fire alarm

75

The majority of participants found Activity 1 to be Very easy (51%), followed by Activity 2

being Very easy (43%) and, lastly, Activity 3 being Easy (39%).

5.7 Micro cycle: Workshop session five

This workshop session (Appendix R) used the buzzer introduced from the previous session,

but with the tilt sensor. The highlight of this consolidation session was creating an earthquake

detector.

Table 9

Overview of micro cycle five feedback

Activity 1: Reading

from a tilt sensor

Activity 2:

Tilt lights ON

Activity 3:

Earthquake

1- Very difficult 3% 1% 8%

2- Difficult 5% 12% 20%

3- Neutral 23% 20% 32%

4- Easy 24% 24% 19%

5- Very easy 45% 43% 21%

100% 100% 100%

Note. Feedback based on self-evaluation for workshop session five (Appendix S).

Note. A graphical representation of the responses to the three activities in micro cycle five.

Figure 41

Visual overview of micro cycle five feedback

1- Very difficult

2- Difficult

3- Neutral4- Easy

5- Very Easy

Mirco cycle five feedback

Activity 1: Reading form a tilt sensor Activity 2: Tilt lights ON Activity 3: Earthquake

76

The majority of participants found Activity 1 to be Very easy (45%), followed by Activity 2

being Very easy (43%) and, lastly, Activity 3 being Neutral (32%).

5.8 Micro cycle: Workshop session six

This session (Appendix T) incorporated all previous coding concepts: conditional structures (if

statements), looping structures (for loops and while loops) and nested statements. The highlight

was coding the movement of an actuator (servo motor) according to the Fibonacci sequence.

Table 10

Overview of micro cycle six feedback

Activity 1:

Turn to a degree

Activity 2: Button

open and close

Activity 3:

Fibonacci in motion

1- Very difficult 0% 0% 9%

2- Difficult 7% 13% 21%

3- Neutral 23% 23% 35%

4- Easy 23% 27% 21%

5- Very easy 48% 37% 13%

100% 100% 100%

Note. Feedback based on self-evaluation for workshop session six (Appendix U).

Note. A graphical representation of the responses to the three activities in micro cycle six.

Figure 42

Visual overview of micro cycle six feedback

1- Very difficult

2- Difficult

3- Neutral4- Easy

5- Very Easy

Micro cycle six feedback

Activity 1: Turn to a degree Activity 2: Button open and close

Activity 3: Fibonacci in motion

77

The majority of participants found Activity 1 to be Very easy (48%), followed by Activity 2

being Very easy (37%) and, lastly, Activity 3 being Neutral (35%).

5.9 Composite accomplishment ratings

Based on most responses, all accomplishments for the activities were ranged between

Neutral, Easy and Very easy (Table 11).

Table 11

Composite accomplishment ratings based on the majority responses

Activity 1 Activity 2 Activity 3

Workshop 1 Easy Easy Neutral

Workshop 2 Very easy Easy Neutral

Workshop 3 Neutral Very easy Neutral

Workshop 4 Very easy Very easy Easy

Workshop 5 Very easy Very easy Neutral

Workshop 6 Very easy Very easy Neutral

It is not surprising that most of the last activities (Activity 3) had a Neutral response since this

activity was unguided, requiring participants to use their understanding and knowledge

development from Activities 1 and 2. Similarly, most Activities 1 and 2 elicited a response of

Easy and Very easy, as these activities were guided (Activity 1) or partially guided (Activity

2). Workshop 3 and 4 stand out from the other responses. In workshop 3, Activities 1 and 3

had Neutral responses. Activity 1 involved reading values from the Light Dependent Resistor

(LDR) introduced in this workshop, while Activity 3 involved the use of the LDR and LED

from the previous workshops. The Neutral accomplishment responses, especially for Activity

1, were likely due to the sensitivity of the LDR sensor. The sensitivity issue was highlighted to

the participants during the activity workshop worksheet online. The values are quick to

fluctuate due to light intensity and light exposure in the surroundings. All workshop Activity

4s were rated Easy/Very easy. This workshop involved prototypes using the flame sensor and

buzzer introduced during the workshop.

78

5.10 Conclusion

All workshops utilised the UNO R3 microcontroller, jumper wires, breadboard, LEDs and

resistors. Output was displayed on the PC screen in addition to output in the form of

autonomous or physical change noted on the prototype. Workshop sessions 4, 5 and 6

consolidated the coding concepts, while sessions 1, 2 and 3 introduced the basics. Each

workshop session introduced a new sensor leading to the design of a new prototype specific to

the scenario. Based on the most accurate responses to the activities, all ranged between Neutral,

Easy and Very easy. It is noted that the introduction to basic structures is challenging when

using robotic elements to teach programming concepts. To design and create a meaningful

prototype, one needs to apply basic programming structures much earlier in the coding. All

accomplishment responses were fair and expected. It is important to note that Activities 1 and

2 in consolidation workshops 4, 5 and 6 were all Very easy. This supports the gradual cognitive

development and confidence in Computer Programming. The next chapter will examine the

findings and analyses from the data collection coalesced with discussion.

The findings and details of the analysis are discussed in the next chapter, which falls within the

Assessment phase of DBR.

79

ASSESSMENT

Chapter six: Analysis and findings
“Should array indices start at 0 or 1? My compromise of 0.5 was rejected without,

I thought, proper consideration.” ~ Stan Kelly-Bootle

6.1 Introduction

The previous chapter detailed and analysed the prototyping stage of the study. For coherence,

Chapter five: Prototyping appears before Chapter six: Analysis and Findings, as in accordance

with DBR. The purpose of Chapter six was to presents the analysis and findings of the data

collected using the instruments and methods described in the methodology chapter. This

chapter provides analyses according to the study's aims and to answer the research questions.

As the research questions were a guide to identifying crucial areas for investigation. All data

was collected online through e-forms and e-questionnaires due to the COVID-19 pandemic.

6.2 Data presentation and analysis

The data collected was fed into statistical software packages that yielded descriptive statistics,

inferential statistics and visual explanations. The latter was achieved through the creation of

tables and graphs. The use of thick description together with statistical testing was applied;

aligned to the principles of pragmatism and the practices of mixed-methods research. A

significance level of 0.05 (*) was considered acceptable, which is common among social

sciences and humanities. If a significance level of 0.01 (**) was achieved, it was noted during

analysis. All interview recordings were transcribed verbatim, played more than once.

Transcripts were cross-checked transcripts with the original recordings to ensure accuracy.

6.3 Pre-workshop session

6.3.1 Pre-survey

The pre-survey was entitled Computer Programming survey one (Appendix F) and was given

first to students to complete. This survey, in the form of a Likert scale, was given prior to any

exposure to coding or to the robotic elements (prototype building). This survey did not collect

biographical information. Instead, it sought to capture students’ self-efficacy, perceptions and

80

attitude towards programming. The survey consisted of 10 items designed to gather initial

perceptions from students regarding coding and Robotics.

Figure 43

Distribution of responses from pre-survey

Note. A visual representation of the responses from the pre-survey.

Shown in Figure 43, most responses fell in the Likert scale’s extremes: Strongly agree and

Strongly disagree, except items 3, 8 and 9. These exceptions indicate a more even distribution

resulting in mixed reactions to items 3: I think programming is too technical; 8. My perception

of programming is that it is difficult to learn; and 9. I think programming is hard.

Five items consisted of negatively worded statements and 5 items consisted of positively

worded statements. For determining the Cronbach’s Alpha (), the five positively worded

statements remained as is (Table 12, next page) while the five negatively worded statements

were reverse coded before calculating (Table 13, next page).

-80 -60 -40 -20 0 20 40 60 80 100

1. I have an interest in programming

2. I lack a basic mathematical background.

3. I think programming is too technical.

4. I can succeed in learning computer programming.

5. I am good at problem solving.

6. I think it would be interesting to use programming to solve problems.

7. From my own understanding of programming, it is boring.

8. My perception of programming is that it is difficult to learn.

9. I think programming is hard.

10. I have an interest in microcontrollers (robotic element).

1= Strongly disagree 2= Disagree 3= Undecided 4= Agree 5= Strongly agree

81

Table 12

Reliability statistics of non-reverse coded items

Item

1. I have an interest in programming. .684

4. I can succeed in learning Computer Programming. .669

5. I am good at problem solving. .712

6. I think it would be interesting to use programming to solve problems. .623

10. I have an interest in microcontrollers (robotic element). .637

*Reliability .714
Note. Positively worded statements.

A Cronbach’s Alpha above 0.70 is generally an acceptable value (Nunnally, 1978). As

remarked by Hulin et al. (2001), an of 0.60 - 0.70 indicates an acceptable reliability level. As

shown in Table 12, the non-reverse coded items are therefore acceptable 0.7 . It is

important to note that all the non-reverse coded items were framed from a personal perspective,

with all statements starting with “I …” prompting a response.

Table 13

Reliability statistics of reverse coded items

Item

2. I lack a basic mathematical background. .619

3. I think programming is too technical. .635

7. From my own understanding of programming, it is boring. .751

8. My perception of programming is that it is difficult to learn. .621

9. I think programming is hard. .502

*Reliability .690
Note. Negatively worded statements.

Table 13 shows all reverse coded items are acceptable as = 0.690 (Hulin et al., 2001). As

supported by Hair et al. (2006), one can accept values near 0.60. To probe further, each item

from the pre-survey questionnaire follows (Tables 14 to 23). These tables provide a clear

understanding of student self-efficacy, perceptions and attitudes towards programming. For

reporting purposes, the percentages for Strongly disagree and disagree are combined for some;

similarly, with Agree and Strongly agree in the excerpts that follow in Tables 14 to 23.

82

Table 14

Response to item 1. I have an interest in programming

 N %

Undecided 2 2.67%

Agree 23 30.67%

Strongly agree 50 66.67%

The majority of students had a keen interest in programming (97.34% - Agree + Strongly agree)

while a small percentage are undecided (2.67%). This is supported by the following excerpts:

“It was interesting to learn how we can use basic programming to do tasks” (P17, Focus

Group Interview).

“Coding was interesting for me it is something that I have wanted to learn for a long

time and I think it is a very valuable skill” (P15, Focus Group Interview).

Undecided responses may arise from students unsure of whether they find the robotic element

or the coding aspect motivating, since the robotic element introduces a tangible component to

the learning process and acts as a manipulative. The use of manipulatives in learning how to

code are found to be a key motivation for students (Nugent et al., 2009; Merkouris et al., 2017)

as they are actively involved in the learning process. The latter is affirmed by the following

excerpts:

“It was an interesting journey, learning to work with a microcontroller” (P60, Focus

Group Interview).

“The robot just makes the learning and understanding quicker” (P62, Focus Group

Interview).

“Coding of the buzzer was very interesting. I feel like I can use that information in

developing solutions in the future (knowledge development of coding the robotic

element)” (P17, Focus Group Interview).

“Strategy I used was build my prototype then; I will code because after building I would

have an idea of what the code must do and what must take place” (P18, Focus Group

Interview).

Similar Yilmaz and Koc (2021) found that the student’s interest in learning how to code is

stimulated through the manipulative. Alike Ioannou and Makridou (2018) found that students

displayed high levels of engagement due to the physical object.

83

Table 15

Response to item 2. I lack a basic mathematical background.

 N %

Strongly disagree 23 30.67%

Disagree 20 26.67%

Undecided 18 24.00%

Agree 8 10.67%

Strongly agree 6 8.00%

Most students (57.34% - Disagree + Strongly disagree) are of the view of having acquired the

basics in mathematic skills. Interestingly, some students (18.67% - Agree + Strongly agree)

say they do not have an essential mathematical background, while 24.00% are unsure.

Khasawneh, et al. (2021) reason that maths confidence is associated with self-awareness and

self-efficacy; thus having a positive outlook on one’s mathematical ability may improve

performance.

Table 16

Response to item 3. I think programming is too technical.

 N %

Strongly disagree 4 5.33%

Disagree 20 26.67%

Undecided 23 30.67%

Agree 18 24.00%

Strongly agree 10 13.33%

Many students are unsure (30.67%) if programming is technical, while the majority agree

(37.33% - Agree + Strongly agree) that programming is technical. Similar to the findings by

Sobral (2021) that even with interventions, students find programming difficult, leading to a

lack in motivation and high dropout rates. Interestingly some students do not think

programming is too technical (32.00% - Disagree + Strongly disagree). Thus, the responses

represent a relatively mixed view on the technicality of programming. It is important to note

that all students met the criteria set out for the study, i.e., not having any exposure to Computer

84

Programming during the duration of their degree, but being currently registered in a computer

course/module. The following excerpts support these mixed views:

“The coding started out to be really motivating at the beginning and then eventually I

will just get bored of it… although it was amazing to code” (P42, Focus Group

Interview).

“Coding somethings is tedious and then it's not like you can really see your progress

when you stuck” (P1, Focus Group Interview).

“The thing that I liked the most was you could read the programming language and

easily understand what it does” (P18, Focus Group Interview).

Table 17

Response to item 4. I can succeed in learning Computer Programming.

 N %

Agree 24 32.00%

Strongly agree 51 68.00%

All students perceived that they could succeed in learning programming. In other words, none

of the students doubt their capabilities, with the majority (68.00%) strongly agreeing that they

could succeed in learning Computer Programming. Similar to the findings from Table 15, the

cohort of students exhibit high confidence related to self-awareness and self-efficacy

(Khasawneh et al., 2021). This 68.00% of students display intrinsic motivation and perceive

programming as enjoyable and interesting (Zainal et al., 2012), as confirmed by the following:

“I really enjoyed this workshop it was an interesting journey, learning to work with a

microcontroller. It was a bit difficult and it did require a bit of thinking, but nothing

was impossible” (P60, Focus Group Interview).

“In high school, I did Java as a programming language. But now doing Python, it's

less complicated and simple…everything is straightforward” (P15, Focus Group

Interview).

85

Table 18

Response to item 5. I am good at problem solving.

 N %

Undecided 10 13.33%

Agree 35 46.67%

Strongly agree 30 40.00%

Like the results in Table 17, most students held the view that they could excel in learning to

program; the majority responded that they were good at problem solving (86.67%, Agree +

Strongly agree). On the other hand, some were undecided (13.33%). Belski (2009) found that

some students doubt their problem-solving abilities only to reflect their potential later.

Table 19

Response to item 6. I think it would be interesting to use programming to solve problems.

 N %

Undecided 7 9.33%

Agree 22 29.33%

Strongly agree 46 61.33%

Interestingly, no student refuted the use of programming to solve problems, with a few being

unsure (9.33%, undecided). Based on the sample selection criterion, it was expected for some

students to be undecided as they had no previous exposure to Computer Programming and

Robotics, as supported by the following excerpts:

“I got an idea on how they (robotic element) are really used in real-world situations …

so you get to know how things work” (P15, Focus Group Interview).

“They (robotic element) are very applicable in real-life problems” (P9, Focus Group

Interview).

“I enjoyed the problem solving; I enjoy combining things and then putting them together

to make up one thing” (P26, Focus Group Interview).

86

Table 20

Response to item 7. From my own understanding of programming, it is boring.

 N %

Strongly disagree 37 49.33%

Disagree 32 42.67%

Undecided 6 8.00%

A minority of students (8.00%) were unsure if programming is boring or not. On the other hand,

most students reported that Computer Programming is not mundane (92.00%, Disagree +

Strongly disagree). It was noted earlier (Chapter two: Literature review), programming can be

complex and difficult (Rubio et al., 2013), which leads to boredom (Khaleel et al., 2017).

However, through manipulatives, such as robots (Kurebayashi et al., 2006) and game design

(Govender & Govender, 2020), negative attitudes towards Computer Programming can be

changed.

Table 21

Response to item 8. My perception of programming is that it is difficult to learn.

 N %

Strongly disagree 6 8.00%

Disagree 23 30.67%

Undecided 26 34.67%

Agree 16 21.33%

Strongly agree 4 5.33%

Some students were unsure if programming is difficult (34.67%, Undecided) as this was their

first encounter with coding. A minority viewed programming as difficult (26.66%, Agree +

Strongly agree). The majority of students responded that programming is not difficult to learn

(38.67%, Disagree + Strongly disagree).

87

Table 22

Response to item 9. I think programming is hard.

 N %

Strongly disagree 6 8.00%

Disagree 23 30.67%

Undecided 26 34.67%

Agree 13 17.33%

Strongly agree 7 9.33%

Strikingly, the results in Table 22 are similar to Table 21 regarding programming as challenging

to learn for Strongly disagree, Disagree and Undecided. The minority of students thought

programming is complex (26.66%, Agree + Strongly agree), similar to the results in Table 21.

The majority believed that programming is not hard (38.67%, Disagree + Strongly disagree),

again similar to the results in Table 21. The uncertainty (34.67%) of whether programming is

hard or not is, once again, similar to the results in Table 21.

Table 23

Response to item 10. I have an interest in microcontrollers (robotic element).

 N %

Undecided 5 6.67%

Agree 28 37.33%

Strongly agree 42 56.00%

A large number of students purported to have an interest in microcontrollers (93.33%, Agree +

Strongly agree), while few are undecided (6.67%). Thereby suggesting and confirming the

results in Table 14 that the robotic element had definitely sparked curiosity and interest towards

the learning of programming. Supported by the findings by Merkouris et al. (2018) that

manipulatives such as the microcontroller used in this study stimulated students' interest and

kept students engaged while learning how to code.

“I struggled with some programming; it can get quite abstract, but the

microcontroller makes it most fun and I feel like it solidifies understanding in some

way” (P62, Focus Group Interview).

“With this workshop having to hold and work the microcontroller made it (coding)

interesting” (P42, Focus Group Interview).

88

6.3.2 Questionnaire test one~ Problem solving and logic

6.3.2.1 Part A: Pre-test based on Computational Thinking

Part A (Appendix G) of the problem solving and logic pre-test based multiple-choice questions

(MCQ), tested students' knowledge of concepts they would come across during the workshop

sessions. In addition, the questionnaire sort to obtain a general understanding of students’

ability to think, reason and exercise logic; hence a Computational Thinking test. As Romero et

al. (2017) state “programming is not only about writing code, but also about the capacity to

analyse a situation, identify its key components, model the data and processes, and create or

refine” (p. 2), which is part of the Computational Thinking process. Prior to answering the

MCQs, student bibliographic information (Table 24) was gathered. As predicted in Chapter

four: Research design and methodology, section 4.8, the majority of the students were first-

year students (30.67%). All students had some form of pre-university mathematical experience,

with the majority having done pure Mathematics at school (56%).

Table 24

Bibliographic information

Item Options N %

Ye
ar

 o
f S

tu
dy

 1st 23 30.67%

2nd 21 28.00%

3rd 11 14.67%

4th 20 26.67%

 N 75 100%

Ag
e

16-17 0 0%

18 -19 18 24.00%

20-21 26 34.67%

>21 31 41.33%

 N 75 100%

Ph
as

e

FET 20 26.67%

Senior FET 43 57.33%

Intermediate Senior 11 14.67%

ECD 1 1.33%

89

 N 75 100%

M
at

h
ba

ck
gr

ou
nd

Mathematical Literacy 29 38.67%

Pure Mathematics 42 56.00%

Mathematics SG 0 0%

Mathematics HG 3 4.00%

Vocational Mathematics 1 1.33%

No Mathematics 0 0%

Other 0 0%

N 75 100%

Table 25 shows the percentage responses per option for each question and the common

response for each question. (Refer to Appendix G for the questionnaire.)

Table 25

Overall summary response from Part A (pre-test)

Question A B C D Mode

1. 0.00% 2.70% 68.00% D

2. 8.00% 13.30% 20.00% B

3. 20.00% 9.30% 26.70% C

4. 21.30% 18.70% 9.30% B

5. 30.70% 10.70% 12.00% C

6. 4.00% 10.70% 38.70% A

7. 1.30% 25.30% 24.00% B

8. 2.70% 1.30% 41.30% C

9. 13.30% 4.00% 5.30% D

10. 5.30% 18.70% 58.70% D

Note

Drawing from the modal shown in Table 25, most students were correct for 8 out of the 10

MCQs. Table 26 indicates that the majority of students obtained a mark of 5 out of 10 (20.00%).

In addition, more than fifty percent of the students (56.00%) achieved a mark of fifty percent

(5 out of 10) and above in the Computational Thinking test. The findings show that 8% of

students scored a mark of eighty percent and above (8 out of 10), and only 1.33% (n=1)

90

achieved 9 out of 10, which was the highest mark obtained for the Computational Thinking

test.

Table 26

Distribution of Part A (pre-test) marks obtained (out of 10)

Mark out of 10 N %

1 4 5.33%

2 4 5.33%

3 12 16.00%

4 13 17.33%

5 15 20.00%

6 13 17.33%

7 8 10.67%

8 5 6.67%

9 1 1.33%

10 0 0.00%

N 75 100%

91

Figure 44

Right vs Wrong responses for Part A

Note. A visual representation of correct and incorrect responses based on Table 25; percentages rounded.

From Figure 44, we note that there are extreme differences in the range for correct and incorrect

answers to questions one, nine and ten (see Appendix G). On closer inspection of question one,

the majority of students selected option D - All of the above (Table 25) as opposed to the correct

answer A - Is a series of instructions (Table 27, next page), which was the second-highest

option selected (Table 25). The possibility of the high selection of option A (29.33%) and

option D (68.00%) could be a result of the question text containing the words best described in

response to what a computer program is. Hence, the likelihood that most selected option D -

All of the above.

29

59

44

51

47 47 49

55

77

17

71

41

56

49

53 53 51

45

23

83

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 1 0

R
e

s
p

o
n

se
 i

n
 %

Item/question number

PRE-TEST: PART A RESPONSES

% RIGHT % WRONG

92

Table 27

Summary of responses to question one

Options N %

A. Is a series of instructions 22 29.33%

B. Can be short or long 0 0%

C. Is written with code 2 2.67%

D. All of the above 51 68.00%

It was encouraging that the majority of students selected option D (77.33%, Table 28) for

question nine, which was the correct answer (Table 25). Question nine was based on speed and

movement; which participants will be exposed to when they cover motor movement during the

online workshop sessions. (Refer to Appendix G for the diagrammatic options A, B, C and D

for question nine).

Table 28

Summary of responses to question nine

Options N %

 A. 10 13.33%

 B. 3 4.00%

C. 4 5.33%

D. 58 77.33%

For question ten, the most selected option was D (58.67%, Table 25), which is incorrect.

Question A (17.33%) being the correct answer (Table 29).

