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Abstract—The emergence of deep learning has caused its
massive application to different fields in industry and research,
among which is the clinical field, especially in those where
the data is structured in the form of images or video. The
present proposal intends to develop a coronary angiography
image analysis system based on artificial intelligence. These
images are radiocontrast X-ray images of the coronary arteries.
The proposed system will be able to analyze these coronary
angiography images of patients with no obstructive coronary
lesions to detect and characterize smooth and irregular coronary
arteries and predict the presence of cardiovascular events during
follow-up. Deep learning convolutional artificial neural networks
will support the algorithmic basis of the proposed system.

Index Terms—stenosis detection, coronary angiography im-
ages, convolutional neural networks

I. INTRODUCTION

Nowadays, cardiovascular diseases remain to be the leading
cause of death in several countries, especially in developed
countries [1], making it necessary to continue and maintain
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prevention protocols and correct diagnosis of patients with
cardiovascular heart disease (CHD). One of the many possible
causes of a heart attack is suffering a cardiovascular artery
disease (CAD), such as the presence of stenosis in the coronary
arteries. Stenosis is understood as the narrowing or reduction
of the lumen of a conduit or orifice in the human body, in
this case, the coronary arteries, which prevent or hinder blood
flow to the heart [2]. Invasive Coronary Angiography (ICA) is
considered the gold standard when there is suspected a CAD
[3].

ICA is based on introducing a specialized catheter of about
2 millimeters in diameter through a percutaneous incision in
the femoral or brachial artery, situated in the groin and the arm,
respectively. Once the catheter reaches the coronary arteries,
it injects a radiopaque contrast media, staining them. In this
way, it allows the angiographer, an X-ray medical team, to
define the coronary anatomy of the patient, showing the state
of the coronary arteries and if there is a luminal obstruction,
its degree. The physicians analyzed the image acquired and the
information obtained includes the identification of the area in
which is located the lesion, its length and diameter, and the
nature of the obstruction, such as a thrombus or a dissection
[4]. This precise information allows for making a complete
diagnosis.

This analysis requires a highly experienced physician with
extensive knowledge of coronary artery anatomy because
commonly the assessment of the percentage of lesions is
done visually. Therefore, the interpretation of the ICAs has an
important subjective component and interobserver variability,
that is accompanied by other facts, such as the presence
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Fig. 1. The framework of the proposed methodology.

of alterations by drugs administered [4]. In this context, a
misrepresentation could have severe clinical consequences,
because during the catheterization procedure the cardiologist
has to evaluate if the patient present stenosis and its diagnosis,
to decide if an angioplasty, placing a stent, would be necessary
or not, which depends on the degree of the lesion.

To help improve the clinical diagnosis of these cardiovascu-
lar heart diseases, deep learning techniques are used, which are
being widely used for the analysis of medical images. Thanks
to this computational paradigm, it is possible to know if a
patient has stenosis and, more importantly, where it is present
[5], [6]. Information that is very valuable to place the stent in
the right place [7].

The main objective of this proposal is to automatically
detect and localize the CAD from ICA images through deep
learning techniques. This way, we could help cardiologists
detect those lesions that have an uncertain prognosis and
is currently visually carried out. Additionally, a comparative
study will be carried out between different classification neural
networks based on convolutional models.

II. METHODOLOGY

Figure 1 shows a schematic of the framework developed
for this work. To take advantage of some public data sets
to detect stenosis [6], [7], whose images are divided into
patches or regions, the proposal will be framed within a
classification system and not a detection and localization one.
Thus, the first task will be to divide the image into 32x32
patches or regions. This division will not entail overlap for
the training of the convolutional network models. We will
compare known architectures, such as Resnet, EfficientNet or
MobileNet, adapting the input layer to take reduced images
(32x32 grayscale patches) and the output layer to work with
a binary classification problem. Subsequently, these already
defined models will be trained to classify new regions as
stenosis or non-stenosis. These models will be stored to be
used in the inference phase of new coronary angiography
images.

