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Abstract

The Internet of Things (IoT) is an environment where interconnected entities can
interact and can be identifiable, usable, and controllable via the Internet. However,
in order to interact among them, such IoT entities must trust each other. Trust
is difficult to define because it concerns different aspects and is strongly dependent
on the context. For this reason, a holistic approach allowing developers to consider
and implement trust in the IoT is highly desirable. Nevertheless, trust is usually
considered among different IoT entities only when they have to interact among them.
In fact, without considering it during the whole System Developmente Life Cycle
(SDLC) there is the possibility that security issues will be raised. In fact, without
a clear conception of the possible threats during the development of the IoT entity,
the lack of planning can be insufficient in order to protect the IoT entity. For this
reason, we believe that it is fundamental to consider trust during the whole SDLC
in order to carefully plan how an IoT entity will perform trust decisions and interact
with the other IoT entities. To fulfill this goal, in this thesis work, we propose a
trust-by-design framework for the IoT that is composed of a K-Model and several
transversal activities. On the one hand, the K-Model covers the SDLC from the
need phase to the utilization phase. On the other hand, the transversal activities
will be implemented differently depending on the phases. A fundamental aspect that
we implement in this framework is the relationship that trust has with other related
domains such as security and privacy. Thus we will also consider such domains and
their characteristics in order to develop a trusted IoT entity.

Keywords: Trust, Security, Internet of Things (IoT), System Development Life
Cicle (SDLC), K-Model

5



6



Acknowledgments

“Per Aspera Ad Astra”

First of all, I want to thank my supervisors, Carmen Fernandez-Gago and Javier
Lopez Muñoz for their support and help during my PhD journey. Then, I must
thank the NeCS project and the European Commission for giving me an amazing
opportunity to boost up my knowledge in a field such as Computer Security and give
me the opportunity to make networking with prestigious researchers and institutes
of the World. Then, I want to thank my parents Roberto and Gabriella for helping
me even if we are far away. Your support made me what I’m now. I thank also my
sister Fabiana, my niece Emma and my brother in law Davide, I wait for you in your
beloved Malaga. A life without friends is not the same, so I want to thank all my
Ventimiglia’s, Genova’s and Malaga’s friends. I cannot enumerate you all, but you
have been always at my side helping me during hard periods. I want also to thank
my NICS colleagues. I’ve learned a lot from you, you are an amazing group and
without you I could not been the same researcher that I am now. In this adventure,
I’ve been also with my PhD students colleagues from Malaga and NeCS project. It
has been a pleasure to know you all. Finally, I want to thank all the other persons
that I’ve meet during these years and spent days, weeks and years together, even if
we are not traveling together anymore.

Thank you All, this Thesis is Mine as Yours.

7



8



CHAPTER 1

Introduction

This Chapter sets the scope of the thesis, beginning with an introduction to Inter-

net of Things (IoT) and trust. Secondly, we discuss how IoT can benefit from
trust considerations. Then, we establish the main goal of the thesis, which is to
propose a way to consider trust in an IoT entity not only during its utilization or
implementation but in its System or Software Development Life Cycle (SDLC). In
Section 1.3, we outline the composition of this thesis work. Finally, we present the
collection of the papers that we have written to cover the thesis and the funding we
have received to work on and publish our results.

9
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1.1 Research Scope

The Internet of Things (IoT) allows humans and smart entities to cooperate among
them anyhow and anywhere [133]. The IoT entities developed and used by customers
are growing each year, and “it is expected that there will be more than 64B IoT
devices worldwide by 2025” 1. This prediction states that the IoT paradigm will
define how the world will be connected.

For this reason, many opportunities will arise, but also many problems [31]. A way
to mitigate them is offered by trust. In fact, an entity should interact with another
only if trust is established between them. Due to the uncertainty, interoperability,
and heterogeneity of IoT, achieving trust is still a challenge. Besides, considering
that isolated research communities have tackled these aspects separately, a holistic
approach is desirable [46].

Trust is difficult to define. It concerns different aspects and topics ranging from
Philosophy to Computer Science [46], and it is strongly dependent on the context.
In fact, trust “means many things to many people” [43]. This premise is most than
true for IoT. In fact, IoT entities can work in several contexts, and if we consider
trust in these contexts, we can enhance the protection of these devices.

Hoffman et al. [70] and Pavlidis [124], considered trust strongly dependent on
other properties like security and privacy. Ferraris et al. [50] stated that these re-
lations are even more important during an IoT entity development. In fact, as also
stated by Mohammadi et al. [109], trust mechanisms can be fundamentals and re-
quire more investigation in this field. For this reason, in our opinion, it is crucial
to consider trust since the initial phases of the SDLC in order to develop the trust
relationships among the smart entities correctly. This approach could help to protect
the smart entities and to give important rules of behaviour during the interactions
with other smart entities.

In a trust relationship, there are basically two actors involved: the trustor and
the trustee. The trustor is the one who actively trusts, and the trustee is the one
who keeps the trust. We can state that this collaboration is necessary when the

1https://techjury.net/blog/internet-of-things-statistics/
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trustor needs the trustee to perform an action or fulfill a goal considering a particular
context. This goal is not achievable by the trustor alone. For this reason, the trustee
is needed. Trust metrics are necessary to compute a trust level that helps the trustor
to decide if a trustee can be trusted [89]. This value must be computed before the
two actors start the collaboration. Moreover, the trust level could change over time
positively or negatively due to the right or wrong behaviour of the trustee [65].

For example, in an IoT environment, the trustor can be the user, and the trustee
can be the IoT device.

However, trust, security, privacy, and other important aspects are usually consid-
ered only during the final phases of the SDLC, and this can raise issues. We want
to fill this gap because we believe that it is crucial to consider trust not only during
the utilization of an IoT device but also since the earliest phases of the System and
Software Development Life Cycle (SDLC).

1.2 Goals of the thesis

As we stated earlier, we believe that to consider trust properly in the IoT, we need
to integrate it in the IoT devices not only during the implementation and utilization
of such devices but also in the whole SDLC of an IoT entity. In fact, so far, there
are no such approaches that cover the whole SDLC with trust, but only a part of it.
For this reason, our aim is to redefine the approaches and tools that help developers
consider trust in each phase: “from cradle to grave”.

Both in the System Development Life Cycle [67] and Software Development Life
Cycle [106], one of the first phases is related to requirements engineering. In fact,
collecting requirements in the early phases of the SDLC is an important task that
brings benefits to the following phases and avoids problems that could happen in later
phases. Developers usually elicit the requirements following stakeholders’ needs. The
stakeholders are persons or companies having an interest in the system or software
developed.

Existing requirements languages have been widely used with the introduction of
Goal-Oriented methodologies [21, 100, 111, 163], but they have not been developed
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for IoT and do not consider trust concerning other security domains. Similarly,
trust and related domains such as security, identity, usability, and privacy were not
appropriately considered in the first phases of SDLC [120]. On the contrary, to
guarantee trust, it is important to consider other domains related to it, as Hoffman
[70] and Pavlidis [124] stated. Following this premise, Rios et al. [132] have proposed
a work considering privacy in trust negotiation, and Gago et al. [46] moved forward
considering both identity and privacy connected to trust in the IoT field.

We aim to continue in this direction, considering trust-related domains holistically
in IoT and considering requirements engineering as a crucial in our framework to
ensure trust in an IoT entity during the whole SDLC.

After the requirements elicitation phase, there is the modeling phase where both
UML [137] and SysML [56] are widely used by developers. In fact, these diagrams
have been created in order to explore the different functionalities of a generic soft-
ware/system under development. Anyhow, these original modeling languages had no
features to implement security, privacy, or trust. For this reason, it is necessary to
define them in order to help the developers properly model trust and related domains.

Moreover, during the development of an IoT entity, the developers can consider
several approaches to perform this crucial task. A widely used approach is the so-
called top-down. It is basically a way to consider the problem starting from a general
perspective to a specific one. Moreover, the top-down approach can be used even for
software development through a Functional Breakdown Structure (FBS) or a Work
Breakdown Structure (WBS) [77]. However, in our case, it is important to consider
not only the functionalities but also their connections to the domains such as trust
and security in order to divide and perform the analysis according to their scope.

On the contrary, the bottom-up approach starts from a specific viewpoint to a
general overview of the system. It is a method used particularly in software engi-
neering [55, 77], but it can also be used to develop IoT infrastructures [129]. In
our paper, we move forward and consider it according to the IoT entities’ different
contexts and domains.

However, in our opinion, these two approaches alone are not enough for the
development of a trusted IoT entity. In fact, it is essential to highlight that an IoT
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entity is composed of software, and an effective way to develop the code is following
a finite state approach as stated by [156], and [23]. This approach is even more
critical in an environment such as the IoT, where usually all the functionalities are
performed separately and following a step-by-step process. In this work, we will
extend this approach in addition to the bottom-up and top-down approaches.

Then, we can state that verification and validation are two fundamental phases
to finish the development of an IoT entity. In fact, through verification is possible to
say that the entity has been built in the right way that means that the functionalities
are working as expected. On the other hand, validation means that the right entity

has been built. In this case, we can declare that the IoT entity has been developed
as it was intended for the originated need.

1.3 Outline of this Dissertation

This thesis is structured as follows.

In chapter 2, we present the State of the Art related to trust considering its
definition and characteristics. Then we compare trust to its related properties, and we
discuss trust management implementations. Then, we present two essential phases of
the SDLC: requirements and modeling. In this part, we discuss which requirements
elicitation techniques and model languages have been proposed and extended in
previous works. Then, we consider IoT and its connection with trust.

In chapter 3, we propose the K-Model, which is part of our trust-by-design frame-
work. The first phase of the K-Model concerns needs, where the purpose of the IoT
entity to be developed is defined. Then, there is the requirements elicitation phase,
where we propose a method to elicit requirements related to trust and its related do-
mains (security, privacy, usability, availability, identity, and safety). Then, we define
a JavaScript Notation Object2 (JSON) template to help developers elicit the require-
ments and a conceptual model illustrating all the elements that must be taken into
consideration during this process. After this critical phase, there is the model phase,
where we present a model-driven approach extending UML and SysML in order to

2https://www.json.org
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implement trust and related domains in the SDLC of an IoT device. Once these two
essential phases have been covered, there is the fourth phase: the development phase.
Here, we propose several approaches useful to develop the entities according to the
outputs of the previous phases. Then, verification and validation must be performed
in order to complete the flow of the SDLC that will end in the last phase: utilization.

In chapter 4, we present the seven transversal activities, which with the K-Model
compound our proposed framework. These activities are traceability, documentation,
metrics, gates, threat analysis, risk management, and decision-making. Traceability
is essential for the whole framework because it connects the phases of the K-Model
among them. Moreover, it is a crucial tool in requirements and model phases. Doc-
umentation is very important, especially in the first phase, where all the needed
aspects of the desired IoT entity must be collected in order to elicit the proper re-
quirements. Metrics are important for verifying the requirements and setting of the
IoT entity’s functionalities. The gates are related to the continuation of the flow from
one phase to the following one. Only if the previous phase has been completed, it is
possible to proceed. Then, Threat Analysis and Risk Management are fundamental
activities that must be considered in order to prevent hazards or attacks on users
and devices. Finally, the decision-making process is useful in order to solve conflicts
among requirements or to perform trust decisions during the utilization phase.

In chapter 5, we propose a use case scenario in order to present how to implement
both the phases of the K-Model and their related transversal activities. Thus, we
will present how a new IoT entity will be developed, considering trust and related
domains during the whole SDLC.

Finally, there is chapter 6, in which we summarize the insights and the discussions
of our thesis work. Moreover, we present our future works and possible future lines
of research.

1.4 Publications and Funding

The work presented in this dissertation has been internationally awarded in secu-
rity conferences, meetings, and journals, where experts have provided their valuable
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CHAPTER 2

State of the Art

This chapter will describe how trust has been defined in state of the art during the
years. We will take into consideration different topics and how different authors have
defined it. Trust has some characteristics, and it is strongly related to other domains
such as privacy and security. Moreover, we have to consider how trust management
is performed and which trust models have been proposed over the years. Then,
we will introduce requirements engineering and the existing modeling languages.
Furthermore, our aim is how to consider trust in the IoT. Therefore, we will discuss
IoT and how trust can be considered in it. Finally, we will present the works related
to trust management in the IoT.
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2.1 Trust

“Trust is a common phenomenon” [98], but it is also a difficult concept to define
“because it is a multidimensional, multidisciplinary and multifaceted concept” [160].
Trust is defined in British English by the Cambridge Dictionary as “to believe that
someone is good and honest and will not harm you, or that something is safe and
reliable”1. Analysing this definition, there is a distinction respect to people (“some-
one”) and objects (“something”). The former case refers to the goodness and honesty
of the person we trust and that he/she will not harm us. In the latter case, we refer
to the object implying that it is safe and reliable and basically that its utilization
will not harm us and it will work as we have expected. Thus, we can state that
this definition is general, and it can give an idea that trust is strongly related to the
context, and it is hard to define.

Indeed, in state of the art, there are many definitions of trust applicable to dif-
ferent aspects. Erickson [43] stated that “trust means many things to many people”.
Accordingly, with this definition, we can understand why it is hard to define and
explain what trust is. Moreover, many fields of study, such as Sociology, Psychology,
Philosophy, and Information Technology have to deal with trust differently. For this
reason, McKnight [105] stated that “Trust has been defined in so many ways by so
many different researchers across disciplines that a typology of the various types of
trust is sorely needed”.

Following this premise, giving a meaning to trust is a challenge that many authors
have tackled in the past years.

Mayer et al. [103] defined trust as a “willingness to be vulnerable to another
party”.

McKnight and Chervany [104] explained that trust intention is “the extent to
which one party is willing to depend on the other party in a given situation with a
feeling of relative security, even though negative consequences are possible”.

Gambetta [57] affirmed that “trust (or, symmetrically, distrust) is a particular
level of the subjective probability with which an agent assesses that another agent

1https://dictionary.cambridge.org/it/dizionario/inglese/trust
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or group of agents will perform a particular action, both before he can monitor such
action (or independently of his capacity ever to be able to monitor it) and in a context
in which it affects his own action”.

Mui et al. [115] defined trust as “a subjective expectation an agent has about
another’s future behavior based on the history of their encounters”.

For Ruohomaa et al. [138] “trust is the extent to which one party is willing to
participate in a given action with a given partner, considering the risks and incentives
involved”.

Hoffman [70] defined trust “as the expectation that a service will be provided or
a commitment will be fulfilled”.

Jøsang [78] stated that “trust is a personal and subjective phenomenon that is
based on various factors or evidence” and also that “trust is the subjective probability
by which an individual, A, expects that another individual, B, performs a given action
on which its welfare depends”.

Finally, Agudo et al. [4] defined that trust is related to “the level of confidence
that an entity participating in a network system places on another entity of the same
system for performing a given task”.

However, by analysing all these definitions, we can state that trust is strictly
dependent on the actors involved in the trust interaction. Typically, they are at
least two entities known as the trustor, and the trustee [4, 98, 112, 124].

For a trust interaction, in order to be performed, we can state that it is necessary
that “the trustor trusts the trustee”. Analysing this sentence we can state that:

1. “the trustor ” is the entity which places trust (active trust);

2. “the trustee” is the entity on which trust is placed (passive trust);

3. “trusts” is the action between the two entities.

The trust action happens when an individual (the “trustor”) requires the service of
another individual (the “trustee”). Depending on the fulfillment of the action or how
it is performed, the level of trust of the trustor can change positively or negatively.
This means that future interactions will depend on the outcome of past interactions
affecting the level of trust of the trustor.
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2.1.1 Trustworthiness

Trustworthiness can be defined as a characteristic of a person [124], or something
[43] that is the object of somebody’s trust. In other words, it is a characteristic of
the trustee.

Pavlidis [124] stated that “a trustworthy system is a system that has the capability
of meeting customer trust and the capability to meet their stated, unstated, and even
unanticipated needs”

McKnight and Chervany [105] defined four concepts related to trustworthiness:
benevolence, competence, integrity, and predictability.

• Benevolence: the trustor is important for the trustee, and for this reason, he
wants to act properly not to hurt him.

• Competence: the trustee is able to do what the trustor wants (and this can
be the reason for the trustor asking help from the trustee)

• Integrity: the trustee is honest, and he acts to do what the trustor asks
without malicious intentions.

• Predictability: the trustor can anticipate the behaviour of the trustee and
has knowledge a-priori about the exchange.

According to McKnight and Chervany [105], only one of these four concepts is
not enough to establish a trust relationship. In fact, if the trustee is honest but has
no competence to finalize the action requested by the trustor this one does not want
to establish the relationship. Thus, in this case, the trustor cannot trust the trustee
to perform that action. Otherwise, if the trustee is competent but he is no honest,
probably the relationship is not created because the trustor cannot trust the trustee,
fearing a possible betrayal.

Hence, trustworthiness determines if someone (or something) can be trusted.
The higher is the trustworthiness, the higher is the possibility to be trusted. When
the desired level of trust of the trustor matches the trustworthiness of the trustee,
there is no disequilibrium in the relation. The other possibilities are trusting less or
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trusting more than the trustee’s trustworthiness. In the first case, there is a loss of
the opportunities; in the second case, there is a possible loss because the trustor is
vulnerable [29, 30].

Trustworthiness is crucial for both humans and things. When we talk of trust-
worthiness about a thing or software, it is considered a high-quality resource [107].
Moreover, a system can be defined as trustworthy and accepted by the customers if
its capability meets the stakeholder needs, not only the ones asked by them but also
the ones they did not specify but are important for the system [124].

2.1.2 Characteristics of trust

According to trust, there are some characteristics defined in state of the art by several
authors.

Trust can be direct. This property means that trust is based on direct experi-
ences between the trustor and the trustee [18]. In this case, we can also say that
trust is history-dependent.

Trust can also be indirect; this happens when the trustor and the trustee did
not have past interactions. In this case, trust is built on the opinion and the rec-
ommendation of other entities trusted by the trustor [1]. In this case, we can refer
to the possibility that trust is transitive [27]. Trust is conditionally transferable,
“information about trust can be transmitted/received along a chain (or network) of
recommendations. The conditions are often bound to the context and the trustor’s
objective factors” [160].

Trust is also directed because there is an oriented relationship between the
trustor and the trustee [160]. This means that if A trusts B, we cannot be sure that
B trusts A.

Trust is not static over time, it is not strictly time-dependent, but it can change
over time. Chang et al. [24] stated that “trust builds with time”. In fact, a trustor
could trust the trustee about something for a period of time. However, this trust
level could change later because something could happen to modify the original trust
level [124].
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Trust is dynamic, “it is non-monotonically changing with time. It may be peri-
odically refreshed or revoked and must be able to adapt to the changing conditions
of the context in which the trust decision was made” [65].

Trust is also context-dependent [112] and it can change depending on the
purpose where it is used. Moreover, Yan et al. [160] stated that “in general, trust is
a subjective belief about an entity in a particular context” and more specifically in
Information Technology Abdelghani et al. [1] state that “the trust of a node i in a
node j varies from one context to another”.

Trust can be local [1] because it depends on the considered couple of trustor and
trustee (i.e., Alice and Bob) and if we consider other two couples (i.e., Alice and
Charlie, and Bob and Charlie), it is possible that Alice distrust Charlie, even if Bob
trusts Charlie [27].

Trust can be global, it “means that every node has a unique trust value in the
network which can be known by all other nodes” [1].

In addition, we can state that trust can be specific [110, 83] or general [110, 83].
On the one hand, it means that trust is specific if the trustor trusts the trustee only
for a specific action or service. On the other hand, trust is general if the trustor
trusts the trustee generally and not only for a specific action.

Trust can be asymmetric, this means that two entities tied by a relationship
may trust each other in different ways, so the fact that A trusts B does not imply
that B should trust A [116]. This is connected to the definition of “directed”.

Trust is subjective because it is related to a personal opinion based on various
factors (i.e., experience), and these factors can have different weights [65]. Trust is
different for each individual in a particular situation [160]. On the other hand, trust
can also be objective “such as when trust is computed based on QoS properties of
a device [1]”. Furthermore, an objective parameter to compute trust is also known
as reputation.

Trust is usually a composite property, “trust is really a composition of many
different attributes: reliability, dependability, honesty, truthfulness, security, compe-
tence, and timeliness, which may have to be considered depending on the environment
in which trust has been specified [65]”. Compositionality is an essential feature for
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trust calculations [160], and every attribute could have a different weight.

Finally, trust should be measurable, “trust values can be used to represent the
different degrees of trust an entity may have in another. [160].” This characteristic
is the basis for the computation of a final trust value during trust management.

These sixteen characteristics of trust are summarized in Table 2.1.

Table 2.1: Characteristics of trust

Direct [18]
Indirect [1]
Transitive [27, 160]
Directed [160]
Not Static [24, 124]
Dynamic [65]
Context-
dependent

[1, 112]

Local [1, 27]
Global [1]
Specific [83, 110]
General [83, 110]
Asymmetric [116]
Subjective [65, 160]
Objective [1]
Composite-
property

[65, 160]

Measurable [160]

2.1.3 Trust and Reputation

Strongly related to trust, reputation is defined as “the opinion that people, in general,
have about someone or something, or how much respect or admiration someone or
something receives, based on past behaviour or character” 2.

Mui [115] stated that “reputation is defined as a perception a party creates
through past actions about its intentions and norms”.

2http://dictionary.cambridge.org/dictionary/english/reputation



24

Moreover, reputation is also defined as objective trust3.

We can say that trust and reputation are connected, but they are not the same.

In fact, Jøsang [78] asserted that:

“I trust you because of your good reputation.” (1)

“I trust you despite your bad reputation.” (2)

These are two positive definitions. Hoffman stated that “Metrics must be defined
to measure user trust and distrust of a system” [70] and Gambetta [57] defined
distrust symmetrical respect trust. For the sake of completeness, in addition to
trust, distrust, and no trust, Marsh also defined untrust and mistrust [97].

Following these definitions, we can also define two negative assertions:

“I distrust you despite your good reputation.” (3)

“I distrust you because of your bad reputation.” (4)

With these four definitions, we can understand better that reputation can be a
parameter in a trust relationship (because in these definitions, the aspect of reputa-
tion is always mentioned), but not the only one that determines the computation of
a trust value.

To know the reputation of someone or something, we need to keep this information
somewhere by some service. This service can be a third party or any entity partici-
pating in the interactions. This structure depends on the system’s architecture; more
precisely, it depends on whether the architecture is centralised or distributed. This
approach is used by reputation systems (like eBay [130]). In this respect, Ruohomaa
stated that “reputation systems provide essential input for computational trust as
predictions on future behaviour based on a peer’s past actions. Information about
these actions can also be received from other members of a reputation network who

3wiki.p2pfoundation.net/Trust_Metrics
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have transacted with the peer. However, the credibility of this third-party informa-
tion must be critically assessed” [139].

In Information Technology, reputation has been an enabler for internet auction
exchanges. As Resnick stated that “reputation system enables trust among strangers
on the Internet. This is entirely different from the reputation systems that evolved
in human societies across thousands of years” [130].

2.1.4 Trust connected properties

According to Hoffman et al. [70], Lo Presti [128], and Pavlidis [124], trust is strongly
dependent on other properties or domains (i.e., privacy, identity, and security). More-
over, in state of the art, there are several works about trust properties that propose
a classification of them [128, 160].

Hoffman [70] proposed a trust model which considers the following properties
related to trust:
1) Reliability & Availability
2) Privacy
3) Audit & Verification Mechanisms
4) Security
5) Usability
6) User Expectations

There are sub-properties for each of these properties, as we can see in Table 2.2.

The first property is a compound property. Reliability indicates a service is
operating within its specifications [128] and availability means that the actions of
the systems are not paused or stopped for long periods.

The second property is privacy. Thus, the system has to guarantee some features
like granting confidentiality or anonymity. This second sub-property can create con-
flict with other trust properties not selected by Hoffman (i.e., accountability [117]).

For the author, Audit & verification is important because “since no system is
perfect, the question "Who watches the watchers?" must be addressed. Thus, audit
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Table 2.2: Sub-properties of trust extracted from [70]

Trust related prop-
erty

Sub-Property/Characterisc

Reliability & Avail-
ability

- Vulnerability to denial of service attacks
- Connection to the Internet
- Quality of service/performance criteria spe-
cific to the application
- Use of fault tolerance platform techniques

Privacy - User anonymity
- Data confidentiality

Audit & Verification
Mechanisms

- Cryptographic methods used to verify
database integrity
- Manual or paper audit trails
- Use of trusted agents

Security - Authentication of parties in transaction
- Data access control
- Data integrity
- Software change control procedures
- Physical security

Usability - Perception issues
- Motor accessibility (i.e., user dexterity,
physical strength requirements)
- Interaction design issues

User Expectation - Product reputation
- Prior user experience
- Knowledge of technology
- Use of trusted agents
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capabilities (both electronic and non-electronic, both by a single user and multiple
trusted agents) will be included in the trust model. The trust model will show the
effects of security and verification mechanisms on trust levels.”

Security is not only a property of trust. In fact, as Yan stated “Trust is beyond
security. It is a solution for enhanced security” [160]. Security is composed of sub-
properties like grants that the entities involved in a process are authenticated, have
the right to access data, and are not corrupted.

Usability is essential because if a system is challenging to be used and understood,
the user trust could be affected by these difficulties [70]. Furthermore, if a system is
difficult to be used correctly, it is possible to misuse it. This may lead to problems
and, consequently, lower the trustworthiness of the system itself [128].

User expectation is important to be considered. It is strongly related to the
reputation of a system. So, the higher the reputation is, the higher the expectation
about the system will be.

Pavlidis [124] considered some properties already taken into consideration by Hoff-
man (privacy, reliability, security, and usability). Moreover, he considered availability
as a sub-property of security. In state of the art, other works consider availability
as part of the security domain [114]. Besides, Pavlidis took into consideration safety
and maintainability. In Table 2.3, we can see the classification made by Pavlidis.

Privacy is important for Pavlidis because nowadays the information systems can
collect a considerable amount of personal information very quickly; this aspect raises
a risk about the possibility that those data can be accidentally or intentionally dis-
closed. This situation can affect users’ trust negatively. Besides, privacy has four sub-
properties: anonymity, unobservability, pseudonymity, and unlinkability. Anonymity
is the ability that avoids being identified, unobservability is related to the possibility
of being not detected, and pseudonymity gives the possibility to use aliases. Unlink-
ability can be derived by anonymity and unobservability.

The second property is usability. It has a substantial impact on users’ trust
because it affects the system perception of a user. In fact, if the system is easy to use
or memorize, the outcome will increase the trustworthiness of the system perceived
by the user.
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Table 2.3: Sub-properties of trust extracted from [124]

Trust related prop-
erty

Sub-Property/Characterisc

Privacy - Anonymity
- Unobservability
- Pseudonymity
- Unlinkability

Usability not defined
Reliability not defined
Safety not defined
Security - Integrity

- Confidentiality
- Availability
- Authentication
- Authorization

Maintainability not defined

Reliability is an attribute that is very important for system trustworthiness. In
fact, reliability has been defined as “the probability that a system will perform a
specified function within prescribed limits, under given environmental conditions,
for a specified time” [147]. Anyhow, we consider it as a sub-set of trust.

Safety is strongly related to the physical domain. Preventing a user from being
harmed will increase the system’s trustworthiness because the user will perceive the
system as safe and trusted.

For the author, security must be taken into consideration if we do not consider
trust in the design of a system. In this case, we need to make the system secure as
much as possible because it is the only defense against malicious entities. On the
other hand, if we consider trust, it is possible to relax some security features because
the users will be trusted to perform particular activities. In this case, we have five
sub-properties. Confidentiality, integrity, and availability are known as the CIA triad
[45]. Authentication and authorization are significant properties, also for trust.

Finally, maintainability is important because it affects a system to be modified
or updated. According to the author, this feature affects trust.

Another author, Lo Presti [128], defined eleven trust-related properties:
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• Source vs. Interpretation: From raw data sources, if we manipulate them,
we obtain one or more interpretations. Because of this manipulation, source
data are more trusted than the interpretation.

• Accuracy: It represents the level of detail of information determining how
precisely trust can be considered and computed. With a higher accuracy level,
a user will be more confident.

• Audit trails: It is related to the logs of the system where all the information
about actions, users, and permissions are stored. If a modification of these
data occurs, it should be detected and recorded.

• Authorization: It is mandatory to be trusted and authorized in order to
perform an action.

• Identification: This property allows the possibility to identify users. It is
strictly connected to audit and authorization. In the case a level of privacy is
needed, it is possible to provide identification under pseudonyms.

• Reliability: It indicates that “a service operates according to its specification”.
It can also be referred to as the integrity of the data. This property is strongly
related to the resilience of a system [49].

• Availability: This property guarantees that the services of a system are not
stopped, or at least if they are not available, it will be for a short period of
time.

• Personal responsibility: It is connected to audit and identity. Because bad
actions can reduce the trust level of a system, who is liable must be recognized.
This property guarantees accountability.

• Reasoning: It is connected to source vs. interpretation. In fact, any user can
manipulate the data, but this can affect other users’ trust if “the reasoning does
not appear correct”.
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• Usability: It is an important element of trust. In fact, if a system is hard to
be used, it can lead to incorrect use of it, reducing the system’s trust.

• Harm: The author stated that “at the heart of trust is the notion of avoiding
harm”. It can include any possible problem concerning a particular system (i.e.,
security breach, loss of personal data, privacy risk).

Some of these properties are also presented in Hoffman’s work [70] (i.e., reli-
ability, availability, audit, and usability). Others that Hoffman has identified as
sub-properties of security in Lo Presti’s work are distinct properties (identification,
authorization).

Identification has also been considered by Mahalle et al. [95]. They have pro-
posed identity features that are important to be taken into consideration, such as
authentication and authorization.

Usability has been defined by Baharuddin et al. as “the capability of a product to
be understood, learned, operated, and attractive to the users when used to achieve
certain goals with effectiveness and efficiency in specific environments” [13]. In this
work, the authors identified various characteristics to enhance the usability in the
mobile device domain, such as effectiveness, efficiency, satisfaction, and reliability.

Even the actors involved in trust relationships (trustor and trustee) have some
properties. About this, Yan et al. [160] elicited subjective and objective properties
regarding the trustor and the trustee. We show them in Table 2.4.
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Table 2.4: Trustor and trustee properties of trust extracted from [160]

Factors related to

trustee’s objective

properties

Competence; ability; security; depend-

ability; integrity; predictability; re-

liability; timeliness; (observed) be-

haviour; strength

Factors related to

trustee’s subjective

properties

Honesty; benevolence; goodness

Factors related to

trustor’s objective

properties

Assessment; a given set of standards;

trustor’s standards

Factors related to

trustor’s subjective

properties

Confidence; expectations or ex-

pectancy; subjective probability;

willingness; belief; disposition; atti-

tude; feeling; intention; faith; hope;

trustor’s dependence and reliance

Context Entailing risk; structural risk; domain

of action

Thus, by analysing these definitions of trust connected properties, we can affirm
that trust can be connected to other domains or properties (i.e., privacy or security).
Moreover, these domains have characteristics fundamentals to define them. This is
a piece of important information that we strongly consider in this thesis work.
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2.1.5 Trust Management, Metrics and Models

Trust management systems have been realized to compute trust values and assist
entities in interacting with other entities to decide how the interaction should be
performed. Their architectures can be centralised or distributed.

More in detail, Louta et al. stated that trust management “can be conceptualized
in two ways. Firstly, as a process according to which an entity becomes trustworthy
for other entities. Secondly, as a process that enables the assessment of the reliability
of other entities, which in turn is exploited in order to automatically adapt its strategy
and behaviour to different levels of cooperation and trust” [94].

The first trust management framework was presented by Blaze [20]. His cre-
ator described policyMaker as a trust management system “that will facilitate the
development of security features in a wide range of network services”. This frame-
work can be considered as the most general form of trust management system.
Then, Levien stated “certificates and policies can represent arbitrary computations
in Turing-complete language. Applications of PolicyMaker tend to focus on the lan-
guage of assertions rather than trust computations over the graph, but the fully
general nature of the system allows the latter to be implemented” [88].

Ruan [135] proposed a trust management system framework that is composed of
three context-dependent phases.

• Trust Modeling: in this phase, there is a mapping of the available trust raw
data from the fields into trust metrics.

• Trust Inference: it focuses on propagating and aggregating the obtained trust
metrics over the whole network or over the part of interest.

• Decision Making: is about the use of the produced trust knowledge to sup-
port decision making. This process allows the entity to decide how to act
according to the data which have been collected and computed.

Hoffman [70] stated that trust management and trust metrics will be helpful for
the success of new technologies distribution.
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Beth et al. [18] published the first type of modern trust metric. It is composed
of a set of rules used to derive the trustworthiness value of a node between 0 and 1,
using subjective and objective trust.

Levien [89] defined the simplest trust metric as the following. There are three
elements:

1. a designated “seed” node indicating the root of trust

2. a “target” node (T)

3. a directed graph.

This is considered as a basis for the other trust metrics. All the trust metrics
contain at least these three elements. A trust metric is useful to determine whether
the node T is trustworthy or not.

As Levien stated “the simplest trust metric is also the weakest. If an attacker can
generate an edge from any node reachable from the seed to a node under his control,
he can cause arbitrary nodes to be accepted” [89].

For more complicated metrics, the edges can contain rules, weights, or controls.

There are also relatively simple trust metrics “similar to the simplest one, with
the additional constraint that path lengths are bounded by some parameter k. Thus,
all nodes within a distance of k edges from the seed are accepted. A variation of this
trust metric is used in X.509 systems” [89].

Therefore, Chen et al. stated that propagation and aggregation of trust are
crucial trust metrics [25]. In addition, trust transitivity is discussed in terms of its
two primary operations: concatenation and aggregation.

Together with trust metrics, trust models are a fundamental part of trust manage-
ment. Moyano et al. [112] made a classification of trust models. This work is essential
because even if it should not be useful to compare models of different classes, it is
crucial to extract some similar features from them. Following this premise, it is
possible to create a general framework containing these features.

The following classification provided by Moyano divides the trust models into two
main categories:
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• Decision Models: “They aim to make more flexible access control decisions,
simplifying the two-step authentication and authorization process into a one-
step trust decision. Policy models and negotiation models fall into this category.
They build on the notions of policies and credentials, restricting the access to
resources by means of policies that specify which credentials are required to
access them” [112].

• Evaluation Models: “Their intent is to evaluate the reliability (or other sim-
ilar attributes) of an entity by measuring certain factors that have an influence
on trust in the case of behaviour models, or by disseminating trust information
along trust chains, as it is the case in propagation models. An important sub-
type of the former are reputation models, in which entities use other entities’
opinions about a given entity to evaluate their trust on the latter” [112].

Policy models (as Policy Maker [20]) are a sub-type of decision models; they
have rules that are used to give or not to give access to a resource. These rules are
named policies, and they are written with a policy language [112].

Other decision model types are the negotiation models (as Trust Builder [159]).
As Moyano [112] stated, “Trust negotiation models add a protocol, called negotia-
tion strategy, during which two entities perform a step-by-step negotiation-driven
exchange of credentials and policies until they decide whether to trust each other or
not. This strategy allows for protecting the privacy of the entities as policies and
credentials are only revealed when required”.

One type of evaluation model is the behaviour model. These models are often
built in a systematic way and through three phases [112]:

1. Assign a trust value to the entities belonging to the system.

2. Monitoring the entities and their attributes.

3. Assign values to the monitored attributes merging them to compute a final
result called trust or reputation score.

The final score is a value showing how much the trustor trusts the trustee, and
it can be unidimensional or multidimensional [78]. In the second case, the values



35

can come from different aspects of trust. Trust metrics are used to compute these
values, and they compute variables like security or utility to give a final total score
to relations [112].

Reputation models help compute an initial trust value if the trustor has never had
previous interaction with the trustee. These models can be centralised or distributed.
In the first case, there is an entity (a trusted third party) that has to collect the
reputation of the other entities and share these values among all the entities. In the
second case, every entity collects information about other entities and shares this
information with the other entities. In both cases “the model might consider how
certain or reliable this information is (i.e., the credibility of witnesses), and might
also consider the concept of time (i.e., how fresh the trust information is)” [112].

Propagation Models assume that some trust relationships are available in ad-
vance. Then this information must be shared and disseminate to other entities.
These entities have no knowledge about other entities and if they are trusted or
not. In this model, the assumption about the transitivity of trust is fundamental.
Some models like Advogato [88] or the E-Bay reputation system [130] are based on
transitivity trust.

Regarding simpler trust models, one of “the most basic is the model of password-
protected accounts. This mechanism is almost universally deployed but suffers from
severe limitations, including the need for servers to manage the accounts, the need
for users to keep track of a large number of passwords, and the relative lack of
security provided by this model. Thus, there has been a sustained interest in more
sophisticated models” [89].

Another model is based on the Public Key Infrastructure (PKI), where a trusted
third party is present. In this case, it is known as Certification Authority (CA), and
it is able to release a digital certificate. The PKI is composed of various CAs and,
as Levien [89] stated, this architecture suffers from two main issues:

1. the lack of useful meaning in the PKI’s underlying namespace.

2. the question of which CA to trust.

In addition, Levien stated that “implementations of CA’s have proved themselves
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not worthy of absolute trust. Further, as the number of CA deployed scales up, the
risk of any one of them being compromised scales accordingly. In part because of
these two problems, PKI’s have met with limited success at best” [89].

In this thesis, we will consider trust management, trust metrics, and trust models
considering the state of the art and moving forward proposing our considerations.

2.2 System Development Life Cycle (SDLC)

System Development Life Cycle (SDLC) is a conceptual paradigm that involves rules
and procedures for developing or modifying systems during their life cycles. It is a
systematic approach that explicitly divides the work into phases required. In this
section, we will focus on how two phases of the SDLC have been considered in state
of the art: the requirements and model phases.

2.2.1 Requirements Engineering

Requirements engineering is one of the first phases of the System Development Life
Cycle [67], and Software Development Life Cycle [106] (in this thesis, we will refer
to both of them as SDLC).

In the State of the Art, many authors have considered this topic. Nuseibh et
al. defined an important statement about requirements engineering. They stated
that “the primary measure of success of a software system is the degree to which it
meets the purpose for which it was intended. Broadly speaking, software systems
requirements engineering (RE) is the process of discovering that purpose by identify-
ing stakeholders and their needs and documenting these in a form that is amenable
to analysis, communication, and subsequent implementation” [118].

Zave gave one of the most straightforward definitions of requirements engineer-
ing. She stated that “requirements engineering is the branch of software engineering
concerned with the real-world goals for, functions of, and constraints on software
systems. It is also concerned with the relationship of these factors to precise speci-
fications of software behaviour, and to their evolution over time and across software
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families” [164]. This definition is essential for different reasons. Firstly, it focuses
on the fact that the “real-world goals” need to be at the center during the develop-
ment of a system. They represent the why and the what, critical questions for the
motivation of building a system. Secondly, the words “precise specifications” define
one of the key points during requirements analysis: the future validation of what
the stakeholders originally wanted, and the guide for developers in order to build the
right system. Lastly, this definition specifies “evolution over time and across software
families”, underlining how the real-world changes frequently, so it is needed to define
a requirement taking this change into consideration. Anyhow, this definition focuses
only on software engineering, but these aspects can also be taken into consideration
for a general system.

Hull, Jackson, and Dick [37] in their book stated that requirements are the basis
for every project, defining what the stakeholders (i.e., users, customers, suppliers)
and developers in a potential new system need from it and what the system must
do to satisfy that need. In order to be understood by all these actors, requirements
are generally expressed in natural language. However, this representation can be
helpful, but it could have many different interpretations. Here, we have one major
challenge that is to capture the need entirely and unambiguously. Moreover, we need
to avoid the utilization of specialist jargon. Therefore, a guide on how to write and
elicit the proper requirement is needed. Thus, once communicated and agreed upon,
requirements drive the project activity. Nevertheless, the stakeholders’ needs may be
many and varied, and they can lead to conflicts among them. Besides, these needs
may not be clearly defined at the start, maybe constrained by factors outside their
control, or maybe influenced by other goals that change over time. Thus, without a
stable requirements base, a development project can fail.

The IEEE 830-1993 requirements specification [33] can help in this direction be-
cause they defined how a requirement must be written in order to avoid different
interpretations. This specification states that a requirement must be: correct, un-
ambiguous, complete, consistent, ranked for importance or stability, verifiable, mod-
ifiable, and traceable.