Table 29

Summary of responses to question ten

Options N %

 A. 13 17.33%

 B. 4 5.33%

C. 14 18.67%

D. 44 58.67%

The majority selected option D - Line 4 contains Z=95, which is not displayed (output).

Although the variable Z is not directly displayed, the value is used to calculate another variable

93

that is displayed. (Refer to Appendix G for the algorithm and line number options for A, B, C

and D for question ten. Given that students lack exposure to programming at this stage, and are

still to develop their coding skills through the workshop, most did not realise the indirect use

of the variable. As an individual’s coding knowledge and skills develop, such use of variables

as in question ten, are instantly recognised as a result of the prior knowledge of trace tables,

flowcharts and other debugging techniques that are introduced in the early stages of

programming (Saeli et al., 2011; White & Sivitanides, 2005).

Table 30

Five-point number summary with mean and standard deviation (SD) for Part A (pre-test)

Item Value

Minimum 1

Quartile 1 3

Quartile 2 (median) 5

Quartile 3 6

Maximum 9

Mean 4.747

Standard deviation 1.904

Note. Total for test: 10 marks.

It is noticed that the majority of students achieved a mark of five out ten (20%, Table 26). This

mark, although very close, is greater than the sample mean = 4.747 (Table 30). The box

plot (Figure 45) offers a virtual representation of the 5-point summary from Table 30. The

highest mark obtained was 9 out of 10, while the lowest was 1 out of 10.

94

Figure 45

Summary of marks for Part A

Note. Box plot base on marks obtained from the ten MCQs (Part A).

There were no outliers reported as is confirmed by the scatter plot (Figure 46), which shows a

wide spread of the marks obtained by the students.

Figure 46

Distribution of marks for Part A

Note. Distribution of marks obtained by students in Part A.

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80

Range of participants

Distribution of marks

95

The data (marks for Part A) is normally distributed since the mean () is equal to the median

(quartile 2) (Table 30). The marks (raw values out of 10) are standardised to a normal

distribution by converting them into z-scores (Table 31); allowing the proportion of the values

that fall within a specified number of standard deviations () from the mean () population.

Therefore, the data being normally distributed adheres to the empirical rule known as the three-

sigma rule or the 68-95-99.73 rule (Pukelsheim, 1994); indicating that approximately 68% of

the data falls within one standard deviation (SD) of the mean; while approximately 95% of the

data falls within two standard deviations of the mean; and approximately 99.73% of the data

falls within three standard deviations of the mean. The distribution data is further supported by

creating the bell curve (Figure 47, page after next), displaying three standard deviations based

on Table 31.

Table 31

Standardisation of values (raw marks out of 10)

SD increments Mean*SD*SD increments Normalize/Z-distribution

-3.00 -0.711 0.002

-2.90 -0.521 0.003

-2.80 -0.330 0.004

-2.70 -0.140 0.005

-2.60 0.050 0.007

-2.50 0.241 0.009

-2.40 0.431 0.012

-2.30 0.621 0.015

-2.20 0.812 0.019

-2.10 1.002 0.023

-2.00 1.193 0.028

-1.90 1.383 0.034

-1.80 1.573 0.041

-1.70 1.764 0.049

-1.60 1.954 0.058

-1.50 2.144 0.068

-1.40 2.335 0.079

-1.30 2.525 0.090

-1.20 2.716 0.102

-1.10 2.906 0.114

96

-1.00 3.096 0.127

-0.90 3.287 0.140

-0.80 3.477 0.152

-0.70 3.667 0.164

-0.60 3.858 0.175

-0.50 4.048 0.185

-0.40 4.239 0.193

-0.30 4.429 0.200

-0.20 4.619 0.205

-0.10 4.810 0.209

0.00 5.000 0.210

0.10 5.190 0.209

0.20 5.381 0.205

0.30 5.571 0.200

0.40 5.761 0.193

0.50 5.952 0.185

0.60 6.142 0.175

0.70 6.333 0.164

0.80 6.523 0.152

0.90 6.713 0.140

1.00 6.904 0.127

1.10 7.094 0.114

1.20 7.284 0.102

1.30 7.475 0.090

1.40 7.665 0.079

1.50 7.856 0.068

1.60 8.046 0.058

1.70 8.236 0.049

1.80 8.427 0.041

1.90 8.617 0.034

2.00 8.807 0.028

2.10 8.998 0.023

2.20 9.188 0.019

2.30 9.379 0.015

2.40 9.569 0.012

2.50 9.759 0.009

2.60 9.950 0.007

97

2.70 10.140 0.005

2.80 10.330 0.004

2.90 10.521 0.003

3.00 10.711 0.002

Note. Mean=5 and standard deviation = 1,904.

Note. Normal Bell shape obtained based on Part A.

Aligned to the research aim exploring external factor/s that contribute towards the learning of

Computer Programming, the marks achieved (dependent variable) were cross-tabulated against

the type of Mathematics (independent variable) experience that students had (Table 32). As

mentioned in the Chapter two: Literature review, Computer Programming is a subgroup of

Computational Thinking. Thus, there is the possibility that an individual’s experience of

Mathematics will influence their HOT logical thinking or problem-solving abilities, which are

required for Computer Programming (García-Peñalvo, 2018; Jacob et al., 2018). As discussed

earlier in this chapter and shown in Table 30 and Figure 45, no student obtained a full mark of

10 out of 10. The highest mark achieved was 9 out of 10 by one student (Figure 46). Hence,

cross-tabulation provided further insight into the relationship between type of Mathematics and

mark obtained from Part A (computational think test), as shown in Table 32.

Figure 47

Visualisation depicting normal distribution; based on data from Table

98

Table 32

Differences depending on the type of Mathematics vs MCQ mark obtained using descriptive

statistics

 Mark obtained
 1 2 3 4 5 6 7 8 9 N M SD

Mathematical Literacy 3 2 4 7 2 6 4 1 0 29 4.45 1.99

 4% 3% 5% 9% 3% 8% 5% 1% 0% 38.67%

Pure Mathematics 1 3 7 7 11 7 1 4 1 42 4,.9 1.84

 1% 4% 9% 9% 15% 9% 1% 5% 1% 56.00%

Mathematics HG 0 0 0 0 0 0 3 0 0 3 7.00 0.00

 0% 0% 0% 0% 0% 0% 4% 0% 0% 4.00%

Vocational Mathematics 0 0 0 0 1 0 0 0 0 1 5.00 0.00

 0% 0% 0% 0% 1% 0% 0% 0% 0% 1.33%

N 4 5 11 14 14 13 8 5 1 75

 5.33% 6.67% 14.67% 18.67% 18.67% 17.33% 10.67% 6.67% 1.33% 100%

Table 33

Mark distribution based on percentage weighting per mark obtained

Mark obtained

1 2 3 4 5 6 7 8 9

Mathematical Literacy 10% 7% 14% 24% 7% 21% 14% 3% 0%

Pure Mathematics 2% 7% 17% 17% 26% 17% 2% 10% 2%

Mathematics HG 0% 0% 0% 0% 0% 0% 100% 0% 0%

Vocational Mathematics 0% 0% 0% 0% 100% 0% 0% 0% 0%

The number of participants for Mathematics HG and Vocational Mathematics is four and it

was, therefore, decided to be omitted in further analysis. The statistical software results support

this decision (see notes below, Table 34). It is common knowledge that computers were first

developed to help solve complex mathematical problems, dating back to the 12 Abacus.

Mathematics ability is, therefore, a good indicator of the cognitive potential to learn to code.

Saeli et al. (2011) suggested that it is not unusual to find Mathematics concepts in

programming. This is due to the nature and approach of programming whereby one would

automatically encounter fundamental concepts in mathematic. Inferring from Tables 32 and

12 Abacus is tool used to perform mathematical calculation by counting beads along rods or grooves
(Chappelow, 2020).

99

33, it can be noted that the type of Mathematics has a significant impact on the mark achieved.

Since 12% Pure Mathematics background (Table 33) participants achieved above 8 out of 10

compared with 3% Mathematical Literacy background (Table 33) participants achieved above

8 out of 10. In addition, 55% of Mathematical Literacy background (Table 33) participants

obtained below 5 out of 10 compared with 43% of Pure Mathematics background (Table 33)

participants.

While Pure Mathematics seems to be a contributing factor, this does not mean that one needs

to possess advanced mathematical skills or estimable mathematical knowledge. Instead, the

type of rational exercises required in Mathematics are necessary for Computer Programming.

Findings by Bubica and Boljat (2015) state that “assessing programming students have proven

to be ineffective for students who have previous experience of programming and students who

have poor knowledge of mathematical algebra” (p. 5884). This indicates that Mathematics

might not be the required element to understand programming.

Table 34

Descriptive statistics based on the type of mathematics

Choose one that best describes your school-leaving Mathematics Statistic Std. error

Mathematical Literacy Mean 4.45 .370

95% Confidence Interval for

mean

Lower Bound 3.69

Upper Bound 5.21

5% Trimmed mean 4.46

Median 4.00

Variance 3.970

Std. deviation 1.993

Minimum 1

Maximum 8

Range 7

Interquartile range 3

Skewness -.151 .434

Kurtosis -.886 .845

Pure Mathematics Mean 4.79 .284

95% Confidence Interval for

mean

Lower bound 4.21

Upper bound 5.36

5% Trimmed mean 4.76

Median 5.00

Variance 3.392

100

Std. deviation 1.842

Minimum 1

Maximum 9

Range 8

Interquartile range 3

Skewness .282 .365

Kurtosis -.186 .717
Mathematics HGa
Vocational Mathematicsa

Note. Scale is constant when Choose one that best describes your school-leaving Mathematics = Mathematics
HG and Mathematics = Vocational Mathematics. These have been omitted.

According to Hair et al. (2010) and Bryne (2010), data is considered normal if skewness is

kurtosis values to indicate non-normality; however, the skewness z-value and kurtosis z-value

are generally between -1.96 and +1.96 (Blanca et al., 2013). To confirm normality, the

calculation of the skewness and kurtosis z-values are obtained by dividing the skewness

measure by its standard error (SE) (from Table 34).

Descriptive analysis was carried out to determine if the Mathematical Literacy and Pure

Mathematics marks are normally distributed (Table 35). For normality, the skewness and

kurtosis measures should be close to as zero as possible, since in reality, data are often skewed

and kurtotic (Kim & White, 2004; Brown, 1997). Therefore, a slight departure from zero is

consequently no issue.

Table 35

Calculation of the skewness z-value and kurtosis z-value

 Skewness Kurtosis

Mathematics literacy

=

0.151

0.434
= 0.348 =

0.886

0.845
= 1.049

Pure Mathematics 0.282

0.365
= 0.772 =

0.186

0.717
= 0.259

All calculated z-values are between -1.96 and +1.96 (Table 35). Therefore, regarding the

skewness and kurtosis, the data are slightly skewed and kurtotic for both Mathematics Literacy

101

and Pure Mathematics, but it does not differ significantly from normality. It can be assumed

that the data are approximately normally distributed in terms of skewness and kurtosis.

Table 36

Shapiro-Wilk test of normality

Choose one that best describes

your school-leaving Mathematics

Shapiro-Wilk test

Statistic df Sig.

Mathematical Literacy .944 29 .128

Pure Mathematics .959 42 .131

Mathematics HGa

Vocational Mathematicsa

Note. Scale is constant when Choose one that best describes your school-leaving Mathematics = Mathematics
HG and Mathematics = Vocational Mathematics. These have been omitted.

The null hypothesis (H0) for the Shapiro-Wilk test of normality is that the data are normally

distributed. Hence the alternative hypothesis (Ha) is that the data is not normally distributed.

As shown in Table 36, both p values are above 0.05; therefore, failing to reject the H0 resulting

in the data being normally distributed.

Note. Quantile-Quantile (Q-Q) plot visualising the distribution of Mathematical Literacy.

Figure 48

Q-Q Plot Mathematical Literacy

102

Note. Quantile-Quantile (Q-Q) plot visualising the distribution of Mathematics.

A Shapiro-Wilk’s test (p > 0.05) (Razali & Wah, 2011; Shapiro & Wilk, 1965) and a visual

inspection of the normal Q-Q plots (Figure 48 & Figure 49) show that the marks were

approximately normally distributed for both Mathematics Literacy and Pure Mathematics, with

skewness of -0.151 (SE13=0.434) and kurtosis of -0.886 (SE=0.845) for Mathematic Literacy

and skewness of 0.282 (SE=0.365) and kurtosis of -0.186 (SE=0.717) for Pure Mathematics

(Doane & Seward, 2011; Cramer & Howitt, 2004; Cramer, 1998). The data is approximately

normally distributed allowing for further investigative analysis and exploration through

parametric methods later on.

6.3.2.2 Part B: Abstract Reasoning Test

The Abstract Reasoning Test (ART) formed the second part of the problem-solving and logic

data collection tools known as Part B. An ART uses symbols and shapes instead of words and

numbers, and measures an individual’s ability to identify patterns, logical rules and trends in

new data (Simanjuntak et al., 2018). The ART (Appendix H) consisted of 25 items with a 20-

minutes time limit to answer. This test responds to research question two coupled with other

13 Standard error

Figure 49

Q-Q Plot Pure Mathematics

103

data captured on students’ biographical information, such as, Mathematics background and the

questionnaire based on problem-solving skills.

There is no passing score for the ART and other psychometric tests, such as verbal and

numerical reasoning. The results obtained from the abstract reasoning test are calculated

relative to that of other students in the group in terms of the number of attempted questions and

the number of correctly answered questions (Warne et al., 2014). The maximum raw score

obtained from the ART based on N=75 was 21 out of 25. Hence all scores were adjusted

according to the maximum weighting; with 21 becoming the benchmark representing 100%.

Table 37 provides a summary of the scores obtained from the ART.

Table 37

Five-point number summary with mean and SD Part B

Item Value

Minimum 10

Quartile 1 43

Quartile 2 (median) 62

Quartile 3 81

Maximum 100

Mean 60.190

Standard deviation 23.455

Note. Summary of ART scores for Part B. Maximum obtained was 21 out 25 which is converted to 100%.

The box plot (Figure 50, next page) offers a virtual representation of the distribution of scores

for the ART based on the 5-point summary (Table 37).

104

Figure 50

Summary of scores for Part B: ART

Note. Box plot base on scores obtained from the ART.

In order to determine if the scores from the ART are normally distributed, a Kolmogorov

Smirnov test (Table 38) was carried out, and the Q-Q plot (Figure 51) examined. As Das and

Imon (2016) state, “normality can be assessed both visually and through normality tests”

(p.11). The null hypothesis (H0) for the Kolmogorov Smirnov test of normality is that the data

are normally distributed. Hence the alternative hypothesis (Ha) is that the data are not normally

distributed.

Table 38

Kolmogorov-Smirnov test of normality

Statistic df Sig.

ART .088 75 .200
Note. Kolmogorov-Smirnov test of normality on Part B: Abstract Reasoning Test.

105

Figure 51

Q-Q Plot Part B: ART

Note. Quantile-Quantile (Q-Q) plot visualising distribution ART.

A Kolmogorov Smirnov test (p > 0.05) and a visual inspection of the normal Q-Q plot (Figure

51) show that the ART scores are not significantly different from a normal distribution. Hence

the H0 (null hypothesis) is accepted, meaning that the data are approximately normally

distributed.

Although a Kolmogorov Smirnov test was used to determine normality instead of the Shapiro-

Wilk test used earlier, the Q-Q plot was examined in both normality tests. As supported by

Razali et al. (2011), “The normal quantile-quantile plot (Q-Q plot) is the most commonly used

and effective diagnostic tool for checking normality of the data” (p.21).

The Admission Points Score (APS) was the converted average of an individual’s 14Grade 12

marks at the end of the school-leaving year. Each mark was converted to a mark out of 10 and

then added together to give an APS. An individual’s APS determines if they are eligible for a

specific tertiary education course. The APS is an ideal benchmark indicator for higher

education institutions in determining if a prospective student is capable of a particular course.

14 Grade 12 is final grade in school

106

The minimum requirement for undergraduate qualifications to enter the Bachelor’s Degree is

21 points, although some exceptions may apply between institutions and courses (Together we

pass, 2019). The maximum point that an individual can be rewarded is 7 per subject for 7

subjects; therefore, the maximum number of points that can be achieved is 49. The average

acceptable APS that prospective students entering into the Bachelor’s Degree is 21/49 x 100 =

42.857%. It is worthy to determine if there is any significant difference between the ART mean

and the APS mean. The ART involves pictorial representation that measures an individual’s

ability to identify patterns, logical rules and trends relevant to Computer Programming. These

qualities are harnessed in the development of learning to code (Robert, 2017; Roberts, 2009).

A sample t-test compares the mean of a sample to a hypothesized population mean. This

comparison will indicate any significant difference between the two means. In this study, a

one-sample t-test, otherwise known as a single sample t-test, is ideal for comparing the ART

and the APS means. Based on the substantive reasoning highlighted in the previous paragraph,

the test variable mean is calculated from the ART scores, which is compared with the test value,

which is the average acceptable APS. To carry out the t-test, it is noted that the four main

assumptions are met: the dependent variable is continuous data, no potential outliers in the

dependent data (Figure 51), observations are independent of one another and the dependant

variable is approximately normally distributed (Table 38 and Figure 51).

The sample mean () in reference to the test variable (Part B: ART) = 60,190%. The known or

hypothesized mean value in the population () in reference to the test value (APS) = 42.857%.

Statement: To check if national APS to enter a Bachelor degree is equal to ART.

H0 = There is no significant difference in the ART of students who are part of the coding and

robotic workshop and APS; meaning the population mean is equal to the proposed mean (=

).

Ha= There is a significant difference in the ART of students who are part of the coding and

robotic workshop and APS; meaning population mean is not equal to the proposed mean (

).

107

Table 39

One-sample t-test

 t df Sig.
(2-tailed)

Mean
difference

95% Confidence Interval of the
difference

Lower Upper

ART 6.400 74 .000** 17.333 11.94 22.73
Note. One-sample t-test testing significance difference in ART and APS mean.
Test value = 42.857
** significance at p < 0.01 (2-tailed).

A one-sample t-test (Table 39) was carried out to assess if ART scores (Part B of the problem-

solving and logic test) differ significantly compared with the APS. The descriptive statistics

showed that 60.190 is the average score obtained from the sample, and 23.455 is the SD (Table

37). The results reveal a significant difference in the ART compared with APS; t (74) = 6.400,

p <0.05. Hence the average ART is significantly different from the average APS. This shows

that the sample does not represent the population; therefore, H0 is rejected (). Under the

null hypothesis, the mean difference would have equalled to 0; however, it is 17.333. When

examining the lower and upper values, it is clear that a mean of 0 falls outside these limits,

supporting the acceptance of Ha. The rejection of the null hypothesis is evidence that this

sample was likely not drawn from a population such that the mean APS equals 42.857%.

Therefore, it substantially indicates that students who chose to be part of the workshop were

interested in coding and Robotics and have ART scores not significant to the average APS.

Further inspection reveals that the ART mean > APS mean, which indicates the students who

were part of the workshop scored above the average APS.

108

It is interesting to note that majority of students achieved between 80% and 100% (Figure 52),

with some students achieving a maximum of 100%. Furthermore, 56% (11+11+19/75 *100)

(Figure 52) of students achieved above the mean of 60% (Table 37).

Both problem-solving and logic data sets, namely Part A: Pre-test based on Computational

Thinking and Part B: ART comprise continuous data, marks and scores, respectively. Hence,

Pearson correlation (Table 40) is ideal for determining a relationship between Part A and Part

B.

Table 40

Pearson correlation

 Part A Part B

Pa
rt

 A
 Pearson correlation 1 .416**

Sig. (2-tailed) .000

N 75 75

Pa
rt

 B
 Pearson correlation .416** 1

Sig. (2-tailed) .000

N 75 75

Note. Pearson correlation is used to determine the relationship between problem-solving and logic data sets.
Part A: Pre-test based on Computational Thinking and Part B: ART.
** Correlation is significant at the 0.01 level (2-tailed).

5 6

5

9
9

11

11

19

0%-19%

20%-29%

30%-39%

40%-49%

50%-59%

60%-69%

70%-79%

80%-100%

Spread of ART scores categorised by every 20%

Figure 52

Spread of Part B: ART scores

109

Pearson correlation based on the Computational Thinking pre-test marks and ART scores

shows a correlation (p < 0.05). There is a significant positive relationship (p 0.05) between

the ART and MCQ logical test, r(73) = 0.416, p = 0.000. The study of Computer Science,

particularly concerning programming, is viewed as the study of algorithms (Kátai, 2014;

 et al. (2016), “Computer Science is a vast field

with algorithmic thinking at its core” (p.114). Thus, to be a successful computer programmer,

it would seem that one needs to develop and acquire advanced thinking skills, such as problem-

solving, logical and mathematical thinking, critical thinking, and creative thinking (Fang,

2012).

*The six workshops were analysed in the prototyping phase of DBR - Chapter five: Iteration.

6.4 Post-workshop session

6.4.1 Post-survey

This study applies Partial Least Squares-Structural Equation Modelling (PLS-SEM) to assess

the data generated from the post-survey. PLS-SEM is commonly used in business industrial

research and analysis; however, the statistical modelling technique has gained popularity in

education research (Law & Fong, 2020; Lin et al., 2020). Research by Astrachan et al. (2014)

advocate that PLS-SEM offers many advantages over Covariance Based-Structural Equation

Modelling (CB-SEM), one significant advantage being sample size. Another critical difference

between CB-SEM and PLS-SEM is the approach used when assessing the structural model. In

CB-SEM, the fit is established on accurately estimating the observed covariance matrix,

while PLS-SEM fit is established upon accounting for explained variance in the endogenous

constructs (Hair et al., 2014).

Ramli et al. (2018) found that PLS-SEM analysis offers fewer contradictory results than

regression analysis, despite PLS-regression models being a subset of PLS-SEM models.

Garson (2016) explains that PLS-SEM models differ from regression models as they are “path

models in which some variables may be effects of others while still be causes for variables later

in the hypothesized causal sequence” (p.13). PLS-SEM analysis consists of two parts, firstly

examining the measurement model that consists of the indicator reliability, convergent

reliability and discriminant validity. Secondly, the structural model assesses collinearity issues,

110

path coefficients, the significance of the relationships, level of R2, effect size (f2) and predictive

relevance (Q2).