A. Data augmentation

Having unbalanced sets would make the model results unac-
ceptable or unreliable, as the model will accurately predict the
majority class, while being relatively inefficient at classifying
the minority class. This situation arises in our proposal. There
is a much higher number of regions labeled as non-stenosis
than regions labeled as stenosis in any of the available public
data sets. Different data augmentation techniques have been
applied to the training set to solve this issue. In addition, an
stratified cross-validation will be used to improve the results
further.

Therefore, using this methodology the initial set will be
divided into 5 boxes with samples from both classes. For
each K the initial set will be divided into training (80%) and
test (20%) and different data augmentation techniques will be
applied only to the training set of the minority class (stenosis).
In this way, for each K, the training set, as well as the test
set, will be different and the model will have more different
data with which to learn and with which to predict.

1) Sampling and augmentation: The sets of stenosis and
non stenosis have been balanced by equalizing their samples
to a midpoint, so that the minority class is increased and
the number of samples of the majority class is reduced.
Multiple images with different transformations from the orig-
inal ones are generated for this data augmentation technique.
The modifications applied are 15 degrees of rotation, 0.20
displacement in width, and horizontal and vertical flip. This
process provides five hundred new images from the training
set with stenosis. An under-sampling is performed in the
majority class, preserving six hundred images with no stenosis
randomly selected. The final training set will consist of a
balanced number of samples for each class, 500 augmented
+ 90 actual stenosis, and 600 non-stenosis regions.

2) Minority class augmentation: For this data augmentation
technique, a more aggressive balancing has been performed
than the one used in the previous section since the minority
class will be equalized to the majority class. The same types of
transformations are used as in the last technique. We start from
about 90 images that present stenosis of the training set and
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generate 1000 new images. The result is a balanced training
set with 1000 images for each class.

3) Proportional data augmentation: In this technique, the
training and validation set has been augmented without consid-
ering the labels, i.e., they have been augmented regardless of
whether they present stenosis or not. A rotation of 10 degrees,
an offset of 0.05 in width, and a horizontal flip have been
applied to both sets. Five hundred images have been generated
for training and one hundred for validation. Note that the
unbalanced ratio will still exist when generating new images
of both classes.

4) Synthetic data: Another technique that has been em-
ployed is an algorithm that generates synthetic regions from
scratch [7]. This algorithm first draws random background
gradients, uses Bézier curves to represent the veins, adds
white noise, and applies Gaussian blur to the whole image.
This technique makes it possible to generate any number of
images for both classes. These synthetic images are easily
distinguishable from the real ones. Especially the natural set of
images without stenosis has many images with borders, while
in the synthetic set, there is always at least one vein. Therefore,
it is necessary to train the model first with the synthetic data
and a second time with the actual training set.

B. Convolutional Neural Networks

Convolutional Neural Networks (CNN) is a type of model
of deep learning which incorporate at least one convolutional
layer, whose proposal is to extract the features of the input im-
age. The former convolutional layers extract the basic features
and the later layers extract detailed features from the basis.
The convolutional layers are based on applying convolutional
kernels, which work as a kernel filter being activated with
a specific condition [8]. CNNs are mainly composed of a
sequence of convolutional layers and other basic operations,
such as pooling layer, based on simplifying the given input;
activation, which returns a featured map with a selection of a
threshold; fully connected layer, which is a classification layer,
whose output is formed of as many nodes as there are classes;
and softmax layer that gives a probability classification [9].

Residual Networks (ResNets) are characterized by the intro-
duction of shortcut connections, which allow skipping some
blocks of convolutional layers of the original network and
then normalized by batches and not linearly. Specifically, in
this study ResNet50 is used, which is characterized by being
composed of 50 layers deep [10].

EfficientNet is considered as a group of convolutional mod-
els, that are between B0 and B7. These models stood out
because they are based on the implementation of a different
activation function called Swish, instead of the commonly used
Rectifier Linear Unit (ReLU), improving the performance of
classification problems [11]. Also, EfficentNet is characterized
by achieving more efficient results by scaling the three dimen-
sions of a CNN: depth, which is the number of layers; width,
that is the number of filters; and resolution, which is the size
of the feature map; instead of focusing only on one of them,
as other models do [12].
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Fig. 2. The structure of the custom CNN proposed.

