
Whole-Genome Assembly: An Experimental
Study of Computational Costs and

Architectural Opportunities
Elena Espinosa1 , Ivan Fernandez12 , Rafael Larrosa13 and Oscar Plata1

Resumen— Whole-genome sequencing (WGS) pro-
vides a huge amount of reads from which a comple-
te genome could be assembled. The recent advent of
long read sequencing technologies, such as PacBio and
Oxford Nanopore, and the subsequent appearance of
high quality long reads (single molecule high-fidelity,
or HiFi) have improved the scaffolding of the genome.
However, both biology and computing communities
still face great challenges in terms of computational
cost. Thus, it is essential a high precision characte-
rization of the methods for a correct identification
of the main computing bottlenecks. This study will
allow us to design new methods to mitigate compu-
tational costs without losing accuracy and to adapt
such methods to fully exploit new architectures that
provide support to handle big amounts of data. In
this paper, we experimentally study and characterize
the most used whole-genome assemblers in order to
design new approaches in this field.
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I. Introduction

RE cently, we have witnessed great advances in
the analysis of complete genomes and transcrip-

tomes thanks to high-throughput sequencing. Next
Generation Sequencing (NGS) platforms can deliver
data output from multiple terabases in a single run,
both at low cost and relatively low time consum-
ption compared to the traditional Sanger Sequen-
cing. For example, the first human genome draft, ba-
sed on Sanger Sequencing technology, had a cost of
$3 billion and took more than 10 years to complete.
Illumina1 NGS platforms, on the contrary, can se-
quence thousands to tens of thousands of genomes
in one year with a precision usually better than 99%
[1]. However, as Illumina platforms provide reads up
to 2x300 bp and the genome could present structural
variations from 1 KB to 3 MB, this technology faces
assembly obstacles.

Modern massive generation sequencing technolo-
gies such as PacBio2 or Oxford Nanopore3, which
provide millions of reads of more than 20 KB, ha-
ve enabled great advances in bioinformatics [2], spe-
cially in de novo genome assembly. However, Oxford
Nanopore still faces an error rate of about 15% re-
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garding PacBio, which shows an error rate of 0.2%
thanks to the PacBio HiFi reads [3].

Such technologies have led to the development of
assemblers for long reads and have created a niche
for the design of new algorithms and new compu-
ter architectures that accelerate them. Nevertheless,
both biology and computing communities still face
great challenges in terms of computational cost for
the assembly process. This fact becomes specially re-
levant when the genome reconstruction implies long
repetitions or relies on a large heterozygosity. Whi-
le state-of-the-art software solutions try to overcome
this computational cost (e.g., Canu [4], [5], [6]), as-
sembling large genomes still faces great challenges.

Traditional assemblers such as Canu and its prede-
cessor, Celera, have been widely used by the scientific
community, but they are computationally very ex-
pensive, which has made its use marginal. For exam-
ple, Hicanu, added option to Canu for high-fidelity
long reads (PacBio HiFi reads), can take over 1,000
CPU hours to assembly the human haploid cell line
CHM13.

Many assemblers with new strategies have been
emerging in the last decade to mitigate the compu-
tational cost problem. For example, Hifiasm was de-
veloped by PacBio for assembling HiFi reads. Al-
so, Oxford Nanopore developed Shasta for Nanopore
reads.

Despite these efforts, the balance between compu-
tational cost and quality of results remains a cha-
llenge. In this paper: (1) We have evaluated compu-
tational advances from traditional assemblers, such
as Canu, to novel assemblers, such as Hifiasm, and
(2) We have identified the main computing bottle-
necks of Hifiasm whose resolution may represent an
increase in the use of this technique.

II. Background

A. De Novo Assembly

De novo whole-genome assembly consists of the
assembly of a large jigsaw puzzle where each piece
is a nucleotide sequence of the genome. In this way,
we should join each substring or contig to complete
a chromosome by searching for overlapping regions
between them.

De novo assembly avoids any bias that might have
been introduced due to phylogenetic divergence, even
genetic diversity. The 1000 Genome Project4, the 10k
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UK Genome Project5, the International Cancer Ge-
nome Consortium6 and the 1001 Arabidopsis Geno-
me Project7 have successfully evidenced the genetic
variety among individuals and cells by identifying
single-nucleotide and structural variations.

However, de novo assembly has to overcome great
challenges. First, it entails considerable time and
computational resources. Second, high quality geno-
me assembly still faces issues from biological pers-
pective when: (1) the genome reconstruction relies
on large heterozygosity, (2) the genome reconstruc-
tion implies nonrandom repeat elements as long in-
terspersed nuclear elements (LINEs), short intersper-
sed nuclear elements (SINEs), long terminal repeats
(LTSs) and simple tandem repeats (STRs), and (3)
the genome corresponds to polyploid organisms.