Mainly in response to research question one, the following definition was set out before

proceeding to feed the data generated from the post-survey into the PLS-SEM software:

Explore the factors contributing to one’s knowledge of programming through the use of

Robotics. The 30-item Likert scale post-survey was designed with this statement in mind and

comprised six constructs supported by relevant literature (discussed in Chapter two: Literature

review), with 5 items per construct15. To reiterate, the six constructs which represent the factors

used in the model are:

 Confidence: student confidence in their ability to learn programming;

 Interest: student interest in programming;

 Motivation: student motivation by the use of robots;

 Belief: student intrinsic belief in solving problems;

 Mathematics: student perception of mathematical influence on programming; and

 Knowledge: student knowledge of programming through the use of Robotics.

In PLS-SEM, constructs are known as latent variables (LV) and items are known as indicators.

The model created (Figure 53) follows the principles of a reflective model since, as Garson

(2016) explains, in such models “indicators are a representative set of items which all reflect

the latent variable they are measuring” (p. 18). This is observed in the model created during

the initial stages of the study (Figure 53), where all six LVs offer loadings onto the respective

five indicators. Reflective models allow the omitting or dropping of indicators that do not

matter while sustaining the meaning of the LV (Garson, 2016). It is important to note that

omitting indicators that are not significant would be essential in producing a model that makes

meaning and sense.

The minimum sample size estimation method in PLS-SEM follows the 10 times rule (Hair et

al., 2016; Hair et al., 2012). The rule applied to the reflective conceptual model in this study

would be:

 > 10 × . ,

in the structural model. Examining the conceptual model (Figure 53 and Figure 54), the largest

number of structural paths directed to a particular LV is three (i.e., Belief, Interest and

15 The word construct = factors = latent variables

111

Motivation informing Confidence). Therefore, the sample size is in accordance with the ten

times rule: 75 () > 10 × 3 (.) = 75 > 30.

Figure 53

The initial form of the model

Note. The initial form of the conceptual model created prior to the analysis stages.

Figure 53 depicts the model in early stages prior to running any analysis, showing all LVs and

indicators. Knowledge is referred to as an endogenous LV. An endogenous latent variable is an

LV informed by at least one other LV (Garson, 2016; Hair et al., 2016). In other words,

graphically, the model has at least one incoming arrow from another LV. LVs' Belief, Interest,

Motivation, and Mathematics are referred to as exogenous variables since any other LV does

not inform them. Hence, they do not have any incoming arrow/s from any other LV/s.

As discussed in an earlier in Chapter two: Literature review, sub chapter 2.5.4 The influence

of Mathematics there are mixed views regarding the effect of Mathematics on coding

Knowledge. An individuals’ Confidence is informed by their Belief, Interest, and Motivation

(Douglas et al., 2019; Blotnicky et al., 2018; et al., 2018; LaForce et al., 2017). While the

latter factors may not directly affect Knowledge, they have the potential to affect it indirectly

through Confidence (Fischer & Sliwka, 2018; Sadler, 2013). Hence Confidence is referred to

112

as a mediating variable as it is an intervening variable. Through Robotics, knowledge of coding

is a dependent LV informed by the following possible contributing factors: Belief, Interest,

Motivation, Confidence, and Mathematics. The study will determine if the following

relationships exist through the SEM-PLS model, hence hold true (Table 41).

Table 41

Set of hypotheses based on model

Hypothesis Relationship

H1 BELIEF CONFIDENCE

H2 CONFIDENCE KNOWLEDGE

H3 INTEREST CONFIDENCE

H4 MATHEMATICS KNOWLEDGE

H5 MOTIVATION CONFIDENCE

The alternative hypothesis (Ha) for each relationship found in Table 41 is that there is no

relationship between the LVs in question.

6.4.1.1 Measurement model

The study presents the measurement model into three parts: indicator reliability, convergent

reliability and discriminant validity. Indicator reliability examines the measure and validity of

the reflective indicator loadings, Cronbach’s Alpha (CA) and rho_A (). The convergent

reliability examines the Average Variance Extracted (AVE) and internal consistency. The

evaluation of discriminant validity considers the cross-loading criteria, Fornell & Larker

criteria and Heterotrait-Monotrait ratio of correlations (HTMT).

Indicator reliability

The PLS algorithm was executed on the model (Figure 53) with an initial analysis of 300

iterations and later with a maximum of 500 iterations resulting in the outer indicator loadings

(Figure 54). The loadings can be considered a form of item reliability in reflective models; as

Garson (2016) describes, “the closer the loadings are to 1.0, the more reliable that latent

variable” (p. 60). He goes on to express that path loadings for such a model should be > 0.7

(Garson, 2016), while Hulland (1999) recommends that reflective indicator loadings > 0.5

show that the indicator is a good measurement of the LV. A more refined and applied criteria

113

to this study is by Hair et al. (2014), who propose that an indicator loading in the range of 0.40

to 0.70 may be dropped only if it improves Composite Reliability (CR). Therefore, outer

loadings of 0.7 or higher are considered highly approved, while 0.5 is deemed acceptable

(Memon & Rahman, 2014). Figure 54 depicts the outer loadings of indicators that meet the

criteria of > 0.7 or retained because they do not improve CR when discarded.

Figure 54

Model showing valid path loadings

Note. The weighting scheme was initially set on a maximum of 300 iterations and later set on a maximum of 500
iterations.

The CA value evaluates the reliability of the set of indicator items. Therefore, measures the

extent to which all the LVs in the model are positively related to each other. As mentioned

Using rho_A () is a more consistent measure of reliability than Cronbach’s Alpha. As

Dijkstra and Henseler (2015) describe, is measured the same as Cronbach’s Alpha and has

a better reliability measure than Cronbach’s Alpha in SEM. Since is based on the loadings

rather than the correlations observed between the variables.

114

Convergent reliability

One of the measures of convergent reliability is Average Variance Extracted (AVE). AVE is

comparable to the proportion of variance explained in factor analysis. AVE values are between

0 and 1, and an AVE > 0.5 is desired (Bagozzi & Yi, 1988; Fornell & Larcker, 1981).

Internal Consistency is assessed by validating the Composite Reliability (CR), which measures

the reliability of the indicators where values are between 0 and 1. CR values greater than 0.7

(CR > 0.7) proves to show adequate consistency (Gefen et al., 2000). Chin (1998) proposed

that internal consistency is measured through the CR, known as Dillon-Goldstein’s rho or

Jöreskog’s rho. CR is a favoured alternative to CA as a test of convergent reliability in a

reflective model Garson, 2016). As Demo et al. (2012) propound the view that CR offers a

more reliable measure than CA in SEM. The findings support Dijkstra-Henseler (2015) when

examining (Table 42) the cut-off value of (Rho A) > 0.7 ensures Composite Reliability (CR

> 0.7).

115

Table 42

Measurement model including LV (construct) reliability and validity

 Items Loadings AVE CR CA Rho A

BELIEF

Belief1 0.879 0.628 0.834 0.703 0.731
Belief2 0.741
Belief3 0.751

INTEREST

Interest1 0.725 0.553 0.831 0.729 0.725
Interest3 0.659
Interest4 0.779
Interest5 0.803

MOTIVATION
Motivation2 0.728 0.639 0.841 0.716 0.730
Motivation4 0.803
Motivation5 0.862

MATHEMATICS
Mathematics2 0.903 0.795 0.886 0.744 0.751
Mathematics3 0.881

CONFIDENCE

Confidence1 0.748 0.572 0.842 0.751 0.750
Confidence3 0.763
Confidence4 0.740
Confidence5 0.774

KNOWLEDGE

Knowledge2 0.766 0.733 0.891 0.821 0.867
Knowledge4 0.912
Knowledge5 0.884

Note.

a. Indicator items removed: Belief 4, Belief 5, Interest 2, Motivation 1, Motivation 3, Mathematics 1,
Mathematics 4, Mathematics 5, Confidence 2, Knowledge 1, Knowledge 3.

b. All item loadings > 0.5; indicate indicator reliability (Hair et al., 2014; Hulland, 1999).
c. All Average Variance Extracted (AVE) > 0.5 indicating convergent reliability (Bagozzi and Yi, 1988).
d. All Composite Reliability (CR) > 0.7; indicate internal consistency (Gefen et al., 2000).
e. All Cronbach’s Alpha (CA) > 0.7 (Nunnally, 1978).
f. All rho_A () > 0.7 Dijkstra-Henseler (2015).
g. Retained because it did not change the CR when dropped/removed.

Discriminant validity

Discriminant validity is the extent to which a LV is truly distant from other LVs, which implies

that the LV is unique. Discriminant validity is also known as vertical collinearity, which

validates the subjective independence of every indicator on the LV. The cross loadings criterion

helps reduce the presence of multicollinearity amongst the LVs by denoting that the AVE of a

LV should be higher than the square correlations between the LV and all other variables (Chin,

2010; Chin, 1998; Fornell & Larcker, 1981). In other words, the loadings of an indicator on its

assigned LV should be a higher value than its loadings on all other associated LV values (refer

to Table 43- values in bold are greater than horizontal associated values).

116

Table 43

Discriminant Validity- indicator item cross loading

 LATENT VARIABLES

 BELIEF CONFIDENCE INTEREST KNOWLEDGE MATHEMATICS MOTIVATION

IN
D

IC
AT

O
R

IT
EM

S

Belief1 0.881 0.707 0.505 0.589 0.879 0.624
Belief2 0.741 0.574 0.371 0.566 0.513 0.493
Belief3 0.751 0.488 0.370 0.344 0.546 0.249
Confidence1 0.524 0.748 0.684 0.516 0.444 0.603
Confidence3 0.604 0.763 0.412 0.557 0.580 0.402
Confidence4 0.664 0.740 0.416 0.502 0.574 0.548
Confidence5 0.492 0.774 0.581 0.502 0.426 0.590
Interest1 0.342 0.463 0.725 0.466 0.332 0.579
Interest3 0.599 0.594 0.658 0.473 0.570 0.478
Interest4 0.211 0.470 0.779 0.296 0.131 0.440
Interest5 0.361 0.499 0.803 0.408 0.250 0.590
Knowledge2 0.288 0.469 0.472 0.766 0.346 0.591
Knowledge4 0.652 0.588 0.489 0.912 0.653 0.528
Knowledge5 0.630 0.674 0.492 0.884 0.705 0.546
Mathematics2 0.628 0.496 0.314 0.647 0.903 0.330
Mathematics3 0.879 0.707 0.505 0.589 0.881 0.624
Motivation2 0.414 0.547 0.488 0.550 0.530 0.728
Motivation4 0.426 0.492 0.526 0.458 0.255 0.803
Motivation5 0.576 0.646 0.660 0.512 0.459 0.862

Note. All item loadings on its assigned latent variable (bold values) are higher than its loadings on all other
latent variables. In other words, all the indicator’s outer loading on the associated LV is greater than all its
loadings on other LVs; therefore, cross loadings criterion is fulfilled (Chin, 2010; Chin, 1998; Fornell &
Larcker, 1981).

The Fornell and Larcker criterion is that the AVE of an LV should be higher than the squared

correlations between the LV and all other variables (Chin, 2010; Chin 1998; Fornell & Larcker,

1981). The software processes this calculation in which the diagonals are the square root of the

AVE of the LVs (Table 44, next page) and should be the highest in any associated column or

row.

117

Table 44

Discriminant Validity- Fornell and Larcker criterion

BELIEF CONFIDENCE INTEREST KNOWLEDGE MATHEMATICS MOTIVATION

BELIEF 0.793

CONFIDENCE 0.755 0.756

INTEREST 0.531 0.694 0.743

KNOWLEDGE 0.643 0.686 0.562 0.856

MATHEMATICS 0.838 0.668 0.454 0.694 0.892

MOTIVATION 0.598 0.710 0.705 0.635 0.527 0.800

Note. Fornell and Larker criterion has been met in all instances since all values (in bold) are greater than their
associated values (the values in bold forming the diagonal are the highest compared to associated values across
and below).

Heterotrait-Monotrait ratio of correlations, bootstrapping and normality

The Heterotrait-Monotrait ratio of correlations (HTMT) was developed to address the

insensitivity of the Fornell & Larcker and cross loadings criterion. To determine if discriminant

validity is achieved using HTMT and bootstrapping is required. Although PLS-SEM assumes

that the data is not normal, unlike CBS-SEM (Covariance Based Structural-Equation

Modelling), this study will still confirm that the data is not normal before proceeding to

bootstrap. Bootstrapping is a nonparametric procedure that allows testing statistical

significance through a method that uses random sampling, mimicking the sampling process-

resampling method. It can be applied to regression models giving insight into how variable the

model parameters are (Godwin, 2021). Bootstrapping estimates the spread, shape and bias of

the sampling distribution of the population. The observed sample is treated as a representation

of the population. Bootstrapping creates a large, pre-specified number of samples. Every time

sampling happens during bootstrap, the same number of cases as the original sample will be

analysed; thus, N bootstrap n samples Chin (1998). The cut-off values for univariate

skewness are ±1 and kurtosis are ±7 (DeCarlo, 1997; Mardia, 1970). The cut-off value for

Mardia’s multivariate skewness is ±1 and kurtosis are ±20 (Mardia, 1974).

118

Table 45

Assessing Normality- Univariate and multivariate skewness and kurtosis

 Skewness SE_skew Kurtosis SE_kurt

BELIEF 1.0581 0.2774 1.5678 0.5482

CONFIDENCE 0.6666 0.2774 0.5753 0.5482

INTEREST 1.4769 0.2774 2.7626 0.5482

KNOWLEDGE 0.3320 0.2774 -0.1976 0.5482

MATHEMATICS 0.7718 0.2774 1.0837 0.5482

MOTIVATION 1.3041 0.2774 2.1185 0.5482

Note.

a. Sample size: 75
b. Number of variables: 6
c. SE_skew= Standard error skewness
d. SE_kurt= Standard error kurtosis

Table 46

Assessing Normality- Mardia's multivariate skewness and kurtosis

b z p value

Skewness 11.96683 149.58536 1.84E-10

Kurtosis 52.12194 1.821659 6.85E-02

Note. b = Mardia’s coefficient for skewness and kurtosis.

The findings from running the normality tests (Table 45) show that the kurtosis values are

within bounds; however, the skewness for LVs: Belief, Interest and Motivation are out of

bounds. Further examining Mardia’s coefficient (Table 46), the values of skewness and

kurtosis are out of the respective bounds (Skewness b> 1; Kurtosis b > 20). The normality

assessment deduces that the data does not follow the normal distribution; hence bootstrapping

can be applied (Frost, n.d.).

As a result of bootstrapping, the discriminant validity based on the Heterotrait-Monotrait ratio

of correlations (HTMT) can be examined. HTMT estimates the correlation between the LV

based on the average Heterotrait-Heteromethod correlation (Henseler et al., 2015). HTMT is

assessed by examining the Confidence Interval- Upper Limit (CI-UL) and is expected to be

less than 0.90 (at the 95% Confidence Interval). Therefore, a CI-UL value higher than 0.9

indicates there is a lack of discriminant validity. Ringle (2015) purports that discriminant

119

validity has not been established if the CI-UL value is above 1. As a statistical test- testing of

the null hypothesis (H0: HTMT<1) versus the alternative (Ha

2015), HTMT95% Confidence Interval contains the value one or above no discriminant validity.

Initial assessment, using a smaller number of complete bootstrapping with subsample sizes of

500, 1000 and 3000 with parallel processing, was carried out. For final result preparation, a

large subsample size of 5000 was used during bootstrapping.

Table 47

Discriminant Validity- HTMT

ORIGINAL

SAMPLE (O)

SAMPLE

MEAN (M)

CI LL

5.00%

CI UL

95.00%

BELIEF CONFIDENCE 0.466 0.470 0.353 0.592

CONFIDENCE KNOWLEDGE 0.402 0.397 0.216 0.576

INTEREST CONFIDENCE 0.284 0.292 0.129 0.454

MATHEMATICS KNOWLEDGE 0.426 0.432 0.261 0.600

MOTIVATION CONFIDENCE 0.230 0.216 0.067 0.362

Note.

a. Complete bootstrapping performed.
b. Set at 5000 subsamples.
c. Parallel processing.
d. H0 holds since all CI-UL < 0.9 (Henseler et al., 2015).

Drawing from the findings (Table 47), the null hypothesis has failed to be rejected; hence

discriminant validity has been established, CI-UL < 0.9.

6.4.1.2 Structural model

The structural model examines horizontal collinearity. Therefore, assessing the structural

model results enables determining the model’s capability to predict one or more target LV/s

(construct/s). The study presents the structural model in six parts: collinearity issues, path

coefficients, the significance of the relationships, level of R2, effect size (f2) and predictive

relevance (Q2).

120

Collinearity issues

Collinearity arises when two indicators are highly correlated. Collinearity among LVs is

assessed through the Variance Inflated Factor (VIF). A VIF value of greater than or equal to

 et al., 2011). While a more

potential collinearity problems. Table 48 shows the evaluation of the VIF values, where each

set of predictor LV is assessed separately for each subpart of the structural model.

Table 48

Structural model- Variance Inflated Factor

 BELIEF CONFIDENCE INTEREST KNOWLEDGE MATHEMATICS MOTIVATION

BELIEF 1.618

CONFIDENCE

1.807

INTEREST 2.066

KNOWLEDGE

MATHEMATICS

1.807

MOTIVATION 2.310

Note. et al.,
Diamantopoulos & Siguaw, 2006).

All VIF is within the prescribed guidelines (Hair et al., 2011; Diamantopoulos & Siguaw,

2006), meaning there is no strong indication of collinearity issues.

Path coefficients

Path coefficients are the coefficient linking LVs in the structural model. The coefficient

represents the hypothesised relationship of the relationship strength hence the significance of

relevance of the relationships. Accordingly, the primary way to compare the strength of

relationships is to examine the path coefficients. Thereby, the path coefficients indicate to

which extent an independent variable affects a dependent variable (through bootstrapping, the

significance of the relationships are examined- looked at in the next subheading). Path

coefficients vary between -1 and +1, coefficient values closer to +1 indicate a strong positive

relationship (and vice versa for negative values). Higher values denote stronger (predictive)

relationships between the LVs. The closer the value is to 0 signifies a weak relationship and is

not statistically significant.

121

There are three types of effects. Firstly, direct effect- a relationship linking two LVs with a

single arrow between the two. Secondly, an indirect effect- a sequence of relationships with at

least one intervening LV involved, and thirdly total effect- the sum of the direct effect and all

indirect effects linking two LVs. It is important to note that the conceptual model created and

tested in this study (Figure 53 and Figure 54) is designed based on a direct effect relationship.

Table 49

Path coefficients

DEPENDENT VARIABLES

BELIEF CONFIDENCE INTEREST KNOWLEDGE MATHEMATICS MOTIVATION

BELIEF 0.466

CONFIDENCE 0.402

INTEREST 0.284

KNOWLEDGE

MATHEMATICS 0.426

MOTIVATION 0.230

The path coefficient values (Table 49) do not exhibit high values but indicate all positive

relationships between IVs and DVs. This can be depicted visually in Figure 55, showing all

positive relationships exist.

Figure 55

Visual representation of path coefficients

122

Significance of the relationships- t values and p values

The significance of the relationships is further assessed by means of bootstrapping (i.e.,

examining whether the effect of a certain IV on a certain DV is significant). Bootstrapping

analysis evaluates the direct effects of all the hypothesised relationships represented by

statistical testing of the hypothesis (refer to Table 41 earlier). Determining whether a

coefficient is significant depends on its standard error (SE) obtained by bootstrapping that

computes the empirical t values and p values for all structural paths. When an empirical t value

is larger than the critical value, it can be concluded that the coefficient is statistically significant

at a certain error probability. Commonly used critical values for a two-tailed test are 1.65 at a

significant level of 10%, 1.96 at a significant level of 5% and 2.58 at a significant level of 1%.

The confidence level is equivalent to 1; in humanities, it is typical to adapt a significance level

of 0.05, which corresponds to a confidence level of 95%.

If t0.05 > 1.96 (for a 2-tailed test, critical value = 1.96), the hypothesis is supported (Peng & Lai,

2012). Hair et al. (2017) suggest assessing beta values () and the corresponding t-values

through a bootstrapping procedure with a resample of 5000. The individual path coefficient is

interpreted as the standardised coefficient in an ordinary least squares (OLS) regression. A one

unit change of exogenous construct changes the endogenous construct by the size of the path

coefficient when everything else remains constant (Hair et al., 2011).

Table 50

Direct relationships for Hypothesis testing

Hypothesis Relationship
Std
Beta

Std
Error t value p value Decision

95%CI
LL

95%CI
UL

H1 BELIEF CONFIDENCE 0.470 0.073 6.352** 0.000 Supported 0.353 0.592
H2 CONFIDENCE KNOWLEDGE 0.397 0.109 3.689** 0.000 Supported 0.216 0.576
H3 INTEREST CONFIDENCE 0.292 0.100 2.836** 0.005 Supported 0.129 0.454
H4 MATHEMATICS KNOWLEDGE 0.432 0.104 4.103** 0.000 Supported 0.261 0.600
H5 MOTIVATION CONFIDENCE 0.216 0.089 2.578* 0.010 Supported 0.067 0.362

Note.

a. **p < 0.01, *p < 0.05;
b. All relationships supported.

The p values are used to assess the significance levels. When assuming a significance level at

5%, the p value must be smaller than 0.05 to conclude that the relationship under consideration

is significant. It is noted that most p values meet the condition when assuming a significance

123

level of 1%, where the p value is smaller than 0.01, which concludes that the relationship under

consideration is significant not only at a 5% level but also at a 1% level (Table 50).

Level of R2

R square (R2) is the coefficient of determination, which measures the proportion of variance in

a latent endogenous variable explained by the other exogenous expressed as a percentage (Chin,

1998). Hence, R2 measures the model’s predictive accuracy, representing the amount of

variance in the endogenous constructs explained by all exogenous constructs linked to it. R2

values range between 0 and 1, with higher values indicating higher levels of predictive accuracy.

It is considered that values of R2
 0.25: weak, R2

 0.50: moderate and R2
 0.75: substantial

(Hair et al., 2011; Henseler et al., 2009). Chin (1998) articulates that R2 values of 0.67, 0.33

and 0.19 as substantial, moderate and weak. The adjusted R2 values are interpreted similarly to

the R2 square values, as the adjusted R2 controls for model complexity when comparing

different model set-ups (Karch & van Ravenzwaaij, 2020; Harel, 2009).

Table 51

R Square (R2) values

 R SQUARE R SQUARE ADJUSTED OUTCOME

CONFIDENCE 0.713 0.701 Substantial- Moderate

KNOWLEDGE 0.571 0.559 Moderate- Substantial

Note. R2 and R2 adjusted values for CONFIDENCE are substantial and KNOWLEDGE is moderate- R2

 0.19-
0.25: weak, R2

 0.33- 0.50: moderate and R2
 0.67- 0.75: substantial (Hair et al., 2011; Henseler et al., 2009;

Chin, 1998).