A requirement is correct “if, and only if, every requirement stated therein is
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one that the software shall meet” [33]. It is hard to prove that a requirement is
correct, and usually, it is done considering the ’why’ of a system and if the elicited
requirement satisfies it. Moreover, the correctness of a requirement can be verified
by the developers and the final users in order to check if it reflects the needs of the
system.

Unambiguous property is satisfied “if, and only if, every requirement stated
therein has only one interpretation” [33]. This is a crucial property that fixes the
problems related to the utilization of natural language to define a requirement. Fol-
lowing this property, the developer must check if the elicited requirement has only
one interpretation, if not, the requirement must be rewritten.

A requirement is complete if it covers a specific aspect without leaving any part
unspecified. The completeness of a requirement or a set of requirements is a crucial
point to cover all the specified needs. If a set of requirements is not complete, the
developers must rewrite the requirements or insert new ones in order to satisfy this
property.

Consistent is strictly connected to the correct one. In addition, it is a crucial
property also if different requirements must be compared. In fact, through this
property, we can find out if there is conflict among different requirements. For
example, this can happen if two requirements defined two different situations and
they cannot be implemented together, but only one of them can be satisfied. The
decision-making process will be helpful in these situations in order to decide which
requirement to preserve and which one to delete or modify.

The property ranked for importance or stability is helpful in order to solve conflicts
among requirements of the same set.

A requirement is verifiable “if, and only if, there exists some finite cost-effective
process with which a person or machine can check that the software product meets
the requirement” [33].

A requirement can be modifiable only if changes can be made “easily, completely,
and consistently” [33]. So, it is possible to modify a requirement, but the new
requirement must meet the other properties.



39

A requirement must be traceable. This means that “the origin of each of its re-
quirements is clear and if it facilitates the referencing of each requirement in future
development or enhancement documentation” [33]. In the IEEE 830-1993 speci-
fication, two types of traceability are proposed: backward and forward traceabil-
ity. Backward traceability depends “upon each requirement explicitly referencing its
source in earlier documents” [33]. On the other hand, forward traceability is satisfied
if each requirement is uniquely identified.

Following these premises, we can state that requirements engineering is funda-
mental in order to perform a reasonable, effective, and efficient development of any
system or software.

2. 2. 1. 1 Requirements and Trust

In this thesis work, we will also analyse all those previous works that have consid-
ered trust or related properties during the requirements engineering process. How-
ever, it is important to underline that for many years, trust and related domains
such as security, identity, usability, and privacy were not appropriately considered in
the first phases of SDLC [120]. Furthermore, Yu et al. [162] stated that trust could
be considered a non-functional requirement depending on other aspects in all the
SDLC and Giorgini et al. [62] reasoned on how it can be possible to include trust
in requirements language.

Indeed, to collect and elicit proper requirements during the earliest phases of
the SDLC is a fundamental task that has positive outcomes and minimizes raising
problems in the following phases of the SDLC. Usually, as we specified earlier, re-
quirements elicitation is performed by developers following stakeholders’ needs. The
latter are persons or companies having an interest in the system or software which
is under development.

During the requirements elicitation phase, it is helpful to use appropriate tech-
niques to elicit the proper requirements. Some of them have been widely used with
the introduction of Goal-Oriented methodologies [21, 100, 111, 163].

The first one was I* and it has been developed by Yu [163]. This language
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introduces the notions of actor, goal, and dependencies. SI* [100] is an extension
of I* focusing on security and including notions related to it and secondarily to
trust. Another methodology is TROPOS [21]. It is based on the I* framework
methodology, and it was developed to support all the design activities during the
SDLC. Finally, Mouratidis and Giorgini extended the Tropos methodology creating
Secure Tropos [111]. In this work, it is explicit which actor owns a service and is able
to provide it. Then, considering other trust-related domains, Rios et al. [131] have
highlighted how it might be necessary considering also privacy characteristics in the
requirements elicitation phase. This process enhances trust, especially during trust
negotiation processes. Finally, Mavropoulos et al. [102] proposed a methodology to
elicit security requirements for the Internet of Things. They stated that “using JSON
format the process of requirements elicitation can be automated, thus making the
analysis of large IoT networks more efficient”.

Although, none of these works have considered trust holistically with other trust-
related domains. On the contrary, to guarantee trust, it is essential to consider
other domains related to it, as Hoffman [70] and Pavlidis [124] stated. Following
this premise, one of the works previously cited proposed by Rios et al. [132] have
considered privacy during trust negotiation. Besides, Gago et al. [46] have considered
trust, privacy, and identity as requirements to be taken into consideration during the
development of a system, particularly an Internet of Things system.

To summarize, there are plenty of works related to the requirements elicitation
process in state of the art, but none of them considers trust properly alongside other
domains. Moreover, these works focus more only in the earliest phases of the SDLC
without an holistic perception during its whole period. Our thesis work aims to fill
this gap taking these works into consideration and going further, considering trust
strongly related to other domains such as security, usability, and identity. Moreover,
we will propose an innovative requirement elicitation method for the Internet of
Things.
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2.2.2 Modeling Languages

During the SDLC, the modeling phase is essential in order to define the model spec-
ifications that a system will need and how to implement important features elicited
in the previous phases.

Two widely implemented modeling languages are known as Unified Modeling Lan-
guage (UML) [137], and System Modeling Language (SysML) [56]. These languages
are useful to explore the different functionalities of a software/system. In addition,
the UML/SysML diagrams help developers to define the proper software/system.
However, these modeling languages have not been designed with features related to
security, privacy, or trust. Nevertheless, in the state of the art, several authors tried
to solve this issue by expanding UML, implementing extra features. However, a few
authors have proposed a way to consider trust in the first phases of the SDLC.

About security, Jürjens [80] considered security policy validation and encryption
extending UML in UMLsec. Furthermore, Basin et al. [15] and Lodderstedt et al.
[93] extended UML in secureUML in order to implement access control rules. A
limitation related to this work is that they have not considered scenarios where the
access control rules are violated. Moreover, they have not deeply considered the
requirements phase focusing only on the design phase.

Concerning risk analysis, the following UML extensions implement risk and threats
adding some features in order to consider them during the modeling phase. Thus,
Vraalsen et al. [155] used CORAS [38] to implement threat and risk modeling.
Furthermore, Hussein et al. [74] extended UML in UMLintr to include intrusion
detection into the models.

Related to trust, an interesting paper that considers trust in UML has been pro-
posed by Uddin and Zulkernine [152]. UMLTrust focuses on the system design and
specification phases of the SDLC. In particular, they enhanced the class, state ma-
chine, and use case diagrams with trust stereotypes. However, they did not consider
other properties related to trust (i.e., security or privacy). Neither they consider
important phases of the SDLC such as needs, verification, and validation. Finally,
there is no backtracking between the phases, and this is a considerable limitation in
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order to implement modifications.

Previously, only Gorski et al. defined stereotypes to implement trust in UML use
case diagrams [63]. They considered only pieces of evidence as claims in order to
modify the trust level of the trustor. Even though this was one of the first works
including trust in UML, a considerable limitation of this proposal is that they did
not implement other trust characteristics.

About SysML, only several authors have enriched it by implementing security
properties, but none have expanded these diagrams with trust stereotypes. Maskani
et al. [99] have extended SysML considering especially the requirements diagram.
The authors included security stereotypes in order to consider them also during the
requirements elicitation process. However, their work does not consider security-
related properties such as privacy or trust. Moreover, it is related only to the re-
quirements phase. Some years earlier, other authors worked on implementing security
stereotypes in SysML. Thus, Apvrille et al. [9] developed a framework called SysML-
Sec, and it was designed for embedded systems. They aimed to extend SysML to
cover requirements, design, and validation phases. In order to elicit security require-
ments, they took into consideration threats analysis and risk assessment. Neverthe-
less, they did not implement traceability in order to connect needs and requirements.
Another limitation is that they did not consider other properties related to security.

To summarize, no one of the aforementioned modeling language extensions was
intended to be used specifically for IoT. Thus, considering that in the state of the art
there are not modeling languages proposed for IoT and that there is still little effort
to consider trust during the modeling phase of the SDLC, our thesis work aims to
fill this gap by merging the trust models domain with modeling languages such as
UML and SysML. We propose a model-driven approach useful to consider trust and
its related properties in the model phase of the SDLC.

In order to perform this task, we consider features identified by Moyano et al.
[112] useful to enrich our work with trust. These features can be implemented in
several models.

Firstly, there are the common features belonging to every trust model. The
actors involved in a trust interaction can be:
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• A witness that can provide information to other actors.

• A trustor or a trustee that are dependent on the context (i.e., a requester of a
service and a service provider).

• A trusted third party (TTP) that can provide credentials (i.e., certificates) to
the other actors.

In addition, the purpose (i.e., why to establish trust?) is important. According
to Grandison and Sloman, Jøsang, and Moyano [65, 78, 112], it is possible to identify
four primary purposes: access trust, provision trust, identity trust, and infrastructure
trust. Besides, trust is always context-dependent [1, 112].

Concerning the decision models, the critical feature is the credentials (i.e.,
provided by a TTP), policies, and evidence. In addition, it is a particularity of these
models to provide a step-by-step authentication that preserves the privacy of the
entities. In fact, policies and credentials are revealed only when they are required,
avoiding the disclosure of extra information when it is not needed.

Finally, regarding the evaluation models, Moyano identified that a trust level
is always present, and it could be uni-dimensional or multi-dimensional. According
to Jøsang [78], it might have different degrees of objectivity or scope. In order to
compute these values, trust metrics are necessary, and they need attributes to be
computed through engines (i.e., simple summation, fuzzy, bayesian). One crucial
attribute could be reputation. In the propagation models (a subset of the evaluation
models), a trust path is important and how to propagate trust through the nodes of
the path is a crucial point.

2.3 Internet of Things

Internet of things (IoT) is composed of two words: Internet and things. With these
two words, we can understand the scope of this technology, which is about the
connection of things among them through the Internet. Undoubtedly, the Internet
brings many possibilities (i.e., providing communication anywhere in the world), but
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many problems can arise (e.g., threats or cyber-attacks). The word thing is generic;
these things can be inanimate or humans (i.e., connected by smart-phones, laptops,
or tablets). In fact, through the IoT, we can connect different types of things and
how to connect them in a protected and trusted way is one of the main challenges in
this area. In this thesis, we will use the term things, devices, or entities for the same
purpose.

IoT analytics [8] forecasted that the number of connected IoT devices will be
around 21.5 Billion in 2025, as it is shown in Figure 2.1.

Figure 2.1: Previsions of total number of connected device up to 2025 [8]

Gazis stated that “IoT is understood as the revolutionary transition into an era
where physical assets and virtual assets will be treated uniformly and, for all intents
and purposes, be mostly indistinguishable to the processes involving them. The sheer
scale of IoT suggests that harmonized global standards will be paramount in realizing
a seamless treatment across the physical facet and the virtual facet of things” [58].

Before the IoT, one of the first technologies used to allow things to communicate
among them was called Machine to Machine (M2M). As Watson stated, M2M “is
a term used to describe the technologies that enable computers, embedded proces-
sors, smart sensors, actuators, and mobile devices to communicate with one another,
take measurements and make decisions - often without human intervention” [158].
However, M2M is where the Machines use a network to communicate with remote
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application infrastructure only for purposes of monitoring or control the machine
itself or its environment. IoT is an upgrade that permits the objects to interact
on their own and with the environment. Thus, IoT is a concept and a paradigm
that considers pervasive presence in the environment of various things that, through
wireless/wired connections and unique addressing schemes, can interact with each
other cooperating to create new applications/services and reach common goals. In
this context, the research and development challenges to create a smart world are
numerous and hard to implement. A smart world where the real, digital, and virtual
are converging to create smart environments that provide energy, transport, and ser-
vices among the smart entities. Moreover, according to the heterogeneity of the IoT,
we can state that it is composed of different entities developed by different vendors,
each of them with a different purpose and a different life-cycle. We want to focus on
the word different to make clear that it is an entirely heterogeneous environment in
every aspect.

The goal of the Internet of Things is to enable smart entities in order to be con-
nected anytime, anyplace, with anything and anyone ideally using any path network
and any service [133]. Things can make themselves recognizable, and they become
“intelligent” by making or enabling context-related decisions. They can provide infor-
mation about themselves or access information provided by other things. Moreover,
together with other smart entities, they can be components of complex services.
Anyhow, it is expected that these entities have to interact with each other often
under unclear conditions. Mechanisms useful to address this need for information
can consider trust in order to overcome uncertainty.

With the IoT enabling smart homes and smart cities, it is possible to connect
everyday entities and control them remotely. To ease this deployment, the manu-
facturers of the IoT devices allow the owners of such devices to control them even
when they are away from their home network. This functionality enables connected
devices to be synchronized and take instructions from other smart entities devices 4

and services 5.

4http://www2.meethue.com/en-gb/
5https://developer.amazon.com/alexa
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However, several issues can appear. One is related to the fact that manufacturers
of smart things usually include different communication technologies, such as Zigbee
or Zwave [125]. These technologies are embedded with either proprietary or one of the
many standard protocols [59]. Moreover, they usually cannot communicate directly
with each other [61] but with a central station that allows communications among
them through a “legitimate man in the middle”. Another issue is related to the use of
different versions of the same technology. For example, in the case of Bluetooth Low
Energy (BLE), backward compatibility with previous versions of the same protocol is
not always guaranteed [22]. One adopted solution for this problem has traditionally
been for the manufacturers to create their own IoT smart hub corresponding to the
supported devices. Considering these aspects, the challenges in building a set of
heterogeneous smart entities allowed to cooperate with each other grow harder.

Earlier, we mentioned a smart hub. In fact, in the case such a device is present,
we can describe the correspondent IoT architecture as centralised; otherwise, we can
define it as distributed.

In a centralised approach, the smart home hub is a gateway usually managing
a group of mostly passive devices. The primary control belongs to the hub itself.
The major threat related to this kind of architecture is that when the smart hub is
compromised or stops working, the whole architecture will fail. As Singh [146] stated,
many attacks can be performed against the smart home hub. A message modification
attack or a replay attack are possible examples of attacks that can significantly impact
a smart home environment. For example, using a replayed signal, the attacker can
indefinitely send a command as continuously open and close a window. On the other
hand, with a message modification attack, the attacker can modify a parameter set
by the user or by the system. Thus, in the event of a fire, for example, the threshold
level related to the smoke detection can be modified, and this can result in the alarm
being switched on too late or remaining switched off. This is a safety risk, and it can
lead to severe consequences for everybody living in a smart home or neighbours.

In a distributed approach, all the entities have determined rules [134]. Usually,
when a condition is satisfied, the connected devices will execute an action locally and
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independently without a smart hub command. Substantially, peer-to-peer communi-
cation is expected in this type of network [39]. According to Roman et al. [134], the
major risk in a distributed architecture lies in the fact that the entities are not well
protected as the central unit is in a centralised architecture. In fact, if an attacker
knows how to target a particular node, it will be compromised, for example, leaking
private information. Anyhow, there are possible different types of this architecture,
like the one proposed by Parra [123] where some nodes are in the middle of the com-
munication. It is a sort of mix between a centralised and a distributed architecture.
In this case, the problem is raised in case one of these middle nodes fail. If this
happens, the architecture will also be partially or entirely damaged.

Anyhow, these architectures have been considered in order to create frameworks
used in the IoT [46, 149] and some of these structures can be applied to different IoT
fields, such as smart-cities, smart-grids, or smart-homes [123].

About smart-grids, some of these architectures are well known in the industrial
control systems [150] where the networks are divided into two or more parts, us-
ing firewalls to protect the more vulnerable networks from direct attacks exploited
through the Internet. This approach enhances security, trust, and privacy. They
are important characteristics that must be guaranteed in order to protect users and
things from cyber-attacks and their consequences [127].

However, independently from the architecture, these objects have to communicate
among them in order to interact. As we have shown earlier, communication can be
difficult among different devices from different vendors because of many issues. Trust
can help to address this need and to make the entities trust each other during their
communication.

2.3.1 Trust in the IoT

In the state of the art, several authors have proposed how to consider trust in the
IoT. However, due to the uncertainty, interoperability, and heterogeneity of the IoT
environment, achieving trust is still a challenge. Leister et al. stated that “the In-
ternet of Things will connect many different devices. In order to realise this, users
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must be willing to trust the devices and communication that happens automati-
cally” [86]. Moreover, because independent research communities have tackled these
aspects separately, a holistic approach is desirable [46].

However, the field of trust related to IoT is still in its infancy as stated by Azzedin
et al. [12]. Thus, with their work, they want to “raise the awareness and the need
for behavior trust modeling” in information fusion and IoT areas. In fact, trust in
the IoT is very important because, in order to communicate, the smart devices have
to trust each others. Elkhodr et al. [42] focused on the fact that in the IoT is very
important to know the origin of the source of data and understand if it is possible
to trust them or not. Moreover, they stated that “this requires accurate, secure, and
correct data collection processes and the provisioning of data provenance throughout
the life-cycle of an IoT device and the data it produces”. In our thesis, we focus
precisely on this point. Moreover, in the majority of the cases, the interacting smart
entities have never communicated among them in the past. So, they do not know each
other directly. For this reason, it is important to create a trust relationship to allow
smart devices to communicate among them in a trusted way [161]. Furthermore,
to be trusted is a prerequisite for being socially accepted for a software or an IoT
entity [29]. In fact, if there is no trust, it will be challenging to sell a product and
increase its market [101].

According to Wang et al. [157], “indicating trust or distrust of a node is a critical
issue in the trust management of IoT”. However, because of the huge numbers of
nodes in the IoT, “there are some challenges for the management with anonymous
nodes”. A solution proposed by the authors considers a dynamic trust model to
predict trust and distrust, computing their values.

Yan et al. stated that “trust management plays a vital role in IoT for reliable
data fusion and mining, qualified services with context-awareness, and enhanced
user privacy and information security. It helps people overcome perceptions of un-
certainty and risk and engages in user acceptance and consumption of IoT services
and applications” [161].

Furthermore, Gago et al. stated that “the Internet of Things (IoT) is a paradigm
based on the interconnection of everyday objects. It is expected that the things
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involved in the IoT paradigm will have to interact with each other, often in uncertain
conditions. Therefore, it is of paramount importance for the success of IoT that there
are mechanisms in place that help overcome the lack of certainty. Trust can help
achieve this goal” [46].

As we wrote in the previous sections, trust is general, and to trust someone
or something has different meanings depending on the context. Moreover, in an
environment such as the IoT, trust can be related to different aspects. In such
interaction, the context is critical, and it can be different for each of the things
involved. Therefore, there is the possibility that in the same scenario, there can be
different contexts with different trust relationships. In fact, IoT is dynamic, and
this aspect affects the trust relationships because if a thing is trusted in a particular
context, this should not be true for another context. In this case, if the context
changes, the trust relationship can change too [46].

Reputation can be significant in an IoT environment, especially if two or more
entities did not have any past interaction among them. Reputation can be used
as a parameter to define the initial trust level. About this, Hussain et al. [73]
stated that trust and reputation are always crucial in any interaction among IoT
entities even this relationship is among Humans-to-Humans (H2H), Machines-to-
Machines (M2M) or Human-Machine-Interactions (HMI). They proposed “a context-
aware trust evaluation model to evaluate the trustworthiness of a user in a Fog based
IoT (FIoT)” and they considered a “context-aware multi-source trust and reputation
based evaluation system that helps evaluate the trustworthiness of a user effectively”.

Recently, Ursino et al. [153] stated that “if a thing can have a profile and a
behavior like a human, it is not out of place to extend the concept of trust and
reputation to things and to define ad hoc approaches for their computation”. They
studied trust and reputation of a “thing” in multiple IoTs scenarios proposing a
context-aware approach to evaluate them. However, they have modeled differently
the way things and persons are considered. In fact, they have observed that “the
number and the variety of available things is leading researchers to model the existing
reality as a set of IoTs interacting with each other, instead of a unique IoT”. This
is an interesting point to be taken into consideration during the development of a
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smart IoT entity.

As for trust management, reputation management can be centralised or dis-
tributed [134]. In a centralised architecture, there is a node that contains all the
reputation values of the nodes. In the distribute one, each node must store the rep-
utation values of all the other nodes of the system separately. When an IoT device
wants to establish a connection with another device, it needs a reputation value to
instantiate its starting trust level. In a centralised architecture (i.e., with a central
IoT hub), to obtain the other IoT devices’ reputation value, the requesting IoT en-
tity asks the central hub for the reputation value. Once the value is obtained, the
requesting IoT device will decide if to proceed with the exchange of information.
On the other hand, in a distributed architecture, every IoT device possesses some
information about the other entities, and if a new connection is about to be created,
the IoT entities exchange their information among them. In both architectures, trust
is crucial in order to decide which node to trust and interact with or not.

In addition, Fortino et al. [54] proposed a survey on trust and reputation in
the Internet of Things, analysing the state of the art and open research challenges.
Their main contribution is to provide a comparative study of the existing architec-
tures related to trust in the IoT. Summarizing, we can state that in a centralised
approach, the amount of data that must be computed by the single IoT devices are
less, but this creates a bottleneck in the communications. On the other hand, in
the distributed approach, IoT devices need more computational power. Anyhow,
there are researchers investigating how it is possible to reduce the amount of data
to be computed in the IoT. Li et al. [90] focused on the fact that IoT allows the
connection among many heterogeneous devices, and trust is fundamental in order to
assess the quality of the different available services. Moreover, they consider context
crucial because it is possible to trust one service for a particular purpose and not
for another. They proposed a “new context-aware trust model for lightweight IoT
devices” without storing information about the nodes’ past behaviours because of
their limited computational power. In fact, their model needs only a limited amount
of stored information, and it can resist several attacks such as badmouthing and
on-off. Another possibility is offered by Fortino et al. [53], where they proposed to
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“use the capabilities of nearby devices having appropriate resources, given that they
make their resources available for free or with a determined cost”. They proposed a
solution “where each IoT device is associated with an agent that helps its device in
choosing reliable partners for its tasks”. They use reputation as a “countermeasure
against malicious IoT devices”.

Fortino et al. [54] have also analysed the up-to-date IoT architectures explaining
how to integrate them with nodes belonging both to the fog and edge computing
paradigms. Edge computing is intensely used in IoT. Sadique et al. [141] inves-
tigated the integration of distributed trust management in the IoT through edge
computing technology, considering scalability and heterogeneity of the IoT devices.
Moreover, Junejo et al. [79] proposed a “trust management system for fog-enabled
cyber-physical systems”. They consider the trust values computed by their model in
order to assess a credibility factor for each node of the system. This factor helps to
avoid and isolate malicious fog nodes and preserve the others.

In addition, about Fog computing and trust, Alemneh et al. [5], proposed a
two-way trust management system for fog computing. The authors aim that by
guaranteeing trust, it is also possible to provide security and privacy. More specifi-
cally, they proposed a “logic-based trust management system that enables a service
requester to verify whether a service provider can give reliable and secure services
and lets the service provider check the trustworthiness of the service requester”.

Moreover, as we discussed earlier, security and privacy are strongly related to
trust, and they must be taken into consideration. In fact, as Sicari stated, “the
satisfaction of security and privacy requirements plays a fundamental role. Such
requirements include data confidentiality and authentication, access control within
the IoT network, privacy and trust among users and things, and the enforcement of
security and privacy policies. Traditional security countermeasures cannot be directly
applied to IoT technologies due to the different standards and communication stacks
involved. Moreover, the high number of interconnected devices raises scalability
issues; therefore, flexible infrastructure is needed able to deal with security threats
in such a dynamic environment [143]”.

In order to solve IoT privacy issues, a necessary approach is Privacy-by-Design, as
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stated in the US Federal Trade Commission report on consumer privacy [32]. More
precisely, in the IoT, the challenges with respect to privacy are principally related
to the users and their private data. How they are stored and in which architecture
is fundamental. Furthermore, privacy issues are very different from each other [127]
depending on the used application.

Concerning the security aspect, if a security architecture is not provided to the IoT
entities, they can suffer from malfunctions or attacks. To mitigate these issues, IoT
needs a holistic approach securing all the entities, from the physical to the application
layer [133]. These security mechanisms are fundamental in order to preserve privacy
and build a trusted environment.

Summarizing, in the state of the art, trust and IoT have been investigated by
several authors. Some of them have proposed different frameworks to include trust
in a system or software. We have proposed a collection of these works according to
the topics discussed by the same authors. We summarize the search criteria that we
have considered in Table 2.5 and the works that we discussed in this section.

Table 2.5: Search criteria about trust and IoT and related works analysed

Heterogeneity, Uncertainty and Dinamicity [46, 86, 90, 143]

Communication [12, 86, 90, 161]

SDLC, Context and Domains [42, 46, 143]

Trust vs Distrust [29, 101, 157]

Trust Management [5, 79, 161]

Reputation [53, 73, 153]

Architecture and Scalability [5, 54, 134, 141, 143]

Holistic [46]

In the next part, we will present frameworks developed to include trust in the IoT
and some general frameworks (not specific for the IoT) that can be used (even if in-
effectively) in the IoT. However, both of these categories have some issues. With this
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thesis, we will present our framework in order to fill the gaps discovered, providing
a holistic framework for trust in the IoT.

2.3.2 Frameworks for Trust and IoT

Starting from Pal et al. [121] work, they have proposed a trust management frame-
work focusing on access control mechanisms improving decision-making processes
under uncertainty. They provided attribute-based identity management. In their
proposed trust model, the access control decision has been made considering three
different types of trust: direct, recommended and derived.

Analysing the fact that mobile technologies are an enabler for the IoT, Bica et al.
[19] proposed a “security framework with a multi-layer architecture that addresses
the trust evaluation of sensing devices based on reputation scores calculated using a
naive Bayes algorithm”.

Considering specifically the IoT, DeMeo et al. [35] proposed a reputation frame-
work for the IoT embedded with a Reputation Agent (RA) acting inside an entity.
This RA is separated from its belonging entity in order to estimate an “honest” rep-
utation value. This is an interesting approach, but it is vulnerable to self-promotion
attacks in the case that the device is manipulated. Indeed, a reputation score given
by another trusted entity is more reliable. Furthermore, they state that it would be
infeasible to effectively apply an approach based only on authentication deal with
trust issues in a wide environment such as the IoT.

In addition to the framework proposed in Section 2.1.5, Ruan et al. [136] proposed
a trust management framework explicitly intended for the IoT. This framework can
be applied to various applications, and it is based on the measurement theory [66].
The authors considered only two metrics: trustworthiness and confidence. An in-
teresting aspect is that they have modeled interactions between the IoT entities
dividing them into four types of interactions: human/human, things/things, and
human/things (in both directions) interactions. Moreover, they have considered rep-
utation to calculate a trust level showing how trust can help recognize which nodes
are malicious or trusted. However, they have analysed only two types of attackers,
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so their framework is useful only against certain types of threats.

Sharma et al. [142], have presented a generic framework to manage trust in the
IoT considering both qualitative and quantitative parameters. They have proposed
a trust management solution considering all the requirements useful to perform trust
management. This framework is interesting, but its main weakness is that there is
only one feedback from the very last phase coming back to the first phase. This is
a considerable limitation in the case some issue is encountered in the middle of the
framework. In addition, another disadvantage is that the context has never been
taken into consideration.

Gago et al. [46] moved forward and introduced a framework to help designers
and developers consider trust in IoT. They state that privacy and identity require-
ments must be considered during trust and reputation management to enhance trust.
However, there is no feedback between phases in this framework, and there is no
connection among privacy, trust, and identity requirements. We have connected re-
quirements to ensure traceability between them. Finally, they model only the first
phases of the SDLC.

Then, Bahutair et al. [14] considered an adaptive trust model for IoT services.
Users’ utilization assesses the trustworthiness of these systems. In order to deter-
mine if a system can be trusted or not, an algorithm process several trust factors
through four different stages. The first stage predicts trust factors. The second stage
computes these parameters in order to predict the trustworthiness of the system.
Then, in the third stage, a “usage-to-factor model” is built to detect how important
is each factor for different scenarios. Finally, the last stage is composed of two mod-
els. Their aim is to compute a trust value according to the scenario chosen in the
previous phase.

In IoT, we can also consider the cloud of things. About this, Abualese et al. [2]
stated that cloud of things is a paradigm intensely used by e-government, and in
this aspect, trust is of critical importance and also a challenge. Thus, they proposed
a framework in order to enhance trust among IoT devices connected to the cloud.
Their framework is composed of four layers. One of them is dedicated to trust in
order to authenticate the IoT devices. They used several authentication methods “to
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differentiate the access control for each device”.
In Table 2.6, we present the aforementioned frameworks highlighting the features

that we believe are fundamental for a trust framework for the IoT. We can see that in
the majority of the works there are only a few of these properties that are considered.
However, Fernandez-Gago et al. started to consider all these properties together.

Our proposed framework [50] takes the previous frameworks into consideration
and aims to move forward. We propose a framework in order to guarantee trust
during the development of an IoT entity considering the whole SDLC. Moreover,
this framework guarantees careful planning from the developer’s perspective. In
addition, starting from the fact that trust is strongly related to other properties
such as privacy and security, we consider the possibilities to connect them since the
requirement phase. Another critical aspect is traceability, and it is provided among
the different requirements and among the different phases of the framework. With
this thesis, we enhance this work and we claim that in order to guarantee trust in the
IoT, a framework must also guarantee the other connected properties. In addition,
it is needed for the whole SDLC because it is crucial to take trust into consideration
in every phase.
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Table 2.6: Frameworks Properties

Authors Models Trust Attr. IoT Arch. SDLC Domains Activities
Pal et al.
[121]

Access
Control

Direct,
Recom-
mendation,
Derived

Identity Decision
Making

Bica et al.
[19]

Reputation,
Multi Layer

De Meo et
al. [35]

Reputation,
Reputation
Agents

Ruan et
al. [136]

Reputation,
Trustwor-
thiness,
Confidence

H2H, D2D,
H2D, D2H

Sharma et
al. [142]

Quantitative
and Qual-
itative
parameters

Require
ments

Fernandez-
Gago et
al. [46]

Decision,
Evalua-
tion

Reputation According
to the
scenario

Require
ments,
Model,
Develop-
ment

Privacy,
Identity

Context

Bahutair
et al. [14]

Adaptive
Trust

Four
layers:
prediction,
compu-
tation,
usage,
models

Context

Abualese
et al. [2]

Access
Control

Cloud of
Things
(CoT)

Ferraris
et al. [50]

Adaptive
Trust
Model
[48]

Reputation,
Direct,
Indirect,
Transitive,
Dynamic,
Local,
Global,
History
dependent
[49]

Segregated
Trust Ar-
chitecture
[48]

Need,
Require-
ments,
Model,
Devel-
opment,
Verifi-
cation,
Vali-
dation,
Utiliza-
tion

Usability,
Security,
Avail-
ability,
Privacy,
Identity,
Safety

Traceability,
Context,
Decision
Mak-
ing, Risk
Analysis,
Threat
Modeling,
Documen-
tation,
Gates
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2.4 Conclusion

In this chapter, we have presented a set of definitions of trust proposed by several
authors in state of the art over the years. Moreover, we have illustrated some es-
sential characteristics related to trust actors and relationships, also defining strong
connections to other domains such as privacy or security. We have then described
how reputation is related to trust and how other authors have performed trust man-
agement in the past. We have then highlighted some important aspects related to
the SDLC, especially requirements engineering and model-based analysis. Finally,
we have illustrated what IoT is and how trust management has been considered in
IoT in the state of the art.
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CHAPTER 3

The K-Model: A Model for the Development of
Trust in the IoT

As we presented earlier in the state of the art, we did not find any framework that
can effectively consider trust and its related domains during the SDLC of an IoT
entity. For this reason, in this thesis work, we develop a framework composed of
the K-Model and transversal activities to achieve this missing goal. In this chapter,
we will present the K-Model that is composed of seven phases, plus the context.
The phases are the following: need, requirements, model, development, verification,
validation, and utilization. The context will be considered in every phase. For all
these phases, we will define their main concepts considering trust and its related
domains to develop the desired trusted IoT entity following the SDLC flow.
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3.1 General Overview of the K-Model

The K-Model, which is shown in Figure 3.1, has been developed in order to consider
trust through the whole SDLC of an IoT entity, also considering its related domains.
It is based on the V-Model that has been developed by Forsberg and Mooz [52]. We
have chosen this model as a basis of our work because it considers connections among
phases that are not only subsequent as the waterfall model does but also related to
the same “level”. By level, we mean the same vertical position of the model. However,
we enhance the connections among phases through traceability, as we will explain in
the following sections.

Figure 3.1: K-Model: with the Transversal Activities it compounds our framework

Moreover, the K-Model has been developed for the IoT and trust, but it can
be adapted to other fields. We have chosen to call it K-Model because it can be
viewed as a composition of a modified V-Model enhanced with the context layer.
This layer is critical because it is will be considered during every phase of an IoT
entity’s development. In fact, due to the dynamicity and heterogeneity of an IoT
environment, we always need to consider the context. The context can depend on
the environment or the IoT architecture (i.e., centralised with a Smart Hub), on law
regulations, or on the company’s rules developing the product. Moreover, it can be
defined by the different services that an IoT entity can provide alone or together
with other smart entities.
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Furthermore, we have identified seven transversal activities: documentation, met-
rics, gates, traceability, threat analysis, risk management, and decision making. They
do not belong to a particular phase, but they assist the whole process in order to
enhance the model from the first phase (i.e., need) to the last phase (i.e., utilization).
These activities, together with the K-Model, compound our framework.

We believe that the K-Model is appropriate for the IoT, especially for the con-
sideration of the context that is always present. Moreover, the domains considered
together are very useful for the IoT. However, it should be possible to implement
the K-Model also for other systems, but we encourage the developers to consider it,
especially for the IoT.

In the K-Model, each phase has connections. Firstly, we can identify the main flow
starting from the first phase proceeding to the last phase. The backward connection
enhances traceability to the previous phases. The forward connection guarantees
specifications for the next phases. Moreover, there are other connections between
the phases belonging to the K-Model’s left and right sides. These direct connections
are essential in order to guarantee that the specifications are fulfilled. For example,
there is a direct connection from the requirements phase pointing to the verification
and validation phase in order to control if the requirements have been fulfilled or not.
Finally, each phase has a connection with the context layer because, as we stated
before, the context is fundamental in every phase.

Starting from the need, we can state that this first phase is crucial to understand
why an IoT entity is needed and what the stakeholders want from it. Then, after this
phase, it is important to elicit the right requirements following the need specifications.
In this phase, trust requirements are central, and they are related to other system
requirements such as security and privacy requirements. The third phase is the model
phase. In this phase, trust models [112], UML, and SysML [56] are essential, and we
extend them in order to include trust and related properties into the development
and to match the requirements and need specifications. After this phase, there is the
development phase, where the developers will create the IoT trusted entity following
the previous specifications. Furthermore, there are two phases: verification and
validation. The verification phase will ensure that the models, the entity, and the
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requirements are well implemented. The validation phase is important to test the
entity in its real environment and to control if the requirements and the original need
have been satisfied. Then, there is the utilization phase. This phase must take into
consideration the environment and the other smart entities with which the developed
entity will interact.

Finally, the context is critical to define boundaries and trust rules. These aspects
need to be taken into consideration since the need phase for the whole SDLC in order
to help the developers to build the proper IoT device.

In the next sections, we will present the seven phases of the K-Model. For each
of them, we will define their input, their output, and their primary purpose. As we
stated earlier, in each phase of the K-Model, we have to consider the context.

3.2 Need

Every product starts with a need, a problem, or an opportunity. Thus, the first
phase of the K-Model is about capturing the stakeholders’ needs (i.e., final users and
vendors) representing the IoT entity under development. This phase is also related
to the problem that the entity will solve. These needs are produced because of a
problem, and the IoT entity to be developed can be considered its solution.

We can state that users and vendors are equally considered in this framework
to help developers realize the desired IoT entity. Both of them will give the initial
guidelines for developing the IoT entity to buy and sell it.

To satisfy these needs, we must consider several parameters: environment, con-
text, and trust connected domains. These parameters are fundamentals for the needs
documentation (see Section 4) that will be an output of this phase and an input for
the following phases. Considering the environment, we can state that it is fundamen-
tal since this phase to know if the intended IoT entity will work in a centralised (i.e.,
with a Smart Hub) or a distributed IoT architecture in order to develop the right
product. The context will be connected to the environment but also to the functional-
ities and final users of the developed entity. Hence, depending on the context and the



63

need, the entity can be developed in a very different way. For example, in an indus-
trial system, it is necessary to separate the internal systems creating fixed boundaries
between networks in order to improve the security of the whole system reducing the
threats carried out by malicious external agents [119]. On the other hand, if we con-
sider a smart home environment, hard boundaries are not defined, and the typical
architectures are either centralised or distributed [123]. For this reason, a possible
need can be to create boundaries even in a smart home environment. In this case, it
is necessary to carefully plan both the new network system and the IoT devices that
will populate it. Such boundaries would enable a precise network segmentation, and
security controls must be injected (i.e., firewalls, SCADA-like systems) in order to
protect home devices that are directly connected to the Internet, allowing a trusted
environment. In fact, the threats can be severe in a smart-home environment where
the manipulation of the Internet-connected devices can have dangerous consequences
up to and including death (i.e., attack on health monitoring) [68].

Thus, one required practical consideration lies in the network segmentation be-
tween the smart entities, smart hubs, the networks, and the Internet in order to
protect critical functions (such as banking) and devices (such as smart thermostats)
managed by the users for critical functions.

These connections are important, but they represent a significant risk for the
smart home and its inhabitants. For this reason, smart home protection is needed,
and it can be achieved by dividing the internal network to protect the internal
level [150] from external threats. Network sub-nets, intrusion detection systems,
and firewalls, as other such security controls, are needed to protect and monitor the
network allowing only particular ports to perform the actions needed.

Moreover, the basic security requirement necessary for home IoT systems is the
ability of the devices when under attack to scale back operations to the bare minimum
and trigger the failover systems if any are in place. This happens to effectively ensure
continuity in the critical systems’ operations and inform the appropriate systems of
a failure. For this reason, the systemic architecture of a smart-home needs to be
resilient, and this resiliency must be measure and design-dependent [76]. In short,
the system needs to guarantee sufficient trust between nodes as this is vital to ensure
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the privacy of various communications and actions carried out by the consumer in
the network. The main research question here is how to design a resilient network
that helps facilitate a measured response to incidents/alarms.

Resuming, we can state that in this first phase, the input is the needs of the
stakeholders, the context, and the environment that will be considered for the new
IoT entity. The purpose of this phase is to collect all these elements, considering
threats and risks and deciding which need must be satisfied and which need to discard
(if they create conflict among them). Finally, the documentation produced in this
phase related to the needed IoT entity and its environment will be the input for the
second phase of the K-Model. Moreover, it will be considered in the final phases of
the K-Model in order to validate and check if the developed IoT entity reflects the
originating needs.

3.3 Requirements - TrUStAPIS: A Method for IoT

Requirements Elicitation

The second phase of the K-Model concerns the requirements. They are identified
according to the output of the previous phase (i.e., the need phase). These require-
ments are written following the IEEE 830-1993 specification [33].

These requirements will translate the needs into a set of statements analyzed by
the developers to model the IoT entity according to the chosen architecture develop-
ing its functionalities.

According to Hoffman [70] and Pavlidis [124], we consider trust requirements
strongly dependent on other domains. For this reason, we have identified seven
types of requirements: trust, privacy, identity, security, usability, safety, and avail-
ability. Trust is connected to each of them, and they cover all the aspects that can
increase trust in an entity. Some of them can be in conflict (i.e., privacy and identity
requirements), so decision-making is useful to solve these possible conflicts.

Moreover, the requirements elicitation must be performed according to its do-
main characteristics. For example, for trust, we need to consider its transitivity or
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Figure 3.2: Requirements composition

asymmetry, and for privacy, we need to consider anonymity or confidentiality. It is
also possible to consider a characteristic belonging to different domains (i.e., confi-
dentiality belongs to privacy and security domains). Finally, a requirement can be
specialized through one or more sub-requirements. This feature helps the develop-
ers in order to add more information to each of the sub-requirements specifying the
original requirement.

The composition of the seven types of requirements is shown in Figure 3.2.

