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Abstract

Decision making is critical for any business to survive in a market environment. Exam-
ples of decision making tasks are inventory management, resource allocation or portfolio
selection. Optimization, understood as the scientific discipline that studies how to solve
mathematical programming problems, can help make more efficient decisions in many
of these situations. Particularly relevant, because of their frequency and difficulty, are
those decisions affected by uncertainty, i.e., in which some of the parameters that pre-
cisely determine the optimization problem are unknown when the decision must be
made.

Fortunately, the development of information technologies has led to an explosion in
the availability of data that can be used to assist decisions affected by uncertainty. How-
ever, most of the available historical data do not correspond to the unknown parameter
of the problem but originate from other related sources. This subset of data, potentially
valuable for obtaining better decisions, is called contextual information. This thesis is
framed within a new scientific effort that seeks to exploit the potential of data and, in
particular, of contextual information in decision making. To this end, in this thesis,
we have developed mathematical frameworks and data-driven optimization models that
exploit contextual information to make better decisions in problems characterized by
the presence of uncertain parameters.

Electricity markets are a clear example of a sector in which decision making plays a
crucial role in its daily activity. Moreover, uncertainty is intrinsic to electricity markets
and affects most of the tasks that agents operating in them must carry out. Many
of these tasks involve decisions characterized by low risk and being addressed periodi-
cally. In this thesis, we refer to these tasks as iterative decisions. This thesis applies
the aforementioned innovative frameworks for decision making under uncertainty using
contextual information to iterative decision making tasks faced in their daily operation
by agents participating in electricity markets.

VII





Resumen (extendido)

La toma de decisiones es un elemento clave en la operación diaria de cualquier negocio.
Ejemplos de toma de decisiones son la gestión de inventarios, la asignación de recursos
o la elección de los proyectos en los que invertir. La optimización, entendida como la
disciplina científica que estudia cómo resolver problemas de programación matemática,
puede ayudar a tomar decisiones más eficientes en muchas de estas situaciones. Partic-
ularmente relevantes, por su frecuencia y dificultad, son aquellas decisiones afectadas
por la incertidumbre, objeto de estudio de esta tesis.

Los mercados eléctricos son un claro exponente de sector en el que la toma de
decisiones, y en particular, la toma de decisiones bajo incertidumbre, juega un papel
crucial en su actividad diaria. Esta tesis desarrolla y aplica marcos innovadores de toma
de decisiones bajo incertidumbre a problemas operativos de los mercados eléctricos.
Las próximas secciones están dedicadas a hacer una revisión sobre los paradigmas más
destacados utilizados para la toma de decisiones bajo incertidumbre en el contexto
de los mercados de electricidad, resaltando los elementos más relevantes sobre los que
se asienta este trabajo. Seguidamente, resumimos el contenido de los capítulos que
componen este documento y enumeramos las contribuciones de esta tesis.

Toma de decisiones bajo incertidumbre en los mercados de

electricidad

Se avecinan tiempos emocionantes y a la vez desafiantes para el sector energético. La
liberalización de los mercados eléctricos ha dado lugar a que muchos agentes de mercado
individuales tengan que competir entre sí para mantenerse en el negocio. Para ello, las
decisiones de los agentes deben alcanzar determinados objetivos, por ejemplo, producir
beneficios, reducir la huella de carbono o gestionar el riesgo. Determinar el conjunto
de acciones más adecuado para alcanzar los objetivos del agente es un problema de
toma de decisiones. Ejemplos típicos de problemas de toma de decisiones a los que se
enfrentan los agentes son la programación horaria de centrales [79], la gestión de los
embalses y demás reservas de agua turbinables [127] o la determinación de la oferta que
maximiza los beneficios de los participantes en los mercados mayoristas de electricidad
[66]. Desgraciadamente, el funcionamiento cotidiano de estos agentes se enfrenta a un
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reto fundamental: la incertidumbre está presente en la mayoría de las decisiones que
tienen que tomar. En efecto, muchos de los parámetros que definen de forma inequívoca
los problemas a los que los agentes deben enfrentarse a diario solo se revelan una vez
tomada la decisión, por ejemplo, la demanda total de energía, las precipitaciones durante
el año hidrológico o el precio del mercado diario de electricidad.

Las técnicas empleadas por los agentes para hacer frente a la incertidumbre han
madurado en paralelo a la creciente aleatoriedad que han experimentado los mercados
eléctricos en su historia. El grado de incertidumbre que impregnaba los mercados eléc-
tricos en el siglo pasado era significativamente menor en comparación con la situación
actual. Las centrales eléctricas despachables constituían en exclusiva el portfolio de
unidades de generación que participaban en los mercados eléctricos en aquella época,
es decir, la producción de energía era controlable y cierta salvo por interrupciones acci-
dentales poco comunes. Así, la principal fuente de incertidumbre procedía de variables
como la demanda de energía, que seguía patrones relativamente predecibles, y del precio
de la electricidad, fuertemente dependiente del coste de los combustibles fósiles y, por
lo tanto, también anticipable. En esta etapa, las técnicas utilizadas por los agentes
para hacer frente a la incertidumbre en sus problemas de toma de decisiones se basa-
ban sobre todo en herramientas predictivas utilizadas junto con programas matemáticos
deterministas, suficientes para proporcionar un funcionamiento fiable de los mercados.

El panorama descrito en el párrafo anterior cambió radicalmente con la exitosa
integración de la energía eólica en el mix de generación. Este cambio estuvo motivado
por dos razones: la generación eólica depende de las condiciones meteorológicas, lo que
dificulta la planificación de la generación, y, al mismo tiempo, elevados volúmenes de
esta energía pueden influir en el precio de la electricidad en los mercados mayoristas.
El efecto combinado de ambas características provocó un aumento sustancial de la
incertidumbre en los mercados eléctricos y desencadenó la búsqueda de formulaciones
alternativas de los problemas de toma de decisiones que abordaran dicho fenómeno.
A pesar de los avances logrados, todavía es necesario un mayor esfuerzo para madurar
nuevos marcos de decisión que puedan hacer frente a la mayor cuota de energía renovable
necesaria para descarbonizar el sector energético y manejar la complejidad generada por
nuevas tecnologías como los vehículos eléctricos, la demanda flexible y las instalaciones
de almacenamiento.

Paralelamente a estas transformaciones, el desarrollo de las redes inteligentes y de
las tecnologías de la información ha provocado una explosión en la cantidad de datos
disponibles. No se trata de un cambio menor. Por el contrario, la disponibilidad masiva
de datos ha provocado un cambio de paradigma en el que los datos se entienden ahora
como el motor que debe impulsar las decisiones, creando un nuevo impulso en la in-
vestigación que aprovecha la programación matemática y las técnicas estadísticas y de
aprendizaje automático para desarrollar nuevos marcos basados en datos para la toma
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de decisiones. Para entender los puntos clave que sustentan el nuevo paradigma cen-
trado en los datos, es necesario comprender antes las diferentes fuentes que los generan.
Hay subconjuntos de datos que provienen directamente de los parámetros inciertos que
afectan al problema de interés, cuyo uso para guiar la toma de decisiones es ya habitual
en la literatura. Por el contrario, existe otro subconjunto de datos que no provienen
directamente de los parámetros que afectan al problema de decisión, pero que tienen
valor para explicar la aleatoriedad de dichos parámetros inciertos. Nos referimos a
este último como información contextual. La información contextual también se conoce
como información auxiliar y su uso en problemas de toma de decisiones es innovador y
apenas estudiado.

Esta tesis se enmarca dentro de este nuevo paradigma centrado en datos en el que
la información contextual ayuda en la toma de decisiones y estudia su aplicación en los
mercados eléctricos. Para entender como la información contextual puede mejorar la
toma de decisiones, es necesario entender primero las técnicas clásicas utilizadas con
tal fin. La siguiente sección está dedicada a revisar los paradigmas clásicos de toma de
decisiones comúnmente utilizados en los mercados eléctricos.

Paradigmas clásicos de toma de decisiones

Hay una serie de enfoques, muy bien establecidos en la literatura, que aprovechan la
programación matemática, las técnicas estadísticas y los datos para la toma de decisiones
bajo incertidumbre. El marco “predecir, luego optimizar” resuelve un problema de
optimización sustituyendo el parámetro incierto por un valor “probable”. Para ello,
es natural utilizar técnicas estadísticas y de aprendizaje automático para aproximar
el valor esperado de la variable aleatoria con la que se modela el parámetro incierto.
Un ejemplo clásico es, por ejemplo, la predicción de la demanda de energía eléctrica
requerida para el día siguiente, cuyos modelos de predicción están ampliamente curados
por la práctica y cuya estimación se utiliza, entre otros cometidos, para determinar las
reservas de energía a desplegar a través de varios modelos de optimización.

Uno de los enfoques más populares dentro del marco predecir y optimizar consiste
en minimizar una función de pérdida (por ejemplo, el clásico error cuadrático medio)
sobre un conjunto de muestras históricas para obtener un modelo predictivo del valor
esperado. Otro enfoque clásico consiste en suponer primero una familia de distribuciones
paramétricas candidatas a modelar el parámetro incierto para luego obtener aquella que
logra un mejor ajuste mediante el criterio de máxima verosimilitud. A continuación,
se puede calcular analíticamente el valor esperado de la distribución ajustada para
utilizarlo como estimación del valor real. En cualquiera de los casos, la estimación del
valor esperado, a menudo denominada en la bibliografía como “previsión puntual”, se
introduce en la tarea original de toma de decisiones, sustituyendo el parámetro incierto
y dando lugar a un problema de optimización determinista. Estas técnicas producen
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estimadores de propósito general que pueden utilizarse en otras aplicaciones y logran
rendimientos razonables cuando la precisión de la predicción es relativamente alta. Sin
embargo, esta metodología suele dar lugar a rendimientos subóptimos, por ejemplo, si
la familia de distribuciones se selecciona erróneamente o cuando la sobreestimación o
subestimación del parámetro incierto da lugar a pérdidas asimétricas.

En efecto, el marco predecir y optimizar solo aproxima al verdadero problema de
la toma de decisiones porque no considera el impacto económico de la incertidum-
bre ni garantiza la viabilidad de la decisión prescrita. Estas deficiencias motivaron el
desarrollo de otros paradigmas. La programación estocástica resuelve este problema
considerando la distribución de los parámetros inciertos y cómo dicha distribución se
traslada en posibles retornos económicos, determinando una decisión factible que maxi-
miza los rendimientos esperados. La introducción de la programación estocástica en los
mercados eléctricos dio lugar a un amplio corpus de investigación con muchas aplica-
ciones notables, como la programación horaria de centrales incluyendo centrales eólicas
[10, 133], la gestión estocástica de los embalses de agua y de reservas turbinables [52], y
métodos estocásticos para determinar la oferta óptima de compra o venta de electricidad
en el mercado mayorista [14, 41].

A pesar del importante desarrollo que ha supuesto la programación estocástica, este
marco no está exento de inconvenientes. En primer lugar, la verdadera distribución
del parámetro incierto (y, por tanto, la distribución del resultado económico) es típi-
camente desconocida y debe inferirse a partir de muestras [3], lo que puede introducir
un sesgo fundamental cuando la familia de distribuciones paramétricas se selecciona
erróneamente. Como alternativa, la distribución de resultados puede aproximarse uti-
lizando escenarios discretos [73, 25]. Sin embargo, el número de escenarios necesarios
en las tareas de decisión a escala real da lugar a problemas intratables por sus grandes
requisitos computacionales. Peor aún, aunque se conozca la verdadera distribución, la
evaluación del coste medio incurrido por una decisión dada puede requerir el cálculo
de la esperanza de una función de un vector aleatorio continuo (es decir, una integral
multivariable), que es, en sí misma, una tarea difícil en general [68].

Los programas estocásticos que tienen en cuenta el valor esperado de los rendimien-
tos producen soluciones con buenos resultados en promedio. La preocupación por otras
propiedades, por ejemplo, el rendimiento económico obtenido en los escenarios menos
favorables o la variabilidad de dichos rendimientos, motivó la investigación en medi-
das de riesgo alternativas para sustituir al valor esperado, como el valor condicional en
riesgo o la varianza [151, 116, 28]. Las mismas razones dieron lugar a paradigmas de
toma de decisiones completamente nuevos, con los notables ejemplos de la optimización
robusta y la optimización distribucionalmente robusta. Como ventaja a destacar, estos
paradigmas pueden producir problemas matemáticos más manejables que sus homólo-
gos estocásticos, dando lugar a reformulaciones con complejidades computacionales más
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favorables [16].
Estos no son los únicos paradigmas de toma de decisiones que se utilizan en los

mercados eléctricos. Procedente de una comunidad científica diferente, el paradigma
del aprendizaje en línea se centra en tareas de decisión de naturaleza repetitiva y car-
acterizadas por unos requisitos de inversión bajos o moderados. Este tipo de tareas, a
las que en esta tesis nos referimos como tareas de decisión iterativas, también pueden
ser abordadas por la programación estocástica, robusta y distribucionalmente robusta.
Sin embargo, su tratamiento por parte del paradigma de aprendizaje en línea es especí-
fico y el marco conceptual sustancialmente diferente. La aplicación de este marco a los
mercados eléctricos es más reciente pero igualmente exitosa, con aplicaciones al Flujo
de Cargas Óptimo [61, 70], a los mercados en tiempo real [67] o a la respuesta a la
demanda [85, 84].

Históricamente, ninguna de estas metodologías consideraba directamente la infor-
mación contextual para la toma de decisiones, ignorando los beneficios que este recurso
puede aportar para mejorar la toma de decisiones. La siguiente sección analiza la infor-
mación contextual con más detalle, discutiendo su potencial para mejorar los paradigmas
aquí presentados y revisando algunos trabajos representativos del estado del arte que
proponen marcos innovadores para aprovechar este recurso.

Información Contextual

El contexto que rodea a la operación de los mercados eléctricos incluye una gran cantidad
de fuentes de información potencialmente relevantes para la toma de decisiones, por
ejemplo, datos de satélites, patrones de comportamiento o precios de futuros de materias
primas. Antes de analizar cómo aprovechar la información contextual provenientes
de estas fuentes, conviene describir con más detalle la naturaleza de la información
contextual. Parte de la información contextual adopta la forma de realizaciones de
una variable (o vector) aleatoria, discreta o continua y que está relacionada con los
parámetros inciertos a través de una distribución de probabilidad conjunta usualmente
desconocida. Por el contrario, muchos fragmentos de información contextual no tienen
un carácter aleatorio, como el día de la semana o la hora del día en la que se revela el
evento incierto. Independientemente de su naturaleza, cualquier pieza de información
que se utilice como información contextual debe estar disponible antes de tomar la
decisión.

A continuación, presentamos un pequeño ejemplo para ilustrar mejor el papel de
la información contextual en un problema de toma de decisiones. En este ejemplo
una empresa comercializadora tiene que determinar la energía que debe comprar en un
mercado mayorista de electricidad para satisfacer la demanda total de energía de sus
clientes durante el día siguiente. El precio de la electricidad en cada hora y la demanda
total de energía son los principales parámetros que afectan a su decisión, que solo se
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revelan a posteriori una vez se ha realizado la oferta en el mercado. Es de esperar que el
comercializador disponga de un conjunto de datos con los precios y la demanda histórica
de electricidad que puede utilizar junto con información contextual, como las previsiones
meteorológicas, el calendario de festivos y el precio de los derivados financieros, para
tomar mejores decisiones.

Con una visión limitada de su potencial, la información contextual se ha utilizado
en el aprendizaje automático para pronosticar una cantidad incierta, generalmente uni-
dimensional, en el marco predecir y optimizar. En la mayoría de los algoritmos de
aprendizaje automático, el objetivo es estimar el parámetro incierto con la mayor pre-
cisión posible, es decir, minimizar el error cuadrático medio, sin tener en cuenta el
efecto que la sobreestimación o subestimación de la variable objetivo puede tener en
los resultados de la decisión. Siguiendo un camino independiente, los otros enfoques
clásicos de toma de decisiones descritos en la sección anterior, a saber, la programación
estocástica, robusta y distribucionalmente robusta, ha ignorado sistemáticamente la in-
formación contextual en problemas de optimización hasta hace pocos años, con pocas
excepciones (por ejemplo, véanse las referencias revisadas en [7]).

La comunidad científica se ha percatado recientemente del uso subóptimo de la
información contextual, por el que dicha información no se utiliza directamente para
tomar mejores decisiones teniendo en cuenta el problema de optimización. Esta toma
de consciencia ha impulsado nuevos esfuerzos de investigación sobre métodos basados
en datos que utilizan la información contextual para tomar decisiones más eficientes y
rentables. A continuación, revisamos los trabajos recientes que aprovechan la informa-
ción contextual para mejorar el rendimiento promedio de la toma de decisiones, tema
principal de esta tesis. En [7], los autores proponen utilizar una regla de decisión lineal
para traducir directamente la información contextual en decisiones en el contexto de
un clásico problema de inventario. El trabajo desarrollado en [56] refina el subóptimo
marco “predecir y optimizar”, desarrollando una función objetivo alternativa al error
cuadrático, teniendo en cuenta el problema de optimización lineal posterior. Mientras
que el trabajo de [56] mapea la información contextual en una estimación de la fuente
de incertidumbre, el enfoque de [7] traduce la información contextual directamente al
espacio de decisión. Sin embargo, ambos trabajos codifican sus respectivas relaciones a
través de un mapeo lineal. Además, estos dos trabajos están relacionados en que estos
mapeos lineales son estimadores globales, es decir, estimadores que aprovechan todas las
muestras disponibles para inferir el mapeo. Por último, el trabajo [17] es de naturaleza
distinta ya que estudia estimadores locales, es decir, técnicas que solo utilizan muestras
en una vecindad del estimador. En efecto, los autores de [17] se inspiran en varios mod-
elos de aprendizaje automático para desarrollar técnicas que calculan una distribución
empírica condicional de un parámetro incierto ponderando las observaciones pasadas en
función de las similitudes de su información contextual.
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Esta tesis se inspira en estos trabajos con un doble propósito, a saber: i) proponer
nuevos marcos que mejoren el uso de la información contextual en problemas de toma
de decisiones bajo incertidumbre, y ii) aplicar estos marcos a problemas de toma de
decisiones relevantes pertenecientes a los mercados eléctricos. En este sentido, esta
tesis está estrechamente alineada con los trabajos de [7], y [56]. En el curso de esta
investigación, el trabajo de [7] fue ampliado y aplicado al problema de un productor
de energía eólica, ofertando en un mercado diario de electricidad, dando lugar a la
publicación [101] y abordado en el Capítulo 3. Además, el trabajo [102], que forma parte
de esta tesis, propuso un método de programación matemática binivel para producir
estimadores mejorados similares en espíritu a los de [56], dando lugar a otra aplicación
presentadas en el Capítulo 4.

Tareas de decisión iterativas

La mayor parte de la teoría sobre la que se construye los paradigmas de decisión clásicos,
como la programación estocástica o distribucionalmente robusta, se basan en el supuesto
de que las distribuciones de probabilidad que gobiernan los parámetros inciertos son
fijas y que las muestras de dichas variables se comportan como variables aleatorias
independientes e idénticamente distribuidas (i.i.d.) [25]. En algunos casos, esta es una
suposición razonable. Por ejemplo, consideremos que unos amigos están jugando una
partida de cartas. En este juego hay varias cartas sobre la mesa en cada ronda, visibles
para todos los jugadores. En este punto, el lector puede haber adivinado ya que las
cartas sobre la mesa son información contextual. En efecto, el jugador (decisor) puede
utilizar las cartas que están a la vista para ayudar a determinar su próximo movimiento
(decisión). En este tipo de situación, podemos recoger cada movimiento y su resultado
como parte de una muestra i.i.d. en la que el momento en el que se realizó la jugada es
irrelevante. Esto es así ya que cada vez que las mismas cartas están sobre la mesa, se
reproducen las mismas probabilidades y decisiones óptimas.

Sin embargo, esta situación es casi una excepción, que se da en tareas específicas
típicamente relacionadas con juegos e invenciones diseñados por humanos. En la may-
oría de las situaciones, el entorno en el que se toman las decisiones iterativas es similar
pero evolutivo. Por ejemplo, cada día, el responsable de la toma de decisiones se en-
cuentra con patrones climáticos similares, competidores similares, un comportamiento
similar de los clientes y una realidad económica similar. Al mismo tiempo, el tiempo
cambia cada minuto, los clientes no son idénticos y la situación geopolítica y económica
cambia lenta pero constantemente, por nombrar algunos. Esta naturaleza causal pero
evolutiva del mundo en que vivimos justifica que podamos inferir algunas relaciones en-
tre la información contextual y los parámetros inciertos para un momento determinado
y la necesidad de actualizar estas relaciones para mantener su eficacia. Esto significa
que la suposición de que las muestras son i.i.d. en un conjunto de datos registrados
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durante largos períodos puede ser no válida. Para afrontar este problema, en esta tesis
investigamos una técnica conocido en la literatura como ventana móvil que puede com-
binarse con los marcos de decisión clásicos introducidos en este resumen para aprovechar
conjuntos de datos históricos y abordar, de forma práctica, tareas de toma de decisiones
iterativas en un entorno cambiante.

Resumen de los capítulos de esta tesis

En las secciones anteriores se han introducido los elementos fundamentales sobre los que
se construye esta tesis. A continuación, se resume el contenido principal de los capítulos
y apéndices que componen esta tesis.

El Capítulo 1 comienza con una breve evolución histórica de la toma de decisiones
en los mercados eléctricos, destacando la oportunidad de oro que tienen los agentes que
operan en ellos para mejorar sus operaciones a través de la información contextual. Al
igual que en este resumen, el capítulo resalta las contribuciones de esta tesis y avanza
la estructura general del documento.

El Capítulo 2 recoge el testigo, discutiendo formalmente los paradigmas clásicos
de toma de decisiones que acabamos de introducir. El capítulo continúa discutiendo el
potencial de la información contextual y cómo incorporar este valioso recurso en la toma
de decisiones. Partiendo del problema estocástico contextual canónico, confrontamos
las ventajas y desventajas de diferentes marcos de decisión, representativos del estado
del arte y diseñados para abordar este tipo de problemas. Contribuimos a este esfuerzo
científico con un marco matemático binivel con notables características y alcance gen-
eral. El último bloque del capítulo está dedicado a abordar las particularidades de las
tareas de toma de decisiones iterativas y trata dos temas principales relacionados: el
entorno de la ventana móvil y el paradigma del aprendizaje “en línea”. En cuanto al
primer tema, destacamos las ventajas de la configuración de la ventana móvil, que, en
combinación con los marcos anteriormente descritos en el capítulo, permite abordar
tareas iterativas en la práctica. En cuanto al segundo tema, revisamos las conexiones
del aprendizaje en línea con la ventana móvil y los demás marcos de decisión y pro-
ponemos un nuevo algoritmo en línea especialmente diseñado para tareas iterativas con
información contextual.

El Capítulo 3 es el primero de los dos capítulos dedicados a presentar varias apli-
caciones de los marcos de decisión contextual discutidos anteriormente en el contexto
de los mercados eléctricos. En este capítulo se trata el problema del productor eólico
desde dos perspectivas distintas.

La primera aplicación propone un método interpretable y computacionalmente efi-
ciente para mejorar tanto las tareas de predicción como las de oferta a mercado de las
energías renovables. Este método se basa en dos variantes de un modelo de optimización
basado en datos, desarrollado recientemente, que aprovecha la información contextual
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disponible para producir una predicción mejorada de energía renovable y para mejo-
rar la rentabilidad de las ofertas del productor en el mercado diario de electricidad,
respectivamente. La eficacia de nuestro enfoque se pone a prueba en un caso de es-
tudio realista en el que pretendemos, por un lado, mejorar la predicción emitida por
el operador del sistema eléctrico danés para la producción de energía eólica terrestre
en la zona de oferta DK1 del mercado eléctrico paneuropeo y, por otro, formular una
oferta de mercado competitiva para dicha producción. Para ello, simulamos una ven-
tana móvil que imita los procesos reales de predicción y oferta y explota la información
disponible en el momento en que debe emitirse la predicción o presentarse la oferta. El
porcentaje de mejora alcanzado en las métricas de las predicciones y de la rentabilidad
de la oferta señalan el valor intrínseco de explotar información adicional como por ejem-
plo las predicciones correlacionadas espacialmente. En esta línea, hemos observado que
el uso (como información contextual) de las predicciones de energía eólica terrestre y
marina en áreas geográficamente cercanas a la zona a la que pertenece la producción de
energía eólica objetivo son valiosas. Esto parece ser especialmente cierto si esas zonas
pertenecen al mismo país o al dominio del mismo operador del sistema.

La segunda aplicación discute un mercado eléctrico conceptual con una oferta it-
erativa en el que el tiempo entre la oferta y la entrega de energía es muy reducido.
En esta aplicación, particularizamos el algoritmo en línea capaz de tener en cuenta la
información contextual propuesto en el Capítulo 2 para mejorar las ganancias obtenidas
por un productor de energía eólica en dicho escenario. Según la mejor información de
que disponemos, esta es la primera vez que se aplican algoritmos en línea basados en
gradientes a este problema. El resultado muestra ganancias económicas sustanciales
con respecto a varios métodos de referencia, incluidos los que resuelven un problema
de optimización sobre un conjunto de entrenamiento de muchas muestras. Esto es, en
parte, debido a la rápida capacidad de adaptación de este algortimo, especialmente útil
en ambientes dinámicos, que le permite seguir patrones obviados por otros métodos
basados en problemas de optimización con conjuntos de entrenamiento. Además, estas
ganancias van acompañadas de una drástica reducción del coste computacional, lo que
permite la aplicación de este novedoso algoritmo incluso en los mercados computacional-
mente más desafiantes. El efecto combinado de este algortimo y del mercado descrito en
esta aplicación promete un significativo aumento de la rentabilidad de la energía eólica
y una mayor participación de esta tecnología en el mercado.

El Capítulo 4 discute dos aplicaciones que estiman inteligentemente los parámetros
inciertos considerando el problema de optimización subyacente, es decir, teniendo en
cuenta la región factible y el impacto que los errores sobre la función objetivo. En
ambas aplicaciones, los estimadores se construyen mediante modelos que toman como
entrada datos históricos e información contextual.

En la primera aplicación, aplicamos el enfoque contextual binivel, presentado en
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la Sección 2.2.4, al problema de un productor estratégico de energía que gestiona una
central térmicas. El productor ofrece la generación de dicha central en un mercado eléc-
trico mayorista modelado a través de una función de demanda residual inversa incierta.
Este enfoque produce estimadores prescriptivos de los parámetros inciertos que confor-
man la demanda residual, teniendo en cuenta la función objetivo y la región factible
del problema subyacente en su estimación. Bajo supuestos de convexidad, el programa
de optimización binivel resultante puede reformularse como un programa regularizado
no lineal y un programa cuadrático entero mixto. El primer problema de optimización
se resuelve iterativamente para valores decrecientes de un parámetro de regularización,
alcanzando soluciones óptimas locales en un tiempo mínimo. El programa entero mixto
es computacionalmente más costoso, pero, dadas las propiedades del problema, puede
resolverse hasta optimalidad global.

El rendimiento de este enfoque y su relevancia práctica ha sido evaluado a través
de un caso de estudio realista de un productor estratégico que participa en el mercado
eléctrico ibérico. En concreto, los resultados numéricos muestran que el marco binivel no
solo aumenta significativamente los ingresos del productor en general, sino que resulta
crítico para las unidades de generación punta. En efecto, los ingresos de mercado de una
central de generación punta son especialmente sensibles a la incertidumbre en la función
de demanda residual inversa. Por lo tanto, en este caso, el productor estratégico puede
poner en riesgo la mayor parte de sus ingresos de mercado al quedar fuera del mercado
o al operar en déficit. Nuestro enfoque, sin embargo, es, por construcción, capaz de
detectar dicha sensibilidad y, por tanto, de retener la mayor parte de los beneficios que
el productor obtendría bajo una función de demanda inversa perfectamente predecible.

Bajo los supuestos de convexidad, hemos proporcionado dos reformulaciones de un
solo nivel del programa binivel, a saber, un problema de optimización no lineal regular-
izado rápido de resolver y una reformulación no lineal entera mixta que puede alcanzar
la solución óptima. En comparación con los enfoques alternativos disponibles en la
literatura técnica, el nuestro presenta dos ventajas principales: garantiza la viabilidad
en problemas de toma de decisiones con restricciones, y su solución puede abordarse
directamente utilizando paquetes de optimización estándar.