124

Figure 56

R Square values (R2) and inner model depicting t values.

Note.
a. LVs (constructs) showing R square values and the inner model showing t values.
b. Model result of bootstrapping subsample 5000.

The R square values represent the amount of variance by the endogenous LVs (constructs)

explained by all exogenous LVs linked to it. As depicted in Table 51 and Figure 56, the

endogenous LVs Confidence can be found to have a Substantial to Moderate outcome while

Knowledge can be expressed to have a Moderate to Substantial outcome (Hair et al., 2011;

Henseler et al., 2009; Chin, 1998). Visual inspection of Figure 56 shows that the endogenous

LVs Mathematics and Confidence are dependent variables (DV) informed by the independent

variables (IV). Note that while Confidence is regarded as endogenous, it is also a mediating

variable that acts as a DV that informs the IV Knowledge. Further calculation of the effect

strength (f²) for each IV allows the assessment to which extent the IV contributes to the

explanation of the DV.

125

Effect size (f2)

The assessment of the effect size allows the observance of the effect of each exogenous LV on

the endogenous LV. In doing so, the effect size assesses how strongly one exogenous LV

contributes to explaining a certain endogenous LV in terms of R2. The effect size formula is as

follows: =

, where R2

included and R2
excluded where the R2 values of the

endogenous latent variable (LV) when a selected exogenous LV is included or excluded from

the model. The change in the R2 values is calculated (Table 52) by estimating the PLS path

model twice, that is, once with the exogenous LV included (yielding R2
included) and the second

time with the exogenous LV excluded (yielding R2
excluded). Therefore, the effect size (f2)

evaluation determines whether the omitted LV has a substantive impact on the endogenous

construct, also known as the effect size of the exogenous LV on the model. The assessment of

the effect size follows Cohen’s (1988) guidelines which are 0.02, 0.15 and 0.35 for small,

medium and large effects, respectively. Effect size values less than 0.02 indicate that there is

no effect.

Table 52

Effect Size (f square)

PREDICTOR ENDOGENOUS R-SQ INCLUDED R-SQ EXCLUDED EFFECT SIZE (F2) OUTCOME

BELIEF CONFIDENCE 0.713 0.590 0.429 strong

CONFIDENCE KNOWLEDGE 0.571 0.494 0.179 moderate

INTEREST CONFIDENCE 0.713 0.675 0.132 weak

MATHEMATICS KNOWLEDGE 0.571 0.467 0.242 moderate

MOTIVATION CONFIDENCE 0.713 0.690 0.080 weak

Note.

a. All effect sizes are valid since no f2 0.02.
b. Effect Size impact indicator are according to Cohen (1988); f2 values: 0.35 (large), 0.15 (medium), and

0.02 (small).

Predictive relevance (Q2)

In addition to evaluating the magnitude of the R2 values as a criterion of prediction accuracy,

researchers also examine predictive relevance (Q2), also known as the Stone-Geisser Q2 value

(Geisser, 1974; Stone, 1974). This measure is an indicator of the model’s predictive power or

predictive relevance. The Q2 value is obtained through blindfolding procedures for a specified

omission distance (D) with values between 5 and 10. Q2 values larger than zero suggest that

126

the model has predictive relevance for a certain endogenous LV (Henseler et al., 2009;

Tenenhaus et al., 2005; Chin, 1988). As remarked by Garson (2016), “values of Q2 greater than

0 means that the PLS-SEM model is predictive of the given endogenous variable under scrutiny”

(p.117). In contrast, values of 0 and below indicate a lack of predictive relevance. Cohen (1988)
2 < 0.15: small 2 < 0.35: medium effect size and Q2

0.35: high effect size. Predictive relevance is assessed through the findings of the construct

cross-validation redundancy, which addresses model fit (Garson, 2016).

Table 53

Construct Cross validated Redundancy

 SSO SSE Q² (=1-SSE/SSO)

BELIEF 225.000 225.000

CONFIDENCE 300.000 189.747 0.368

INTEREST 300.000 300.000

KNOWLEDGE 225.000 137.841 0.387

MATHEMATICS 150.000 150.000

MOTIVATION 225.000 225.000

Note.

a. Blindfolding omission distance D= 7.
b. SSO represents the mean value prediction.
c. SSE is the prediction error when using the model prediction.
d. All Q2 > 0 showing model has predictive relevance (Henseler et al., 2009; Tenenhaus et al., 2005;

Chin, 1998).
e. Predictive Relevance (Q2) of predictor exogenous latent variables as according to Henseler et al.

(2009), Q2 values: 0.35 (large), 0.15 (medium), and 0.02 (small)
f. All Q2

Findings of the Q2 values (Table 53) indicate that endogenous LVs confidence and knowledge

possess high predictive relevance due to Q2 > 0.35. Further suggests that the LVs that inform

confidence and knowledge make a meaningful contribution in promoting predictive relevance

and that the model is meaningful.

127

6.4.2 Questionnaire test two~ Post-test based on programming

The post-test sorts out to gather responses to ten MCQs to assess students' knowledge of

programming concepts they were exposed to during the workshop sessions.

Table 54 shows the percentage responses per option for each question and the common

response for each questi

Refer to Appendix W for the questionnaire.

Table 54

Overall summary response from post- test

Question A B C D Mode

1. 14.67% 22.67% 10.67% D

2. 2.67% 1.33% 0.00% C

3. 2.67% 8.00% 14.67% B

4. 9.33% 14.67% 8.00% B

5. 20.00% 1.33% 5.33% B

6. 12.00% 30.67% 29.33% B

7. 25.33% 0.00% 4.00% C

8. 26.67% 18.67% 46.67% D

9. 2.67% 18.67% 46.67% D

10. 9.33% 13.33% 22.67% C

Drawing from the modes shown in Table 54, most students were correct for seven out of the

10 MCQs. Table 54 indicates that the majority of students obtained a mark of eight out of 10

(22.67%). In addition, more than fifty percent of the students (69.33%) achieved a mark in the

ranges of five (5 out of 10) and eight (8 out of 10) in the programming test. The findings show

that 24.00% of students scored a mark of eighty percent and above (8 out of 10), which includes

1.33% (n=1) achieved nine (9 out of 10), which is the highest mark obtained.

128

Table 55

Distribution of post-test marks obtained (out of 10)

Mark out of 10 N %

1 2 2.67%

2 0 0.00%

3 8 10.67%

4 12 16.00%

5 15 20.00%

6 16 21.33%

7 4 5.33%

8 17 22.67%

9 1 1.33%

10 0 0.00%

N 75 100%

Figure 57

Right vs Wrong responses for programming test

Note. A visual representation of correct and incorrect responses based on Table 54; percentages rounded.

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10

R
e

p
o

n
s

e
in

 %

Item/Question number

POST- TEST: RESPONSES

% RIGHT % WRONG

129

Figure 57 depicts extreme differences in the ranges for correct and incorrect answers to

questions 2 and 8 (see Appendix X). On closer inspection, most students have provided

correct answers to questions 2 and 8.

Table 56

Five-point number summary with mean and SD for programming test (post-test)

Item Value

Minimum 1

Quartile 1 4

Quartile 2 (median) 6

Quartile 3 7

Maximum 9

Mean 5.573

Standard deviation 1.847

Note. Total for test: 10 marks.

It is noticed that the majority of students achieved a mark of 8 out of 10 (22.67%, Table 55);

this mark is greater than the sample mean = 5.573 (Table 56). The box plot (Figure 58)

offers a virtual representation of the 5-point summary from Table 56. The highest mark

obtained was 9 out of 10, while the lowest was 1 out of 10.

Figure 58

Summary of marks for Programming test

Note. Box plot base on marks obtained from the programming test (post-test).

130

There were no outliers reported which shows a wide spread of the marks obtained by the

students. The mean () value is very close to the median (quartile 2), which suggests that data

is fairly normal (normally distributed).

To assess students’ programming abilities through the use of the robotic element, a paired

samples t-test analysis was carried out based on the pre-test (Part A) and post-test

(programming test).

H0: The average difference scored in the post-test will be less than or equal to the pre-test.

Ha: The average difference scored in the post-test will be greater than the pre-test.

Table 57

Paired Samples Statistics

 Mean N Std. Deviation Std. Error Mean

PRE-TEST 47.47 75 19.037 2.198

POST-TEST 55.73 75 18.466 2.132

Table 58

Paired Samples Test (pre-test versus post-test)

A paired sample t-Test revealed an increase in students’ performance after exposure to robotic

and coding workshops t(74) = (Table 58). Further, the post-test mean is greater

than the pre-test mean, 55.73 > 47.47 (Table 57). H0 is rejected, and Ha is accepted, supporting

that the average difference scored in the post-test is greater than the pre-test. The following

excerpts support the above:

“I felt very highly motivated to just complete the workshop activity and then jump to the

next one. Just for you to see it actually works and what new things I could do further”

(P56, Focus Group Interview).

“Each workshop would give you the foundation and get an idea of how this component

connects to the breadboard… and then with that, you can then have the freedom to

play; that's when the fun comes” (P62, Focus Group Interview).

Mean Std.

Deviation

Std. Error

Mean

95% Confidence Interval

of the Difference t df Sig.
(2-tailed)

Lower Upper

8.267 25.961 2.998 14.240 2.294 2.758 74 .007

131

“The robotic element made it most fun and I feel like it solidifies understanding in some

way” (P49, Focus Group Interview).

“I feel like it was much easier for me to understand Python by looking at how and how

the microcontroller execute” (P21, Focus Group Interview).

“Microcontroller helped me understand if something is wrong in my code to see if the

end product works. I would refer back to the prototype design and then check my

code…without the microcontroller, I don't think I would have been able to understand

the code and even do the workshop” (P1, Focus Group Interview).

“I would have understood and caught with Python without the microcontroller, but it

wouldn’t have been so fast, would take me sometime” (P9, Focus Group Interview).

“I always thought it was like overly complicated and I tried watching stuff on YouTube,

but now it is understandable. All those diagrams, whatever. But this workshop helped

me by giving me a push in the right direction” (P42, Focus Group Interview).

“The micro controller helped me and I enjoyed the workshop so much because the

equipment was given… I was able to write programs and see them executed” (P16,

Focus Group Interview).

Interestingly beside the influence of robot coding in the process of learning introductory basic

Computer Programming concepts participants had a keen interest in the activities involving the

flame sensor and traffic light simulation:

“I feel my favourite activity was the LED; it was interesting to see the lights come on

like a traffic light” (P17, Focus Group Interview).

“My favourite activity was programming traffic lights so because I always wonder how

the traffic lights went so now I have a basic idea of how” (P16, Focus Group Interview).

“I also liked using the fire sensor activities” (P15, Focus Group Interview).

“Like the flame one… also liked when we started to use more than two components”

(P42, Focus Group Interview).

Some participants have expressed growing curiosity in robot and further exploration of coding:

“So actually, after the course after the workshop, I actually started to try and modify

and build and code on my own. Actually, I am now working on a prototype with the

buzzer” (P62, Focus Group Interview).

132

“After doing the workshop, I saw the need to go back to the drawing board and actually

study Python in depth and because I would like to develop/build things. And I would

like to program solutions to whatever problems we're facing in the future” (P47, Focus

Group Interview).

6.6 Conclusion

This chapter sought to answer the research questions by analysing the data collected through

quantitative software tools thus findings. For coherence purposes, key interview excerpts are

intertwined within the quantitative analysis in giving rise to the findings.

Data were collected through a series of workshop sessions: a pre-workshop session, six

workshop sessions and a post- workshop session. The pre-workshop session consisted of the

pre-survey, pre-test and ART. The six workshop sessions represented the iterative process

aligned to Kolb’s Experiential Learning Cycle informed by the DBR’s prototyping phase

(discussed in Chapter five: Iteration). Lastly, the post-workshop session consisted of the post-

survey and pre-test.

Through the pre- workshop session, students’ perceptions of coding Robotics were analysed.

In addition, one’s rational ability versus programming knowledge was also tested by examining

mathematical abilities and the ART results. Further, a one sample t-test was carried out by

using the APS as the test value. Through the post-workshop session, a well-defined reflective

model was conceptualised and tested. The study utilised the bootstrapping algorithm to analyse

the significance of the relationships in the model. This ultimately allowed for examining the

contribution of Robotics to the understanding of programming. A paired sample test was

carried out between the pre-test and post-test, which revealed a significant increase in coding

knowledge through Robotics.

133

Chapter seven: Discussion and conclusion
“First, solve the problem. Then, write the code.” ~John Johnson

7.1 Introduction

Chapter six provided an in-depth analysis of the data collected, the findings and discussion.

This chapter16 provides a holistic summary and discussion of findings from Chapters five and

six, thereafter presenting conclusions from the research. The Fourth Industrial Revolution (4IR)

has spurred an educational revolution. Propelled by COVID-19 and lockdown, it has changed

the way teaching and learning is carried out. In response to the national and international

initiatives promoting coding through government policies, curriculum changes, online

platforms and gamified environments, this study set out to explore Robotics in the learning of

programming. All participants in this study met the following quota to form the sample:

registered in a computer course/module; and having had no prior exposure to Computer

Programming in the duration of the degree. The use of DBR grounded in the pragmatic

paradigm supported mixed-methods data collection. The data collection took the form of a pre-

workshop session, six workshop sessions and a post-workshop session, all of which were online

due to the pandemic. The pre-workshop session comprised a pre-survey and problem

solving/logic test (namely Part A: Pre-test based on Computational Thinking; and Part B:

Abstract Reasoning Test). The six workshop sessions, each having three activities, formed the

iteration/cycles of the prototyping phase in terms of DBR, guided by second-generation

Activity Theory. Kolb’s four experiential learning stages influenced the prototyping phase.

Each activity in the workshop was created to accomplish a concrete experience, reflective

observation, abstract conceptualisation and active experimentation. The workshops required

building, coding and testing prototypes. Coding of the robot (artefact) was performed in a text-

based environment using the Python programming language to introduce basic coding concepts

to the subject. The coding concepts covered include data types, variables, arguments, iteration,

conditions and calculations. The post-workshop session consisted of a post-survey and post-

test on programming.

16 For easy reading reference to Kolb’s stages of Experiential Learning is underlined, the second generation
Activity Theory is in italics and PLS-SEM is in bold.

134

7.2 Discussion

The research emerged from a growing interest in coding and Robotics in the context of the 4IR

industrial revolution. Hence the purpose was to explore the use of Robotics to introduce the

basics of programming using a text-based environment rather than a block-based environment

(the rules). Second-generation Activity Theory was found to be ideal for this exploration as the

model contains crucial elements/actors that contribute to the outcome. In accordance with

second-generation Activity Theory, the rules represented a change in the conventional way of

introducing coding to the novice programmer. Hence a shift from conventional block-based

coding to text-based coding using an artefact represented by the robot. The interaction between

the subject and artefact through the code promotes (implication of the rules) Human Computer

Interaction (HCI) which is supported by Activity Theory.

The division of labour represented the way the work is divided; and the community took

account of the social context of second-generation Activity Theory, leading the subject to the

object, resulting in the outcome. While all elements of Activity Theory played a role in attaining

the outcome, the main contributor in this study was the artefact (i.e., the prototype could

successfully complete the mission/s set out in each of the activities. Successful completion of

each mission indicates achievement of the outcome, where the outcome represents the inherent

knowledge of coding. The division of labour is the interaction with the robot kit (the build-

code-test of prototypes), which necessitate that the subject (student) becomes acquainted with

the coding. The qualitative findings from the interview were merged with the quantitative

findings, as the quantitative component was dominant over the qualitative component in this

research design. The qualitative findings supported the quantitative findings. In addressing the

need for coherence, each research question is answered accordingly, as discussed below:

1. What are students’ perceptions of Robotics when learning to program?

Answers for this research question are derived from the pre-survey, post-survey and interviews.

Findings revealed that the subject (students) valued using the mediating artefact (robot) when

learning to code in a text-based environment in achieving the outcome by the rules set out in

the activity network. The building of prototypes resulted in the use of robotic elements acting

as manipulatives. It was highly engaging, which gave meaning to the code, in contrast to

viewing the execution of the code on the screen in a 2D environment. The ideology of build-

code-test (prototype building) resonates through all activities in the workshops. The artefact

135

provided an excitement factor to the learning of code. The majority of students had a strong

interest in the robot (artefact) (Figure 43, Q10). However, their perception of coding was

neutral in the sense of not knowing what to expect (Figure 43: Q9, Q8, Q3) while having a

strong interest in coding (Figure 43: Q1). This strongly indicates that the robotic element acted

as a motivation to the learning of code. In accordance with DBR and pragmatism, the researcher

finds a solution to a real problem. Gauging the afterthoughts of participants in the post-survey

allowed for the creation and testing of a conceptualised model through PLS-SEM analysis. Key

constructs were supported by literature and tested during the analysis. The model met all

respective criteria within the measurement model (indicator reliability, convergent reliability

and discriminant validity) and structural model (collinearity issues, path coefficients,

significance of the relationships, level of R2, effect size f2 and predictive relevance Q2), thereby

deeming the model valid and successful in explaining students' responses. The model depicts

that belief of coding, interest of coding and motivation to code encourages an individual’s

confidence to learn code. Besides these factors (constructs), other influences were the

community in which the subject was located and other elements in the activity system, most

importantly, the subject's exposure to the artefact (robot) through rules. Hence, these factors

significantly influence the subject’s enthusiasm and self-awareness of their ability to learn how

to code – knowledge/outcome. Similar research contains evidence that tasks involving robots

have been shown to improve students' engagement, interest, attitude, and motivation (Hadad et

al., 2021; Karim et al., 2016; Zhang & Wan, 2020).

2. Does a high rational ability contribute to attaining programming knowledge?

Response to this question was informed by Questionnaire A (Part A-pre-test and Part B-ART),

Questionnaire B (post-test) and interviews. The evidence presented when examining students'

mathematical background versus the mark obtained in the pre-test indicates that students with

a Pure Mathematics background obtained higher marks than others. While some studies concur

with this, other research findings have shown otherwise, i.e., that students' mathematical

background does not influence their ability to code (Bubica & Boljat, 2015). However, the type

of rational exercise that one encounters in Mathematics is necessary for Computer

Programming (Saeli et al., 2011). As such, Mathematics exercises trigger the development of

reasoning, Computational Thinking and higher-order thinking skills. These cognitive

processes, which are mentally engaging, might not be explicit to an individual who learns to

code. However, these processes are crucial in a proficient computer programmer. In addition,

they are likely to be influenced and regulated by the community (i.e., an individual's

136

surroundings, including family, friends, peers, other computer students, university, social

context expectations, etc.) and division of labour (communication with people and objects

around the subject that they can draw upon in making decisions and sharing the work).

A Pearson correlation was used to determine the relationship between problem-solving and

logic data sets, namely Part A: Pre-test based on Computational Thinking and Part B: ART

scores. The result showed a significant positive relationship, indicating that the rational and

logical power required when answering are similar. The community strongly influences an

individual’s APS score and mathematical background as there may be expectations. Since the

type of Mathematics and APS score attained are determining factors in South Africa –

determining what one can study and the kind of institution one can attend. Hence to further

understand whether a high rational ability contributes to developing programming knowledge,

the national average APS acceptance at university and the ART scores were examined. A one-

sample t-test proved that there is no significant difference between the ART scores and national

average APS. Although the ART mean > APS mean, this indicated that the students who were

part of the workshops scored above the average APS and most probably had a genuine interest

into coding and Robotics. A high rational ability, measured by Mathematics achievement, ART

scores, and the national average APS, were found to have no significant impact in attaining

programming knowledge. In contrast, the PLS-SEM developed based on the post-survey data

showed that Mathematics plays a role. It is important to note that two out of the five indicator

items were retained, and that the construct with its indicator items was based on the individual’s

(subject) perspective. Being based on a subject’s perspective, the community and division of

labour have a significant influence on the subject’s self-evaluation of their ability. When

coupled with the artefact and rules in reaching the object, the exploration and experience

created within the activity network had a positive effect on motivation, confidence, interest

and belief. This gives reason to negate the argument that a novice needs a high rational ability

before developing coding knowledge (note that higher-order thinking skills are unconsciously

developed through CT during the development of coding knowledge), but perhaps it is the

individual's self-awareness, self-conscious, inherent or intrinsic view of Computer

Programming that plays a more important role in attaining coding knowledge (outcome).

137

3. How does the use of Robotics contribute to the understanding of programming?

The answer to this question was informed by the six workshop sessions involving KELC,

interviews, pre-test and post-test. Kolb’s Experiential Learning Cycle integrated into DBR’s

prototyping phase proved successful. The four stages of KELC were key in designing each

workshop. These stages provided an ideal transition for the individual from a concrete

experience to reflective observation, to an abstract conceptualisation and finally to active

experimentation before returning to the concrete experience, and so on. Each subject would

have transitioned through six cycles as a result of the six workshop sessions.

These six workshop sessions allowed students to develop their knowledge of Python coding in

a text-based environment. Each workshop comprised of three activities that were successfully

based on Kolb’s Experiential Learning Cycles. Activity 1 provided a concrete experience;

Activity 2 offered a reflective observation and abstract conceptualisation and lastly, Activity 3

provided active experimentation.

It was evident from excerpts that introducing Robotics into the introduction of text-based

coding enhanced and promoted visual learning and kinesthetic learning, making learning code

a fun experience. As the subject was not only able to execute/run their code on a computer

screen, but be actively involved in the touch, design, build of the prototype and autonomous

movement of the artefact in real life. This was supported by the first activity in each workshop,

creating a concrete experience. Bringing code to life through robot coding added meaning to

what was coded and what the code was expected to do before initial planning. As the subject

completed the first activity and moved to the second activity, they reflected on their experience

and gained knowledge from their experience (abstract conceptualisation). The radar graphs

shown in Chapter five per workshop activity during the experiential learning cycle depict the

easiness and simplicity of archiving each object. By the time the subject reaches the third and

last activity within each workshop, they can actively experiment and test their coding

knowledge developed due to engagement, reflection, and gained experiences as purported by

KELC.

The positive influence of Robotics resulting in the outcome, knowledge progression, can

promote hybrid knowledge content that goes beyond coding and Robotics. It was evident that

students had to develop skills and knowledge in basic electrical circuitry, gear motion, sensors

and assembly. This was in addition to the problem solving needed in every activity during the

138

workshop. Therefore, Robotics enhances understanding and incorporates multi-disciplinary

content, especially STEM-related subjects. Robotics as a learning tool integrated into the

learning process offers a more innovative learning paradigm (Gaudiello & Zibetti, 2016).