To transform the needs into requirements, we have developed a requirements
elicitation method: TrUStAPIS. By implementing this method, the developers can
consider trust and the other domains during the whole requirements elicitation pro-
cess. The word “TrUStAPIS” is an acronym that originated from the use of the first
letters of each of the seven domains taken into consideration: Trust (entirely written
because it is the central one), Usability, Security, Availability, Privacy, Identity, and
Safety. This method helps developers in eliciting the requirements specifically for
their domain, connecting them through traceability. Moreover, this method allows
the requirements elicitation considering dynamic aspects related to IoT.

TrUStAPIS considers several elements to design and then write the requirements.
These elements are actors and roles, actions and measures, and goal and context.
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• Actor. An actor can be a human or an IoT entity. It is the one that needs to
fulfil a goal. This can be done alone or with the cooperation of another actor.
Thus, an actor could have different roles (i.e., in a trust domain, the actors are
trustor and trustee). Gago et al. [46] stated that humans could be considered
IoT entities. Anyhow, during the requirements elicitation process, we consider
them separately because, in order to elicit the proper requirements, we prefer
to make this distinction.

• Action. An action is related to the task performed by the actor. An action
can include measures or not. A measure helps stakeholders and developers to
model a requirement that will be verified and validated in the later phases of
the K-Model.

• Goal. A goal is the final purpose that the requirements represent. It can be
achieved by actors through goal actions. This goal can be related to a particular
capability of the IoT entity depending on the requirement’s domain. Moreover,
according to IoT’s dynamicity, the same actor can be involved in different goals
or perform different actions to fulfill them. When an action directly determines
a goal, it is called goalAction.

• Context. The context is related to three elements. The first one is the re-
quirements domain: trust, usability, security, availability, privacy, identity, and
safety. Each of these domains has its proper characteristics. The second is
related to the IoT environment. Finally, the third one is about the scope of
the goal.

To summarize all these elements, we propose a conceptual model that is shown
in Figure 3.3 to present the relationships among all the components of TrUStAPIS.

Regarding the actor, it can be a human or an IoT entity and it is the “subject” of
the requirement. Each actor plays a role that is context-dependent. An action can be
considered as the “verb” of the requirement and it is performed to fulfil or to request a
goal. In the first case, the “object” of the requirement is directly the goal. Otherwise,
the “object” of the requirement is another actor acting to fulfil the proposed goal.
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Figure 3.3: Conceptual Model for TrUStAPIS

A possibility is that an action can contain some measures. These measures are
important in order to reach the goal and verify and validate the requirements in the
following phases of the K-Model. Finally, the context comprises three components: a
scope, an environment, and a domain. The scope is related to the purpose of the goal
that an actor must fulfil. Then, the environment is related to the physical place where
the action is performed. The domain refers to the seven types of requirements that
we have identified. Finally, each domain has its characteristics that we will explain
along with the requirements. The arrows represent the relationships among concepts.
Each arrow is described by a text related to the dependence between concepts, and
the direction of the arrow represents the order of the connection. Moreover, there is
an optional dotted arrow representing the case that a goal is fulfilled by a secondary
actor. The triangle is used to represent a specialization (i.e., an actor can be either
a human or an IoT Entity). Finally, the rhombus represents a composition (i.e., the
context is composed of a domain, an environment, and a scope).

Furthermore, to help developers in eliciting the requirements, we propose a JSON
template. It is shown in Figure 3.4.
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Figure 3.4: TrUStAPIS - JSON template to elicit requirements

We have chosen JSON because it is schematic and readable by humans and ma-
chines. Moreover, it is supported by many programming languages (i.e., Java1).
This aspect allows us to share a requirements code among stakeholders and develop-
ers through applications [6]. Furthermore, the JSON code is a useful tool to map the
needs that have been identified in the previous phase of the K-Model, and it is useful
in the following phases (i.e., development and verification), helping the developers to
automatize the processes.

The JSON template contains all the TrUStAPIS main elements. Thus, the IoT
requirement is always composed of a context, an actor, an action, and a goal:

Iot Requirement : (Context, Actor, Action, Goal)

As we explained earlier, the context is divided into three parameters: the domain,
the environment, and the scope of the requirement. However, it is important to
underscore that, for each requirement, there is only one domain. Each domain will
have one or more characteristic that defines the requirement.

Context : (Domain, Environment, Scope)

Each actor plays a role and can be either a human or an IoT entity. All actors
involved in the requirement must be set in the order of “appearance”.

1https://www.java.com
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Actor : (Role, Type[Human, IoT Entity])

An action is composed of types (fulfil or request) and optional measures.
Action : (Type[Fulfil, Request], Measure (optional))

Finally, the goal represents the connections beneath the requirements. In fact,
some requirements may belong to distinct domains that can have connections if they
have a similar or the same goal (i.e., to protect user’s information can be related
both to security and privacy).

Therefore, filling the JSON template can help developers in writing the proper
requirements. A written requirement needs to be at least composed of:

1. one actor ;

2. a keyword (“shall ”);

3. a goal fulfilled by an action;

Then, a requirement could optionally have also:

• One or more secondary actors that perform an action in order to fulfil the goal.

• One or more actions needed to reach the final goalAction.

• One or more measures. The developers and the stakeholders need them in
order to verify and validate the requirements.

This structure is resumed and formalized using the following statement (1).

(1) Actor shall predicate

Thus, the Actor is also known as the main actor, and it is the subject of statement

(1).
The keyword shall has been chosen instead of the words should or must, because

shall defines that the requirement is contractually binding and it shall be implemented
and later on verified and validated.

The predicate can have different forms. The basic form is represented only by a
goalAction. Otherwise, it is possible to have a more complex predicate. It could be
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composed of one or more secondary actors, actions, or measures. This composition
is strictly dependent on the context and defines the final written requirement.

In the following subsections, we present the seven requirements domain and their
characteristics that must be considered when the developers write a requirement
specification.

It is essential to underline that the same characteristic can be presented in more
than one domain. Anyhow, in this case, their descriptions will be different.

3.3.1 Trust Requirements

Trust has many characteristics, which have been defined by several authors in the
state of the art [124, 1, 18, 24, 27, 65, 98, 116, 160]. These characteristics must be
considered while writing trust requirements. Moreover, we have highlighted the ones
that are more connected to the IoT paradigm:

1. Direct. Trust can be direct because it is based on past experience between
the trustor and the trustee. In this case, we can also say that trust is history-
dependent. Moreover, this characteristic also means that trust can be subjec-
tive.

2. Indirect. This characteristic is fundamental whenever the trustor and the
trustee have never had past interactions. In this case, trust is based on the
opinion and recommendation of other entities, and it can be defined as objec-
tive. Moreover, reputation is usually considered as an indirect characteristic of
trust.

3. Transitive. We can say that trust can be transferable from an entity to
another. In fact, if an entity A trusts an entity B, but A does not know an
entity C directly and B trusts C, it is possible that A can compute a starting
trust value based on the fact that B trusts C. This characteristic is connected
to the previous one.

4. Dynamic. Trust is not static over time. Even if it is not strictly time-
dependent, it can change over time, increasing or decreasing its value.
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5. Local. It depends on the couple trustor/trustee that we consider (i.e., Al-
ice/Bob). Then, if we consider another couple (i.e., Alice/Charlie), it is possi-
ble that Alice does not trust Charlie, even if Bob trusts Charlie. It is connected
to the transitive characteristic.

6. Global. This is a global reputation value used to compute an initial trust
value. It can be related to the indirect characteristic.

7. Specific. The trustor (i.e., Alice) can trust the trustee (i.e., Bob) for a par-
ticular action or service, but not for other purposes. For example, we can say
that Alice can trust Bob as a developer, but not as a cook.

8. General. If needed, it is possible to compute a general trust value by aggre-
gating all the specific values related to point 7. To aggregate, the values will
be used specific trust metrics.

9. Asymmetric. Trust can be asymmetric. This means that two entities tied
to a relationship may trust each other in a different way. Thus, if Alice trusts
Bob does not imply that Bob should trust Alice in the same way or at all.

10. Measurable. Trust needs to be measured. This is important for trust model-
ing and computation.

11. Composite-property. Trust can be composed of different parameters: at-
tributes (i.e., dependability, honesty, reliability) and characteristics. Each of
these parameters could have different weights and should be computed even if
they belong to different metrics.

For the trust domain, the actors related to statement (1) are basically two and,
as we mentioned earlier, they are called trustor and trustee. Moreover, it can be
present with another actor, or even more, known as a trusted third party in order to
fulfill or guarantee a trusted goal. Finally, it is possible to have some measures (i.e.,
trust thresholds), which help to decide whether to trust or distrust another actor.
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3.3.2 Usability Requirements

Usability is an important property affecting the level of trust regarding an IoT entity,
and it is differently considered whether the IoT entity is a person or an object. For
this reason, the context is fundamental in order to choose which characteristic is
more important while eliciting a usability requirement. According to Baharuddin et
al. [13], we refine some usability characteristics according to their importance for the
IoT:

1. Effectiveness. It determines the quality of the desired result or goal.

2. Efficiency. It affects how a result is reached, possibly saving resources and
speeding up the communications among IoT entities.

3. Simplicity. It is important in order to reduce the complexity of the commu-
nication among the IoT entities. It is also important for users. In fact, if they
have to interact with a device, a simple user interface improves its usability
and trustworthiness.

4. Understandability. Many communication protocols such as ZigBee 2 or
Zwave 3 have been developed in order to let IoT entities to be able to in-
teract among them. It is important to consider this aspect early in the SDLC
in order to write the proper requirements. In fact, considering the different
protocols, it is possible to choose which one to implement according to the IoT
architecture (i.e., distributed or centralised) identified during the need phase.
Moreover, from a user perspective, if the user interface of an IoT entity is
understandable, its usability and trustworthiness will grow.

5. Accessibility. To guarantee accessibility via the Internet can increase an IoT
entity’s usability, but it can also raise issues. For example, to be able to access
an IoT entity even outside its Smart Home can ensure its accessibility improving
its usability, but it can also raise security threats.

2http://www.zigbee.org/
3http://www.z-wave.com/
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6. Flexibility. Allowing an IoT entity to be connectable and reachable from
different users and devices increases its usability, but it can raise security issues.

7. Reliability. This is an important characteristic that is strongly related to
trust. In fact, the reliability in an IoT entity can improve both the usability
and trustworthiness of the IoT entity.

Usability is connected to the interfaces (i.e., user interface) of the developed
IoT entity. However, a device-to-human and a device-to-device interface need to be
differently implemented. For this reason, it is fundamental to consider the right actor
(human or IoT entity) in order to elicit the proper requirement.

3.3.3 Security Requirements

In the IoT and especially during the requirements elicitation process, it is imperative
to take dynamicity into consideration, as well as heterogeneity and the context.
These aspects raise the challenge of how to guarantee security in the IoT.

Nevertheless, according to [96, 114], we can take some security characteristics
into consideration in order to enhance the security requirements elicitation process.
The security characteristics are:

1. Authentication. This characteristic can improve both security and trust
among the IoT entities.

2. Authorization. An entity must be authorized and trusted in order to be
allowed to perform a particular action.

3. Integrity. Data integrity is a fundamental characteristic that must be guar-
anteed in order to preserve security and increase trust in the IoT entity.

4. Confidentiality. According to a particular context, communication among
IoT entities must be confidential.

5. Delegation. In the IoT, more than non-delegation, it can be useful to delegate
determined rights to other entities (human or devices). This delegation is
strictly related to the context, and it could be dependent on time and users.



74

6. Non-repudiation: the performed action should be stored in order to be ana-
lyzed to understand which entities have been involved. It is crucial in the case
of a security investigation after an error or an attack has occurred.

The aforementioned security characteristics must be considered according to the
context of the IoT entity. Following the statement (1), we can specify that the actor
shall perform or request another actor a security action to fulfill a security goal.
Examples of security measures are security levels (i.e., expressed in bits) or types of
encryption.

3.3.4 Availability Requirements

Usually, availability is considered as a sub-property, or a characteristic of security
[16, 70, 124]. Moreover, together with confidentiality and integrity, they compound
the CIA triad [45]. We have decided to consider it in a self-domain because it can also
be related to other domains (i.e., identity, usability) and also dependent on distinct
aspects (i.e., the hardware). Availability is strongly connected to the context and
the particularities of the IoT (i.e., heterogeneity, dynamicity). According to this,
for example, the availability of an IoT entity functionality can be subordinate to
a particular service or appliable for a determined period of time. Availability can
affect positively or negatively the trustworthiness of an IoT entity if a particular
service is guaranteed or not. An availability requirement can be either functional or
non-functional [33].

For the availability requirements, in statement (1) the main actor is the IoT
entity, and the goalAction can be related to guarantee a critical service even if a
problem has occurred. A useful measure can be to have a particular threshold in
order to raise the alarm or a warning and let the user knows that something wrong
has occurred in order to perform corrective actions.

Considering the work proposed in [114], we identified four availability character-
istics that are fundamental for trust and IoT:

1. Resilience. Resilience is the ability of a device to keep working and quickly
recover even if something wrong has occurred (i.e., malfunctioning, attacks).
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It guarantees availability because, without resilience, the device would simply
stop working.

2. Scalability. A dynamic environment characterizes the IoT. Scalability is re-
quired to maintain the entity’s functionalities even if the IoT ecosystem grows.

3. Redundancy. A replication of the data improves availability, but it can raise
security threats. It is strictly connected to scalability.

4. Integrity. Availability is strictly connected to the integrity of data and devices.
In fact, if the data are compromised, the entity will not work. It is strictly
connected to resilience.

3.3.5 Privacy Requirements

Privacy could improve a customer’s trust, but it can decrease the vendor’s trust or
vice versa. In fact, a vendor should decide to collect private information about the
users for business purposes. On the contrary, a customer should like that its data re-
mains private and available only for him/her without spreading personal information
(even if the vendors only know them).

According to [96, 126], we consider the following privacy characteristics:

1. Anonymity. An entity should require to remain anonymous during particular
actions.

2. Pseudonymity. This characteristic is important in the case that anonymity
cannot be guaranteed. In this case, the privacy of the user/entity is preserved
using a pseudonym.

3. Undetectability. This characteristic is useful for the entity to avoid its de-
tection. It is a useful characteristic to avoid attacks.

4. Unlinkability. The user cannot be linked to particular data or action. Un-
linkability and anonymity together guarantee unobservability.
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5. Confidentiality. Encrypted communications among entities could guarantee
confidentiality.

6. Unobservability. The user or the entity should prefer not to leave traces.
Unlinkability and Anonymity together guarantee it.

These characteristics are compliant with the General Data Protection Regulation
(GDPR) 4.

However, privacy requirements could be in conflict with identity requirements. In
this case, decision-making processes will help developers decide which requirement
to save and which one to release. Context and trust can be considered in order to
perform this decision.

For the privacy domain, the actors represented in statement (1) shall perform
actions in order to fulfill a privacy goal. So, the main actor should either guarantee
privacy or avoid privacy issues. The measures related to privacy can be helpful in
order to monitor privacy levels (i.e., considering differential privacy [91]).

3.3.6 Identity Requirements

Identity is significant for IoT entities. Knowing the interacting entities is fundamental
in order to trust them. Moreover, identity is strongly in contraposition to privacy. In
fact, the more knowledge there is about an entity, the less privacy can be guaranteed
for it. For this reason, it is essential, since the early phases of the SDLC, to consider
identity characteristics in order to apply them and, in the case of conflict with privacy,
decide which requirement to save.

According to [95], we have identified the following identity characteristics:

1. Authentication. This is also a security characteristic. It is also important for
identity management because if an actor is authenticated, it is also identified.
Moreover, the system can perform a trust decision on him/her.

4https://gdpr-info.eu/
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2. Authorization. It is related to security and authentication. In fact, only if an
entity has been previously authenticated, then it could be authorized in order
to perform an action.

3. Attributes. It is crucial in identity management to consider attributes because
through them, it is possible to perform identification (often preserving privacy).

4. Interoperability. Identity management enhances interoperability among IoT
entities. In fact, if an entity is identified, it could be trusted and interact with
other IoT entities.

5. Storable. Identity information must be properly stored, accessible, and pro-
tected. It is strictly connected to the following characteristic.

6. Manageable. For us, manageable means that the identity information must
be related to user data computation or on how they are stored and accessed.
It is strictly connected to the previous characteristic.

7. Scalability. In determined contexts, scalability permits to have a resilient way
to store and manage identity information.

8. Accountability. Through identity management, it is possible to recognize
which actor has performed an action. For this reason, if it is possible to know
which entity has performed an action, it is possible to guarantee accountability
for the same entity.

As we specified earlier, identity and privacy can raise conflicts among their do-
main requirements. Thus, context, traceability, and specification of the identity
characteristics during the requirements elicitation process can guarantee to solve
these conflicts early in the SDLC.

Considering statement (1), the main actor must fulfill an identification goal fol-
lowing one or more of the identity aspects highlighted before. Moreover, the optional
secondary actor could be needed to verify the first actor’s identity properties, au-
thenticating the actor’s identity attributes (i.e., code, id).
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3.3.7 Safety Requirements

The Oxford dictionary 5 says that the definition of safety is: “the condition of being
protected from or unlikely to cause danger, risk, or injury”.

Safety depends on people and machinery [87]. It is connected with the physical
aspect of an IoT entity. Following the Oxford dictionary definition, we consider it in
order to avoid harming the actors involved during the IoT entity utilization.

The characteristics of safety have a connection with the hardware level and physi-
cal functionalities. In IoT, safety is paramount because all the devices have embedded
software, and its purpose is bound to the IoT entity.

We have identified the following safety characteristics in accordance with [64, 87,
145]:

1. Feedback. The users must be aware if something wrong has occurred. For this
reason, the IoT entity shall provide them with information about its status.
If implemented, this characteristic could avoid risks for both the user and the
device.

2. Protection. Firstly, the users must be protected by the entity’s processes
that could harm them. Secondly, the entity must be secured against physical
damages.

3. Resilience. If a system continues to work properly, even if it is under attack
or a malfunction occurs, it is called resilient. It is an important characteristic
of the safety of devices and users.

4. Integrity. It is different from the security characteristic that is related to the
data. In this case, we refer to the physical integrity of the device. In order to
preserve integrity, the IoT entity shall be protected from external and internal
damages that can compromise its working state.

Safety, if implemented, can improve the trustworthiness of an IoT entity. Indeed,
like the other domains, it is dependent on the context (especially the environment).

5https://en.oxforddictionaries.com/definition/safety
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The requirements goal shall guarantee safety for all the actors involved (i.e., to pre-
vent the IoT entity from overheating).

3.3.8 Requirements Database Refinement

In the IEEE 830-1993 specification [33], there are two types of traceability: backward
traceability (BT) and forward traceability (FT). BT is guaranteed if each requirement
refers to its source. FT means that each requirement leads to a sub-requirement, a
model specification in the following phase, or a particular feature. In addition to
them, we define a new type of traceability: inner traceability (IT). By IT, we define
the traceability among requirements belonging to different properties. For example,
if we need to change a privacy requirement connected to trust and security require-
ments, the modification can affect all the requirements. Traceability helps to avoid
domino effects. In fact, if the connection is not specified, we could have a problem in
the case of changing or relaxing a requirement. In the K-Model, traceability is also
a transversal activity that we will present in Section 4.

Each requirement has a unique ID to identify it and guarantee BT, FT, and IT
among them. ID is the identifier of requirement. As we explained earlier, it must be
unique and related to its type of requirement. For example, a trust requirement ID
will be defined as “TRST-XX”, and a privacy requirement as “PRIV-XX” where XX
is the number of the requirement. These connections will be mapped in the same
requirement specification. A requirement specification sample is shown in Table 3.1.

Table 3.1: Requirement specification

ID Requirement specification BT FT IT

Requirement specification is the text of the requirement. It must be written
following the IEEE 830-1993 standard [33]. It is written in natural language in order
to be understandable by stakeholders and developers.

BT, FT and IT are the IDs of the related requirements, documents or model
specification. Finally, the requirements must be saved in a requirements database.
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Figure 3.5: Requirements Relationships

Figure 3.5 shows the relationships between requirements of the same type, dif-
ferent types, and different phases of the framework. In the case of changes, it is
possible to see which other requirements will be affected by this modification. At
the center, there is a trust requirement. It has a parent/child relationship with a
trust sub-requirement on the left, and it is connected to a need and a model. These
traceability types are BT and FT. On the other hand, the trust requirement is also
connected to a privacy requirement through an IT relationship. In the case the
central requirement must be deleted or modified, this operation can also affect the
connected elements. Thus, traceability is important to follow the impacts of this
change and perform corrective actions or release the connections.

3.3.9 Step-by-Step Methodology

In this section, we present a step-by-step methodology of how TrUStAPIS should be
applied. We can see the steps in Figure 3.6.

The output of each step is the input of the following step.

1. The first step starts with the output of the previous phase of the K-Model
(the Need phase). This output is related to the documentation concerning the
development of the IoT entity according to the stakeholders’ needs.

2. During the second step, the developers fill the JSON template proposed in
Figure 3.4 using the need documents as input and considering the conceptual



81

Figure 3.6: Requirements elicitation: step-by-step methodology

model that is shown in Figure 3.3. The conceptual model helps the developers
in eliciting the requirements and in filling the JSON template. Both of them
are used to write the requirements. Moreover, the JSON code will be the input
for the later phases of the K-Model (i.e., Verification). Finally, by the JSON
code, it can be possible to automatize the requirements elicitation process as
proposed by [102].

3. The third step is related to the writing of the requirements. They must com-
ply with the IEEE 830-1993 formalism [33]. According to this recommended
practice, a requirement must be: correct, complete, unambiguous, consistent,
ranked, verifiable, modifiable, and traceable. Statement (1) helps developers to
write a complete, correct, precise, and consistent requirement. Then, using the
JSON template, it is possible to verify a requirement in the following phases of
the SDLC. Moreover, in the case of a modification, both the written require-
ment and the JSON must be changed. A modification can occur for several
reasons, for example, for a conflict arisen with another requirement or because
a stakeholder wants to change a specification. Then, traceability is guaranteed
by the transversal activity as we have discussed earlier. However, we will also
discuss about it in Chapter 4. Moreover, the JSON code helps the developers
understand how traceability must be implemented and considered among re-
quirements. In fact, if two or more requirements have a common goal or related
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characteristics (i.e., the same characteristic or the same goal), they can have
a traceability relation. Finally, it is possible to create sub-requirements that
will specialize a general requirement avoiding the possibility that the general
requirement will be verbose. This fact enhances that a requirement will be
correct, complete, consistent, traceable, and unambiguous.

4. The last step of the methodology concerns the final elicited requirement com-
posed as shown in Table 3.1. However, as we can see, there is a dotted line
moving from Step 4 to Step 1. This arrow represents fundamental feedback
that allows the developers to rewrite a requirement according to new or modi-
fied needs or solve a conflict among requirements. In this case, the developers
will follow the steps presented earlier to elicit the new requirements.

In Section 5, we will provide a complete use case scenario in order to show how
the TrUStAPIS method must be implemented along the K-Model.

3.3.10 TrUStAPIS methodology discussion

This method provides in-depth research focusing on the requirements elicitation pro-
cess.

Firstly, it is essential to highlight that the more time is spent in this phase, the
more money is saved, and the quality of the product is fulfilled [56]. The benefits of
such a requirements elicitation process are shown in [85] considering security require-
ments. In addition to them, in this thesis, we consider other requirements connected
to security and trust. This holistic approach is fundamental in providing a complete
requirements elicitation process.

Secondly, a step-wise systematic methodology helps to reduce subjective issues
during the requirements elicitation process. In fact, one well-known issue belonging
to the requirements methodologies is that it is difficult to mitigate the subjectivity
of the developers eliciting the requirements [60]. Our method minimizes this issue by
providing the developers with a systematic step-by-step methodology. Furthermore,
the JSON template can be used to automatize the requirements elicitation process,
as proposed by Mavropoulos et al. [102].
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3.4 Model Phase - Trust Model-driven Approach

After the requirements phase, there is the model implementation. During this phase,
it is useful to consider modeling languages such as UML [137] and SysML [56]. More-
over, in order to include also trust management, we consider both trust decision and
evaluation models identified by Moyano et al. [112]. Besides, because we design
our framework for the IoT environment according to its heterogeneity and dynam-
icity, there will be the possibility that each smart IoT entity must be modeled with
different trust models. In fact, depending on the intended IoT architecture (i.e.,
centralised or distributed), these models will be implemented to define the proper
architecture and the type of trusted communications among the IoT entities.

Thus, according to the work developed by Uddin [152], we have identified the
possibility of considering trust in UML diagrams. We consider both UML and SysML
diagrams in our work because we need the Class Diagram (only present in UML) and
the Requirement Diagram (a SysML diagram).

Anyhow, we will extend basic diagrams related to UML and SysML and propose
two new diagrams: the traceability and the context diagram.

The basic diagrams that we extend are the use case diagram, class diagram, ac-
tivity diagram, sequence diagram, state machine diagram, and requirement diagram.
We have chosen these diagrams because they permit developers to implement crucial
aspects of an IoT entity. Indeed, the use case diagram provides developers with a
tool useful to model universal interactions of the IoT entities; then, the requirement
diagram allows developers to consider the requirements elicited in the second phase of
the K-model to represent them with connections to the other diagrams adding extra
features; thirdly, the class diagram will be fundamental to help developers in writing
the software of the IoT entity. Finally, the activity, sequence, and state machine
diagrams permit developers to specify the IoT entity functionalities and interactions
under three different perspectives. Moreover, it is essential to add that even if these
diagrams explore different aspects of the modeled IoT entity, they can be combined.
For example, a sequence diagram can represent the flow of actions belonging to a use
case diagram. Then, the same actions can be specified through an activity diagram
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or a state machine diagram. Moreover, considering the new diagrams, the traceabil-
ity diagram is fundamental to keep track of the connections among diagrams. This
feature is enabled because each diagram has a unique ID that allows developers to
refer to them uniquely. The traceability diagram can be considered a meta-diagram.
On the other hand, the context diagram will be used to map the different contexts
that will be considered for the IoT entity. It allows developers to consider all the
contexts belonging to the IoT entity since the modeling phase in order to divide the
functionalities according to the different contexts improving trust and security.

We describe the basic features and improvements with respect to the original UML
and SysML diagrams for each diagram. A critical aspect of defining the diagrams is
the consideration of trust and related domains. As we explained earlier, the domains
related to trust are usability, security, availability, privacy, identity, and safety [49].

3.4.1 Use Case Diagram

The Use Case Diagram (UCD) is a UML and SysML diagram representing general
user interactions with other IoT entities. In its basic form, this diagram is composed
of actors involved in the interactions represented by ellipses. They represent actions
that can be generic or specific. Other diagrams can represent these actions in order to
show how an action can be fulfilled (i.e., an activity diagram can show the activities
belonging to a particular action).

The actors have tags representing their roles. These tags are at the top of the
actor representation (i.e., a stick man) and their format is «tag». Considering the
trust domain, possible tags for the actors are the following: «Trustor» or «Trustee».
On the other hand, at the bottom of the actor’s representation, there is its name.

However, our UCD extension is enriched with this feature also in the use cases.
In fact, this tag represents the specific domain considered for the use case. On
the contrary, the name of the use case represents the action. Moreover, in our
extended UCD, it is possible to model an actor action with different domains (i.e.,
security and trust) representing connected “parallel” use cases. In order to design this
representation, we create a set of connections for the actions. They are described with
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the following tags: «Dependence» and «Interdependence». The former is represented
by a line with a direction, the latter by a not oriented line. For example, if action
B depends on action A, this relationship is represented by a «Dependence» pointing
from action A to action B. «Interdependence» means that both actions depend on
each other.

Figure 3.7: Use Case Diagram example

In Figure 3.7, we show a UCD involving two actors, a trustor and a trustee. They
share two use cases: the first one is related to trust and the second one to security.
Moreover, the trustor is also involved in a privacy use case, which is connected to
the trust use case through an «Interdependence». We use general names as Actor 1
and Actor 2, but they can represent any actor existing in an IoT environment (i.e.,
a smart homeowner, a guest, or an IoT entity).

3.4.2 Class Diagram

IoT entities are both composed of hardware and software parts. For the latter,
the Class Diagram (CD) is essential because, with its models, the developers can
carefully organize the IoT entity’s code to be developed, defining the actions that
will be performed. In order to consider this diagram according to our framework,
we propose an extension of the CD that is widely used both in Software Engineering
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and UML.

In our CD version, the three canonical boxes originally developed in UML [137]
represent the name of the class, the attributes, and the operations (or methods).
Moreover, we add an extra box concerning the context.

In the case a class is used in every context, it will be empty. Otherwise, it will
contain the name of the contexts belonging to that particular class of the IoT entity.
In this box, we will represent the contexts using an array because they can be more
than one.

Furthermore, we extend the box related to the name, also considering the class
domains. In order to include all the domains connected with a specific class, we
implement an array. Thus, the field related to the name of the class is represented
as it follows:

<< class_name[Domain(1), ..., Domain(n)] >>.

A guide for the developer is to be consistent with the domains specified for the
classes. Thus, for example, if the domain is related to trust, the attributes and
methods need to be specified according to an evaluation or a decision model in order
to implement their functionalities in the class. In fact, depending on which models
will be considered, the methods implemented in the software will contain rules about
decision or evaluation models.

Figure 3.8: Class Diagram example

Figure 3.8 shows an example of a CD with two connected classes. The multiplicity
of the connection shows how many instances of the classes could be represented. In
this example, we have 1-to-N instances of class A related to 1-to-N instances of class
B. Moreover, the domains represented by class A are trust, security, and privacy. On
the other hand, class B belongs to trust and usability domains. Then, the attributes
and operations are basically used to define the class variables and how they must be
considered and computed. About the context field, the class on the left is considered
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in three contexts. On the contrary, the other class contains only one context, which
is also considered in the first class (for this reason, they are connected).

3.4.3 Activity Diagram

The original Activity Diagram (AD) is mostly an advanced flow chart. In fact, it
represents the workflow among activities. An AD can model an IoT entity in order
to specify the activities that need to be developed. Besides the activities, an AD
contains one pre-condition and one or more post-conditions. Moreover, there can
be other optional elements such as decision points, merge nodes, fork, join, and
swimlanes. All these elements are defined as follows:

• Activities. The activities are the core of this diagram. They basically repre-
sent processes that the modeled entity must fulfill.

• Pre-condition. A pre-condition is the starting point of the AD.

• Decision points. The decision points are used to model alternatives. They
use conditions to let the flow continues or ends if one or more conditions are
not fulfilled.

• Merge Nodes. The alternatives modeled using decision points are reunited
to the main flow by merge nodes.

• Post-conditions. The post-conditions are the ending points of the workflow.
They could be reached because the workflow ends properly or after the decision
points.

• Fork. Fork elements are used to split the flow into two or more parallel work-
flows.

• Join. Join elements are necessary to reunite the workflows into a single one.

• Swimlane. Swimlanes are useful to define the boundaries among the actors
that are involved in a particular activity.
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In our extended version, we enrich the swimlanes to model the domains rather
than the boundaries among actors. So, for example, if a swimlane is related to
privacy, this means that every activity belonging to that swimlane will be related
to privacy concepts. We can then state that the connection between swimlanes
belonging to different domains could represent the connection between UCD actions
(such as the ones presented earlier).

An important new feature that we add with our extension is a new element called
“trust trigger”. Its function is to allow the flow to pass from an activity to another
according to a needed trust level. If this value is enough, then the workflow can
continue. Otherwise, there can be three situations:

1. The workflow could end with a post-condition.

2. It could continue with an alternative path.

3. It can be possible to have an alternative flow that increases the trust level (i.e.,
giving more information). In this final case, the workflow can return to the
trust trigger in order to check the new trust level.

The criteria to be taken into consideration in a trust trigger can be related to
decision or evaluation model aspects. In the first case, it is basically an access control
decision. In contrast, in the second case, it is possible to consider trust parameters
like reputation in order to compose a single trust level.

There is the possibility to implement a decision point right after the trust trigger.
This element can consider the computed level of trust to allow the workflow to
proceed to a path or another. For example, it can be possible to let the flow continue
in a secondary path (i.e., a less trusted path in the case the trust level is low).

A simple AD is shown in Figure 3.9, where there is a flow finishing with a single
ending point. The activities represented are three, and the first one belongs in a
privacy swimlane, whereas the other two activities are performed in a trust swimlane.
Regarding the trust trigger, we will show an example later when presenting the state
machine diagrams.
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Figure 3.9: Activity Diagram example

3.4.4 Sequence Diagram

The Sequence Diagram (SD) represents the interactions among actors involved in a
particular task or process. The principal purpose of an SD is to model the steps re-
lated to a particular interaction. Thus, the SD can represent and specify a particular
UCD action or an AD activity.

For example, an AD activity can be the following: “Check the Smart Thermostat
Temperature”. An SD can be designed to implement this activity (i.e., modeling all
the proper steps in order to connect to the smart thermostat or the steps related to
the temperature check). Thus, the SD represents all the messages exchanged by the
actors or by the IoT entities involved in the modeled interactions.

The actors are represented by parallel vertical lines (known as lifelines). When
these actors are active, their processes are represented by a bar. On the contrary,
the inactive processes are represented by dotted lines. To represent the messages
among the actors, we use arrows. They could be asynchronous or synchronous. An
asynchronous message does not need to receive a reply in order to continue the
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process. In contrast, a synchronous message waits for a reply before continuing a
task. Other important elements for the modeling of an SD are the frames. They are
represented by labeled squares. These labels specify the kind of actions performed
inside the frame. Thus, the actions can be optional or repeated.

Our extension of the SD includes features about trust. In this domain, as we
stated earlier, it is essential to have the possibility to distinguish between decision
and evaluation models. For this reason, we provide frames with features related to
these models. Thus, for example, if the frame must represent an evaluation model, the
SD will be designed considering messages related to the computation of a trust value.
On the contrary, if the frame wants to represent a decision model, the interactions
must implement the process of giving credentials in order to trust the actors involved.
Furthermore, we design frames also for the other domains.

Figure 3.10: Sequence Diagram example

In Figure 3.10, we represent a simple SD showing the messages that can be ex-
changed by three entities (or functionalities) belonging to the same smart IoT entity
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(i.e., a smart thermostat). The SD starts with synchronous messages exchanged by
entities 1 and 2. Then, we have a frame related to trust and evaluation models where
an asynchronous message is cast from entities 1 to 3. Then, we have a second frame
that is related to the security domain.

3.4.5 State Machine Diagram

The State Machine Diagram (SMD) is a diagram useful to model all the states that
can be reached by the IoT entity or its functionalities. In its original version, the
SMD is composed at least of a starting and a final state. Then, it is possible to have
transition states connecting these two states. The change of a state is regulated by
transition events that can be modeled with triggers or decision points.

Summarizing, in an SMD, it is possible to have the following states:

1. Starting state. It is the starting point of the diagram.

2. Transition state. This state is reached during the iteration.

3. Final state. This is the last state. It is possible to have multiple final states
related to alternative iterations. They can be reached whether the process fails
or ends correctly.

It is important to underline that a state can be simple or composite. On the one
hand, the transition to the next state is automatic after the functionalities repre-
sented by the state are executed. On the other hand, the composite state contains
some functionalities or activities that must be performed inside the state. For exam-
ple, it is also possible to have another SMD inside a single state (i.e., with a starting
sub-state and ending sub-states). Here, the process continues until the internal SMD
ends in order to proceed to the following state of the main SMD.

In our extended version, as for our AD, we have added the element known as
trigger (i.e., a trust trigger). Thus, in the case of trust, if the trust level is not
enough in order to proceed with the iteration, the procedure ends with a final state.
As for the AD, it is possible to proceed after the trust trigger with alternative paths
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according to the trust level. Moreover, for a trust trigger, we can consider decision
or evaluation model rules.

In the first case, the flow is allowed to proceed only by providing the correct
credentials. Anyhow, it can be possible to proceed with a subset of states useful to
collect more information (i.e., if a password is needed, it is possible to create a new
one or provide other information in order to be accepted).

In the second case, if evaluation model rules are implemented, the flow will pro-
ceed only if the trust level is higher than the trust trigger level. If not, we have two
possibilities: the flow will end, or it will continue with a sub-state in order to increase
the trust level.

About the other domains, it is possible to have other triggers (i.e., identity con-
firmation, privacy-preserving).

It is essential to highlight that with these triggers, we enrich the potentiality of
the SMD with more control. In fact, without these triggers, the flow of the SMD
can only end directly or proceed to the next state. Therefore, with these triggers,
we increase the modeling possibilities of this diagram.

In Figure 3.11, we show an SMD example. We have a starting point and suddenly
a composite state. Here, we have its starting point, then a sub-state followed by a
trust trigger (represented by a circled T). If we consider an evaluation model, the
trust trigger will assess a trust level. If this level is lower than the trigger level, the
flow exits from the composite state, reaching a Not Trusted State and ending the
SMD. Otherwise, if the trust level is higher than the trigger level, the flow reaches
a final state belonging to the composite state. Then, it reaches a trusted state, and
the SMD successfully ends.

3.4.6 Requirement Diagram

As we discussed earlier, the modeling phase follows the requirements elicitation phase.
So, the Requirement Diagram (RD) helps to map all the requirements being elicited in
the previous phase and, through the traceability diagram that we will present later, it
is possible to map the connections among this and the other diagrams. This diagram
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Figure 3.11: State Machine Diagram example

will also be fundamental in the following phases of the K-Model, especially during
the development phase. The developers must build the functionalities according to
the implemented requirements and models. The use of diagrams and traceability
guarantees a holistic implementation of the IoT entity.

RD is a diagram originally implemented in SysML. It specifies capabilities rep-
resented by the requirements that shall be implemented by the entity under devel-
opment. It is at least expressed by two elements: an ID in order to be uniquely
identified and a text containing the description of the requirement. Moreover, op-
tional elements can be useful to specify the relationships among requirements and
other phases of the SDLC (i.e., the need phase). These operators are the following
ones:
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1. Contain: it shows the connection and decomposition among requirements and
sub-requirements.

2. Derive: it shows the dependency of a requirement on another one.

3. Satisfy: it considers the connection of a requirement with a modeling element
(i.e., a use case). The modeling element satisfies the elicited requirement.

4. Refine: this kind of connection is related to a model element that must describe
the requirement with more details.

We extend the RD considering new stereotypes such as: «Trust Requirement»,
«Usability Requirement», «Availability Requirement», «Privacy Requirement», «Iden-

tity Requirement», and «Safety Requirement». Moreover, we consider also the «Se-

curity Requirement» stereotype presented in [99]. Each stereotype belongs to a set of
requirements, and by this distinction, the developer can better recognize the domain
of each requirement.

Moreover, we propose new elements in order to add optional information. The
developers can implement these features if they need to specify a requirement further.
The elements are the following:

• Verify. It is an important parameter connected to the verification phase. It
contains specifications about which parameter must be verified.

• ExpressedBy. It is an element related to the stakeholder. It includes who
expressed the need originating the requirement. The stakeholders are criti-
cal because they are the ones that have an interest in the IoT entity under
development (i.e., they usually are vendors and customers).

• ExpressedFor. This element is specified for the IoT entity as a whole or a
part of it (i.e., a subsystem) that the requirement must cover.

• NeedSatisfied. This element specifies which is the need originating the re-
quirement. It can be connected to the element ExpressedBy.
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• ModelConnected. This element represents the modeled diagrams to fulfill
the requirement. It can be connected with the Satisfy operator.

• RiskCovered. It is possible that with a requirement, a particular risk is
mitigated. This element represents that risk.

• ThreatMitigation. A requirement can solve or require threat mitigation.
With this element, the requirement is connected to this information.

Figure 3.12: Requirement Diagram example

A requirement can have one or more sub-requirements. Usually, they specify
additional information that must not be included in the main requirement. We can
see an example of requirements and sub-requirements in Figure 3.12 that shows an
example of an RD. There are two modeled requirements in this figure: one trust and
one privacy requirement. The basic elements are written into the first box for both
of them: the ID and the text related to the requirement (a sentence represents it).
The Privacy Requirement includes a Contain extension connected to the privacy sub-
requirement. In this case, privacy sub-requirement is a specialization of the privacy
requirement. Concerning the trust requirement, we can see three optional extensions
related to it: ExpressedBy, ExpressedFor and RiskCovered.