La segunda aplicación propone un modelo de programación matemática basado en
datos para prescribir el valor de la demanda neta que debe utilizarse para liquidar un
mercado de electricidad de dos etapas con el fin de minimizar el coste total esperado
de la explotación del sistema eléctrico subyacente. Para ello, hemos formulado un
programa lineal entero mixto que modifica la predicción de la demanda mediante un
mapeo afín teniendo en cuenta las características técnicas y económicas de las reservas
de las centrales.

Los experimentos numéricos realizados en un modelo basados en el sistema eléctrico
europeo revelan que el ahorro de costes que suponen los mapeos afines estimados es
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sustancial. Además, partiendo de la base de que la estructura de costes de un sistema
eléctrico depende en gran medida de su punto de funcionamiento y, por tanto, del nivel
de demanda neta, hemos ideado una estrategia de partición de la muestra de datos
basada en clústers para entrenar diferentes mapeos afines para distintos regímenes de
demanda neta. La utilización de esta estrategia ha demostrado tener un doble efecto
positivo en forma de un ahorro de costes sustancialmente mayor y una notable dismin-
ución de la carga computacional del modelo de programación entera mixta propuesto.

Por último, el Capítulo 5 concluye esta tesis resaltando los aspectos principales de
esta investigación y discute una serie de vías abiertas para posibles trabajos futuros en
relación con las contribuciones de esta tesis.

Adicionalmente, el Apéndice A proporciona material complementario específico del
marco contextual binivel desarrollado en el Capítulo 2. En concreto, buena parte del
apéndice desarrolla cómo aplicar dicho método a problemas de programación estocástica
de dos etapas con variables de recurso e ilustra este procedimiento con dos problemas
clásicos de la literatura de la programación matemática. Adicionalmente, se proporciona
una prueba formal de la convergencia del método binivel a la solución óptima en la
aplicación del productor estratégico.

Contribuciones de esta tesis

Las principales contribuciones de esta tesis son:

1. La revisión del estado del arte de la toma de decisiones bajo incertidumbre uti-
lizando información contextual, comparando varios marcos recientemente prop-
uestos en la literatura. Además, esta revisión presta especial atención a las apli-
caciones en los mercados eléctricos.

2. El desarrollo de modelos de optimización y marcos matemáticos basados en datos
que aprovechan la información contextual en tareas de toma de decisiones afec-
tadas por la incertidumbre y la aplicación de estos modelos a problemas clásicos
del mercado eléctrico. Más concretamente, esta tesis ha resultado en:

3. Dos modelos de programación matemática interpretables y computacionalmente
eficientes basados en reglas de decisión lineales. El primero mejora la predicción
de energía eólica del operador del sistema danés mediante el uso de predicciones
geográficamente correladas de áreas de oferta vecinas. El segundo aprovecha esta
predicción mejorada junto con datos históricos del mercado para aumentar la
rentabilidad de un portfolio de generación eólica en un mercado diario de electri-
cidad con penalizaciones por desvío;

4. Un algoritmo en línea basado en gradientes y diseñado expresamente para tareas
iterativas con información contextual disponible. Este algoritmo destaca por su
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baja carga computacional y su habilidad para adaptarse a ambientes dinámicos,
siendo la primera vez que se aplican algoritmos de este tipo en este problema. Los
resultados obtenidos en el caso de estudio prueban su potencial para mejorar la
rentabilidad y facilitar la integración de la energía eólica en los mercados eléctricos;

5. El desarrollo de un marco general basado en datos para la toma de decisiones bajo
incertidumbre que resulta en modelos de programación matemática binivel. Estos
modelos aprovechan la información contextual para producir estimadores de los
parámetros inciertos teniendo en cuenta la región factible y la función objetivo de
la tarea de decisión abordada. Este modelo se aplica al problema de un productor
convencional (térmico) de energía eléctrica que oferta su generación de forma
estratégica en el mercado diario, obteniendo notables beneficios.

6. El diseño de un modelo de programación matemática entero mixto para con-
struir, a partir de los datos históricos disponibles, una estimación mejorada de la
demanda neta utilizada en la liquidación de un mercado eléctrico de dos etapas.
Este estimador inteligente produce ahorros sustanciales gracias a que el modelo
de programación matemática tiene en cuenta la asimetría de los costes de reserva
del sistema eléctrico subyacente.

7. Además, se extraen una serie de conclusiones técnicas a partir de ejemplos ilus-
trativos y casos de estudio analizados que son relevantes para los mercados de
electricidad, junto con posibles líneas de investigación futuras.
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4 Chapter 1. Introduction, contributions and thesis outline

The subject matter of this thesis is the development of new data-driven frameworks
for decision making under uncertainty applied to electricity markets. This chapter pro-
vides some background on the evolution of decision making in the context of electricity
markets, paving the way for a more formal discussion of the subject in the following
chapters. The contribution of this thesis and the structure of the document close this
chapter.

1.1 Decision making under uncertainty in electricity mar-

kets

Thrilling yet challenging times lie ahead for the energy sector. The liberalization of the
electricity markets resulted in many individual agents who have to compete with each
other to remain in business [75]. To this end, agents’ decisions must achieve certain
objectives, e.g., producing revenues, reducing the carbon footprint, or managing risk
[136]. Determining the most appropriate set of actions to achieve an agent’s targets is
a decision-making problem. Typical examples of decision-making problems that agents
routinely face are unit commitment, managing water reservoirs, or determining a profit-
maximizing bid/offer in wholesale markets [62]. Unfortunately, the day-to-day operation
of these agents faces a fundamental challenge: uncertainty plagues most of the decisions
they have to make [41]. In effect, many of the parameters that unambiguously define the
problems that agents must deal with daily are only revealed after the decision has been
made, for example, total energy demand, seasonal rainfall or wind energy production.

The techniques employed by agents to address uncertainty have matured in parallel
with the increasing randomness that electricity markets have experienced in their his-
tory. The degree of uncertainty that pervaded electricity markets in the last century was
significantly lower compared to the current situation [55]. Dispatchable power plants
made up the portfolio of the generating units which comprised the electricity markets
in those days, i.e., energy production was certain except for uncommon failures [135].
Thus, the main source of uncertainty originated from variables such as energy demand,
which followed relatively predictable patterns, and electricity prices, which were highly
dependent on the cost of fossil fuels [32]. At this stage, the techniques used by agents
to address uncertainty in their decision-making problems were mostly based on simple
forecasting tools and deterministic mathematical programs, enough to provide a reliable
operation.

The aforementioned landscape changed dramatically with the successful integration
of wind energy into the mix of generation [49]. This change was motivated for two
reasons: the wind power production is completely dependent on whether conditions, and
therefore hinder generation planning, and, at the same time, high volumes of this energy
can influence the electricity price in wholesale markets [38]. The combined effect of these
two features led to a substantial increase in the randomness affecting electricity markets
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and triggered the search for alternative formulations of decision-making problems that
formally addressed uncertainty.

As a result of this effort, stochastic programming (SP) was introduced in electricity
markets [9]. Stochastic programming considers the full probability distribution of the
uncertain parameters. The introduction of SP in electricity markets resulted in a vast re-
search corpus with many notable applications [137], such as stochastic unit commitment
and economic dispatch to accommodate wind energy [33, 10, 133], stochastic manage-
ment of water reservoirs [52], and stochastic methods for trading electricity [14, 41].
However, this paradigm is not exempt from inconveniences, as it typically results in
mathematical programs with heavy computational requirements [53, 93]. In addition to
the problematic computational tractability of SP, the concern for other properties of the
outcome, e.g., the return in less favorable scenarios or the variability of returns, resulted
in many models being developed under the application of more robust decision-making
paradigms [40]. Notable examples of these paradigms are robust optimization (RO)
[89, 88] and distributionally robust optimization (DRO) [144, 145, 58].

These are not the only decision-making paradigms that are used in electricity mar-
kets. Originating from a different scientific community, the online learning (OL) para-
digm focuses on decision tasks that are repetitive in nature and characterized by low
or moderate investment requirements. This type of task, which we refer to as iterative
decision making in this thesis, can also be tackled by SP, RO and DRO. However, their
treatment by OL is specific and the conceptual framework substantially different. The
application of OL to electricity markets is more recent but equally successful with ap-
plications to the optimal power flow [61, 70], real-time markets [67] or demand response
[85, 84]. Notwithstanding the advances achieved, further effort is still required to mature
new models that can cope with the higher share of renewable energy required to decar-
bonize the energy sector and to handle the complexity generated by new technologies
such as electric vehicles, flexible demand, and storage facilities.

Parallel to the transformations produced by renewable energy and the introduction
of new decision-making approaches, the development of smart grids and information
technologies led to an explosion in the amount of raw data available [115]. This is
not a minor change. Rather, the massive availability of data has caused a paradigm
shift in which data are now understood as the engine that must drive decisions, creat-
ing a new thrust in research that leverages mathematical programming and statistical
and machine-learning techniques to develop new data-driven frameworks for decision-
making problems [99]. To understand the key points that underpin the new data-centric
paradigm, it is necessary to comprehend the different sources that generate the data.
There are streams of samples taken directly from the uncertain parameters that shape
the problem of interest, whose use to guide decisions is already common in the literature
[15, 95]. On the contrary, other pieces of information are not directly involved in the
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decision-making problem but have value in explaining the randomness of the relevant
uncertain parameters. We refer to the latter as contextual information.

In effect, the context in which markets operate includes a wealth of potentially
relevant sources, e.g., satellite data, behavior patterns, or stock prices, which can help
explain the source of uncertainty affecting an agent’s decision-making problem [30, 65,
128]. A small example follows to better illustrate the role of contextual information
in a decision-making problem. Consider a retailer who has to determine the energy to
buy in a wholesale electricity market to satisfy an uncertain demand the next day. The
price of electricity in each hour and the total energy demand are the main parameters
that affect her decision, only revealed after the decision has been made (the offer on
the market). Hopefully, the retailer has a dataset with historical electricity prices and
demands that can be used, together with weather forecasts, the bank holiday calendar,
and the price of financial derivatives to reduce the uncertainty in the decision-making
problem and thus determine a cost-effective offer.

Contextual information is also known as covariate information, side information,
auxiliary information, or features, [27, 8, 148] depending on the area of expertise, and
its use in decision-making problems is promising and very recent. This thesis is framed
within this new data-centric paradigm and aims to develop new mathematical models
that leverage contextual information to produce efficient decisions and apply them to
problems that agents in electricity markets routinely face.

Next, Section 1.2 formulates the main contribution of this thesis and Section 1.3
outlines the structure of the following chapters.

1.2 Contributions of this thesis

The main contributions of this thesis are:

1. The review of the current landscape of decision making under uncertainty using
contextual information, comparing several state-of-the-art frameworks recently
proposed in the literature. Furthermore, this review pays special attention to the
applications to electricity markets.

2. The development of data-driven mathematical models and frameworks that lever-
age contextual information in decision making tasks affected by uncertainty and
the application of these models to classical operational problems of electricity
markets. More specifically, this thesis achieves:

3. Two computationally efficient and interpretable linear programming models based
on linear decision rules that leverage contextual information in the short-term
trading problem of a wind power producer. The first improves the Danish system
operator’s wind power forecast by using geographically correlated wind predictions
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from neighboring bidding zones. The second leverages this enhanced forecast to-
gether with historical market data to increase the profitability of a wind generation
portfolio in a realistic day-ahead electricity market with imbalance penalties;

4. A fully online gradient descent algorithm specifically designed to leverage contex-
tual information in iterative decision-making tasks. This algorithm stands out
for its low computational cost and its adaptability to dynamic environments. To
the best of our knowledge, this is the first time that online gradient methods are
applied to this problem. The numerical results obtained showcase its potential to
improve profitability and facilitate the integration of wind energy into electricity
markets;

5. The development of a general data-driven framework for decision making un-
der uncertainty, resulting in bilevel optimization models. These models leverage
contextual information to produce estimators of the uncertain parameters taking
into account the feasible region and the objective function of the decision task
addressed. The framework is applied, among others, to the problem of a strategic
thermal producer offering in a day-ahead market, highlighting the crucial benefit
of this strategy in peak generation units strongly dependent on uncertain market
conditions;

6. The design of a mixed-integer mathematical programming model to construct,
from available historical data, an improved estimate of the net demand to be
used in the market clearing of a two-step electricity market. This strategy yields
substantial savings as a consequence of taking into account the cost asymmetry
of the underlying power system.

7. A number of technical conclusions are drawn from illustrative examples and realis-
tic case studies that are relevant to electricity markets, together with prospective
directions for future research.

1.3 Thesis outline

The structure of this thesis is outlined as follows:
Chapter 2 provides the mathematical background and tools to be used in the

applications presented in the following chapters. In particular, Chapter 2 provides a
formal introduction to the classical decision making paradigms under uncertainty and
thoroughly discusses the use of contextual information in stochastic problems, reviewing
several state-of-the-art frameworks for this purpose. As one of the main methodological
contributions, this chapter proposes a new bilevel mathematical framework for decision
making under uncertainty with contextual information, highlighting its wide applicabil-
ity. This chapter also addresses the particularities of iterative decision-making tasks and
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how to approach them from different paradigms, introducing a new online algorithm
specially designed to leverage contextual information in iterative decision making.

Chapter 3 presents two applications of the contextual decision-making frameworks
discussed in Chapter 2 to the problem of a wind power producer participating in a
wholesale electricity market with a dual-price settlement for imbalances. The first ap-
plication proposes two models based on decision rules to produce both an enhanced
forecast of the wind energy production and a more profitable market offer. The second
application demonstrates the tracking capability and inexpensive computational cost of
online gradient-based algorithms in the wind power producer problem. We envision a
conceptual wholesale market to facilitate the integration of wind energy and maximize
the benefits in combination with the proposed online algorithm. The result shows dra-
matic improvements against standard industry practices and a substantial performance
increase with respect to state-of-the-art methods, facilitating the integration of wind
energy in electricity markets.

Chapter 4 presents two applications that smartly estimate the uncertain parame-
ters, taking into account the optimization problem and the available contextual infor-
mation. The first application applies the bilevel framework, introduced in Chapter 2,
to the problem of a strategic thermal power producer offering in a wholesale electricity
market, where the source of uncertainty comes from the unknown market conditions.
The resulting bilevel problem is reformulated as a single-level optimization problem and
solved using commercially available solvers. A second application follows, investigating
alternative procedures for the market clearing of a two-stage electricity market com-
patible with current industrial practices. We propose a mixed-integer program that
leverages the problem structure to construct, from the available contextual information
and historical data, a prescription of the net demand, which does take into account the
power system’s cost asymmetry.

Finally, Chapter 5 concludes this thesis and discusses a number of avenues for
future work.

Additionally, Appendix A provides specific supplementary material for the con-
textual bilevel framework developed in Chapter 2.
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This chapter provides the mathematical tools and framework to be used in the ap-
plications for electricity markets discussed in Chapter 3 and 4. Starting with the formal
presentation of the classical paradigms used in decision making under uncertainty in
Sections 2.1, this chapter continues reviewing the use of contextual information in de-
cision making and presents four state-of-the-art approaches for contextual optimization
in Section 2.2. Then, Section 2.3 addresses several topics related to iterative decision-
making tasks, including their treatment within the online learning paradigm. Finally,
Section 2.4 closes the chapter, highlighting the main ideas and establishing connections
with successive chapters.

Given that the tools and frameworks introduced in this chapter are applicable to
decision making tasks in general, we avoid the terms specific to electricity markets for
the sake of a general presentation. A significant part of this chapter is based on the
work in [102], product of this research.

2.1 Classical paradigms for decision making under uncer-

tainty

There are many situations in which a decision maker has to determine the best actions
needed to achieve certain objectives. The actions that best fulfill such objectives can
be achieved by solving an optimization problem. In its simplest form, an optimization
problem consists of finding the decision vector z within a compact nonempty feasible
set z 2 Z ✓ Rn that minimizes a cost function f(z), f : Z ! R, known as the objective
function, and through which we evaluate the fulfillment of the goal. Mathematically,
we can write

min
z2Z

f(z). (2.1)

The aforementioned optimization problem is constructed based on the knowledge that
the decision maker has regarding the cost function to be minimized and the constraints
to be satisfied. This knowledge is introduced through a vector y 2 Rm that defines a
particular instance of the optimization problem. Note that in this thesis, we focus on
problems where Z is independent of the parameter y. We can emphasize the dependence
of the objective function on the parameter y by rewriting the problem (2.1) as follows:

min
z2Z

f(z;y), (2.2)

where y 2 Y ✓ Rm and we have redefined the objective function accordingly f : Z⇥Y !
R. Often, the parameter vector y is not known with certainty. This happens when y

refers to events that will occur in the future and are therefore uncertain at the time of
making a decision. Thus, the parameter vector y can be modeled as a random variable
Y governed by a probability distribution P with several fundamental implications. First
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of all, the objective function inherits the randomness of Y and must also be treated as a
random variable [123]. To minimize a cost function that depends on a random variable,
we must therefore introduce a risk measure ⇢ on P that transforms the random variable
outcome into a real-valued function, which can be minimized according to

min
z2Z

⇢
P
(f(z;Y)). (2.3)

Although the feasible region Z is known with certainty, it should be clarified that Y

can affect the feasibility of recourse variables, that is, the variables to be optimized
after the realization of the uncertainty to produce an optimal reaction. The paradigm
that addresses problems in the form of (2.3) is known in the literature as Stochastic
Programming (SP) [118, 25]. When the main concern of the decision maker is to min-
imize costs, the most widely used measure of risk is undoubtedly the expected value
E[·], which returns the mean value of the random cost f(z;Y) for a fixed decision z.
Replacing the generic risk measure with the expected value, problem (2.3) becomes

min
z2Z

EP[f(z;Y)]. (2.4)

Therefore, the decision maker obtains the vector z that minimizes the expected value of
the outcome by solving the above problem. However, the distribution P of the parameter
vector y is not known in most practical cases. The only known information usually
reduces to a finite set of observations of the random parameter(s) in question, YN =

{y1,y2, . . . ,yN} = {yi}Ni=1
. Attempts have been made to construct approximations

of (2.4) through the observation set YN , which offer results close, in a probabilistic
sense, to those that would be obtained from such a stochastic optimization problem. A
method to approximate P proceeds by assuming a family of parametric distributions to
model the uncertain parameter from which the best fit is obtained using the maximum
likelihood criterion [3]. Given that the data do not contain perfect information of the
random variable Y, the result of this process is an estimator P̂ of the true distribution.
With this estimator, we can alternatively solve the following problem

min
z2Z

EP̂[f(z;Y)]. (2.5)

Among other disadvantages, this approximation can introduce a fundamental bias when
the family of parametric distributions is wrongly selected. Alternatively, the outcome
distribution can be approximated using scenarios constructed based on the dataset YN

[73, 41]. Thus, the expected value operator reduces to a summation of finitely-many
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discrete scenarios, yielding

min
z2Z

⌦X

w=1

⇡wf(z;yw), (2.6)

where ⇡w 2 [0, 1] is the probability of scenario w 2 {1, . . . ,⌦} characterized by a vector
of uncertain parameters yw 2 Y. A special case for the construction of scenarios, which
is also a straightforward way to construct the estimator P̂, proceeds by assigning an
equal probability mass to the samples in YN , resulting in an estimate of the probability
distribution known as empirical distribution. Replacing the empirical distribution in
(2.6) now renders

min
z2Z

1

N

NX

i=1

f(z;yi). (2.7)

The problem above is the sample average approximation (SAA) of (2.4). Sample average
approximation is a well-known data-driven solution strategy in Stochastic Programming
[82, 118, 80], also known as empirical risk minimization in the realm of machine learning.
More interestingly, the summation over equiprobable scenarios based on a dataset is a
key ingredient that many of the frameworks in this chapter share.

The models inspired by the stochastic programs introduced in the preceding para-
graph produce solutions with good performances on average. However, the concern for
other properties of the outcome, e.g., the variability of such returns or the return in the
less favorable scenarios, have motivated research into alternative approaches that differ
from the prototypical expected-value problem (2.4). One of the most straightforward
ways to reflect these concerns is to replace the risk-neutral expected value with another
risk measure, such as the variance or the conditional value at risk (CVaR) [151, 116, 28].

Using alternative risk measures is not the only way to address other decision maker’s
goals. Conversely, there are several other completely different paradigms designed to
protect the decision maker against harmful realizations of the uncertain parameter. Let
zS 2 argminz2Z E[f(z;Y)] and v

S
= E[f(zS;Y)]. Although v

S is optimal in expecta-
tion, the value f(zS;yi) can still be very large for a particular realization of the random
parameter (yi 2 Y) ⇠ Y. Therefore, a decision maker could be legitimately interested
in being protected against the worst-case outcome of the random variable Y from among
a set of possible values ⇤ ✓ Y, known in the literature as the uncertainty set [130]. If
that is the case, the decision maker can alternatively solve the robust optimization (RO)
counterpart of problem (2.4):

min
z2Z

max
y2⇤

f(z;y). (2.8)
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Let '(z) = maxy2⇤ f(z;y). The optimal robust decision can be obtained solving
zR 2 argminz2Z '(z). As in the previous case, the expected cost of this choice can
be calculated as v

R
= E[f(zR;Y)]. Thus, we can define the price of robustness as

% = v
R � v

S. By construction of problem (2.3), we have % � 0 assuming perfect infor-
mation on the probability distribution of Y. Therefore, producing robust solutions zR,
which protect against harmful realizations of the uncertainty, typically implies paying
a price in the performance on average [18]. However, in many applications the support
Y is certain but the knowledge about the true probability distribution is limited, null,
or imprecise, resulting in robust decisions that can outperform the risk-neutral coun-
terparts, achieving a lower expected value (negative price of robustness) in practice
[20].

Distributionally Robust Optimization (DRO) is similar in spirit but follows a dif-
ferent approach. This paradigm does not protect the decision maker against the worst
realization of the uncertainty but rather against the worst possible distribution among
a set of candidate distributions bQ of the uncertainty vector [83]. The key ingredient of
this approach is to define an ambiguity set in which the worst distribution lies [139],
e.g., a ball ⇥ centered around the empirical distribution of Y, whose design is based
on the dataset YN . With these ingredients, the distributionally robust problem can be
written as

min
z2Z

max
bQ2⇥

EbQ[f(z;Y)]. (2.9)

When ⇥ only includes the empirical distribution, the solution to this problem coincides
with the solution of (2.7). In contrast, when the ball ⇥ has an infinite radius, the
outcome of problem (2.8) can be recovered under some conditions. Therefore, balls
with a finite radius can potentially produce solutions with an intermediate degree of
coverage against risk. This is also possible in RO, designing uncertainty sets that satisfy
⇤ ⇢ Y [15]. Equally interesting is the fact that RO and DRO can produce more tractable
mathematical problems than their stochastic counterparts, resulting in reformulations
with more favorable time complexities [64, 57, 16]. For a more in-depth discussion of
the innumerable robust variants found in the literature and their properties, we refer
the reader to the monographs [23, 60, 13, 130] and the references therein.

The use of robust paradigms is prominent when the knowledge regarding the uncer-
tain phenomenon is limited. However, in many tasks, there is good information available
on the random distribution, e.g., in the form of abundant and reliable data, and the
same decision tasks are faced periodically. In the remainder of this thesis, we focus
specifically on those tasks where the performance on average gains importance, and
therefore, we are interested in data-driven approaches closer to problem (2.7). Next,
Section 2.2 discusses the potential of contextual information in this setting and presents
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several state-of-the-art frameworks that leverage contextual information.

2.2 Decision making with contextual information

As discussed in Chapter 1, the adoption and development of new information tech-
nologies has dramatically increased the amount of data available to decision makers
[111, 31]. These data come not only from samples of the uncertain parameters af-
fecting the decision-making task, but are also produced by other potentially related
phenomenons within the task’s context, resulting in what we know as contextual infor-
mation [30, 29]. Contextual information is a valuable resource that can boost decision
making and is present today in almost every situation where a decision has to be made.
Historically, none of the methodologies introduced in previous sections considered con-
textual information directly, ignoring the benefits that this resource can provide to
reduce uncertainty and improve decision making. This section addresses contextual
information in more detail, discussing its potential to enhance previous paradigms and
reviewing the state-of-the-art papers on the subject.

Before discussing how to leverage this new resource, it is best to describe the nature
of contextual information in more detail. Some contextual information takes the form
of a realization of a random variable or vector, which may lie in a discrete or contin-
uous domain and whose relation to the uncertain parameters is governed by a (most
likely unknown) joint probability distribution. Conversely, many pieces of contextual
information do not exhibit random behavior, such as the day of the week or the hour
of the day related to the decision to be made. Regardless of its nature, any piece of
information to be used as contextual information must be available before making the
decision. When some relevant contextual information (x 2 X ✓ Rp

) ⇠ X is available,
one can reformulate problem (2.4) as follows:

min
z2Z

E[f(z;Y)|X = x]. (2.10)

In practice, neither the joint distribution of X and Y, nor the conditional distribution of
Y given X = x are known and therefore problem (2.10) cannot be solved. In addition,
even if the true distribution were known and decision z was fixed, problem (2.10) would
typically require computing the expectation of a function of a continuous random vector
(i.e., a multivariate integral), which is, in itself, a hard task in general [68]. Instead of the
true distribution, the only information that the decision maker typically has is a sample
S = {(yi,xi), 8i 2 N}, where yi 2 Y ✓ Rm is a realization of the random variable Y

recorded together with or related to the context xi 2 X ⇢ Rp, and N denotes the set
of available samples.

Against this background, problem (2.10) is alternatively replaced with a surrogate
optimization problem, in the hope that the solution to the latter is good enough for the
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former. In this direction, different approaches have been proposed to construct such a
surrogate optimization problem. For instance, the traditional modus operandi follows
the rule “first predict, then optimize,” which results in the following surrogate problem
to approximate the solution to (2.10)

min
z2Z

f(z; ŷ), (2.11)

where ŷ 2 Rm denotes an estimate of the outcome of the uncertainty Y under a partic-
ular piece of contextual information x. The surrogate problem (2.11) is attractive for
several reasons. First and foremost, it is much simpler and faster to solve than (2.10).
Actually, it is a deterministic optimization problem which, as opposed to (2.10), only
requires evaluating the cost function f(z; ·) at the single value or scenario ŷ. Further-
more, problem (2.11) seems intuitive and natural, especially when ŷ represents “the
most likely value” for Y given X = x. Indeed, the single scenario ŷ is often chosen as
an estimate of the expected value of the uncertainty Y conditional on X = x, that is,
ŷ ⇡ E[Y|X = x], where, logically, the approximation is built from the available sample
S. In the realm of forecasting, the estimate ŷ is usually referred to as a point prediction
and we refer to this approach as FO from forecasting.

To build the estimate ŷ ⇡ E[Y|X = x], a function g
FO

: X ⇥ Rq ! Rm is normally
chosen from a w-parameterized family G

FO, with w 2 Rq, to construct the forecasting
model ŷ = g

FO
(x;w). The goodness of a certain parameter vector w is quantified in

terms of a loss function l
FO

(y, ŷ) : Y ⇥ Rm ! R that measures the accuracy of the
estimate. Then, given the sample S = {(yi,xi), 8i 2 N}, the choice of w is driven by
the minimization of the in-sample loss, yielding

wFO 2 argmin
w2Rq

X

i2N

l
FO

(yi, g
FO

(xi;w)). (2.12)

Note that when the mapping is a linear function g
FO

(xi;w) = w>xi and the root mean
square error is chosen as the loss function, problem (2.12) reduces to the classical linear
regression wFO

= argminw2Rq

P
i2N

(yi�w>xi)
2. In this framework, the optimal deci-

sion zFO under the context X = x is thus obtained by solving the following deterministic
problem

zFO
(x) 2 argmin

z2Z
f(z; gFO

(x;wFO
)). (2.13)

Thus, this approach relies on a forecast of the uncertainty variable Y, in particular, a
good estimate of E[Y|X = x]. Even though this approach is intuitive and may perform
relatively well in many situations, it is fundamentally flawed for the following two basic
reasons. First, since ŷ ⇡ E[Y|X = x] in FO, the surrogate problem (2.11) works as a
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proxy of the problem

min
z2Z

f(z;E[Y|X = x]), (2.14)

which, in general, is not equivalent to (2.10). Second, even in those cases where these
two problems are indeed equivalent, for example, when f is linear, the loss function
l
FO, which is used to compute wFO (e.g., the squared error), is only intended to obtain
a statistically good estimate of E[Y|X = x] and does not account for the objective
function f and the feasible set Z. For instance, approach (2.12)-(2.13) is unable to
capture that overestimating E[Y|X = x] could worsen the objective function f much
more than underestimating it. Next, we give an example to illustrate this phenomenon
and to clarify some of the elements introduced so far in the chapter.