The progressive build-up to the introduction of Computer Programming using the Python

language was successful. The workshop sessions guided by KELC, which formed the

prototyping phase, offered students an opportunity to engage with the robotic element (Arduino

kit) and code (Python), developing their confidence and coding ability as they progressed

through the workshops. As the subject became comfortable coding in text-base using the

artefact, activities for workshops 4 , 5 and 6 were rated easier as compared with workshops 1,

2 and 3.

Each experiential cycle, referred to as workshop sessions, offered a progressive development

of basic coding concepts. The completion of each cycle using the robot as the artefact resulted

in the PLS-SEM showing that confidence played a crucial role in learning to code. This could

be a result of the student reaching the knowledge through the aid of the robot by transposing

through KELC, thereby building their confidence as they cycled through.

Many teachers/instructors find themselves in a dilemma when selecting the first programming

language to use when introducing coding concepts to students (& , 2016). The

From the literature review (Chapter two: Literature review, sub-chapter 2.7 Programming

languages), Python was favoured as an introductory language. Python is less verbose and less

syntax laden, and thus more easily understood by students. For example, Xinogalos et al.

(2018) states that introducing programming through Python is ideal because the development

of programming skills and the algorithmic style of thinking is natural.

A paired sample t-test based was carried out on the pre-test and post-test results, which focused

on coding. This revealed an increase in students’ performance after exposure to robotic and

coding workshops. Undoubtingly, being able to see in reality what the code does upon

execution makes coding meaningful, thus registering in long-term memory, since the coding

concept is now associated with a particular event or experience.

139

7.3 Closing remarks
Robotics was used to introduce basic Computer Programming in a text-based environment

rather than being limited to a computer screen with text-based coding or block-based coding.

Hence, changing the conventional method of introduction to coding and introducing a new

norm (rule) – coding Robotics to introduce programming. While block-based programming

languages make coding accessible to the novice (Maloney et al., 2004), the ultimate

environment for coding is a text-based programming language. The results in this study show

that students participating in an authentic learning experience with text-based code, with the

aid of the robotic element, have proved to be successful. The robotic element simplified the

learning process of how to code in a text-based environment. Hence, introducing code through

physical manipulatives such as Robotics eradicates the abstract nature of coding.

The target participants were students registered in a computer course at tertiary level without

prior exposure to coding. This ensured that students had an absence of Computer Programming

in early years, as there is little to no foundation and awareness of coding in pre-tertiary years

(schooling years). Hence, early and appropriate exposure of Computer Programming should be

incorporated in early schooling in South Africa. In the South African school curriculum, there

is only one subject that offers Computer Programming. The subject is called Information

Technology (IT) 17, offered in the FET 18 (Further Education and Training) phase and the

prescribed programming language is Delphi (Department of Basic Education, 2011). During

this research, the South African National Department of Education had started to pilot a subject

that comprises coding and Robotics at the primary school level. It is hoped that this study’s

findings will contribute to the fine-tuning of this prospective subject.

In response to the 4IR, the South African curriculum should provide the necessary additions to

the subject package offerings by introducing coding and Robotics to early grades. There should

be a growing interest and use of robots in learning due to its diverse nature and ability to

integrate across multiple disciplines. The application of Robotics involves developing technical

knowledge from construction to programming in real-world scenarios (Kaloti-Hallak &

Armoni, 2015). Therefore, the learning of coding can be regarded as secondary knowledge

acquisition along the learning path when integrated with subject matter from other disciplines.

17 An Information Technology teacher is the equivalent to a Computer Science teacher
18 Grades 10-12 late high school

140

This research can have a considerable impact by providing recommendations to policy and

curriculum changes that involve Robotics and coding.

Coding in a text-based programming environment using Python was confirmed to be easy for

the novice programmer enabling them to grasp the basics. The Python language was designed

with education in mind, having simple syntax compared with other languages. The use of

Python to introduce coding allows the focus to be placed on algorithmic thinking and

programming rather than on learning complex, verbose syntax. At the end of each workshop,

students understood the content and were able to apply the skills developed to the next activity

and workshop. Such skills include conditions (if statements), loops (for and while), operators,

functions, basic data types and the Python programming syntax. Irrespective of the

programming language, computational, problem-solving and coding skills can be applied to

any language since only the syntactical structure changes.

Multiple contributing factors play a role in developing coding knowledge when Robotics is

used in the learning process. Mathematics and Computer Science provide a vital foundation for

answering pivotal and complex questions, from quantum computing to advancements in

biotechnology. The study showed that the type of mathematic background is not a contributing

factor for determining rational and logical ability. This was measured through the ART and CT

test. More influential is an individual’s belief about coding, interest in coding and motivation

to code, which affect the individual’s confidence in the knowledge attainment of coding

through the use of Robotics. These factors collectively harness and exercise an individual’s

(subject) problem-solving skills and higher-order thinking skills that develop while becoming

proficient in Computer Programming.

Furthermore, these factors are important for student success since pedagogic techniques that

are considered uninteresting tend to lead to higher student dropout rates. Therefore, it is crucial

to choose approaches that are appealing and fun. The findings show that robot coding is a more

effective method, as compared with traditional approaches, for introducing programming.

The initial plan was to hold face-to-face workshop sessions, but due to the COVID-19

lockdown, online workshops were conducted. Although this was unintentional, the study has

shown that developing one’s coding skills through Robotics in an online environment is

possible.

141

The use of Robotics in the learning of text-based coding using Python made the introduction

of Computer Programming interesting and easier to understand. Robotics simplified the

understanding of Computer Programming, making creating a concrete experience, where one

could see, touch and witness real-life changes (autonomous) to the prototype that was built and

coded. The introduction of coding through the use of Robotics propelled the novice from being

consumers of code to creators and producers.

7.4 Limitation and further research

It would be ideal to repeat this research over three–four years at multiple institutions. In

addition, the possibility of having sub-sampling with three or four sets of participants, based

on a distinct characteristic, would prove to be interesting. The option was not possible given

the current study’s dependence on funds, logistics, limited robotic equipment and the

unforeseen COVID-19 pandemic.

A more extensive data set would have enhanced the findings. However, the current study

yielded comparative data, leading to generalizable findings. A controlled experiment is needed

to claim causation, especially with regards to the post-test and pre-test. However, this was not

necessary as this research was an explorative study that tested an intervention that used

Robotics to learn basic coding using Python.

The Python language avoids the requirement of a variable declaration by supporting dynamic

typing, which does not prevent the novice from typing incorrect code (Nasrawt & Lam, 2019).

Future research could consider using different programming languages other than Python to

allow for the checking of typing prior to execution of compile and run. In some contexts, with

limited ICT infrastructure, robotic equipment might be challenging to procure, thus posing a

challenge for such an approach to the learning of code. The researcher proposes to use coding

and robotics in the first year introduction course to programming and similar studies will be

conducted and results published in journal papers.

142

7.5 Conclusion

The study sought to explore the use of Robotics in the learning of basic coding among a cohort

of students without university-level coding experience. Design Base Research was used to

direct the research. Kolb’s Experiential Learning Cycle integrated into the prototyping phase

of DBR. As a framework of theorising, second-generation Activity Theory was used. All

elements or actors in the second-generation activity system were found to be essential in

obtaining the outcome. Mixed-methods research was used for data collection, according to the

pragmatic paradigm favoured by DBR.

Findings revealed that belief, interest and motivation played a pivotal role in participant

confidence in the acquisition of coding knowledge through the use of Robotics. While

Mathematics might influence coding ability, many studies has shown otherwise. It is key to

point out that, in relation to Activity Theory, participant confidence and perception of

Mathematics were strongly influenced by their surroundings that form their community. After

analysis and interpretation of the results, the findings strongly suggest that the use of Robotics

played a pivotal role in the acquisition of coding knowledge and skills. In addition, the students

expressed the use of Robotics to be exciting and fun, which promoted enthusiasm in learning

to code. The robotic element, as a physical manipulative to the learning of coding, simplified

the understanding of text-based coding. That allowed for early prediction and expectancy of

what to code and which coding structures to use based on the prototype built. The robotic

element ‘brought the code to life’, offering a three-dimensional, autonomous and live output

of the code, which solidified understanding of basic coding structures and syntax (input, output,

condition, loops, etc.). It is hoped that the experience students encountered be shared to

encourage and motivate others in the learning of Computer Programming and Robotics, which

are deemed to be crucial 4IR skills.

143

References

Abdallah, M. (2013). Employing a three-phase design-based research methodology for

expanding student teachers’ language-related literacy practices in an Egyptian pre-

service English education programme. In T. Plomp & N. Nieveen (Eds.), Educational

design research – Part B: illustrative cases (pp. 927-946). SLO.

ACM/IEEE-CS. (2013). Joint Task Force on Computing Curricular: computer science

curricular technical report.

https://www.acm.org/binaries/content/assets/education/cs2013_web_final.pdf

Akcay, N., Avci, H., Gungor, A. & Adiguzel, T. (2018). The relationship between computer

programming and English language skills. In V. Dagiene & E. Jasute (Eds.),

Constructionism, computational thinking and educational innovation. Proceedings of

Constructionism 2018 (pp. 782-785).

http://www.constructionism2018.fsf.vu.lt/file/repository/Proceeding_2018_Constructioni

sm.pdf

Al-Jepoori, M. & Bennett, D. (2018). Understanding of the programming techniques by using

a complex case study to teach advanced object-oriented programming. International

Journal of Educational and Pedagogical Sciences, 12(8), 1060-1064.

programming subject in European higher

education. Informatics in Education, 15(2), 163-182.

https://doi.org/10.15388/INFEDU.2016.09

Alghamdi, A. H. & Li, L. (2013). Adapting design-based research as a research methodology

in educational settings. International Journal of Education and Research, 1(10), 1-12.

Arduino UNO R3 (n.d.). Arduino UNO R3 pin diagram. Elprocus.

https://www.elprocus.com/what-is-arduino-uno-r3-pin-diagram-specification-and-

applications/

Armoni, M., Meerbaum-Salant, O. & Ben-Ari, M. (2015). From scratch to real

programming. ACM Transactions on Computing Education (TOCE), 14(4), 1-15.

https://doi.org/10.1145/2677087

144

Aslam, S. K., Faithful, W. J. & Teahan, W. J. (2018). A middleware to link Lego Mindstorms

robots with 4th generation language software NetLogo. In M. Bramer and M. Petridis

(Eds.), International conference on innovative techniques and applications of artificial

intelligence. (pp. 416-430). https://doi.org/10.1007/978-3-030-04191-5

Astrachan, C. B., Patel, V. K. & Wanzenried, G. (2014). A comparative study of CB-SEM

and PLS-SEM for theory development in family firm research. Journal of Family

Business Strategy, 5(1), 116-128. https://doi.org/10.1016/j.jfbs.2013.12.002

Azad, M. S. A. R., Raouf, M. S., Nabi, R. & Hussein, D. (2018). The impact of teaching

materials on learning computer programming languages in Kurdistan region universities

and institutes. Kurdistan Journal of Applied Research, 3(1), 27-33.

https://doi.org/10.24017/SCIENCE.2018.1.7

Bagozzi, R. P. & Yi, Y. (1988). On the evaluation of structural equation models. Journal of

the Academy of Marketing Science, 16(1), 74-94. https://doi.org/10.1007/BF02723327

Bakker, A. & Van Eerde, D. (2015). An introduction to design-based research with an

example from statistics education. In A. Bikner-Ahsbahs, C. Knipping & N. Presmeg

(Eds.), Approaches to qualitative research in mathematics education (pp. 429-466).

Springer.

Barr, V. & Stephenson, C. (2011). Bringing computational thinking to K-12: What is

involved and what is the role of the computer science education community?. ACM

Inroads, 2(1), 48-54. https://doi.org/10.1145/1929887.1929905

Barrett, S. F. (2020). Arduino I: getting started. Morgan & Claypool.

Bati, T. B., Gelderblom, H. & Van Biljon. J. (2014). A blended learning approach for

teaching computer programming: design for large classes in Sub-Saharan

Africa. Computer Science Education, 24(1), 71- 99.

https://doi.org/10.1080/08993408.2014.897850

Bau, D., Sheldon, J., Gray, J., Kelleher, C. & Turbak, F. (2017). Learnable programming:

blocks and beyond. Communications of the Acm, 60(6), 72-80.

https://doi.org/10.1145/3015455

145

Belski, I. (2009). Teaching thinking and problem solving at university: a course on

TRIZ. Creativity and Innovation Management, 18(2), 101-108.

https://doi.org/10.1111/j.1467-8691.2009.00518.x

Bertram, C. & Christiansen, I. (2014). Understanding research: an introduction to reading

research. Van Schaik.

Biggers, M., Brauer, A. & Yilmaz, T. (2008). Student perceptions of computer science: a

retention study comparing graduating seniors with cs leavers. ACM SIGCSE Bulletin,

40(1), 402-406. https://doi.org/10.1145/1352322.1352274

Biju, S. M. (2013). Difficulties in understanding object oriented programming concepts. In K.

Elleithy & T. Sobh (Eds.), Innovations and advances in computer, information, systems

sciences, and engineering (pp. 319-326). Springer.

Blanca, M. J., Arnau, J., López-Montiel, D., Bono, R. & Bendayan, R. (2013). Skewness and

kurtosis in real data samples. Methodology, 9(1), 78-84. https://doi.org/10.1027/1614-

2241/a000057

Blanchard, J. (2017). Hybrid environments: a bridge from blocks to text. In Proceedings of

the 2017 ACM Conference on International Computing Education Research, (pp. 295-

296). ACM. https://doi.org/10.1145/3105726.3105743

Blotnicky, K. A., Franz-Odendaal, T., French, F. & Joy, P. (2018). A study of the correlation

between STEM career knowledge, mathematics self-efficacy, career interests, and career

activities on the likelihood of pursuing a STEM career among middle school

students. International Journal of STEM Education, 5(1), 1-15.

https://doi.org/10.1186/s40594-018-0118-3

Bogdan, M. (2018). Multiple solutions in linear programming problem. Procedia

Manufacturing, 22(1), 1063-1068. https://doi.org/10.1016/j.promfg.2018.03.151

Boldbaatar, N. & Sendurur, E. (2018). Developing educational 3D games with starlogo: the

role of backwards fading in the transfer of programming experience. Journal of

Educational Computing Research, 57(6), 1468-1494.

https://doi.org/10.1177/0735633118806747

146

Börstler, J. & Schulte, C. (2005). Teaching object oriented modelling with CRC cards and

roleplaying games. In J. Pittman (Ed.), WCCE 2005: 8th IFIP World Conference on

Computers in Education: 40 years of computers in education: What works? (pp. 1-9).

Emerald.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.437.3492&rep=rep1&type=pd

f

Brown, J. D. (1997). Skewness and kurtosis. JALT Testing & Evaluation SIG Newsletter,

1(1), 20-23.

Bubica, N. & Boljat, I. (2015). Programming novices' mental models. In L. G. Chova, A. L.

Martínez, & I. C. Torres (Eds.), Education and New Learning Technologies. Proceedings

of the 7th International Conference on Education and New Learning Technologies (pp.

5882-5891). IATED. https://doi.org/10.13140/RG.2.1.3773.2960

Bubnó, K. T., Takács, V., Ambrus, A. & Vásárhelyi, É. (2014). Solving word problems by

computer programming. In A. Ambrus & É. Vásárhelyi (Eds.), ProMath. Proceedings of

the Problem Solving in Mathematics Education 2013 Conference (pp. 193-208). Eötvös

Loránd University. http://webdoc.urz.uni-halle.de/dl/287/pub/ProMath2013.pdf

Byrne, B. M. (2010). Structural equation modeling with AMOS: basic concepts, applications,

and programming (2nd ed.). Routledge/Taylor & Francis Group.

Byrne, P. & Lyons, G. (2001). The effect of student attributes on success in programming.

ACM SIGCSE Bulletin, 33(3), 49-52. https://doi.org/10.1145/507758.377467

Calao, L. A., Moreno-León, J., Correa, H. E. & Robles G. (2015). Developing mathematical

(Eds.), Design for teaching and learning in a networked world (pp. 17-27). Springer

International.

Calderon, A. C., Crick, T. & Tryfona, C. (2015). Developing computational thinking through

pattern recognition in early years education. In S. Lawson & P. Dickson (Eds.),

Proceedings of the 2015 British HCI Conference (pp. 259-260). Association for

Computing Machinery. https://doi.org/10.1145/2783446.2783600

147

Cansu, S. K. & Cansu, F. K. (2019). An overview of computational thinking. International

Journal of Computer Science Education in Schools, 3(1), 1-11.

https://doi.org/10.21585/ijcses.v3i1.53

Carbone, A., Hurst, J., Mitchell, I. & Gunstone, D. (2009). An exploration of internal factors

influencing student learning of programming. Proceedings of the Eleventh Australasian

Conference on Computing Education - Volume 95 (pp. 25-34). Australian Computer

Society.

Carvalho, M. B., Bellotti, F., Berta, R., De Gloria, A., Sedano, C. I., Hauge, J. B., Hu, J. &

Rauterberg, M. (2015). An activity theory-based model for serious games analysis and

conceptual design. Computer Education, 87(1), 166-181.

https://doi.org/10.1016/j.compedu.2015.03.023

Cass S. (2021). Top programming languages is one of IEEE Spectrum's most popular

interactives. IEEE. https://spectrum.ieee.org/top-programming-languages/#toggle-gdpr

Catlin, D., Kandlhofer, M., Holmquist, S., Csizmadia, A. P., Angel-Fernandez, J. &

Cabibihan, J.-J. (2018). EduRobot taxonomy and Papert’s paradigm.

Constructionism 2018: Constructionism, computational thinking and

educational innovation: Conference proceedings. (pp. 150-159). Vilnius University.

http://www.constructionism2018.fsf.vu.lt/file/repository/Proceeding_2018_Constructioni

sm.pdf

Cazzola, W. & Olivares, D. M. (2015). Gradually learning programming supported by a

growable programming language. IEEE Transactions on Emerging Topics in

Computing, 4(3), 404-415. https://doi.org/10.1109/TETC.2015.2446192

Chandler, P. D. (2017). To what extent are teachers well prepared to teach multimodal

authoring?. Cogent Education, 4(1), 1-19.

https://doi.org/10.1080/2331186X.2016.1266820

Chapman, B. E. & Irwin, J. (2015). Python as a first programming language for biomedical

scientists. In K. Huff & J. Bergstra (Eds.), SciPy 2015. Proceedings of the 14th Python in

Science Conference, (pp. 12-17). SciPy. https://doi.org/10.25080/MAJORA-7B98E3ED-

002

148

Check, J. & Schutt, R. (2012). Research methods in education. SAGE.

https://www.doi.org/10.4135/9781544307725

Chen, Y., Spagna, A., Wu, T., Kim, T. H., Wu, Q., Chen, C., … Fan, J. (2019). Testing a

cognitive control model of human intelligence. Scientific Reports, 9(1), 2898.

https://doi.org/10.1038/s41598-019-39685-2

Chen, Q., Tang, Y., Li, L., Yang, G., Yang, M., Xie, Z., … Huang, R. (2017). A practice on

Lego Mindstorms for computer science freshman experimental education. Destech

Transactions on Social Science, Education and Human Science, 1(1), 17-21.

Chesher, C. (2018). Mechanology, Mindstorms, and the genesis of robots. In S. J. Thompson

(Ed.), Androids, cyborgs, and robots in contemporary culture and society (pp. 120-137).

IGI Global.

Chetty, J. & Barlow-Jones, G. (2012). Bridging the gap: the role of mediated transfer for

computer programming. Proceedings of the 4th International Conference on Education

Technology and Computer (pp. 1-5). IACSIT Press. http://www.ipcsit.com/vol43/001-

ICETC2012-C0019.pdf

Chin, W. W. (1998). Commentary: issues and opinion on structural equation modeling. MIS

Quarterly, 22(1), 7-16. http://www.jstor.org/stable/249674

Chin, W. W. (2010). How to write up and report PLS analyses. In V. E. Vinzi, W. W. Chin, J.

Henseler & H. Wang (Eds.), Handbook of partial least squares (pp. 655-690). Springer.

Chin, K.-Y., Hong, Z.-W. & Chen, Y.-L. (2014). Impact of using an educational robot-based

learning system on students’ motivation in elementary education. IEEE Transactions on

Learning Technologies, 7(4), 333–345. https://doi.org/10.1109/TLT.2014.2346756

Clark, S. K. (2015). Research by design: design-based research and the higher degree

research student. Journal of Learning Design, 8(3), 108-122.

Clemmensena, T., Kaptelininb, V. & Nardic, B. (2016). Making HCI theory work: an

analysis of the use of activity theory in HCI research. Behaviour & Information

Technology, 35(8), 608-627. https://doi.org/10.1080/0144929X.2016.1175507

149

Cochrane, T., Cook, S., Aiello, S., Christie, D., Sinfield, D., Steagall, M. & Aguayo, C.

(2017). A DBR framework for designing mobile virtual reality learning environments.

Australasian Journal of Educational Technology, 33(6), 54-68.

Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Lawrence Erlbaum.

Cohen, L., Manion, L. & Morrison, K. (2002). Research methods in education. Routledge.

Collatto, D., Dresch, A., Lacerda, D. & Bentz, I. (2018). Is action design research indeed

necessary? Analysis and synergies between action research and design science

research. Systemic Practice and Action Research, 31(3), 239-267.

https://doi.org/10.1007/s11213-017-9424-9

programming through

games and contests: overview, characterisation and discussion. Olympiads in

Informatics, 10(1), 39-60. https://doi.org/10.15388/IOI.2016.03

Comer, D. (2017). Essentials of computer architecture. Chapman and Hall.

Cramer, P. (1998). Defensiveness and defense mechanisms. Journal of Personality, 66(6),

879-894. https://doi.org/10.1111/1467-6494.00035

Cramer, D., & Howitt, D. L. (2004). The Sage dictionary of statistics: a practical resource

for students in the social sciences. Sage.

Creswell, J. W. (2003). Research design: qualitative, quantitative, and mixed methods

approaches. (2nd ed.). Sage.

Creswell, J. W. & Clark, V. L. P. (2011). Designing and conducting mixed methods research.

Sage.

Creswell, J. W. & Creswell, J. D. (2018). Research design: qualitative, quantitative and

mixed methods approaches (5th ed.). Sage.