The optional information enables developers in order to specify a requirement
better. As we can see, the optional elements are a sort of extension of the main
requirement. We have chosen this approach to have the central part of the require-
ment more straightforward than it could be with the additional and optional features.
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Moreover, we can state that there is no connection between trust and privacy require-
ments.

A graphical view can be complicated in the case a huge number of requirements
must be represented. Thus, we implement the database notation proposed in [49]
that guarantees traceability among requirements.

3.4.7 Context Diagram

In our model-driven approach, we create two new diagrams. One of them is called
Context Diagram (XD), and it is essential in order to map and model the context
related to the developed IoT entity. Using this diagram, the developers map the
dynamic behavior of the IoT entities considering all the contexts connected to them.

Moreover, the XD helps developers in considering the possible problems due to the
connection of the different contexts within the same IoT entity. Thus, for example,
if an IoT entity is used to perform different tasks belonging to distinct contexts
(i.e., calendar, weather, and bank), it is essential to keep them separated in order
to avoid sharing important information among different contexts and users. In fact,
it is possible that a user can be trusted and involved in a particular context (i.e.,
calendar), but that is not trusted in another (i.e., bank).

According to our framework, each context can be connected to a particular do-
main (i.e., security, trust). For each of them, the developer must keep separated the
users involved and which kind of information they are able to access and manipulate.
Moreover, it is possible that more domains are involved in the same context. In this
case, the developers must model the context considering the characteristics related
to each domain. These characteristics have been presented in 3.3, and they are useful
to specify the contexts and the functionalities of the IoT entity.

An XD can represent a set or a sub-set of contexts belonging to an IoT entity.
Figure 3.13 shows how an XD can be represented. In this example, an IoT entity
will participate in four different contexts. For each of them, different domains belong
to it. We can see that there are contexts belonging to a single domain (i.e., context
1) and contexts belonging to multiple domains (i.e., context 3). This diagram helps
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Figure 3.13: Context Diagram example

developers to define the functionalities of the IoT entities according to the considered
domains.

Moreover, it is also possible to represent the contexts through a database notation.
The table of the database is composed of three columns. The first contains the
context ID that is unique and considered as the primary key of the table. Then,
the second column includes the context name. Finally, the third one specifies the
domains necessary for the related context. The database template is shown in Table
3.2.

Table 3.2: Context Diagram - Database template

Context_ID Context_Name (Domain_1, Domain_2, ..., Domain_N)

Considering the example shown in Figure 3.13, the related database is presented
in Table 3.3.

Table 3.3: Context Diagram Example - Database view

Context_1 C1_name [Trust]

Context_2 C2_name [Trust, Privacy]

Context_3 C3_name [Privacy, Security]

Context_4 C4_name [Identity]
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3.4.8 Traceability Diagram

The second new diagram is the Traceability Diagram (TD). It is important to record
the connections among all the diagrams. Thus, the traceability diagram can be
considered a meta-diagram. Moreover, when two or more diagrams are connected
among them, they create a cluster.

Using the TD, developers can have a holistic view of the models because we can
map all the connections among the modeled diagrams. Moreover, using TD, it is
possible to avoid or mitigate domino effects due to the deletion or modification of
a diagram. In addition, considering that each diagram is mapped with a unique
identifier, it is possible to store these data in a proper database. This feature enables
the possibility of showing this diagram graphically (showing the connections among
diagrams) or being stored in a traceability database.

Figure 3.14: Traceability Diagram example

In Figure 3.14, we show an example of a graphical TD. The diagrams are repre-
sented by boxes containing the type of the diagram and their IDs. Lines represent
the connections among the diagrams. As we can see, there is a requirement diagram
(RD) (at the center) that is connected with the other diagrams. This connection
means that the requirements represented in RD1 are modeled through the other dia-
grams. These diagrams are a Sequence Diagram (SD), a Use Case Diagram (UCD),
and two Activity Diagrams (ADa and ADb). Regarding the connections, we can see
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that SD is connected to RD1 and UCD, but not to ADa and ADb. This means that
the diagram represented in UCD contains the requirements considered in RD1 and
represented by the sequence diagram in SD1. About the other connections, we see
that ADb is connected to ADa, RD, and UCD. Finally, Ab is connected only to RD
and ADa.

In the case the diagram grows, it can be challenging to show the TD graphically.
Thus, we can represent it by a database notation.

TD database is composed of two columns. The first one is related to the diagram
ID, and a unique string represents it. The second one is related to the diagrams
connected to the one represented in the first column, and it is represented by an
array of strings. The general composition of the database is shown in Table 3.4.

Table 3.4: Traceability Diagram - Database view

Diagram_ID (Diagram1_ID, Diagram2_ID, ..., DiagramN_ID)

Considering the example of Figure 3.14, the related database is presented in Table
3.5.

Table 3.5: Traceability Diagram Example - Database view

RD1 (SD1, UCD1, AD1, AD2)

SD1 (RD1, UCD1)

UCD1 (SD1, RD1, AD2)

AD1 (RD1, AD2)

AD2 (RD1, AD1, UCD1)

3.4.9 Methodology

In order to show how the model-driven approach must be implemented, we show a
step-by-step methodology. It is shown in Figure 3.15.

1. The first step includes the data collected in the previous phases of the K-Model
(i.e., Need and Requirements). This information is necessary to produce the
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Figure 3.15: Model-driven approach: step-by-step methodology

proper diagrams and design the smart IoT device according to requirements
and needs.

2. Secondly, the developers can draw the diagrams following the model-driven
approach and analyzing the IoT entity’s context. We have stated that the
context is heavily conditioned by the environment and the IoT entity’s scope.
Considering the diagrams that we have shown earlier, they can be drawn in
any order, but the preferred one is to consider the requirement diagram firstly
according to the elicited requirements of the previous step. Then, it is better to
draw the use case diagrams collecting all the general actions that the actors and
the IoT entity will perform. The context must be considered for the whole step.
Therefore, the context diagram can be drawn at the start and terminated at
the end of this step, considering the modeling process dynamically. Then, the
developers will use the class, activity, sequence, and state machine diagrams to
specify the general actions modeled by the use case diagram. The traceability
diagram can also be drawn during the development of the other diagrams to
map their relationships from the origin, but traceability will be considered in
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the next step.

3. The third step is entirely related to traceability. Thus, considering the trace-
ability diagram created in the previous phase and all the important data related
to the other diagrams, it is reasonable to create a traceability database. This
information will avoid domino effects in the case a diagram must be modified
or deleted. This step will be explained in Section 5.3.8.

4. The fourth is the last step of the methodology, where the modeled entity is
delivered, and it will be developed in the subsequent phase of the K-Model.
However, if some modifications are needed (for example, because the developers
did not address a requirement or a risk was partially or not covered), there is the
opportunity to come back to step 1 to implement these modifications. Indeed,
developers need to consider traceability in order to make these modifications.

This systematic methodology assists the developers to follow a guideline to draw
the models appropriately.

In the following section, we will analyze the central phase of the K-Model.

3.5 Development

The development is the core phase of the K-Model. This phase transforms the needs,
requirements, and models in the product that will be verified and validated in order
to be distributed to the customers. In the IoT, the challenges are numerous because
of the dynamicity and heterogeneity of this technology.

Thus, we believe that in order to holistically consider all the information collected
in the previous phases of the K-Model, the developers must organize their work in a
schematic way. Our proposed approaches help them fulfilling this goal. Therefore, the
top-down approach that we will present in Section 3.5.1 allows developers to consider
functionalities firstly from a generic perspective and then in a specific way. On the
contrary, the bottom-up approach that we will discuss in Section 3.5.2 considers
contexts from a specif point of view to a more generic one. The utilization of both
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approaches helps developers better to consider all the fundamental aspects of the
IoT entity. Finally, both the approaches are considered during the trusted finite-
state development that we will propose in Section 3.5.3.

In order to show the steps of the development phase, we will present in Section
3.5.4 the order of utilization of our proposed approaches.

3.5.1 Top-Down approach

During the development of an IoT entity, a useful methodology is to analyze the IoT
entity under development following a top-down approach.

Several methodologies implement this approach such as the Work Breakdown
Structure (WBS) or the Functional Breakdown Structure (FBS) [36]. Moreover, in
the previous phases of the K-Model, we have focused on how important it is to
consider trust domains. For this reason, we think that it is useful to mix the FBS,
also considering the related domains of each functionality.

We named this top-down approach as FDBS (Functional Domain Breakdown
Structure). In this approach, it is fundamental to highlight each functionality ac-
cording to its domain. However, it is possible that a particular functionality could
belong to more than one domain.

According to the original FBS structure, we create a descending tree where the
root is related to the IoT entity, and the children define its functionalities. The final
leaves of the FDBS tree will contain basic functionalities. For the FDBS, we create
another parameter denoting which domain is considered for the proper functional-
ity or sub-functionality (i.e., trust and privacy). As it is possible that two or more
requirements could be the same and belong to different domains [48]; thus, it is pos-
sible that a single functionality belongs to different domains. However, in this case,
we will not have two or more functionalities, but we will have a single functionality
belonging to more than one domain.

Figure 3.16 shows an example of FDBS. There are three levels. The IoT entity is
set at the top level. Then its main functionalities are set in the medium level, splitting
them into sub-functionalities at the bottom level. As we can see, the domains are
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Figure 3.16: Functional Domain Breakdown Structure (FDBS)

represented at the top of the box containing the functionalities. However, in order
to show how to implement our top-down approach in a use case scenario, we will
present a specific example in Chapter 5.

3.5.2 Bottom-Up approach

For the bottom-up approach, the essential elements of a system are firstly analyzed
and implemented. Then, the developer analyzes composed elements in order to
proceed from a specific to a general view of the entity.

As we explained in the previous sections, it is crucial to take context into consid-
eration during the SDLC of an IoT entity. Therefore, we will use this approach to
model all the contexts belonging to the IoT entity under development. In fact, the
IoT entities can participate in different contexts, and some of them shall be sepa-
rated from the others. Strongly related to the contexts, we also consider the domains
(i.e., trust and security). However, there is the possibility that some contexts share
functionalities, and they can be considered together under a super-context. This
super-context will include the single domains belonging to the contexts in the lower
layer.

The bottom-up approach is presented in Figure 3.17. It starts from the single
contexts considering the ones at the bottom level and their domains. Then, the
contexts having commonalities are considered together under a super-context. In
this general representation, we have three levels, and the top-level belongs to the IoT
entity as its whole.
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Figure 3.17: Bottom-Up Approach (Context)

Figure 3.18: Block Development (BD): each block is a trust island

3.5.3 Trusted Block Development

In order to consider and develop software that is fundamental for any IoT entities,
we propose a trusted finite-state development.

This approach helps developers to delimit the software according to the contexts
and functionalities highlighted in the bottom-up and top-down approaches. This
development style is fundamental to keep separated the different codes.

Figure 3.18 shows that the blocks are separated, and they can contain several
sub-blocks of code. They can be sequential or not, but it is essential that they are
separated. This is fundamental in order to preserve the separation among func-
tionalities and contexts. This programming technique allows developers to create
boundaries related to trust, creating “trust islands”. In fact, if we consider variables
existing only in a particular block, we can create trust operations according to the
users or functionalities belonging only to that particular block. In fact, this design is
helpful in keeping the roles of a user separated according to a particular context. For
example, a user can be considered and trusted in block A, but it cannot be considered
or not trusted in block B. We will show an example of this part in Section 5.4.3.
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3.5.4 Implementation Approaches

These approaches must follow a step-by-step methodology in order to be effectively
implemented within the K-Model. This methodology is presented in Figure 3.19.

Figure 3.19: Step-by-step methodology

The steps are the following:

1. The first step corresponds to the output of the previous phases of the K-Model
(i.e., Need, Requirements, and Model). In fact, all the tasks performed up to
this step must be considered to develop the IoT entity. The needs specify the
intended IoT entity. Thus, the requirements have been elicited according to
them, and the implemented models create useful guidelines to develop the IoT
device in this main phase of the K-Model.

2. Then, in Sections 3.5.1 and 3.5.2, the proposed approaches are implemented
in the second step. A context diagram will be handy in the bottom-up ap-
proach. On the other hand, the other diagrams will be fundamentals during
the implementation of the top-down approach.
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3. Thirdly, as we specified in Section 3.5.3, according to both the approaches, we
need to implement the trusted finite-state development.

4. The fourth step of the methodology corresponds to the final developed entity
that will be verified and validated in the following phases of the K-Model.
Anyhow, it is possible to come back to step number one in the case some
modifications are needed.

In the next section, we provide a use case scenario that realizes the implementa-
tion approaches presented in Section 3.5.

3.6 Verification and Validation

Verification and, later in the SDLC, Validation are two critical phases that are useful
to prove that the IoT entity under development has been adequately developed. If
validation must be performed only for the final product, verification can be imple-
mented in any phase in order to find errors or modify the original plan. However, it
is essential to consider verification as a separate phase after the development phase
because every verification test must be made before proceeding to the validation
phase.

3.6.1 Verification

A definition of verification appears in the Project Management Body of Knowledge
(PMBOK) [41] where verification is considered as “the evaluation of whether or not
a product, service, or system complies with a regulation, requirement, specification,
or imposed condition. It is often an internal process. Contrast with validation”.

This phase is fundamental in order to verify that the entity has been built in the

right way. This means that all the specifications have been followed in the correct
way. In the verification phase, the functionalities of the entity are tested as well as its
correct implementation. Requirements related to the functionalities and not strictly
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dependent on the environment are checked in this phase, as well as the implemented
models.

Moreover, this phase is intended to be performed in order to check that the
developed IoT entity meets a set of design specifications.

After the development phase, the verification procedures are performed through
tests that model or simulate a part of a determined functionality of the IoT entity.
This procedure’s success acknowledges the fact that the smart object is working
correctly (according to the tested functionality). It is also possible that the same
tests are performed continuously to assess that the developed IoT device meets the
requirements, specifications, and regulations as time progresses.

Verification is performed as a whole in this phase, but it can be performed during
the previous phases of the K-model (if necessary) to test the functionalities of the
device partially. It can be useful to perform these tests in advance in order to make
the proper modifications early in the SDLC. Anyhow, in the verification phase, all
the functionalities must be tested, so it is possible to assess that the IoT entity has
been adequately developed.

As stated by Arthur et al. [10], about verification and validation, a powerful
tool that can be used is called Independent Verification and Validation (IVV). This
is a mechanism that can be exploited in order to mitigate the growing complexity
related to the expansion of modeling and simulation problems. The authors organize
a literature review about verification, validation, and IVV concluding that: “(a) val-
idation is the primary focus of most modeling and simulation efforts, (b) verification
plays only a secondary role, and (c) independent V&V is, for all practical purposes,
being ignored”. The authors aimed “to raise the awareness of the benefits and appli-
cability of IVV within the modeling and simulation community”. They described a
step-by-step methodology on how to apply IVV to a particular SDLC model.

SysML can be helpful because, as we presented earlier, it includes several dia-
grams, but one of them is fundamental in the verification phase: the requirements
diagram. During the requirements elicitation process and the modeling phase enforc-
ing the requirements diagram, the developers implement the verify process giving
hints on how to reproduce the verification process later on during the SDLC. It is
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represented by an arrow stereotype.

Moreover, testing is helpful in this phase to check if the functionalities work
as intended. Anyhow, test and verification represent different goals. Linhares et
al. [92] stated that “test is realized on the implemented system”. For this reason,
testing is useful both in the verification and validation phases. It involves a set of
possible inputs testing the system’s functionalities under consideration to check if
something wrong occurs. Usually, testing in SysML allows ensuring that a specific
set of test scenarios are accepted. On the other hand, the authors stated that formal
verification “allows us to be sure that the standard requirements are fulfilled by the
system specification”.

Another mechanism that is implemented during verification processes is the in-
spections. Fagan et al. [44] described for the first time the inspection processes which
were previously considered by Ackerman et al. [3] that described the inspection pro-
cesses as fundamental for the verification phase. In fact, the latter declares that “the
use of software inspections improves product quality, as well as the productivity and
manageability of the development process”.

For our purposes, we state that the verification phase of the K-Model is keen
to analyze the requirements according to the models and test the functionalities to
prove that the requirements and the functionalities are well-formed and the “system
has been built right”.

The JSON template presented in 3.3 helps developers to analyze them and test
the functionalities.

At the end of this phase, we can state that “the trusted IoT entity has been built
right”.

Figure 3.20 shows that the verification tests are performed according to the re-
quirements and models designed in the previous phases of the K-Model. These
verification tests are presented in the following sub-section.

3. 6. 1. 1 Methodology
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Figure 3.20: Verification

In this section, we present a step-by-step methodology on how to perform verifi-
cation. The steps are shown in Figure 3.21.

Figure 3.21: Test Verification: step-by-step methodology

The output of each step is used during the following steps.

1. Step zero is related to the comparison of the originating model documentation
(collected during the third phase of the K-Model) and the elicited require-
ments. In fact, we need to compare the requirements and models to verify the
functionalities of the developed IoT entity as the developers have modeled and
planned. It is also represented in Figure 3.20.

2. The first step is performed to execute tests related to the functionalities of the
developed IoT entity. It is fundamental in order to check that there are no
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malfunctions and the functionalities perform as intended. In the case of trust
functionalities, it is checked that only trusted users can perform determined
actions (i.e., to access the IoT device).

3. In order to check that the requirements have been respected, the functionalities
tested in the previous step must be connected to the originating requirements,
so it is possible to certify that they have been designed in the correct way.

4. The response of the comparison performed in step 2 is the input for the final
step. If the functionality follows the requirements, then the verification test
is successful. Otherwise, the functionality must be modified according to the
elicited requirements. This feedback is represented in the K-Model, and it is
necessary in order to develop the correct IoT entity.

This systematic methodology helps the developers to follow a guideline that helps
them to test all the functionalities of the developed IoT entity.

3.6.2 Validation

Validation is defined by the PMBOK [41] as “the assurance that a product, service,
or system meets the needs of the customer and other identified stakeholders. It
often involves acceptance and suitability with external customers. Contrast with
verification”.

By validation we mean that the right entity has been built [67]. This means that
the desired entity has been developed as the users and vendors wanted and that
meets the operational needs of the users.

This phase checks that the needs have been met and the IoT entity works appro-
priately in a real system’s environment. All the requirements are checked, assuring
that the entity fulfils its intended purpose.

The developed entity may have passed the verification phase, but it fails when
validated. This situation can happen when the entity has been built for the specifi-
cations, but the specifications themselves fail to address the needs of the users.

In the State of the Art, there can be different categories of validation.
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Process validation has been analyzed in [82], where the authors discussed guid-
ance for the process validation. This guidance promotes a “lifecycle” approach built
in three steps. The first step regards a process design based on the know-how gained
during the development of the product, and it is “the beginning of a structured and
interconnected chain of validation evidence”. Then, the second step is about the
process qualification, where the process design is “evaluated and assessed to deter-
mine if the process is capable of reproducible commercial manufacturing”. Finally,
the third step is related to continued process verification. It is important to under-
line the difference between “continued” (i.e., ongoing) and “continuous” (i.e., without
interruption). In addition to these steps, in the guidance are provided recommenda-
tions on creating proper documentation and using analytical methods during process
validation.

Then, retrospective validation is executed for a product that is already distributed
or sold to the customers. It is performed following the written specifications based
on the collected documentation produced during the SDLC. If any critical data is
missing or discovered after the utilization phase, then the product has been completed
partially [51] and a restyling is necessary. This kind of validation is necessary if
process validation is missing or incomplete, in the case there are changes of standards
and regulations affecting the distributed product, and in the case, a disposal item is
about to be revived.

Next, partial validation is often used for research purposes or prototypal studies
if the time before the utilization phase is constrained. In this case, the tests are
performed only on the most significant parts or functionalities. The developers can
perform the ranking of the functionalities through a decision-making process.

Another type of validation is called re-validation or periodical validation. It is
performed on items that are dismissed, repaired, relocated, or after a fixed expected
time. Moreover, re-validation can be performed in the case a modification of the
product or item is needed.

Finally, concurrent validation is conducted in parallel with a routine process of
services, manufacturing, or engineering.

Independently from the kind of validation, all of these techniques have determined
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tests to be performed. We can see them in Table 3.6.

Table 3.6: Validation tests

Tests
Selectivity/specificity

Accuracy and precision
Repeatability

Reproducibility
Limit of detection

Limit of quantification
Curve fitting and its range

System suitability

These tests are based on the fact that the product, the equipment, and the
functionalities to be analyzed constitute an integral system, and it must be evaluated
as it has been developed in its whole.

For our purposes, we can state that the validation process is based on the fact
that “the right system has been built”. In order to clarify this, we need to check that
the IoT entity and its functionalities match the stakeholders’ needs.

Each need is represented by a statement, and it is represented by one or more
stakeholders. As we mentioned earlier, stakeholders are the “persons” having an
interest in the system. Usually, it can be for monetary gain or to create a new
technology to improve human life.

Need#X = (Stakeholder, Statement)

The IoT entity can be represented by a number of needs and stakeholders. As
we explained earlier, developers must collect these needs in the first phase of the
K-Model and check if some conflicts arise among them. Then, in the requirements
phase, the needs are analyzed and transformed into requirements.

Here, in the validation phase, these needs and requirements are checked together
to analyze if they are respected and the functionality of the IoT entity represents the
original needs.

At the end of this phase, we can state that “the right trusted IoT entity had been
built”.
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Figure 3.22: Validation

Figure 3.22 shows this representation of which items are needed to perform vali-
dation tests (i.e., the elicited requirements and the needs). Then, if a validation test
fails, it is possible to follow the feedback to the requirements and needs to solve the
issue.

The validation tests are presented in the following sub-section.

3. 6. 2. 1 Methodology

In this section, we present a step-by-step methodology on how to perform valida-
tion. The steps are shown in Figure 3.23.

The output of each step is used during the following steps.

1. Step zero is related to the comparison of the originating needs (collected in
proper documents) and the elicited requirements. This step is basically similar
to the one performed in the second phase of the K-Model, where the developers
elicited the requirements from the needs. In this phase, the needs and the
connected requirements are compared. This step is helpful to discover if there
are some missing or wrong requirements.

2. The first step is performed to execute tests related to the functionalities devel-
oped following the elicited requirements in order to satisfy the needs.
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Figure 3.23: Test Validation: step-by-step methodology

3. The comparisons between needs and functionalities are performed in the second
step, where the output of the test is compared to the originating need.

4. The response of the comparison performed in the previous step is considered in
the last step of the methodology. If the functionality satisfies the need, the val-
idation test is successful. Otherwise, the functionality must be modified. This
means that the developers must go back in the K-Model cycle to the previous
phases in order to perform the correct modifications. However, if performed
correctly, all the previous phases minimize the risk that this possibility should
happen.

This methodology provides developers with a guideline to test the developed IoT
entity in its intended environment.

3.7 Utilization

The last phase of the K-Model is related to the utilization of the developed IoT
entities. In fact, after the entity has been verified and validated, it is finally possible
to use it in its intended environment. As we represented in the K-Model shown in
Figure 3.1, there are connections among this phase and the needs and requirements
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phases. These connections are useful to control that the entity works as intended to
satisfy the needs and the elicited requirements.

We can state that, during the utilization phase, an IoT entity can belong only to
three states about being in an IoT network:

• Join: when an IoT entity enters or is connected to an existing network.

• Stay: after the join state, an entity can be rejected or accepted. If accepted,
the entity will stay in the network until something occurs (i.e., leaving the
network, ban).

• Leave: an entity can leave a network because it is changed or expelled. When
an object leaves a system, it can join another one or be dismissed.

In an IoT environment, these three states (join, stay, and leave) will often be
present according to the dynamicity of the field and the context. This requires
that trust should be strongly considered in order to legitimate the relationships
among the IoT entities. For this reason, it is necessary to develop a smart entity
capable of computing trust values in real-time. Moyano [113] proposed the idea of
trust@run.time, which is an aspect that we took into consideration for this thesis.
Moreover, trust decision-making, trust modeling, and trust metrics are needed when
an IoT entity joins a new network. So, it is possible to collect trust information
about other objects in deciding how to proceed. Moreover, the trust parameters are
important in choosing which IoT system can be trusted in order to interact with
it. Staying in a network signifies dealing with the dynamicity of the network. This
means dealing with other joining, staying, and leaving devices. For this reason, trust
can be helpful in organizing the relationships among all these entities. Finally, when
an entity leaves a network, there are three possibilities:

• The entity is dismissed.

• It will never come back.

• It will join the network again.
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The historical trust value of an entity that has left the network can be useful only
in the case it returns to the network. Anyhow, according to the dynamicity of trust
and IoT, these values should be outdated. In this case, they can be valid only for a
short time period. Trust modeling and metrics can help consider all these different
situations.

We have proposed an adaptive trust model that can be used to monitor and
control these states.

3.7.1 Adaptive Trust Model

The adaptive trust model comprehends different situations. In our work [50], we
have modeled the three possibilities that we stated earlier.

The trust level computed by the adaptive trust model will be fundamental to
decide if the new entity is allowed to join the network or stay in it.

For smart homes, we consider the possibility that there is a Smart Hub monitoring
the other devices. This device will compute the trust values, and it will have the
right to access several Databases (DB) that we illustrate later. Moreover, it could
store data related to the actions performed by the IoT entities for forensics purposes,
but this is out of this Tesis scope. We assume that this Smart Hub cannot be
compromised because it has a Root of Trust 6.

According to the need phase, where we identified a segregated architecture, the
smart hub will consider the new entities approaching the network through the adap-
tive trust model. Thus, when a new entity wants to join a network and it is accepted,
it should be allowed into the internal or the external network. However, in order to
decide if to allow or not an entity to access the network, a trust estimation is needed
according to the following parameters: threats DB, reputation DB, context, and risk
calculation.

• Threats DB. The known vulnerabilities of the smart devices are collected in
this DB. In case no known attacks related to the device are present, its trust

6https://www.synopsys.com/designware-ip/technical-bulletin/secure-iot-system.html
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value is high. In the case of known attacks, the greater the danger, the lower
the trust value.

• Reputation DB. The reputation DB is used to store the devices old reputation
values. For example, in the case a new device tries to join the network again,
but it has been banned in the past, the smart hub will deny its access. We
assume that a ban is performed after a serious security issue. For this reason, a
banned device cannot join the network again. Furthermore, avoiding a second
opportunity, we prevent Whitewashing Attacks (see Chapter 5.6.3). We assume
that both the DBs are secured and encrypted. In addition, they are stored in
the internal network where we assume that a malicious entity cannot access,
because of the implementation of the join, stay and leave phases (as we will
show later).

• Context. The context depends on the environment, purpose, and services that
the device provides alone or with the other smart devices. The more critical a
device is, the higher the necessary level of trust.

• Risk Calculation. We consider three parameters to calculate the risk. The
first parameter is the likelihood (L) of an event; this is the probability that a
situation that harms the system can occur (either an attack or a malfunction).
The second parameter is the severity (S) of the effect that a malfunction or
an attack can have on the system. The more critical the component involved
is, the more critical the threat is for the whole system. Finally, there is a
parameter that is usually not taken into consideration but one which we think
is crucial to calculate the risk: the detectability (D). The detectability is the
possibility of a malfunction or an infected device can be detected. If an attack
occurs and we cannot detect it, the system will fail or be manipulated. We have
considered either detectability or likelihood separately because the likelihood
is related only to the probability that an event occurs, even if we detect it or
not. These values will be computed together, calculating a final risk level. The
result can be high, medium, or low. In the case that the calculated risk is high,
the device cannot be added to the network, or it must be banned. In the case
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the risk value is low or medium, the device can join or stay in the network
depending on other criteria. We will discuss this more deeply about risks in
Section 4.7.

3.7.2 Trust Estimation - Join, Stay and Leave

In our model, trust estimation considers different parameters. It is computed to
establish whether a new entity can join the network or not, as shown in Figure 3.24.

Figure 3.24: Adaptive Trust Model: Join Decision

3. 7. 2. 1 Join

When the smart homeowner connects a new entity to the home network, the
centralised monitor (i.e., a smart hub) is contacted by the new entity that asks per-
mission to join the home network. Thus, the smart hub performs a trust estimation
about the entity (i.e., who is the owner or if there are known threats concerning the
device). In the case of positive trust estimation, the smart hub notifies the joining
entity about how to interact with the other entities giving it a key for exchanging
messages. The rule for joining the other entities depends on the trust estimation pa-
rameters. Moreover, which network to join is related to the fact that the new entity
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belongs or not to the BYOD paradigm; if the case is affirmative, the new entity can
only join the external network.

The join procedure is shown in Figure 3.25, and it is similar to the SDP technique
7. When the new device joins the network, it sends a broadcast message to com-
municate with the smart hub in order to be allowed to join the network (action 1).
Thus, the smart hub checks the permissions of the new device (i.e., password, owner
key, rights), performing the trust estimation. If the access is denied, the smart hub
informs the new device that it is not allowed to join the network (action 2). Other-
wise, if the access is granted, the smart hub instructs the new device that it can join
the network and which other devices are allowed to interact with it (action 2). Then,
the smart hub informs the devices belonging to the network that they can exchange
information with the new device (action 3). In both actions 2 and 3, the smart hub
gives a symmetric key to the new device and to the old devices enabling them to
communicate with each other. The devices must perform an acknowledgment to the
smart hub (action 4) and from that moment, the devices can interact among them
(action 5).

Figure 3.25: Joining a network

3. 7. 2. 2 Stay

When an entity stays in a network, it must be monitored, according to external
and internal factors, as shown in Figure 3.26.

During the monitoring, the smart hub checks whether the entities are behaving

7https://cloudsecurityalliance.org/download/software-defined-perimeter/
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Figure 3.26: Adaptive Trust Model: Stay Decision

normally. If something not expected occurs (according to the context, risk calcula-
tion, and entity involved), a trust estimation is needed to decide whether the entity
is behaving maliciously or not. During trust estimation, the context and the risk cal-
culation of the action are all taken into consideration, together with the reputation
DB data where the history of the entities is stored and a threat DB updated with the
latest known attacks. The smart hub can allow the entity to stay, or it can decide
to ban or put it in quarantine. When an entity is put in quarantine, it remains in
the network without being able to communicate with the other entities. The entity
can only receive communications from the smart hub. The quarantine will continue
until new information are available (i.e., known attacks or vulnerabilities related to
the entity). In the case an entity is banned or put in quarantine, the smart hub must
communicate the decision to the entities having a connection with the banned one.
The model for stay decision is similar to the work of Atlam et al. [11]. They have
proposed a risk-based access control model for IoT to calculate the risk associated
with the access request to a particular resource. We extend this model using risk
calculation as a parameter for trust estimation.

3. 7. 2. 3 Leave
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Figure 3.27: Leaving a network

When an entity leaves the internal or external network, it must announce its
intention to leave both to the smart hub and to the related entities (actions 1 and 2
in Figure 3.27). Then, in order to enhance security, the smart hub must communicate
the change to its related entities. (action 3).
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3.8 Conclusion

In this chapter, we have presented the K-Model that compounds our trust-by-design
framework together with the transversal activities. Firstly, we have discussed the
need phase, which is the starting point of the framework, where all the stakeholders
having an interest in the new IoT entity under development illustrate their ideas.
Then, the requirements elicitation is performed in the second phase through the
TrUStAPIS methodology. Thirdly, we have proposed a trust model-driven approach
proposing UML and SysML diagrams enriched by trust and related domains for the
model phase. Then, the development phase has been proposed considering several
approaches to analyze the functionalities and the contexts of the IoT entity along
with a trusted finite-state development. After this phase, verification and validation
methods have been presented in order to guarantee that the IoT entity has been
developed as intended. Finally, the utilization phase covers the aspects related to
the interaction of the developed IoT entity with other entities.



CHAPTER 4

Transversal Activities of the K-Model

In this chapter, we present the transversal activities, which, together with the K-
Model, compound our trust-by-design framework. These activities are seven: trace-
ability, documentation, metrics, gates, threat analysis, risk management, and decision-
making. For each of them, we will describe its importance for the framework and
where they must be considered along the K-Model. In fact, there are activities more
important for a particular phase than others. However, some activities (such as gates
or traceability) are considered in all the phases.

123
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4.1 General Overview

As we stated earlier, the K-Model is only a part of our trust-by-design framework.
In fact, along with its seven phases, we implement several transversal activities fun-
damental for its correct utilization.

The first activity is traceability. It is considered among every phase as shown in
Figure 3.1 (i.e., represented by the arrows) and in some phases also within them (i.e.,
Requirements, Model).

The second activity is documentation. This task is important in many phases,
especially in the need, requirements, and development phases. In fact, during these
three phases, the developers must redact documentation that is fundamental for
the following phases of the SDLC. During the need phase, the documentation helps
describe the idea and define what the entity shall do and why the entity is needed.
Then, these documents are the starting point for the following phase to elicit the
proper requirements. During the development phase, the documentation is important
to explain the code and the implemented methodologies to be later verified and
validated.

Thirdly, metrics are useful in several phases of the SDLC. In the requirement
phase, they are defined in order to specify the requirements. During verification
and validation, metrics are used to check if the entity has been developed correctly.
Then, in the utilization phase, they are fundamental in order to take decisions. For
example, trust metrics will be used to measure the trust level of the other IoT devices
in order to perform trust decisions and decide which entity to trust.

The gates are important activities related to the organization of the work between
two following phases. The gates have basically a double function. In the first instance,
they define a backup where it is possible to come back if some problems occur in the
following phases. Moreover, it is used to check if every task has been finished in the
previous phase in order to proceed to the following one.

The fifth activity is related to the threat analysis. Indeed, a difficult challenge
in the IoT is to protect the smart entities and customers from different known and
unknown attacks. Hu et al. [71] focused on IoT environments. They stated that
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it is very important that any IoT architecture considers these attacks proposing a
solution.

Risk management is another critical activity that must be considered during the
SDLC. Every technology can raise the risk for IoT entities and users. We analyze
three parameters: likelihood, severity, and detectability of the risk events.

Finally, decision-making is an activity that helps developers in deciding among
different alternatives, and it helps the IoT entity in order to perform trust decisions
(i.e., choose the most trusted candidate among different ones).

4.2 Traceability

Traceability enhances the connection among phases through the whole framework.
For this reason, we have deeply discussed traceability along with this thesis, especially
in Section 3.3.8 and 3.4.8. However, in this section, we summarize the importance of
traceability for all the phases of the K-Model. Thus, traceability connects needs to
the other phase in order to acknowledge why a decision has been taken. Moreover,
traceability permits safely modifying requirements or specifications, avoiding unin-
tended consequences or domino effects due to the deletion of requirements connected
to others. In the model phase, traceability is essential to map all the diagrams con-
nections. Then, during the development phase, traceability guarantees that the IoT
entity follows the specifications written in the previous phases. For the following
phases, it is crucial to implement traceability in order to verify and validate the
IoT entity according to needs, requirements, and models developed. Finally, in the
last phase of the K-Model, it is essential to guarantee that the developed IoT entity
reflects its original needs.

4.3 Documentation

Documentation is fundamental in order to provide developers and stakeholders with
crucial information during the whole SDLC. Moreover, the documentation must be
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redacted by all the actors involved in each phase of the K-Model. Thus, we can say
that a document should contain important information for each phase.

In state of the art, documentation is widely used in many fields. Especially in
agile software development, where there are basically two primary reasons in order
to perform the documentation tasks: to communicate and to understand 1.

In [28], the author presented the idea that a document-driven methodology is
necessary for software development to create a guide on how to proceed and sum-
marize what the developer has done. For the author, documentation is “not an
all-encompassing ’other’ category, but a natural deliverable of each stage in the pro-
cess. In supporting the thinking processes and providing checkpoints for review and
reference, the value of the documentation is meant to become self-evident”.

In [148], the authors evidenced that in software development, there is also the
possibility that documentation can be considered as a “side-task” and usually, the
output is only provided at the end of the project. The motivation is due to the fact
that software projects are strictly dependent on budget and time. Moreover, the
members of a team are usually needed for new projects. These problems lead to
having less time to document all the needed knowledge about software or project.
This is a common problem, but it is demonstrated that the more time is spent at the
start of a project to document it deeply, the less money will be spent later in order
to solve or avoid unexpected issues [52].

Thus, we can understand that the documentation can be considered either as an
input or an output of the phases. This activity is even more critical for the SDLC,
where there are different phases, and each of them needs inputs and provides outputs
for the following phases. Nevertheless, our K-Model is not an exception and consider-
ing the phases presented in this thesis, the documentation process shall be performed
in all of them. In the first phase, it is used as an input for the need identification, and
it is provided as an output containing all the collected needs and their relationships
with the stakeholders. Then, for the second phase, the input will be the documents
generated during the previous phase, and they will be fundamentals in order to elicit
the proper requirements. At the end of the second phase, the produced documents

1http://www.agilemodeling.com/essays/agileDocumentation.htm
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will contain information about the elicited requirements. During the third phase of
the K-Model, the requirements documentation will be a fundamental input. More-
over, during this phase, documents related to the models will be produced, and the
developers will need them during the following phase related to the development of
the final IoT entity. Then, during the verification and validation of the product,
the documentation related to all the previous phases will be considered. In fact, in
order to verify the requirements, documentation related to the second phase will be
needed. Moreover, the modeling verification and the development documentation
will be important to verify the functionalities of the IoT entity. Then, the validation
will be managed considering the need documentation. In fact, the final product will
be validated only if it fulfils the originating needs. Finally, the validation documen-
tation will be produced for the final phase, originating the guide for the final user.
It will define how the product works. Moreover, in this last phase, the need for doc-
umentation will be considered by the developers to find issues related to the product
and understand if the original needs are met.

To conclude, it is important to highlight that documentation enables traceability
among phases in order to keep track of the decisions and why they have been made.
Moreover, the documents can be considered a guide for the next phases and as
feedback for the previous phases. This feedback allows developers to go back to a
previous phase in the case it is necessary to solve any problem that might have arisen.

4.4 Metrics

In our framework, metrics are essential to measure the performance and efficiency of
the IoT entity. Moreover, metrics are fundamental during the interactions among IoT
entities in order to define the rules of the interactions themselves. For example, in a
trust interaction, we can state that trust metrics are fundamentals to decide whether
to trust or not another IoT entity. Furthermore, trust metrics are considered in every
phase of the SDLC in order to guarantee that the actions are performed in a trusted
way. For this purpose, the characteristics of trust explained in Section 3.3 can be
used to compute the proper metric in order to help the entities in deciding how to
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proceed in a particular action or with which entity to cooperate. The most crucial
phase where they will be used is the last one, where the IoT entities must decide how
to behave on the basis of the defined metrics.

Essentially, metrics can be qualitative or quantitative. Hermann [69] made the
following distinctions. The simplest ones are the qualitative metrics, and they can
be divided into nominal and ordinal. A nominal scale represents all the categories
we want to measure. They are mutually exclusive and useful for sorting items. On
the other hand, ordinal scales are useful for organizing items in sequences. We can
use them to identify relationships in order to understand which items are lesser or
greater. However, these types of metrics have no numeric values. For example, on
the one hand, we can use nominal scales to aggregate trusted nodes in a network
dividing them into untrusted, unknown, and trusted. On the other hand, we can
use ordinal scales to analyze the relationships of the nodes (i.e., we can have more
trusted than untrusted nodes).

Considering quantitative metrics, they can be divided into interval and ratio
scales. The interval scales are basically nominal scales with an exact value. According
to the previous example, using interval scales, we can enumerate the network nodes
(i.e., 57 trusted, 24 untrusted, and 12 unknown nodes). On the other side, a ratio
scale is like an interval, but in addition, it has a clear definition of zero value. Thus,
we can give positive and negative values to the previous nominal scales using ratio
values. For example, 0 can represent unknown nodes, +1 the trusted nodes, and -1
the distrusted nodes.

NIST [26] defined a guideline for security measures. They are useful for decision-
making processes. Moreover, it can be implemented to measure performance and
enable accountability. About the performance, it is used to improve functionality or
apply corrective actions.

In our framework, the measures depend on which phase of the SDLC they are
applied. For example, effectiveness/efficiency measures are useful during the valida-
tion phase in order to check that the IoT entity and its functionalities have been
implemented as intended. Moreover, these types of measures assess two fundamental
aspects: effectiveness ensures the robustness of the result, and efficiency reflects the
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time and resources spent in order to achieve the result.
Table 4.1 shows the different measures according to the SDLC phases.