An illustrative example

The example described in the following paragraphs demonstrates the fact that a
model trained for a prediction task might not always be the best option to use in a
decision-making problem. To this end, we consider a series of decision tasks character-
ized by the underlying optimization problem

min
3z8

|z � y|, (2.15)

where y 2 R is a parameter that unequivocally determines the problem. The decision
maker cannot solve (2.15) directly because the parameter y is governed by a random
variable y ⇠ Y and the realization of this variable is unknown when the decision z 2 [3, 8]

must be made. The random variable Y follows a quadratic model Y = 0.6X
2
+0.7X+✏

where X ⇠ U(1, 4) is a contextual random variable and ✏ ⇠ U(�1, 1) is a random noise.
Unfortunately, this true mapping is also unknown to the decision maker. Instead, a
collection of samples S = {(yi, xi), i 2 N} is available with N = {1, . . . , N}. Equipped
with S, the decision maker has to face a collection of new / future decision tasks
represented by the dataset eS = {(yj , xj), j 2 eN} with eN defined analogously to N . In
this demonstrative example, we set N = eN = 5000. In the literature, the sets S and
eS are known as training set and test set, respectively. We also use the terms in-sample
and out-of-sample to refer to decisions or metrics related to S and eS.

The traditional way in which FO is applied proceeds first selecting a family g
FO. In

this case, we consider a linear model of the form ŷ = g
FO

(x) = w1x + w0 to produce
point forecasts ŷFO

j
(xj) that we then plug in problem (2.15). The parameters wFO

1
, w

FO
0

,
which minimize the root mean square error (RMSE) on the set S are calculated using a
standard linear regression. Although the model ŷFO

j
= w

FO
1

xj +w
FO
0

is general and can
be used for other purposes, the FO approach does not guarantee that the coefficients



2.2. Decision making with contextual information 19

w
FO
1

, w
FO
0

produce the collection of estimates ŷj that obtain the minimum average value
of the objective function. To demonstrate this, we compare a second linear model whose
parameters wPR

1
, w

PR
0

(we use PR from prescriptive) are selected taking into account the
feasible region of problem (2.15). We take the occasion to clarify that those methods,
which consider properties of the underlying decision-making problems are sometimes
referred to in the literature as prescriptive approaches as opposed to the predictive
approaches such as FO. In this example, w

PR
1

, w
PR
0

are inferred performing a linear
regression in the subset {(yi, xi) : 3  yi  8}, inspired by the boundaries of the
underlying problem.

Predictive Prescriptive

Prediction error (RMSE) 0.49 0.64
Objective value (v̂) 1.01 0.96

Table 2.1: Average out-of-sample predictive error (RMSE) and objective function
value v̂ by a model that minimizes the in-sample RMSE (predictive) and another that

take into account the feasible region (prescriptive).

The RMSE and average objective function value v̂, defined v̂ = 1/ eN
P eN

j=1
|zj � yj |,

obtained by the predictive and prescriptive linear models are collated in Table 2.1. As
the reader may have already suspected, the RMSE achieved by the predictive linear
model used in FO is the lowest since it is designed to minimize this type of error.
However, the fact that the prescriptive model obtains a higher RMSE does not prevent it
from scoring the lowest average objective function value v̂, improving on its counterpart
by 5.5% and showing room to enhance this strategy.

The prescriptive strategy used in this example was for illustration purposes only.
The following sections introduce four formal data-driven frameworks that leverage con-
textual information in expected value problems in the form of (2.10). The first three,
reviewed in Sections 2.2.1-2.2.3, are state-of-the-art frameworks already present in the
literature, while the fourth framework, introduced in Section 2.2.4, is developed within
this thesis and proposes a bilevel formulation to overcome some of the weaknesses of its
counterparts.

2.2.1 Conditional distribution

The first of the approaches follows from the observation that problem (2.10) can be
equivalently recast as

min
z2Z

E[f(z;Y)|X = x] = min
z2Z

EQ|x
[f(z;Y)], (2.16)

where Q|x represents the conditional probability distribution of Y given X = x. Thus, a
family of surrogate decision-making models can be introduced with the following general
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form

min
z2Z

E bQ|x
[f(z;Y)], (2.17)

where bQ|x is an approximation of the unknown probability measure Q|x that is con-
structed from the available sample S = {(yi,xi), 8i 2 N}. For the surrogate pro-
blem (2.17) to be computationally tractable, the proxy bQ|x is often built as a discrete
probability distribution supported on a finite number of points, more specifically, on
the y-locations of the sample, i.e., {yi, 8i 2 N}. This way, the solution to (2.17) under
context X = x can be generically expressed as

zML
(x) 2 argmin

z2Z

X

i2N

g
ML

(x,xi;w)f(z;yi), (2.18)

with {gML
(x,xi;w), 8i 2 N} being the probability masses that the specific proxy bQ|x

places on {yi, 8i 2 N}, generally computed through machine learning techniques (ML
stands for Machine Learning). These masses or weights are determined as a function
g
ML

: X ⇥X ⇥Rq ! R of the historical contextual information xi, the current context
x, and some parameters w.

In essence, this scheme adapts the SAA to the case of conditional stochastic pro-
grams. It was first formalized in [17] and, since then, has been subject to a number
of improvements (e.g., regularization procedures for bias-variance reduction [129]; ro-
bustification [19]; and algorithmic upgrades [47]) and extensions, e.g., to a dynamic
decision-making setting [21]. Recently, the work in [100] introduced a bilevel formu-
lation to optimally tune the parameters w that determine the weights g

ML
(x,xi;w).

Using our notation, the method proposed in [100] can be formulated as follows:

wML 2 argmin
w2Rq ; ẑi

X

i2N

f(ẑi;yi) (2.19a)

s.t. ẑi 2 argmin
z2Z

X

i02N :i0 6=i

g
ML

(xi,xi0 ;w)f(z;yi0), 8i 2 N , (2.19b)

where the function g
ML

: X ⇥X ⇥Rq ! R used to compute the weights can be chosen
from a catalog of several classical machine learning algorithms G

ML such as k-nearest
neighbors, Nadaraya-Watson kernel regression or Random Forest. The author of [100]
resorts to tailor-made approximations and greedy algorithms for each machine learning
technique that is used to construct function g

ML, but the paper does not provide a
general-purpose solution strategy valid for any function g

ML. After solving (2.19),
the optimal decision zML

(x) under context X = x is obtained by solving (2.18) with
w = wML.

The surrogate problems (2.11) and (2.17) are, by design, different, in part because
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they are the result of distinct frameworks to address the conditional stochastic pro-
gram (2.10). The surrogate problem (2.11) is based on the assumption that it is possible
to find a good decision z in terms of the conditional expected cost E[f(z;Y)|X = x]

by optimizing that decision for a single scenario ŷ of the uncertainty Y. Naturally, all
the complexity of this approach lies in how to infer, from the data sample S, the single
scenario ŷ that unlocks the best decision z. This inference process uses global methods
that consider all data points in the sample to obtain more robust decision mappings.
In contrast, all the difficulty of the surrogate problem (2.17) resides in how to retrieve
a good approximation of the true conditional distribution Q|x from the sample S. Such
an approximation is performed using local machine learning methods that only employ
data close to the given context x and consequently, a large amount of data is required to
avoid overfitting. In more practical terms, embedding local machine learning methods
into the estimation problem (2.19) makes this problem computationally intractable in
most cases. Besides, the surrogate problem (2.11) is computationally less demanding
than (2.17), because the latter requires evaluating the cost function f(z; ·) for multiple
values of the uncertainty Y.

2.2.2 Decision rule

A second class of surrogate decision-making models arises from the idea of using the
sample S to directly learn the optimal decision z as a function of the context x, thereby
bypassing the need for constructing the estimate ŷ or the proxy distribution bQ|x. Fol-
lowing this logic, we seek a decision rule or mapping g

DR
: X ⇥Rq ! Rn from a family

G
DR so that ẑ = g

DR
(x;w) ⇡ argminz2Z E[f(z;Y)|X = x]. Particularizing for the

empirical distribution of the data, this approach renders

wDR 2 argmin
w2Rq

X

i2N

f(g
DR

(xi;w);yi) (2.20a)

s.t. g
DR

(xi;w) 2 Z, 8i 2 N . (2.20b)

One clear advantage of directly learning the optimal decision policy is that, after solving
(2.20), the decision zDR to be implemented under context X = x is efficiently computed
as follows:

z
DR

(x) = g
DR

(x;wDR
). (2.21)

In effect, the mapping (2.21) constitutes the surrogate decision-making model itself.
This method, which aims to determine an optimal decision rule, is denoted by DR
(acronym of Decision Rule). Nevertheless, feasibility issues may arise as this approach
does not necessarily guarantee that the resulting zDR obtained through (2.21) belongs
to Z in any context x when the sample set S is finite. The authors of [7] propose and
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investigate this approach for the popular newsvendor problem, for which they consider
a linear decision rule. Their newsvendor formulation does not involve any constraint
and therefore, decisions yielded by (2.21) are always valid. If feasibility issues arise in
a particular application of this framework, one can circumvent this issue by adding a
projection step onto the feasible set Z at the expense of a significant increase in the
computational burden, in general.

2.2.3 Smart predict, then optimize

In view of FO’s design flaws, a number of approaches have proposed replacing the
problem-agnostic l

FO, which is generally used in (2.12) with a problem-aware loss func-
tion l

SP
(y, ŷ) = f(ż(ŷ);y), where l

SP
: Rm ⇥ Rm ! R and ż : Y ! Z defined as

ż(y) = argminz2Z f(z;y). Therefore, function l
SP evaluates the loss of optimality

associated with the decision ż(ŷ) that is prescribed by the surrogate decision-making
problem (2.11) for the single value ŷ. Accordingly, the optimal parameter vector wSP

is obtained as the one that minimizes the in-sample optimality loss, i.e.,

wSP 2 argmin
w2Rq

X

i2N

f(ż(g
SP

(xi;w));yi), (2.22)

where the function g
SP

: X ⇥ Rq ! Rm is chosen from a family of functions G
SP. We

use the acronym SP, which stands for “Smart Predict”, to refer to this setup. Solving
problem (2.22) using descent optimization methods requires computing the gradient of
the loss function l

SP
(y, ŷ) with respect to w. This may not be feasible, since it involves

the differentiation of the discontinuous function ż(y) [90]. To overcome this difficulty, a
great deal of research has been devoted to finding methods to approximate the gradient
of (2.22) for particular instances. The work developed in [76], for example, describes
a procedure to solve (2.22) under the following three conditions: i) f is quadratic,
ii) the uncertainty is only present in the coefficients of the linear terms of f , and iii)
no constraints are imposed on the decision z, which means Z = Rn. Some years
later, the authors [50] proposed a heuristic gradient-based procedure to solve (2.22) for
strongly convex problems with deterministic equality constraints and inequality chance
constraints. Almost concurrently, reference [56] discusses the difficulties of solving (2.22)
in the case of linear problems, since such a formulation may lead to an uninformative
loss function. To overcome this issue, they successfully develop a convex surrogate that
allows gSP

(xi;w) to be efficiently trained in the linear case. Finally, the authors in [140]
suggest a similar approach to that of [50] in combinatorial problems with a regularized
linear objective function.

2.2.4 Contextual bilevel framework

The three aforementioned approaches are part of the most recent efforts found in the
literature to address conditional stochastic programs in the form of (2.10). This section
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presents a forth framework, developed within this thesis and published in [102], which
is one of the main methodological contributions of this thesis.

The last four references reviewed in Section 2.2.3 propose ad-hoc gradient methods
for specific instances of (2.22). However, to the best of our knowledge, the technical
literature lacks a general-purpose procedure to solve this problem using available op-
timization solvers. To fill this gap, we propose the following bilevel program [44] as a
generic mathematical formulation of (2.22):

wBL 2 argmin
w2Rq ; ẑi

X

i2N

f(ẑi;yi) (2.23a)

s.t. ẑi 2 argmin
z2Z

f(z; gBL
(xi;w)), 8i 2 N , (2.23b)

where g
BL

: X ⇥ Rq ! Rm is selected similarly to g
FO and g

SP. Problem (2.23) is for-
mulated as a bilevel optimization model commonly used to mathematically characterize
non-cooperative and sequential Stackelberg games in which the leader makes her deci-
sions while anticipating the reaction of the follower [36]. In this sense, the upper-level
problem determines the optimal parameter vector w anticipating the decision provided
by each lower-level problem (2.23b) if the value ŷi is given by g

BL
(xi;w). We denote

this approach based on bilevel programming by BL (acronym for BiLevel). Later in
this section, we discuss the assumptions that problem (2.10) must satisfy so that pro-
blem (2.23) can be reformulated as a single-level optimization problem to be solved
using off-the-shelf optimization solvers. Although solving the bilevel problem (2.23)
may be computationally expensive, this is a task that can be performed offline. Once
wBL has been determined, the optimal decision zBL under context X = x is computed
by solving the following problem:

z
BL

(x) 2 argmin
z2Z

f(z; gBL
(x;wBL

)). (2.24)

The bilevel program (2.23) computes the value of the parameter vector w that max-
imizes the in-sample performance of the surrogate decision-making model (2.24). For
this estimation to be of use, it must be guaranteed that under two contexts xi, x0

i
,

such that xi = x0

i
, it holds ẑi = ẑ0

i
, i.e., under equal contexts, equal decisions. This

is a condition that is reminiscent of the notion of non-anticipativity in Stochastic Pro-
gramming. Importantly, this condition is automatically satisfied if the solution to the
lower-level problem (2.23b) is unique for any value of w. Otherwise, the bilevel pro-
gram (2.23) would choose the ẑi from the optimal solution set of (2.23b) that minimizes
the upper-level objective function (2.23a) given—i.e., by anticipating—the uncertainty
outcome yi. This is so, because the bilevel program (2.23), as we have formulated it,
delivers the optimistic Stackelberg solution [45]. For instance, let us assume that there
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exists a value w̃ such that f(z; gBL
(xi; w̃)) = # for all i 2 N , where # is a constant.

In this case, the lower-levels (2.23b) boil down to feasibility problems imposing that
z 2 Z and therefore, ẑi can violate non-anticipativity and adapt to realization yi for
all i 2 N . More importantly, using w̃ in (2.24) would lead to degenerate and highly
suboptimal decisions under any context X = x. This issue is reported in [56] for linear
objective functions, where the authors propose a convex surrogate function of l

SP to
train meaningful instances of model gSP

(·;wSP
).

Next, we discuss the procedure to solve (2.23) using off-the-shelf optimization solvers.
Suppose that the lower-level problem (2.23b) is strongly convex in z and satisfies a
Slater condition [43], then the classical approach to solve (2.23) is to replace the lower
level (2.23b) with its equivalent Karush-Kuhn-Tucker (KKT) conditions [28]. To illus-
trate this, let us assume that the feasible set Z is defined by the following constrains:

h
in

k (z)  0, k = 1, . . . ,K, (2.25)

h
eq

l
(z) = 0, l = 1, . . . , L, (2.26)

where h
in

k
: Z ! R are convex functions and h

eq

l
: Z ! R are affine functions. After

this particularization, the single-level KKT reformulation of problem (2.23) renders:

wBL 2 argmin
w,ẑi,�ki,�li

X

i2N

f(ẑi;yi) (2.27a)

s.t. rf(ẑi, g
BL

(xi;w)) +

KX

k=1

�kirh
in

k (ẑi)

+

LX

l=1

�lirh
eq

l
(ẑi) = 0, 8i 2 N (2.27b)

h
in

k (ẑi)  0, 8k, 8i 2 N (2.27c)

h
eq

l
(ẑi) = 0, 8l, 8i 2 N (2.27d)

�ki � 0, 8k, 8i 2 N (2.27e)

�kih
in

k (ẑi) = 0, 8k, 8i 2 N , (2.27f)

where �ki, �li 2 R are, respectively, the Lagrange multipliers related to constraints (2.25)
and (2.26) for each lower-level problem, (2.27a) is the objective of the upper level, and
constrains (2.27b), (2.27c) and (2.27d), (2.27e), (2.27f), are the stationarity, primal
feasibility, dual feasibility and slackness conditions, respectively. As discussed in [121],
problem (2.27) violates the Mangasarian-Fromovitz constraint qualification at every fea-
sible point and therefore, interior-point methods fail to find even a local optimal solution
to this problem. To overcome this issue, a regularization approach was first introduced
in [122] and further investigated in [114]. This method replaces all complementarity
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constraints (2.27f) by:
�
X

ki

�kih
in

k (ẑi)  ✏, (2.28)

where ✏ is a small non-negative scalar that allows reformulating (2.27) as a parametrized
non-linear optimization problem, which typically satisfies constraint qualifications and
can therefore be efficiently solved by standard non-linear optimization solvers. From
hereon, we refer to this approach as BL-R. Authors of [122] prove that, as ✏ tends
to 0, the solution of the parametrized problems tends to a local optimal solution of
problem (2.27).

An alternative procedure to find global solutions can be used if problem (2.27)
satisfies the following additional conditions: i) f is quadratic and convex, that is,
f(z;y,Q) = z>Qz + y>z where Q 2 Rn⇥n is a known positive semidefinite ma-
trix and y 2 Rn is the only uncertain parameter vector, ii) the forecasting model
g
BL

(xi;w) is linear on the feature vector xi, and iii) functions h
in

k
, h

eq

l
are linear with

h
in

k
(zi) = a>

k
zi + bk and h

eq

l
(zi) = d>

l
zi + el where ak,dl 2 Rn and bk, el 2 R. Af-

ter particularizing for these conditions and linearizing the complementarity slackness
conditions according to Fortuny-Amat [59], problem (2.27) can be reformulated as the
following mixed-integer quadratic programming problem:

wBL 2 argmin
w,ẑi,�ki,�li,uki

X

i2N

ẑ>i Qẑi + y>

i ẑi (2.29a)

s.t. Qẑi + g
BL

(xi;w) +

KX

k=1

�kiak +
LX

l=1

�lidl = 0, 8i 2 N (2.29b)

a>k ẑi + bk  0, 8k, 8i 2 N (2.29c)

d>

l ẑi + el = 0, 8l, 8i 2 N (2.29d)

�ki � 0, 8k, 8i 2 N (2.29e)

�ki  ukiM
D
, 8k, 8i 2 N (2.29f)

a>k ẑi + bk � (uki � 1)M
P
, 8k, 8i 2 N (2.29g)

uki 2 {0, 1}, 8k, 8i 2 N , (2.29h)

where uki are binary variables, and M
P
,M

D 2 R+ are large enough constants whose
values can be determined as proposed in [109]. The resulting model (2.29) is a single-
level Mixed-Integer Quadratic Problem (MIQP) that can be solved using off-the-shelf
optimization solvers such as CPLEX or Gurobi to global optimality. We denote this
method by BL-M.

It is worth mentioning that if Q = 0 and the objective function is thus linear,
i.e. f(zi) = y>zi, then optimization problem (2.29) has an incentive to provide the
degenerate solution wBL

= 0, as discussed in [56]. To address this issue, we can use
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the following modified objective function f(zi) = y>zi + ⇢||zi||22, with ⇢ 2 R+, which
includes a penalty proportional to the squared norm of the decision vector and allows
us to reformulate (2.29) as a strongly convex quadratic program [140].

2.3 Iterative decision making

In this thesis, we investigate the performance of the approaches introduced in Sec-
tions 2.2 in realistic case studies based on the operational decision-making tasks that
agents face in electricity markets. The underlying decision-making tasks share com-
mon ingredients in all applications: i) they are due periodically, and ii) do not imply
large investments compared to those that determine the construction of new assets.
In this thesis, we refer to these tasks as iterative decision-making tasks. This section
addresses several practical considerations required to successfully apply the frameworks
of Sections 2.2 to iterative decision-making tasks.

2.3.1 The world is not i.i.d.

Most of the theory on top of which stochastic programming is built relies on the as-
sumption that the probability distributions that govern X and Y are fixed and that
the samples of such variables behave as independent and identically distributed (i.i.d.)
random variables [25]. In some cases, this is a reasonable assumption. For example,
consider that some friends are playing a card game. In this game, several cards are
on the table in each round, visible to all players. At this point, the reader may have
already guessed that the cards on the table are contextual information. In effect, the
player (decision maker) can use the cards on display to help determine her next move
(decision). In this kind of situation, we can collect every move and its outcome as part
of an i.i.d. sample. In this setting, the timestamp of the move is irrelevant since each
time the same cards are on the table, the same probabilities and optimal decisions are
replicated.

However, this situation is almost an exception, which happens in specific tasks
typically related to games and inventions designed by humans. In most situations, the
environment in which iterative decisions are made is similar but evolving. For example,
every day, the decision maker encounters similar climate patterns, similar competitors,
similar customer behavior and a similar economic reality. At the same time, the weather
changes every minute, customers are not identical and the geopolitical and economic
situation is slowly but constantly changing, to name a few.

The causal and evolving nature of the world in which we live justifies the fact
that we can infer some relationships between contextual information and the uncertain
parameters for a particular point in time and the need to update these relationships to
maintain their effectiveness. Using a mathematical analogy, the linearization of a non-
linear function (dynamic reality) computed at a point (current moment) is valid within
a neighborhood, usually deteriorating as we move away (in time) from it. Thus, the
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relationships or mappings between contextual information and uncertain parameters
that hold in two independent periods are typically similar but generally different. This
means that the assumption that samples are i.i.d. in a dataset recorded over long
periods may not hold. Against this background, the next section is devoted to discussing
a setting known in the literature as rolling window that can be combined with the
frameworks presented in this chapter to tackle, in a practical way, iterative decision-
making tasks that face an evolving uncertainty.

Before moving to the next section, it should be clarified that by iterative decision
making, we are not referring to the type of problem addressed by multistage program-
ming in which future decisions are conditioned by the decisions and realization of the
uncertainty of previous stages. Rather, this thesis addresses classical two-stage stochas-
tic problems that are faced sequentially. Recall that two-stage stochastic problems are
characterized by a single stage / vector of decisions prior to the realization of the un-
certainty, with possibly a set of recourse actions adopted a posteriori. Therefore all
problems are independent of each other, without any intertemporal constraint binding
them.

2.3.2 Rolling-window setting and its elements

As introduced in the previous section, the evolving nature of reality limits the value of
the oldest information. This means that utilizing the whole set of samples collected over,
for example, many years may not always be the best strategy to infer the target variables
of the frameworks presented in Section 2.2 for two main reasons, namely i) the oldest
samples may encode different relationships that could hide and distort the patterns in
the most recent information and ii) additional samples may result in significant increases
in the computational effort with little or null performance gains.

If either of these two conditions is fulfilled, it is more sensible to use only a portion of
the available data that includes the most recent information. This subset of data, used
to solve the optimization problem, is known in the literature as the training set and was
already introduced in the example presented in Section 2.2. Furthermore, in iterative
decision-making tasks, we typically have available a constant stream of new data that
we can use to replace the oldest points belonging to our training set in a gradual update.
This setting is usually called a rolling-window update [11]. New samples are not only
useful for updating the training set, but are of capital importance for evaluating the
performance of a model. The collection of samples used for that purpose is known as a
test set, regardless of whether or not they are, at some point, also incorporated as part
of the training set in a rolling-window update.

When samples are linked to specific points in time it is customary to use t instead of
the generic subscript i. If this is the case, the symbol used to denote the training set N
is typically replaced with T . In a rolling-window setting, we denote by T (t) the training
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T (t1) t1

T (t2) t2

T (t3) t3

Figure 2.1: Illustration of the rolling-window setting for three subsequent decision tasks.

set linked with an element t of the test set eT . Therefore, for a sequence t1, t2, t3, . . . 2 eT
we can define the same number of different training sets T (t1), T (t2), T (t3), . . . Note
that the samples of the uncertain parameters attached to t1 may only be available after
some time and may not be ready to be incorporated into T (t2). Figure 2.1 provides
a graphic example that illustrates this setting. Furthermore, it is also possible that
the training set is not updated in each time step but rather at fixed intervals due to
technical restrictions or to ease the computational burden.

Under the current abundance of data, it is common for the decision maker to have
lengthy datasets with many samples not even used to build the first training set of the
rolling window T (t1). Although this old data may not be used directly to estimate future
relationships, it can still be valuable to the decision maker in other ways. For example,
one can simulate the performance of different rolling windows to determine the optimal
length T = |T |, this is, the number of samples that produce the best results following
the particular performance versus computational effort criterion of the decision maker.
The dataset used for this target is known as validation set and can additionally or
alternatively be leveraged to determine the best value of the model’s hyper-parameters,
i.e., parameters that do not appear in the underlying decision-making task but appear
in the model or optimization problem due to the particular framework or algorithm
employed in its resolution.

This section summarizes the most important elements related to the rolling-window
setting. Next, we address an additional decision-making paradigm, closely related to
this setting.

2.3.3 Online learning

In this chapter, we have introduced several decision-making paradigms that can be used
to assist in iterative decision tasks. In this respect, we can establish connections and
overlaps between these frameworks and the online learning literature. Online learning
(OL) is characterized by two main features, namely i) it gathers techniques to assist
with iterative decision-making tasks, as evidenced by the word online in its very name,
and ii) its objective is to design algorithms that minimize the average long-term regret
metric that we discuss later in this section. Online learning is a broad field and it is not
within the scope of this section to address it fully. For a more detailed introduction to
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the subject, we refer the reader to the monographs [124, 72, 107].

Algorithm 1 Online learning setting
1: for t = 1, . . . , T do

2: Select zt 2 Z ✓ Rn

3: Receive ft : Z ! R
4: Pay ft(zt)
5: end for

Online learning, as understood within the context of this thesis, considers a minimal
setting where a decision maker has to decide zt 2 Z ✓ Rn for a period of time t after
which a loss function ft : Z ! R becomes known, forcing the decision maker to incur
a cost ft(zt). Note that the formulation ft(z) is more general than f(z;yt), introduced
in Section 2.1 as it does not even request the objective function to maintain the same
structure across time intervals. Thus, the decision maker can use the full knowledge of
ft to update zt and deliver zt+1. This setting is summarized in Algorithm 1. The main
strength of the OL paradigm is that it frees the decision maker from most assumptions
that typically hamper other theories, such as requiring the samples to be i.i.d., and
therefore is widely applicable in many contexts. Moreover, many families of algorithms
developed within OL are relatively inexpensive in terms of computational burden and
offer notable performance in dynamic environments.

As mentioned at the start of this section, in online learning, the de facto metric
to evaluate the performance of a series of decision vectors z1, . . . , zT produced by an
algorithm is the regret RT 2 R. The regret RT provides a versatile and, in a sense,
normalized metric to compare an algorithm through different problems with the ad-
vantage that little assumption is made about the oracle that generates the decisions.
Traditionally, the benchmark used in online learning to compute RT is the best single
action in hindsight zH that can be obtained as the solution of an offline optimization
problem under perfect information zH 2 minz2Z

P
T

t=1
ft(z), yielding

RT =

TX

t=1

ft(zt)�
TX

t=1

ft(z
H
). (2.30)

Then, the classical target of the work developed within online learning is to design al-
gorithms that achieve asymptotic sublinear regret as the number of rounds T increase
or mathematically limT!1RT /T  0. We discuss in more detail the regret in Sec-
tion 3.2.4.

Within online learning, online convex optimization (OCO) focuses on online prob-
lems where the losses ft are requested to be convex functions. An interesting family
of OCO algorithms are based on the Follow-the-Leader (FTL) algorithm [107], which
resembles the stochastic SAA introduced in Section 2.1. Although the theoretical foun-
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dations of the two approaches are different, their implementation is very similar. The
FTL computes every zt as follows:

zt = argmin
z2Z

t�1X

i=1

fi(z). (2.31)

The differences between FTL and SAA are inherent to the paradigms in which they are
developed. While in the case of SAA we talk about empirical scenarios f(·;yt) with
equal probability 1/T , in FTL we have available historical records of ft. Furthermore,
while in a rolling-window SAA the oldest scenarios may be completely disregarded, in
FTL all elements in the collection {fi : i = 1, . . . , t� 1} intervene in shaping zt.