MobileNet is characterized by less number of parameters in
comparison with other known architectures, which decreases
the computational load. The MobileNet architecture is based
on depthwise separable convolutions, which are composed of
two layers: depthwise convolution, which applies a single filter
to the input without extracting features; and then pointwise
convolution, which creates a linear combination output with
new features, while standard convolutions do it in one step
[13].

A simpler neural network is also considered in comparison
with the previous approaches (Figure 2). In it, we will not
take into account the neighborhood of the pixels, therefore
using only dense layers. Thus, the input image will initially
be vectorized, subsequently applying a dense layer, followed
by a ReLU activation. Next is a dropout layer, which helps
avoid overfitting by randomly setting 50% of the input to 0.
Finally, the last hidden layer is dense with one output node,
which applies a sigmoid activation as a function output.

The processing of new images not used for model training
will be similar to that performed in the training phase. Initially,
and from the new input image to locate and detect stenosis,
a set of overlapping patches will be generated, storing the
image pixel to which each one is associated. The previously
trained model will evaluate each of these regions to determine
if it corresponds to a region where stenosis is observed or not.
After analyzing all the patches, a reconstruction process of the
resulting image is carried out, where the pixels of each region
with stenosis will be marked. Since a pixel in the image can be
associated with several regions or patches due to overlapping
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TABLE I
RESULTS OBTAINED ON THE TEST SET USING THREE MEASURES: BALANCED ACCURACY, SENSITIVITY AND SPECIFICITY. THE HIGHER THE BETTER THE

PERFORMANCE OF THE MODEL. FOUR CONVOLUTIONAL NETWORK ARCHITECTURES HAVE BEEN TRAINED APPLYING FIVE DIFFERENT DATA
AUGMENTATION STRATEGIES.

Data Augmentation
Strategy

Measures Convolutional network model

Custom ResNet50 EfficientNetB4 MobileNet

None
Balanced Acc 0.500± 0.00 0.499± 0.00 0.500± 0.00 0.500± 0.00

Specificity 1.000± 0.00 0.999± 0.00 1.000± 0.00 1.000± 0.00

Sensibility 0.000± 0.00 0.000± 0.00 0.000± 0.00 0.000± 0.00

Sampling and
data augmentation

Balanced Acc 0.773± 0.02 0.933± 0.01 0.915± 0.02 0.872± 0.19

Specificity 0.686± 0.04 0.956± 0.02 0.963± 0.03 0.976± 0.02

Sensibility 0.860± 0.05 0.909± 0.03 0.868± 0.05 0.767± 0.39

Minority class
augmentation

Balanced Acc 0.808± 0.03 0.940± 0.03 0.931± 0.03 0.902± 0.05

Specificity 0.715± 0.04 0.980± 0.00 0.986± 0.01 0.987± 0.00

Sensibility 0.901± 0.06 0.900± 0.07 0.875± 0.05 0.817± 0.09

Proportional data
augmentation

Balanced Acc 0.500± 0.00 0.842± 0.08 0.835± 0.14 0.784± 0.17

Specificity 1.000± 0.00 0.984± 0.02 0.994± 0.00 0.991± 0.01

Sensibility 0.000± 0.00 0.701± 0.17 0.675± 0.29 0.576± 0.35

Synthetic data [7]
Balanced Acc 0.500± 0.00 0.500± 0.00 0.792± 0.20 0.764± 0.14

Specificity 1.000± 0.00 1.000± 0.00 0.991± 0.01 0.989± 0.01

Sensibility 0.000± 0.00 0.000± 0.00 0.592± 0.40 0.540± 0.27

in creating the set of regions, there will be sets of pixels that
are more likely to have stenosis than others, given that they
have been marked more frequently. It should note that this final
image will be the same size as the input coronary angiography
image.

III. EXPERIMENTAL RESULTS

The data set used [7] has 1394 patches without stenosis and
125 with stenosis, with a size of 32x32. It is pretty evident
that it suffers from a class imbalance problem and requires
some process of balancing or augmenting the minority class,
which has previously described in section II-A. Experiments
have been carried out using a k-fold methodology, studying
different convolutional architectures and applying different
data augmentation strategies.