As a consequence, the assembly of long and com-
plex genomes is unaffordable.

B. Genome Assembly Pipeline

The genome assembly process for long reads com-
prises three main tasks: (1) overlapping regions de-
tection between reads, (2) correction of sequencing
errors, and (3) contig construction and consensus. In
general, we can define two assembly strategies: (1)
overlap-layout-consensus (OLC), and (2) de-bruijn-
graph (DBG). Figure 1 shows the general pipeline of
both strategies.

Fig. 1: Genome assembly strategies

The OLC approach compute alignment between
reads to identify overlaps. It consists of three steps.
First, in the overlap step, the algorithm compute
overlap between all sequencing reads. Second, in la-
yout step, the reads are layout into the most proba-
ble contiguous sequence stretches. Third, in the final
step, the consensus sequence is determined for each
contig by choosing the nucleotide, which is represen-
ted by the majority of the overlapping reads for every
sequence position.

5http://www.uk10k.org/
6http://icgc.org/
7http://1001genomes.org/

Assemblers such as Celera use the OLC approach
in their first versions. The overlap between the reads
is computed using BLASR [7], calculating a suffix
array index on the reference sequence to obtain the
alignment between the target genome and the refe-
rence one. Later, it extracts a nonredundant graph
(layout) and, finally, it merges the reads while co-
rrecting the sequencing errors (consensus).

The DBG approach extract k-mers to identify
overlapping reads and later build connections bet-
ween all k-mers, which differ in (k-1) of their bases.

String graph approach preserve the same proper-
ties and advantages as a de Bruijn graph, but, in
this case, the nodes represents the overlap between
the reads and the edge the read.

FALCON implements a typical String graph as-
sembly pipeline as a modified version of Gene Myers
DALIGNER for detecting overlaps and later buil-
ding the graph. Another example is the novel as-
sembler Hifiasm, which computes all performs all-
versus-all read overlap alignment and later build a
String graph. Canu, predecessor of Celera assembler
implements MinHash algorithm which uses kmers to
estimate the distance between two sequences, and
later assembling reads into contigs using a modified
version of the String graph algorithm.

C. Data Intensive Computing

State-of-the-art computing implementations of
NGS algorithms are frequently focused on exploiting
multicore platforms by means of parallel models such
as MapReduce, MPI, and multi-threading.

Bioinformatics applications are often characterized
by a high number of memory accesses and low ope-
rational cost, which usually results in memory band-
width being the main bottleneck. However, current
solutions do not usually face this problem. In addi-
tion, it is typical for memory access patterns to be
randomized, resulting in an poor cache utilization.
It gets worse with large data sets (e.g., large and
complex genomes). As a consequence, bioinformatics
applications greatly overwhelm the data storage and
memory resources of a modern computer. Architec-
tures based on near-memory processing seek to mi-
tigate the data access latency, bandwidth and power
consumption due to data movement. In this sense,
the usage of architectures based on high-bandwidth
memory and computation close to the data may im-
prove the performance of bioinformatics pipelines.

III. Methodology

A. Data Acquisition and Experimental Over-
view

Genome sequencing data were downloaded from
Escherichia coli and four eukaryotic organisms, Ara-
bidopsis thaliana, Saccharomyces cerevisiae, Dro-
sophila melanogaster and Human.

The genomes of those organisms were assem-
bled using HiFi reads from the NCBI repository, in



particular: Escherichia coli8, Arabidopsis thaliana9,
Saccharomyces cerevisiae10, Drosophila melanogas-
ter11 and two different human celular lines, haploid
(CHM13 12) and diploid (HG002 13).

B. Computational Resources

We conducted the experiments in the Picasso clus-
ter (Supercomputing and Bioinnovation Center, Ma-
laga Techpark). We run the assemblers in Bull R282-
Z90 nodes, where each one includes two 64-core AMD
EPYC 7742 processors and 2 TB of RAM memory.
In addition, we also performed experiments in a

server with two 18-core Intel Xeon Gold 6154 proces-
sors, with a total of 36 cores (72 hardware threads
with hyperthreading), and 768 GB DDR4 memory.

C. Pipeline Characterization

We have profiled the assemblers using Intel Ad-
visor and VTune Profiler from Intel oneAPI Base
Toolkit. We have also used GPROF and Perf per-
formance analysis tools.

C.1 Flops and Memops

We have measured the number of memory ope-
rations (loads and stores) and integer and floating
point operations, calculating the arithmetic inten-
sity. We have also obtained the cache miss/hit rates
in order to characterize memory access patterns and
determine the efficiency of the cache hierarchy.