Although FTL is an online algorithm by right, the most popular and recognizable
online algorithms are those based on gradients of ft such as the online gradient descent
(OGD) and its variants. First introduced by [152], OGD has proven to be very effective
and versatile [61, 104, 69, 106, 141]. Starting from an initial value z1, the OGD performs
iterative updates of zt based on gradients of ft, denoted ⌧ t = rft. The magnitude of
the update is controlled by a variable learning rate ⌘t > 0, which normally encourages
a smooth update. In each round, the updated vector is forced to lie within the feasible
region Z through the Euclidean projection ⇧Z : Rn ! Z and ⇧Z(o) = argminz2Zko�
zk2. Assembling all the steps together, it yields Algorithm 2.

Algorithm 2 Online Gradient Descent (OGD)
Require: z1 2 Z ✓ Rn, ⌘1, . . . , ⌘T > 0
1: for t = 1, . . . , T do

2: Output zt
3: Receive ft : Z ! R
4: Pay ft(zt)
5: Compute ⌧ t = rft(zt)
6: Update zt+1 = ⇧Z(zt � ⌘t⌧ t) = argminz2Zkzt � ⌘t⌧ t � zk2
7: end for

The selection of the learning rate sequence ⌘1, . . . ⌘T is of paramount importance,
dramatically changing the long-term performance of OGD. The original proposal by
[152] presents two main alternatives, namely, a variable ⌘t / 1/

p
t and a fixed learning

rate ⌘t = ⌘, providing regret guarantees in both cases. However, in practice the variable
choice ⌘t / 1/

p
t results in almost neglectable updates for high values of t, hindering

the adaptation to changing environments in late stages. The fix option ⌘t = ⌘ enables
the algorithm to keep learning limitless, although a fixed learning rate is not the best
choice when facing changing environments, motivating the development of many OGD
variants [71, 147, 81].

One of the most remarkable features of OGD is that it relies on just the last sample
collected by the decision maker to update zt, resulting in a computationally inexpensive



2.3. Iterative decision making 31

method, especially if the gradient and projection steps can be computed through closed-
form expressions (which happens in several useful cases). This is in sharp contrast with
FTL, SAA and the rest of the approaches presented in this chapter where the decision
is either fixed or re-optimized from scratch in each round t through a training set made
up of many samples.

Motivated by this interesting property, we propose a variant of the original OGD
to leverage contextual information in the following paragraphs. As in the case of DR,
introduced in Section 2.2.2, in this thesis, we propose to replace the original decision
variable in OGD with z(x) = g

OL
(x;w), gOL

: X ⇥W ! Rn, w 2 W ✓ Rq. Two main
considerations should be observed in this transformation. Firstly, the known feasibility
problems of DR force the introduction of a new euclidean projection to ensure that the
resulting zt belongs to Z. Secondly, the gradient is now calculated on the composite
function ⌧ t = rft(g

OL
(xt; ·)) (recall wt is now the variable) which can hinder obtaining

a closed-form to compute it. Although these changes may require attention, normally
they do not prevent the successful application of the resulting algorithm, as shown in
Chapter 3.

When zt is a vector, the scalar choice ⌘t proposed in early approaches disregards the
fact that each component may benefit from different learning rates for several reasons,
e.g., because the scale or the dynamics of each component is different. Therefore, we
incorporate a multidimensional learning rate ⌘t 2 Rq that enables independent updates
as proposed in [147]. The last remaining aspect is how to update the vector ⌘t. As
discussed in the paragraph above, the classical choices for the learning rate attain poor
performances in dynamic environments and in long-term iterative tasks. To improve
this aspect of the original OGD algorithm, we follow the ideas in [147] once more. Let
“�n” denote the n-th Hadamard power with n 2 R so that ⌧ �2

t = [⌧
2
t1
, . . . , ⌧

2
tq]

>. We
start the derivation of the update by adding a variable that accumulates the running
average of the Hadamard squared gradient, yielding

⌧ �2

t = ⇢⌧ �2

t�1 + (1� ⇢)⌧ �2

t , (2.32)

where ⇢ 2 [0, 1) is a decay constant and ⌧ 0 = 0. Once we have available a component-
wise running average of the gradient, each component of the learning rate can be up-
dated following

⌘t = ⌘(⌧ �2

t + ✏1)��1/2
, (2.33)

where ✏ 2 R+ helps better condition the denominator and ⌘ > 0 is a constant. Finally,
the update of wt yields

wt+1 = ⇧W(wt � ⌘t � ⌧ t), (2.34)
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where � denotes the element-wise product and ⇧W the Euclidean projection over the
set W .

Algorithm 3 Contextual Online Gradient Descent (COGD)
Require: w1 2 W ✓ Rn, ⌘ > 0, ⇢ 2 [0, 1), ✏ 2 R+

1: Initialize ⌧ �2
0

= 0
2: for t = 1, . . . , T do

3: Output wt

4: Receive xt

5: Compute zt = ⇧Z(g
OL

(xt;wt))
6: Receive ft : Z ! R
7: Pay ft(zt)
8: Compute ⌧ t = rft(g

OL
(xt;wt))

9: Accumulate ⌧ �2
t = ⇢⌧ �2

t�1
+ (1� ⇢)⌧ �2

t

10: Compute ⌘t = ⌘(⌧ �2
t + ✏1)��1/2

11: Update wt+1 = ⇧W(wt � ⌘t � ⌧ t)

12: end for

The resulting contextual online gradient descent (COGD) algorithm is outlined in
Algorithm 3. We highlight that COGD can leverage contextual information directly at
the same time that it maintains the interesting properties of OGD. Furthermore, COGD
promises a nice performance in dynamic environments through an adaptive component-
wise update of the learning rate.

2.4 Summary

The classical decision-making paradigms, e.g., SP, RO, or DRO, presented in Section 2.1
did not formally address contextual information until just recently. On the contrary,
contextual information has been extensively used in supervised Machine Learning (ML)
to forecast an uncertain (typically single) quantity but disregarding the particularities
of the subsequent tasks in which such predictions are used. Therefore, the traditional
way contextual information was used, if at all, was far from taking full advantage of this
currently abundant resource. The realization of this fact has recently spurred a wave of
research on data-driven models that use contextual information to make more efficient
decisions.

In this regard, Section 2.2 has presented four frameworks that follow different strate-
gies to utilize contextual information, the last of which has been developed within this
thesis. The first framework, proposed by [17] and reviewed in Section 2.2.1, presents a
data-driven framework that approximates the empirical conditional distribution using
several methods inspired by classical ML algorithms. Section 2.2.2 reviews a completely
different framework, denoted DR. The decision rule approach (DR), proposed by [7],
uses a linear decision rule to translate feature vectors into decisions in a straightfor-
ward procedure. The third framework presented in [56] focuses on linear problems for
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which the authors refine the suboptimal FO framework by developing an alternative
loss function to replace the classical root mean squared error, taking into account the
subsequent linear optimization problem. The fourth contextual framework, thoroughly
discussed in Section 2.2.4, is one of the main methodological contributions of this thesis.
This framework proposes a generic procedure based on bilevel optimization, whereby a
parametric model is estimated by taking into account the impact of its output on the
feasibility and objective value of the decision.

Although the frameworks summarized above can be used in several settings, this
thesis focuses on decision tasks that are due periodically and characterized by low
or moderate risk (as opposed to those capital-intensive tasks that are related to the
construction of new assets). These tasks are named within this thesis as iterative
decision-making tasks and are addressed in Section 2.3. The first two parts of Section 2.3
discussed a rolling-window setting to be combined with the frameworks presented in
Section 2.2 in practical situations where the samples are not independent and identically
distributed. The last part of the section addresses the connection of this setting with the
literature on online learning and proposes a new version of the online gradient descent
(a classical online algorithm) that leverages features, which we have named contextual
online gradient descent (COGD).

Next, we briefly outline the content of the remaining chapters. Chapter 3 inves-
tigates DR and COGD, which share the use of a linear decision rule as a common
ingredient. Furthermore, both methods are applied to two instances of the problem
of a wind power producer offering in a wholesale electricity market. In the first case,
the DR method is used to produce an enhanced estimator of wind energy production
and a more profitable bid, demonstrating improved economic and computational re-
sults compared to several benchmarks in a realistic case study based on data from the
European transmission system operators. The second application envisions an hourly
cleared market, demonstrating the notable capabilities of COGD and the benefits of
this combination in order to achieve higher shares of wind energy in the market. To the
best of our knowledge, this is the first time that online gradient methods are applied to
this problem.

Then, Chapter 4 gathers two applications that smartly estimate the uncertain pa-
rameters, taking into account the optimization problem. The first application concerns
a strategic producer who manages a thermal units, offering in a day-ahead electricity
market. We apply the contextual bilevel approach, introduced in Section 2.2.4, to pre-
scribe the uncertain parameters of an inverse residual demand function through which
the market is modeled. A second application follows, investigating alternative proce-
dures for the market clearing of a two-stage electricity market compatible with current
industrial practices. We propose a mixed-integer program that leverages the problem
structure to construct, from the available contextual information and historical data, a
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prescription of the net demand, which does take into account the power system’s cost
asymmetry.
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Chapter 3 is dedicated to the problem of a wind power producer offering in a whole-
sale electricity market. This is a clear example of an iterative decision task, discussed in
Section 2.3, where the target is to determine a sequence of offers that tries to maximize
the returns on average. The difficulty of this problem is that the amount of wind energy
produced and the corresponding deviation penalties are uncertain when the market offer
has to be decided. We analyze two different applications where we leverage some of the
mathematical tools introduced in Chapter 2.

The first application analyzes a wholesale electricity market cleared daily. Based on
the DR method, introduced in Section 2.2.2, two data-driven models are produced to
improve the forecasting and trading of wind energy using contextual information. The
focus of the second application is to show the benefits that online methods, such as
COGD (see Section 2.3.3) can bring to electricity markets, envisioning a setting where
a wholesale electricity market is cleared every hour. To the best of our knowledge, this
is the first time that an online gradient method is applied to the problem of a wind
power producer trading in a wholesale electricity market.

3.1 The trading problem of a wind power producer

The application presented in this section is based on the published manuscript [101].
In this application, we study the problem of a wind power producer offering in a day-
ahead electricity market. Furthermore, the application presented in this section builds
on the work by [7] where the DR method, discussed in Section 2.2.2, is proposed and
applied to the newsvendor problem [113]. The work in [7] neatly fits the setup of the
wind power producer problem, providing an easy-to-implement and effective procedure.
However, as explained further on, our decision task exhibits some peculiarities that
make it especially challenging, requiring additional effort for a successful application
of DR. Among the most interesting aspects of this application, we highlight the fact
that the model resulting from applying DR to the newsvendor problem can be used
with a twofold purpose, namely, to produce an enhanced forecast of the wind energy
production, and to improve the gains of trading this energy in the market. We combine
both steps in a fully data-driven procedure, demonstrating its performance in a case
study based on real data of the European TSOs. Next, we review recent work related
to both wind power forecasting and trading.

The technical literature on wind power forecasting and trading is tremendously vast.
Mentioning all of the many relevant references on both topics in this introduction would
be, therefore, an infeasible and purposeless task. We refer, instead, to monographs
[77, 97], which offer a comprehensive treatment of both topics, and then highlight those
approaches which we believe, are most closely related to ours. In the realm of wind power
prediction, this would mean those that either seek to model the spatial correlations
among wind sites (see, e.g., [95, 132, 143, 149]) or to adaptively combine alternative
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wind power forecasts for the same site so as to produce a better one (see, for example,
[105, 119, 120]). In our case, however, we are not aiming to develop a better forecasting
model. What we propose, instead, is a general mathematical framework to improve the
forecasts delivered by any existing method by leveraging available power system data,
for example, spatially correlated wind energy forecasts.

On the other hand, there also exists a wealth of methods to determine the optimal
energy bid that a wind power producer should place in a day-ahead electricity market
(see, for instance, [110, 94, 26, 153, 91, 12, 46]). To this end, these methods all make
explicit use of stochastic models for wind power production and/or market prices, for
example, in the form of scenario forecasts or predictive densities. Additionally, other
strategies have also been proposed to cope with the inherent uncertainty in wind power
production, such as the purchase of power reserves [51] or by means of a combined
portfolio of wind and hydropower generation [131]. What distinguishes our work from
these others is that we directly derive a wind power day-ahead bid from available point
forecasts and other relevant data, thus avoiding the need to generate scenarios or prob-
abilistic forecasts for electricity prices and wind power production.

We particularly draw attention to [92] and [35] as being the approaches that are
probably closest to ours. In [92], a reinforcement learning algorithm is built to compute
and follow the nominal level of the profit-maximizing quantile forecast of wind power
that should be bid into the day-ahead market. While their algorithm is designed to
learn and track the expected marginal opportunity costs directly from market data,
they assume that a good estimate of the wind power predictive density is available (as
in the other references mentioned above). Our approach, to the contrary, is free from
this classical assumption.

In [35], the authors propose two data-driven approaches to reduce the imbalance
costs incurred by renewable energy producers. In their first approach, they formulate a
meta-optimization problem whereby the hyper-parameters of all the forecasting mod-
els involved in the decision-making process are tuned to minimize the imbalance costs.
In their second approach, they directly train an artificial neural network to that very
same end. In contrast with our proposal, which boils down to a linear programming
problem, the complexity of theirs is such that they need to resort to heuristic optimiza-
tion algorithms. Furthermore, our way of producing market bids is somewhat different:
we do not seek a bidding model that overrides the need for forecasts (understood in a
classical statistical sense), but rather we collect those forecasts, among other features,
and combine them to produce profit-maximizing bids.

3.1.1 Problem description

Consider an electricity market for short-term energy transactions that consists of a day-
ahead market and a dual-price balancing market. In the former, energy offers and bids
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are typically submitted between 12 and 36 hours in advance of the actual delivery of
electricity. In the latter, deviations of market participants concerning their day-ahead
dispatch are financially settled at a price that depends on the sign of the total system
imbalance [97, Ch. 7].

In such a context, the market revenue ⇢ of a renewable energy producer in a dual-
price balancing market is given by

⇢ = �
D
E �

�
 
�
(E

D � E)
+
+  

+
(E � E

D
)
+
�
, (3.1)

where (a)
+

= max(a, 0), and �
D, ED,  �,  +, and E represent the day-ahead mar-

ket price, the day-ahead renewable energy bid, the marginal opportunity costs for
under- and overproduction, and the eventual renewable energy production, respectively.
In (3.1), the first term accounts for the incomes the renewable power producer would
obtain from partaking in the day-ahead market if perfect information on eventual pro-
duction was known to said producer, while the second is the opportunity cost the pro-
ducer incurs in deviating from the day-ahead bid E

D. Logically, parameters  �,  +,
and E are uncertain to the renewable energy producer at the moment of offering in the
day-ahead market. Besides, the term �

D
E is beyond the power producer’s control. As a

result, the optimal offer ED that a (price-taker) risk-neutral renewable energy producer
should place in the day-ahead market is given as the solution to the following linear
programming problem, whereby the renewable energy producer seeks to minimize the
expected opportunity cost for under- and overproduction:

min
ED2[0,E]
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+  

+
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D
)
+
⇤
. (3.2)

In problem (3.2), the expectation is taken over the stochastic input parameters E,
 
� and  

+. Actually, the way the solution to problem (3.2) is addressed depends on
the information we have about these parameters. Furthermore, this problem must be
(independently) solved in each trading period comprising the day-ahead market horizon
(typically the 24 hours of a day). For simplicity, though, we have dropped the time
index from the problem formulation. We will introduce that index in a later stage of
our exposition.

The marginal opportunity costs for under- and overproduction, i.e.,  � and  +, are
defined as:
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where, in turn, the prices for under- and overproduction, i.e., �� and �+ are given by

�
�
=

8
<

:
�
B if �B � �

D
,

�
D if �B < �

D
,

(3.5)
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8
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�
D if �B � �

D
,

�
B if �B < �

D
.

(3.6)

In (3.5) and (3.6), �D and �
B denote the day-ahead and the balancing market prices,

in that order. Therefore, according to the rules (3.3)–(3.6) of a dual-price imbalance
settlement, the overproduction of a renewable energy producer is always rewarded at a
price lower than or equal to the day-ahead market price, while their underproduction
is always penalized at a price higher than or equal to the day-ahead market price. This
settlement is, at least, used in some European countries such as Spain and Denmark
[138].

Problem (3.2) takes the form of the classical newsvendor problem [113], for which
an analytical solution exists. Indeed, the optimal solution to this problem (that is, the
optimal bid E

D⇤), is given by

E
D⇤

= F
�1

E

✓
 ̄
+

 ̄+ +  ̄�

◆
, (3.7)

where FE is the cumulative distribution function (cdf) of the renewable energy produc-
tion corresponding to the time period of the market horizon for which the day-ahead
bid must be submitted, and the overbar character denotes the expected value of the
random variable underneath.

Despite its apparent simplicity, the application of formula (3.7) is quite demanding,
as it requires models to produce a probabilistic forecast of E (i.e., an estimate of its cdf)
and point forecasts of  � and  +. In the first approach proposed in [35], for example,
those models are tuned (by way of what they call a meta-optimization problem) to pro-
duce a good estimate of (3.7). Our goal, though, is to sidestep the need for those models
and directly use available data instead. This motivates our data-driven approach, which
we gradually build next.

Suppose that the renewable energy producer is to place a bid into the day-ahead
market and that measurements of her renewable energy production at past periods are
available. We can then directly use the empirical cdf of these data, namely, bFE , in lieu
of FE in (3.7), which thus becomes

bED
= inf

⇢
e : bFE(e) �

 ̄
+

 ̄+ +  ̄�

�
, (3.8)
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where the infimum is required due to the discrete nature of bFE . Naturally, bED in (3.8)
and E

D⇤ in (3.7) are generally different, and therefore, bED is usually suboptimal in (3.2).
Actually, bED is the solution to the following sample average approximation (SAA) of
(3.2)

min
ED2[0,E]

1

T

X

t2T

 ̄
�
(E

D � Et)
+
+  ̄

+
(Et � E

D
)
+
, (3.9)

where t 2 T is a timestamp index that labels the realizations Et with T = {1, . . . , T}.
From the equivalence between (3.8) and (3.9), we can infer that if we (artificially) set
 ̄
�

=  ̄
+

= 1 in (3.9), we get an estimate of the median of the renewable energy
production. We will leverage this fact later on to develop a straightforward method to
enhance the quality of renewable energy forecasts.

Problem (3.9), however, is likely to deliver poor bids bED, because it overlooks the
fact that, at the moment of bidding, the renewable power producer may have available
a vector of contextual information x made up of p features with some predictive power
on future production. Accordingly, to get a better bid bED, we need to reformulate
the SAA problem (3.9) to account for and take advantage of that information. For
this purpose, we consider the enriched dataset {(Et,xt), 8t 2 T }, where xt is the p-
dimensional vector of contextual information x observed at time t. The features in x

may include measures of potentially explanatory variables available at time period t or
forecasts of these variables issued for that time period. We then follow the DR approach
proposed in [7] (see Section 2.2.2) and consider the following linear decision rule

L =

n
E

D
: X ! R : E

D
(x) = w>x

o
, (3.10)

which, inserted into (3.9), renders

min
w

1

T

X

t2T

 ̄
�

⇣
w>xt � Et

⌘+
+  ̄

+

⇣
Et �w>xt

⌘+
(3.11a)

s.t. 0  w>xt  E, 8t 2 T . (3.11b)

Note that (3.11) is a particularization of (2.20), introduced in Section 2.2.2, where the
linear decision rule (3.10) corresponds to the model gDR

(x;w) = w>x. Nonetheless,
problem (3.11) still requires further elaboration to become a fully data-driven model.
Indeed, while in the technical literature on the data-driven newsvendor problem (see,
for instance, [7] and [74]), the marginal opportunity costs  ̄� and  ̄

+ are assumed
to be known with certainty, in our case, these costs are unknown to the renewable
energy producer at the moment of bidding into the day-ahead market. Consequently,
problem (3.11) still needs the support of a forecasting model that provides it with an
estimate of  ̄� and  ̄

+. To circumvent this hurdle, we propose to work with the even
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more enriched dataset
�
(Et, 

�

t
, 

+

t
,xt), 8t 2 T

 
, where the pair ( 

�

t
, 

+

t
) represents

the marginal costs of under- and overproduction that were observed at time t, and solve
instead the following optimization problem:

min
w

1
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X

t2T

 
�

t

⇣
w>xt � Et

⌘+
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+

t

⇣
Et �w>xt

⌘+
(3.12a)

s.t. 0  w>xt  E, 8t 2 T , (3.12b)

where we have replaced  ̄� and  ̄+ with  �

t
and  +

t
, respectively. Model (3.12) is, in

effect, fully data-driven.
Finally, to recast problem (3.12) as a linear program, we introduce the auxiliary

variables ot and ut to equivalently reformulate the positive-part function as follows:

min
w,u,o

1

T

X

t2T

 
�

t
ut +  

+

t
ot (3.13a)

s.t. ut � w>xt � Et, 8t 2 T (3.13b)

ot � Et �w>xt, 8t 2 T (3.13c)

0  w>xt  E, 8t 2 T (3.13d)

ut, ot � 0, 8t 2 T . (3.13e)

The result is an inexpensive program, which can be solved to optimality with any
commercial optimization solver. As discussed in Section 2.2.2, we can use the optimal
coefficient vector w⇤ obtained after solving problem (3.13) and a vector of contextual
information xt to produce an estimate of the wind energy production E

D
t as follows:

E
D

t = (w⇤
)
>xt. (3.14)

Note that in certain cases, e.g., when the number of training samples T is low or when
xt belongs to an unbounded set, the resulting estimator ED

t can be outside the interval
[0, E]. This issue can be easily circumvented by replacing (3.14) with the inexpensive
projection

E
D

t = max(0,min(E, (w⇤
)
>xt)). (3.15)

Next, we explain how we use the linear program (3.13) and the subsequent step (3.15)
to improve the tasks of renewable energy forecasting and trading.

3.1.1.1 Renewable Energy Forecasting

Problems (3.13) and (3.15) provides us with a simple, yet effective procedure to
enhance the quality of a given renewable energy forecast by exploiting contextual infor-
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mation. For this purpose, first we need to set  �

t
=  

+

t
= 1, 8t 2 T , in (3.13). This

results in the following linear programming problem:

min
w,u,o

1

T

X

t2T

ut + ot (3.16a)

s.t. ut � w>xt � Et, 8t 2 T (3.16b)

ot � Et �w>xt, 8t 2 T (3.16c)

0  w>xt  E, 8t 2 T (3.16d)

ut, ot � 0, 8t 2 T . (3.16e)

Then, we have to include the renewable energy forecast we wish to improve as one of the
features in the linear decision rule. The remaining features will then correspond to that
extra contextual information we want to take advantage of to enhance the quality of the
renewable energy forecast. This extra information may be of a very different nature.
For example, some of the features could correspond to categorical variables (hour of the
day, day of the week ...) and others could be forecasts of potentially related stochastic
variables. As a matter of fact, several features in vector x could represent forecasts on
the renewable energy production of interest, but issued by different entities. The only
condition for a piece of information to be treated as a feature is that it must be available
at the time when the enhanced renewable energy forecast is to be generated.

Finally, once we obtain wF solving (3.16) an estimator of the wind energy production
Êt can be obtained through an expression analogous to (3.15), which in this case yields

Êt = max(0,min(E, (wF
)
>xt)). (3.17)

Below, in this application, we seek to improve the onshore wind power production fore-
cast of the DK1 bidding zone belonging to the pan-European electricity market, which
is issued every day by the Danish TSO. To this end, we use, as additional features, the
forecasts of the wind power production in neighboring zones, which are produced by the
respective TSOs in charge of those zones. We also introduce a fix feature equal to one
and the corresponding component of the linear decision rule that acts as an intercept
to correct for possible offsets. Note that the onshore DK1-wind power forecast issued
by the Danish TSO is produced by the tool known as WindFor1, a state-of-the-art
software for forecasting wind power production at different scales that leverages numer-
ical weather predictions (wind speed and direction), statistics and artificial intelligence.
Given the presumed quality of this forecast, we also use it as a benchmark for our
method. This benchmark model, which only comprises the onshore DK1-wind power
forecast, is referred to as BN (from benchmark) throughout the rest of the application.

1WindFor. See https://enfor.dk/services/windfor/.

https://enfor.dk/services/windfor/
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3.1.1.2 Renewable Energy Trading

In principle, model (3.13) could be directly used for renewable energy trading with-
out further elaboration. To this aim, we would just need to solve this problem for
the enriched dataset

�
(Et, 

�

t
, 

+

t
,xt), 8t 2 T

 
and thus, obtain the optimal coefficient

vector w⇤ defining the linear decision rule (this is what we call model training). Then,
the bid E

D
t , to be submitted by the renewable energy producer to the day-ahead market

for time period t of the market horizon, would be computed as in (3.15).

Unfortunately, what we observe in practice is that the direct application of model
(3.13) does not produce, in general, a bid more profitable than the expected-value bid
(that is, the bid consisting in submitting the quality point forecast of the benchmark
method BN). The reason for this has to do with the limited predictability of the marginal
opportunity costs  � and  

+ (i.e., the absence of repeating patterns in the series of
these costs). In effect, as shown in Figure 2 of [126], the most sophisticated models for
predicting  � and  + deliver forecasts that are completely uninformative or misleading
for lead times beyond several hours into the future. However, the lead times required for
partaking in the day-ahead market are usually longer than 12-14 hours. This empirical
observation is, besides, supported by economic theory: the balancing market price �B

represents a marginal cost for system imbalances in real time, which should be purely
random. Consequently, the balancing market price should behave as a noise around the
spot price �D. As a result, there is little in  

� and  
+ that can be predicted for lead

times longer than several hours. In this situation, the model flexibility introduced by
the features in problem (3.13) tends to produce overfitted linear decision rules, that is,
rules that capture “fictitious” patterns of  � and  + in the historical/training dataset,
not repeated beyond that set.

Against this background, in lieu of model (3.13), we propose to solve the following
optimization problem:

min
w2R,u,o

1

T

X

t2T

 
�

t
ut +  

+

t
ot (3.18a)

s.t. ut � wÊt � Et, 8t 2 T (3.18b)

ot � Et � wÊt, 8t 2 T (3.18c)

ut, ot � 0, 8t 2 T , (3.18d)

where the single feature of this model, namely, Ê, represents the improved renewable
energy forecast obtained from model (3.16). What we suggest for renewable energy
trading is, therefore, a two-step procedure in which we first improve the renewable
energy forecast by way of (3.16) and then we correct such a forecast for trading by
means of the substantially less flexible model (3.18).
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As reported in [74], in newsvendor problems (similar to the renewable energy trading
problem we address here), the bulk of the economic gains we attain from data-driven
procedures are linked to the improvement of the estimate of E that we get. Following
this rationale, we first use (3.16) to enhance this estimate as much as possible, and
then employ (3.18) to account for mid-term patterns of  � and  

+ (the little that we
can explain about these costs) in the market bid. Therefore, we compute the bid to be
submitted to the day-ahead market for time period t as

E
D

t = max(0,min(E,w
T
Êt)), (3.19)

with w
T 2 R being the optimal decision-rule coefficient delivered by (3.18).

In the following section, we elaborate on the application of this two-step procedure
on a real experiment.

3.1.2 Experiment Design and Model Training

Next, we detail the experiment conducted to assess the performance of the data-driven
models introduced in Sections 3.1.1.1 and 3.1.1.2 for renewable energy forecasting and
trading, respectively. As mentioned, we focus on the onshore wind power produced in
the DK1 area of the pan-European electricity market.

This section is divided into three parts. In the first, we present the data gathered
and the different trained and tested models. In the second and third, we introduce the
metrics used to quantify the performance of those models and elaborate on how we train
them.