Table 4.1: Metrics table

SDLC
Phase

Relevant Metrics Purpose

Needs Nominal, Ordinal To define qualitative metrics for the IoT
entity

Requirements Trust, Security, Inter-
val, Ratio

To write requirements that can be mea-
surable and verifiable

Model Trust, Security, Inter-
val, Ratio

To design models according to the written
requirements

Development Trust, Security, Inter-
val, Ratio

To develop the IoT entity following needs,
requirements and models

Verification Interval, Ratio To verify that requirements and models
are reflected in the developed functionali-
ties

Validation Efficiency/Effectiveness To check that the IoT entity and its func-
tionalities have been implemented as in-
tended

Utilization All of the above The IoT entity must decide how to be-
have in different contexts and situations
according to the metrics defined during
the whole SDLC

4.5 Gates

In our K-Model, we have six gates. They are placed in the middle of the transition
between the phases (i.e., between requirements and model phases) and determine if
it is possible to proceed to the following phase or not.

Basically, they can be considered as decision points, and it is not possible to
proceed to the next phase if the previous phase is not entirely fulfilled. Anyhow,
during this activity, all the documents belonging to the previous phase are collected,
creating a backup. This aspect is fundamental if something goes wrong in the process,
and it is necessary to come back to the previous phase (i.e., a need cannot be satisfied
or a conflict among requirements arises during a later phase). For example, this can
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happen if the process has passed the gates prematurely (i.e., needs not precisely
defined).

The gates are considered both in system engineering [52] and project management
2. Usually, in order to proceed to the following phase, during gate activity, reviews
are needed. These reviews are called gate reviews (GR). As we have stated earlier,
GR are fundamentals in order to let the process move through the different phases.

Moreover, GR are useful to mitigate the risks throughout the whole project, and
they are useful to monitor changes in the goal or the scope of the product/project. In
this case, it is important to backtrack the process in order to change the originating
needs. GR must be performed by developers and stakeholders, and when they all
agree, it is possible to proceed to the following phase. Through GR, it is also possible
to carefully check the progress of the IoT entity under development according to the
previous gates. During GR, it is also possible to decide if the development should be
delayed, modified, or deleted.

In the case of a successful GR, it means that the IoT entity development is going
as planned.

Because GR occurs when there is a transition to the next phase, it is not periodic.
However, it should be planned according to the project’s schedule, but it can be
postponed (i.e., in the case unexpected issues arise).

Moreover, a GR should accomplish the following sub-activities:

• Assessment of the feasibility of the project in order to proceed to the following
phase.

• A re-planning of the purpose of the project (if necessary).

• A recapitulation of project history.

• Creating a backup of the work carried out so far (if it is possible to proceed to
the next phase).

• A re-commitment of the available resources (if necessary).
2https://www.pmi.org/learning/library/contemporary-gate-philosophy-implemented-outcome-

7786
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• A project review.

The success of this transversal activity depends on a predefined GR process. As
we stated earlier, there are six gates in the SDLC related to the K-Model, and all
of them are defined according to their specific place in the project flow. Thus, we
can state that each gate is unique, but there can be commonalities among them. For
example, common elements can be the GR participants (i.e., stakeholders and devel-
opers), meeting duration, or decision-making rules (i.e., majority, veto, unanimity).
On the other hand, unique elements will be the ones related to their position in the
SDLC.

Nevertheless, each gate results in three possible outcomes:

1. It is possible to proceed to the next phase.

2. The phase is not correctly concluded, so the process must go back to the pre-
vious phase. Another GR will be performed where the arisen issues will be
solved. In this case, it is also possible to go back further in the project flow.

3. The project is cancelled. This may occur if huge risks have arisen or for business
reasons.

In Table 4.2, we can see the differences among the gates related to our framework.
For each of them, the activities are strongly related to the previous phase plus other
phases considered through traceability (i.e., in gate five are considered both the
verification phase than the requirements and model phases).

On the other hand, in the first gate review, only the need documentation and the
stakeholders are considered because the IoT project and product flows are at their
start. Thus, we can state that the more advanced the flow is, the more elements we
need to consider during the GR.

4.6 Threat Analysis

During the SDLC of a new IoT entity, it is essential to consider the possible threats
that can affect the IoT device, its environment, and its architecture. For this reason,
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Table 4.2: Gates table

Gate number (posi-
tion)

Gate Topics

Gate 1 (From Needs to
Requirements)

Collected Needs, Stakeholders

Gate 2 (From Require-
ments to Model)

Elicited Requirements, Traceability to Needs

Gate 3 (From Model
to Development)

Models, Traceability to Requirements

Gate 4 (From De-
velopment to Verifica-
tion)

Functionalities verification process, requirements verifi-
cation document

Gate 5 (From Verifica-
tion to Validation)

Entity verification, requirements and model documenta-
tions

Gate 6 (From Valida-
tion to Utilization)

Entity validation completed and connected to the origi-
nating needs

in order to protect the IoT entity under development and enhance trust, it is impor-
tant to be aware of the potential threats (i.e., known attacks). Thus, in Table 4.3,
we can see the threat consideration performed in each phase.

Anyhow, because it is challenging to be protected against zero-day attacks (i.e.,
attacks not known), the modus operandi is to collect all the information about known
attacks and guarantee that the new IoT entity will be protected against them.

This part is essential to be investigated, especially during the development phase.
However, since the requirements phase, it is advantageous to elicit the proper require-
ments in order to specify what is needed to enable the protection. Then, during the
model phase, it is essential to design the models according to the possibility of being
attacked. Then, as we stated earlier, the development phase is crucial because, fol-
lowing the previous phases and the known attacks, the developers can produce the
proper code. Moreover, during the verification and validation process, these attacks
can be performed in order to find a vulnerability. If this occurs, the IoT entity must
be further protected going back to the previous phases, but planning a defense since
the earliest phases of the K-Model helps minimize or avoid this possibility.
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Table 4.3: Threats table

Phases Threats Analysis
Needs No Countermeasures here because it is most

important to decide what it is needed
Requirements According to the needs, design the require-

ments considering specific threats
Model Model the defense against threats following

the elicited requirements
Development Design the IoT entity according to require-

ments and models
Verification Verify that the IoT entity resist to known

attacks
Validation Validate the IoT entity that is protected and

reflects the originating needs
Utilization Support and modification in the case a zero-

day attack has been performed

4.7 Risk Management

In the state of the art, there are many techniques related to risk estimation [17],
and most of them are related to trust. Yan [160] stated that risk is correlated to
trust. In fact, “trust involves uncertainty and risk. There is no perfect guarantee to
ensure that the trustee will live up to the trustor’s expectation”. Marsh [98] declared
that in all the cases where trust is involved, the trustor risk something in trusting
the trustee. Ruohomaa [138] stated that “A trust decision is binary and based on
the balance between trust and risk, and it has some sort of effect on the trustee.
Usually, it is made with a class of applicable situations in mind, such as concerning
a particular trustee in performing a certain action only.” Furthermore, Cvrcek [34]
stated an essential semantic distinction between trust and risk: “trust is established
with respect to entities/principals (a user, a process, implementation of a service),
while the risk is a property of particular processes (i.e., service invocations, protocol
instances). Both are subject to context.”

In our framework, risk management is strongly connected to threat analysis. In
fact, a risk for the IoT entity can be related to an attack. Nevertheless, risk can also
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be provoked by possible internal malfunctions or lousy implementation. However,
we can minimize this risk considering it since the early phases of the SDLC.

During the need phase, the risk is connected to the possibility that different needs
belonging to diverse stakeholders can raise conflicts among them. If a solution is not
found, there can be the possibility that the project will not start. Another risk is
that the outcome of the IoT entity will not repay the investors, and it will become a
loss. In the requirements phase, risks can be related to conflict among requirements
or to the time spent in this phase. In the model and development phase, risks can
be related to the difficulty of representing a requirement or a need. Verification
and Validation risks are related to the possibility that it is not possible to verify or
validate a functionality of the IoT entity in a proper way. This situation can lead to
two different outputs: returning to previous phases or moving forward aware of the
risk. A risk analysis helps in this decision. During the utilization phase, risk can be
caused by a malfunction (related to the not verifiability of a function) or a zero-day
attack performed against the IoT entity.

We perform risk management considering three parameters: likelihood, severity,
and detectability. Firstly, likelihood (L) represents the probability that a dangerous
situation will occur. It can be related to a threat or a defect. Secondly, severity (S)
is connected to the impact that the defect or attack represented by L can have on the
system. The more critical it is, the higher value is set. Usually, in many risk analysis
techniques [17], these two parameters are enough in order to calculate the overall
risk. However, in our opinion, we need to consider a third parameter: detectability
(D). It describes the possibility of detecting the hazard represented by S and L. In
fact, for example, if an attack is occurring and we cannot detect it, the system will
fail or will be manipulated without letting the user be aware of it.

We compute these three parameters together with a multiplication. This is a
common approach performed in many risk methodologies [17].

Thus we will have:

Risk = L ⇤ S ⇤D

The three-dimensional risk graph is shown in Figure 4.1. The lowest risk value
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Figure 4.1: Requirements Relationships

is presented in the first box. The maximum risk value is the box where L, S, and D
are the highest. In the middle, there are all the other possibilities. However, we can
define that there is a high risk when two of L, S, or D are the highest and one is the
lowest or medium, or where one is the highest and the other two are the medium.
Then, we have a medium risk in four cases: firstly, when either one of L, S, or D is
the highest and the other two are the lowest; secondly, if one is the highest, another
one is the lowest, and the last one is the medium; thirdly, when L, S, and D are
medium; finally, if two parameters are medium and one is low. Finally, we have a
low risk when one parameter only is medium and the remaining two are low.

The values which we take into consideration for L, S and D are:

Low = 1;Medium = 3;High = 9

To keep the computation simple, we have considered only three values for each
parameter. Thus, according to Figure 4.1, if the result is lower than 9, the risk is
considered as low. Then, if the result is between 9 and 27, we have a medium risk.
Finally, if the value is higher than 27, we have a high risk.

Summarizing, the overall risk values have been chosen according to the following
criteria:

1. It is the same level of all the parameters if they belong to the same level (i.e.,
low if all of L, S, and D are low).
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2. Low, if there is a medium parameter only and the other two parameters are
low.

3. High, if there are two or more parameters set to high or two parameters set to
medium and one set to high.

4. Medium, in all the other cases.

In Tables 4.4, 4.5 and 4.6, we can see that the risk values have different definitions
according to their category. They are expressed directly in the table according to
their value and meaning.

Table 4.4: Likelihood

Value Meaning
Low (1) The event is unlikely to happen

Medium (3) The event can quite probably happen
High (9) The event is almost certain to happen

Table 4.5: Severity

Value Meaning
Low (1) The network is not damaged

Medium (3) The network can be partially damaged
High (9) The network can become completely useless

Table 4.6: Detectability

Value Meaning
Low (1) The problem is easily detectable

Medium (3) The problem cannot be entirely detected
High (9) It is not possible to detect the problem
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Table 4.7: Values of Risks

Risk level L * S * D Total
Maximum 9 * 9 * 9 729

9 * 9 * 3 243
9 * 3 * 9 243
3 * 9 * 9 243
9 * 9 * 1 81

High 1 * 9 * 9 81
9 * 1 * 9 81
3 * 3 * 9 81
9 * 3 * 3 81
3 * 9 * 3 81
9 * 3 * 1 27
1 * 9 * 3 27
3 * 1 * 9 27
9 * 1 * 3 27
1 * 3 * 9 27
3 * 9 * 1 27

Medium 3 * 3 * 3 27
9 * 1 * 1 9
1 * 9 * 1 9
1 * 1 * 9 9
3 * 3 * 1 9
1 * 3 * 3 9
3 * 1 * 3 9
3 * 1 * 1 3

Low 1 * 3 * 1 3
1 * 1 * 3 3

Minimum 1 * 1 *1 1

Then, as we can see in Table 4.7, we have different levels of risk. The maximum
level value is 729, and it occurs only when there is the highest value for each of the
variables. Moreover, from 81 to 243, we also have a high risk. The medium risk
is between values 9 and 27. The low risk is when we have 3 as value. Finally, the
minimum risk is when all the variables are at their lowest value.
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4.8 Decision-Making

The decision-making process can be performed in each phase of the framework.

In the need phase, decision-making can help to choose among different needs in
the case they create conflicts among them. The same situation can be stated for the
requirements phase, where it is possible to find conflicts among the elicited require-
ments. In order to proceed to the following phase, it is mandatory to solve these
issues. Then, in the model phase, the Decision Maker (DM) can help in choosing
different diagrams to model a particular functionality. Another type of DM, related
to the decision that the IoT entity must take in the final phase is modeled in the
development phase according to the elicited requirements. Finally, during the uti-
lization phase, decision-making is related to the interactions among entities. For
example, it is needed to decide which entity can be trusted in order to perform a
particular action.

However, trust has a crucial role in order to perform decisions in every phase
of our K-Model. For this reason, we have developed a Pairwise Ordination Method
(POM) to assist developers in the decision-making activity. We will apply it in the
second phase of the K-Model (i.e., requirements phase), but it can also be applied to
the others whenever it is mandatory to choose among different alternatives. Anyhow,
this method is based on the Analytic Hierarchy Process (AHP). Thus, we present it
in order to introduce POM properly.

4.8.1 Analytic Hierarchy Process (AHP)

AHP has been developed by Saaty [140], and it is a structured technique for organis-
ing and analysing complex decisions. It is one of the most widely used methodologies
in Multi Criteria Decision Analysis (MCDA) [151].

Since its creation, AHP has been commonly applied in complex decision-making
problems thanks to its ability to synthesise both tangible and intangible character-
istics to accommodate both shared and individual values [40].

In state of the art, only a few works consider AHP for trust management. One
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of them has been developed by Pang et al. [122]. In this work, the authors have
proposed AHP as a solution for the limited computational power of IoT nodes. They
have developed a model to compute the trust level of the IoT entities, also considering
reputation parameters. However, they do not consider related properties as privacy
or security.

Concerning cloud security, Taha et al. [151] have introduced an AHP-based tech-
nique allowing a comparative analysis of it. They consider a methodology helping
users to understand better and identify their security needs. However, in our frame-
work, we have considered other types of requirements in addition to security (i.e.,
availability, privacy) that in their work are missing. Furthermore, Kassab et al. [81]
explore AHP in order to assist in the prioritization of quality requirements. This
approach can be limited due to the increase of complexity if it is used for all the
requirements. In our approach, even if we focus only on the conflictual require-
ments, we avoid the issues related to the consideration of a considerable number of
alternatives.

Another work has been proposed by Kim [84]. This is an AHP method based on
network interfaces and a channel selection algorithm for multichannel MAC protocols
in IoT ecosystems that considers several decision-making factors such as expected
channel condition, latency, and frame reception ratio. The proposed scheme considers
an IoT-based healthcare system. Finally, due to the fact that AHP can be utilized
in numerous fields, it has been applied in individual and group decision-making
processes [7].

As we stated earlier, a remarkable peculiarity of this methodology is that it
allows developers to compare both tangible and intangible characteristics belonging
to different fields, prioritising and normalising them. This is a critical aspect because,
due to the multidisciplinarity and heterogeneity of trust and IoT, it is advantageous
to be able to compare alternatives from different areas in order to prioritize them.
These alternatives have to be compared with respect to determined criteria. In the
case a higher level of detail is needed, a criterion can be divided into two or more
sub-criteria. We can see all these elements (i.e., alternatives, criteria, and goal) in
the general AHP model shown in Figure 4.2.
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Figure 4.2: General AHP model

The AHP works in the following way. The nodes belonging to a lower layer are
pairwise compared with respect to their contribution to the nodes above them. The
results fill a matrix, which is then mathematically processed to derive the priorities.
During the pairwise comparisons, it is decided if the first term (A) is more important
than the second one (B) or vice-versa. Saaty has proposed a fundamental scale to
compare the elements shown in Table 4.8.

Table 4.8: The fundamental scale for pairwise comparisons [140]

Intensity Meaning

1 A and B are equally important
3 A is relatively more important than B
5 A is more important than B
7 A is much more important than B
9 A is absolutely more important than B

We can state that the more important A is for B, reciprocally, the less important
B will be for A. Thus, for example, if we compare A and B in accordance with a
criterion C and we think that “A is more important than B”, we will give A the value
of 5 with respect to B, so we have to reciprocally give to B the value of 1/5 with
respect to A.

The order of comparisons usually begins with comparing the criteria with respect
to the goal. Then, if they exist, there is a comparison of the sub-criteria according
to the originating criterion. Finally, the alternatives are compared with respect to
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each (sub)criterion. All these values will fill the proper matrix.

For every matrix, a Consistency Index (CI) is calculated. This value is needed
in order to check if the performed comparisons are consistent or not. If CI is lower
than 0.10 [140], the matrix is consistent. If not, the choices must be reconsidered in
order to solve the issue. The more elements have to be compared, the higher is the
probability of facing inconsistency. For this reason, AHP utilization is discouraged for
more than ten alternatives or criteria [140]. This is an issue that in an environment
such as the IoT can limit the effectiveness of this approach. We mitigate this issue
with our methodology, as we show in the next section.

4.8.2 Methodology: Pairwise Ordination Method (POM)

Our approach is based on AHP and similarly to it, POM is composed of a goal,
alternatives, and criteria, but the operations among them are performed differently.
In our case, the goal is to rank the requirements that guarantee the maximum level
of trust for the developing IoT entity according to the criteria and the conflicting
alternatives.

Similarly to AHP, the criteria can be divided into sub-criteria to improve the level
of detail.

Finally, there are the alternatives, which in our case are the conflicting require-
ments.

In this approach, trust is considered as a way to improve the quality of the system
in choosing which requirement to keep and which one to release or modify.

A peculiarity of our methodology is that it is possible to compare aspects related
to different fields, prioritising them with a normalised value. This aspect is critical
because, in accordance with the multidisciplinary aspect of trust and IoT, it is useful
to be able to compare aspects belonging to different areas.

The goal we have to achieve is to choose the requirement maximising the trust
level of the developed system.

The alternatives we have to take into consideration in this method are require-
ments arising conflicts among them. Furthermore, we assume that the elicitation
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process and the identification of these conflicts have already been performed. Thus,
depending on the alternatives, it is important to define the criteria. Hence, we have
identified three groups of criteria that are mandatory to be used in our methodology
(considering the requirements phase):

1. Context criteria. As we stated earlier, the context can be considered as a
composition of functionalities or depending on the environment. Moreover,
context is always present and needed to be taken into consideration in an IoT
environment. Furthermore, according to the general aspects related to trust,
we have to identify general criteria that can affect the system’s trust level.

2. Traceability criteria. Another important activity that we have presented in
Section 4.2 is traceability. It is crucial during the development of an IoT entity
because we cannot solve a conflict requirements issue without considering which
other requirements, needs, models, or documents are connected with them.
Moreover, validation and verification aspects must be taken into consideration
in this group criteria. In fact, when a requirement is elicited, it should be
decided how to verify and validate it to speed up this process. For this reason,
if we modify such requirement, we have to modify as well the way we can verify
and validate it.

3. TrUStAPIS criteria. As we stated earlier, trust is strongly related to other
properties: privacy, identity, security, usability, safety, and availability. The
domains of these criteria are the same as the conflicting requirements. It is
useful to perform this comparison because it is important to rank them ac-
cordingly to the other connected requirements in order to see which criterion is
more useful compared to all the requirements. It can be only one (in the case
all the conflicting requirements belong to the same domain), or there can be
seven criteria (all the domains identified in TrUStAPIS).
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4.8.3 Procedure

In this methodology, we have to perform comparisons among the elements belonging
to contiguous layers. We suggest starting by comparing criteria according to the goal.
Then, we compare sub-criteria (if they exist) according to the originating criterion,
and finally, we compare the alternatives with respect to the criteria or sub-criteria.
These comparisons are fundamental to order alternatives and criteria. Thus, at the
end of the procedure, it is possible to rank the requirements from the most to the
least important. The importance is given by which one of the requirements mostly
improves the level of trust of the system.

During each comparison, an ordered branch-tree is created. For each round, we
compare an element with the following not yet ordered element and the DM decides
which one is more important following the criterion or the goal. The procedure is
iterative, and each time an element wins the comparison, it has to be compared with
the following element. The round ends after each element has been compared at
least once. When the first round finishes, we obtain a partially ordered tree. We will
compare the not yet ordered elements in the following rounds of comparisons until
we have a wholly ordered branch-tree. Anyhow, this branch may have some levels
populated by more elements.

For example, let us assume that we have six alternatives (A, B, C, D, E, and F),
and we have to compare them according to criterion X.

In the first round, we have to compare all the elements among them in order
to decide which one is the most important. Hence, we firstly compare A with B in
order to decide which alternative is more important. Imagine that the DM decides
that B is the most important. It means that B will be then compared with C. Let
us assume that B wins all the comparisons until F. Thus, we find out that B is the
most important alternative among the others according to the criterion X, but we
do not know how to rank the other alternatives. Thus, we have to estimate also the
order of the other alternatives, and we can start the second round of comparisons.

Firstly, we compare A and C, and we find out that C is the most important.
Secondly, C is compared with D, and the DM decides that D is more important than
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C. Then, we have to compare D with E and D wins. Finally, we compare D with F,
and D is the most important.

Now, we know that B is the most important element, followed by D. But we also
have to order the remaining alternatives.

In the third round, we compare A and C again, but we previously found out that
C was more important than A, so it is possible to skip this comparison. Then, we
compare C and E deciding that C is the most important. Finally, C is compared
with F, and C wins again.

Now, our branch-tree is composed of B, C, and D ranked in this order. The
remaining alternatives to be ordered are A, E, and F.

Thus, we start the fourth round by comparing A and E, and we find out that
they are equally important according to X. Finally, we compare A with F, and the
DM decides that A is the most important.

In the last round of comparisons, we find out that E is more important than F
because A and E have the same importance.

Finally, the algorithm ends, and we have an ordered branch-tree shown in Figure
4.3.

B

D

C

A E

F

Figure 4.3: Example: ordered branch-tree

Algorithm 1 represents our case.

Now that the branch-tree is ordered, we need to give each element a weight to
normalize them. In our approach, the weights are based on the number of elements
and on their importance. The maximum weight value is equal to the number of
elements, and the minimum value is one. In order to assign the weights, we proceed
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Algorithm 1 Trust model algorithm for home devices
1: procedure POM

2: while Each_element_is_not_ordered do
3: branch[”A”, ”B”, ”C”, ”D”, ”E”, ”F”]
4: orderedBranch[””, ””, ””, ””, ””, ””]
5: for all i = 1 to branch.size()� 1 do
6: if i = 0 then
7: Comparethefirsttwoelementsofbrancharray
8: if Oneofthetwoelementsisbetter then
9: BestElementWins

10: elseTheyareequals
11: BothElementWins
12: else
13: if Oneofthetwoelementsisbetter then
14: BestElementWins
15: else
16: BothElementWin
17: Save_Winner(s)_into_orderedBranch
18: Remove_Winner(s)_from_branch

19: orderedBranch[”B”, ”D”, ”C”, ”A,E”, ”F”]
20: branch[””, ””, ””, ””, ””, ””]

following a bottom-up approach. If the bottom layer has only one element, the
element belonging to the layer above will have a value equal to the lower value plus
one. In the case a layer has more than one element of the same importance, such
elements will have the same value. However, in this case, the element above them
will have a value equal to their value, plus the number of equal elements. We use this
“jump” to highlight the difference between the upper element respect to the lower
elements.

We can summarize these cases in the following general formula:

Element_weight = Lower_element_weight+Number_of_lower_elements

Considering the previous example, we had six elements (A, B, C, D, E, and F).
Hence, we have 6 as the maximum value and 1 as the minimum value. Hence, we
give F weight of 1 because it is the lowest. Secondly, we have two elements of the
same importance (A and E), and we give both of them a weight of 2. Above them,
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there is C that weights 2 (the value of the element beneath it) plus 2 (the number
of elements of the same value in the lower level). So, the weight of C is 4. Then,
we have D that is equal to 5. Finally, we have the most important element that has
a weight of 6, which is B. Our weighted and ordered branch-tree is shown in Figure
4.4.

B

D
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Figure 4.4: Example: ordered and weighted branch-tree

Considering that in a real scenario, there will be other criteria, we have to nor-
malize the values of the alternatives in order to compare them with the results related
to the other criteria. This operation will also be performed for the criteria according
to the final goal.

Following the previous example, to normalize the elements, we have to divide
each of them by the sum of the weights that is 20. Thus, the normalized values for
each alternative will be:

B = 6/20 => 3/10

D = 5/20 => 1/4

C = 4/20 => 1/5

A = 2/20 => 1/10

E = 2/20 => 1/10

F = 1/20

The sum of all the normalized weights is 1. In order to reach the final goal and
choose which alternative is the most important, each alternative will be multiplied
for the normalized weight of the (sub)criteria among them and added to the values of
the same alternative compared to the other sub-criteria and criteria. The final sum
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of all these values will be 1, and the higher alternative will be the most important.
We will show this procedure with a complete example in Section 5.2.6.

4.8.4 POM vs AHP

The complexity of POM is the following: the maximum number of comparisons
depends on the number of alternatives, and the minimum number of comparisons is
the number of the alternatives minus one, as we show in Table 4.9. The latter is the
best case. In fact, imagine that with each comparison, the following element always
wins. It means that the previous elements have already been ordered, and we need
only one round of comparisons to order the branch-tree.

Table 4.9: Maximum comparison related to the number of alternatives. Legenda: i =
number of alternatives , max = maximum number of comparisons, min = minimum
number of comparisons, n.a. = not available.

i 1 2 3 4 5 6 7 n
max n.a. 1 3 6 10 15 21 n(n� 1)/2
min n.a. 1 2 3 4 5 6 n� 1

In AHP, we have a fixed number of comparisons that is equal to the maximum
number of comparisons of our method:

AHP � comparisons = n(n� 1)/2

A possible problem using AHP is the possibility of having an inconsistent matrix
when the number of elements grows. With POM, the inconsistency is avoided because
the comparison tree is ordered at every step of the algorithm. Another difference
between AHP and our methodology is related to the weights. If in AHP, the weights
are shown in Table 4.8, in our approach, the weights depend on the number of
elements. Thus, in our methodology, the weights are fixed. However, even if in AHP,
the weights can better represent the differences among the elements, this possibility
can increase errors due to subjective decisions. Our approach mitigates this error.
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4.9 Conclusion

In this chapter, we have presented the seven transversal activities that are part of
our framework. Firstly, we have presented traceability that represents the connection
between the phases of the K-Model. In addition, it is fundamental in the requirement
and the model phases connecting their elements among them. Secondly, documenta-
tion is an activity that allows creating records of why the decisions have been made
along the whole SDLC. Without this task, it is challenging to have accountability
for the decisions made or verify or validate the IoT entity. Thirdly, metrics guaran-
tee that trust decisions must be measurable or to verify a requirement considering
a designed parameter. To continue, we have the gates between each phase to allow
the flow to continue or not (in the case the previous phase is not completed). Then,
threat analysis and risk management are performed in several phases in order to
develop the proper countermeasures in the case some attacks could be performed, or
design choices can raise some risk. Finally, decision-making processes help developers
of the IoT entity to decide in the case different choices can be made considering the
most trusted one.



CHAPTER 5

Implementation of the Framework in an IoT
Scenario

In this chapter, we will present an IoT scenario in order to show how to implement our
framework. In each subsection, we will present the phase and the related transversal
activities. Thus, in the first phase, we will present the need related to the IoT entity
under development. In the second phase, we will elicit the requirements according to
the needs. Thirdly, we will design the models. In the central phase of the K-Model,
we will present how to perform the development of the IoT entity. Then, we will
show how to verify and validate it. Finally, we will present how the intended entity
will be used in the final phase. For each of them, we will present several sub-sections
considering the transversal activities that will be important for each phase.

149
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5.1 Need

In this phase, it is important to define which entity is needed and what it development
should satisfy. So, let us assume an IoT scenario where a Smart Cake Machine
(SCM) is needed to be developed. The stakeholders having an interest in it are
vendors and customers only. This IoT entity will provide a list of which ingredients
are needed in order to bake cakes. It is important that the temperature will not
overcome 250�C. Moreover, the recipes will be downloadable from a website, or users
can insert them. In order to interact with the SCM, the users must be trusted and
authenticated. In order to recognize users, they must be registered providing their
data. The users would like to remain anonymous. On the other hand, these data
should be accessed by the vendors for market surveys. Considering IoT interactions,
the SCM must cooperate with other IoT entities such as the Smart Fridge (SF) or
Smart Supermarkets (SM). Thus, if an ingredient is needed, the SCM can check
the SF if it is available. If not, the SCM can send a request to the nearest trusted
supermarket to order the missing ingredients.

However, from the previous description, it is possible to elicit and write the needs
in the following format (it should also be included in the documentation in order to
be considered in the following phases of the K-Model). We elicit the following ones
in order to show how they must be described.

1. Need 1: The temperature of the SCM must be checked and it could not
overcome 250�C.

2. Need 2: The recipes must be downloadable from the vendor website or inserted
manually by authenticated users. Authentication must be done by code.

3. Need 3: The SCM could interact with a Smart Fridge (SF) to check whether
a particular ingredient is in the fridge or not. If not, the SCM could interact
with a trusted Smart Supermarket (SM) through the home Smart Hub (SH)
and order the missing ingredient.
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4. Need 4: The communication among the smart home entities must be guaran-
teed and encrypted.

In addition to the needs descritption it is important to have clear in mind since
this phase the architecture in which the IoT entity to be developed will be used. In
this case, we propose a smart home centralised architecture with a Smart Hub (SH).
These relationships are shown as a possible example in Figure 5.1.

Figure 5.1: Smart Cake Machine and its relationships with the other IoT entities

The dotted lines between the SCM and the SH and between the SH and the SM
are related to the fact that there is an indirect connection between the SCM and the
SM. In fact, the SCM must delegate the SH to interact with the SM.

In this phase, context is strictly connected to the architecture in which the IoT
entity under development will be used. Thus, in order to create a trust environment
for the SCM, we need an architecture that provides a segregated trusted environment.
This architecture answers to a specific need proposing a new way to solve problems of
security, trust, and privacy belonging to classic IoT architectures [144]. This need can
be satisfied by protecting IoT entities with a segregated trust architecture. With the
locution segregated trust, we consider that the IoT entities inside an internal network
can trust only the entities which are allowed to interact with. This segregation is
guaranteed by the internal architecture, which is designed to prevent external and
internal threats.

The architecture that shall be developed is similar to Obregon’s work [119]. How-
ever, moving further from this work, we propose the model shown in Figure 5.2, which
is divided into six levels plus a Demilitarized Zone (DMZ). The levels are divided
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into two main zones: the blue zone is related to the internal network, and the green
zone is related to the external network.

Figure 5.2: Hierarchy Levels of the Segregated Architecture

Starting from the bottom, we have the level concerning physical sensors. They
collect raw data from the field, sending them to the level above belonging to the
smart entities. These devices have to process and analyse the raw data originated in
the level below and act when it is necessary. For example, a smart smoke detector can
notice that there is smoke in the smart home, and if the smoke level is higher than a
threshold, the sensor triggers an alarm. The third level of the architecture belongs to
the control system, where there is a central unit (i.e., a home hub). This smart hub
must monitor the other smart objects, and it is the connection point between them
the external network and the Internet. The segregation takes place at this level.
This level is the highest of the internal network. The home hub is connected to the
Internet through a DMZ. This zone prevents the lower level from being compromised
by external threats, and a firewall monitors the inbound and outbound traffic. It
is possible to use two firewalls in order to create a DMZ, and this is considered the
most secure approach [75].

In this case, the first firewall configuration must allow traffic only to the DMZ;
then, the second firewall allows the traffic from the DMZ to the internal network.
This configuration increases the internal network’s protection from external threats,
for example, preserving privacy protecting the data inside the protected zone.

Beyond the inner zone, there is the fourth level. In this level, we have all the
entities classified under the Bring Your Own Device (BYOD) paradigm [108]. These
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devices can be, for example, smartphones or laptops that the owner also uses in other
networks. For this reason, they have to be separated from the internal network.
Anyway, they can communicate with their smart devices through the DMZ.

Then, we have the fifth level. It is related to the Network System, which ex-
changes communications with the Internet through the sixth level. At this level, we
have the smart router that is able to block dangerous communication or forward the
harmless ones to the layer below in the case coming from the Internet or vice versa.
Finally, there is the sixth level where we can find the last firewall, protecting the
external layer from Internet threats. Both the firewall and the smart router of layer
five can be implemented to block or not the communication in both directions. This
implementation is strongly dependent on the context and the environment. In our
case, the SCM will belong to level number 2, but during its development it is impor-
tant to consider also the devices belonging to the other levels in order to properly
build the connections among them and the SCM.

About the transversal activities, we can state that documentation is its core activ-
ity. In fact, all the functionalities and services needed must be collected in a proper
way. This task allows developers to keep track of the motivations behind a particular
choice. Thus, also traceability has a significant role here in order to preserve these
connections. Then, through documentation and traceability, it is possible to connect
the following requirements to their originating needs. If a decision-making process
is needed, there will be added the information related to this task. It is essential
to keep all the documentation related to the needs, even if they will be modified in
order to keep track of all the modifications. Moreover, it is crucial since this phase
to collect information about possible risks and threats. In our case, it will be created
documentation according to the functionalities expected by each stakeholder. About
the gates, it is possible to proceed to the following phase (i.e., Requirements) when
stakeholders and developers agree that all the needs have been documented and have
been connected to the proper stakeholders through traceability.
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5.2 Requirements

In this section, we exemplify the methodology presented in Section 3.3.9 continuing
the use case presented in the previous section (i.e., the SCM development).

Thus, considering needs and context, we will elicit the requirements in a four-
step methodology. As we explained earlier, the first step will be related to the
analysis of the need documentation containing the needed functionalities. Thus, in
the second step, the JSON template will be modified according to each requirement.
For this process, the conceptual model will help to focus on which elements of the
JSON code to fill. The third step will then consider the IEEE 830-1993 specification
in writing the text of the requirement. Moreover, it will be considered traceability
among the elicited requirements. Finally, the fourth step will include the final elicited
requirement. In the case a modification is needed, it is possible to have feedback from
the last step to the first one.

5.2.1 Step 1

Analyzing the need documentation, it is possible to understand that the customers
necessitate an SCM that tells them which ingredients are necessary to bake a cake.
The SCM temperature must be checked, and it could not overcome 250�C for safety
reasons. The recipes must be downloadable from the vendor website or inserted by
authenticated users. The authentication methodology must be performed by user
name and password. The SCM must interact with a trusted Smart Fridge (SF) to
check whether a particular ingredient is in the fridge or not. If not, the SCM could
interact with a trusted Smart Supermarket (SM) through the home Smart Hub (SH)
and order the missing ingredient. The communication among the smart home entities
must be guaranteed and protected.

Thus, considering these needs and the context, it is possible to elicit the proper
requirements following the TrUStAPIS methodology. This phase is of fundamental
importance to continue the development of the SCM. According to the K-Model, the
output of this phase will be the input for the modeling phase.
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5.2.2 Step 2

After analyzing the need documentation produced in the previous step, it is possible
to proceed to step 2.

Following the JSON template shown in Figure 3.4, it is now necessary to set up
the JSON code related to our use case and requirements.

Thus, by the JSON template and the conceptual model, it is possible to properly
fill the JSON code according to the needs identified before. The JSON code presented
in Figures from 5.3 to 5.10 contains the parameters related to each requirement and
collected from the previous needs.

Firstly, we model the relationship between the SCM and the SM. To assign a
trust value, we need to consider some trust characteristics (i.e., direct, measurable)
and the type of action (i.e., fulfill). This trust value will be used by the SCM to
decide whether to trust or not to trust the SM.

Figure 5.3: JSON code part 1

We can now analyze the JSON code in Figure 5.3 (from line 2 to 16). The specific
identifier related to the first requirement is shown in row 2.

row2� “IoT_requirement_TRST01”

As we mentioned earlier, the trust requirement has some characteristics (row 6)
needed for the computation of the trust value. These characteristics must highlight
particular aspects that we want to represent with the elicited requirements.
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row6� “Characteristic” : [“Direct”, “...”, “Measurable”]

Here, the characteristics that we consider are: direct, indirect, global, general,
and measurable. Direct, indirect and global are defined for the computation of the
trust level. For the SCM, a subjective value depends on past interactions with the
specified SM (i.e., direct trust). However, it is needed an objective value too. We
can consider two objective values: an indirect value and a global value. On the
one hand, the indirect value is computed from known and trusted entities. On the
other hand, the global value is computed by a centralised authority considering the
trusted entities of the overall system. In this scenario, an indirect value is the one
computed by the SF (in the case it has a past relationship with the SM), and the
global value could be computed by the vendor website (collecting the data of all the
SCM interacting with an SM). General depends on the fact that it is possible to
have a single trust value for each entity. In this scenario, the SM can be considered
with a single computed value about its trust level even if different parameters or
metrics can be considered (i.e., time, distance, price, quality). In this phase, we do
not discuss how these values will be computed, but it is important to underline that
in order to compute a trust value, trust metrics are fundamentals. For this reason,
the last trust characteristic taken into consideration is measurable.

Then, in row 10, we can see the roles of the actors. In this case, they are both
trustor and trustee.

row10� “Role” : [“Trustor”, “Trustee”]

In fact, in our scenario, the SCM can be considered as the trustor because it is the
entity ordering the ingredients, and the trustee is the SM, id est the entity providing
the missing ingredients.

With this elicited requirement, we want to fix a trust value (goal: row 15) between
the SCM and an SM (row 11). The action is considered a goalAction because the type
is fulfill (row 13), and it has a measure (row 14) computed from the characteristics
defined earlier.

row11� “Type” : [“SCM”, “SM”]
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row13� “Type” : [“Fulfil”]

row14� “Measure” : [“Trust level”]

row15� “Goal” : To fix a trust value

The second requirement that we model from the needs is a usability requirement.

row17� “IoT_requirement_USAB01”

It is represented in Figure 5.3 from lines 17 to 31.
This usability requirement is related to the need 2 identified in the previous sec-

tion and explained by the sentence “The recipes must be downloadable from the
vendor website or inserted manually by authenticated users.” Thus, because a re-
quirement must be complete, we must create (at least) two different requirements,
one for the “downloadable” part, the other one for the “manual” part. In this case,
we focus only on the second part, so the requirement USAB01 will be elicited ac-
cording to this need. Then, we will create another requirement, USAB02, in order
to cover also the download part. For a user, the procedure of inserting new recipes
must be simple, and the user interface must be understandable. For this case, we do
not decide how the recipes must be inserted (i.e., by a smartphone, a website or the
user interface of the SCM). We only model that the user shall be able to insert new
recipes.

Another important aspect is that in order to specialise requirements, sub-requirements
are needed.

row21� “Characteristic” : [“Simplicity”, “Understandability”]

row30� “Goal” : [“Let the user insert new recipes”]

In Figure 5.4, we collect the second Usability requirement, and we can see that
it is similar to USAB01, but there are differences related to the actors (rows 40 and
41) and the goal (row 45).

row40� “Role” : [“User”, “IoT Entity”]

row41� “Type” : [“Human User”, “SCM”]

row45� “Goal” : [“Let the user download new recipes”]
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Figure 5.4: JSON code part 2

In this requirement, we consider both the User and the SCM because the action
that will be implemented also requires an active part from the SCM (i.e., connect to
the vendors’ server to download the recipes). On the other hand, with the require-
ment USAB01, we focus only on the user perspective.