Das, K. R. & Imon, A. H. M. R. (2016). A brief review of tests for normality. American

Journal of Theoretical and Applied Statistics, 5(1), 5-12.

https://doi.org/10.11648/j.ajtas.20160501.12

150

Daly, T. (2011). Minimizing to maximize: an initial attempt at teaching introductory

programming using Alice. Journal of Computing Sciences in Colleges, 26(5), 23-30.

Department of Basic Education. (2018). Annual report.

https://www.education.gov.za/Resources/Reports.aspx.

DeCarlo L. T. (1997). On the meaning and use of kurtosis. Psychological Methods, 2(3), 292-

307. https://doi.org/10.1037/1082-989X.2.3.292

Demo, G., Neiva, E. R., Nunes, I. & Rozzett, K. (2012). Human resources management

policies and practices scale (HRMPPS): exploratory and confirmatory factor

analysis. BAR-Brazilian Administration Review, 9(4), 395-420.

https://doi.org/10.1590/S1807-76922012005000006

Denning, P. J. (2009). Beyond computational thinking. Communications of the ACM. 52(6),

28-30. https://doi.org/10.1145/1516046.1516054

Denscombe, M. (2014). The good research guide (5th ed.). McGraw-Hill.

Derus, S. R. & Ali, A. Z. M. (2012). Difficulties in learning programming: views of students.

In S. I. A. Dwiningrum (Ed.), Current issues in education. Proceedings of the

International Centre for Innovation in Education (pp. 74-78).

https://doi.org/10.13140/2.1.1055.7441

Department of Basic Education. (2011). Curriculum assessment policy statement. Pretoria,

South Africa: Department of Education.

Dewey, J. (1905). The postulate of immediate empiricism. The Journal of Philosophy,

Psychology and Scientific Methods, 2(15), 393-399. https://doi.org/10.2307/2011400

Dewey, J. (1925). Experience and nature. Dover.

Dewey, J. (1929). The quest for certainty. Minton, Balch and Company.

Diamantopoulos, A. & Siguaw, J. A. (2006). Formative versus reflective indicators in

organizational measure development: comparison and empirical illustration. British

Journal of Management, 17(4), 263-282. https://doi.org/10.1111/j.1467-

8551.2006.00500.x

151

Dijkstra, T. K. & Henseler, J. (2015). Consistent partial least squares path modeling. MIS

Quarterly, 39(2), 297-316. https://doi.org/10.25300/MISQ/2015/39.2.02

Dikko, M. (2016). Establishing construct validity and reliability: pilot testing of a qualitative

interview for research in Takaful (Islamic insurance). The Qualitative Report, 21(3), 521-

528. https://doi.org/10.46743/2160-3715/2016.2243

Dmitrieva, T. A., Prutzkow, A. V. & Pylkin, A. N. (2019). Two-level study of object-oriented

programming by university students. Modern Information Technology and IT

Education, 15(1), 200-206. https://doi.org/10.25559/SITITO.15.201901.200-206

Doane, D. P. & Seward, L. E. (2011). Measuring skewness: a forgotten statistic?. Journal of

Statistics Education, 19(2). https://doi.org/10.1080/10691898.2011.11889611

Doshi, V. P. & Patil, V. (2016). Competitor driven development hybrid of extreme

programming and feature driven reuse development. 2016 International Conference on

Emerging Trends in Engineering, Technology and Science (ICETETS) (pp. 50-55).

IEEE. https://doi.org/10.1109/ICETETS.2016.7602985

Douglas, M. E., Peecksen, S., Rogers, J. & Simmons, M. (2019). College students' motivation

and donfidence for ePortfolio use. International Journal of ePortfolio, 9(1), 1-16.

Economist (2018, July 26). Python is becoming the world’s most popular coding language

https://www.economist.com/graphic-detail/2018/07/26/python-is-becoming-the-worlds-

most-popular-coding-language

Elaine, J. H. (2013). What is maths? Live science. McGraw Hill.

Engeström, Y. (2001). Expansive learning at work: toward an activity theoretical

reconceptualization. Journal of Education and Work, 14(1), 133-156.

https://doi.org/10.1080/13639080020028747

Erdogmus, H., Morisio, M. & Torchiano, M. (2005). On the effectiveness of the test-first

approach to programming. IEEE Transactions on Software Engineering, 31(3), 226-237.

https://doi.org/10.1109/TSE.2005.37

152

Erol, O. & Kurt, A. A. (2017). The effects of teaching programming with scratch on pre-

service information technology teachers’ motivation and achievement. Computers in

Human Behavior, 77(1), 11–18. https://doi.org/10.1016/j.chb.2017.08.017

Fagan, M. (2002). Design and code inspections to reduce errors in program development. In

M. Broy & E. Denert (Eds.), Software Pioneers (pp. 575- 607). Springer.

Fang, X. (2012). Application of the participatory method to the computer fundamentals

course, Affective Computing and Intelligent Interaction. Advances in Intelligent and Soft

Computing, 137(1), 185-189.

Farag, W., Ali, S. & Deb, D. (2013). Does language choice influence the effectiveness of

online introductory programming courses? In W. D. Armitage (Ed.), Information

technology education. SIGITE '13: Proceedings of the 14th annual ACM SIGITE

Conference on Information Technology Education (pp. 165-170). Association for

Computing Machinery. https://doi.org/10.1145/2512276.2512293

Feilzer, M. (2010). Doing mixed methods research pragmatically: implications for the

rediscovery of pragmatism as a research paradigm. Journal of Mixed Methods

Research, 4(1), 6-16. https://doi.org/10.1177/1558689809349691

Fischer, M. & Sliwka, D. (2018). Confidence in knowledge or confidence in the ability to

learn: an experiment on the causal effects of beliefs on motivation. Games and Economic

Behavior, 111, 122-142. https://doi.org/10.1016/j.geb.2018.02.005

earning environments. Journal of Computer Assisted

Learning, 34(1), 63-70. https://doi.org/10.1111/jcal.12214

Ford, C., McNally, D. & Ford, K. (2017). Using design-based research in higher education

innovation. Online Learning, 21(3), 50-67.

Fornell, C. & Larcker, D. F. (1981). Evaluating structural equation models with unobservable

variables and measurement error. Journal of Marketing Research, 18(1), 39-50.

https://doi.org/10.2307/3151312

153

Frost, J. (n.d.) Introduction to bootstrapping in statistics with an example. Making statistics

intuitive. https://statisticsbyjim.com/hypothesis-testing/bootstrapping/

Feng, A., Gardner, M. & Feng, W. C. (2017). Parallel programming with pictures is a Snap!.

Journal of Parallel and Distributed Computing, 105(1), 150-162.

https://doi.org/10.1016/j.jpdc.2017.01.018

Ferrari, A., Poggi, A. & Tomaiuolo, M. (2016). Object oriented puzzle programming. Mondo

Digitale, 15(2016), 1-10.

Gal-Ezer, J. & Stephenson, C. (2010). Computer science teacher preparation is critical. ACM

Inroads, 1(1), 61-66. https://doi.org/10.1145/1721933.1721953

García-Peñalvo, F. J. (2018). Computational thinking. IEEE Ibero-American Journal of

Learning Technologies, 13(1), 17-19. https://doi.org/10.1109/RITA.2018.2809939

García-Peñalvo, F. J. (2018). Computational thinking and programming education principles.

In F. J. García-Peñalvo (Ed.), TEEM'18: Proceedings of the Sixth International

Conference on Technological Ecosystems for Enhancing Multiculturality (pp. 14-17).

Association for Computing Machinery https://doi.org/10.1145/3284179.3284184

Garson, G. D. (2016). Partial least squares: regression and structural equation models.

Statistical Associates Publishers.

Gaudiello, I. & Zibetti, E. (2016). Learning robotics, with robotics, by robotics: educational

robotics. John Wiley & Sons.

Gasparetto, A. & Scalera, L. (2019). From the unimate to the delta robot: the early decades of

industrial robotics. History of Mechanism and Machine Science, 37(1), 284-295.

https://doi.org/10.1007/978-3-030-03538-9_23

Gefen, D., Straub, D. & Boudreau, M. C. (2000). Structural equation modeling and

regression: guidelines for research practice. Communications of the Association for

Information Systems, 4(1), 1-78. https://doi.org/10.17705/1CAIS.00407

Geisser, S. (1974). A predictive approach to the random effect model. Biometrika, 61(1),

101-107. https://doi.org/10.1093/BIOMET/61.1.101

154

Godwin, J. A. (2021). Linear regression with bootstrapping. Towards data science.

https://towardsdatascience.com/linear-regression-with-bootstrapping-

4924c05d2a9#:~:text=The%20bootstrap%20method%20can%20be,small%20changes%2

0in%20data%20values

Govender, I. (2010). From procedural to object-oriented programming (OOP) - an

exploratory study of teachers' performance. South African Computer Journal, 46(2010),

14-23. https://hdl.handle.net/10520/EJC28111

Goff, W. M. & Getenet, S. (2017). Design based research in doctoral studies: adding a new

dimension to doctoral research. International Journal of Doctoral Studies, 12(1), 107-

121.

Govender, R. G. & Govender, D. W. (2020), ROBOPROG: Learning of flowcharts through a

gamified experience, International Journal of Business and Management Studies, 12(2).

612-624.

Govender, T. P. & Govender, D. W. (2016). Peer-to-peer programming versus individualised

programming: the real world. The Independent Journal of Teaching and Learning, 11(1),

56-68. http://hdl.handle.net/11622/120

Graham, R. L., Knuth, D. E., Patashnik, O. & Liu. S. (1989). Concrete mathematics: a

foundation for computer science. Computers in Physics, 3(106), 106-107.

https://doi.org/10.1063/1.4822863

Grover, S. & Pea, R. (2013). Computational thinking in K–12: a review of the state of the

field. Educational Researcher, 42(1), 38–43. https://doi.org/10.3102/0013189X12463051

Hadad, S., Shamir-Inbal, T., Blau, I. & Leykin, E. (2021). Professional development of code

and robotics teachers through Small Private Online Course (SPOC): teacher centrality

and pedagogical strategies for developing computational thinking of students. Journal of

Educational Computing Research, 59(4), 763-791.

https://doi.org/10.1177/0735633120973432

Hair, J. F., Black, W.C., Babin, B.J. & Anderson, R.E. (2010). Multivariate data analysis (7th

ed.). Pearson International.

155

Hair, J. F., Hult, G. T. M., Ringle, C. & Sarstedt, M. (2016). A primer on partial least

squares structural equation modeling (PLS-SEM). Sage.

Hair, J. F., Ringle, C. M. & Sarstedt, M. (2011). PLS-SEM: indeed a silver bullet. Journal of

Marketing Theory and Practice, 19(2), 139-152. https://doi.org/10.2753/MTP1069-

6679190202

Hair, J. F., Sarstedt, M., Hopkins, L. & Kuppelwieser, V. G. (2014). Partial least squares

structural equation modeling (PLS-SEM): an emerging tool in business research.

European Business Review, 26 (2), 106-121. https://doi.org/10.1108/EBR-10-2013-0128

Hair, J. F., Sarstedt, M., Ringle, C. M. & Gudergan, S. P. (2017). Advanced issues in partial

least squares structural equation modeling. Sage.

Hair, J. F., Sarstedt, M., Ringle, C. M. & Mena, J. A. (2012). An assessment of the use of

partial least squares structural equation modeling in marketing research. Journal of the

Academy of Marketing Science, 40(3), 414-433. https://doi.org/10.1007/s11747-011-

0261-6

Hamzah, N., Shaari, N. & Rahman, H. (2019). Undergraduate computer science students’

perception and motivation: a feasibility study and a proposed technique for multimedia

approach in teaching and learning introductory programming. In N. Mohamad Noor, B.

Ahmad, M. Ismail, H. Hashim & B. Abdullah Baharum (Eds.), Proceedings of the

Regional Conference on Science, Technology and Social Sciences: Social Sciences (pp.

187-201). Springer. https://doi.org/10.1007/978-981-13-0203-9_18

Harel, O. (2009). The estimation of R 2 and adjusted R 2 in incomplete data sets using

multiple imputation. Journal of Applied Statistics, 36(10), 1109-1118.

https://doi.org/10.1080/02664760802553000

Hasan, H. (1999). Integrating IS and HCI using activity theory as a philosophical and

theoretical basis. Australasian Journal of Information Systems, 6(2), 44-55.

https://doi.org/10.3127/ajis.v6i2.305

Hendrix, R. & Weeks, M. (2018). First programming language for high school students. In E.

Langran & J. Borup (Eds.), Proceedings of Society for Information Technology &

Teacher Education International Conference (pp. 1896-1903). Association for the

156

Advancement of Computing in Education.

https://www.learntechlib.org/primary/p/182788/

Henseler, J., Ringle, C.M. & Sarstedt, M. (2015). A new criterion for assessing discriminant

validity in variance-based structural equation modeling. Journal of the Academy of

Marketing Science, 43(1), 115-135. https://doi.org/10.1007/s11747-014-0403-8

Henseler, J., Ringle, C.M. & Sinkovics, R.R. (2009). The use of partial least squares path

modeling in international marketing. In R. R. Sinkovics & P. N. Ghauri (Eds.), New

challenges to international marketing (advances in international marketing) (pp. 277-

319). Emerald Group Publishing.

Homer, M. & Noble, J. (2017). Lessons in combining block-based and textual programming.

Journal of Visual Languages and Sentient Systems, 3(1), 22-39.

https://doi.org/10.18293/VLSS2017-007

Hosanee, Y. & Panchoo, S. (2015). An enhanced software tool to aid novices in learning

object oriented programming (OOP). In 2015 International Conference on Computing,

Communication and Security (ICCCS) (pp. 1-7). IEEE.

https://doi.org/10.1109/CCCS.2015.7374197

Hourani, H., Wasmi, H. & Alrawashdeh, T. (2019). A code complexity model of object

oriented programming (OOP). In K. M. Jaber (Ed.), 2019 IEEE Jordan International

Joint Conference on Electrical Engineering and Information Technology (JEEIT):

Proceedings. (pp. 560-564). IEEE. https://doi.org/10.1109/JEEIT.2019.8717448

Howe, K. R. (1988). Against the quantitative-qualitative incompatibility thesis or dogmas die

hard. Educational Researcher, 17(8), 10-16.

https://doi.org/10.3102/0013189X017008010

Hromkovi , J., Kohn, T., Komm, D. & Serafini, G. (2016). Examples of algorithmic thinking

in programming education. Olympiads in Informatics, 10(1), 111-124.

Huang, Y., Zhang, T. & Xu, L. (2018). The development of a game with applications of

object-oriented programming concepts. American Journal of Advanced Research, 2(1),

7-13. https://doi.org/10.5281/zenodo.1410734

157

Hulin, C., Netemeyer, R. & Cudeck, R. (2001). Can a reliability coefficient be too high?.

Journal of Consumer Psychology, 10(1), 55-58. https://doi.org/10.2307/1480474

Hulland, J. (1999). Use of partial least squares (PLS) in strategic management research: a

review of four recent studies. Strategic Management Journal, 20(2), 195-204.

https://doi.org/10.1002/(SICI)1097-0266(199902)20:2<195::AID-SMJ13>3.0.CO;2-7

Husain, M., Patil, S., Shettar, P., Meti, A.S. & Bidari, I. (2016). The role of programming

paradigms inbuilding projects. Journal of Engineering Education Transformations,

29(3), 155-160. https://doi.org/10.16920/jeet/2016/v29i3/85251

Inayama, Y. & Hosobe, H. (2018). Toward an efficient user interface for block-based visual

programming. In J. Cunha, J. P. Fernandes, C. Kelleher, G. Engels and J. Mendes (Eds.),

Proceedings 2018 IEEE Symposium on Visual Languages and Human-Centric

Computing (VL/HCC) (pp. 293-294). IEEE.

https://doi.org/10.1109/VLHCC.2018.8506530

Ioannou, A. & Makridou, E. (2018). Exploring the potentials of educational robotics in the

development of computational thinking: A summary of current research and practical

proposal for future work. Education and Information Technologies, 23(6), 2531-2544.

https://doi.org/10.1007/s10639-018-9729-z

Jackson, D. & Miller, R. (2009). A new approach to teaching programming. MIT Press. http:

//people.csail.mit.edu/dnj/articles/teaching-6005.pdf

Jacob, S., Nguyen, H., Tofel-Grehl, C., Richardson, D. & Warschauer, M. (2018). Teaching

computational thinking to English learners. NYS TESOL Journal, 5(2), 12-24.

https://doi.org/10.26716/jcsi.2018.01.1.1

Javidi, G., & Sheybani, E. (2018). Teaching computer programming through game design: a

game-first approach. GSTF Journal on Computing, 4(1), 17-22.

Job Test Prep (2019). Free Abstract Reasoning Test. https://www.jobtestprep.co.uk/free-

abstract-reasoning-test

158

Jonassen, D. H. (1999). Designing constructivist-learning environments. In C. Reigeluth

(Ed.), Instructional design theories and models: a new paradigm of instructional theory

(pp. 215-239). Lawrence Erlbaum Associates.

Jonassen, D. H. & Rohrer-Murphy, L. (1999). Activity theory as a framework for designing

constructivist learning environments. Educational Technology Research and

Development, 47(1), 61-79. https://doi.org/10.1007/BF02299477

Kátai, Z. (2014). The challenge of promoting algorithmic thinking of both sciences and

humanities oriented learners. Journal of Computer Assisted Learning, 31(4), 287-299.

http://dx.doi.org/10.1111/jcal.12070

-12 students: code.org.

Computers in Human Behavior, 52(1), 200-210.

https://doi.org/10.1016/j.chb.2015.05.047

, Y. (2014). The effects of teaching programming via Scratch on

problem solving skills: a discussion from learners' perspective. Informatics in

Education, 13(1), 33-50.

Kaloti-Hallak, F. & Armoni, M. (2015). The effectiveness of robotics competitions on

students’ learning of computer science. Olympiads in Informatics, 9(1), 89–112.

http://doi.org/10.15388/ioi.2015.08

Kalra, H. K. & Chadha, R. (2018, March). A review study on humanoid robot SOPHIA based

on artificial intelligence. International Journal of Technology and Computing (IJTC),

4(3), 31-33.

Karch, J. & Van Ravenzwaaij, D. (2020). Improving on adjusted R-squared. Collabra:

Psychology, 6(1). https://doi.org/10.1525/collabra.343

Karim, M. E., Lemaignan, S. & Mondada, F. (2016). A review: can robots reshape K-12

STEM education?. 2015 IEEE International Workshop on Advanced Robotics and its

Social Impacts (ARSO) (pp. 1-8). Curran Associates.

https://doi.org/10.1109/ARSO.2015.7428217

159

Karp, T., Gale, R., Lowe, L. A., Medina, V. & Beutlich, E. (2010). Generation NXT: building

young engineers with LEGOs. IEEE Transactions on Education, 53(1), 80-87.

https://doi.org/10.1109/TE.2009.2024410

Khaleel, F. L., Ashaari, N. S., Tengku, T. S. M. & Ismail, A. (2017). Programming learning

requirements based on multi perspectives. International Journal of Electrical and

Computer Engineering, 7(3), 1299-1307. http://doi.org/10.11591/ijece.v7i3.pp1299-1307

Khasawneh, E., Gosling, C. & Williams, B. (2021). What impact does maths anxiety have on

university students?. BMC psychology, 9(1), 1-9. https://doi.org/10.1186/s40359-021-

00537-2

Kim, T. H. & White, H. (2004). On more robust estimation of skewness and

kurtosis. Finance Research Letters, 1(1), 56-73. https://doi.org/10.1016/S1544-

6123(03)00003-5

Kivunja, C. & Kuyini, A. (2017). Understanding and applying research paradigms in

educational contexts. International Journal of Higher Education, 6(5), 26-41.

https://doi.org/10.5430/ijhe.v6n5p26

Knox, D., Wolz, U., Joyce, D., Koffman, E., Krone, J., Laribi, A., Myers, J. P., Proulx, V. K.,

Reek, K. (1996). Use of laboratories in computer science education: guidelines for good

practice: report of the working group on computing laboratories. ACM Sigcue

Outlook, 24(3), 167-181. https://doi.org/10.1145/237466.237644

Kölling, M. (1999). The problem of teaching object-oriented programming, part 1:

languages. Journal of Object-oriented Programming, 11(8), 8-15.

Kolb, D. (2015). Experiential learning: experience as the source of learning and

development (2nd ed.). Pearson.

Kolb, A. & Kolb, D. (2018). Eight important things to know about the experiential learning

cycle. Australian Educational Leader, 40(3), 8-14.

Kovács, L. I. (2019). Gesture-driven LEGO robots. The Journal of Sapientia Hungarian

University of Transylvania, 11(1), 80-94. https://doi.org/10.2478/ausi-2019-0006

160

Krueger, R. A. & Casey, M. A. (2015). Focus group interviewing. In K. E. Newcomer, H. P.

Hatry & J. S. Wholey (Eds.), Handbook of practical program evaluation (pp. 506-534).

John Wiley and Sons.

Kühn, T. & Cazzola, W. (2016). Apples and oranges: comparing top-down and bottom-up

language product lines. In H. Mei (Ed.), SPLC '16: Proceedings of the 20th International

Systems and Software Product Line Conference (pp. 50-59). Association for Computing

Machinery. https://doi.org/10.1145/2934466.2934470

Kucuk, S. & Sisman, B. (2017). Behavioral patterns of elementary students and teachers in

one-to-one robotics instruction. Computers & Education, 111(1), 31-43.

https://doi.org/10.1016/j.compedu.2017.04.002

Kuncoro, R. D. K., Arifudin, R. & Sugiharti, E. (2018). Implementation of NXT 2.0

Mindstorm robot sensors on mobile education for students. In Integrating knowledge for

future sustainable development. International Summit on Science Technology and

Humanity (ISETH 2018) (pp. 125-130). Universitas Muhammadiyah Surakata.

https://publikasiilmiah.ums.ac.id/bitstream/handle/11617/11668/15.pdf?sequence=1&isA

llowed=y

Kurdi, H. A. (2013). Review on aspect oriented programming. International Journal of

Advanced Computer Science and Applications, 4(9). 22-27.

https://doi.org/10.14569/IJACSA.2013.040904

Kurebayashi, S., Kamada, T. & Kanemune, S. (2006). Learning computer programming with

autonomous robots. In R. T. Mittermeir (Ed.), Informatics education – the bridge

between using and understanding computers. Proceedings of the International

Conference in Informatics in Secondary Schools – Evolution and Perspectives, ISSEP

2006, Vilnius, Lithuania, November 7-11 (pp. 138-149). Springer.

https://doi.org/10.1007/11915355_13

Kuutti, K. (1996). Activity theory as a potential framework for human-computer interaction

research. In B. A. Nardi (Ed.), Ontext and oniciousness: activity theory and human

computer interaction (pp.17-44). MIT Press.