3.1.2.1 Data and Features

The data employed in this research span from 01/08/2015 to 04/22/2019 (date
format mm/dd/yyyy) and are fully published and freely available for download from the
website of the Danish TSO2 and the ENTSO-e Transparency Platform3 (ETP), which
facilitates the reproducibility of our results. These data pertain to various features that
either relate to the hour of the day and day of the week, or to day-ahead predictions
about a number of potentially relevant variables, specifically, the total load, scheduled
generation and solar power production in DK1, and wind power productions (onshore,
offshore or both) in market zones adjacent to DK1, namely, zone 2 of Denmark (DK2),
zone 2 of Norway (NO2), zones 3 and 4 of Sweden (SE3 and SE4, respectively), and
the bidding zone of Germany, Austria and Luxembourg (DE-AT-LU). According to the
Manual of Procedures4 (MoP) of the ETP, these predictions should be made available in

2Energinet. See https://energinet.dk/.
3ENTSO-e Transparency Platform. See https://transparency.entsoe.eu/.
4ENTSO-e’s Manual of Procedure v3.1 (2013). See https://www.entsoe.eu/data/

transparency-platform/mop/.

https://energinet.dk/
https://transparency.entsoe.eu/
https://www.entsoe.eu/data/transparency-platform/mop/
https://www.entsoe.eu/data/transparency-platform/mop/
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the platform by the different TSOs no later than 18:00 h of day D� 1 and span the 24
hours of the following day D. However, some TSOs are temporarily failing to faithfully
comply with the ETP’s MoP. This is the case, for example, of the Danish TSO, which
has a tendency to upload the day-ahead forecasts pertaining to DK1 and DK2 several
hours late (in the early morning of day D). In addition, the day-ahead forecasts are not
accompanied with their issuance time stamp, which makes it impossible to determine
the exact time in day D at which those forecasts were generated. This implies that we
cannot guarantee that all the forecasts we use as features in our models below are time-
consistent, that is, that have been issued at the same time. Directly after presenting our
models, we explain how we deal with this time-consistency issue in order to guarantee
a rigorous analysis and evaluation of the proposed approach.

On a different front, the categorical features named as “hour of the day” and “day of
the week” each comprise a group of 0/1 time series, specifically, 24 time series for the
case of “hour of the day” and seven for “day of the week.” These series, besides, take on
a value of one for all the time periods that correspond to the label of the feature, and
zero otherwise. For example, for every hour of “Monday”, only one of the seven series
of the feature “day of the week” takes on the value one, whereas the value of the other
six is set to zero.

We build and train seven models of the type of (3.16). The first five of these models
differ from one another by the number of features they exploit. More precisely,

Forecasting Model 1 (FM1), which only includes the day-ahead predictions of the on-
and offshore wind power production in DK1.

Forecasting Model 2 (FM2), which results from adding the categorical variables “hour
of the day” and “day of the week”, and the day-ahead forecasts of solar power
production, scheduled generation and total load in DK1 to model FM1.

Forecasting Model 3 (FM3), which is derived from model FM1 by adding the day-ahead
forecasts of the on- and offshore wind power production in DK2.

Forecasting Model 4 (FM4), which results from model FM3 by adding the day-ahead
forecasts of the onshore wind power production in NO2, DE-AT-LU, SE3 and SE4,
and the day-ahead forecasts of offshore wind power production in DE-AT-LU.

Forecasting Model 5 (FM5), which includes all the previous features.

Utopian Model 1 (UM1), which is analogous to FM4, but uses the realized values of all
the features that represent forecasts (that is, the actual outcomes of the associated
stochastic processes), except, logically, for the DK1-onshore wind power forecast,
which is what we seek to improve.



48 Chapter 3. Contextual optimization via decision rules

Utopian Model 2 (UM2), which is also similar to model FM4, but uses the realized
values of wind power production in SE3, SE4, NO2 and DE-AT-LU.

Models UM1 and UM2 are unrealizable in practice, as they assume perfect informa-
tion on some of the features (instead of forecasts). However, their analysis is worthwhile
to assess the impact of the aforementioned time-consistency issue. Models FM1-FM5
can be divided into two groups, namely:

1. Models FM1, FM2 and FM3 only use information relative to DK1 and/or DK2,
and therefore, we can ensure that these models exploit time-consistent information
as the information pertaining DK1 and DK2 is issued and uploaded to the ETP
by the same entity, i.e., the Danish TSO.

2. Models FM4 and FM5 also make use of information relative to the rest of bidding
zones. Hence, we cannot guarantee that these models employ time-consistent
information. However, the performance comparison between models FM3, FM4
and UM2 allows us to measure the impact of this possible time inconsistency. In
fact, this impact is concluded to be negligible in Section 3.1.3.1 (around 0.25-0.30
percentage points in terms of prediction performance).

Finally, model UM1 provides us with an upper bound on how much the DK1-onshore
wind power forecast issued by the Danish TSO could be improved with our methodology
by enhancing the information on the features. More precisely, it allows us to quantify
how much we would gain in prediction performance if we could use the actual realized
values of the features that our models exploit instead of their forecasts.

As we have said, the benchmark model BN, which we use for comparison and eval-
uation, is the raw onshore DK1-wind power forecast issued by the Danish TSO. Note
that this forecast is a feature (that is, an input) common to all the models listed above.
This way, the ultimate goal of these models is to enhance the Danish TSO’s forecast by
exploiting the information carried by the other features considered. In selecting those
other features that may be potentially most relevant to enhancing the onshore DK1-
wind power forecast issued by the Danish TSO, we have limited ourselves to information
that: i) pertains to DK1 and/or neighbouring bidding zones and ii) is published either
in the ETP or on Energinet.dk’s website.

For trading the onshore DK1-wind power production in the pan-European day-ahead
market, we construct an eighth model TM (trading model) of the type of (3.18) that
receives as input the wind power forecast Êt from model FM3. This is because it is
the simplest among the proposed models for wind power forecasting, which exhibits the
best overall prediction performance over the test set. Furthermore, in Section 3.1.3.2,
we compare the market performance of the bid produced by model TM with that of the
trading strategies consisting in directly bidding the point forecast given by models BN
and FM3 into the day-ahead market.
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The wind power forecasts for the market zone DE-AT-LU are available on a 15-
min time resolution, while the rest are given in hourly resolutions. Consequently, we
compute the hourly average values of the DE-AT-LU data series. A different issue is
that some of the series have missing values, although the proportion of gaps in the data
series relative to their length is negligible. We fill these gaps with a linear interpolation
of the values in their extremes. Last but not least, in models FM1–FM5, UM1 and UM2,
each non-categorical feature is dynamically scaled by the maximum value of the feature
that is observed in the training dataset. The target variable, that is, the onshore wind
power production in DK1 is also scaled by the most up to date value of the wind power
capacity installed in that zone, and is available in the ETP, which is 3669 MW. For
convenience, all the data series are labeled using Coordinated Universal Time (UTC),
which is also the time reference we use for our experiments.

3.1.2.2 Performance Metrics

To evaluate the performance of the various forecasting models stemming from (3.16),
we use the Mean Absolute Error (MAE) and the Root Mean Square Error (RMSE), i.e.,

MAE =
1

eT

X

t2eT

|Et � E
D

t |, (3.20)

RMSE =
1

eT

sX

t2eT

(Et � ED
t
)2, (3.21)

where eT is the test set and eT = |eT |.
Recall that, when forecasting, the purpose of model (3.16) is to improve an existing

renewable energy prediction. In our case, this prediction is the day-ahead forecast of
the onshore wind power production in DK1, which is issued by the Danish TSO every
day. For this reason, we are especially interested in the percentage improvement with
respect to the same forecast in terms of MAE and RMSE.

Simultaneously, to assess the performance of the trading model that results from
problem (3.18), we compute the average opportunity loss (AOL) linked to the onshore
wind power production in DK1 over the test set, that is,

AOL =
1
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The AOL gives us an idea of the monetary value lost by the onshore wind power pro-
duction in DK1 due to its limited predictability. Therefore, rather than in the value of
AOL per se, we are far more interested in the decrease in the AOL we attain by means
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Figure 3.1: Illustration of the rolling-window approach.

of model (3.18) relative to the AOL delivered by submitting the Danish TSO’s forecast
to the day-ahead market. Finally, note that if  �

t
and  

+

t
are set to one for all t the

AOL metric becomes equivalent to computing the MAE.

3.1.2.3 Model Training

Except for the categorical information “hour of the day” and “day of the week”, all the
features we exploit in models (3.16) are forecasts of a variety of potentially informative
variables for time t. All these forecasts pertain to the 24 hours of the following day. In
actual practice, models (3.16) and (3.18) are trained using a rolling-window approach as
discussed in Section 2.3.2 and therefore, the training set depends on each time period t

of the test set eT . We denote T (t) the rolling training set linked with t 2 eT as illustrated
in Figure 3.1. Note that the length of the training set is kept constant as time progresses.
Furthermore, there is a gap between the time period t and its corresponding training set
T (t). The reason for this gap is that the values of E,  � and  + for the time interval
between the moment the forecasts are made available and time t are still not known and
consequently, such time periods cannot be used for the training of the models (3.16)
or (3.18).

This rolling-window approach dynamically re-estimates the decision-rule parameters
wF and w

T solving (3.16) and (3.18), respectively, as the information on the considered
features is updated. Each time these parameters are re-estimated, equations (3.17) and
(3.19) are used to issue improved forecasts and bids for time period t.

Critical to the training of models FM1–FM5 and TM is determining the length
T = |T | of the training set. This length defines when the data linked to certain days
in the past have become too old to be considered in the training process. We devote
the first year of data to tune this length for models FM1–FM5. In this time interval,
the piece of data spanning from 08/07/2015 to 02/02/2016 (180 days) is used as the
validation subset. We then compute the MAE on this subset for each of the models
FM1–FM5 and for different lengths of the training subset, which we vary from one to
seven months. We remark that the length of the training set is the only hyper-parameter
that needs to be tuned for our models, which represents an advantage in terms of ease
of use and implementation.
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T FM1 FM2 FM3 FM4 FM5
1 11.67 7.40 10.37 4.57 -2.08
2 12.30 10.97 11.95 10.18 7.98
3 12.78 11.40 12.55 12.62 10.87
4 12.51 11.55 12.38 12.75 11.52
5 12.46 11.10 12.48 13.05 12.01
6 12.67 11.75 12.83 13.05 12.69

7 12.46 11.86 12.49 13.03 12.37

Table 3.1: MAE reduction in percentage (%) with respect to the benchmark for different
lengths of the training set T (months of data).

Table 3.1 summarizes the results of this analysis, where the MAE linked to each
model and length is expressed in percentage reduction with respect to the MAE asso-
ciated with the benchmark, namely, the onshore DK1-wind power forecast issued by
the Danish TSO. From this table, we see that the improvement in the performance of
models FM1–FM5, which is initially observed as we increase the length of the training
set, not only ends up saturating, but even reverses, as we extend the training set beyond
several months (e.g., six months in the case of FM5). This is due to the fact that, at
some point in time, the information contained in the oldest data becomes obsolete and
thus, potentially misleading. In light of these results, we set the length of the training
set for forecasting to six months.

We proceed in a similar fashion to establish the length of the dataset we use to train
the trading model TM. In this case, we change the validation subset to 06/03/2016–
11/29/2016 (180 days). This change is required because model TM is fed with the
improved wind power forecast yielded by FM3 (the one exhibiting the best trade-off be-
tween simplicity, data reliability and forecasting performance). Consequently, training
model TM involves generating a sufficient number of predictions from model FM3 first,
which, in turn, is to be trained over a dataset spanning six months. Hence, we need to
reserve a large chunk of data to study the impact of the length of the training set on
the performance of model TM. Table 3.2 shows the results of this study for a length of
the training set varying from one to ten months. The numbers in the table correspond
to the AOL reduction of model TM in percentage with respect to the AOL given by
the benchmark, that is, the trading strategy consisting in submitting the wind power
prediction issued by the Danish TSO to the pan-European electricity market. In view
of these results and for ease of implementation, we also set the length of the training
set for trading to six months.

Next, we discuss the results obtained from the simulation conducted on all the
remaining days in the full dataset that have not been used to determine the length of
the training set.
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T 1 2 3 4 5 6 7 8 9 10
TM 3.04 7.62 8.20 8.33 9.29 9.14 8.36 8.25 8.05 7.67

Table 3.2: AOL reduction in percentage (%) of model TM with respect to the benchmark
for different lengths of the training set T (months of data).

FM1 FM2 FM3 FM4 FM5 UM1 UM2
MAE 7.03 7.03 8.53 8.55 8.53 10.18 8.80
RMSE 6.04 6.22 7.16 7.33 7.46 9.14 7.46

Table 3.3: MAE and RMSE reduction in percentage (%) with respect to the benchmark.

3.1.3 Results

We divide this section into two parts. In the first one, we present and discuss the
improvements in wind power forecasting brought about by the linear decision rule that
results from (3.16). Subsequently, we elaborate on the improvements in wind power
trading that we attain by means of model (3.18).

3.1.3.1 Improvements in Wind Power Forecasting

The first and last days in the test set are 02/04/2016 and 04/22/2019. That is, the
test set in the simulation comprises 1174 days in total. Table 3.3 provides the MAE
and the RMSE reductions (in percentage) with respect to the performance metrics of
the benchmark, namely, the raw forecast issued by the Danish TSO.

We observe that model (3.16), which, in essence, is a computationally inexpensive
and interpretable linear program, is able to substantially enhance the wind power fore-
casts made by Energinet.dk. In fact, most of the reduction can be achieved by linearly
combining Energinet.dk’s predictions for the onshore and offshore DK1-wind power pro-
ductions (model FM1). From these results, we infer that historical information of wind
power forecasts pertaining to neighboring bidding zones is not currently being exploited
by the Danish TSO. In contrast, the performance comparison of models FM1 and FM2,
on the one hand, and of models FM4 and FM5, on the other, seems to signal the fact
that the “hour of the day” and “day of the week”, and the day-ahead forecasts of solar
power production, scheduled generation and total load in DK1 do not have predictive
power on the targeted variable. Moreover, the comparison between FM1 and UM1 re-
veals that a significant improvement in the forecasting of the DK1-onshore wind power
production can be attained by enhancing the quality of the forecasts in the areas ad-
jacent to DK1. However, the comparison between FM1, FM3, FM4 and UM2 further
indicates that the bulk of this potential improvement is to be attributed to the DK1
and DK2 wind-related features. The models of the type in (3.16) that exhibit the best
forecasting performance are FM3, FM4 and FM5. Since FM3 is significantly simpler
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Figure 3.2: Illustration of the forecasts issued by the Danish TSO (BN) and model FM3
for the interval 01/01/16 to 01/08/16 (mm/dd/yyyy).

than the rest and offers the best guarantees in terms of data reliability5, we use FM3
to feed TM with the required wind power forecast. Interestingly, even though models
FM2 and FM5 exploit a larger number of features than FM1 and FM4, respectively,
their forecasting performance is not (or barely) improved.

For the sake of illustration, Figure 3.2 plots the actual realization of the wind power
production in the time interval 01/01/16 to 01/08/16 , together with the forecasts
issued by Energinet.dk (BN) and the proposed model FM3. It can be observed that
from hour 80 onwards, the forecast yielded by FM3 is always closer to the actual wind
power production than the forecast used by the Danish TSO. On average, model FM3
produces forecasts that, over the simulation period, deviate 100.44 MW with respect
to the true wind power values, whereas Energinet.dk’s average deviation for this period
amounts to 109.82 MW.

The simplicity of model (3.16) makes it more interpretable than other forecasting
models based, for instance, on artificial neural networks. Not surprisingly, the coefficient
corresponding to the onshore DK1-wind power forecast issued by the Danish TSO is
the largest one for the FM and UM models. For example, its value in model FM4
ranges from 0.8335 to 1.0267 over the simulation period. The other coefficient values of
model FM4 are depicted in a box plot in Figure 3.3. As observed, the forecasts for the
offshore DK1-wind, the onshore and offshore DK2-wind, and the onshore SE4-wind are
also significant.

5Model FM3 uses data simultaneously produced and uploaded to the ETP by the same entity,
namely, the Danish TSO. One can expect, therefore, that the forecasts contained in these data have
been built with the same past information available.
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Figure 3.3: Box plot of the coefficients obtained for FM4 in the simulation period
02/04/16 to 04/22/2019.

3.1.3.2 Improvements in Wind Power Trading

The first and last days of the test set, in this case, are 11/30/2016 and 04/22/2019,
in that order. This means that the test set in this simulation consists of 874 days. In
this analysis we assume that the wind power point forecast issued by each model is
directly bid into the day-ahead market and then we compute the average opportunity
loss as in (3.22).

If the forecasts issued by FM3 are used as bids, the AOL is reduced by 1.30% with
respect to the benchmark, which consists in bidding the raw wind power point forecast
issued by the Danish TSO into the day-ahead market. Although model FM3 is tailored
to forecasting, the reduction of the prediction error that it achieves is accompanied with
an AOL decrease too.

If the mid-term dynamics of the marginal opportunity costs are accounted for
through model TM, the AOL reduction increases up to 2.13%. In this regard, the
histogram of the values taken on by the decision-rule parameter wT over the simulation
period is plotted in Figure 3.4. Interestingly, this parameter tends to take values above
1, so as to profit from the fact that, in the DK1 bidding zone, overproduction is, on
average, more penalized than underproduction.

To further explain the AOL reduction achieved by TM, we define the empirical
critical fractile estimated over the training set T as

R =

1

T

P
t2T

 
+

t

1

T

P
t2T

 
�

t
+

1

T

P
t2T

 
+

t

. (3.23)

The ratio R balances the marginal opportunity cost for overproduction and the marginal
opportunity cost for either under- or overproduction, all of them averaged over T . A
value of R higher than 0.5 means that the opportunity cost for overproduction was
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Figure 3.4: Histogram of the values taken on by the decision-rule parameter w
T in

model TM for the interval 11/30/16 to 04/22/19.

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850

0.5

0.6

0.7

0.8

0.9

1

1.1

Days

w
T R

Figure 3.5: Evolution of decision-rule parameter wT in TM and ratio R for the interval
11/30/16 to 04/22/19.

more significant than that for underproduction throughout the training period. In such
a case, the optimal market bid should be higher than the forecast production in order
to hedge against overproduction. Conversely, if R is lower than 0.5, the optimal market
bid should be lower than the forecast production.

Figure 3.5 depicts the time evolution of the decision-rule parameter w
T in TM

together with the ratio R over the simulation period 11/30/16-04/22/19. As observed,
the value of w

T continuously adapts to the variations of R as the training period T
moves forward. This way, the bids provided by TM take into account the mid-term
dynamics of  � and  + to properly hedge against under or overproduction.

Finally, Figure 3.6 illustrates the accrued reduction in opportunity loss achieved by
model TM with respect to the benchmark over the simulation period. Note that the plot
is studded with time instants when the accrued improvement suddenly decreases. This
is because the series of balancing prices is scattered with highly unpredictable spikes.
Indeed, the limited predictability of balancing prices is what makes the trading strategy
consisting in minimizing expected deviations so hard to beat. To finish this section, we
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Figure 3.6: Accumulated opportunity-loss reduction of TM for the interval 11/30/16 to
04/22/19 for a installed capacity of 3669 MW.

note that a similar experiment could be conducted for a particular wind farm or a
particular wind power producer. To illustrate the benefits of our approach, however,
we have decided to work with the aggregate onshore DK1-wind power production for
several reasons. First, there is a rich set of market data related to DK1 and surrounding
bidding zones publicly available in ETP, while analogous datasets for specific wind farms
or producers are usually kept confidential. Second, DK1 uses a dual-price balancing
settlement, and last, the onshore installed wind power capacity in DK1 amounts to
3669 MW. Today, portfolios of similar size can easily be found in countries such as
Spain, United Kingdom or Germany6.

3.2 Online wind power producer

Next, we present another strongly related application addressing the wind power pro-
ducer problem in an online setting. As mentioned in the previous application, it is
common that wholesale electricity markets require producers to make offers anywhere
between 12 to 36 hours before, in the so-called day-ahead markets. It is clear that this
requirement hinders the integration of variable renewable energy and wind energy in
particular due to the significant lead time between the offer and the actual delivery of
energy, which in turn dilutes the accuracy of the forecasts and the value of contextual
information (see Section 3.1.1.2).

Aware of this and other issues, and backed by the development of information tech-
nologies and computation capabilities, there is a current trend that points towards a
reduction in the lead time of electricity markets7. Inspired by this idea, we investigate a
conceptual setting in which the daily wholesale electricity market (which usually closes
at 12.00 the day before) is replaced by an hourly market that closes just before the
start of the next energy delivery period. This setting has a threefold purpose, namely:

6The Wind Power. See https://www.thewindpower.net/owners_en.php.
7Increasing time granularity in electricity markets, innovation landscape brief, IRENA (2019).

https://www.thewindpower.net/owners_en.php
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i) it helps us to quantify the evident gains that avoiding the lead time could mean for
wind power producers, ii) it enables the investigation of online algorithms, showcasing
the benefits they bring to electricity markets, and iii) it allows us to use realistic data,
obtained from the Danish TSO Energinet, from a market with a dual-price settlement
for imbalances.

In this setting, two remarks should be made. Firstly, the production during the de-
livery period is still uncertain since wind energy exhibits fast dynamics and can signifi-
cantly vary from one period to another. At the same time, those predictive approaches
based on forecasts are obviously more precise than in the case of day-ahead markets,
meaning that methods such as FO, described in Section 2.2, are stronger contestants to
beat. Against this background, we particularize the contextual online gradient descent
(COGD) algorithm, introduced in Section 2.2.2, to the wind power producer problem,
comparing its performance with respect to other approaches that use contextual infor-
mation in the previous application, such as FO and DR.

The COGD algorithm combines elements from the DR approach and the popular
online gradient descent (OGD) [152]. For a review of the work closer, in a methodological
sense, to COGD, we refer the reader to Section 2.3.3. Online algorithms have proved
helpful in many relevant problems related to power systems and electricity markets with
applications to the optimal power flow [61, 70], real-time markets [67], demand response
[85, 84, 86] with several authors highlighting the connection between online learning and
control theory [6, 39]. However, to the best of our knowledge, the problem of a wind
power producer offering in a wholesale electricity market, as formulated in this chapter,
has not yet being addressed using online gradient methods.

The wind power producer problem was already introduced in the previous appli-
cation, and therefore we refer the reader to Section 3.1 for a general review of the
literature on trading wind energy. For completeness, we address the most relevant work
in connection with the current application emphasizing those aspects related to an on-
line setting. As in the previous application, the work by [92] and [35] is related to
ours. The reinforcement learning algorithm used in [92] to follow the optimal quantile
is different from ours because, again, we do not require a wind power predictive density
available and we do not track the optimal quantile but rather we focus on encoding the
optimal offer as a linear decision rule of the features. Note that reinforcement learning
includes a different set of techniques concerned with the repercussion of the decision
in the future based on the current state rather than updating the decision based on
the last information obtained as in the online setting. In [35], the authors propose a
meta-optimization problem to optimize the forecasting hyper-parameters taking into
account the decision task and an artificial neuronal network to minimize the imbalance
cost. Both approaches are complex, involving several independent components to be
implemented, and they are computationally more expensive than the continuous update
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that COGD performs.

Evidently, the work in [101] (on which the previous application is based) is one of
the closest to the application under discussion here. Both approaches replace the target
variable with a linear decision rule dependent on contextual information. However, each
approach tackles different market settings, resulting in different design characteristics.
In the case of the previous application, the accuracy of the forecasts available to the pro-
ducer is substantially lower, requiring a two-step procedure that involves forecasting and
trading steps to prevent overfitting. Conversely, we can avoid the former in the current
application. Another relevant distinction is that, in this application, the producer learns
the performance of her offer before making the next one, enabling continuous feedback
through the online COGD algorithm. Consequently, the COGD algorithm avoids the
resolution of any mathematical program yielding a computationally inexpensive method
suitable to produce offers in markets with reduced lead time.

3.2.1 Problem description

As explained in the introduction of this section, the setting addressed here is very close
to the one described in Section 3.1.1. The main difference lies in that we consider
an hourly wholesale electricity market that closes just before the start of the actual
delivery of energy. This is a fundamental difference with respect to the day-ahead
market addressed in the previous application, since it enables continuous feedback of
the wind power producer’s offer based on its performance during the last period and the
reduced lead time increases the value of potentially informative samples. Other than
that, the problem is very similar to the one presented in Section 3.1.1.

To avoid repetition, we refer the reader to Section 3.1.1 for a general introduction
of the problem, observing the comments of the paragraph above. Note that in this
application, we replace the nomenclature E

D
t by E

F
t to emphasize that we consider a

different market setting (D comes from day-ahead market while F from forward market).

3.2.2 The online newsvendor algorithm

In this section, we particularize the contextual online gradient descent (COGD), intro-
duced in Section 2.3.3, to the context of a wind power producer offering in a forward
market. The result is an algorithm that we named OLNV (from online newsvendor).
For the derivation of OLNV, we start recovering problem (3.12) that we reproduce here
for completeness:

min
w

1

T

X

t2T

 
�

t

⇣
w>xt � Et

⌘+
+ 

+

t

⇣
Et �w>xt

⌘+
(3.24a)

s.t. 0  w>xt  E, 8t 2 T . (3.24b)
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In this application, we refer to the approaches based on this model with the abbreviation
DR (from decision rule). Recall that the update of the optimal solution to (3.24),
denoted from hereon as wDR, is achieved by resolving from scratch problem (3.24) at
each step. Then, an offer in the forward market can be computed as

E
F

t = max(0,min(E, (wDR
)
>xt)). (3.25)

Instead, in OLNV, we start from an initial value w1 and perform continues updates of
this vector based on the information provided by the last realization of the objective
function. The objective function of (3.24) when the set T reduces to one sample yields

NVt(w) =  
+

t

⇣
Et �w>xt

⌘+
+  

�

t

⇣
w>xt � Et

⌘+
, (3.26)

where NVt (from newsvendor) refers to the newsvendor objective function in period
t. The OLNV method requires computing a gradient of the objective function to per-
form the update, for which we analyze two alternative procedures in the following
paragraphs.

The first approach is inspired by the work of [150] on the pinball loss, a particular
case of the objective function found in newsvendor models. Since the pinball loss is
not strictly differentiable, the authors propose an alternative smooth approximation
to ensure that computing gradients is always possible. Note that the objective func-
tion (3.26) is not differentiable at Et = w>xt. We first propose to circumvent this issue
extending the approach in [150] to the more general expression (3.26) that considers
arbitrary (positive) penalties as

NVt↵(w) =  
+

t
(Et �w>xt) + ↵( 

�

t
+  

+

t
) log(1 + e

�(Et�w>xt)/↵), (3.27)

where ↵ > 0 is a parameter that controls the approximation and where higher values
result in smoother functions. Then, we derive a closed-form solution to obtain gradients
of (3.27), yielding

rNVt↵(w) =

✓
�  

+

t
+ ( 

+

t
+  

�

t
)

1

1 + e(Et�w>xt)/↵

◆
xt. (3.28)

The second approach deals directly with the objective function as formulated in (3.26).
Even though the original objective is not strictly differentiable, a variant of the OLNV al-
gorithm is readily applicable to subdifferentiable functions, provided that a subgradient
can be computed instead [107]. In this case, the mapping that returns a subdifferential
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of (3.26) is given by

@NVt(w) =

8
>>><

>>>:

� +

t
xt, Et �w>xt > 0,

 
�

t
xt, Et �w>xt < 0,

[� +

t
xt, 

�

t
xt], Et �w>xt = 0.

(3.29)

Note that, when Et�w>xt = 0, any value in the interval [� +

t
xt, 

�

t
xt] is a legitimate

subgradient belonging to @NVt(w). For the sake of simplicity and reproducibility, the
implementation of our algorithm returns zero whenever this condition is fulfilled.

Once a gradient as in (3.28) or a subgradient as in (3.29) has been computed, the
key step of OLNV is to update wt using a multidimensional learning rate ⌘t 2 Rp (note
that in this case the dimension of the learning rate is equal to the dimension of the
contextual information vector) through

wt+1 = ⇧(wt � ⌘t � ⌧ t,xt), (3.30)

where � denotes the element-wise product, ⌧ t = rNVt↵(wt) or ⌧ t = @NVt(wt) de-
pending on the implementation of OLNV, and ⇧ is a projection operator defined as
⇧ : Rp ⇥ X ! Rp. Precisely, ⇧ maps its arguments into the solution of the following
optimization problem:

⇧(o,x) = argmin

w2W (x)

1

2
ko�wk2. (3.31)

The feasible set in (3.31) is defined by the set-valued mapping W : X ◆ Rp, W (x) =

{w : 0  w>x  E}. Note that, for any input x, the output of W is a convex region
bounded by two parallel hyperplanes. As the Euclidean norm is used, a unique solution
is guaranteed to exist for any instance of (3.31). Generally, the Euclidean projection of
a point into a convex set requires solving a convex optimization problem, however, the
definition of W allows us to find a closed-form expression, yielding

⇧(o,x) =

8
>>><

>>>:

o, 0  o>x  E,

o+
E�o>x
kxk22

x, o>x > E,

o+
�o>x
kxk22

x, o>x < 0.