C.2 Processor Performance

We have monitored the CPU workload during the
execution of the program, identifying the CPU wor-
kload peaks. The thread count have been obtained to
quantify the amount of parallelism and determine the
performance in terms of processor usage. CPU and
wall times have been measured in order to determine
the inherent parallelism when using multithreading.

C.3 Memory Footprint

We have measured the RAM memory usage, iden-
tifying the peak usage as well as the memory growth
as the genome complexity and length increases.

C.4 Assembly Quality

We have calculated quality parameters for each of
the evaluated assemblers and tested genomes. In par-
ticular, we considered the following parameters: con-
tiguity (e.g., N50 parameters, number of contigs) and
completeness using QUAST.

IV. Experimental evaluation

A. Quality Assembly

Quality parameters for HiFi reads are shown in
Table I for Escherichia coli and the eukaryotic orga-

8Escherichia coli NCBI SRA: SRR10971019
9Arabidopsis thaliana NCBI SRA: ERR6210723
10Saccharomyces cerevisiae NCBI SRA: SRR13577847
11Drosophila melanogaster NCBI SRA: SRR10238607
12CHM13 cell line NCBI SRA: SRX789768* +CHM13
13HG002 cell line NCBI SRA: SRR10382244,

SRR10382245, SRR10382248, SRR10382249

nisms: Saccharomyces cerevisiae, Arabidopsis thalia-
na and the human haploid cell CHM13.

Hifiasm primary assembly presents the best per-
formance in the assembly of the four tested ge-
nomes in terms of contiguity with respect to Ca-
nu. It reports the minimum number of contigs and
the longest contig (containing bubbles). The qua-
lity assembly evaluation in base on a reference with
QUAST shows that Hifiasm presents a higher num-
ber of unaligned contigs (fully unaligned contigs)
with respect to Canu for the four species assembled
evaluated. Also, Hifiasm presents a lower number of
misassemblies and mismatches compared to Canu.

B. CPU Workload Characterization

The performance analysis of the different assem-
blers shows that the novel assembler Hifiasm pre-
sents a much lower CPU time with respect to the tra-
ditional assemblers as Canu, predecessor of Celera, or
HiCanu, added to Canu pipeline for PacBio Hifi sam-
ples, especially in the assembly of complex genomes.
For example, the assembly of the high complexity
genome of Homo Sapiens using HiFi reads from the
haploid celular line (CHM13 ) takes about 273 CPU
hours compared to more than 1,000 CPU hours ta-
ken by HiCanu. In table I we show the CPU time
of HiCanu and Hifiasm with Hifi samples and orga-
nisms with different types of complexity. Although
the CPU time is lower in HiCanu compared to Hi-
fiasm with small genomes such as Saccharomyces ce-
revisiae and Escherichia coli, Hifiasm shows impro-
ved speedup over HiCanu with larger genomes.

However, the exploited thread-level parallelism is
still limited. Results from the execution of Hifiasm in
the Picasso cluster are depicted in Table II, showing
how the speedup decreases as thread count increases
from 8 to 128 threads, using low and high comple-
xity genomes. It can be noted that the scalability
of Hifiasm is not optimal, slightly decreasing as the
thread count increases.

In the hotspot analysis we have found that the
detection of overlapping reads consumes most of the
CPU time (over 50% of the total time) for all the as-
semblers. Also, the CPU time increases dramatically
as the genome lenght grows, due to the large rise in
the number of read comparisons. This fact can lead
to a computing bottleneck when processing large and
complex genomes in systems with limited hardware
support for thread-level parallelism.

Hifiasm has a lower CPU time consumption re-
garding MHAP and Minimap2, both implemented
in the Canu pipeline. However, it still spends about
90% of the CPU time in all-versus-all pairwise align-
ment. For the assembly of the diploid cell line HG002,
Hifiasm take about 300 CPU hours, over 90% of the
time in the sequencing correction and overlapping
detection between the raw and corrected read.

C. Memory Footprint

Regarding the RAM memory usage, the evaluated
assemblers present, in general, an increase in the me-

https://www.ncbi.nlm.nih.gov/sra/?term=SRR10971019
https://www.ncbi.nlm.nih.gov/sra/?term=ERR6210723
https://www.ncbi.nlm.nih.gov/sra/?term=SRR13577847
https://www.ncbi.nlm.nih.gov/sra/?term=SRR10238607
https://www.ncbi.nlm.nih.gov/sra/?term=SRX789768* +CHM13
https://www.ncbi.nlm.nih.gov/sra?term=(((SRR10382244)%20OR%20SRR10382245)%20OR%20SRR10382248)%20OR%20SRR10382249
https://www.ncbi.nlm.nih.gov/sra?term=(((SRR10382244)%20OR%20SRR10382245)%20OR%20SRR10382248)%20OR%20SRR10382249