Figure 5.5: JSON code part 3

Then, we can see in Figure 5.5 two security requirements. One is related to the
authentication characteristic (row 51), and the other is related to delegation (row
66). According to the identified needs, we know that in order to interact with the
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SCM, a user must be trusted and authenticated. The second requirement is related
to the delegation. In fact, the needs documentation specifies that the SCM must
communicate with the SM only through the SH, so in this case, the SCM delegates
the SH to order the ingredients.

row51� “Characteristic” : [“Authentication”]

row66� “Characteristic” : [“Delegation”]

Considering the actors, in SEC01, they are the human user and the SCM (row
56). Whereas, in SEC02, the actors are the SCM and the Smart Hub (row 71).

row56� “Type” : [“Human User”, “SCM”]

row71� “Type” : [“SCM”, “Smart Hub”]

Figure 5.6: JSON code part 4

In Figure 5.6, we can see the JSON code for the availability requirements AVBT01
and AVBT02. Considering the needs, we can state that for the first availability
requirement, the characteristic that we take into consideration is Resilience (row 81).
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In fact, in order to assure the availability of the communication between the entities,
resilience guarantees to be available also in the case of malfunctions or attacks. In
this case, we require only that the communication is available. How resilience is
guaranteed will be implemented in the following phases of the SDLC or by other
sub-requirements. The “scope” is related to the connectivity between IoT entities
(row 83) and the “goal” is about to provide connection between the IoT entities (row
90).

row81� “Characteristic” : [“Resilience”]

row83� “Scope” : “Connectivity between entities”

row90� “Goal” : “To provide connection between the IoT entities”

In the second part of Figure 5.6, there is the second availability requirement,
related to the “goal”: availability of user data for vendors (row 105). In this case,
the “characteristic” taken into consideration is integrity. In fact, the integrity of the
data assures that they can be available for whoever needs them.

row96� “Characteristic” : [“Integrity”]

row105� “Goal” : “Availability of User Data for Vendors”

In the first part of Figure 5.7, we can see the first privacy requirement. It is
elicited by the need to express that the communications must be encrypted.

We model the requirement considering the confidentiality characteristic (row 111)
and both the IoT entities involved (row 116) have the roles of “Encryptor” and
“Decryptor” (row 115).

row111� “Characteristic” : [“Confidentiality”]

row115� “Role” : “Encryptor, Decryptor”

row116� “Type” : [“SCM, SF”]

Then, in the second part of Figure 5.7, there is the second privacy requirement
that is needed by the users in order to anonymize their data (row 135). The charac-
teristics are three: anonymity, unlinkability, and confidentiality (row 126).
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Figure 5.7: JSON code part 5

row126� “Characteristic” : [“Anonymity, Unlinkability, Confidentiality”]

row135� “Goal” : “To anonymize user data”

The authentication need can also be expressed by identity requirements. In Fig
5.8, we can see two identity requirements. The second one is a sub-requirement of
the first one (rows 137 and 152).

row137� “IoT_requirement_IDNT01”

row152� “IoT_requirement_IDNT01.1”

Because the needs require authentication, we decide to model the sub-requirement
specifying that the authentication must be performed by username and password.
An important aspect is that the goal of the first identity requirement is the same as
the first security requirement shown in Figure 5.5. We have this situation because
the authentication characteristic belongs to both the domains. These connections
are taken into consideration concerning the traceability.
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Figure 5.8: JSON code part 6

Then, in Figure 5.9, we have the identity requirement related to the manipulation
of user data (row 180). In fact, in order to be authenticated and recognized, the
data must be stored. The characteristics are four (row 171): Attributes, Storable,
Manageable, and Accountability. In fact, data can contain attributes (i.e., useful
also in the case of pseudonymity). They must be storable and manageable. Besides,
they provide accountability for users.

row171�
“Characteristic” : [“Attributes, Storable, Manageable, Accountability”]

row180� “Goal” : “To manipulate user data”

Finally, in Figure 5.10, we can see the JSON code related to safety requirements
where the second one is the specification of the first one. The need expressed here
is related to the temperature and the integrity of the device. In fact, according to
the needs, the SCM must check the temperature level, and we decide that it cannot
overcome 250�C.

row182� “IoT_requirement_SFT01”
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Figure 5.9: JSON code part 7

row186� “Characteristic” : [“Integrity”]

row197� “IoT_requirement_SFT01.1”

row201� “Characteristic” : [“Integrity”]

5.2.3 Step 3

After the second step is completed eliciting all the requirements connected to the
needs, we write down the text of the requirements starting from the JSON codes
shown from Figures 5.3 to 5.10.

As explained in 3.3, these requirements are written following IEEE 830-1993
and statement (1) formalism. Traceability is enhanced considering common goals,
characteristics, and sub-requirements. Finally, the output of this third step will be
the final elicited requirement. The requirements are shown in Tables 5.1, 5.2 and
5.3.

In order to show how the process must be performed compactly, we consider only
these few requirements, but in a project, it is possible to have hundreds or thousands
of requirements.

Thus, analysing the requirements presented in Table 5.1, 5.2 and 5.3, we can
confirm that there is always at least one actor, one action and one goal as explained
in section 3.4.6.

Then, as for TRST01, it is possible to have a secondary actor and a measure. On
the other hand, it is possible to have requirements such as SFT01.1, including only



164

Figure 5.10: JSON code part 8

metrics. Each of these requirements is stored in a requirement database for each
domain table as we have presented in 3.3.8.

Finally, as stated before, we have traceability between SEC01 and IDNT01. In
fact, this type of connection is always present if the goal is the same, even if the
domain of the requirements is different or if a requirement is a specialization of
another one (i.e., in our case, IDNT01.1 is a specialization of IDNT01).

5.2.4 Step 4

In order to show an example about the requirement composition presented in Table
3.1 and discussed in Section 3.3.8, we obtain Tables 5.4, 5.5 and 5.6 related to the
final elicited requirements SEC01, IDNT01 and IDNT01.1.

As we can see, Inner Traceability (IT) is kept, and there is a connection between
the two requirements. Moreover, we can notice that for requirement IDNT01, For-
ward Traceability (FT) points to requirement IDNT01.1. Symmetrically, Backward
Traceability (BT) points from IDNT01.1 to IDNT01. With the term na, we specify
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Table 5.1: Requirements elicited using TrUsTAPIS - part 1

Trust
Req.

TRST01 - The SCM shall
trust a Smart Supermarket
with a trust level above 0.5

Trust
Req.

TRST02 - The User shall be
trusted in order to perform ac-
tions

Usability
Req.

USAB01 - The user shall be
able to insert new recipes

Usability
Req.

USAB02 - The user shall be
able to download new recipes

Security
Req.

SEC01 - The user shall be au-
thenticated

Security
Req.

SEC02 - The SCM shall del-
egate the Smart Hub to order
the missing ingredients

that there is no connection of that type.

These relationships are represented in Figure 5.11.

As we can see, traceability is maintained between the identity and the security re-
quirement. This relationship is bidirectional because if we have traceability between
the ID of IDNT01 and the IT field of SEC01, thus, we will also have traceability be-
tween the ID of SEC01 and the IT field of IDNT01. The same reasoning is valid con-
sidering IDNT01 and IDNT01.1 (saved in the DB table “Identity sub-requirements”
shown in Figure 5.11).

Table 5.2: Requirements elicited using TrUsTAPIS - part 2

Availability
Req.

AVBT01 - The SCM shall be
able to connect to the Smart
Hub

Availability
Req.

AVBT02 - The vendor shall
access users data

Privacy
Req.

PRIV01 - The SCM shall per-
form an encrypted communica-
tion with the Smart Fridge

Privacy
Req.

PRIV02 - The user shall re-
main anonymous
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Table 5.3: Requirements elicited using TrUsTAPIS - part 3

Identity
Req.

IDNT01 - The user shall be
authenticated

Identity
Req.

IDNT01.1 - The user shall
be authenticated by user name
and password

Identity
Req.

IDNT02 - The user shall pro-
vide his/her data in order to be
registered

Safety
Req.

SFT01 - The SCM shall be
able to check its temperature
level.

Safety
Req.

SFT01.1 - The SCM temper-
ature level shall be lower than
250�C

Table 5.4: Security requirement: SEC01

SEC01 The user shall be authenti-
cated

na na IDNT01

5.2.5 From Step 4 to Step 1

Now, we assume that the stakeholders do not like our choice about the authentication
process that we formalized with requirement IDNT01.1. Thus, we need to shift from
a user and password authentication to a code authentication. Therefore, because the
needs are changed, so the requirements must be modified. In order to perform this
action, the developers must delete the old requirement (IDNT01.1) and add the new
one (IDNT01.2). It is better to add a new requirement instead of modifying the old
one because each requirement ID must be related only to a single requirement for
traceability purposes.

Through this procedure, we implement traceability in the requirements database

Table 5.5: Identity requirement: IDNT01

IDNT01 The user shall be authenti-
cated

na IDNT01.1 SEC01
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Table 5.6: Identity sub-requirement: IDNT01.1

IDNT01.1 The user shall be authen-
ticated by username and
password

IDNT01 na na

Figure 5.11: Traceability between requirements

connecting requirements among them.

In this case, as shown in Figure 5.11, we have connections between the identity
requirement and the identity sub-requirement and between the identity requirement
and the security requirement. However, if we try to add the new requirement and
delete the old one without releasing the connections, an error is raised. This feature
prevents developers to accidentally delete a requirement due to the connection be-
tween IDNT01 and IDNT01.1. Hence, this traceability feature permits developers to
check the connection and, only after releasing it, it is possible to proceed with the
requirement deletion. This feature is fundamental in order to avoid domino effects
that can affect the other connected requirements.

In Figure 5.12, it is shown the JSON code related to IDNT01.2. We can state
that it is similar to the one related to IDNT01.2, but the scope (row 8) and the
goal (row 15) are related to the code authentication instead of user and password
authentication.

row8� “Scope” : “Code Authentication”

row15� “Goal” : “To authenticate the user by code”

Finally, we can see the new final elicited requirement IDNT01.2 in Table 5.7 and
the modified connection regarding IDNT01 in Table 5.8.
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Figure 5.12: JSON code for IDNT01.2

Table 5.7: Identity sub-requirement: IDNT01.2

IDNT01.2 The user shall be authenti-
cated by code

IDNT01 na na

According to the transversal activities, we have already discussed traceability
because it strictly binds to the requirements elicitation process. GR is successfully
performed only if stakeholders and developers are satisfied with the elicited require-
ments, and there are no conflicts among them. The documentation is related to the
collection of the requirements, their connection, and the originating needs. Then,
threats and risks are considered in the requirements elicitation process, especially
about trust and security. Finally, metrics are considered in requirements such as
TRST01 and SFT01.1.

However, in this phase, a fundamental transversal activity is related to the deci-
sion making process that we illustrate in the following section.

Table 5.8: Identity requirement: IDNT01

IDNT01 The user shall be authenti-
cated

na IDNT01.2 SEC01
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5.2.6 Decision Making

During the requirements elicitation process, among the others, we have elicited the
following conflicting requirements:

• IDNT02: The user shall provide his/her data in order to be registered.

• PRIV02: The user shall remain anonymous.

• AVBT02: The vendor shall access users data.

They have been elicited following the stakeholders’ needs, but different stakehold-
ers, according to their diverse perspectives, may have various needs.

In fact, vendors would like to know more data is possible about their customers
(i.e., for market surveys purposes). On the other hand, it is necessary for the cus-
tomers to remain anonymous, or at least they need to know that only trusted users
can access their data. Thus, if it is not possible to correct them in the first phase
of the K-Model, it is possible to perform a decision-making process following POM
presented in Section 4.8.2.

Therefore, without solving this conflict issue, the GR will fail, and it will not be
possible to proceed to the following phase of the K-Model.

In order to implement POM we have to discuss about goal, criteria and alterna-

tives.
The alternatives are three, and they are conflicting requirements. The criteria

belong to the ones identified in Section 4.8.2, and they are defined according to our
scenario. Finally, the goal is to decide which requirement to keep to maximize the
level of trust of the IoT entity perceived by the “conflicting” stakeholders. Once this
step is achieved, it will be possible to modify or delete it considering traceability
aspects (i.e., release the connections among requirements).

5. 2. 6. 1 Criteria

According to our scenario, we have considered the following important aspects as
decision criteria:
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• Context criteria

1. Stakeholders Importance. When a product is developed, different
stakeholders can make decisions, and they are significant for the project.
In fact, a vendor could stop the project, or the customers could not buy
the product. For example, if a vendor decides to stop the project, the
customers will never have it. On the other hand, if the customers will
not buy the product, it will be a failure. However, in order to be more
specific, this criterion needs to be divided into two sub-criteria.

(a) Vendors. For the vendors, it is important to have as much information
as possible about their customers to provide better customer service
or market surveys.

(b) Customers. The customers would like to keep their data private. At
least, they can accept to share the minimum information as possible
only with trusted users.

2. Faster. It is possible that a requirement could be easier than another in
order to be implemented. Thus, in the case of a strict deadline, this can
be the most important parameter. This criterion can be objective.

3. Cheaper. This criterion is about the cost of the implementation. In the
case of a low budget, it can be the most important parameter to be taken
into consideration. It is an objective parameter.

• Traceability criteria. These criteria are objective. In fact, according to
them, the more connections with other elements are developed, the most im-
portant the requirement is.
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1. Connected Requirements. This information is provided by the trace-
ability database 3.3.8. Thus, if a requirement is released, then the con-
nected requirements can be affected by this operation.

2. Connected Needs. Requirements are derived from needs, so this is
an important element to be taken into consideration. This knowledge is
guaranteed by the documentation activity 4.3. Thus, if a requirement is
released or must be changed, it is possible to go back to the originating
need and modify it following the stakeholders.

• TrUStAPIS criteria. These criteria depend on the type of requirements cho-
sen as alternatives. It is important in order to highlight how much a require-
ment belonging to a particular domain (i.e., privacy) is connected to another
domain (i.e., trust). In this use case scenario, the domains are the following:
identity, privacy, and availability.

5. 2. 6. 2 Alternatives

As we presented earlier, the alternatives are the following:

1. Privacy Requirement. PRIV02 - The user shall remain anonymous.

2. Availability Requirement. AVBT02 - The vendor shall access users data.

3. Identity Requirement. IDNT02 - The user shall provide his/her data in
order to be registered.

Our methodology will help to choose the most important requirement to assure
the highest possible trust value for the IoT entity. However, in some cases, changing
the requirements means that it is needed to change also the originating need.
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As we explained earlier, the alternatives must fulfil the goal. Moreover, it is
essential to rank the requirements in order to release or change the less important
requirement and keep others solving the conflict issue.

Figure 5.13: POM model related to our use case scenario

Now that we have presented criteria and alternatives, we can apply POM accord-
ing to the proposed use case scenario. It is shown in Figure 5.13 where for the sake of
simplicity, we represent the connection among the alternatives and the criteria with
a single point of contact. The dotted line represents a many-to-many connection
among them.

5. 2. 6. 3 Results and discussion

We implement POM as follows: we start the process by comparing the criteria
according to the final goal; secondly, we will compare the sub-criteria to their main
criterion; finally, we will compare the alternatives to their principal (sub)criterion.
Each paragraph is named as the element considered for the comparisons. For the
sake of simplicity, we will not represent all the rounds of comparisons in all of the
following paragraphs, but we have used the methodology as we have shown in Section
4.8.3.

Goal We can state that the goal is reached considering the following elements:
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Goal = {Context, T raceability, T rUStAPIS}

We need to create a ranked order among criteria to show which of them is most
important according to the goal. Thus, following our methodology, we start com-
paring the Context (Cx) with the Traceability (Ty). We decide that Cx is the most
important, so then we have to compare Cx with TrUStAPIS (Ts), and we decide
that Cx is more important than Ts. We consider the context as crucial for both
the decisions because, as we have stated earlier, it is an element always present and
strictly connected to a particular parameter. After the first round, we know that Cx
is the most important element. We need another round in order to decide between
Ty and Ts. We decide that Ty is the most important because the more requirements
or needs are connected, the most important is the requirement.

Thus, according to the goal, the criteria are ranked and normalized as follows:
Cx = (1/2)
Ty = (1/3)
Ts = (1/6)

Context The context is composed of three sub-criteria: the stakeholders (Sk) crite-
rion and others strictly dependent on the implementation of the requirements: faster
(Fs) and cheaper (Ch). Comparing the stakeholders to the faster and cheaper cri-
teria, we decide that the stakeholders are the most important because they provide
the needs of the product. Then, we give to faster and cheaper criteria the same
importance.

Thus, the values related to the sub-criteria of the context are:
Sk = (3/5)
Fs = (1/5)
Ch = (1/5)

Stakeholders Stakeholders are very important for any project. They are the actors
having an interest in the system. In this use case scenario, we have identified two
main stakeholders strictly related to the conflict requirements. They are the vendors
(Vn) and customers (Cs). We decided that they are equally important. In fact, it
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is true that if the vendors do not deliver the product, it will not be used by the
customers. On the other hand, it is also true that if the customers will not trust and
buy the product, it will be a failure.

For these reasons, the values are the same for all the stakeholders:
Vn = (1/2)
Cs = (1/2)

Vendors We can state that the vendors are the IoT device producers, and the
requirements are ordered considering their importance for them.

The best way to make this order is by asking them directly which requirement
they prefer, but in this use case, we assume that the developer can perform this task
by analyzing the collected needs and requirements.

For the vendors, we find out that AVBT02 is the most important requirement.
Secondly, IDNT02. The last one is PRIV02. This order is due because AVBT02
is the only requirement that considers the vendors directly, and it is the one that
represents better their interests on the IoT entity. Then, in order to have the needed
information, IDNT02 satisfies their need. The last one is PRIV01 because if the pa-
tients and doctors remain anonymous, the vendors will not have valuable information
for market purposes.

The normalized values are the following:
AVBT02 = (1/2)
IDNT02 = (1/3)
PRIV02 = (1/6)

Customers For the customers, the most important requirement is PRIV02 be-
cause it guarantees them to be anonymous. The other two requirements are equally
important for them because they do not like to share their information or provide
them.

Thus, the rounds of comparisons produce these normalized values:
PRIV02 = (3/5)
AVBT02 = (1/5)
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IDNT02 = (1/5)

Faster As for the stakeholders criteria, this criterion and the following one are
strictly dependent on the context. The more a requirement is simple to be imple-
mented, the faster it is. For this reason, after the first round of comparisons, we
have identified AVBT02 as the most important. In fact, it does not need any filter
because it is merely a reading operation. Then, there is IDNT02 because it requires
to write the data in the database. Finally, the most complex requirement is PRIV02
because it requires to anonymize the data.

Thus, according to the faster sub-criterion, the final values are:
AVBT02 = (1/2)
IDNT02 = (1/3)
PRIV02 = (1/6)

Cheaper This criterion is essential in the case the budget is limited or the stake-
holders want to maximise the income. However, in the early phases of the SDLC, it
is possible that even if developers and stakeholders avoid to implement an expensive
requirement, there is the possibility that some issues arise in the following phases of
the SDLC. In this case, the amount of money spent to solve the issues will be higher
than the money that would be spent on the original expensive requirement [56].

Anyhow, in our case, after the first round of comparisons, IDNT02 is consid-
ered the cheapest requirement to be developed. Then, AVBT02. Finally, there is
PRIV02. The last one is both the slower and the more expensive because imple-
menting anonymity is the most challenging task considering the other requirements.
IDNT02 is considered the cheapest because it is the basic requirement to be imple-
mented.

The normalized values are:
IDNT02 = (1/2)
AVBT02 = (1/3)
PRIV02 = (1/6)
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Traceability Traceability is a transversal activity of the K-Model [50], and it is
crucial in order to connect requirements among them. In our scenario, there are
two sub-criteria. They are related to the connected requirements (Con_R) and the
connected needs (Con_N). We decide to give more importance to Con_N because
the needs are the real motivation behind a product, so if a requirement is strictly
connected to a need, it should be more important than another one only connected
to a requirement.

The values related to them are:
Con_N = (2/3)
Con_R = (1/3).

Connected Requirements This criterion can be completely objective. The op-
eration needed is to count how many requirements are connected to the requirement
under consideration. However, in this thesis we have elicited only a few requirements
in order to illustrate the procedures, so we need to choose them in a subjective
way. Thus, we consider AVBT02 and IDNT02 equally important. Finally, there is
PRIV01. We assume that even if it is the more challenging requirement to be imple-
mented, it does not need many other requirements to be connected with in order to
be developed.

Thus, the final normalized values about Con_R are:
AVBT02 = (2/5)
IDNT02 = (2/5)
PRIV02 = (1/5).

Connected Needs In this case, it is essential to consider how many needs are
connected to a single requirement. It is possible that multiple needs originate a
single requirement or even that a requirement is not connected to any need but only
to other requirements (especially if it is a sub-requirement [49]).

In the case of a real use case scenario, it is possible to count all the connected
needs and objectively apply our methodology. However, in this case, we proceed as
we did for the previous element.
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After the first round of comparisons, we decide that IDNT02 is the requirement
connected to more needs because it is related to many user information. For this
reason, numerous needs shall be connected to it. The second requirement is PRIV01.
In fact, we assume that not only the customers require it, but also data protection
regulations needs are connected to the privacy requirement (i.e., GDPR [154]). The
final requirement is AVBT02.

The normalized values, according to the connected needs, are:
IDNT02 = (1/2)
PRIV02 = (1/3)
AVBT02 = (1/6)

TrUStAPIS In order to decide which requirement to keep, it is crucial to study
the relationships among the requirements domains and the conflicting requirements.
This criterion gives a holistic view of how a particular domain requirement can be
related to others.

In this case, we compared availability to privacy, deciding that the latter is more
important than the former. Then, we compare the privacy requirement to the iden-
tity requirement, and we decide that they are equals. For this reason, there is no
need for a third round of comparison (privacy is more important than availability,
and consequently, because identity is equal to privacy, it is more important than
availability, too).

Thus, the values related to the TrUStAPIS sub-criteria are:
Id = (2/5)
Pr = (2/5)
Av = (1/5)

Availability After the availability requirement itself, the second one is IDNT02,
because only if the customers provide their information they will be available. Finally,
according to availability, PRIV02 is the least important requirement because if the
data are anonymous, they could not be easily available.

For availability, the normalized values are:
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AVBT02 = (1/2)
IDNT02 = (1/3)
PRIV02 = (1/6)

Privacy According to privacy, the most important requirement is PRIV01. Then,
AVBT02 and IDNT01 are equally important because neither one requirement nor
the other guarantees privacy.

The final values are:
PRIV02 = (3/5)
AVBT02 = (1/5)
IDNT02 = (1/5)

Identity After the identity requirement, the second one is AVBT02 because it
requires that the identity data should be available for the vendors. On the other
hand, PRIV01 does not provide any identity information.

The final normalized value about identity are:
IDNT02 = (1/2)
AVBT02 = (1/3)
PRIV02 = (1/6)

Final priority After calculating the normalized local weights, we have to compute
the final priority related to each of the alternatives according to the goal. In order
to perform this activity, we must sum every value related to the single alternatives
multiplying it for each value of the sub-criteria and criteria above them.

Because the values are normalized, the sum of the final results will be 1.
In Figure 5.14, there are the values derived in the previous paragraphs. They are

the same calculated earlier.
In this figure, to avoid having many lines and boxes for the alternatives, we have

summarized them in a single box. P2, A2, and I2 are privacy, availability, and
identity requirements.

Thus, in order to calculate the single priority related to the conflicting require-
ments, starting from P2, we will have.
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Figure 5.14: POM model related to our use case scenario

P2 = (1/6) ⇤ (1/2) ⇤ (3/5) ⇤ (1/2) + (3/5) ⇤ (1/2) ⇤ (3/5) ⇤ (1/2) + (1/6) ⇤ (1/5) ⇤
(1/2) + (1/6) ⇤ (1/5) ⇤ (1/2) + (1/5) ⇤ (1/3) ⇤ (1/3) + (1/3) ⇤ (2/3) ⇤ (1/3) + (1/6) ⇤

(1/5) ⇤ (1/6) + (3/5) ⇤ (2/5) ⇤ (1/6) + (1/6) ⇤ (2/5) ⇤ (1/6) = 0,301

For the other requirements, we have:

A2 = (1/2) ⇤ (1/2) ⇤ (3/5) ⇤ (1/2) + (1/5) ⇤ (1/2) ⇤ (3/5) ⇤ (1/2) + (1/2) ⇤ (1/5) ⇤
(1/2) + (1/3) ⇤ (1/5) ⇤ (1/2) + (2/5) ⇤ (1/3) ⇤ (1/3) + (1/6) ⇤ (2/3) ⇤ (1/3) + (1/2) ⇤

(1/5) ⇤ (1/6) + (1/5) ⇤ (2/5) ⇤ (1/6) + (1/3) ⇤ (2/5) ⇤ (1/6) = 0,322

I2 = (1/3) ⇤ (1/2) ⇤ (3/5) ⇤ (1/2) + (1/5) ⇤ (1/2) ⇤ (3/5) ⇤ (1/2) + (1/3) ⇤ (1/5) ⇤
(1/2) + (1/2) ⇤ (1/5) ⇤ (1/2) + (2/5) ⇤ (1/3) ⇤ (1/3) + (1/2) ⇤ (2/3) ⇤ (1/3) + (1/3) ⇤

(1/5) ⇤ (1/6) + (1/5) ⇤ (2/5) ⇤ (1/6) + (1/2) ⇤ (2/5) ⇤ (1/6) = 0,377

The results are rounded to three digits after zero. The total is:

P2 + A2 + I2 = 1

Therefore, the most important requirement is IDNT02, followed by AVBT02.
Thus, the least important requirement is PRIV01. For this reason, PRIV01 will be
the requirement released or modified in order to solve the conflict requirements.

However, because the customers will not like that anyone will access their data,
they will accept the change only if another requirement will be elicited instead of
PRIV02. This requirement is related to trust and guarantees that their data will be
accessed only by trusted users. Moreover, will be created a new privacy requirement
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Table 5.9: Trust requirement: TRST02

Privacy
Req.

PRIV03 - User data shall be
kept private

Trust
Req.

TRST02 - Customer data
shall be accessed only by
trusted users

stating that the users’ data must be kept private: PRIV03 Thus, now we have an
additional elicited requirement shown in Table 5.9: TRST02.

After this procedure is finalized, it is possible to proceed to the GR and the third
phase of the K-Model.

5.3 Model

After the collection of needs and elicited requirements, we need to model them using
the diagrams shown in Section 3.4.

Each diagram will cover different aspects of the SCM utilization. These models
will be documented for the following phases of the SDLC. We will show the different
cases in each section to illustrate how the diagrams can be used.

Besides, we will present an experiment showing how traceability among require-
ments works and how it helps avoid domino effects. This example is presented in
Section 5.3.8.

5.3.1 Use Case Diagram - UCD1

SCM provides various functionalities. One of them that we consider very important
from a trust, privacy and security perspective is the possibility to store users’ private
data to access them when needed. In this case, the device shall be allowed to store
the private data of the user locally. In order to proceed, the user must approve the
action. Otherwise, the data will be asked again when they will be needed.

For this use case diagram, we need to consider three domains (privacy, security,
and trust) that might affect the privacy of the data, the security of the storage, and
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the trust of the user providing his/her personal data.

Figure 5.15: UCD1 - User data

Figure 5.15 shows the use case for our example. As we can see, there are two actors
involved. One is the user (i.e., Alice), who is considered, from a trust perspective,
as the trustor. The other one is the SCM, which in this case is considered as the
trustee. We model three use cases related to three different domains: privacy, trust,
and security. The trust use case is named “Giving Personal Data”. It is connected
through a «Dependence» connection to the privacy use case named “Keep Data
Private” and to the security use case named “Protect User Data”. In fact, we can state
that in order to share private data, the user must trust the device and the utilization
of the same data. Therefore, this trust relationship is strongly dependent on whether
the data will be kept private and secure (i.e., an encrypted and protected database).
Besides, we can see that Alice is connected to the trust use case. We assume that
the user gives the data as trust action. She is not connected directly to the privacy
or security use case, but only through the trust use case. The motivation is that the
SCM only provides the privacy and security actions, and for Alice, these actions are
surely important, but transparent. On the other hand, the SCM is involved in all the
use cases, firstly as a trustee in order to keep the trust of the trustor. Moreover, the
SCM needs to store the data privately and securely.

To conclude, the use cases have general names because it will be the developer who
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decides how to implement them. Using this diagram, it is more important to model
what the system shall do more than how the system implements the functionalities.
In fact, the UCD is a general diagram, and the development of the rules must be
implemented modeling other diagrams (such as an activity diagram or a sequence
diagram)

5.3.2 Class Diagram - CD1

We use our CD version to model the entity, methods, and attributes needed to
develop this functionality. In order to recognize the owner, the device must register
the owner data (i.e., name, birth date, credit card) keeping them private. Moreover,
in order to allow users to order goods, the device must get a code and check it in order
to recognize a trusted user, according to requirement IDNT01.2. Other recognized
users can be guests and children. They can perform actions only if Alice provides
them the right code. Finally, the available services must be trusted by the owner
and the device to proceed with the transactions.

We summarize all these concepts in the class diagram (CD1) shown in Figure
5.16.

Starting from the contexts, it is possible to see that some classes are related to
context number 5. This context is shown later in Section 5.3.7). The classes related
to it are Order and SmartSupermarket. The other two classes are important
for every context, so the context box is empty. At the center, we have the User

class. We can see from the stereotypes that this class is related to the trust, privacy,
and security domains. These domains are chosen because the user is a trustor of
the services. In fact, he/she has a role that concerns security constraints, and the
recording of the voice can raise a privacy issue.

The attributes related to the User class are:

1. name. This attribute represents the name and surname of the user. They
must be stored privately and securely.

2. birth-date. From this attribute, it is possible to calculate the user’s age. It
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Figure 5.16: CD1 - SCM and SM service classes

is important for roles (i.e., denote if a user is a child), and it must be stored
privately and securely.

3. role. The possible roles are owner, guest, and child. Each of them must be
registered as a user. It is also a class.

4. payment-info. The credit card data of a user. They must be stored privately
and securely.

5. address. The address of the owner. It is important in order to deliver the
ordered goods, and it must be stored securely and privately.

6. code. It is the only way to perform actions and recognize a trusted user.
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The methods are used in order to set and get the attributes with the proper
values. In this case, to model trust, we have considered a decision model. In fact,
if the user is allowed or not to perform an action is dependent on the right code.
This aspect is related to trust, and it reflects the decision that must be made by the
device in order to trust or not the user.

The class Order has the following attributes:

1. providedBy. It is related to the class SmartSupermarket. In fact, an order
must be satisfied by a Smart Supermarket.

2. goodOrdered. It is related to the requested product (i.e., flour, butter, milk).

3. date. It is related to the day of the purchase.

4. name. The name of the user that makes the order.

5. number. The id of the order.

6. price. The total amount spent.

7. byWhichRole. The user role.

8. trustedRole. The only way to be trusted is by the right code. It is called the
method checkCode() of class User in order to validate it. For this reason, in
this class, trust is a boolean value.

The methods are related to the attributes in order to set the values or to get

them. There is one more method that is related to forward the order (in the case
that the user is trusted). In this case, to model trust, we consider decision model
rules, and the considered parameter is related to the user’s code.

Finally, the class SmartSupermarket has the following attributes:

1. name. It is the name of the service.

2. info. More information about the service.

3. contact. It can be a telephone number, a website, or an e-mail.
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4. trust. It is the trust level of the service. In this case, trust is represented by a
float value because each service could have different trust levels in order to be
trusted. Anyhow, the value is considered between 0 and 1, where the former
refers to no trust and the latter to the maximum trust level.

5. order. This parameter is related to the order that the SM must satisfy.

Considering the methods, we can focus on the ones strictly related to trust. In
this case, we model trust following evaluation model rules. In fact, trust is dependent
on the different trust levels of the service organized as reputation values. We decided
to consider them as floats in this example, but they can also be considered as double
or integer parameters. The chosen metric can create different trust levels. We decide
to consider them with the following ranges.

If x (i.e., the trust value) is lower than 0.5, the service is not trusted. On the other
hand, if x is higher or equal to 0.5, the service is trusted. The ranges are between
0 and 1. Anyhow, possibilities and ranges could be numerous, but we decide to
consider this simple case where the service is simply not trusted or trusted. After
the outcome of the order, the user can change the value using the setTrust() method.

The connection between User and Role is 1 to 1 because we assume that the role
does not change for a particular context. It should be possible to have a different
role for each possible context, but we do not model this case in this scenario. The
connection between User and Order is 1 to 0/N because a user could perform zero
orders or more. Finally, the connection between SmartSupermarket and the Order

is 1 to 1/N because a Smart Supermarket can provide at least one order or more.

5.3.3 Activity Diagram - AD1

With this example, we model an AD to implement the users’ possibility to store their
data in the SCM.

In Figure 5.17, we show how an AD related to UCD1 could be implemented.
Specifically, we implement the possibility to secure user data. As shown in Figure
5.15, there are at least three domains involved: trust, security, and privacy. These
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activities are modeled to specify the use case actions. In addition to these domains,
in this diagram, we also consider the availability domain.

Figure 5.17: AD1 - Securing user data

We use the swimlanes to separate the activities belonging to different domains.
About the trust domain, we model the activity “Giving personal Data”. In fact, only
if the user trusts the SCM it is possible to perform this activity. It belongs to the
trust domain because the user must trust the device in order to reveal personal data.
Secondly, the following activity is part of the privacy domain, and it is called “Store
privately personal Data”. This means that the SCM must store these data considering
privacy aspects. Then, there is an activity belonging to the security domain: “Store
securely personal Data”. This is a generic activity, and the developer will decide
how to store the data securely. The following activity is related to the encryption
of the data. It belongs to the privacy and security domain because, by encryption,
it is possible to enhance the security of the data (i.e., avoiding unauthorized use
of it) and also the privacy of the data. Finally, the last activity belongs to the
availability domain, and it requires that the data could be made redundant. Through
redundancy, the possibility of losing data are minimized. There is no written rule
on how this redundancy will be implemented. Through this diagram, it is more
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important to model the what rather than the how.

5.3.4 Sequence Diagram - SD1

The SCM is built to interact with other IoT entities offering many services to the
user. One of them is the interaction with the smart fridge belonging to the same
smart-home. Thus, using the SD, we model the interaction between the user, the
SCM, and the SF in order to check if any good is missing to make a cake.

Figure 5.18: SD1 - User, SCM, SF, SH and SM interactions.

In the diagram shown in Figure 5.18, the interaction is started by the user asking
the SCM to prepare a cake. To proceed, the SCM checks if the user is allowed to
perform this action by code. In this interaction, there is a decision trust computation
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because the code match can be considered as an authentication process. This diagram
shows that the user code is correct, so the SCM checks the smart fridge for the needed
ingredients. SF replies with the information required.

Now, we model two different cases. One is that the needed ingredients are present.
The second one is that they are not available, so the SCM will ask the authenticated
user to order the missing ingredients from a trusted SM. This operation will be
performed through a smart hub in order to protect the IoT entities. However, before
proceeding with the missing ingredients’ order, the SCM checks with an evaluation
trust process, which smart supermarket to contact. Then, it communicates with the
SH that will be delegated to order the missing ingredients.

In this scenario, we modeled the possibility that the smart supermarket replies
that the order has been received. This information is forwarded up to the user, and
the SD ends.

5.3.5 State Machine Diagram - SMD1

Through this diagram, which we show in Figure 5.19, it is modeled an important
feature of the SCM, the upload of new recipes.

Firstly, there is a state related to login to the SCM. In order to pass to the
following state, a trust trigger is needed. In fact, without the proper credentials, it is
not possible to access the system. Here, we have two possibilities: the state machine
ends, or it is possible to provide other credentials to gain trust to access the SCM.
We do not model how and which credentials are needed. We model the possibilities
to have an extra step in order to have access to the SCM (i.e., a secret question).
If the extra credentials are provided, or the first credentials are enough, the state
machine passes to the next state, which is a composite state. A composite state has
another starting point, and it is like a state machine inside a single state. In this
composite state, the SCM asks to insert a title and then specify which item is needed
and its quantity. Then, in order to insert all the ingredients, there is a loop that
will terminate when all the ingredients are considered. In this case, the composite
state ends, and it will be reached a state considering that the new recipe is correctly
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Figure 5.19: SMD1 - Upload a recipe into the SCM

added to the SCM recipes database. After this state, the flow ends.

5.3.6 Requirement Diagram - RD1

In this example, we show how a Requirement Diagram is drawn and how its elements
are connected. The requirements specified here must be elicited in the previous phase
of the K-Model, as explained earlier. In our case, we consider an RD that is shown
in Figure 5.20. This RD is connected to UCD1. In fact, there are requirements
connected to the privacy action belonging to UCD1. This example is important to
understand how the requirement diagram can be connected to the other diagrams
and how it can be drawn.

RD1 is composed of three main requirements. The Ids and the texts of the
requirements are shown in Figure 5.20. The trust requirement (id: TRST02) satisfies
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Figure 5.20: RD1 - Trust, Identity and Privacy Requirements

a need expressed by the vendor. Moreover, this requirement mitigates the risk of
unauthorized use. The Identity Requirement (id: IDNT01) derives from TRST02,
and it is related to the fact that a user shall be authenticated in order to be trusted
(decision trust). IDNT01 has a sub-requirement (id: IDNT01.2) that specializes
the authentication process through a provided code. The sub-requirement must be
verified in the verification phase. Furthermore, it mitigates the threat related to
"Unauthorized Access" because only a legitimate user can perform actions.

To enhance the protection, the privacy requirement (id: PRIV03) deriving from
IDNT01.2 states that user data shall be stored privately. This requirement is con-
nected to the UCD1 element “Keep Data Private” through a satisfy connection. This
connection is represented also by the element ModelConnected.

5.3.7 Context Diagram - XD1

The context diagram is related to the possible contexts belonging to an IoT entity.
It is not important to model all the contexts in a single diagram. The developer can
choose which context to model in each diagram according to its task.

In Figure 5.21, we consider four contexts that can be implemented in the SCM.
Some of them have been presented in the previous diagrams. The contexts are cook,
interaction, recipes, and User Data. For each of these contexts, there are one or more
domains related to it. The contexts are defined as follows:

• Context 1 (Cook). In this case, context 1 domains are related to usability
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Figure 5.21: XD1 - Contexts: Cook, Interaction, Recipes, User Data

and safety. It is strictly connected to the physical part of the IoT entity, and
it also specifies the final goal of the SCM (i.e., to bake a cake).

• Context 2 (Interaction). This context is related to the interaction that the
SCM must have with other IoT entities or authenticated users. The domains
are trust, identity, and security. In fact, in order to allow the interactions, the
users/IoT devices must be trusted and authenticated. Moreover, the commu-
nication must be securely protected.

• Context 3 (Recipes). For this context, we select the trust, identity, availability,
and security domains. In fact, in order to insert new recipes, a user must be
trusted. The identity is related to the authentication part. Security, to the
protection of the data and availability to the possibility to have these data
available in order to be used.

• Context 4 (User Data). For this context, the SCM needs to store trusted user
data keeping them private and providing security.
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As we said earlier, if there are many contexts, it would be a problem to use a
graphical view. So, we can see in Table 5.10 the database view related to XD1.

Table 5.10: XD1 - Database view

Context 1 Cook [Usability, Safety]

Context 2 Interaction [Trust, Identity, Security]

Context 3 Recipes [Trust, Identity, Security, Availability]

Context 4 User Data [Trust, Identity, Privacy, Security, Availability]

5.3.8 Traceability Diagram - TD1

The TD is a diagram of diagrams, and it can be considered a meta-diagram. As we
stated earlier, it is useful to keep track of the connections among the other diagrams to
help the developers avoiding domino effects after deleting or modifying the connected
diagrams.

Figure 5.22: TD1 - Traceability among diagrams

Considering our modeling scenario, the correspondent TD is presented in Figure
5.22. We can see that the UCD1 is connected to four diagrams: RD1, CD1, AD1,
and XD1. In fact, the use cases presented in UCD1 are modeled in different ways



193

using the other diagrams. It is then possible to see a connection between CD1 and
RD1 because the requirements specified in RD1 are developed in CD1. XD1 is also
connected to SD1 because the interaction among IoT entities is considered in both
of them. Finally, AD1 is connected to SMD1 because both diagrams consider the
store of the user’s personal data. For this reason, SMD1 is also connected to XD1,
where the user data context is proposed as context number 4.

As for the XD, it could be difficult to represent this diagram graphically, so it is
possible to use a database view as presented in Table 5.11.

Table 5.11: TD1 Example - Database view

AD1 [UCD1, SMD1]

CD1 [RD1, UCD1]

RD1 [CD1, UCD1]

SD1 [XD1]

SMD1 [AD1, XD1]

UCD1 [AD1, CD1, RD1, XD1]

XD1 [SD1, SMD1, UCD1]

In the following section, we will focus on the traceability database in order to
show how it is structured with a higher number of models.