(3.32)

This reduces the resolution of the optimization problem (3.31) to evaluating (3.32).
Even though the operator ⇧ guarantees the feasibility of wt under the realization xt,
we need to resort to the projection

⇡(w,x) = max(0,min(E,w>x)), (3.33)
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setting E
F
t = ⇡(wt,xt) to ensure E

F
t remains feasible for any new piece of contextual

information.
The last remaining aspect is to compute the vector ⌘t following the ideas in [147]. As

introduced in Section 2.3.3, we use the update given by (2.32) and (2.33) in our OLNV
algorithm with the values ✏ = 10

�6 and ⇢ = 0.95, following the recommendations in
[147]. The benefit of this update is twofold. On the one hand, OLNV adapts the
learning rate vector to the scale of every feature. On the other, OLNV is capable to
track the most recent dynamic between the uncertain vector [Et, 

+

t
, 

�

t
] and the vector

of contextual information xt. Finally, the complete OLNV algorithm particularized for
the feature-driven wind power producer problem is compiled in Algorithm 4. Recall
that “�n” denotes the n-th Hadamard power with n 2 R so that ⌧ �2

t = [⌧
2
t1
, . . . , ⌧

2
tq]

>

and ⌧ �2
t is the moving average vector of the former.

Algorithm 4 Online Newsvendor (OLNV)
Require: Initial values w1 2 Rp, ⌘ > 0, ⇢ 2 [0, 1), ✏ 2 R+

1: Initialize ⌧ �2
0

= 0
2: for t = 1 to T do

3: Output wt

4: Receive xt

5: Compute E
F
t = ⇡(wt,xt)

6: Receive NVt and pay NVt(E
F
t )

7: Set ⌧ t = rNVt↵(wt) or ⌧ t = @NVt(wt)

8: Accumulate ⌧ �2
t = ⇢⌧ �2

t�1
+ (1� ⇢)⌧ �2

t

9: Compute ⌘t = ⌘(⌧ �2
t + ✏1)��1/2

10: Update wt+1 = ⇧(wt � ⌘t � ⌧ t,xt)

11: end for

3.2.3 Regularization through average penalty anchoring

In a mature electricity market under a dual-price mechanism, it is common that  +

t
=

 
�

t
= 0 for a significant number of hours [97], meaning that load and generation are close

to equilibrium in the system. From (3.26), it is evident that, in this situation, a deviation
from the forward market offer is not penalized since the imbalances and forward market
offers are paid the same price. Moreover, the gradients computed through (3.26) are
equal to zero and therefore the variable vector wt is not updated, wasting information
about the relationship between Et and xt. For their part, when penalties are different
from zero, they typically exhibit random behavior with sharp spikes representing highly
imbalanced scenarios which, in turn, yields destabilizing updates of the vector wt. To
tackle both issues, we propose performing the following convex transformation of the
original penalties:

 
+

0

t
= µ 

+

t
+ (1� µ) 

+
, (3.34)
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+ (1� µ) 
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, (3.35)

where 0  µ  1 and  
+
, 

� 2 R+ are the historical average penalties. This convex
transformation is inspired by the concept of constraining the optimal offer around the
point forecast developed in [153], but unlike them, we do not impose hard constraints on
the decision vector wt. Instead, we smooth the objective function using as anchor the
sample average optimal market quantile determined by the average market penalties
 
+ and  

�. To do so, we consider a convex combination of the original objective
function (3.26), which we denote NV

R
t , with an additional term that minimizes such a

quantile,

NV
R

t =µ 
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⌘+
. (3.36)

Then, by means of (3.34) and (3.35), we recover the original objective structure, i.e.,

NV
R

t =  
+

0

t

⇣
Et �w>xt

⌘+
+  

�
0

t

⇣
w>xt � Et

⌘+
. (3.37)

Therefore, by replacing  
+

t
, 

�

t
with  

+
0

t
, 

�
0

t
in the original objective function, we

regularize the learning procedure adding no extra computational cost. Thus, by selecting
µ < 1, provided that  +

, 
�
> 0, the algorithm leverages the information contained in

samples with both penalties equal to zero, potentially accelerating the convergence and
obtaining smoother updates through the gradient. The same reasoning applies to the
smooth objective function. Note that when the available samples are not sufficient to
provide reliable estimators of the true  + and  �, the producer can resort to assuming
a balanced market with penalties  +

=  
�
= 1.

3.2.4 Performance evaluation

Consider that we have a sequence of offers E
F
1
, . . . , E

F

T̃
obtained by solving (3.24) or

from Algorithm 4 after learning, one by one, the samples belonging to the test set eT . As
in the previous application, we can evaluate the economic performance of this sequence
through the average opportunity loss (AOL), which we reproduce here for completeness

AOL =
1

eT

X

t2eT

 
�

t
(Et � E

F

t )
+
+ 

+

t
(E

F

t � Et)
+
, (3.38)

where eT = |eT |. The value of this metric alone provides limited information about how
a particular method is performing. A natural benchmark is the score obtained when a
forecast of the wind energy production (in the sense of minimizing the root mean square
error) is directly used as an offer in the market. We refer to this method as FO (from
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forecast). Let AOL
FO be the average opportunity loss incurred by FO. Leveraging this

quantity, we redefine the original metric in relative terms, i.e.,

AOL(%) =
AOL

FO �AOL

AOL
FO

· 100. (3.39)

In this manner, the metric is expressed as a percentage of the possible improvement,
where a value of 100% means perfect performance with zero deviation cost. As in the
previous application, we use this metric as the main tool to evaluate the economic
performance in the case study presented in Section 3.2.6.

The regret is a metric very related to the definition of the AOL in (3.38). However,
the regret places the focus on the performance against a benchmark instead of measuring
the monetary returns per se. This metric is a central pillar of the online learning
literature. Traditionally, in online learning, the regret compares a sequence of decision
w1, . . . ,wT against the best single vector in hindsight wH. The latter is computed
ex-post solving a problem analogous to (3.24) once the whole collection of samples
belonging to eT is known. Let W

H be the intersection of all feasible sets W (xt), more
precisely W

H
: X ◆ Rp, WH

= {w : 0  w>xt  E, t 2 eT }. The standard regret, used
in online learning [37, 107], renders

Rs

T =

X

t2eT

NVt(wt)� min
w2WH

X

t2eT

NVt(w). (3.40)

Outperforming wH can be a relatively easy task when the uncertain NVt objective
functions are produced by a non-stationary process, i.e., the assumption of a fixed
probability distribution generating the points (Et, 

+

t
, 

�

t
) does not hold. This is true

despite the fact that wH is determined under perfect information since the selection
is limited to a single vector. On the other side of the spectrum, one may consider the
worst case regret, as proposed by [22], interchanging the summation and the minimum,
i.e.,

Rw

T =

X

t2eT

NVt(wt)�
X

t2eT

min
w2W (xt)

NVt(w), (3.41)

where the second term of (3.41) computes the best individual decision wH
t . The re-

gret computed in this way can be highly pessimistic and unrealistic. Note that in the
context of the wind power producer, it is always possible to find a value for w such
that Et � x>

t w = 0, and therefore (3.41) reduces to the summation of the original
objective function Rw

T
=
P

t2eT NVt(wt). Alternatively, [152] suggests to compare the
performance of online algorithms against a sequence of arbitrary decisions u1, . . . ,uT ,
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ut 2 W (xt), yielding

Rd

T =

X

t2eT

NVt(wt)�
X

t2eT

NVt(ut). (3.42)

We refer to this approach as dynamic regret. This formulation enables a metric to
be defined, with an adjustable difficulty between the previous benchmarks. Note that
(3.40) and (3.41) are special cases of (3.42) with ut = wH 8t and ut = wH

t 8t, in that
order.

Given the ability to create regret benchmarks with intermediate difficulty between
the standard and worst-case options, we choose (3.42) as the definition of regret to be
used in this application. Then, the question is how to choose a reasonable series of
benchmark decisions ut to be used against OLNV. To this end, we propose dividing eT
in k adjacent partitions of equal length l, except possibly the last one. Without loss
of generality, by assuming T � kl = 0, we have eTi = {t : (i � 1)l + 1  t  il}, 8i,
with i = 1, . . . , k. Let us define the feasible sets W

H

i
= {w : 0  w>xt  E, t 2 eTi}.

Accordingly, we can compute wH

i
2 argminw2WH

i

P
t2eTi NVt(w).

Finally, the sequence of decisions to be used in this application, together with the
dynamic definition of regret in (3.42), is ut = wH

i
, 8t 2 eTi. We empirically investigate

the dynamic regret performance of OLNV in the case study presented in Section 3.2.6.

3.2.5 Illustrative examples

This section analyzes several illustrative examples to gain insight into the behavior
of OLNV. The first case compares the two alternative implementations introduced in
Section 3.2.2 and discusses their main properties. As a result of this analysis, we select
the subgradient objective function as the default procedure to perform the update of
wt in OLNV. On a different front, one of the key features of online learning algorithms
is their tracking ability. In the second illustrative example, we deal with a dynamic
environment with alternating penalty scenarios where we compare the DR approach,
based on a linear optimization problem and a training set of many samples, and the
online OLNV algorithm, demonstrating the salient capabilities of the latter in this
regard.

3.2.5.1 Comparing the smooth and subgradient objective

This illustrative example aims to elucidate whether the smooth approximation pre-
sented in (3.27) provides any computational advantage over the direct subgradient im-
plementation of OLNV to select the implementation to be used in the rest of the case
study.

To this end, we consider a simplified setting with a single feature, a forecast of the
actual wind production, which we also use as the baseline of the method FO, and a single
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Figure 3.7: Sample of the (sub-)gradients ⌧t of NVt and NVt20 computed in the dataset
of the illustrative example.

@ ↵ = 0.05 ↵ = 5 ↵ = 20

|̊⌧ | 121.7 122.0 125.6 133.5
� 380.8 379.7 310.4 293.3

AOL(%) 5.3 5.2 0.8 -14.5

Table 3.4: Average absolute value |̊⌧ | and standard deviation � of the (sub-) gradients
and the metric AOL(%) computed for three smooth (↵) and one subgradient (@)

implementations of the OLNV.

regressor wt 2 R. No intercept is considered to ease the representation and analysis of
wt. We sample the feature from a uniform distribution xt ⇠ U(10, 90) (MW) and the
true wind generation series is built adding a normal noise Et = xt+ ✏t with ✏t ⇠ N (0, 6)

(MW). We produce a dataset of 1 year (8760 samples) through this process. Given
that the penalties  +

t
and  �

t
are difficult to simulate, we compute them based on real

day-ahead and regulation prices of the Danish DK1 bidding zone. We retrieve data
corresponding to the year 2017 from the data portal of the Danish TSO, Energinet8.
Four implementations of Algorithm 4 are executed, three of them computing gradients
of the smooth objective function through (3.28) with ↵ = 0.05, 5 and 20, respectively,
and the last one leveraging subgradients of the original cost mapping as in (3.29), to
which we refer as @. All instances are initialized with w1 = 1, which means that the
first offer produced by FO and OLNV are the same. In this section we do not use any
convex transformation of the prices, i.e., µ = 1, and we set ⌘ = 0.005. We run the
OLNV algorithm throughout the dataset, performing updates of wt every hour.

Figure 3.7 shows a sample of @NVt and rNVt20 that correspond to the subgradient
and gradient of the smooth objective function with ↵ = 20, respectively. Note that
only NVt and NVt20 are represented for the sake of clarity. We can observe that the
maximum values of the spikes in the case of NVt20 are comparatively lower due to

8Energinet data service. See https://www.energidataservice.dk/

https://www.energidataservice.dk/
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Figure 3.8: Different instances of the original NVt and smooth NVt0.3 objective function
with ↵ = 0.3 and u = Et � w

>
xt.

the high smoothing effect obtained with ↵ = 20. This observation is aligned with the
decreasing value of the standard deviation of the (sub-)gradients � collated in Table 3.4
as ↵ increases.

To the contrary, the mean absolute value of the (sub-)gradients, denoted as |̊⌧ |,
follows the opposite evolution. To understand the rationale behind this evolution, we
provide Figure 3.8 showing three instances of the original and smooth losses. In all
cases, we corroborate that NV t↵ asymptotically approaches the original newsvendor
function. However, plot 3.8a evidences that the minimum of NV t↵ is biased. This is
valid whenever  +

t
6=  

�

t
, a common situation in markets with a dual-price settlement

for imbalances. Furthermore, when one penalty is equal to zero, the minimum is never
attained. The imperfections of NV t↵ distort the magnitude and even the sign of the
gradients, causing a long-term drift of wt that increases with ↵ as shown in Figure 3.9.

Finally, the last row of Table 3.4 presents the AOL(%) obtained by each imple-
mentation, using the synthetic forecast FO as the baseline. In this table, it is clear
that AOL(%) deteriorates when ↵ increases. Thus, the smooth approach avoids some
sharp changes in the decision vector but at the expense of a biased long-term evolution
of the coefficient wt and important economic losses. Therefore, we conclude that the
smooth approximation does not provide any substantial advantage over the subgradient
implementation in this application. As a result of this analysis, we use subgradients to
implement the OLNV method throughout the rest of this application.

3.2.5.2 Dynamic behavior

In this illustrative example, we explore the tracking ability of the OLNV and DR
approaches. Similar to the previous case, we assume that the producer only has access
to a unique feature and considers a model with a single regressor. Again, we sample the
forecast from a uniform distribution xt ⇠ U(10, 90) (MW) and the true wind generation
series is built adding a normal noise Et = xt + ✏t with ✏t ⇠ N (0, 6) (MW). Instead of
the real DK1 data, we consider two possible scenarios with penalties  +

t
= 1, 

�

t
= 3
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Figure 3.9: Example of the evolution of the coefficient w for different implementations
of OLNV.

and  
+

t
= 3, 

�

t
= 1, alternating every two months. This process generates 8 months

of data (5760 hours) using the last 4 months (2880 hours) as the test set. The start
of the test set is aligned with the beginning of a two-month scenario with  

+

t
= 1 and

 
�

t
= 3. The DR approach is implemented, solving the optimization problem (3.24)

with a set of historical samples T . Then, we leverage (3.31) to cast an offer based on
the context E

F
t = ⇡(w

DR
t , xt). The coefficient w

DR
t is refreshed every 24 hours solving

problem (3.24) in a rolling window setting. The reason for a 24-hour update is twofold,
namely it reproduces the algorithm in the previous application (see Section 3.1) and we
empirically checked that there was little economical gain to be had with a lower update.
The resolution time in the case of an hourly update, for example, took 24 times longer.
Note that DR follows a rolling window approach that produce smalls changes in the
training set, resulting in similar w

DR
t as we later discuss. We train four versions of the

DR model with |T | = 720, 1440, 2160 and 2880 (1, 2, 3, or 4 months), denoted as DR-
1M to DR-4M, respectively. We use the first four months of the dataset to construct
the initial training sets. Although the concept of training is substantially vaguer in the
case of OLNV, the last month of the training set is used to update the value of wt,
originally initialized as w1 = 1, to resemble a model that has been operating for some
time.

Figure 3.10 depicts the evolution of the single regressor wt in the test set, together
with the optimal w⇤ to use in each penalty scenario. In the first two months, the higher
value of  �

t
penalizes offers above the true production E

F
t > Et, and consequently,

the optimal strategy is to underestimate E
F
t with w

⇤
< 1. In the final months, the

opposite is the case. As expected, the evolution of the decision vector in the DR case is
smoother, given that the optimization is performed on a data set of hundreds of hours.
However, the OLNV method is substantially faster in tracking the optimal w⇤. In fact,
the trajectory of wt produced by the models DR-1M to DR-4M is lagged with respect
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OLNV DR-1M DR-2M DR-3M DR-4M
AOL (%) 13 5 -5 -6 0

Table 3.5: Out-of-sample AOL (%) obtained in the test set of the illustrative example.
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Figure 3.10: Evolution of w produced by five models over the test set. The blue and
orange shaded periods correspond to the penalty scenarios  +

t
= 1, 

�

t
= 3 and  

+

t
=

3, 
�

t
= 1, respectively. The entry w

⇤ corresponds to the best single value for each
penalty scenario.

to the change in the penalty scenario (emphasized by different background colors in
Figure 3.10). This delay increases with the length of the training set to the point that
DR-4M completely overlooks it. Note that the length of the training set in DR-4M and
the period of the penalty scenarios are identical and therefore the number of samples
that penalize under- or overproduction is equal and remains constant. As a result,
DR-4M offers no incentive to overestimate or underestimate the forecast, yielding the
same value as the one in the FO method (neglecting small deviations due to the finite
sample and noise). Table 3.5 summarizes the out-of-sample AOL(%) obtained by each
approach in the test set. In line with the previous analysis, DR-4M obtains the same
performance as FO. The other three DR methods experience decreasing AOL(%) as the
length of the training set and the lag of wt increase. Finally, the superior adaptability
of OLNV, underpinned by continuous point-wise updates based on the last information
available, outperforms the DR approaches.

In this simplified example, we could have analyzed DR models with a shorter training
set, probably resulting in reduced lag and better performances. However, in a realistic
situation with a huge feature space and random penalties, months of data are typically
required to capture the underlying relationships and generalize well in the out-of-sample
set (see Section 3.1 or [101]). Therefore, the length of the training set of the DR models
has to be selected as a trade-off; enough data is required to learn a policy that generalizes
well, but shorter sets capture dynamics better. To the contrary, the OLNV approach
completely avoids this dichotomy, providing a fast and effective method that adapts to
seasonality and variations in the uncertain parameters.
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DK1 DK2
year Onshore Offshore Onshore Offshore
2015 2966 843 608 428
2016 2966 843 608 428
2017 2966 843 608 428
2018 3664 1277 759 423
2019 3669 1277 757 423
2020 3645 1277 757 423
2021 3725 1277 756 423

Table 3.6: Installed capacity in MW by bidding zone and technology.

3.2.6 Case study

In this section, we consider the problem of a wind power producer participating in
an online hour-ahead forward market with a dual-price settlement for imbalances as
described in Section 3.2.1. The closure of the forward market happens just before the
start of the next period. We assume that the marginal cost of the wind production
is zero, and the wind power producer constantly participates in the market. Several
benchmark methods are proposed to compare against OLNV. Finally, in the last part
of this section, we analyze the numerical results obtained in the case study, including
the regret, economical performance and computational cost of OLNV.

3.2.6.1 Data and experimental setup

This case study uses historical data compiled by the Danish TSO, Energinet.dk,
since it includes market prices and several wind power forecasts that can be leveraged
as quality features. We collect the true and day-ahead forecast issued by Energinet for
the on- and offshore wind power production of both DK1 and DK2 Danish bidding zones
together with the day-ahead and regulation prices of DK1 for the period 01/07/2015
to 06/04/2021 (mm/dd/yyyy). The day-ahead spot and regulation prices are mapped
into hourly penalties through equations (3.3) and (3.4) and some small negative values,
obtained due to rounding errors, are filtered out.

The raw wind power forecasts series are also processed to be used in our case study.
Given that the installed capacity of the four wind categories shown in Table 3.6 evolves
differently over the dataset, we independently normalize each series to lie between 0
and 100 MW, a figure that can easily represent the capacity of a standard power plant.
Furthermore, according to the Danish TSO, the raw wind power forecasts are issued
between 12 to 36 hours ahead, although the exact time is difficult to know because no
timestamp is provided. To produce hour-ahead forecasts suitable for our case study, we
feed these series into an ordinary least square linear regression model together with the
last three lags of the true historical wind realization. We use the first 6 months of our
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Model DK1 DK2
Onshore Offshore Onshore Offshore

original 6.19 9.55 6.77 10.68
persistent 3.36 6.39 3.90 7.49
improved 2.72 5.70 3.34 6.66

Table 3.7: Average RMSE (MWh) of the original forecast, the persistent (naive 1h
lag) and improved 1h-ahead forecast computed on the out-of-sample period

07/01/2015 to 06/04/2021 with a normalized generation capacity of 100 MW.

dataset to independently train each of the four predictive models, one per column of
Table 3.6.

Table 3.7 compares the root mean square error (RMSE) of the original and improved
out-of-sample forecast against the naive benchmark provided by the first lag of each
series (the wind power production of the previous hour), also known in the literature
as persistent estimator. Results show that the improved hour-ahead series significantly
outperforms the original and persistent estimator and therefore are suitable to be used
in this case study. As a byproduct of this table, it is interesting to note that the
wind forecasts issued by the Danish TSO have coherent RMSE being offshore harder
to predict than onshore and DK2 harder than DK1 due to a reduced installed capacity
and coverage area.

Once we have processed the wind power production series, we explain next how we
use them in our case study. The stochastic generation of the wind power producer is
simulated using the normalized onshore wind data series of the Danish DK1 bidding
zone, which is consistent with the bidding zone of the imbalance penalties. The four
hour-ahead forecasts of the wind power production of DK1 and DK2 are used as contex-
tual information, resembling model FM3 described in Section 3.1.2.1. Although other
wind forecasts could have been used as features, we restrict ourselves to these ones to
avoid methodological inconsistencies between them that could cast doubt on the results
obtained, as discussed in the previous application in this chapter.

Given that our goal is to reduce the imbalance cost incurred by a wind power pro-
ducer, we also consider several price-related features to be used as contextual informa-
tion. To this end, we include the first lag of the imbalance penalties  +

t�1
and  �

t�1
in the

vector of contextual information. As commented in Section 3.2.1, it is well known that
the ratio between the penalties provides valuable information about the optimal decision
of the newsvendor model and therefore we add the series rt�1 =  

+

t�1
/( 

+

t�1
+ 

�

t�1
+�)

where � = 10
�5 helps better condition the denominator. To complete our feature set,

we add a column of ones that enable one of the regressors to become an intercept.

As a summary, let Eon1
t , E

of1

t
, E

on2
t , E

of2

t
denote the hour-ahead wind power forecast

of DK1 onshore, DK1 offshore, DK2 onshore and DK2 offshore, respectively. Then, at
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the moment of delivering the offer, the producer has available a feature vector xt =

[1, E
on1
t , E

of1

t
, E

on2
t , E

of2

t
, 

+

t�1
, 

�

t�1
, rt�1]

> to infer the optimal offer E
F
t .

3.2.6.2 Benchmark methods and implementation details

In this section, we describe several benchmark methods against which we compare
the performance of OLNV. The first opponent to beat is the normalized enhanced
forecast of DK1 itself. Although a prediction that minimizes the RMSE may seem
naive, one can expect that the deviation cost incurred by the producer vanishes as
the RMSE approaches zero. Therefore, an hour-ahead forecast is expected to perform
relatively well. We also use this hour-ahead forecast as the baseline to compute the
metric AOL(%) for other approaches in the way described in Section 3.2.4.

The second method to be compared is the one proposed in the previous application
discussed in Section 3.1.1.2 and published in [101]. Recall that this method uses a two-
step approach leveraging two variants of model (3.24). In the first step, the first model
only considers wind-related features plus the intercept xt = [1, E

on1
t , E

of1

t
, E

on2
t , E

of2

t
]
>,

and set  +

t
=  

�

t
= 1, 8t. The result can be interpreted as an enhanced forecast of

the wind energy production with a reduced mean absolute error. In a second step,
this enhanced forecast is fed into model (3.24), considering this time the true historical
penalties  +

t
, 

�

t
but neglecting the capacity constraint (3.24b). The training set is

updated following a rolling window, adding new samples and eliminating the same
amount of the oldest. We replicate this method, called DR2 (decision rule 2-steps),
in this application, considering the four hour-ahead enhanced wind forecasts of DK1
and DK2 as the input of the first problem. In line with the findings discussed in the
previous application, we choose a training set of T = |T | = 4320 (6 months) and a
rolling window of 24 hours.

In addition, we analyze the direct application of the DR approach (see Section 2.2.2),
also discussed in the illustrative example 3.2.5.2, that solves exactly (3.24) and (3.25)
using the full contextual information vector. As in the case of DR2, we choose a training
set length of 6 months and a rolling window step of 24 hours.

We discuss one last benchmark, not implementable in real applications, inspired by
the static regret metric defined in (3.40). We assume perfect information of the whole
dataset and leverage problem (3.24) once more to compute the best linear model in
hindsight determined by the vector wH. Once this single vector is computed, the whole
sequence of offers is determined analogously to (3.25). We name this benchmark FX
(from fixed).

The OLNV algorithm does not need to solve an optimization model but requires
initializing two parameters. To choose µ and ⌘, we perform a grid search on the chunk
of data spanning 07/01/2015 to 12/31/2015. After analyzing Table 3.8, we select the
values µ = 0.7 and ⌘ = 0.001 that obtain the best AOL(%). We assume a balanced
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⌘
µ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1e-2 -13.8 19.2 33.7 19.2 27.7 8.4 39.7 29.2 32.3 32.3 42.0
1e-3 12.5 27.1 33.7 36.9 39.2 39.9 42.1 42.2 42.0 41.6 41.5
1e-4 -5.2 1.3 4.4 6.0 7.0 7.7 8.2 8.6 8.9 9.4 9.4

Table 3.8: Out-of-sample AOL (%) for different combinations of parameters µ and ⌘0
over the span 07/01/2015 to 12/31/2015. Highlighted in black are shown the best

result and parameters selected.

penalty anchor  +
=  

�
= 1. Next, we initialize the OLNV regressor associated with

the onshore DK1 forecast to 1 and the rest of the values to 0.01. In other words, we
start the online offering with a strategy very close to FO, mainly relying on the forecast
of the wind energy production. We use the next 6 months (01/01/2016 to 06/30/2016)
to update (initialize) wt with the aim of having a fair comparison against DR and DR2.

The experiments carried out are conducted on the test set spanning from 07/01/2016
to 06/04/2021 (5 years with 43,200 samples). The optimization models DR, DR2, and
FX are implemented with the python package Pyomo and solved through the optimiza-
tion solver CPLEX9, whereas the implementation OLNV is developed by the authors
based on standard python packages.

3.2.6.3 Numerical results

Next, we discuss the result obtained in this case study. We start examining the regret
suffered by OLNV over the aforementioned dataset which has a length of D = 43, 200

hours (60 months). Let eTj = [j

i=1
eTi and recall ut = wH

i
8t 2 eTi. We assess the

average dynamic regret Rd

eT
/ eT for each sequence eTj , j = 1, . . . , D/l with partitions length

l = 2160, 4320, 8640 hours (3, 6, 12 months). As an additional case, we compute the
evolution of the static regret for a sequence eTj , j = 1, . . . , 20 with a step of l = 2160

hours (3 months). To this end, in each step we refresh the best single action in hindsight
as wH

j
= argminw2WH

j

P
t2eTj NVt(w) and ut = wH

j
8t.

The four regret series are depicted in Figure 3.11. As expected, the average dynamic
regret incurred by OLNV deteriorates quickly as l decreases and the dynamic regret
approaches the worst-case regret definition (3.41). Nevertheless, Figure 3.11 clearly
shows that OLNV achieves a sublinear static regret, i.e., limT!1 supRs

eT
/ eT  0. This

is also the case for the dynamic regret with partitions of length l � 6 months, proving
the ability of OLNV to track dynamic environments.

The economic gains are assessed through the average AOL(%) obtained in the test
set, which is collated in Table 3.9. First, note that all methods outperform the naive

9IBM ILOG CPLEX Optimization Studio. See https://www.ibm.com/analytics/
cplex-optimizer.

https://www.ibm.com/analytics/cplex-optimizer
https://www.ibm.com/analytics/cplex-optimizer
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Figure 3.11: Average dynamic regret R
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T
/T updated every 3 months (denoted as s) of the OLNV method.

FO strategy of offering the DK1 forecast, obtaining positive values and demonstrating
that this set of features contributes to reducing the deviation cost.

The DR2 method is developed in a context where recent lags in the penalties are not
available. Indeed, the lack of penalty-related features translates into a modest score,
showing the evident benefits of disclosing recent information in electricity markets, i.e.,
reducing the lead time. Even though FX determines the optimal wH in hindsight
(i.e., under perfect information), its choice is limited to a single vector for the whole
horizon. The fact that several approaches perform better than FX proves the dynamic
behavior of the uncertain parameters and the need for updating the decision vector.
Therefore, it does not come as a surprise that DR improves the first two approaches
as it leverages the full vector of features and periodically updates wDR

t . However, the
superior adaptability of OLNV allows it to obtain the best score, achieving an additional
7.6% compared to DR and a total 38.6% deviation cost reduction compared to FO. The
latter figure translates into an extra 25,930.22 e/year on average for a wind power
producer with a capacity of 100 MW.