A. Metrics

In order to obtain good results in the model evaluation stage,
it is necessary to define metrics that are suitable for our dataset.
The first thing to consider when choosing such metrics is to
know which characteristics of the dataset to be evaluated. In
this study, the data is highly unbalanced, with a majority class
with 1394 samples corresponding to negative in stenosis and a
minority class with only 125 regions corresponding to positive
in stenosis.

Since the accuracy measure is unsuitable for unbalanced
data, the balanced accuracy metric is considered for evaluation.
This measure is especially useful in classification problems
where the classes are significantly unbalanced. It reflects the
model’s accuracy in correctly classifying both classes without
the number of samples of each class being relevant:

BalancedAccuracy =
Sensitivity + Specificity

2
(1)

where:
• Sensitivity (TPR): measures the ability of the model to

detect as positive those samples that are actually positive.

Sensitivity =
Truepositive

Truepositive + Falsenegative
(2)

• Specificity (TNR): measures the ability of the model to
detect as negative those samples that are actually negative.

Specificity =
Truenegative

Truenegative + Falsepositive
(3)

Fig. 3. Balanced accuracy with different data augmentation strategies.
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B. Results

The experimental results using different neural models and
diverse data augmentation strategies are observed in Table I.
The starting point is the Custom network that, due to the
class imbalance problem, is not able to predict any case of
stenosis. Nevertheless, an using data augmentation techniques,
the combination that provided the best results was the one that
performed minority class augmentation, obtaining a balanced
accuracy of 0.808, and the one that performed sampling and
data augmentation, obtaining a balanced accuracy of 0.773.

Attempts have been made to further improve the results by
making use of pre-trained networks. The three combinations
that provided the best results were the augmentation of the
minority class with ResNet50, reaching the maximum bal-
anced accuracy obtained in the experiment with 0.940. With
sampling and data augmentation and ResNet50 we obtained
a balanced accuracy of 0.933 and finally, augmenting the mi-
nority class with EfficientNetB4, we reached 0.931 of balanced
accuracy.

Figures 3 and 4 show the result of the balanced accuracy
measure analyzing the data augmentation strategies and the
convolutional network proposals independently. It can be
stated then that the best data augmentation technique for this
problem is the minority class augmentation combined with the
pre-trained network ResNet50. The loss and balanced accuracy
during the epochs in the training phase can be observed in
Figure 6. By analyzing the sensitivity measure, a 0.90 is
reached. That implies the model is very good at predicting
the stenosis class, which is the most relevant for our study.
Figure 5 shows the confusion matrix of this experiment. The
values are the classification results over the test set, on average,
from the cross-validation strategy. It can be seen that out of
the total average samples in the test set (303 regions), there
are only two false negatives (classified as non-stenosis when it
is stenosis) and six false positives (classified as stenosis when
it is non-stenosis).

The final step of the proposed methodology involves recon-
structing the input image after splitting it into tiles to infer

Fig. 4. Balanced accuracy over four convolutional neural networks.

Fig. 5. Average confusion matrix using a K-Fold methodology (K=5) with
ResNet50 model and minority class augmentation strategy.

each region over the trained neural model. Thus, the process
consists in resizing the input image to 128x128, dividing it
into non-overlapping tiles/regions of 32x32, and generating
16 regions to analyse. The best pre-trained network is used
to infer each region and determine if it presents stenosis or
not. Finally, a reconstruction of the output image is performed
considering the class (stenosis or not) associated with each
tile. Figure 7 shows an example of the output image from a
coronary angiography image.

IV. CONCLUSIONS

This paper presents a study for the classification of images
with stenosis. The image is divided into 32x32 regions to
address the problem, and each region is classified using a deep
convolutional network. For the study to be complete, different
models and strategies for data augmentation have been tested
since it is a non-balanced problem. It is observed that the
best combination consists of the ResNet50 pre-trained network
together with the minority class augmentation strategy, with
0.94 of balanced accuracy in the test set.
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