5. 3. 8. 1 Traceability Database

This section presents the third part of the step-by-step methodology related to the
model phase illustrated in Section 3.4.9. We show how the traceability database must
be structured, considering the diagrams presented in the previous section plus other
dummy diagrams to show how traceability works with a larger number of diagrams.
In fact, the more complex the scenario is, the more elements will be connected among
them.

Thus, even if there are other possibilities to show how the diagrams are connected
among them (i.e., visual goal diagrams), we have chosen the database visualization
because we think it is the most effective way to show how the diagrams are connected
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among them. Moreover, by creating the database tables, we can also represent
important aspects of any diagram (i.e., the domains) or specific ones (i.e., activities
for the AD).

Each database table is related to a particular diagram (i.e., CD or SMD), where
the primary key is the ID of the related diagram (i.e., CD1 for a CD diagram).
The traceability diagram is represented by a table related to the connections among
diagrams. In the rows of this table, we have all the IDs of the connected diagrams. If
there is a connection among requirements, they will be represented in the same row.
In the relational databases is represented as a multi-multi relationship database.

In Figure 5.23, we can see the database chart where we have a traceability
database connected to all the databases of the other diagrams. In this scenario,
we assume that there is no connection among diagrams related to the same type
(i.e., UCD1 cannot be connected to UCD2).

Figure 5.23: Database Chart

As shown in Figure 5.23, each diagram is stored in their table where the diagrams
belonging to the same type are allocated. Each of them is connected by their ID to
the traceability table. In each row of the traceability table, we have only the diagrams
connected among them. For example, if we connect two diagrams, we will have only
them represented in a single row. On the other hand, if we have a connection among
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three or more diagrams, we will have a row containing three or more IDs. The missing
diagrams are represented by “na” that means “Not Available”. For example, referring
to the case proposed in Figure 5.22, we can see that there is a triple connection
among RD1, UCD1, and CD1. In fact, they are all connected among them. RD1
is connected with both CD1 and UCD1. UCD1 is connected with CD1 and RD1,
and, finally, CD1 is connected with RD1 and UCD1. One consideration is needed.
Checking the diagrams UCD1, AD1, SMD1, and XD1, we can see that they are
connected in a circle among them, but there is no direct connection between AD1
and XD1 or SMD1 and UCD1. For this reason, they cannot be represented all
together in a single row. In Figure 5.24, we can see how the traceability table is
populated according to the rules that we have mentioned earlier.

Figure 5.24: Traceability Table

In Figure 5.24, we have represented all the diagrams (AD1, RD1, CD1, XD1,
SD1, SMD1 and UCD1) related to our use case scenario. Now, we add other dummy
diagrams in order to show how the traceability relationship works. These dummy
diagrams are the following:

• Activity Diagrams: from AD2 to AD9;

• Requirement Diagrams: from RD2 to RD9;

• Class Diagrams: CD2 to CD5;

• Context Diagrams: XD2 to XD3;

• Sequence Diagrams: SD2 to SD9;
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• State Machine Diagrams: SMD2 to SMD8

• Use Case Diagrams: UCD2 to UCD8

We do not represent the tables related to the single diagrams for space limitations.
Anyhow, their connections are represented in order to show how the traceability
database works, avoiding the loss of important information after deleting a connected
diagram.

The databases related to the activity and requirement diagrams are represented
in the following Figures 5.25 and 5.26.

Diagrams Table In Figure 5.25, we represent the AD table. The columns are
three. The first column is related to the ID of the Activity Diagrams. The column
ACTIVITY contains the AD name. Finally, the DOMAINS column presents all the
domains related to AD. As we explained earlier, AD1 is the same diagram presented
in Section 5.3.3, then we added other diagrams to show how the table is populated.
The IDs are written using a sequence number, the activity names have a dummy
definition, and the domains are randomly inserted.

Later, we will show how the traceability table is enriched with these dummy
diagrams and how it works if an update or a deletion of these diagrams occurs.

Figure 5.25: Activity Diagrams Table

Considering Figure 5.26, the column REQ contains the IDs related to the require-
ments represented in Section 5.3.6. These IDs are written following the TrUStAPIS
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methodology [49]. Then, as for the other tables, there is a column populated with
the RDs domains. Moreover, in this table, we represent eight dummy RDs that will
be added to the traceability table.

Figure 5.26: Requirement Diagrams Table

Some of the dummy diagrams are injected into the traceability table to simulate
the connection among them. The new table is shown in Figure 5.27.

As we can see, the diagrams related to the first six rows of the traceability table are
the same presented in the previous section and Figure 5.24. Moreover, we represent
the dummy diagrams from rows seven to twenty. The diagrams not represented in
the table are the ones not connected to the others. This means that they do not
contain any information in common with other diagrams, and they can be deleted
or modified without representing any domino effect issue for the other diagrams.

A graphical view of the diagrams’ connections is shown in Figure 5.28. As we
mentioned before, the diagrams represented here are the ones connected with at least
another diagram.

Analyzing the structure of the diagrams, we can notice that there are four clusters.

On the left, we can see the same cluster presented in Figure 5.22. Then, we
can see a small cluster composed of only two diagrams (AD8 and UCD3), and it is
related to row 15 of the traceability table presented in Figure 5.27. The third cluster
is composed of four diagrams. Three of them are connected in a circle, and they
are represented in row number 7 of the traceability table. The fourth diagram is
CD5, and it is only connected to AD3. Finally, on the right, we can see that there
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Figure 5.27: Traceability Table (Extended)

is a fourth cluster. Considering all the elements, we can state that one of the most
connected diagrams is SMD4. In fact, if we make the following query in the extended
traceability table, we can check which diagrams are directly connected with it:

SELECT * FROM ‘Traceability‘ WHERE SMD = "SMD4"

The result is shown in Figure 5.29, and it means that SMD4 is connected to AD6,
CD3, RD3, RD4, XD2, and XD3. In fact, if we try to cancel SMD4, we will receive
an error message telling us that it is not possible to cancel the diagram because of
existing external references.

It is possible to cancel or modify the diagram only after relaxing the existing
connections. This is a powerful measure that avoids domino effects after the deletion
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Figure 5.28: Graphical view of the Traceability Table (Extended)

Figure 5.29: Traceability Table related to SMD4

of important pieces of data. After this step, the modeling phase is concluded, and,
in case no further actions are needed (i.e., modify a model or delete it), it is possible
to perform the GR. If it ends with a positive decision, it is possible to proceed to the
following phase of the K-Model: the development phase.

5.4 Development

During the development phase, the SCM is built following the previous phases and
the context.

We need to develop the IoT entity (SCM) considering its tasks (i.e., bake a cake)
and the interaction with other IoT entities: a smart fridge in the same smart home
and smart supermarkets belonging to the smart city environment. These connections
are useful to check and order a particular ingredient if it was needed for a recipe.
Moreover, the IoT entity must allow trusted users to interact with it and deny the
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interaction for the untrusted users.

In this section, we show how it is possible to apply the approaches proposed
in Section 3.5 in order to develop the desired IoT entity. In any case, it is the
developer’s task to choose which contexts and functionalities must be considered in
order to develop the IoT entity according to the previous phases of the K-Model.

5.4.1 Top-Down approach

According to this approach, we need to follow a descending path starting from con-
sidering the IoT entity as a whole and then going deep into the functionalities.

Analyzing Section 5.2, we can state that some of the elicited requirements were
related to the access control mechanisms. Furthermore, other requirements are nec-
essary for the baking functionalities of the IoT entity.

Figure 5.30 presents the FDBS related to the Smart Cake Machine. Thus, we
have the IoT entity on the top level. Then, on the second level, we have two general
functionalities: access control and baking functionalities.

Figure 5.30: FDBS - Use Case: Smart Cake Machine

Considering access control, the related functionalities are divided into two fun-
damental parts: user authentication and IoT device connections. In fact, SCM can
interact with trusted users and IoT devices. Concerning the users and according
to Section 5.2, we can consider two authentication types: password and code au-
thentication. Password authentication has indeed been discharged in favor of code
authentication. However, it is possible to consider both of them in this phase, in
the case stakeholders would like to implement both of them. However, the first one
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is related to the domains of identity, security, and privacy. In fact, a password is
related to a single user, and it must be stored securely. Moreover, the data of the
users must be collected and kept private. On the other hand, the code authentication
can be considered without storing user information, and it can be shared with other
users who are trusted by the owner of the IoT device. Moreover, this code must be
securely provided.

Regarding the connections among the Smart Cake Machine and the other devices,
we need to consider the trusted devices guaranteeing that the communication among
them is secure. So, the functionalities needed to create trust models for the devices
will belong to the trust domain. The communication among these devices will belong
to the security domain.

It is important to note that any functionalities belonging to this part of the “tree”
is connected to the main functionality “Access Control”. They are fundamental to
grant device access only to those who are trusted and can provide the credentials to
interact with the device.

Figure 5.30 shows that the right part of the tree is related to the baking func-
tionalities. In order to bake a cake, there are three fundamental functionalities. The
first one is to check the temperature. It is a function for the correct preparation of
the cake and concerning the safety of users and devices. The second one is related to
the manipulation of the ingredients. This functionality is related to the safety and
usability domain. In fact, safety is also connected to health aspects. In this case,
usability and safety domains are related to the correct utilization of the machine
manipulating the ingredients. Finally, the third functionality is related to the pos-
sibility of inserting new recipes. In this case, it is essential for the usability domain
because the interface must be user-friendly. As we can see, the domains are collected
and separated according to different functionalities.

5.4.2 Bottom-Up approach

This approach is useful to define the different contexts according to the Smart Cake
Machine use case.
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Figure 5.31: Bottom-Up Approach - Use Case: Smart Cake Machine

We can see the proposed contexts in Figure 5.31. We describe the contexts from
right to left.

One context is related to smart entities’ interaction (i.e., smart supermarket,
smart fridge). Then, another context is related to the utilization of the device by hu-
man users. These two contexts can be considered together in a super-context related
to the interactions. Trust and security are fundamental for these interactions, and
they are appropriately considered as the primary domains for these contexts. Then,
we have a third context related to the recipes, another one about the ingredients,
and a fifth context related to the oven. These three contexts can be summarized into
a super-context named cook context where the considered domains are usability and
safety. The two super-context are fundamentals for the trusted IoT Entity.

5.4.3 Block Development

After utilizing the bottom-up and top-down approaches, the developer must create
the code according to them and to the previous phases of the K-Model.

In our case, we start from the definitions of the contexts and functionalities,
creating separate code blocks according to them. We can see that contexts C1,
C2, and C3 proposed in the bottom-up approach are also covered in the top-down
approach with the functionalities F2.1, F2.2, and F2.3. In fact, it is possible to
consider the same or similar aspects of both approaches.

Thus, we will present the code block containing these highlighted aspects. For
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the first context and functionality related to the oven and the temperature, we need
to set temperature attributes in order to fix predetermined levels related to different
states during the cooking process. Then, for the ingredients, we need to consider
them in order to be cataloged and inserted by the users. Finally, there are the
recipes. We assume that they must be uploaded by the users or memorized in the
device by the vendors.

The domains are the same considered in the previous approaches (i.e., safety,
usability), and they are declared at the start of the code blocks. We want to remind
the reader that these domains are strongly connected to trust, and their consideration
allows developers to implement trust in the IoT entity.

Figure 5.32: Block Development (BD) - Block Cook

In our example, we can see in Figure 5.32 that the block named Cook is composed
of three parts: Oven, Ingredients and Recipe. We use the generic terminology attr
(i.e., attribute) to consider characters, strings, or numbers (i.e., integers, doubles,
floats). Moreover, we use a Boolean variable and arrays of attributes. Then, we
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create methods useful to manipulate and check the attributes. For example, the at-
tribute setIngrs&qty(ingr,qty) is fundamental to set which ingredient and its amount
is considered. Another interesting method is checkIngrs(). It can be used to compare
if the needed ingredients are available. We do not deeply specify the methods, but
we only declare them.

5.4.4 Metrics

In the development phase, it is very important to consider metrics useful to organize
the IoT entity’s behaviour.

In joint work with British Telecom, we have proposed a trust metric to evaluate
the interaction among entities and solve the differences among the different trust
models developed by different devices and vendors (i.e., Amazon, Google). In order
to solve these differences, we have proposed a trust model implementing a straight-
forward trust metric, allowing each user to interact with the devices according to a
determined trust value. This implementation can be generalized to other IoT devices
such as the SCM.

5. 4. 4. 1 Trust Metric

We can have three different trust levels: high, medium, and low. The higher level
allows users to control the device. The medium level enables the user only to check
the device status or activity, but it does not allow any control of the device. Finally,
the lower level certifies that the user is not rusted. For this reason, any connection
is refused.

Going deeply into the trust metric analysis, it is composed of three main pa-
rameters and two sub-parameters. The formers are a role for each actor, a score,
and context values. The latter is composed of a context index and the functionality
related to the device.

The device owner must have the ability to remove or delimit the actions that
another actor could perform. This is possible by giving them a score value related
to a particular context of the actions.
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All of these parameters are represented in our trust model by the implementation
of the trust metric for each user.

The trust metric is used to define rules for each actor, and the following function
represents it:

Trust_Metricx : TM(R,C(DF,XI), Sc)

where the function Trust_Metricx 2 R and its parameters are:

1. Role (R). The role of the actors involved can be different. Anyhow, we
consider some of them as always present. The Home Owner (HO) is the one
that owns the smart home and the IoT devices in it. A House Member (HM)
is another actor living in the house. Then, a House Guest (HG) is someone
staying in the smart home for a limited amount of time. Then, a Malicious
User is an actor that does not belong to any of the other categories.

2. Context (C). It is related to the device or functionalities and its or their
importance perceived by the HO.

(a) Device/Functionality (DF). A device may have one or more function-
alities. According to them and to the user involved, it is necessary to set
the following parameters for each of them. We define them with natural
numbers for both the device and the functionalities. Thus, we can have
the device number 1 and 2 with several functionalities. For example, to
represent the second functionality of the first device, we will define the
parameter DF as 1.2.

(b) Context Importance (XI). It is related to the importance of the context
according to the HO. It is represented by a number given by the HO. The
higher the context, the higher the score or role needed. This value belongs
to the following set: C {1,2,3,4}. The lower the value, the less important
is C.

3. Score (Sc). It is the rank given to the users by the HO. It is similar to a
reputation value. The more trusted the user is, the higher the score given. It
belongs to the following set: Sc {0,1,2,3,4,5}.
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Regarding the roles, the HO is allowed full control of the device regardless of Sc
and XI, given that she is fully trusted. For a MU, the metric works in the opposite
way since he is not allowed to control or check anything. In the case an HG or an
HM turns into malicious, he will be treated as an MU and basically “banned”. For
this reason, we can state that this model wants to reach two goals. The first one is to
prevent any activities from an external user (i.e., MU). Then, the second goal is to
be able to avoid attacks from internal users; if they happened, the model treats the
internal users as external ones preventing them from continuing to use the device.
Even for this role, XI and Sc are optional. On the contrary, for the other roles (HM
and HG), XI and Sc are fundamental. The metric is straightforward, and it can be
easily performed by any IoT device, even considering a limited computational power
[96, 134]. It computes a value that will be used to check which actions are allowed
for a particular user and for a particular context. It is basically a subtraction of
the value Sc with respect to the value XI. If the result is positive, the trust value is
ranked as high. If the result is zero, the trust level is medium. Otherwise, the trust
level is low. If a XI parameter has a value of 1, it means that it is not crucial for
the owner (i.e., check a recipe). On the other hand, if a XI parameter has a value of
4, it is crucial (i.e., to order missing ingredients). Therefore, we can say that if an
HM has a score of 5, he or she is similar to an HO, considering that with this score
value, it is possible to control everything, whatever XI is:

Trust_Metric1 : TM(HM,C(DF,XI), 5) > 0

Conversely, if a user has a score of 0, he or she is considered as an MU and it is
not possible to perform any actions (no matter the value of XI):

Trust_Metric2 : TM(MU,C(DF,XI), 0) < 0

We chose these values according to the explanation of the trust metric parameters
given earlier. The score must have a more significant bound to include the role MU
(score = 0) and the role HO (score = 5). For an MU, no matter the context, it
must be impossible to perform actions. On the contrary, for an HO, everything must
be permitted. The values from 1 to 4 are used both for XI and Sc to define the
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boundaries related to the other users (i.e., HM and HG). Using these roles, we cover
all the possible actors, and for each of them, the scores could be different also for the
same context.

According to the authentication process that we have identified in the previous
phases (i.e., code authentication), it will be created according to the trust metric
implementation. Thus, there will be a code for each user according to the trust
metric computation. Anyhow, in the case of an MU, no code is provided, and this
will not allow the user to be trusted and authenticated.

5.5 Verification and Validation

During the verification phase, the SCM is tested about its functionalities. Then, the
SCM must be validated in its intended environment.

5.5.1 Verification

In this phase, we need to compare the model documentation and the elicited require-
ments according to the developed functionalities. Secondly, tests are performed in
order to check that the functionalities work as expected. Then, traceability must
be respected in order to connect requirements and functionalities. We follow the
step-by-step methodology proposed in 3.6.1 presenting an example of how to verify
functionalities and requirements.

We present how to verify the model documentation and the requirements.

5. 5. 1. 1 Step 0

The first step is to compare the model documentation and the elicited require-
ments.

In Sections 5.2 and 5.3, we have proposed several requirements and models. In
order to show how to perform the tasks in this step, we will consider only a subset
of them.
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Table 5.12: Requirements and model connections.

Domain Requirement Model
Usability USAB01 - The user shall be able

to insert new recipes
SMD1: Upload a recipe into the
SCM

Privacy PRIV03 - User data shall be
kept private

AD1: Securing user data

Security SEC02 - The SCM shall delegate
the Smart Hub to order the miss-
ing ingredients

SD1: User, SCM, SF, SH and SM
interaction

Identity IDNT02 - The user shall provide
his/her data in order to be regis-
tered

UCD1: User data

Trust TRST01 - The SCM shall trust
a Smart Supermarket with a trust
level above 0.5

CD1: SCM and SM service
classes

In Table 5.12, we show this subset and its connection with the models. However,
we will show only how to verify the requirement USAB01 according to the modeled
SMD1 diagram (it was presented in Figure 5.19). Moreover, in Figure 5.33, we show
again the JSON related to USAB01. In fact, it is useful to speed up the verification
process by checking if the goal and the characteristics are met.

Figure 5.33: JSON code for USAB01

5. 5. 1. 2 Step 1
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After the collection of the requirements and the models performed in the previous
step, the developers must perform the functionality tests.

In this case, it is necessary to verify different aspects. In the first instance, only a
trusted user can access the SCM. In fact, only after this important step, it is possible
to insert a new recipe. Then, if the first control is positive, the functionality tests
must check if the recipes are correctly uploaded. SMD1 was designed in the following
way. Firstly, for any new recipe, it was mandatory to insert a new title. Secondly,
the items and their quantity. The recipe upload ends when all the items have been
inserted. Thus, the test must check if all the items are correctly inserted. If not, the
test fails, and the code must be checked in order to find the error. Otherwise, the
functionality test passes, and it is possible to proceed to the following step.

5. 5. 1. 3 Step 2

This step is a second check that guarantees that the requirements are met and the
functionalities have been correctly implemented. Traceability guarantees this aspect
as we have seen in Table 5.12.

In the case the previous step has ended correctly, it is possible to confirm that
the requirement USAB01 and its derived functionalities have been correctly imple-
mented. On the other hand, it will be raised an issue that will be checked in order
to adjust the wrong functionality.

After all the functionalities have been checked positively or negatively, it is pos-
sible to proceed to the final step of the verification process.

5. 5. 1. 4 Step 3

The verification response is positive if all the previous steps have been correctly
performed. Thus, a document certifying which tests have been positively or nega-
tively performed will be the output of this phase. In the case some tests have been
negatively performed, there will be a modification of the functionalities, and a new
verification process will be performed after the needed modifications.
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5.5.2 Validation

In this phase, the need documentation and the elicited requirements are collected
and compared according to the developed functionalities executed in their intended
environment. The functionality tests are performed in the first step, and traceability
is required in the second step. The validation response, either positive or negative,
is the output of the final step. We present the step-by-step methodology proposed
in 3.6.2 according to our proposed scenario.

5. 5. 2. 1 Step 0

According to 5.1, we collect a subset of the originating needs:

1. Need 1: The temperature of the SCM must be checked and it could not
overcome 250�C.

2. Need 2: The recipes must be downloadable from the vendor website or inserted
manually by authenticated users. Authentication must be done by code.

3. Need 3: The SCM could interact with a Smart Fridge (SF) to check whether
a particular ingredient is in the fridge or not. If not, the SCM could interact
with a trusted Smart Supermarket (SM) through the home Smart Hub (SH)
and order the missing ingredient.

4. Need 4: The communication among the smart home entities must be guaran-
teed and encrypted.

Then, a subset of the requirements elicited in 5.2 are shown in Table 5.13. More-
over, in the third column, we can see the need connected to the requirement. We can
see that there are needs coded by an X. These needs are not strictly connected to
the defined needs, but they can be necessary in order to develop the entity according
to the defined context.

For the validation test, we will consider the requirement TRST01 and Need num-
ber 3. The JSON code related to TRST01 is presented in Figure 5.34.
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Table 5.13: Requirements and needs connections.

Trust Req. TRST01 - The SCM shall trust
a Smart Supermarket with a trust
level above 0.5

Need 3

Usability Req. USAB01 - The user shall be able
to insert new recipes

Need 2

Security Req. SEC01 - The user shall be au-
thenticated

Need 2

Security Req. SEC02 - The SCM shall delegate
the Smart Hub to order the miss-
ing ingredients

Need X

Availability
Req.

AVBT01 - The SCM shall be
able to connect to the Smart Hub

Need X

Privacy Req. PRIV01 - The SCM shall per-
form an encrypted communica-
tion with the Smart Fridge

Need 4

Identity Req. IDNT01 - The user shall be au-
thenticated

Need 2

Identity Req. IDNT01.2 - The user shall be au-
thenticated by code

Need 2

Safety Req. SFT01 - The SCM shall be able
to check its temperature level

Need 1

Safety Req. SFT01.1 - The SCM temper-
ature level shall be lower than
250�C

Need 1
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Figure 5.34: JSON code for TRST01

5. 5. 2. 2 Step 1

As we will present in the following and final phase of the K-Model, an algorithm
is needed to introduce the new IoT entity in a smart home context. Anyhow, in
this case, we need to focus only on the functionalities that must be validated. In
this case, it is related to the interaction between the SCM and a trusted SM. The
trust value is provided by the SH or from the user (i.e., because the user has a direct
past relationship with an SM). The value can be computed after considering multiple
parameters (i.e., cost, distance, quality), and the service is satisfied if any interaction
among SCM and the SM is performed if and only if the computed trust value is more
than 0.5. If the interaction is performed at a lower level, the validation test fails.
Otherwise, it succeeds.

5. 5. 2. 3 Step 2

This step is fundamental in order to certify that the tested functionalities satisfy
the requirements and fulfil the originating need. Traceability is guaranteed also
following Table 5.13.
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If the previous step ends correctly, it confirms that the originating need is met.
Otherwise, an issue is raised, and the developers will need to check and correct it.

After all the functionalities have been checked in their environment and compared
with the originating needs, it is possible to continue to the final step of the validation
process.

5. 5. 2. 4 Step 3

The validation response is positive if all the previous steps have been performed
positively. Thus, documentation is produced to certify that the stakeholders’ needs
have been met, and it is possible to proceed to the K-Model’s final phase (i.e.,
Utilization). Otherwise, in the case some validation tests have failed, it will be
produced documentation that will highlight the functionalities that have failed the
originating needs to be checked by the developers that will need to fix the raised
issues.

5.6 Utilization

Once the SCM has been correctly validated, and every issue that has been possibly
raised has been fixed, it is possible to sell it, satisfying the stakeholders’ originating
needs (i.e., vendors and customers).

Anyhow, in this phase, the SCM will be placed in its intended environment and
context (i.e., a smart home), and it will join other smart devices (i.e., if a trusted SF
is also present in the smart home, the SCM will interact with it checking the needed
ingredients; otherwise it can check a trusted supermarket to buy them).

Anyhow, as we presented earlier, it is essential to consider also the architecture
where the SCM will be used and its relationship with the other IoT devices populating
it.

Thus, we show a possible smart home architecture in Figure 5.35, where the SCM
will be placed. On the right side of the figure, there are marked the levels related
to Figure 5.2. Moreover, as required in Section 5.1, it is composed of two networks:
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one internal and another external.

Figure 5.35: Smart Home: Segregated Trust Architecture

The internal network is composed of a smart-lock, an SCM, a smart-bulb, and an
SF. These entities are only allowed to communicate with the other entities according
to their purpose. The dotted lines represent a direct link for the communication.
Thus, the smart-lock has no connections with the SCM or the SF because there is
no reason for them to communicate directly with each other. On the contrary, the
smart-bulb can interact with the smart-lock. In fact, when the door is opened, the
smart-lock can send a signal to the smart-bulb to switch the lights on (in the case it
is night). Then, as we have planned writing the scenario, the SCM and the SF can
interact.

However, all these devices have direct communication with the smart hub, which
monitors their activities according to the trust model presented in Section 3.7, al-
lowing them to communicate directly only for determined purposes.

Moving up in the network, we can see that the internal network is separated from
the external one that contains a smartphone, a laptop, and a smart-printer. These
three objects belong to the BYOD paradigm. They cannot be placed in the internal
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network because they can join other networks and can be compromised.

5.6.1 Join

However, in order to show how the trust model work, let us assume that the home-
owner needs a new smart-lock, our developed SCM, and a smartphone.

5. 6. 1. 1 Smart-Lock

When the smart-lock joins the network for the first time, a broadcast message is
sent to all the network devices. The smart devices are not allowed to answer because
they do not recognize the ID of the new device. On the other hand, the smart hub
recognizes the new device as belonging to the homeowner. In fact, we assume that
before joining a network, the smart homeowner validates the devices. Thus, after
this first message, the smart hub starts the trust computation following the trust
model proposed in Figure 3.24. Thus, the smart hub checks the reputation DB in
order to control if the smart-lock has previously been connected to the network, but
we assume that the device is entirely new. Then, the threat DB is checked to find out
if there are known vulnerabilities related to the smart-lock model finding a known
vulnerability. The risk calculation takes into consideration the parameters L, S, and
D. About L, the smart hub assigns a medium value because the known vulnerability
can be exploited. Regarding the parameter S, the smart hub decides to give a high

value because if the vulnerability is exploited, the smart-lock will completely lose
its functionalities. Finally, the D value is low because the vendor has designed the
smart-lock to provide feedback on its functionality. Therefore, we have a high value
for S (9), a medium value for L (3), and a low value for D (1). According to these
values, the overall risk estimation, as presented in Section 4.7 is medium (27). After
this step, the smart hub checks the contexts of the device. Firstly, the context is
related to the smart lock cooperation with the smart bulb. Thus, in the case of
malicious behaviour or possible malfunctions related to a hijack of the device, the
smart bulb can also be affected. In addition, the smart lock is critical for the smart
home environment because, in the case of malicious behaviour, it can allow strangers
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to enter the house, or it can keep the homeowner outside.

So, the trust estimation ends after considering the following parameters: the
risk value is medium. The context refers to the cooperation with the smart-bulb
and access to the house. Finally, a known vulnerability is found in the threat DB.
Considering all these parameters, the trust estimation output is not to allow the
smart-lock to join the network. This action protects the internal entities to be
threatened by the new device and guarantees the trust level in the internal network.

5. 6. 1. 2 SCM

The second device bought by the homeowner is our SCM. As for the smart lock, it
sends a broadcast message after joining the network for the first time, and the smart
hub starts the trust computation. Checking the reputation DB, it finds nothing
because the device is all new. Then, the threats DB shows that there are no known
issues. The risk calculation gives L, S, and D the minimum value, so the final value
is low (1). The context is considered according to the collaboration with the smart
fridge and the communication with the smart hub in the case the SCM needs to
interact with an SM. Moreover, the context cook is not dangerous for the security
and safety of the house according to the security and safety requirements elicited and
satisfied. For this reason, the trust estimation ends with success, and the SCM can
join the internal network.

5. 6. 1. 3 Smartphone

In order to cover also the external network part, we present a use case with a
third device: a smartphone.

This new device has never joined the network earlier. Thus the reputation DB
has no data for it (in the case a device has previously joined the network and it
has been banned due to a low reputation level, it cannot join the network again).
Then, the threat DB has no known attacks related to the smartphone model and
version. The risk value is calculated as low (3) because the L and D parameters
are considered low (1), and the S parameter is considered medium (3) because, in
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the case of malfunction or malicious activity, the network can be partially damaged.
The context is related to all the devices belonging to the external network and the
smart hub of the internal network. Finally, the smartphone belongs to the BYOD
paradigm. Thus in the case of acceptance, it will be allowed to join the external
network.

After considering all these parameters, the smartphone is allowed to join the
external network, and its behaviour is monitored to anticipate possible threats.

5.6.2 Stay

We will see now for the SCM and the Smartphone what can happen after they have
been accepted in the network.

5. 6. 2. 1 Smartphone

Let us assume that after a few weeks, the smartphone has been manipulated by
a malicious entity and tries to communicate with the other smart entities to take
their control. The architecture allows the smartphone to pass through the smart
hub to communicate with the smart entities in the internal network. We assume
that the smartphone repeatedly sends a command to the smart-bulb to switch the
lights on and off every five seconds. The smart hub catches this abnormal behaviour
and, by using the adaptive model, decides to block the communications belonging to
the smartphone and set it in quarantine. The smart hub, checking the threat DB,
recognises that the smartphone has carried out a replay attack. The reputation DB
is set with a low value, and the smart home owner is notified of the event.

5. 6. 2. 2 SCM

Let us assume that the SCM communicates with the SF in order to check the
ingredients for a requested cake, and the milk is missing. The SCM checks the trusted
SM list and sends the request to order the missing ingredient to the smart hub. The
smart hub checks the behaviour of the SCM and forwards the communication to
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the SM as we modeled in Figure 5.18. After the interactions, the SH update the
reputation DB with a high value. In fact, the interaction is recognized as genuine,
and legitimate behaviour has positive consequences for the trust level of our SCM.

5.6.3 Threath Analysis

Besides organizing the relationships among IoT entities, our segregated trust archi-
tecture has been built to protect them from known IoT attacks. Thus, in this section,
we provide a review of known IoT attacks and possible mitigations related to our
segregated trust architecture.

In our model, the knowledge of such attacks is a focus point, mostly to decide
if a new entity can join the network and in which level as shown in Figure 3.24 or
to decide if an entity can stay in the internal or the external network as shown in
Figure 3.26.

In “Security and Privacy in the IoT” [71] there are collections of known attacks.
These attacks and other known attacks can be prevented by implementing our ar-
chitecture. Listed below, we show these attacks and their possible mitigation offered
by our segregated trust architecture.

• External attack. This is an attack that does not belong directly to the
network, according to Hu et al. [71] this can be provided with the cloud that
can share the information with external entities. In our approach, we avoid
sharing private information with the external network because it is stored in
the internal architecture.

• Wormhole attack. This attack depends on a malicious IoT entity that can
be part of the network that throws all the information passing through this
entity. In our approach, this behaviour is avoided because all the entities can
do a specific set of things, and the smart hub traces the communications.

• Sinkhole attack. The malicious node attracts information and communica-
tions from the other nodes. In this case, the architecture prevents this be-
haviour because a node can attract only a subset of information depending on
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its scope.

• Witch attack. A malicious node can take advantage of another node’s failure
taking all the communications related to the failed node. Our architecture
prevents this attack because it is not possible for a node to communicate with
another node unless this action was allowed by the central hub.

• HELLO flood attack. With this attack, a malicious node can flood the net-
work with a HELLO to nodes that are not neighbours behaving as a neighbour.
This attack cannot take place with our architecture because each entity can
communicate only with a subset of entities thanks to the join procedure.

• Flash crowd. With a flash crowd, there is a rapid increase in traffic to a spe-
cific website on the Internet. Our architecture prevents this behaviour because
the entities are not allowed to contact the Internet without passing through
the central hub. Besides, the entity cannot contact a website outside its scope.

• Distributed denial of service (DDoS). As for the previous attack, with
our architecture, because the communication among the internal and external
network is controlled by the Smart Hub, this attack can be avoided. In fact,
if a malicious IoT entity belonging to the internal network attempts to reach
the external network or the Internet for malicious purposes, the adaptive trust
model would be triggered.

• Botnet. Because the architecture prevents DDoS attacks; this configuration
equally prevents the network from becoming a botnet controlled by an external
malicious entity to make it perform malicious actions.

• Eavesdropping. With an eavesdropping attack, it is possible to intercept
traffic between entities, as a man in the middle attack. With this architecture,
communication is allowed between entities only if the central hub certified it,
so another entity cannot intercept the communication of other entities.

• Replay attack. The replay attack is performed by a malicious entity to repeat
an instruction causing malfunctions or harm. In our architecture, the activities
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are monitored by the smart hub through the adaptive trust model. Thus, in
the case of repeated, unexpected instructions, the SH applies countermeasures
(i.e., ban the entity or put it in quarantine).

• Blackhole. As stated by Hu et al. [72], the black hole attack permits an
attacker to drop receiving routing messages instead of relaying them. This
attack cannot be performed in our proposed architecture because of the join,
stay, and leave implementations as for the adaptive trust model.

• Brute force attack. Without a limited number of attempts to access a re-
source, it is possible to try a brute force attack. This can be dangerous for
weak or medium passwords. The smart hub monitors these activities in our
architecture. For this reason, a brute force attack would be discovered.

• Whitewashing attacks. This attack is performed when an object leaves and
rejoins a network. The adaptive trust model prevents this behaviour.

• On-Off Attacks. This attack occurs when an entity performs a good or bad
service randomly. In our architecture, the adaptive trust model can recognize
this behaviour and take corrective actions.
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5.7 Conclusion

In this chapter, we have presented a use case scenario implementing our trust-by-
design framework. In the first phase, we have presented the needs related to the SCM.
Then, in the requirements phase, we have elicited the proper requirements following
the TrUStAPIS methodology. Therefore, we have developed the models following
our trusted model-driven approach in order to design the functionalities and rela-
tionships among our SCM and the other IoT entities. Furthermore, we presented
the development phases implementing both the top-down approach considering the
functionalities of the SCM and the bottom-up approach about the contexts. More-
over, we have developed a block of code following the trusted finite state development
technique. We have then illustrated how to verify and validate several models, re-
quirements, and needs in our use case scenario. Finally, we have illustrated what
happens when the developed SCM is placed in an IoT network considering its rela-
tionships and other IoT entities. For each phase, we have also considered the related
transversal activities.
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CHAPTER 6

Conclusions, Future Works and Future Lines of
Research

In this final chapter, we will present our conclusions about this thesis work, discussing
our aim and which benefits we have brought to the state of the art, filling the gap
that we have previously identified. Then, we present the future works that we have
planned to perform in order to continue and improve this thesis work. Moreover, we
present some future lines of research that remain open and will need extra effort in
the future in order to solve issues that are still open.
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6.1 Conclusions

In this thesis, we have proposed a trust-by-design framework to consider trust and
related domains during the SDLC of an IoT entity because we believe that there is
still little consideration of trust in the system and software engineering community.

Our aim with this thesis work is to fill this gap and provide insights on trust
concepts connecting it to essential and related domains such as privacy and secu-
rity. This is most important in an environment such as the IoT which brought new
possibilities but also security challenges. For this reason, guaranteeing trust in IoT
has become a critical task that we want to mitigate with our work. In fact, we be-
lieve that in order to guarantee trust, it must be fundamental to consider it in the
whole SDLC and not only when the IoT device has been developed and used by the
customers.

For this reason, our framework ensures that trust and other domains are consid-
ered during the whole SDLC since the earliest phases to the utilization of the IoT
devices. The framework comprises a K-Model and seven transversal activities: docu-
mentation, traceability, risk management, threat modeling, decision making, metrics,
and gates. The K-Model has seven phases, plus the context that is always present.
This framework allows developers to build the right trusted IoT product reflecting
what the users and vendors need thanks to their consideration in the first phase of
the SDLC.

Moreover, in this phase, it is essential to have clear in mind the architecture in
which the intended IoT entity will be used. Furthermore, all the stakeholders give
their input about their specific needs collected by the developers, which will elicit the
proper requirements in the second phase of the SDLC according to these needs. In
order to consider properly trust and its connected domains, we define seven types of
requirements (i.e., trust, usability, security, availability, privacy, identity, and safety),
proposing a JSON-based requirement elicitation method: the TrUStAPIS approach.

Following this approach, the developers can elicit the proper requirements accord-
ing to the stakeholder needs identified in the previous phase. Therefore, for every
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domain, we have highlighted a set of characteristics that must be taken into consid-
eration in eliciting the requirements. Another important feature of the method is
traceability that enables the connections among requirements and provides a holistic
view of the IoT entity under development. Moreover, traceability guarantees con-
trol, avoiding domino effects in the case of relaxing requirements. After this phase
is completed and, in the case of conflict among requirements, they have been solved
following the POM methodology, it is possible to proceed to the third phase of the
framework: the model phase.

In order to provide developers with a proper tool in designing the models, we
have proposed a model-driven approach that considers all the trust-related domains.
About trust, we consider the distinction between evaluation and decision models
in order to model the proper features related to trust stereotypes. In addition, we
enhance and extend UML and SysML diagrams proposing new ones and adding new
features and stereotypes. The enhanced models are the use case diagram, the class
diagram, the sequence diagram, the activity diagram, the state machine diagram,
and the requirement diagram. The new diagrams are the context and the traceability
diagram. The former helps developers highlight each possible context and its related
domains to consider the different functionalities belonging to an IoT entity. The latter
is needed to control the connection among the other diagrams and helps developers
avoid domino effects due to the modification of diagrams connected to others.

After the model phase, there is the development phase where the developers will
examine the documentation produced in the previous phases in order to write the
proper code that will define the behaviour of the IoT entity. To suggest a systematic
way to complete this phase, we propose two approaches to implement functionalities
and contexts. About the former, we have proposed a top-down approach (FDBS)
that is useful to specify domains and functionalities belonging to the IoT entity
under development. About the latter, we have presented a bottom-up approach
considering domains and contexts belonging to the IoT entity under development.
Here, we need to start from the single contexts aggregating them according to their
scope under super-contexts. Finally, all the contexts will compound the IoT entity as
its whole. As for the top-down approach, it is represented as a tree. Besides, to merge
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and consider together the top-down and bottom-up approaches, we present a block
development. This development style is useful for the developers in order to consider
all particularities of contexts and functionalities in single blocks of code according
to contexts and functionalities. These three approaches are useful for developing the
trusted IoT entity according to the documents produced in the previous phases of
the K-Model and the architecture where it will be used.

After the development phase is completed, we have the verification phase. It is
useful to guarantee that all the functionalities are correct, the domains (i.e., trust,
security) are well considered, and the IoT entity has been built right. Basically, in
this phase, the developers will verify that the functionalities reflect the requirements
and the models performing verification tests. The JSON code written in the re-
quirements elicitation process can be useful to automatize the process. In the case
some verification test will not be successfully completed, a modification of the func-
tionalities will be performed. Otherwise, it is possible to proceed to the following
phase.

During the validation phase, the developers will check that the right entity has
been built, analyzing how the developed IoT entity performs in its intended envi-
ronment. Here, the originating needs are considered to check if the IoT entity fulfils
them and the elicited requirements are satisfied. If not, the functionalities must be
changed to reflect the needs. On the contrary, if the validation tests end correctly,
it is possible to sell the device for its intended use. This leads to the final phase of
the SDLC: the utilization phase.

In this phase, the IoT entity will interact with other IoT entities and be placed in
its intended network architecture (i.e., a smart home). However, in order to guarantee
trust among the IoT entities, we have proposed a segregated trust architecture. It
consists of two different networks: one external and another internal. In the external
architecture, there are all the BYOD devices. Then, a smart hub is the “bridge”
between the two networks. In fact, the IoT devices will be placed in the internal
network to guarantee their security and trust. We also consider three possible states
in which the IoT entity can perform: join, stay, and leave.

The first state happens when the IoT device joins the IoT network. In this
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case, the interaction can be performed only with the smart hub that will check if
the new device can be trusted by implementing an adaptive trust model that will
check a reputation database, a threat database, the intended context of the device
(i.e., which other IoT entities will need to interact with) and will perform a risk
assessment. If the IoT device is accepted, it will interact only with the smart hub
and a limited number of IoT devices (i.e., in our example, the SCM can interact with
the SF but not with the smart lock).