DR2 FX DR OLNV
AOL(%) 3.8 24.6 31.0 38.6
Time (s) 23366 53 16077 179

Table 3.9: Out-of-sample AOL (%) and execution time (s) over the span 07/01/2016
to 06/04/2021.

Finally, the last row of Table 3.9 summarizes the computational time corresponding
to the four approaches. The FX method requires little time as it only solves a single
optimization problem for the whole horizon. This contrasts with the significant amount
of time required by the constant re-optimization of DR and DR2. It is noteworthy that
even though OLNV produces 24 times more updates of the vector wt, the time invested
is several orders of magnitude lower. In conclusion, OLNV is up to the challenge of
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the electricity markets transformation achieving outstanding results with satisfactory
computational performance.

3.3 Summary

This chapter addresses the problem of a wind power producer offering in two different
wholesale market settings. Both markets penalizes the power imbalances asymmetri-
cally.

The first application considers a day-ahead market where the available wind power
production forecasts have limited accuracy, encouraging a two-step procedure which
first improves the available forecasts and then produce an enhanced offer. Thus, the
application of DR to this setting renders an interpretable and effective method that
enhance both the tasks of renewable energy forecasting and trading using contextual
information and historical market data. The effectiveness of this approach has been
tested on a realistic case study where we aim, on the one hand, to improve the forecast
issued by the Danish TSO for the onshore wind power production in the DK1 bidding
zone of the pan-European electricity market, and, on the other, to formulate a com-
petitive market bid for such a production. The numerical results highlight the benefits
achieved by our approach, which amounts to a 8.53% of reduction in MAE and a 2.13%
of improvement of AOL with respect to the benchmarks for the simulation period con-
sidered. These figures point out the intrinsic value of exploiting additional information
such as spatially correlated forecasts. In this line, we have observed that the use (as
features) of both on- and offshore wind power forecasts in areas geographically close to
the zone to which the target wind power production belongs are valuable. This seems
to be especially true if those areas pertain to the same country or domain of the same
TSO.

The second application also addresses the wind power producer problem in a different
market setting. In particular, this application considers a wind power producer offering
in an hourly wholesale electricity market with minimum lead time. The continuous
feedback in this setting allows us to implement the contextual online gradient descent
algorithm in this problem, being the first time, to the best of our knowledge, that online
gradient methods are applied in this setting. Several numerical examples are carried
out to investigate the performance of this algorithm. In the first illustrative example,
we compare the behavior of two alternative implementations, namely, a subgradient
approach and a smooth approximation of the original newsvendor function, determining
the superior economic performance of the former. The second example shows the faster
adaptability of the online algorithm in dynamic environments, outperforming methods
that use a training set of past information, such as DR. Furthermore, we analyze a case
study based on data of the Danish TSO. The result shows a substantial reduction in
the AOL and reduced computational cost with respect to several benchmark methods,



3.3. Summary 75

including an implementation of DR. The regret of this algorithm is also investigated
under several alternative definitions, demonstrating sublinear performance empirically.
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This chapter presents two applications in which we estimate the uncertain parame-
ters taking into account the economic impact of the forecasting errors on the underlying
optimization problem. To this end, we model prescriptive estimators as a function of
the available contextual information in both applications.

The first application deals with the problem of a strategic power producer who man-
ages a thermal unit (dispatchable power plant with marginal production cost greater
than zero) and offers the generation in a forward electricity market with uncertain mar-
ket conditions. In this context, we produce prescriptive estimators of the uncertain
parameters that model the forward electricity market by means of the bilevel approach
(BL) introduced in Section 2.2.4. Given the particular conditions fulfilled by the math-
ematical structure of this problem, the bilevel program—resulting from the application
of BL to this problem—can be reformulated using the KKT optimality conditions as two
variants (BL-R and BL-M) that can be efficiently solved using commercially available
solvers.

In the second application in this chapter, we analyze the problem of a market op-
erator in charge of clearing a two-stage electricity market consisting of a forward and a
real-time settlement. The former pre-dispatches the power system following a least-cost
merit order and facing an uncertain net demand, while the latter tackles the plausi-
ble deviations with respect to the forward schedule using power regulation during the
actual operation of the system. Standard industry practice deals with the uncertain
net demand in the forward stage by replacing it with a good estimate of its conditional
expectation (usually referred to as a point forecast) so as to minimize the need for power
regulation in the real-time market. However, it is well known that the cost structure
of a power system is highly asymmetric and dependent on its operating point, with
the result that minimizing the power imbalances is not necessarily aligned with mini-
mizing operating costs. In this application, we propose a mixed-integer program which
leverages the problem structure to construct, from the available contextual information
and historical data, a prescription of the net demand, which does take into account the
power system’s cost asymmetry.

4.1 Contextual strategic bidding

Here we apply the bilevel decision-making framework introduced in Section 2.2.4 to the
problem of a strategic producer partaking in a forward market [4]. This application
appears in the published manuscript [102]. In this application, we consider a strategic
firm aiming to determine the optimal offer in a market for a homogeneous product.
This problem has a long tradition in the Economics and Management Science literature
(see, for instance, [134, 142, 24]). More specifically, we use electricity for the product
and thus, place ourselves in the context of electricity markets, where this problem has
received a great deal of attention since the deregularization of the power sector [42, 117].
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This problem is approached in the literature in countless ways depending on how the
market and the competitors are modeled, making it practically impossible to address
them all. For a general review of the topic, we refer the reader to the survey by [87].
The application in this chapter is closer to those approaches that first forecast the
uncertain electricity market conditions, to then compute the decision that maximizes
the producer’s profit (as in the FO approach described in Section 2.2). In this vein, in
[1] the authors review different strategies for forecasting the market-clearing price which
can be used to determine the optimal offer in a price taker scenario, i.e., disregarding the
influence of the producer’s offer in the market-clearing price. Conversely, the reference
[5] investigates how to predict an inverse residual demand function which can be used
to determine the profit-maximizing bid of the strategic producer, accounting for her
capacity to influence the market-clearing price.

In this application, we also consider a strategic producer interested in satisfying
the residual demand of the forward electricity market, modeled through an inverse
demand function. However, we use the contextual bilevel framework (BL), presented
in Section 2.2.4, together with available contextual information, in order to produce
prescriptive estimators of those uncertain parameters of the residual demand, taking
into account the economic impact of an error in their estimation. The resulting bilevel
program is reformulated into two alternative models. The first one is a regularized non-
linear optimization program that is iteratively solved to find local optimal solutions
quickly. The second model is a mixed-integer quadratic program with binary variables
that can be solved to optimality with commercially available optimization solvers. The
performance of these models is tested on a realistic case study that uses real data from
the Iberian electricity market, showing their relevance to increasing market participation
and the profitability of the portfolio.

4.1.1 Problem description

The decision task of a strategic player is to decide the produced quantity q 2 R that
maximizes her profits while facing some uncertainty pertaining to the conditions of the
market where the product is sold. Let c(q) : R ! R+ denote the generation cost function
whose parameters are assumed to be known with certainty. Let p(q;Y) : R⇥ Rm ! R
represent the inverse demand function expressing the impact of the generation quantity
q on the good’s price. For some goods such as electricity, the inverse demand function
varies depending on the season of the year, the day of the week, or the hour of the day.
Besides, this function is also uncertain when producers must make their generation
decisions q, since it may depend, for example, on weather conditions. If Q represents
the known feasible region of variable q according to technical or economic constraints
and x 2 Rp is a vector of contextual information available before deciding q, the strategic
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producer must solve the following conditional stochastic optimization problem:

min
q2Q

E[c(q)� p(q;Y)q|X = x]. (4.1)

As it is customary, we assume that the price and the demand are linearly related as
p(q;↵,�) = ↵� �q where ↵ 2 R and � 2 R+ are unknown parameters that replace the
generic uncertainty vector Y in (4.1). Similarly, we assume that the production cost
is computed through a quadratic cost function c(q) = c2q

2
+ c1q where c1, c2 > 0 are

known parameters related, respectively, to proportional production costs (such as fuel
cost) and the increase of marginal costs due to technological factors (such as efficiency
loss) [48]. In order to ease the notation, we define ↵0

= ↵� c1 and �0 = �+ c2. Finally,
we consider that the production quantity q is bounded by known capacity limits, i.e.,
q  q  q with q, q 2 R+. Thus, problem (4.1) can be reformulated as

min
qqq

E[�0q2 � ↵
0
q|X = x]. (4.2)

Since the quantity decision q is independent of the outcome of the uncertainty (�
0
,↵

0
),

the above can be further simplified to:

min
qqq

E[�0|X = x]q2 � E[↵0|X = x]q. (4.3)

Therefore, the optimal solution q
⇤ is driven by the conditional expected values of ↵0

and �0. To be more precise, since �0 > 0, q⇤ could be equivalently computed as follows:

q
⇤
(x) 2 argmin

qqq

q
2 � E[↵0|x]

E[�0|x] q =) q
⇤
(x) 2

⇢
q,

E[↵0|x]
2E[�0|x] , q

�
. (4.4)

Unfortunately, E[↵0|x] and E[�0|x] are both unknown and therefore, they need to be
estimated somehow. As explained further in Section 4.1.3.1, the producer has available
a set of historical observations S = {(↵0

i
,�

0

i
,xi), 8i 2 N} with ↵

0

i
2 R, �0

i
2 R+ and

xi 2 Rp in order to accomplish such a task. At this point, it should be underlined that
the strategic producer problem (4.1) has no recourse [125] and the uncertain parameters
appear only in its objective function. If the reader is interested, the application of
BL to conditional stochastic programs that include recourse variables is described in
Appendix A together with two theoretical examples that address classical decision-
making problems. Consequently, solving (4.1) is apparently as “simple” as estimating
the two conditional expectations E[↵0|x] and E[�0|x]. Our claim, however, is that the
way the producer draws decisions from a finite data sample (all we usually have in
practice) may have a significant impact on the actual expected performance of the
producer’s strategy. Actually, the best estimates of E[↵0|x] and E[�0|x] from a statistical
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sense do not necessarily result in the best offer q.

In Section 2.2, we introduced several strategies to approach this type of contextual
decision-making problems under uncertainty, namely, the predict-then-optimize strate-
gies FO, SP, and BL; method ML, which relies on a proxy of the true conditional distri-
bution that is built using machine-learning techniques, and the decision-rule approach
DR. Unfortunately, in the technical literature, methods SP and ML have only been
applied to conditional stochastic optimization problems with a specific structure and
they both lack a solution strategy for more general conditional stochastic programs.
For this reason, in this application, we limit ourselves to comparing approaches FO,
BL, and DR. Next, we particularize those methods to the strategic producer problem.
According to the predict-then-optimize strategies, the surrogate model of this problem
renders

min
qqq

�̂
0
q
2 � ↵̂

0
q. (4.5)

As explained in Section 2.2, the FO approach aims at learning the uncertain parameters
↵
0

i
,�

0

i
as a function of the available information xi. If we assume the family of linear

functions, that is, ↵̂0

i
= w>

↵xi, �̂0i = w>

�
xi with w↵,w� 2 Rp, and we choose the squared

error as the loss function l
FO, then the standard implementation of (2.12) is

wFO

↵ 2 argmin
w↵2Rp

X

i2N

(↵
0

i �w>

↵xi)
2
, (4.6a)

wFO

� 2 argmin
w�2Rp

X

i2N

(�
0

i �w>

� xi)
2
. (4.6b)

The optimal quantity under context X = x is the solution to the following optimization
problem:

q
FO

(x) 2 argmin
qqq

(wFO

� )
>xq2 � (wFO

↵ )
>xq =) q

FO
(x) 2

(
q,

(wFO
↵ )

>x

2(wFO

�
)>x

, q

)
. (4.7)

Alternatively, w↵ and w� can be determined following the BL approach by solving the
following bilevel formulation:

wBL

↵ ,wBL

� 2 argmin
w↵,w�2Rp

X

i2N

�
0

iq̂
2

i � ↵
0

iq̂i (4.8a)

s.t. q̂i 2 argmin
qqiq

w>

� xiq
2

i �w>

↵xiqi, 8i 2 N . (4.8b)

For this particular application, the bilevel optimization problem rendered by the pro-
posed approach has a significant drawback, because the global optimal solution of (4.8)
is w↵ = w� = 0. Consequently, the lower-level problem (4.8b) can be replaced by the
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feasibility condition q  q̂i  q, and the optimal values of q̂i are determined as if un-
certain parameters ↵0 and �0 were known in advance, which violates non-anticipativity.
While this solution does lead to the minimum value of objective function (4.8a), it is
useless to determine the optimal decisions for any context X = x. This degenerate so-
lution of the proposed approach occurs because all coefficients of the objective function
(4.5) are uncertain. Interestingly, this shortcoming does not affect the newsvendor and
product placement problems described in Appendix A, because the uncertainty only
affects the feasible region in those applications.

In this application, we propose to ensure non-anticipativity by formulating a bilevel
optimization problem that considers the modified surrogate model

min
qqq

q
2 � �q, (4.9)

where � =
↵
0

�0 . For known values of ↵0 and �
0, the optimal solution of (4.5) and

(4.9) coincide. However, surrogate model (4.9) is simpler since it only includes one
uncertain parameter instead of two. Assuming a linear relationship between the new
uncertain parameter � and the contextual information, the proposed methodology yields
the following bilevel problem:

wBL

� 2 argmin
w�2Rp

X

i2N

�
0

iq̂
2

i � ↵
0

iq̂i (4.10a)

s.t. q̂i 2 argmin
qqiq

q
2

i �w>

� xiqi, 8i 2 N . (4.10b)

Formulation (4.10) has the following advantages with respect to problem (4.8): i) it
includes fewer parameters and therefore, it is less prone to overfitting, ii) it ensures
non-anticipativity for any parameter vector w� , and iii) under certain conditions, it
is able to retrieve the true model that relates random variable � and the context X

and the optimal solution to (4.2) as the sample size |N | grows to infinity, as shown
in Proposition 1 in Appendix A. By replacing the lower-level problem with its KKT
conditions, we obtain the following single-level problem:

wBL

� 2 argmin
w�2Rp

X

i2N

�
0

iq̂
2

i � ↵
0

iq̂i (4.11a)

s.t. 2q̂i �w>

� xi � �i + �i = 0, 8i 2 N (4.11b)

0  (q̂i � q) ? �i � 0, 8i 2 N (4.11c)

0  (q � q̂i) ? �i � 0, 8i 2 N , (4.11d)

where �i,�i are the dual variables corresponding to the capacity limit constraints.
Following the procedure described in Section 2.2.4, we can subsequently reformulate
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program (4.11), replacing all complementarity constraints (4.11c) and (4.11d) by a sin-
gle parametrized constraint. The resulting single-level non-linear programming (NLP)
model is the following:

wBL-R

� 2 argmin

w,q̂i,�i,�i

X

i2N

�
0

iq̂
2

i � ↵
0

iq̂i (4.12a)

s.t. 2q̂i �w>

� xi � �i + �i = 0, 8i 2 N (4.12b)

q  q̂i  q, 8i 2 N (4.12c)

�i,�i � 0, 8i 2 N (4.12d)
X

i2N

�i(q̂i � q) + �i(q � q̂i)  ✏, (4.12e)

where ✏ 2 R+ is a small scalar. This model, which we called BL-R (bilevel regu-
larized), can be directly solved with NLP solvers such as CONOPT1. As explained
in Section 2.2.4, the procedure to obtain a local optimal solution of (4.11) involves
iteratively solving (4.12) for ✏! 0 [122].

Alternatively, instead of regularizing the complementarity conditions, we can use
the big-M approach as in [59], and thus, the reformulation of model (4.11) yields

wBL-M

� 2 argmin

w� ,q̂i,ui,ui,�i,�i

X

i2N

�
0

iq̂
2

i � ↵
0

iq̂i (4.13a)

s.t. (4.12b) � (4.12d) (4.13b)

�i  uiM
D
, 8i 2 N (4.13c)

�i  uiM
D
, 8i 2 N (4.13d)

q̂i � q  (1� ui)M
P
, 8i 2 N (4.13e)

q � q̂i  (1� ui)M
P
, 8i 2 N (4.13f)

ui, ui 2 {0, 1}, 8i 2 N . (4.13g)

The resulting single-level BL-M (bilevel big-M) model (4.13) is a Mixed-Integer Quadratic
Problem (MIQP) analogous to (2.29), that can be solved to global optimality using off-
the-shelf optimization solvers such as CPLEX2 or Gurobi3.

Finally, after obtaining a vector wBL
� either from (4.12) or (4.13), optimal decisions

under context X = x are made by solving:

q
BL

(x) 2 argmin
qqq

q
2 � (wBL

� )
>xq =) q

BL
(x) 2

(
q,

(wBL
� )

>x

2
, q

)
. (4.14)

1CONOPT. See http://www.conopt.com/.
2IBM ILOG CPLEX. See https://www.ibm.com/analytics/cplex-optimizer.
3Gurobi. See https://www.gurobi.com/analytics/cplex-optimizer.

http://www.conopt.com/
https://www.ibm.com/analytics/cplex-optimizer
https://www.gurobi.com/analytics/cplex-optimizer


4.1. Contextual strategic bidding 85

The last approach we compare is the DR introduced in Section 2.2.2 and first proposed
in [7]. This approach directly learns the optimal production as a function of the con-
textual information available. Assuming the linear mapping q̂i = w>

q xi with wq 2 Rp,
problem (2.20) for this particular application is formulated as:

wDR

q 2 argmin
wq2Rp

X

i2N

�
0

i(w
>

q xi)
2 � ↵

0

iw
>

q xi (4.15a)

s.t. q  w>

q xi  q, 8i 2 N . (4.15b)

Formulation (4.15) is a convex quadratic optimization problem and can also be solved
using commercial software such as CPLEX or Gurobi. In line with (2.21), the optimal
quantity under context X = x is directly computed as:

q
DR

(x) = (wDR

q )
>x. (4.16)

Although not true in general, approaches (4.11) and (4.15) may lead to the same solu-
tion under specific conditions. For instance, if the produced quantity q is not limited
by minimum/maximum bounds, then constraint (4.11b) boils down to q̂i = w>

� xi/2.
Consequently, the solutions of (4.11) and (4.15) satisfy that wDR

q = wBL
� /2 and there-

fore, qBL
(x) = q

DR
(x) for any context X = x. As we show in the following sections,

the decisions q
BL delivered by our approach are significantly more profitable than q

DR

in the constrained case.
Next, we assess and compare the performance of the bilevel approach for the strate-

gic producer problem using numerical simulations. In Section 4.1.2 we illustrate the
advantages of BL with respect to FO and DR using a small example with a reduced
data sample. Additionally, Section 4.1.3 presents the numerical results of a realistic case
study that uses real data from the Iberian Electricity Market4 and the Spanish Trans-
mission System Operator (TSO) uploaded to the ENTSO-e Transparency Platform5

(ETP).

4.1.2 Illustrative example

This section aims at gaining insight into the performance of the bilevel approach with
a small example of the strategic producer problem. For the sake of simplicity, we
only consider four realizations of the uncertain parameters ↵0

i
,�

0

i
and a single feature

xi 2 [0, 10], whose values are shown in Table 4.1. Approach FO predicts the uncertain
parameters using linear functions in the form ↵̂i = w

FO
↵,0

+ w
FO
↵,1

xi and �̂i = w
FO

�,0
+

w
FO

�,1
xi; approach BL assumes that �̂i = w

BL
�,0

+w
BL
�,1

xi; and approach DR considers q̂i =

w
DR
q0

+ w
DR
q1

xi. These three approaches are compared with a benchmark method (BN)
that assumes perfect knowledge of the uncertain parameters ↵0

,�
0 and, consequently,

4OMIE. See https://www.omie.es/en/.
5ENTSO-e Transparency Platform. See https://transparency.entsoe.eu/.

https://www.omie.es/en/
%20https://transparency.entsoe.eu/
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i xi ↵
0

i
�
0

i
�i

1 2 2 10 0.20
2 4 17 10 1.70
3 8 8 3 2.67
4 9 16 6 2.67

Table 4.1: Data sample S for the illustrative example.

q1 q2 q3 q4 I(e) RI(%)
BN 0.10 0.85 1.33 1.33 23.33 100.0
FO 0.33 0.51 1.23 1.59 21.21 91.0
DR 0.27 0.61 1.29 1.46 22.36 95.9
BL 0.27 0.61 1.29 1.46 22.36 95.9

Table 4.2: Optimal offer and income for the unconstrained illustrative example (in-
sample results). Parameter vectors w are: w

FO
↵,0

= 5.000, w
FO
↵,1

= 1.000, w
FO

�,0
=

12.298, w
FO

�,1
= �0.878, w

BL
�,0

= �0.138, wBL
�,1

= 0.341, w
DR
q0

= �0.069, wDR
q1

= 0.170.

yields the best possible offer for each time period. Obviously, this method cannot be
implemented in practice and, accordingly, is just used here for comparison purposes.
Given the reduced size of this example, the reformulations BL-R and BL-M provide the
same results and are thus jointly referred to as BL.

First, we deal with the unconstrained case, that is, the case in which the capacity
constraints are disregarded. Table 4.2 shows the in-sample results obtained from meth-
ods BN, FO, DR, and BL, namely, the optimal production quantity for each time period
qi, the absolute income (I), and the relative income with respect to the benchmark (RI).
Notice that the income for each time period can be computed as ��0

i
q
2
i
+ ↵

0

i
qi. As dis-

cussed in Section 4.1.1, in connection with the unconstrained case, coefficients wDR are
equal to w

BL
/2 and the decisions and incomes obtained by DR and BL are the same as

a result. It is also interesting that the income of these two methods is 5% higher than
that of FO. To explain this, we refer to Figure 4.1a, which depicts the optimal produc-
tion quantities given by the different methods as a function of the context x 2 [0, 10],
namely,

q
FO

(x) =
w

FO
↵,0

+ w
FO
↵,1

x

2(wFO

�,0
+ wFO

�,1
x)

q
BL

(x) =
w

BL
�,0

+ w
BL
�,1

x

2
q
DR

(x) = w
DR

q0 + w
DR

q1 x. (4.17)

This figure shows that methods BL and DR can return decisions much closer to the
benchmark ones than method FO for the four data points in the sample. Therefore, even
for unconstrained optimization problems, the proposed methodology may outperform
the classical “first-predict-then-optimize” approach, which is purely based on reducing
the error of forecasting the uncertain parameters, simply because minimizing this error
is not necessarily aligned with maximizing the decision value.
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(a) Unconstrained case.
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(b) Constrained case.

Figure 4.1: Decision quantity q versus feature x for the illustrative example.

Now we consider the constrained case, that is, we bring the capacity constraints
back into this small example. In particular, the minimum and maximum outputs of the
strategic producer are set to 0 and 1, respectively. Similarly to Table 4.2, the in-sample
results obtained in the capacity-constrained case are collated in Table 4.3, where we can
see that the optimal quantity qi reaches its maximum value for some time periods and
methods FO, DR and BL all provide different results. Methods FO and DR achieve an
income 7.5% and 8.2% lower than the benchmark. This poor in-sample performance is
better understood by means of Figure 4.1b, which similarly to Figure 4.1a, represents
the optimal quantities as a function of the context for the constrained case according to
(4.7), (4.14) and (4.16). First, since method FO is unaware of the feasibility region of the
original conditional stochastic problem, it provides the same prediction of the uncertain
parameters ↵,� in the unconstrained and constrained cases. However, using these
forecasts in the surrogate model (4.5) enforces q = 1 for x � 7.1 in the constrained case.
As observed, reducing the forecast error of ↵,� does not lead to the maximization of the
decision value in the constrained case either. Second, method DR must ensure feasible
solutions for all samples, a condition that also leads to quite poor approximations of the
optimal quantities for most values of the context x. Furthermore, this approach would
return infeasible solutions q > 1 for x > 9 as shown in Figure 4.1b. On the contrary,
the proposed BL approach can find a linear relation between � and x to be used in the
surrogate model (4.9) that results in decisions q that perfectly match those provided by
the benchmark for the four data points and therefore, this method achieves the highest
possible income in sample.

In summary, this small example sheds light on the reasons why the BL methodo-
logy outperforms existing ones, specially, in constrained optimization problems under
uncertainty: Our approach provides “forecasts”—more precisely, estimators—of the un-
certain parameters based on contextual information that take into account the objective
function and feasible region of the decision maker. Such prescriptive forecasts translate
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q1 q2 q3 q4 I(e) RI(%)
BN 0.10 0.85 1.00 1.00 22.33 100.0
FO 0.33 0.51 1.00 1.00 20.65 92.5
DR 0.35 0.53 0.91 1.00 20.50 91.8
BL 0.10 0.85 1.00 1.00 22.33 100.0

Table 4.3: Optimal offer and income for the constrained illustrative example (in-sample
results). Parameter vectors w are: w

FO
↵,0

= 5.000, w
FO
↵,1

= 1.000, w
FO

�,0
= 12.298, w

FO

�,1
=

�0.878, w
BL
�,0

= �1.300, wBL
�,1

= 0.750, w
DR
q0

= 0.158, wDR
q1

= 0.094.

into decisions that are much closer to those obtained in the ideal perfect information
instance.

4.1.3 Case study

In this section, we compare the proposed approach with existing ones using realistic data
from the Iberian electricity market, as described in detail in Section 4.1.3.1. Sections
4.1.3.2, 4.1.3.3 and 4.1.3.4 investigate how the type of generation portfolio, the quadratic
cost term c2, and the residual demand elasticity impact the performance of the proposed
methodology, respectively. For the sake of conciseness, these three subsections only
include the global optimal solutions given by BL-M. Finally, Section 4.1.3.5 provides
computational solution times for all the approaches and discusses the differences between
the BL-R and BL-M reformulations in that respect.

4.1.3.1 Experimental setup

In order to test our proposal, we consider a realistic case study based on actual data
from the Iberian electricity market. We construct a data set of the form {(xi,↵i,�i), 8i 2
N} from which we derive the rest of the parameters required for our simulations as
explained in Section 4.1.1. We gather raw market data from the forward market OMIE6

to compute parameters ↵i, �i of the inverse demand function. Furthermore, we collect
wind and solar power forecasts of the aggregated production of Spain to be used as a
vector of contextual information xi. The wind and solar forecasts, originally published
by the Spanish TSO, are downloaded from the ETP7.

Historical raw hourly block-wise bids and offers submitted by buyers and sellers
to the Iberian day-ahead energy market are processed to obtain parameters ↵i, �i
as follows. For each hour of the year, we have access to the set of bids and offers
defined as {(qb, pb), 8b 2 B}, {(qo, po), 8o 2 O}, respectively, where qb/o is the amount
of energy to buy/sell at price pb/o. Thus, the residual demand r to be potentially
covered by a new producer entering the market for each possible price p is defined as
r =

P
b2B:pb�p

qb�
P

o2O:pop
qo, that is, the aggregated demand minus the aggregated

6OMIE. See https://www.omie.es/en/.
7ENTSO-e Transparency Platform. See https://transparency.entsoe.eu/.

https://www.omie.es/en/
https://transparency.entsoe.eu/
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p

r

�

pi(q) = ↵i � �iq

p(r)

Figure 4.2: Inverse residual demand curve p(r) (solid) and fitted inverse demand func-
tion pi(q) (dashed) in the interval [0, �]. The intercept and slope of the fitted line are
↵i and ��i, respectively.

production. The step-wise function relating the residual demand r and the electricity
price p is plotted in Figure 4.2 for illustrative purposes.

Now consider that a new strategic producer enters the market with an offer to sell
quantity q at offer price 0. If we assume that the remaining bids and offers stay unal-
tered, the market price would decrease following the right-hand part of the step-wise
function depicted in Figure 4.2. Therefore, a strategic producer aiming at maximiz-
ing her profit is interested in modeling the dependence between her offered quantity
q and the market price p in the shaded area, with parameter � being a constant
sufficiently larger than the producer’s maximum generation capacity. In connection
with Section 4.1.1, we approximate said dependency using a linear function such that
pi(q) = ↵i � �iq as illustrated in Figure 4.2 and therefore, the values of ↵i,�i for each
hour are obtained by determining the linear function that best approximates the blocks
shaded in gray.