161

Law, L. & Fong, N. (2020). Applying partial least squares structural equation modeling

(PLS-SEM) in an investigation of undergraduate students’ learning transfer of academic

English. Journal of English for Academic Purposes, 46(2020), 1-22.

https://doi.org/10.1016/j.jeap.2020.100884

Lahtinen, E., Ala-Mutka, K. & Järvinen, H. M. (2005). A study of the difficulties of novice

programmers. ACM Sigcse Bulletin, 37(3), 14-18.

https://doi.org/10.1145/1067445.1067453

LaForce, M., Noble, E. & Blackwell, C. (2017). Problem-based learning (PBL) and student

interest in STEM careers: the roles of motivation and ability beliefs. Education

Sciences, 7(4), 92. https://doi.org/10.3390/educsci7040092

Lategan, T. (2020, May 19). Digital skills South African graduates will need in 2020.

Business Chief. https://businesschief.eu/leadership-and-strategy/digital-skills-south-

african-graduates-will-need-2020

Lee, V. C. S., Yu, Y. T., Tang, C. M., Wong, T. L. & Poon, C. K. (2018). A virtual

debugging advisor for supporting learning in computer programming courses. Journal of

Computer Assisted Learning, 34(1), 243-258. https://doi.org/10.1111/jcal.12238

Leyk, T., McInvale, R. & Chen, L. (2017). Structured peer learning program - an innovative

approach to computer science education. Cornell University.

https://arxiv.org/pdf/1703.04174.pdf

Lie, J., Hauge, I. & Meany, T. (2017). Computer programming in the lower secondary

classroom: learning mathematics. Italian Journal of Educational Technology, 25(2), 27-

35. https://doi.org/10.17471/2499-4324/911

Lin, H. M., Lee, M. H., Liang, J. C., Chang, H. Y., Huang, P. & Tsai, C. C. (2020). A review

 British

Journal of Educational Technology, 51(4), 1354-1372.

https://doi.org/10.1111/bjet.12890

Lin, H. T. & Kuo, T. H. (2010). Teaching programming technique with edutainment robot

construction. In V. Mahadevan & G. S. Tomar (Eds.), Education technology and

162

computer. Proceedings of the 2nd International Conference on Education Technology and

Computer (pp. 226-229). IEEE. https://doi.org/10.1109/ICETC.2010.5529557

Lincoln, Y. S. & Guba, E. G. (1985). Naturalistic inquiry. Sage.

Lincoln, Y. S., Lynham, S. A. & Guba, E. G. (2011). Paradigmatic controversies,

contradictions, and emerging confluences, revisited. In N. K. Denzin & Y. S. Lincoln

(Eds.), The Sage handbook of qualitative research (4th ed., pp. 97-128). Sage.

Lions, S. & Peña, M. (2016). Reading comprehension in Latin America: difficulties and

possible interventions. New Directions for Child and Adolescent Development,

2016(152), 71-84. https://doi.org/10.1002/cad.20158

Liu, Y., Sun, M. & Chen, Y. (2016). Teaching guidance in programming courses from

procedure-oriented to object-oriented. In X. Xiao, S.-B. Tsai & R. Feng (Eds.),

Proceedings of the 2nd International Conference on Social Science and Higher Education

(pp. 250-253). Atlantis Press. https://doi.org/10.2991/icsshe-16.2016.80

Lo, C. A., Lin, Y. T. & Wu, C. C. (2015). Which programming language should students

learn first? A comparison of Java and Python. In J. E. Guerrero (Ed.), Proceedings 2015

International Conference on Learning and Teaching in Computing and Engineering

LaTiCE 2015 (pp. 225-226). IEEE. https://scholar.lib.ntnu.edu.tw/en/publications/which-

programming-language-should-students-learn-first-a-comparis

Lye, S. Y. & Koh, J. H. L. (2014). Review on teaching and learning of computational

thinking through programming: What is next for K-12?. Computers in Human Behavior,

41(1), 51-61. https://doi.org/10.1016/j.chb.2014.09.012

Maisiri, W. & Van Dyk, L. (2021). Industry 4.0 skills: a perspective of the South African

manufacturing industry. SA Journal of Human Resource Management, 19(0), a1416.

https://doi.org/10.4102/sajhrm.v19i0.1416

Malinga, S. (2021, February 9). Software developers in high demand in SA. ITWEB.

https://www.itweb.co.za/content/4r1ly7RblGE7pmda

Maloney, J., Resnick, M., Rusk, N., Silverman, B. & Eastmond, E. (2010). The Scratch

programming environment. ACM Transactions on Computing Education, 10(4), 1-15.

https://doi.org/10.1145/1868358.1868363

163

Mannila, L. & De Raadt, M. (2006). An objective comparison of languages for teaching

introductory programming. In A. Berglund (Ed.), Baltic Sea '06: Proceedings of the 6th

Baltic Sea Conference on Computing Education Research: Koli Calling 2006 (pp. 32-

37). Association for Computing Machinery https://doi.org/10.1145/1315803.1315811

Mardia, K. V. (1970) Measures of multivariate skewness and kurtosis with applications.

Biometrika, 57(1), 519-530. https://doi.org/10.2307/2334770

Mardia, K. V. (1974). Applications of some measures of multivariate skewness and kurtosis

in testing normality and robustness studies. Sankhya: The Indian Journal of Statistics,

36(2), 115-128.

Margulieux, L. E., Catrambone, R. & Guzdial, M. (2016). Employing subgoals in computer

programming education. Computer Science Education, 26(1), 44-67.

https://doi.org/10.1080/08993408.2016.1144429

Martin, N. L., & Soares, A. L. (2017). The introductory programming course issues in

information systems. International Association for Computer Information Systems,

16(3), 128-137. https://doi.org/10.4018/978-1-5225-1034-5.ch005

Mead, J., Gray, S., Hamer, J., James, R., Sorva, J., Clair, C. S. & Thomas, L. (2006). A

cognitive approach to identifying measurable milestones for programming skill

acquisition. ACM SIGCSE Bulletin, 38(4), 182-194.

https://doi.org/10.1145/1189215.1189185

Memon, A. H. & Rahman, I. A. (2014). SEM-PLS analysis of inhibiting factors of cost

performance for large construction projects in Malaysia: perspective of clients and

consultants. The Scientific World Journal, 2014(1), 1-9.

https://doi.org/10.1155/2014/165158

Mendes, A. J., Paquete, L., Cardoso, A. & Gomes, A. (2012). Increasing student commitment

in introductory programming learning. In Soaring to new heights in engineering

education: 2012 Frontiers in Education Conference Proceedings (pp. 82-87). IEEE.

https://doi.org/10.1109/FIE.2012.6462486

Merkouris, A., Chorianopoulos, K. & Kameas, A. (2017). Teaching programming in

secondary education through embodied computing platforms: robotics and

164

wearables. ACM Transactions on Computing Education (TOCE), 17(2), 1-22.

https://doi.org/10.1145/3025013

Merriam, S. (1998). Qualitative research and case study applications in education (2nd ed.).

Jossey-Bass.

Miles, B. (2016, January 7). Making the links between computing and mathematics. An Open

Mind. http://milesberry.net/2016/01/making-the-links-between-computing-and-

mathematics/

Milková, E. (2012). Development of algorithmic thinking and imagination: base of

programming skills. Proceedings of the 16th WSEAS International Conference on

Communications and Computers (pp. 68-72).

Misfeldt, M. & Ejsing-Duun, S. (2015). Learning mathematics through programming: an

instrumental approach to potentials and pitfalls. In K. Krainer & N. Vondrová (Eds.),

Research in Mathematics Education. Proceedings of the Ninth Congress of the European

Society for Research in Mathematics Education (CERME9) (pp. 2524-2530). Charles

University in Prague, Faculty of Education; ERME https://hal.archives-ouvertes.fr/hal-

01289367/document

Moniruzzaman, M., Zishan, M. S. R., Rahman, S., Mahmud, S. & Shaha, A. (2018). Design

and implementation of urban search and rescue robot. International Journal of

Engineering and Manufacturing (IJEM), 8(2), 12-20.

https://doi.org/10.5815/ijem.2018.02.02

Morgan, D. L. (2014). Pragmatism as a paradigm for social research. Qualitative Inquiry,

20(8), 1045-1053. https://doi.org/10.1177/1077800413513733

Nanz, S. & Furia, C. A. (2015). A comparative study of programming languages in rosetta

code. In P. Kellenberger (Ed.), IEEE/ACM 37th IEEE International Conference on

Software Engineering (pp. 778-788). IEEE. doi: 10.1109/ICSE.2015.90

Nasrawt, Z. O. & Lam, M. O. (2019). Less-Java, more learning: language design for

introductory programming. Journal of Computing Sciences in Colleges, 34(3), 64-72.

165

National Council of Teachers of Mathematics. (2016). Computer science and mathematics

education: a position of the National Council of Teachers of Mathematics.

https://www.nctm.org/uploadedFiles/Standards_and_Postions/Position_Statements/Com

puter science and math ed 022416.pdf

Ni, L. & Guzdial, M. (2012). Who am I?: understanding high school computer science

teachers’ professional identity. In SIGCSE ’12: Proceedings of the 43rd ACM technical

symposium on Computer Science Education (pp. 499-504). Association for Computing

Machinery. https://doi.org/10.1145/2157136.2157283

Nieveen, N. (2009). A key role for formative evaluation in educational design research. In

T. Plomp & N. Nieveen (Eds.), An introduction to educational design research (pp. 89-

101). SLO.

Nugent, G., Barker, B., Grandgenett, N. & Adamchuk, V. (2009). The use of digital

manipulatives in k-12: robotics, GPS/GIS and programming. In 2009 39th IEEE

Frontiers in Education Conference, (pp. 1-6). IEEE.

https://doi.org/10.1109/FIE.2009.5350828

Nunnally, J.C. (1978). Psychometric theory (2nd ed.). McGraw-Hill.

Olsson, M., Mozelius, P. & Collin, J. (2015). Visualisation and gamification of e-learning

and programming education. Electronic Journal of e-Learning, 13(6), 441-454.

Osanloo, A. & Grant, C. (2016). Understanding, selecting, and integrating a theoretical

framework in dissertation research: creating the blueprint for your “house”.

Administrative Issues Journal: Connecting Education, Practice, and Research, 4(2), 12-

16. https://doi.org/10.5929/2014.4.2.9

Othman, Z., Abdullah, N. A., Chin, K. Y., Shahrin, F. F. W., Ahmad, S. S. & Kasmin, F.

(2018). Comparison on cloud image classification for thrash collecting LEGO

Mindstorms EV3 robot. International Journal of Human and Technology Interaction

(IJHaTI), 2(1), 29-34.

Owens, K., Edmonds-Wathen, C. & Bino, V. (2015). Bringing ethnomathematics to

elementary school teachers in Papua New Guinea: a design-based research project.

Revista Latinoamericana de Etnomatemática, 8(2), 32-52.

166

Padmanabhuni, V. V. K., Tadiparthi, H. P. & Muralidhar Yanamadala, S. M. (2012).

Effective pair programming practice - an experimental study. Journal of Emerging

Trends in Computing and Information Sciences, 3(4), 471-479.

http://cisjournal.org/journalofcomputing/archive/vol3no4/vol3no4_2.pdf

Palalas, A. & Wark, N. (2017). Design principles for an adult literacy mobile learning

solution. In F. Loizides, G. Papadopoulos & N. Souleles (Eds.), mLearn 2017:

Proceedings of the 16th World Conference on Mobile and Contextual Learning (pp. 1-8).

Association for Computing Machinery. https://doi.org/10.1145/3136907.3136934

Papert, S. (1980). Mindstorms: children, computers, and powerful ideas. Harvester Press.

for teaching programming and circuit's foundations. Computer Applications in

Engineering Education, 27(2), 288-302. https://doi.org/10.1002/cae.22074

Pea, R. & Kurland, M. (1984). On the cognitive effects of learning computer programming.

New Ideas Psychology, 2(2), 137-168. https://doi.org/10.1016/0732-118X(84)90018-7

Peng, D. X. & Lai, F. (2012). Using partial least squares in operations management research:

a practical guideline and summary of past research. Journal of Operations

Management, 30(6), 467-480. https://doi.org/10.1016/j.jom.2012.06.002

Plomp, T. (2009). Educational design research: an introduction. In T. Plomp & N. Nieveen

(Eds.), An introduction to educational design research (pp. 9-35). SLO.

Plomp T. (2013). Educational design research: an introduction. In T. Plomp & N. Nieveen

(Eds.), Educational design research: part A: an introduction (pp. 10-51). SLO.

Plomp, T. & Nieveen, N. (2013). References and sources on educational design research. In

T. Plomp & N. Nieveen (Eds.), Educational research design (pp. 170-199). SLO.

Plonka, L., Sharp, H., Van der Linden, J. & Dittrich, Y. (2015). Knowledge transfer in pair

programming: an in-depth analysis. International Journal of Human-Computer

Studies, 73(1), 66-78. https://doi.org/10.1016/j.ijhcs.2014.09.001

Porter, L., Bouvier, D., Cutts, Q., Grissom, S., Lee, C., McCartney, R., Zingaro, D. & Simon,

B. (2016). A multi-institutional study of peer instruction in introductory computing. In

167

SIGCSE ’16: Proceedings of the 47th ACM Technical Symposium on Computing Science

Education, (pp. 358-363). Association for Computing Machinery.

https://doi.org/10.1145/2839509.2844642

Pukelsheim, F. (1994). The three sigma rule. The American Statistician, 48(2), 88-91.

https://doi.org/10.1080/00031305.1994.10476030

Rajala, T., Laakso, M. J., Kaila, E. & Salakoski, T. (2008). Effectiveness of program

visualisation: a case study with the ViLLE tool. Journal of Information Technology

Education, 7(1), 15-32. http://jite.org/documents/Vol7/JITEv7p061-080Lee332.pdf

Ramli, N. A., Latan, H. & Nartea, G. V. (2018). Why should PLS-SEM be used rather than

regression? Evidence from the capital structure perspective. In K. N. Avkiran & C. M.

Ringle (Eds.), Partial least squares structural equation modeling (pp. 171-209).

Springer.

Razali, N. M. & Wah, Y. B. (2011). Power comparisons of Shapiro-Wilk, Kolmogorov-

Smirnov, Lilliefors and Anderson-Darling tests. Journal of statistical modeling and

analytics, 2(1), 21-33.

Reddy, V., Visser, M., Winnaar, L., Arends, F., Juan, A., Prinsloo, C. & Isadale, K. (2016).

TIMSS 2015:highlights of mathematics and science achievement of grade 9 South

African learners: nurturing green shoots. Human Sciences Research Council.

http://www.hsrc.ac.za/en/research-data/view/8456

Reeves, T. (2006). Design research from a technology perspective. In J. van den Akker, K.

Gravemeijer, S. McKenney & N. Nieveen (Eds.), Educational design research (pp. 64-

78). Routledge.

Reeves, T. C. (2000). Enhancing the worth of instructional technology research through

“design experiments” and other development research strategies. International

Perspectives on Instructional Technology Research for the 21st Century, 27(1), 1-15.

Resnick, M., Ocko, S. & Papert, S. (1988). Lego, logo, and design. Children's Environments

Quarterly, 5(4), 14-18.

168

Revez, J. & Borges, L.C. (2018). Pragmatic paradigm in information science research: a

literature review. Qualitative and Quantitative Methods in Libraries (QQML), 7(1), 583-

593.

Ringle, C. M. (2015). HTMT discriminant validity. SmartPLS.

https://forum.smartpls.com/viewtopic.php?t=3616

Robert, W. S. (2017). Concepts of programming languages, global edition (11th ed.).

Pearson.

Roberts, P. (2009). Abstract thinking: a predictor of modelling ability?. In Proceedings of

the Educators Symposium of the ACM/IEEE 12th International Conference on Model

Driven Engineering Languages and Systems (pp. 753-754).

Robins, A., Rountree, J. & Rountree, N. (2003). Learning and teaching programming: a

review and discussion. Computer Science Education, 13(2), 137-172.

https://doi.org/10.1076/csed.13.2.137.14200

Rodríguez, F. J., Price, K. M., Isaac, J., Boyer, K. E. & Gardner-McCune, C. (2017). How

block categories affect learner satisfaction with a block-based programming interface. In

A.Z. Henley, P. Rogers & A. Sarma (Eds.), Proceedings IEEE Symposium on Visual

Languages and Human-Centric Computing (pp. 201-205). IEEE.

https://www.computer.org/csdl/proceedings-

article/vlhcc/2017/08103468/17D45XoXP6h

Romero, M., Lepage, A. & Lille, B. (2017). Computational thinking development through

creative programming in higher education. International Journal of Educational

Technology in Higher Education, 14(1), 42. https://doi.org/10.1186/s41239-017-0080-z

Rorty, R. (1991). Objectivity, relativism and truth: philosophical papers. Cambridge

University Press.

Rosen, K. H. (2018). Handbook of discrete and combinatorial mathematics (2nd ed.). Taylor

& Francis Group.

Royal Society Report. (2012). Shut down or restart? The way forward for computing in UK

schools. http://www.royal.society.org/education/policy

169

Rubio Escudero, M. A., Mañoso Hierro, C. M. & Pérez de Madrid y Pablo, A. (2013). Using

arduino to enhance computer programming courses in science and engineering. In L.

Gómez Chova, A. López Martínez & I. Candel Torres (Eds.), EDULEARN13

proceedings: 5th International Conference on Education and New Learning

Technologies (pp. 1-3). International Association of Technology, Education and

Development.

Russell, I., Rosiene, C. P. & Gold, A. (2020). A CS course for non-majors based on the

Arduino platform. In J. Zhang, M. Sherriff, S. Heckman, P. Cutter & A. Monge (Eds.),

SIGCSE '20: The 51st ACM Technical Symposium on Computer Science Education (pp.

1309-1309). Association for Computing Machinery.

https://doi.org/10.1145/3328778.3366955

Sadler, I. (2013). The role of self-confidence in learning to teach in higher

education. Innovations in Education and Teaching International, 50(2), 157-166.

https://doi.org/10.1080/14703297.2012.760777

Saeli, M., Perrenet, J., Jochems, W.M.G. & Zwaneveld, B. (2011). Teaching programming in

secondary school: a pedagogical content knowledge perspective. Informatics in

Education, 10(1), 73-88. https://doi.org/10.15388/infedu.2011.06

Samuel, M. S. (2017). An insight into programming paradigms and their programming

languages. Journal of Applied Technology and Innovation, 1(1), 37-57.

https://doi.org/10.5120/ijca2020920172

Sebesta, R. (2004). Concepts of programming languages (6th ed.). Pearson/Addison-Wesley.

Sentence, S. & Waite, J. (2017). PRIMM: exploring pedagogical approaches for teaching

text-based programming in school. In E. Barendsen & P. Hubwieser (Eds.), WiPSCE '17:

Proceedings of the 12th Workshop in Primary and Secondary Computing Education (pp.

113-114). Association for Computing Machinery.

https://doi.org/10.1145/3137065.3137084

Shapiro, S. S. & Wilk, M. B. (1965). An analysis of variance test for normality (complete

samples). Biometrika, 52(3/4), 591–611. https://doi.org/10.2307/2333709

170

Sharma, P. (2018). Programming in Python: learn the powerful object-oriented

programming. BPB Publications.

Shein, E. (2015). Python for beginners. Communications of the ACM, 58(3), 19-21.

https://doi.org/10.1145/2716560

Simanjuntak, M. V., Abdullah, A. G. & Maulana, I. (2018). Promoting middle school

students’ abstract-thinking ability through cognitive apprenticeship instruction in

mathematics learning. Journal of Physics: Conference Series, 948(12051), 0-4.

https://doi.org/10.1088/1742-6596/948/1/012051

Sleeman, D. (1986). The challenges of teaching computer programming. Communications of

the ACM, 29(9), 840-841. https://doi.org/10.1145/6592.214913

Sobral, S. R. (2021). Flipped Classrooms for Introductory Computer Programming Courses.

International Journal of Information and Education Technology, 11(4), 178-183.

https://doi.org/10.18178/ijiet.2021.11.4.1508

Soloway, E. (1986). Learning to program learning to construct mechanisms and explanations.

Communications of the ACM, 29(9), 850-858. https://doi.org/10.1145/6592.6594

SONA. (2019). State of the Nation Address 2019. https://www.gov.za/speeches/president-

cyril-ramaphosa-2019-state-nation-address-7-feb-2019-0000

Soykan, F. & Kanbul, S. (2018). Analysing K12 students’ self-efficacy regarding coding

education. TEM Journal, 7(1), 182-187. https://doi.org/10.18421/TEM71-22

Stellenbosch University handbook (2019). General Rules and Policies Stellenbosch

University.

https://www.sun.ac.za/english/Documents/Yearbooks/Current/GeneralPoliciesAndRules.

pdf

Stone, M. (1974). Cross-validation and multinomial prediction. Biometrika, 61(3), 509-515.

https://doi.org/10.2307/2334733

Stueben, M. (2018). Good habits for great coding improving programming skills with

examples in Python. Apress.

171

Summerfield, M. (2010). Programming in Python 3: a complete introduction to the Python

language. Addison-Wesley Professional.

Tanrikulu, E. & Schaefer, B. C. (2011). The users who touched the ceiling of scratch.

Procedia-Social and Behavioral Sciences, 28(1), 764–769.

https://doi.org/10.1016/j.sbspro.2011.11.140

Techapalokul, P. & Tilevich, E. (2017). Understanding recurring quality problems and their

impact on code sharing in block-based software. In 2017 IEEE Symposium on Visual

Languages and Human-Centric Computing (VL/HCC) (pp. 43-51). IEEE.

https://doi.org/10.1109/VLHCC.2017.8103449

Teddlie, C. & Tashakkori, A. (2011). Mixed methods research: contemporary issues in an

emerging field. In N. K. Denzin & Y. S. Lincoln (Eds.), The SAGE handbook of

qualitative research (pp. 285-299). Sage.