Then, when the IoT devices stay in the network, they are under the control of
the smart hub. If something suspicious happens (i.e., the SCM checks every minute
if there is milk available in the SF), the smart hub can perform trust decisions in
order to limit network access for the device up to put it in quarantine or ban from
the network.

Finally, when a device leaves the network, it must notify this action to the smart
hub and the connected IoT entities in order to make them aware of its leaving process.
Thus, the IoT entity is disconnected from the network, and its trusted status is saved
in the reputation database. This measure is useful in the case it will join the network
again.

Coming back to the transversal activities of the K-Model, they are critical and can
be considered in many or all the phases (especially traceability and documentation).
As we explained before, they are seven.

1. Traceability: It connects all the phases among them, and in every phase,
it connects the elements of the IoT entity under development. For example,
thanks to traceability, the requirements are connected among them, a need is
connected to the requirements, the models are connected among them and with
the requirements. Without traceability, the SDLC can be less effective. In fact,
in the case of a modification of an element (i.e., a requirement), traceability
helps developers avoid domino effects or unintended consequences due to the
modification or deletion of an element for the other connected elements.

2. Documentation: It is an important activity because every decision must be
documented to be checked or used in the following phases of the K-Model. For
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example, a stakeholder and its needs must be collected to elicit the requirements
and check if the IoT entity fulfils the needs.

3. Metrics: This activity guarantees to improve and check the elements along
the whole SDLC. In fact, a metric specified in the requirements phase must be
checked in the verification and validation phase, and it is the parameter that
allows the smart hub to perform trust decisions in the utilization phase.

4. Gates: Between every phase, there is a gate. It is possible to proceed from
a phase to the following one only if a phase is completed. Developers and
stakeholders perform gate reviews in order to let the product flow proceeds.

5. Threat Analysis: This activity is critical during the whole SDLC. In the early
phases, it is useful to develop the proper requirements and model to minimize
or avoid threats. Moreover, it is useful in the utilization phase in order to
perform trust decisions during the join and stay states.

6. Risk Management: Trust is strictly connected to risk. This activity is signifi-
cant, especially in the utilization phase, where risk assessment helps in deciding
if an IoT entity can join a network or not.

7. Decision Making: It is crucial both for the developers and the IoT entity.
In the requirements phase, we have proposed the POM methodology to help
developers in deciding which requirement is most important for the trust level
of the IoT entity. Furthermore, in the utilization phase, it is enhanced by the
adaptive trust model.

In Figure 6.1, we show the whole framework focusing on input, output and the
tasks that are performed during the phases. This figure is a resume of the framework
that can help the reader understand better the phases and their connections. For
each phase, we have deeply described the tasks in their section.
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Figure 6.1: Phases, Input and Output of the whole Framework



230

6.2 Future work

Even if this thesis work answers the need to consider trust more in the SDLC and
create a trusted architecture in order to guarantee trust among IoT entities, we need
to improve our study in future work. Thus, we identify some research questions that
still remain open and require further study.

Segregated Trust Architecture As future work, we will validate this architec-
ture by testing the environment in a real smart home with multiple IoT devices. We
will perform a trust analysis for each IoT entity, implementing our adaptive trust
model for join and stay states. We will also test the architecture against known
attacks in order to provide further protection to the IoT devices. Considering the
devices belonging to the internal network, we plan to test them, exploring trust,
privacy, and security implications. About them, we will give preference to devices
supported by OpenHAB 1 in order to implement and expand our trust model as well
as its threat model part. Finally, the new relationships established by the smart
devices will help validate the benefits of our trust model and the segregated trust
architecture.

TrUStAPIS and Model-driven Approach We will apply the TrUStAPIS
methodology in a real and more complex scenario in order to demonstrate its valid-
ity and usefulness. Moreover, we will develop a tool to elicit and store requirements
using our JSON template. In this way, the requirements elicitation process will
be automatized, mitigating the subjectivity issue that can be raised by developers.
Then, we will present a survey analysing our work compared to other requirement
elicitation existing methodologies. Concerning POM methodology, we will compare
our methodology against AHP in the same scenario, and it will be used along with
TrUStAPIS in the new scenario. About our model-driven approach, we are devel-
oping a tool to draw the proposed diagrams allowing developers to implement them
properly. About the traceability diagram, we will propose a methodology to rec-
ognize if two or more diagrams should be connected according to proper keywords
related to the elements of the diagrams. Moreover, we will develop tool support for

1https://www.openhab.org/
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the analysis of clusters in order to improve traceability effectiveness. Finally, we will
validate our model-driven approach in a real and complex scenario, avoiding using
dummy elements.

6.3 Future Lines of Research

The topic of trust and IoT is wide. With this thesis work we have filled the gap of
including trust during the SDLC of an IoT entity. But there are other topics that
need to be tackled. The research community is working on them, but there is still a
lot of work to do. The lines of research are the following:

Integration of security, trust and reputation requirements and model

methodologies With our thesis work, we have moved forward in this line of re-
search. However, we think that a research effort is still needed. Our TrUStAPIS
methodology, along with other methodologies for security requirements elicitation
(i.e., TROPOS, Secure TROPOS, I* [21, 111, 162]) can be merged to provide devel-
opers with a complete tool for requirements elicitation leading to well-established best
practices. This consideration can also be useful for the modeling phase, where our
model-driven approach and other existing methodologies such as UMLTrust [152], or
SecureUML [93] can be analyzed together in order to explore different methodologies
that can be helpful in the SDLC of any System. Investigating a way to integrate these
methodologies for, including security, trust, and reputation can lead to an excellent
benefit for the SDLC and developers. Moreover, because of TrUStAPIS considers
also other domains such as privacy, usability, identity, safety and availability, it will
be useful to consider also them to develop a complete model.

Configuration and visual support for trust and reputation implemen-

tation With our thesis work, we have covered partially also this aspect by proposing
tools (i.e., JSON templates, context, and traceability graphic diagrams) to give de-
velopers and stakeholders a visualization tool for the development of a trusted IoT
entity. Anyhow, extra steps in this direction can boost productivity by focusing on
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the core functionalities of a trusted IoT entity. It can also be a way to provide de-
velopers with tools that will help them in writing code in order to create libraries or
frameworks into a well-known practice to be implemented during the development
phase. This could be more effective if the frameworks were also integrated into other
phases of the SDLC in order to enable an automatic verification and derivation of
the entities under development.

Creation of a standard trust model for the IoT With part of our re-
search that we published in [47], we have analyzed the trust models of three different
manufacturers (i.e., Google Mini Home, Alexa Echo Dot, and Philips Hue Lights),
discovering that their trust models are very different among them. For this reason,
we believe that it is essential that in the near future a standard trust model will
be developed for IoT entities according to their contexts. In fact, huge differences
among IoT entities will lead to difficulty in implementing both trust and security
among IoT entities and users. Furthermore, if a standard protocol will be taken into
consideration and developed, it will increase trust in the IoT devices and their users.
In our work, we have proposed a general trust model considering the possible users
of the device, giving each of them a role and a score according to the context of the
required functionality. Anyhow, we think that further investigation will be needed
in this direction in order to propose a general trust model for IoT entities.

Trust and Social Internet of Things Social internet of Things (SIoT) is a new
concept binding the IoT entities and their users with the IoT entities and users of their
friends, family members, or colleagues. This line of research is still in its infancy, and
the SIoT concept must be further clarified and explored. Moreover, it can be merged
with the previous one because SIoT can be considered as two-dimensional, where the
relationships among users are important too and they must be considered in a trust
model. Typically, in IoT paradigms, this dimension is not considered. However, in
a world strongly connected where users have many relationships among them, this
parameter can be helpful in developing trust models that take these connections
under consideration. Besides, an exploration of where and how the SIoT can be
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applied both in the professional and consumer IoT is needed. In fact, SIoT can also
be helpful in business IoT (i.e., industrial IoT), specifying the interaction of IoT
entities and users according to their duties (i.e., security clearance).
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CHAPTER 7

Resumen en español

7.1 Introducción

El Internet de las Cosas (IoT de sus siglas en inglés) permite que los seres humanos
y las entidades inteligentes cooperen entre ellos a través de Internet y en cualquier
lugar. Las entidades IoT desarrolladas y utilizadas están creciendo cada año, y
“se espera que haya más de 64.000 millones de dispositivos IoT en todo el mundo
en 2025” [8]. Esta predicción establece que el paradigma de IoT definirá cómo se
conectará el mundo. Por esta razón, surgirán muchas oportunidades, pero también
muchos problemas [31]. Las entidades deben establecer una relación para llevar a
cabo una acción incluso en casos de incertidumbre, es decir, que sean desconocidas
entre ellas. La confianza ofrece una forma de mitigarlos. De hecho, una entidad
debería interactuar con otra solo si se establece confianza entre ellas. Debido a la
incertidumbre, la interoperabilidad y la heterogeneidad de IoT, lograr la confianza
sigue siendo un desafío. Además, considerando que comunidades de investigación
aisladas han abordado estos aspectos por separado, es deseable un enfoque holístico
[46].

La confianza es difícil de definirya que el concepto se puede usar en áreas desde
Filosofía a Informática [46]. Además, depende en gran medida del contexto. De
hecho, confiar “significa muchas cosas para muchas personas” [43]. Esta premisa es
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más que cierta para IoT. De hecho, las entidades de IoT pueden funcionar en varios
contextos y, si consideramos la confianza en estos contextos, podemos mejorar la
protección de estos dispositivos.

Hoffman et al. [70] y Pavlidis [124], consideraban que la confianza dependía fuerte-
mente de otras propiedades como la seguridad y la privacidad. Ferraris et al. [50]
declararon que estas relaciones son aún más importantes durante el desarrollo de
una entidad de IoT. De hecho, como también lo afirman Mohammadi et al. [109] los
mecanismos de confianza pueden ser fundamentales y requieren más investigación en
este campo. Por ello, en nuestra opinión, es crucial considerar la confianza desde las
fases iniciales del ciclo de vida del software (SDLC de sus siglas en inglés) para poder
desarrollar correctamente las relaciones de confianza entre las entidades inteligentes.
Este enfoque podría ayudar a proteger las entidades inteligentes y dar importantes
reglas de comportamiento durante las interacciones con otras entidades inteligentes.

En una relación de confianza, hay básicamente dos actores involucrados: el que
confía y el que deposita la confianza. El que confía es el que confía activamente y el
fideicomisario es el que mantiene la confianza. Podemos afirmar que esta colaboración
es necesaria cuando el que confía necesita que el que deposita la confianza realice
una acción o cumpla un objetivo considerando un contexto particular. Este objetivo
no es alcanzable por el que confía solo. Por esta razón, se necesita el que deposita
la confianza. Las métricas de confianza son necesarias para calcular un nivel de
confianza que ayude al que confía a decidir si se puede confiar en un que deposita la
confianza [89]. Este valor debe calcularse antes de que los dos actores comiencen la
colaboración. Además, el nivel de confianza podría cambiar con el tiempo de manera
positiva o negativa debido al comportamiento correcto o incorrecto de los que están
en la relación de confianza [65].

Por ejemplo, en un entorno de IoT, el que confía puede ser el usuario y el que
deposita la confianza puede ser el dispositivo de IoT.

Sin embargo, la confianza, la seguridad, la privacidad y otros aspectos importantes
generalmente se consideran solo durante las fases finales del SDLC, y esto puede
generar problemas. Creemos que es crucial considerar la confianza no solo durante
la utilización de un dispositivo de IoT sino también desde las primeras fases del ciclo
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de vida de desarrollo de software y sistemas (SDLC).

7.2 Objetivos de la tesis

Como dijimos anteriormente, creemos que para considerar la confianza correctamente
en el IoT, necesitamos integrarla en los dispositivos de IoT no solo durante la imple-
mentación y utilización de dichos dispositivos, sino también en todo el ciclo de vida
de desarrollo del sistema (SDLC) de una entidad IoT. De hecho, hasta ahora, no
existen tales enfoques que cubran todo el SDLC con confianza, sino solo una parte.
Por esta razón, nuestro objetivo es redefinir los enfoques y herramientas que ayudan
a los desarrolladores en todo el SDLC considerando la confianza en cada fase.

Tanto en el ciclo de vida de desarrollo de sistemas [67] como en el ciclo de vida de
desarrollo de software [106], una de las primeras fases del SDLC está relacionada con
la ingeniería de requisitos. De hecho, la recogida de requisitos en las primeras fases del
SDLC es una tarea importante que aporta beneficios a las siguientes fases del SDLC y
evita problemas que podrían ocurrir en fases posteriores. Los desarrolladores suelen
obtener los requisitos según las necesidades de las partes interesadas en la entitad
IoT.

Los lenguajes de requisitos existentes se han utilizado ampliamente con la intro-
ducción de metodologías orientadas a objetivos [21, 100, 111, 163], pero no se han
desarrollado para IoT y no consideran la confianza en otros dominios de seguridad.
De manera similar, la confianza y los dominios relacionados como la seguridad, la
identidad, la usabilidad y la privacidad no se consideraron adecuadamente en las
primeras fases de SDLC [120]. Por el contrario, para garantizar la confianza, es im-
portante considerar otros dominios relacionados con ella, como afirman Hoffman [70]
y Pavlidis [124]. Siguiendo esta premisa, Rios et al. [132] han propuesto un trabajo
que considera la privacidad en la negociación de confianza, y Gago et al. [46] avanzó
considerando tanto la identidad como la privacidad relacionadas con la confianza en
el campo de IoT.

Nuestro objetivo es continuar en esta dirección, considerando los dominios rela-
cionados con la confianza de manera integral en IoT, considerando la ingeniería de
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requisitos como un elemento crucial en nuestro marco para garantizar la confianza
en una entidad de IoT durante todo el SDLC.

Después de la fase de obtención de requisitos, está la fase de modelado donde tanto
UML [137] como SysML [56] son ampliamente utilizados por los desarrolladores. De
hecho, estos diagramas se han creado para explorar las diferentes funcionalidades
de un software/sistema genérico en desarrollo. De todos modos, estos lenguajes de
modelado originales no tenían características para implementar seguridad, privacidad
o confianza. Por esta razón, es necesario definirlos para ayudar a los desarrolladores
a modelar adecuadamente la confianza y los dominios relacionados.

Además, durante el desarrollo de una entidad de IoT, los desarrolladores pueden
considerar varios enfoques para realizar esta tarea crucial. Un enfoque ampliamente
utilizado es el denominado de arriba hacia abajo. Básicamente es una forma de
considerar el problema desde una perspectiva general a una específica. Además, el
enfoque de arriba hacia abajo se puede utilizar incluso para el desarrollo de software
a través de una estructura funcional de desglose (FBS de sus siglas en inglés) o una
estructura de descomposición del trabajo (WBS de sus siglas en inglés) [77]. Sin
embargo, en nuestro caso, es importante considerar no solo las funcionalidades sino
también sus conexiones a los dominios como la confianza y la seguridad para poder
dividir y realizar el análisis de acuerdo a su alcance.

Por el contrario, el enfoque de abajo hacia arriba comienza desde un punto de vista
específico hasta una visión general del sistema. Es un método utilizado especialmente
en ingeniería de software [55, 77], pero también se puede utilizar para desarrollar
infraestructuras de IoT [129]. En nuestro artículo, avanzamos y lo consideramos de
acuerdo con los diferentes contextos y dominios de las entidades de IoT.

En nuestra opinión, estos dos enfoques por sí solos no son suficientes para el
desarrollo de una entidad de IoT confiable. De hecho, es fundamental destacar que
una entidad de IoT está compuesta por software, y una forma eficaz de desarrollar el
código es siguiendo un enfoque de estado finito como lo establecen [156] y [23]. Este
enfoque es aún más crítico en un entorno como el IoT, donde generalmente todas las
funcionalidades se realizan por separado y siguiendo un proceso paso a paso. En este
trabajo, ampliaremos este enfoque además de los enfoques de abajo hacia arriba y
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de arriba hacia abajo.

La verificación y validación son dos fases fundamentales para finalizar el desarrollo
de una entidad IoT. De hecho, a través de la verificación es posible decir si la entidad

se ha construido de manera correcta, lo que significa que está funcionando como se
esperaba. Por otro lado, mediante la validación podemos afirmar que se ha construido

la entidad correcta, esto es, la entidad IoT ha sido desarrollada tal y como fue pensada
para la necesidad originada.

7.3 Diseño de un Marco de Confianza

En esta tesis, hemos propuesto el diseño de un marco de confianza para considerar
la confianza y los dominios relacionados durante el SDLC de una entidad de IoT.
El estudio de los trabajos previos nos ha demostrado que la confianza es un aspecto
que no se ha considerado en profundidad en el área de Ingeniería de sistemas y Soft-
ware. Es por esta razón que nuestro objetivo es llenar este vacío y proporcionar
información sobre conceptos de confianza que la conectan con dominios importantes
y relacionados, como la privacidad y la seguridad. Esto es principalmente importante
en un entorno como el IoT que trae nuevas posibilidades pero también desafíos de
seguridad. De hecho, pensamos que para garantizar la confianza debe ser fundamen-
tal tenerlo en cuenta en todo el SDLC y no solo cuando el dispositivo IoT ha sido
desarrollado y utilizado por los clientes.

Figure 7.1: Modelo K
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Por esta razón, nuestro marco garantiza que la confianza y otros dominios se
consideren durante todo el SDLC desde las primeras fases hasta la utilización de
los dispositivos de IoT. El marco está compuesto por un Modelo K, propuesto en la
Figura 7.1, y siete actividades transversales: documentación, trazabilidad, gestión
de riesgos, modelado de amenazas, toma de decisiones, métricas y pasarelas.

7.3.1 Modelo K

El Modelo K tiene siete fases más el contexto que siempre está presente. Este marco
permite a los desarrolladores crear el producto de IoT confiable y adecuado de manera
que refleje lo que los usuarios y proveedores quieren gracias a su consideración en la
primera fase del SDLC: la fase de necesidad (i.e., Need).

7. 3. 1. 1 Need y Requisitos

En esta fase, es muy importante tener clara la arquitectura en la que se utilizará
la entidad de IoT prevista. Además, todas las partes interesadas dan su opinión
sobre sus necesidades específicas que serán recopiladas por los desarrolladores, que
generarán los requisitos adecuados en la segunda fase del SDLC de acuerdo con estas
necesidades. Para considerar adecuadamente la confianza y sus dominios conectados,
definimos siete tipos de requisitos (es decir, confianza, usabilidad, seguridad, disponi-
bilidad, privacidad, identidad y seguridad) proponiendo un método de obtención de
requisitos basado en JSON: este será el enfoque TrUStAPIS.

Para transformar las necesidades en requisitos, hemos desarrollado un método
de obtención de requisitos: TrUStAPIS. Al implementar este método, los desarrol-
ladores pueden considerar la confianza y los otros dominios durante todo el proceso
de obtención de requisitos. La palabra “TrUStAPIS” es un acrónimo que se origina
a partir del uso de las primeras letras de cada uno de los siete dominios tomados en
consideración: Confianza (escrito íntegramente porque es el central), Usabilidad, Se-
guridad, Disponibilidad, Privacidad, Identidad y La seguridad. Este método ayuda a
los desarrolladores a obtener los requisitos específicos para su dominio conectándolos
a través de la trazabilidad. Además, este método permite la obtención de requisitos
considerando aspectos dinámicos relacionados con IoT.
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TrUStAPIS considera varios elementos para diseñar y luego declarar los requisitos.
Estos elementos son: actores y roles, acciones y medidas, y meta y contexto.

• Actor. Un actor puede ser un ser humano o una entidad de IoT. Es la entidad
que se necesita para cumplir un objetivo. La consecución del objetivo se puede
hacer solo o con la cooperación de otro actor. Por lo tanto, un actor podría
tener diferentes roles (es decir, en un dominio de confianza, los actores son
fideicomisarios y que deposita la confianzas). De todos modos, durante el
proceso de obtención de requisitos, los consideramos por separado porque para
obtener los requisitos adecuados, preferimos hacer esta distinción.

• Acción. Una acción está relacionada con la tarea realizada por el actor. Una
acción puede incluir medidas o no. Una medida ayuda a las partes interesadas
y desarrolladores a modelar un requisito que será verificado y validado en las
fases posteriores del Modelo K.

• Objetivo. Un objetivo es el propósito final que representan los requisitos.
Los actores pueden lograrlo a través de acciones objetivo. Este objetivo puede
estar relacionado con una capacidad particular de la entidad de IoT según el
dominio de requisitos. Además, de acuerdo con la dinámica del IoT, un mismo
actor puede involucrarse en diferentes objetivos o realizar diferentes acciones
para cumplirlos. Cuando una acción determina directamente un objetivo, se
denomina goalAction.

• Contexto. El contexto está relacionado con tres elementos. El primero es el
dominio de requisitos. Cada uno de estos dominios tiene sus propias carac-
terísticas. El segundo está relacionado con el entorno de IoT. Finalmente, el
tercero se refiere a la consecución del objetivo.

Para resumir todos estos elementos, proponemos un modelo conceptual que se
muestra en la Figura 7.2 para presentar las relaciones entre todos los componentes
de TrUStAPIS.

El actor, puede ser un ser humano o una entidad de IoT y es el “sujeto” del
requisito. Cada actor juega un papel que depende del contexto. Una acción puede
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Figure 7.2: Modelo conceptual - TrUStAPIS

considerarse como el “verbo” del requisito y se realiza para cumplir o para solicitar
un objetivo. En el primer caso, el “objeto” del requisito es directamente el objetivo.
De lo contrario, el “objeto” del requisito es otro actor que realiza una acción para
cumplir el objetivo propuesto. Una posibilidad es que una acción pueda contener
algunas medidas. Estas medidas son importantes para alcanzar la meta y verificar
y validar los requisitos en las siguientes fases del Modelo K. Finalmente, el contexto

consta de tres componentes: un propósito, un entorno y un dominio. El propósito

está relacionado con el propósito del objetivo que debe cumplir un actor. El entorno

se relaciona con el lugar físico donde se realiza la acción. El dominio se refiere a los
siete tipos de requisitos que hemos identificado. Finalmente, cada dominio tiene sus
características, que explicaremos junto a los requisitos. Las flechas representan las
relaciones entre conceptos. Cada flecha está descrita por un texto relacionado con la
dependencia entre conceptos mientras que la dirección de la flecha representa el orden
de la conexión. Además, hay una flecha discontinua opcional que representa el caso de
que un actor secundario cumpla un objetivo. El triángulo se utiliza para representar
una especialización (es decir, un actor puede ser un ser humano o una entidad de
IoT). Finalmente, el rombo representa una composición (es decir, el contexto se
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compone de un dominio, un entorno y un propósito).
Además, para ayudar a los desarrolladores a obtener los requisitos, proponemos

una plantilla JSON tal y como se muestra en la Figura 7.3.

Figure 7.3: TrUStAPIS - plantilla JSON para obtener requisitos

Hemos elegido JSON porque es esquemático y legible por humanos y máquinas.
Además, es compatible con muchos lenguajes de programación (por ejemplo, Java 1).
Este aspecto permite compartir un código de requisitos entre stakeholders y desarrol-
ladores a través de aplicaciones [6]. Además, el código JSON es una herramienta útil
para mapear las necesidades que se han identificado en la fase anterior del Modelo
K y es útil en las fases de desarrollo y verificación, ayudando a los desarrolladores a
automatizar los procesos.

Por lo tanto, completar la plantilla JSON puede ayudar a los desarrolladores a
escribir los requisitos adecuados. Un requisito escrito debe estar compuesto al menos
por:

1. un actor ;

2. una palabra clave (“shall ”);

3. un objetivo cumplido a través de una acción;
1https://www.java.com
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Entonces, un requisito también podría tener opcionalmente:

• Uno o más actores secundarios que realizan una acción para cumplir el objetivo.

• Una o más acciones necesarias para alcanzar la meta final Acción.

• Una o más medidas. Los desarrolladores y las partes interesadas los necesitan
para verificar y validar los requisitos.

Esta estructura se resume y formaliza utilizando la siguiente declaración (1).

(1) Actor shall predicado

Por lo tanto, el actor también se conoce como el actor principal y es el sujeto de
la declaración (1).

Se ha elegido la palabra clave shall en lugar de las palabras should o must, porque
shall define que el requisito es contractualmente vinculante y deberá ser implemen-
tado y posteriormente verificado y validado.

El predicado puede tener diferentes formas. La forma básica está representada
solo por un goalAction. De lo contrario, es posible tener un predicado más complejo.
Podría estar compuesto por uno o más actores secundarios, acciones y/o medidas.
Esta composición depende estrictamente del contexto y define el requisito escrito
final.

7. 3. 1. 2 Modelo

Después de la fase de requisitos, tenemos que abordar el problema de la imple-
mentación del modelo. Durante la fase de modelado, es útil considerar lenguajes para
tal efecto como UML [137] y SysML [56]. Además, para incluir la gestión de la con-
fianza en esta fase, es obligatorio considerar los modelos de decisión y evaluación de
la confianza identificados por Moyano et al. [112]. Debido a que diseñamos nuestro
marco de trabajo para el entorno de IoT, de acuerdo con su heterogeneidad y dinami-
cidad, existe la posibilidad de que cada entidad de IoT inteligente deba ser modelada
con diferentes modelos de confianza. De hecho, dependiendo de la arquitectura de
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IoT prevista (es decir, centralizada o distribuida), estos modelos se implementarán
para definir la arquitectura adecuada y el tipo de comunicaciones confiables entre las
entidades de IoT.

Así, según el trabajo desarrollado por Uddin [152], hemos identificado la posibil-
idad de considerar la confianza en los diagramas UML. Consideramos los diagramas
UML y SysML en nuestro trabajo. Necesitamos considerar los lenguajes de modelado
porque necesitamos el Diagrama de clases (solo presente en UML) y el Diagrama de
requisitos (un diagrama SysML).

De todos modos, ampliaremos los diagramas básicos relacionados con UML y
SysML y propondremos dos nuevos diagramas: el de trazabilidad y el diagrama de
contexto.

Los diagramas básicos de UML que vamos a ampliar serán el diagrama de casos
de uso, el diagrama de clases, el diagrama de actividades, el diagrama de secuencia, el
diagrama de la máquina de estados y el diagrama de requisitos. Hemos elegido estos
diagramas porque permiten a los desarrolladores implementar aspectos cruciales de
una entidad de IoT. De hecho, el diagrama de casos de uso proporciona a los de-
sarrolladores una herramienta útil para modelar las interacciones universales de las
entidades de IoT. El diagrama de requisitos permite a los desarrolladores considerar
los requisitos generados en la segunda fase del Modelo K para modelarlos con conex-
iones a los otros diagramas agregando características adicionales. En tercer lugar, el
diagrama de clases será muy importante para ayudar a los desarrolladores a escribir
el software de la entidad de IoT. Finalmente, los diagramas de la máquina de activi-
dad, secuencia y estado permiten a los desarrolladores especificar las funcionalidades
e interacciones de la entidad de IoT bajo tres perspectivas diferentes. Además, es
importante agregar que, incluso si estos diagramas exploran diferentes aspectos de la
entidad de IoT modelada, se pueden combinar. Por ejemplo, un diagrama de secuen-
cia puede representar el flujo de acciones que pertenecen a un diagrama de casos de
uso. Las mismas acciones se pueden especificar mediante un diagrama de actividad o
un diagrama de máquina de estados. Además, considerando los nuevos diagramas, el
diagrama de trazabilidad es fundamental para realizar un seguimiento de las conex-
iones entre diagramas. Esta función está habilitada porque cada diagrama tiene un
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identificador único que permite a los desarrolladores hacer referencia a ellos de forma
única. El diagrama de trazabilidad puede considerarse un metadiagrama. Por otro
lado, el diagrama de contexto se utilizará para mapear los diferentes contextos que
se considerarán para la entidad IoT. Este diagrama permite a los desarrolladores
considerar todos los contextos pertenecientes a la entidad IoT, desde la fase de mod-
elado para dividir las funcionalidades según los diferentes contextos, mejorando la
confianza y la seguridad.

Para cada diagrama, describimos las características básicas y las mejoras con
respecto a los diagramas UML y SysML originales. Un aspecto importante que
define los diagramas es la consideración de la confianza y los dominios relacionados.
Los dominios relacionados con la confianza son usabilidad, seguridad, disponibilidad,
privacidad, identidad y seguridad [49].

7. 3. 1. 3 Desarrollo, verificación y validación.

Después de la fase de modelado, está la fase de desarrollo. En esta fase, los desar-
rolladores tendrán en cuenta toda la documentación producida en las fases anteriores
produciendo el código adecuado que definirá el comportamiento de la entidad IoT.
Para dar una forma sistemática, proponemos dos enfoques para implementar fun-
cionalidades y contextos. Sobre el primero, hemos propuesto un enfoque de arriba
hacia abajo con una Estructura de Desglose del Dominio Funcional (FDBS de sus si-
glas en inglés) que es útil para especificar dominios y funcionalidades que pertenecen
a la entidad de IoT en desarrollo. En cuanto a los contextos, hemos presentado un
enfoque de abajo hacia arriba considerando dominios y contextos pertenecientes a la
entidad de IoT en desarrollo. Aquí, tenemos que partir de los contextos individuales
agregándolos de acuerdo con su alcance en supercontextos. Finalmente, todos los con-
textos compondrán la entidad IoT en su totalidad. En cuanto al enfoque de arriba
hacia abajo, se representa como un árbol. Además, para fusionar y considerar juntos
los enfoques de arriba hacia abajo y de abajo hacia arriba, presentamos un desarrollo
de estado finito. Este estilo de desarrollo es útil para los desarrolladores ya que les
permite considerar todas las particularidades de los contextos y funcionalidades en
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bloques individuales de código de acuerdo con los contextos y funcionalidades. Estos
tres enfoques son útiles para desarrollar la entidad IoT confiable de acuerdo con los
documentos producidos en las fases anteriores del Modelo K y la arquitectura donde
se utilizará.

Una vez completada la fase de desarrollo, abordamos la fase de verificación. Es
útil garantizar que todas las funcionalidades sean correctas, que los dominios (es
decir, confianza, seguridad) estén bien definidos y que la entidad de IoT se haya
construido correctamente. Básicamente, en esta fase los desarrolladores verificarán
que las funcionalidades reflejan los requisitos y los modelos realizan las pruebas de
verificación. El código JSON escrito en el proceso de obtención de requisitos puede
ser útil para automatizar el proceso. En el caso de que alguna prueba de verificación
no se complete con éxito, se realizará una modificación de las funcionalidades. De lo
contrario, es posible pasar a la siguiente fase.

Durante la fase de validación, los desarrolladores comprobarán que se haya con-
struido la entidad correcta analizando cómo se desempeña la entidad IoT desarrollada
en su entorno previsto. Aquí, se tienen en cuenta las necesidades originarias para
comprobar si la entidad de IoT las cumple y si se satisfacen los requisitos plantea-
dos. Si no, las funcionalidades deben cambiarse para reflejar las necesidades. Por el
contrario, si las pruebas de validación finalizan correctamente, es posible vender el
dispositivo para el uso previsto. Esto conduce a la fase final del SDLC: la fase de
utilización.

7. 3. 1. 4 Utilización

En esta fase, la entidad de IoT interactuará con otras entidades de IoT y se
colocará en su arquitectura de red prevista (es decir, una casa inteligente). Sin
embargo, para garantizar la confianza entre las entidades de IoT, hemos propuesto
una arquitectura de confianza segregada. Consta de dos redes diferentes: una externa
y otra interna. En la arquitectura externa, están todos los dispositivos "trae tu propio
dispositivo" (BYOD de sus siglas en inglés) [108]. Entonces, un centro de actividad
inteligente es el “puente” entre las dos redes. De hecho, los dispositivos IoT se
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colocarán en la red interna para garantizar su seguridad y confianza. Consideramos
también tres posibles estados en los que la entidad de IoT puede actuar: unirse,
permanecer y abandonar la red.

El primer estado ocurre cuando el dispositivo IoT se une a la red IoT, en este
caso la interacción solo se puede realizar con el centro de actividad inteligente que
verificará si se puede confiar en el nuevo dispositivo implementando un modelo de
confianza adaptativo que verificará una base de datos de reputación, una amenaza
base de datos, el contexto previsto del dispositivo (es decir, con qué otras entidades
de IoT necesitarán interactuar) y realizará una evaluación de riesgos. Si se acepta
el dispositivo de IoT, interactuará solo con el centro de actividad inteligente y un
número limitado de dispositivos de IoT.

Una vez que los dispositivos IoT permanecen en la red, están bajo el control del
centro de actividad inteligente. Si ocurre algo sospechoso, el centro de actividad
inteligente puede tomar decisiones de confianza para limitar el acceso a la red del
dispositivo para ponerlo en cuarentena o prohibir la red.

Finalmente, cuando un dispositivo sale de la red, debe notificarlo al centro de
actividad inteligente y a las entidades de IoT conectadas para que estén al tanto de
su proceso de salida. Así, la entidad de IoT se desconecta de la red y su estado de
confianza se guarda en la base de datos de reputación en caso de que vuelva a unirse
a la red en el futuro.

7.3.2 Actividades Transversales

Las actividades transversales del Modelo K, son muy importantes y pueden ser con-
sideradas en muchas o todas las fases (especialmente trazabilidad y documentación).
Como explicamos antes, son siete.

La trazabilidad conecta todas las fases entre ellas y en cada fase conecta los el-
ementos de la entidad IoT en desarrollo. Por ejemplo, gracias a la trazabilidad los
requisitos están conectados entre ellos, una necesidad está conectada con los requi-
sitos, los modelos están conectados entre ellos y con los requisitos. Sin trazabilidad,
todo el SDLC puede verse comprometido. De hecho, en el caso de la modificación
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de un elemento (es decir, un requisito), la trazabilidad ayuda a los desarrolladores a
evitar efectos dominó o consecuencias no deseadas debido a la modificación o elimi-
nación de un elemento.

La documentación es una actividad muy importante porque cada decisión debe
documentarse para poder ser verificada o utilizada en las siguientes fases del Modelo
K. Por ejemplo, se debe recopilar una parte interesada y sus necesidades para obtener
los requisitos y verificar si la entidad de IoT satisface las necesidades.

Las métricas garantizan mejorar y comprobar los elementos a lo largo de todo el
SDLC. De hecho, una métrica especificada en la fase de requisitos, debe verificarse
en la fase de verificación y validación y es el parámetro que permite al centro de
actividad inteligente tomar decisiones de confianza en la fase de utilización.

Las pasarelas se encuentran entre cada fase del Modelo K. Entonces, es posible
pasar de una fase a la siguiente solo si se completa una fase. Los desarrolladores y
las partes interesadas realizan las revisiones para permitir que el producto fluya.

El análisis de amenazas es muy importante durante todo el SDLC. En las primeras
fases, es útil obtener los requisitos adecuados y modelar y desarrollar la entidad para
minimizar o evitar amenazas. Además, es útil en la fase de utilización para tomar
decisiones de confianza en los estados de unión y permanencia.

La gestión de riesgos se considera porque la confianza está estrictamente rela-
cionada con el riesgo. Esta actividad es muy importante, especialmente en la fase
de utilización, donde la evaluación de riesgos ayuda a decidir si una entidad de IoT
puede unirse a una red o no.

Finalmente, la toma de decisiones es crucial tanto para los desarrolladores como
para la entidad de IoT. En la fase de requisitos, hemos propuesto el método de
ordenación por pares (POM de sus siglas en inglés) para ayudar a los desarrolladores
a decidir qué requisito es más importante para el nivel de confianza de la entidad
de IoT. Además, en la fase de utilización se ve reforzada por el modelo de confianza
adaptativo.

Si bien este trabajo de tesis responde a la necesidad de considerar la confianza en el
SDLC y de crear una arquitectura de confianza para garantizar la confianza entre las
entidades de IoT, necesitamos mejorar nuestro estudio en el trabajo futuro. Además,



250

identificamos algunas preguntas de investigación que aún permanecen abiertas y
requieren más estudio.

7.3.3 Futuras líneas de investigación

Integración de requisitos de seguridad, confianza y reputación y mode-

lado Con nuestro trabajo de tesis, hemos avanzado en esta línea de investigación.
Sin embargo, creemos que aún se necesita un esfuerzo de investigación. Nuestra
metodología TrUStAPIS, junto con otras metodologías para la obtención de requisi-
tos de seguridad (es decir, TROPOS, Secure TROPOS, I * [21, 111, 162]) se pueden
fusionar para proporcionar a los desarrolladores una herramienta completa para la
obtención de requisitos que conducen a las mejores prácticas bien establecidas. Esta
consideración también puede ser útil para la fase de modelado, donde nuestro en-
foque basado en modelos y otras metodologías existentes como UMLTrust [152] o
SecureUML [93] se pueden analizar juntas para explorar diferentes metodologías que
pueden ser útiles en el SDLC de cualquier sistema. Investigar una forma de integrar
estas metodologías para incluir seguridad, confianza y reputación puede generar un
beneficio excelente para el SDLC y los desarrolladores.

Configuración y soporte visual para la implementación de la confianza

y la reputación Con nuestro trabajo de tesis, también hemos cubierto parcialmente
este aspecto al proponer herramientas (es decir, plantillas JSON, diagramas gráficos
de contexto y trazabilidad) para brindar a los desarrolladores y partes interesadas
una herramienta de visualización para el desarrollo de una entidad IoT confiable. De
todos modos, pasos adicionales en esta dirección pueden impulsar la productividad
al enfocarse en las funcionalidades centrales de una entidad de IoT confiable. Tam-
bién puede ser una forma de proporcionar a los desarrolladores herramientas que los
ayuden a escribir código para crear bibliotecas o marcos en una práctica conocida
que se implementará durante la fase de desarrollo. Esto podría ser más efectivo si los
marcos también se integraran en otras fases del SDLC para permitir una verificación
y derivación automáticas de las entidades en desarrollo.
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Creación de un modelo de confianza estándar para IoT Con parte de
nuestra investigación que publicamos en [47], hemos analizado los modelos de confi-
anza de tres fabricantes diferentes (es decir, Google Mini Home, Alexa Echo Dot y
Philips Hue Lights), descubriendo que sus modelos de confianza son muy diferentes
entre ellos. Por ello, creemos que de acuerdo con el trabajo futuro que hemos men-
cionado anteriormente, es fundamental que en un futuro próximo se cree un modelo
de confianza estándar a implementar para las entidades de IoT con el fin de mejorar
los aspectos de confianza y seguridad. De hecho, las grandes diferencias entre las
entidades de IoT generarán dificultades para implementar tanto la confianza como
la seguridad entre las entidades y los usuarios de IoT. Por otro lado, si se toma en
consideración y se desarrolla un protocolo estándar, aumentará la confianza en los
dispositivos IoT y sus usuarios. En nuestro trabajo, hemos propuesto un modelo
de confianza general considerando los posibles usuarios del dispositivo, otorgando a
cada uno de ellos un rol y una puntuación de acuerdo al contexto de la funcionali-
dad requerida. De todos modos, creemos que se necesitará más investigación en esta
dirección para proponer y probar un modelo de confianza general para las entidades
de IoT.

Confianza e Internet social de las cosas Internet social de las cosas (SIoT
de sus siglas en inglés) es un nuevo concepto que vincula a las entidades de IoT y sus
usuarios con las entidades de IoT y los usuarios de sus amigos, familiares o colegas.
Este es un campo temprano y el concepto SIoT debe aclararse y explorarse más.
Además, esta línea de investigación se puede fusionar con la anterior porque SIoT
puede considerarse como bidimensional, donde también las relaciones entre usuarios
son importantes y deben ser consideradas en un modelo de confianza. Normalmente,
en los paradigmas de IoT, esta dimensión no se considera. Sin embargo, en un
mundo fuertemente conectado donde los usuarios tienen muchas relaciones entre ellos,
este parámetro puede ser útil para desarrollar modelos de confianza que tomen en
consideración estas conexiones. Además, se necesita una exploración de dónde y cómo
se puede aplicar SIoT tanto en el IoT profesional como en el de los consumidores. De
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hecho, SIoT también puede ser útil en IoT empresarial (pr ejemplo, IoT industrial),
ya que especifica la interacción de las entidades y los usuarios de IoT según sus
funciones (es decir, autorización de seguridad).
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