Tabla I: Experimental results of the evaluated assemblers

Data set Genome size Assembler
Quality assembly Computational resources

N50 Contigs Misassemblies Unaligned CPU time RAM usage

Escherichia coli 5 MB
Hifiasm 4.67 1 9 0 19 h 31 min 51 sec 22.005 GB

Canu (MHAP) 4.66 10 8 0 26 min 2.8 MB

S. cerevisiae 12.07 MB
Hifiasm 0.96 MB 39 73 0 3h 36.2 sec 16.704 GB

Canu (MHAP) 0.81 MB 53 68 0 1h 35 min 2.29 GB

Arabidopsis thaliana 135 MB
Hifiasm 12.441MB 1218 1080 1 67h 28.32 min 33.445 GB

Canu (MHAP) 6.01MB 1705 1770 10 182h 13min 48 sec 13.12GB

Human (CHM13) 3.1 GB
Hifiasm 102.83 MB 102 18261 3 272h 45 min 118.156 GB

Canu (MHAP) 66.22 MB 9035 22811 198 984h 55 min 90.38 GB

Tabla II: Speedup of Hifiasm assembler using organisms with
different polyploidy and complexity level and thread count
from 8 to 128 (speedup measured with respect to 4 threads)

Genome
Speedup (thread count)

8 16 32 64 128
S. cerevisiae 1.93 3.67 6.83 12.10 17.61

Arabidopsis thaliana 1.96 3.76 7.16 13.19 20.54
D. melanogaster 1.97 3.80 7.43 14.04 23.41
Human (CHM13) 1.95 3.76 7.12 12.79 19.44
Human (HG002) 1.97 3.77 7.13 12.66 19.72
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Fig. 2: Hifiasm memory usage with simple and complex ge-
nomes when executed in the Picasso cluster using 32 threads
and 1.8 TB of RAM memory

mory footprint as the length of the genome or ploidy
level grow.

The memory footprint of Canu is relatively small
in relation to disk usage, as it works mainly with
data on disk. Otherwise, the memory usage would
be extremely huge. On the contrary, Hifiasm works
mainly with data on memory, limiting the disk usage
to the initial reading of sequencing files and the final
writing of the resulting assembly. This fact boosts
performance. It is also observed that some steps ha-
ve an inefficient behavior when using files that only
need to be accessed locally and are stored in a distri-
buted file system. Figure 2 shows the memory usage
during the execution of Hifiasm with the genomes
considered in the evaluation. It can be noted that the
processing of generated subsequences and the post-
processing of overlapping sequences results in a hu-
ge memory footprint. This is explained as follows. If
n is the read length and k is the k-mer size, then
n− k+1 subsequences of k-mers are generated from
a read and decomposing k-mers increases the length
of the input sequence by a factor of (n−k+1)∗k/n.
As a result, processing the generated subsequences
results in a peak memory explosion.

In particular, when processing the reads, Hifiasm
has a RAM memory usage of more than 100 GB in
the assembly of the human samples.

D. Performance Analysis

Figure 3 shows the performance metrics and Roo-
fline for the hifiasm workflow obtained in the server
with Intel Xeon Gold processors using 16 threads and
the genome of Saccharomyces cerevisiae. The figure
presents the relationship between performance (mea-
sured in integer operations, or INTOP) and arithme-
tic intensity of the different functions involved in the
detection of overlapping regions between the reads
and the sequencing correction. In red and yellow are
marked those functions that show high and modera-
ted costs in execution time, respectively.

A key observation based on the results is that
most of the hotspots presents a low arithmetic inten-
sity (below 0.1 INTOP/Byte) and, as consequence,
their performance is limited by the available memory
bandwidth. This is supported by the fact that their
performance, in terms of INTOP/s, is (by far) lower
than the computational peaks of the platform. From
these preliminary results it follows that the Hifiasm
assembler is memory bound most of the time, so as
using an architecture with higher memory bandwidth
could improve performance significantly.

V. Conclusions

In this work, we present the main biological and
computational challenges in the genome assembly.
We describe main methods in the genome assembly
pipeline and present the main assemblers most wi-
dely used by the scientific community. We analy-
ze experimentally the computational features of a
recent assembler, Hifiasm, with respect to traditio-
nal assemblers, such as Canu, and present the main
bottlenecks and computational costs.

We characterize the novel and fast assembler Hi-
fiasm and find that the overlapping detection of the
reads and the sequencing error correction present a
low arithmetic intensity and high memory traffic. It
could be a good niche for the research of new ar-
chitectures based on near-memory processing which
could mitigate the data movement and accelerate the
most computational expensive functions in the geno-
me assembly pipeline.
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