Tenenhaus, M., Vinzi, V. E., Chatelin, Y. M. & Lauro, C. (2005). PLS path

modeling. Computational Statistics & Data Analysis, 48(1), 159-205.

https://doi.org/10.1016/j.csda.2004.03.005

Toh, L. P. E., Causo, A., Tzuo, P. W., Chen, I. M. & Yeo, S. H. (2016). A review on the use

of robots in education and young children. Educational Technology & Society, 19(2),

148–163. https://doi.org/10.2307/jeductechsoci.19.2.148

Thomas, E. & Georg, G. (1995). The complexity of logic-based abduction. Journal of the

ACM, 42(1), 3-42. https://doi.org/10.1145/200836.200838

Thota, N. & Whitfield, R. (2010). Holistic approach to learning and teaching introductory

object-oriented programming. Computer Science Education, 20(2), 103-127.

https://doi.org/10.1080/08993408.2010.486260

Together We Pass (2019). How to calculate your APS.

https://togetherwepass.co.za/how-to-calculate-your-

aps/#:~:text=The%20minimum%20requirements%20for%20the,points%20(some%20ex

ceptions%20may%20apply)

Tollervey, N. (2015). Python in education. O'Reilly Media.

172

Topalli, D. & Cagiltay, N. E. (2018). Improving programming skills in engineering education

through problem-based game projects with Scratch. Computers & Education, 120(1), 64-

74. https://doi.org/10.1016/j.compedu.2018.01.011

Tsai, M. J., Wang, C. Y. & Hsu, P. F. (2019). Developing the computer programming self-

efficacy scale for computer literacy education. Journal of Educational Computing

Research, 56(8), 1345-1360. https://doi.org/10.1177/0735633117746747

Turchi, T., Fogli, D. & Malizia, A. (2019). Fostering computational thinking through

collaborative game-based learning. Multimedia Tools and Applications, 78(10), 13649-

13673. https://doi.org/10.1007/s11042-019-7229-9

Utting, I., Tew, A. E., McCracken, M., Thomas, L., Bouvier, D., Frye, R., Paterson, J.,

Caspersen, M. E., Kolikant, Y. B-D., Sorva, J. & Wilusz, T. (2013). A fresh look at

novice programmers' performance and their teachers' expectations. In J. Carter (Ed.),

ITiCSE -WGR '13: Proceedings of the ITiCSE Working Group Reports Conference on

Innovation and Technology in Computer Science Education-Working Group Reports

(pp. 15-32). Association for Computing Machinery.

https://doi.org/10.1145/2543882.2543884

University of Cape Town handbook (2019). General Rules and Policies.

http://www.students.uct.ac.za/students/study/handbooks/archive/2019

University of Kwa-Zulu Natal (2019). Handbook 2019.

http://saa.ukzn.ac.za/Forms_proce/Handbooks.aspx

University of Witwatersrand (2019). Rules and Syllabuses.

https://www.wits.ac.za/students/academic-matters/rules-and-syllabuses/

Varney, M. W., Janoudi, A., Aslam, D. M. & Graham, D. (2012). Building young engineers:

TASEM for third graders in Woodcreek Magnet Elementary School. IEEE transactions

on education, 55(1), 78-82. https://doi.org/10.1109/TE.2011.2131143

Voogt, J., Fisser, P., Good, J., Mishra, P. & Yadav, A. (2015). Computational thinking in

compulsory education: Towards an agenda for research and practice. Education and

Information Technologies. 20(4), 715-728. https://doi.org/10.1007/s10639-015-9412-6

173

Vygotsky, L. S. (1978). Mind and society: the development of higher mental processes.

Harvard University Press.

Warne, R. T., Yoon, M. & Price, C. J. (2014). Exploring the various interpretations of “test

bias”. Cultural Diversity and Ethnic Minority Psychology, 20(4), 570.

https://doi.org/10.1037/a0036503

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L. & Wilensky, U.

(2016). Defining computational thinking for mathematics and science classrooms.

Journal of Science Education and Technology, 25(1), 127-147.

https://doi.org/10.1007/s10956-015-9581-5

Weller, C. (2017, October 10). Meet the first ever robot citizen - a humanoid named Sophia

that once said it would destroy humans. Business Insider.

https://www.businessinsider.com/meet-the-first-robot-citizen-sophia-animatronic-

humanoid-2017-10?IR=T

White, G., & Sivitanides, M. (2003). An empirical investigation of the relationship between

success in mathematics and visual programming courses. Journal of Information Systems

Education, 14(4), 409.

White, G. & Sivitanides, M. (2005). Cognitive differences between procedural programming

and object oriented programming. Information Technology and Management, 6(4), 333-

350. https://doi.org/10.1007/s10799-005-3899-2

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35.

https://doi.org/10.1145/1118178.1118215

Xinogalos, S. Ivanovi , M., Pitner, T. & Savi , M. (2017). Technology enhanced learning in

programming courses - international perspective. Education and Information

Technologies: The Official Journal of the Ifip Technical Committee on Education, 22(6),

2981-3003. https://doi.org/10.1007/s10639-016-9565-y

programming language: C-like or Pascal-like languages?. Education and Information

Technologies, 23(1), 287-302. https://doi.org/10.1007/s10639-017-9601-6

174

Yadin, A. (2011). Reducing the dropout rate in an introductory programming course. ACM

Inroads, 2(4), 71-76. https://doi.org/10.1145/2038876.2038894

Yadav, A., Gretter, S., Hambrusch, S. & Sands, P. (2016). Expanding computer science

education in schools: understanding teacher experiences and challenges. Computer

Science Education, 26(4), 235-254. https://doi.org/10.1080/08993408.2016.1257418

Yilmaz I. & Koc, M. (2021). The consequences of robotics programming education on

computational thinking skills: an intervention of the young engineer's workshop (yew).

Computer Applications in Engineering Education, 29(1), 191-208.

https://doi.org/10.1002/cae.22321

Yin, R. K. (2014). Case study research: design and methods. Sage.

Yoshiaki, M., Takashi, O., Manabu, S. & Sanshiro, S. (2015). Language migration in non-CS

introductory programming through mutual language translation environment. In SIGCSE

'15: Proceedings of the 46th ACM Technical Symposium on Computer Science Education

(pp. 185-190). Association for Computing Machinery.

https://doi.org/10.1145/2676723.2677230

Zainal, N. F. A., Shahrani, S., Yatim, N. F. M., Abd Rahman, R., Rahmat, M. & Latih, R.

(2012). Students’ perception and motivation towards programming. Procedia-Social and

Behavioral Sciences, 59(2021), 277-286. https://doi.org/10.1016/j.sbspro.2012.09.276

Zayour, I. & Hajjdiab, H. (2013). How much integrated development environments improve

productivity?. Journal of Software, 8(10), 2425-2431.

https://doi.org/10.4304/jsw.8.10.2425-2431

Zhang, M. & Wan, Y. (2020). Improving learning experiences using LEGO Mindstorms EV3

robots in control systems course. The International Journal of Electrical Engineering &

Education, 0(0), 1-23, https://doi.org/10.1177/0020720920965873

Zuhud, D. A. Z. (2013). From programming sequential machines to parallel smart mobile

devices: Bringing back the imperative paradigm to today's perspective. In J. Labadin,

J. Minoi, D. NurFatimah, A. Iskandar & A. B. Masli (Eds.), Information Technology in

Asia. Proceedings of the 8th International Conference on Information Technology in

Asia (CITA) (pp. 1-7). https://doi.org/10.1109/CITA.2013.6637580

175

Zuhud, D. A. Z., Rahman, N. & Ismail, M. (2013). A preliminary analysis on the shift of

programming paradigms. Proceedings of the 5th International Conference on Information

and Communication Technology for the Muslim World (ICT4M), (pp. 1-5).

https://doi.org/10.1109/ICT4M.2013.6518917

176

Appendices

 Intentionally blank

177

Appendix A - Permission from Registrar

178

Appendix B - Informed consent letter

179

Appendix C - Ethical clearance

180

Appendix D - Turn- it- in Report

181

Appendix E - Editor’s Report

182

Appendix F – Pre-survey on computer programming (survey one)

183

Appendix G - Questionnaire one | Part A: Pre-test based on computational thinking

184

185

186

Appendix H - Questionnaire one| Part B: Abstract reasoning test

187

188

189

190

191

192

193

194

Appendix I – Pre workshop session

195

196

197

198

199

200

201

202

203

204

205

206

207

Appendix J - Workshop session one

208

209

210

211

212

213

Appendix K – Self-evaluation workshop session one

214

Appendix L - Workshop session two

215

216

217

218

219

220

Appendix M – Self-evaluation workshop session two

221

Appendix N - Workshop session three

222

223

224

225

226

Appendix O – Self-evaluation workshop session three

227

Appendix P - Workshop session four

228

229

230

231

232

Appendix Q – Self-evaluation workshop session four

233

Appendix R - Workshop session five

234

235

236

237

238

Appendix S – Self-evaluation workshop session five

239

Appendix T - Workshop session six

240

241

242

243

244

245

Appendix U – Self-evaluation workshop session six

246

Appendix V – Post- survey (survey two)

247

248

Appendix W - Post survey (survey two) categorised under constructs

249

250

Appendix X – Post-test (questionnaire on programming language)

251

252

253

Appendix Y - Interview

254

Appendix Z - Interview transcript

Researcher: Good afternoon, everyone. We will start in the next minute

[after a minute]

Researcher: Okay. Good afternoon, everyone. We will go ahead and start and then as people

join us, they can then share. First of all, thank you for taking the time to join. So

I'm going to share with you the eight questions. I'm going to keep it up on the

screen. Please take some time to read the questions on the screen and reflect.

[after ±2 minutes]

Researcher: Let's start; please feel free to unmute and discuss and share your thoughts, etc.

P17: Right, good afternoon, guys. I hope everyone is well. In terms of how they feel about the

entire shop. Okay. I completed all workshops, which were very fun activities to

participate in. I've had, I've had quite a few workshops before and some

workshops was in the form of summer camp workshops. They just go and have a

particular workshop and come back. But what I will say is this was my first time

having to attend the workshop 100% online. So, which was a new experience for

me. But it was an amazing experience. A lot of the things we were doing that was

interesting to learn how we can use basic programming to do tasks.

P9: Just like add the robot kit used they're very applicable in real-life problems. Also, it was a

very exciting workshop for me, compared to others because I've never been to an

online workshop, but I feel it was essential. I would have understood and caught

with Python without the microcontroller, but it wouldn’t have been so fast, would

take me sometime.

P62: I did a computational engineering workshop, but I haven't done a hands-on Arduino

board or using a breadboard and advance stuff. I would have not liked a

theoretical course on Arduino microcontrollers. It's not the same as this as this

was a hands-on course, you know. It is how mechanical computers and electronics

come together.

255

Researcher: Okay.

P17: I would say this workshop is an example of a workshop that helps you think. Guided

towards solving problems in this workshop and then given a chance to apply and

apply more of our knowledge into solving a bigger problem, like you guys have

seen almost every workshop was guiding us towards starting the coding and then

giving you a chance to apply your own logic. That's all I can say; this was an

interesting workshop compared to most of the workshops I’ve attended.

P18: Good afternoon, everyone. Hope you guys can all hear me.

Researcher: Yes, yes, we can.

P18: Okay guys, before I share my experience with you guys. I haven't attended a new

workshop. This was my first one, and it was so exciting. It was an amazing

experience. From the beginning, everything was step by step and everything was

explained well. Yeah and we also had Zoom sessions to help us understand or

clarify what is it that is expected from us in each and every workshop. So it was a

great experience and it was amazing. That's all I can say. Thank you.

Researcher: Thank you. Anybody else wants to, share your experience?

P62: My problem is that it installs Python to a different path. I actually run the software from

my flash drive. I just don't recommend that.

P42: Hi everyone! I just like to talk about it. The issue of my one of my main problems is that

using the breadboard. Usually, whenever I was stuck in a problem. It wasn't

because my code was faulty; it was one of my connections with it. Just because I

didn't understand, sometimes I‘d be stuck for hours. Sometimes, all I would do is

just change the position of the connections and then suddenly would work. I

wouldn't change my connector all, but changing positions on the breadboard

would make it work.

Researcher: Thank you for that. Sometimes, you just need to force the wire pin into the

breadboard. Sometimes your code, there'd be nothing wrong, but just one wire is

not connected correctly, which causes your entire prototype not to work.

Anybody else wants to share the experience?

256

P62: I struggled with some programming; it can get quite abstract, but the microcontroller

makes it most fun and I feel like it solidifies understanding in some way. And just

having a robotic, you can now monitor the behavior and see. I mean, you kind of

run code for a compiler, but it's not the same as not making it do something in

reality and real off activating something or driving something. That's really cool.

It just brings it all to laugh. It makes the most fun and I feel like it solidifies

understanding in some way.

P15: Good afternoon, everyone. I found that this workshop was interesting to me. It's

something that I think I wanted to learn as coding was interesting for me. It is

something that I have wanted to learn for a long time and I think it is a very

valuable skill. I really think that we had enough support to do all the tasks that

we did for us to do. I think even… I'm sure that if some never did in coding like us,

but through the support and the way things were in the workshop it would be

doable. There were clear instructions and everything. Even if you have done what

you're pointing to, it is allowed you to have that some sort of confidence and apply

your mind so that you can do actual, which was a little bit harder. But I think you

know it was a great experience. I'm not sure about anything that can be improved.

Others can comment and it's but thank you very much.

Researcher: Thank you anyone else?

P42: I would like to add something?

Researcher: Sure, go-ahead

P42: So I always had this fear of electronics before completing this workshop and just doing

this workshop is helped me get over that. Because I have tried to fix household

appliances before and I've gotten shocked a lot, but then completing this

workshop helped me overcome this fear of electronics. I always thought it was

like overly complicated and I tried watching stuff on YouTube, but now it is

understandable. All those diagrams, whatever. But this workshop helped me by

giving me a push in the right direction. Like, I know what to look for and it just

taught me a lot in understanding coding and electronics.

257

P60: Hello everyone. First of all, I like to say I really enjoyed this workshop it was an interesting

journey, learning to work with a microcontroller. It was a bit difficult and it did

require a bit of thinking, but nothing was impossible. So this was the first time I

did a workshop like this, but previously, I've worked as a technician and installed

smoke detectors and other types of sensors but did not code them. So whatever

we learned in this workshop, like it was really interesting and I know that it could

be used in many different ways, like, you know,

Researcher: Thank you for that. You would know that most of these components used in the

activities are used in some of the devices we use daily.

P18: The thing that I liked the most was you could read the programming language and easily

understand what it does. Using Python, which might be an advantage when we

are going to their field. If we encounter any situations, we have previous

experience of using Python. Then we can just interact and yeah, that's the

advantage.

Researcher: Thank you for that anybody else want to comment?

P47: Yes.

P17: Okay, you go first.

P47: Good afternoon, everyone. Okay. At first, the activities were very challenging for me. But

now that I learned a coding language by engaging… I now have started a new

project on my own because each and every workshop, we were required to have

a different output. Most of the time I didn't want to skip a step without

understanding so that’s when I needed the help. After doing the workshop, I saw

the need to go back to the drawing board and actually study Python in depth and

because I would like to develop/build things. And I would like to program solutions

to whatever problems we're facing in the future. So it was really a great

opportunity to be part of such a wonderful workshop for free, for that matter.

Researcher: Thank you for that.

P17: Yes. Yes. Thank you. It's quite similar to that. I feel like after landing on one program. I

feel like Python and doing this stuff (prototyping) is relevant to the real world now

258

because it's more advanced. Like industrial programming. It was an amazing

experience to see that you can actually write some code and apply it. The physical

changing of the light using the LDR and coding of the buzzer was very interesting.

I feel like I can use that information in developing solutions in the future.

P66: My experience with it was so far… I really enjoyed it. It was something new to me at the

beginning I did have a challenge because my board wasn't working reason was I

was unable to get my comport number. So that was my challenge and needed to

be manually replaced. That was my challenge at the beginning and otherwise,

everything was interesting and fun. Some actvities were challenging, though, but

the forums and tips were really helpful. It was helpful to see what challenges

others were facing during the forums and what you could use from this

information and improve. The pre-recorded videos in the pre-workshop were

really helpful. Otherwise, I enjoyed my experience and I've learned a lot and it

was a new experience for me. And I think I take this along; it'll help my future.

Thank you.

Researcher: Okay, thank you for that.

P15: In high school, I did Java as a programming language. But now doing Python, it's less

complicated and simple…everything is straightforward.

P21: I feel it was easy for me to understand Python by looking at how the microcontroller

executes. Execute the commands that you're writing on your code. I feel like it

makes it easier for someone to understand that I'm writing this line of code.

P17: It was very useful to see those explanations you put along with the code and then explain

line by line, this line of code to do this and this for that. The physical aspects of

the workshop were even more helpful because we could easily explain that this

line of code is during this but when the prototype performed an actioned …

actually understand well yeah this is what it's supposed to do. And it's actually

doing. So I feel like the hard way is doing justice to microcontrollers useful to

understand the program.

259

P5: I hope all are good! What I can say is that I have never done any workshop like this before,

but I do appreciate that it had come to find me because like I do love coding. I love

using computers and doing unthinkable things like programming. Things that

people couldn't think of. So I always wanted to do it. But then I couldn't quite

qualify for that… so it was a good experience.

Researcher: Thank you for that. Anybody else wants to share?

P1:The robotic or microcontroller helped me understand if something is wrong in my code to

see if the end product works. I would refer back to the prototype design and then

check my code. In the end, so without the microcontroller. I don't think I would

have been able to understand and even do the workshop but the coding

somethings is tedious and then it's not like you can really see your progress when

you stuck.

P18: I did have a strategy that I used when going through every activity in every workshop…

strategy I used was to build my prototype then; I will code because after building,

I would have an idea of what the code must do and what must take place.

Researcher: Thank you for that will; then anybody else wants to share their strategy.

P42: By sorting the things I need for the build, then build and code. Also, create comments in

code if the code was the same thing, just to feel more clearer on the way.

Researcher: Thank you for that.

P17: My strategy … I was building everything onto the same build and I wasn't removing

anything unless I had to remove a component. It's was nice but got a little a bit

tricky about workshop three. I had a very messy breadboard. I had a lot of things

connected, but I knew very well what each and every component was doing. So,

one may say it's confusing to do like that. It was interesting to be able to just click

around on my code and then I see an execution on the prototype.

P62: Um, I think I read through the first workshop quite a bit, but about a week and I was like,

You know what, I have this. I read the question correctly, but I always read the

headings carefully, look at what you're trying to do and what you're trying to

achieve, what the goal is like a fire alarm and the buzzer goes off. Visual. Visual

260

person. And for me, just trying to visualize what I wanted the end trying to predict

the outcome. I'm just; it just creates like an end goal and insights. This definitely

helps a beginner like me because we are in a very technological age. So I think this

is valuable to know. I mean, for me.

P42: So prior to the workshop, I had tried to learn the stuff, I mean, there's multitudes of

information available internet, especially for Python as well. But like, it was just it

on point.

P62: They'll always be the challenges, while you're learning something new, um, I mean, my

first go to just be a really good computer or software textbook, but I think the

challenges is definitely time you have to then read up and research into it and look

at what works, maybe watch some YouTube videos. Like this, um, the robot just

makes the learning and understanding quicker. I think

P42: In some workshops, the coding started out to be really motivating at the beginning and

then eventually, I will just get bored of it because although it was amazing to code,

it sometimes gets a bit!

Researcher: Please explain a bit

P42: And then it's not like you can really see your progress. I mean, it's very hard to explain

that. But, but then with this workshop having to hold a microcontroller, it reminds

you that your code is relevant. The thing with the bread is every time you ran your

code; you got to see it work.

P56: I felt like I was very highly motivated to just complete the workshop activity and then

jump to the next one. Just for you to see it actually works and what new things I

could do further.

Researcher: Thank you for that.

P62: It was useful in this course having some foundation of coding. Each workshop would give

you the foundation and get an idea of how this component connects to the

breadboard… and then with that, you can then have the freedom to play; that's

when the fun comes. So actually, after the course after the workshop, I actually

261

started to try and modify and build and code on my own. Actually, I am now

working on a prototype with the buzzer.

P16: Greetings, everyone. I think it was late 2013 I started an online learning course but left

because I didn't have the equipment. So, this workshop helped me so much. The

microcontroller helped me and I enjoyed the workshop so much because the

equipment was given. Also, I was able to study by myself get motivated as I was

able to write programs and see them execute.

Researcher: Thank you for that.

P18: Hi everyone. Okay, there was this component, the flame sensor it was problematic cause

of its sensitivity. I think yeah, that was the most challenging workshop.

Researcher: Thank you for that. Yes, that was because you had to imitate a natural flame by

using a torch.

P17: Using the tilt sensor was fun, I cannot remember the entire setup, but I don't think it was

just one activity. You're supposed to be like coming up with a specific value to

activate it. So I feel like I've got a better understanding of what actually happens

inside our smartphones in other in other. Also, I feel my favorite activity was the

LED; it was interesting to see the lights come on like a traffic light. The least

exciting activity for me was activity one, maybe because it was supposed to be

like the activity to get us to begin the workshop and I give us just basics.

P47: My favorite was the ones with the sound. It goes to show that you can code a particular

sound to make a melody… actually create different sounds and stuff with that

buzzer.

P42: I'd actually like the flame one. I think it was activity three where we used it in conjunction

with the buzzer. I also liked when we started to use more than two components.

I think it was the first time using three. So it was quite fun to have all the

connections and all the coding and remember all that stuff because I just

P26: Yeah, my favorite activities were every activity of the entire session. I enjoyed the

problem solving; I enjoy combining things and then putting them together to

make up one thing. So I enjoyed it and the challenges.

262

Researcher: Okay, thank you for sharing.

P62: The questions were really interesting, like the puzzles and solving; we had to try and see

to figure things out.

P16: My favorite activity was programming traffic lights so because I always wonder how the

traffic lights went so now I have a basic idea of how. My least favorite one was

when I had to use the motor because my motor didn't work at first, but at a later

stage, it worked.

P15: I think the most exciting workshops for me were the ones that included light coming into

your room. It was a light sensor (LDR) but it was really interesting because you can

use it. I got an idea of how they (robotic element) are really used in real-world

situations … so you get to know how things work in today’s tech world. With the

robot combined with programming, you may get everyday solutions. I also liked

using the fire sensor activities.

Researcher: Are there any more comments? Or anything else anybody wants to mention or

share? (waited for about a minute)

Researcher: Okay, thank everyone for availing yourself to this info-sharing Zoom session and

participating in this workshop. Goodbye and enjoy the rest of your afternoon.