We collect data from November 2018 to October 2019 in order to build a data
set of 8600 hours (almost one year), which is divided into 43 bins of 200 consecutive
samples. Each bin is randomly split into training and test sets with a ratio of 80%/20%,
respectively. This process is repeated five times for each bin. Therefore, each approach
is solved for 215 different training sets of 160 samples, and the obtained solutions are
evaluated using the corresponding 215 test sets of 40 samples each. The out-of-sample
results provided in Sections 4.1.3.2, 4.1.3.3, 4.1.3.4, and 4.1.3.5 are obtained by averaging
the outcomes over these 215 test sets. We select a value of � equal to 5 GW in order to
encompass enough bids and offers to obtain accurate approximations of pi(q) throughout
the whole data set. We determine the optimal parameters w through problems (4.6),
(4.11), and (4.15), which we denote FO, BL and DR, respectively.

Each bin is executed in parallel with the following resources: 1 CPUs Intel E5-2670



90 Chapter 4. Contextual optimization via prescriptive estimation

c1 c2 q NqBN=0 N0<qBN<q NqBN=q

(e/MWh) (e/MWh2) (MW) (%) (%) (%)
Base 10 0.005 1000 8 16 76
Medium 35 0.005 500 32 29 39
Peak 50 0.005 250 79 12 9

Table 4.4: Generation technology data.

@ 2.6 GHz and 1 Gb of RAM. Each instance of model BL-M is solved using the MIQP
solver CPLEX8 for a maximum time of 20 minutes or a relative gap of 10�8. On the
other hand, BL-R is executed using the NLP solver CONOPT without time limit. In
order to speed up the solution of the BL-M method, we warm-start BL-M with the
solution of BL-R, similarly to the process described in [109].

4.1.3.2 Impact of the generation portfolio

As previously stated, the main advantage of BL is that it produces estimates for the
uncertain parameters that are tailored to the optimization problem by which the strate-
gic power producer determines her optimal market sale. However, such an advantage
may translate into higher or lower incomes depending on the firm’s generation portfo-
lio. In this section, therefore, we evaluate the performance of the various approaches for
three generic power plants characterized by different linear costs (c1) and capacities (q).

Table 4.4 provides the values of c1, c2 and q for these three generic units. For
simplicity, the minimum output q of all units is assumed equal to 0 and the value of c2
is set to 0.005 e/MWh2 [48]. The base unit can represent a nuclear power station and is
characterized by low fuel cost and high capacity. The medium unit can be, for example,
a carbon-based power station with a lower capacity and higher fuel costs. Finally, peak
units, such as combined cycle power plants, typically have the highest fuel cost and a
smaller generation capacity. Table 4.4 also includes the percentage of time periods in
which q

BN
= 0, 0 < q

BN
< q and q

BN
= q denoted as NqBN=0, N0<qBN<q, and NqBN=q,

respectively, where q
BN represents the optimal quantity that the strategic firm would

place into the market under the true inverse demand function (that is, the solution given
by the benchmark approach). It is observed that the base unit generates at maximum
capacity for most times periods and is only shut down in 8% of the cases. The medium
generating unit is idle 32% of the time (if prices are too low) and is at maximum capacity
during the 39% of the time periods. Finally, the peak unit is not dispatched most of
the time since electricity prices are usually below its marginal production cost.

Table 4.5 provides the out-of-sample results computed by averaging over the 215 test
sets of 40 samples each described in Section 4.1.3.1. These results include the absolute
income for the benchmark approach (IBN) for the considered time horizon, the relative

8IBM ILOG CPLEX. See https://www.ibm.com/analytics/cplex-optimizer.

https://www.ibm.com/analytics/cplex-optimizer
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IBN RIFO RIDR RIBL-M INFESDR

(Me) (%) (%) (%) (%)
Base 176.7 96.1 94.6 96.3 4.9
Medium 20.9 77.4 62.5 80.0 1.7
Peak 1.2 44.1 18.9 58.7 0.1

Table 4.5: Impact of generation technology.

income (RI) for methods FO, DR and BL-M, and the percentage of time periods for
which method DR provides infeasible solutions (INFESDR). A first obvious observation
is that, as expected, the absolute income is higher for base units and lower for peak units.
A second, probably more interesting remark relates to the impact of the uncertainty
about the inverse demand function on the market revenues accrued by each generating
technology. Since the base unit is at full capacity most of the time, the uncertainty
pertaining to the residual demand does not affect revenues that much, and the three
methods obtain relative incomes above 94%. On the contrary, the participation of the
medium and peak units highly depends on market conditions and therefore, this very
same uncertainty remarkably deteriorates market revenues, with the eventual result that
the maximum relative incomes amount to 80% and 59%, respectively, for the method
featuring the best performance (which is BL-M).

On a different front, the DR approach produces infeasible offers in a considerable
number of time periods, whereas FO and BL-M are guaranteed to provide feasible
production quantities in all cases. The percentage of periods for which method DR
results in an infeasible q is higher for the base unit because the medium and peak units
are idle more frequently. For this particular application, making DR decisions feasible
can be easily achieved by computing min(max(q̂i, q), q). However, this post-processing
step to guarantee feasibility can be much more challenging in applications with general
convex feasible sets. It is also apparent that the DR approach provides the lowest RI
for the three cases considered and therefore, this method is not even recommended for
decision-making models where the decision vector is simply bounded component-wise.

Finally, we notice that, for the three generation technologies, the proposed method
BL-M always provides higher incomes than the FO approach. However, relative income
improvements vary widely for each case. For the base unit, the relative income of BL-M
is only 0.2% higher than that of FO. This is understandable since this power plant is at
full capacity most of the time and thus, the impact of the uncertainty is comparatively
minor, as we mentioned before. For the peak unit, in contrast, the relative income of BL-
M is 14.6% higher than that of FO. Note that, unlike for base units, making small errors
in the forecasts of the market conditions can be catastrophic for peak units, because
such deviations may mean the difference between producing nothing or producing at
maximum capacity. The ability of BL-M to reduce the forecast error when consequences
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BN FO DR BL-M
NI>0(%) 20.6 9.0 6.6 10.1
NI<0(%) 0.0 3.7 3.0 3.4
NI=0(%) 79.4 87.3 90.4 86.4
I+(Me) 1.23 0.73 0.37 0.87
I�(Me) 0.00 -0.19 -0.14 -0.15

Table 4.6: Income distribution for the peak generating unit.

c2 NqBN=0 N0<qBN<q NqBN=q

(e/MWh2) (%) (%) (%)
0.01 32 43 25
0.005 32 29 39
0.001 32 15 53

Table 4.7: Operating regime of a medium generating unit (c1 = 35e/MWh, q =

500MW).

are worse, together with the lower absolute incomes of peak units, explains this high
difference in percentage. The gain of BL-M with respect to FO for the medium unit
has an intermediate value of 2.6%.

To conclude this section, Table 4.6 includes, for the peak generating unit, the per-
centage of periods with a positive income, with a negative income and with an income
equal to zero, denoted as NI>0, NI<0 and NI=0, in that order. The total sum of positive
and negative incomes is also provided in the last two rows, represented by the symbols
I+ and I�, respectively. Interestingly, BL-M achieves the highest percentage of periods
with a positive income and succeeds in providing the highest value of I+.

4.1.3.3 Impact of parameter c2

While parameter c1 basically depends on the cost of the fuel used by each unit,
the interpretation of c2 is not as straightforward. Indeed, this parameter measures
the decrease in the plant marginal cost as production increases and is connected to
technological aspects of the plant’s economy of scale, like the way the plant efficiency
varies for different operating points. For this reason, in this section, we investigate
the impact of c2 on the performance of the proposed method. Notice that, if q = 0

MW, then the unit marginal costs range from c1 to c1 + c2q. In a similar way, as
Table 4.4 does, Table 4.7 shows the operating regime of a medium generating unit with
c1 = 35e/MWh, q = 500 MW and different values of c2. As expected, a decrease in
c2 entails a reduction in the marginal production cost of the plant and, as a result, the
amount of electricity the strategic firm places into the market increases.

Table 4.8 provides the same results as Table 4.5, but for different values of c2 and
the medium generating unit only. Naturally, reducing the plant marginal costs increases
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c2 IBN RIFO RIDR RIBL-M INFESDR

(e/MWh2) (Me) (%) (%) (%) (%)
0.01 16.3 73.9 60.0 76.4 1.1
0.005 20.9 77.4 62.5 80.0 1.7
0.001 25.5 81.2 65.6 83.0 1.0

Table 4.8: Impact of parameter c2 on a medium generating unit.

IBN RIFO RIDR RIBL-M INFESDR

(Me) (%) (%) (%) (%)
Normal 20.9 77.4 62.5 80.0 1.7
Low-elast 18.6 74.7 60.0 77.1 1.7

Table 4.9: Impact of residual demand elasticity .

both the absolute income for the benchmark approach and also the relative income
achieved by all methods. Nevertheless, BL-M proves to be between 1.8% and 2.6%
more profitable to the producer than the traditional FO approach for the values of c2
considered.

4.1.3.4 Impact of the residual demand elasticity

So far we have centered our study on the cost structure of the generation portfolio
owned by the strategic firm. Here, on the contrary, we focus on the elasticity of the
market residual demand. Roughly speaking, this elasticity is inversely proportional to
parameter � of the inverse demand function. Bearing this in mind, we compare the next
two market situations, namely, the “Normal” and the “Low-elast” instances. The former
corresponds to the values of � in the original data set, while the latter is obtained by
multiplying these �-values by two.

Table 4.9 shows the incomes provided by each of the considered methods relative
to those of the benchmark. The numbers correspond to the medium power plant of
Table 4.4. The overall effect of increasing the residual demand elasticity (lower �-
values) is analogous to that of decreasing parameter c2, i.e., the involvement of the
strategic producer in the market augments, thus leading to higher revenues. Results in
Table 4.9 show that the proposed BL approach outperforms FO and DR for different
values of the residual demand elasticity, improving the competitive edge of the strategic
producer in more than 2% with respect to FO in terms of relative income.

4.1.3.5 Computational results

In Sections 4.1.3.2, 4.1.3.3 and 4.1.3.4 we have only included results from BL-M,
and not from BL-R, because the former variant of the bilevel framework we propose
guarantees global optimality for the strategic producer problem for appropriate val-
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RIBL-M RIBL-R

(%) (%)
Base 96.3 96.3
Medium 80.0 79.2
Peak 58.7 58.4

Table 4.10: Comparison of BL-M and BL-R.

ues of large constants M
P
,M

D (Section 2.2.4). However, solving model BL-M can be
computationally very expensive. Alternatively, local optimal solutions of the proposed
bilevel model (4.10) can be efficiently found through BL-R by way of model (4.12).

Next, we compare the solutions given by methods BL-M and BL-R. In order to
solve model BL-R, we iteratively shrink the regularization parameter ✏ taking values
from the discrete set {106, 104, 102, 1, 10�1

, 10
�2

, 0}. In each iteration, we initialize the
model with the solution provided by the previous problem. It is also worth mentioning
that method BL-M is warm-started with the solution delivered by BL-R.

Results in Table 4.10 are intended to compare the relative incomes of BL-M and BL-
R for each generating unit whose data is collated in Table 4.4. Although method BL-R
logically yields lower incomes, the differences with respect to BL-M are below 0.8%.
This means that if model (4.8) does not satisfy the conditions to be reformulated as a
MIQP or the computational resources are limited, then a good solution (i.e., a solution
with a small loss of optimality) can be efficiently computed by solving the regularized
NLP version of our approach.

FO DR BL-R BL-M
(s) (s) (s) (s)

Base 0.24 0.65 3.90 197.77
Medium 0.35 1.06 6.80 149.89
Peak 0.26 0.78 4.62 22.68

Table 4.11: Average computing time.

Finally, we compare the computational burden of methods FO, DR, BL-M, and BL-
R. The average simulation time invested in solving problems (4.6), (4.11) and (4.15)
for the three generation technologies are indicated in Table 4.11, where the maximum
solution time has been limited to 20 minutes for all methods. These results highlight
the higher computational burden required by BL-M to ensure global optimality. On the
other hand, the computing times of BL-R are very affordable, especially considering the
competitive edge that this method gives to the strategic firm.
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4.2 Contextual economic dispatch

The application presented in this section analyzes a two-stage electricity market con-
sisting of a forward and a real-time settlement. In such a setting, we propose a mixed-
integer programming model to train an affine function that prescribes the value of the
net demand, understood as (uncertain) demand minus (uncertain) stochastic genera-
tion of the system, to be cleared in a forward electricity market. The objective of this
procedure is to replace the classical net demand estimator, obtained by minimizing the
mean square error, to increase the efficiency of the market while maintaining standard
industry practices. In the following paragraphs, we motivate the interest in this problem
and review the relevant literature on it.

Since the liberalization of the sector in the 1990s, electricity markets worldwide in-
clude a forward market and a real-time market [66]. Traditionally, these two markets
have been cleared sequentially as follows: the forward market is cleared sometime prior
to the actual delivery of energy using demand forecasts, while the real-time market is
cleared very close to the actual operation of the system to process the energy imbalances
caused by forecast errors. Due to the integration of uncertain supply in electricity net-
works, in the late 2000s, some authors proposed energy-only stochastic market clearing
procedures to determine the forward production schedule, taking into account the un-
certainty pertaining to the energy supply from renewable sources [112, 96]. While these
approaches maximize market efficiency, they also have significant drawbacks, prevent-
ing them from being adopted in actual electricity markets. For instance, energy-only
stochastic markets violate the merit-order principle and, as a consequence, flexible ther-
mal generating units must be willing to accept losses for some realizations of the uncer-
tain parameters. In addition, stochastic market procedures lack transparency, as their
outcome depends on the plausible scenario realizations considered. For these reasons,
the scientific community is currently revisiting the sequential clearing of the forward
and real-time markets because it is simpler and more transparent, and it guarantees
revenue adequacy for all market players under any realization of the uncertainty.

It has also been shown that by prescriptively estimating the input parameters of
current operational and market-clearing procedures, these can mimic the performance
of their stochastic-programming-based counterparts to a large extent. For instance,
in [98], the authors propose a bilevel programming model to compute the amount of
(uncertain) renewable power generation that must be considered in a forward electricity
market to maximize the short-run market efficiency. In the same vein, the authors in
[54] show that, by properly setting the (uncertain) reserve requirements in a European-
style two-stage electricity market, such a market can be almost as cost-efficient as the
ideal two-stage electricity market given by a full stochastic programming approach. All
told, these two references clearly show that the power sector can strongly benefit from



96 Chapter 4. Contextual optimization via prescriptive estimation

the aforementioned prescriptive estimation strategy. In fact, the authors of [50] apply
precisely this strategy to power generation and grid-scale electricity battery operation.
In [35], the authors instead focus on renewable energy producers, for which they propose
different smart-predict strategies for energy trading. Lastly, the authors in [63] use a
bilevel programming framework similar to that proposed in Section 4.1 whereby they
train several autoregressive models to estimate the uncertain demand and the size of
the energy reserves in a joint reserve allocation and energy dispatch problem. The
last three references are also recent examples of the use of contextual information in
electricity markets. Indeed, we have thoroughly discussed the benefits of prescriptively
estimating the uncertain parameters considering the subsequent optimization problem
in the context of a thermal power producer competing strategically in an electricity
market in Section 4.1.

4.2.1 Problem description

As introduced in the section above, we consider a two-stage electricity market consisting
of a forward and a real-time settlement that are sequentially organized. The forward
market is cleared some time prior to the actual delivery of energy, for instance, from
12 hour to 36 hours in advance. The real-time market processes the energy imbalances
with respect to the forward production schedule. Without loss of generality, to keep our
model simple and computationally manageable, we make the following assumptions on
our two-stage market setup:

• The inter-temporal constraints of power production portfolios, such as ramping
limits and minimum up- and down-times, are not explicitly accounted for by the
market-clearing algorithm.

• Network constraints are only taken care of in the real-time market using a pipeline
representation of the transmission network.

With these two simplifying assumptions, our setup is closer to the European market,
in line with the case study we present in Section 4.2.5. Nevertheless, any of the two
assumptions above could be dropped at the expense of increasing the complexity of the
resulting mathematical optimization model.

Very importantly, in today’s electricity markets and, in particular, the European
one, the forward (day-ahead) market is cleared with no or little account taken of its
impact on the subsequent real-time operation of the power system. Our methodology is
specifically tailored to this market setup, in the sense that it can be seamlessly integrated
into this modus operandi. This is completely in contrast with those other approaches
that make use of stochastic programming to simultaneously clear the forward and the
real-time market stages, see, e.g., [2, 112, 146].
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Therefore, in our framework, the forward market first determines the power dispatch
that minimizes the anticipated electricity production costs as follows:

min
pg ,g2G

X

g2G

Cgpg (4.18a)

s.t.
X

g2G

pg = bL (4.18b)

0  pg  P g, 8g 2 G, (4.18c)

where pg, P g, Cg 2 R+ and G ✓ N is the set of generation blocks (can also represent
generation units with a single block). Each block g 2 G has associated a production
level pg and a marginal cost Cg. Equation (4.18b) enforces the market equilibrium (i.e.,
production must equal consumption), with parameter bL 2 R+ representing a point or
single-value estimate of the total net demand L 2 R+ in the system, which is unknown
at the moment the forward market is cleared and thus, is to be treated as a random
variable. We clarify that by total net demand, we refer, in this application, to the
difference between the sum of the uncertain system demand minus the sum of the
uncertain stochastic production generated in the system, assumed to be always greater
or equal to zero. Finally, constraint (4.18c) sets the size of each production block.

The linear program (4.18) stands for an economic dispatch problem whereby pro-
duction blocks are filled up following a cost-merit order, meaning that blocks g with
a lower cost Cg are dispatched first. To ease the discussion that follows, hereinafter
we consider that the blocks in the set G are ordered such that g < g

0 if and only if
Cg < Cg0 . Imposing this assumption guarantees that problem (4.18) has an unique
solution for any feasible value of the parameter bL and, moreover, this solution can be
obtained through a closed-form expression once determined the marginal block. Let
g
m 2 G be the index of the marginal block so that

P
g
m
�1

g=1
P g  bL 

P
g
m

g=1
P g. Then,

the optimal solution {p⇤g}g2G to problem (4.18) is given by the following expression:

{p⇤g}g2G =

8
>>><

>>>:

P g if g < g
m
,

bL�
P

g
m
�1

j=1
P j if g = g

m
,

0 if g > g
m
.

(4.19)

Since the system net demand is uncertain, the power dispatch that results from (4.19) is
to be adjusted during the real-time operation of the power system to satisfy the actual
net demand. This adjustment is conducted through the real-time market. Therefore, the
aim of the real-time market is to correct the imbalance of the system in a cost-efficient
manner. To this end, we consider a pipeline model where G(b) and D(b) represent the
set of power blocks and loads that are connected to node b, in that order. With some
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abuse of notation, let (Ldi 2 R)d2D(b) be a certain realization i 2 N of the net load
d 2 D(b) connected to node b of the system. We also define o(l) and e(l) as the origin
and ending nodes of line l, respectively. Thus, {l : o(l) = b} and {l : e(l) = b} represent
the subset of lines that start or end at node b, in that order. Once introduced this
notation, the real-time market under consideration renders

min
⌅

GX

g=1

(C
u

g r
u

g � C
d

g r
d

g ) (4.20a)

s.t. 0  p
⇤

g + r
u

g � r
d

g  P g, 8g 2 G (4.20b)

0  r
u

g  R
u

g , 8g 2 G (4.20c)

0  r
d

g  R
d

g , 8g 2 G (4.20d)
X

g2G(b)

(p
⇤

g + r
u

g � r
d

g ) =

X

d2D(b)

Ldi +

X

l:o(l)=b

fl �
X

l:e(l)=b

fl, 8b 2 B (4.20e)

|fl|  F l, 8l 2 ⇤, (4.20f)

where ⌅ = {ru
g , r

d
g 2 R+

, g 2 G, fl 2 R, l 2 ⇤} is the set of decision variables and
p
⇤
g, R

u
g , R

d
g , C

u
g , C

d
g , P g, F l 2 R+ and Ldi 2 R are known parameters.

The power output of each flexible block g may be increased by an amount r
u
g ,

based on the marginal cost for upward regulation C
u
g , or decreased by an amount r

d
g

of downward regulation, which entails a marginal benefit (linked to fuel-cost savings)
of Cd

g . These actions are driven by the nodal power balance equation (4.20e) and the
minimization of the total regulation costs (4.20a). Naturally, the amount of regulation
provided from each production block g, either upward or downward, plus the forward
optimal schedule p⇤g of the block must be such that the eventual power output is positive
and lower than the block size P g, as stated in (4.20b). Moreover, constraints (4.20c)
and (4.20d) limit the amount of up- and down-regulation that can be deployed from
each production block to R

u
g and R

d
g , which are indicative of how flexible the underlying

generation asset actually is. Finally, line capacity limits are imposed by (4.20f), with fl

being the power flow through line l and F l the capacity of the line.
In [98] it is shown that the value bL of the system net demand that is used in (4.18) to

clear the forward market (and thus determine the forward dispatch {p⇤g}g2G) may have
a major impact on the subsequent regulation costs (4.20a) through constraint (4.20b),
which conditions the ability of the generation fleet to deploy down- and upward regula-
tion. Current practice, however, is content with a simple and direct solution, which is
to take bL as a point prediction of L, that is, as an estimate of the expectation of L con-
ditional on all the information at the forecaster’s disposal. This information is usually
referred to as contextual information. Yet, this expectation is oblivious to the mini-
mization of the regulation costs that drives the clearing of the real-time market (4.20)
and therefore, may turn out to be highly suboptimal.
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Let L
F denote such a point prediction, obtained, for example, through the FO

method introduced in Section 2.2. Instead of employing L
F as bL in (4.18), we propose a

regression procedure that provides an alternative value for bL, also based on the context,
that explicitly accounts for the potential impact of bL on the subsequent regulation costs.
This alternative value is what is called a prescription and the procedure to obtain it is
described in detail in the following section.

4.2.2 The contextual dispatch model

Suppose we have a sample of N data points expressed in the form {(Li,xi)}i2N =

{(L1,x1), . . . , (Li,xi), . . . , (LN ,xN )}, where x 2 X ✓ Rp is a vector of contextual in-
formation and L 2 R+ is the random net system demand.

Our objective is to utilize said sample to infer a functional relation bL = g
P
(x;w) (P

from prescriptive), with g
P
: X ⇥Rq ! R+ such that, given the context x, the provided

prescription bL is trained to deliver the minimum total system costs in expectation when
inserted into the power balance equation (4.18b).

In this application, we restrict g
P to the family of affine linear functions, i.e.,

g
P
(x;w) = w>x, with w 2 Rp and with one of the features fixed to one. Although it

may seem a restrictive selection, this model can learn non-linear relationships through
the Taylor’s approximation adding polynomial transformations of the features [7]. Fur-
thermore, this model performs very satisfactorily in the numerical experiments in Sec-
tion 4.2.5 while being easily interpretable.

In order to determine w, we propose to combine problem (4.18) and (4.20) within
a bilevel structure in the same spirit as [98], yielding

min
w,⌥

1

N

X

i2N

X

g2G

(Cgpgi + C
u

g r
u

gi � C
d

g r
d

gi) (4.21a)

s.t. 0  pgi + r
u

gi � r
d

gi  P gi, 8i 2 N , 8g 2 G (4.21b)

0  r
u

gi  R
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g , 8i 2 N , 8g 2 G (4.21c)

0  r
d

gi  R
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g , 8i 2 N , 8g 2 G (4.21d)
X

g2G(b)

(pgi + r
u

gi � r
d

gi) =

X

d2D(b)

Ldi +

X

l:o(l)=b

fli �
X

l:e(l)=b

fli, 8i 2 N , 8b 2 B (4.21e)

|fli|  F l, 8i 2 N , 8l 2 ⇤ (4.21f)

pgi 2 {argmin
pg ,g2G

X

g2G

Cgpg (4.21g)

s.t.
X

g2G

pg = bLi (4.21h)

bLi = w>xi (4.21i)

0  pg  P g, 8g 2 G}, 8i 2 N , (4.21j)
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where ⌥ = {pgi, ru
gi
, r

d
gi
, fli}. The bilevel estimation problem (4.21) first obtains an

optimal power dispatch {pgi}g2G through the lower level (4.21g)–(4.21j) that is then
evaluated in the upper level (4.21a)–(4.21f) using historical values of the demand Ldi,
replicating the sequential clearing of the forward and real-time markets (4.18) and (4.20),
in that order. Note that the target coefficient vector w = [w1, . . . , wp]

> is decided by
the upper level problem and thus is treated as a constant in the lower level. Even though
w is a single coefficient vector, it can produce different estimators bLi of the total net
demand through (4.21i) and the contextual information vector xi, which results in a
different lower level problem for each sample (Li,xi), i 2 N , with different optimal
power dispatches {pgi}g2G. This is why all the decision variables related to the power
dispatch and the provision of regulating power, i.e., pgi, ru

gi
, r

d
gi

, appear augmented with
the sample index i in (4.21). It is worth noting that the presence of multiple lower levels
in the bilevel problem (4.21) contrasts with the single lower level considered in [98], given
that the authors disregard contextual information and therefore, their approach only
determines a single optimal dispatch.

As in the case of the bilevel approach discussed in the previous application, pro-
blem (4.21) can be solved by replacing the lower-level problem (4.21g)–(4.21j) with its
KKT optimality conditions and subsequently reformulating the resulting model through
a regularized complementarity condition [114] or big-M approach [59]. However, in this
application, we can avoid such procedures since the optimal solution to the lower-level
problem can be easily modeled by a set of constraints that can be directly embedded
in commercial solvers. To this end, we define a new set of binary variables ugi 2 {0, 1}
that force block g in scenario i to be at full capacity P g when ugi = 1. Then, we can
leverage the merit order of the blocks imposing that each generation block can only be
activated (i.e., pgi > 0) if the preceding one is already at max capacity, mathematically
ugi  u(g�1)i, 8g 2 G : g > 1. With these ingredients, we can formulate an equivalent
version of problem (4.21) as follows:

min
w,⌥0

1

N

X

i2N

X

g2G

(Cgpgi + C
u

g r
u

gi � C
d

g r
d

gi) (4.22a)

s.t (4.21b) � (4.21f) (4.22b)
X

g2G

pgi =
bLi, 8i 2 N (4.22c)

bLi = w>xi, 8i 2 N (4.22d)

ugiP g  pgi  u(g�1)i P g, 8i 2 N , 8g 2 G : g > 1 (4.22e)

ugiP g  pgi  P g, 8i 2 N , g = 1 (4.22f)

ugi  u(g�1)i, 8i 2 N , 8g 2 G : g > 1 (4.22g)

ugi 2 {0, 1}, 8i 2 N , 8g 2 G, (4.22h)
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where ⌥
0
= {pgi, ru

gi
, r

d
gi
, ugi, fli}. In this problem, the same constraints that model

the real-time market are preserved unaltered in (4.22b). Conversely, a new set of con-
straints (4.22c)–(4.22h) replace the lower level (4.21g)–(4.21j). As in previous problems,
equation (4.22c) enforces the power balance of the forward market. Equation (4.22d)
expresses the prescription bLi of the net system demand L under context xi as an affine
function of the features, whose coefficients are to be computed by solving (4.22). Fi-
nally, the set of constraints (4.22e)–(4.22h) guarantee that the power dispatch {pgi}g2G
coming from (4.22) for each sample i is optimal in the forward market (4.18). To this
end, these constraints enforce an optimal dispatch analogous to (4.19).

Problem (4.22) is a mixed-integer linear program due to the binary character of
variables ugi, which are used to impose the cost-merit order. As such, this problem can
be solved using commercially available solvers such as CPLEX9. Once we obtain the
optimal coefficient vector w⇤, we can produce the net demand prescription bL = (w⇤

)
>x,

which is to be fed into (4.18b) under the vector of contextual information x to readily
obtain the day-ahead dispatch decisions.

As previously mentioned, the point prediction L
F, which has been and is typi-

cally used as bL to clear the forward market (4.18), is not consistent with the plausible
asymmetry in the cost of dealing with the subsequent prediction errors through the
real-time market (4.20). Indeed, it is most often the case that the cost of increas-
ing the electricity production in real time is different from that of diminishing it. In
this line, problem (4.22) offers a handy way to construct a new estimate bL that takes
into account the referred cost asymmetry. In the next section, we illustrate the ad-
vantages of this approach using a small example. In particular, we show that, despite
constraints (4.22e)–(4.22h) turn our training problem (4.22) into a mixed-integer pro-
gram, enforcing the cost-merit order through these constraints is critical to train an
affine model that renders economic benefits within the two-stage sequentially-cleared
electricity market described in Section 4.2.1. Furthermore, even though the training
problem (4.22) may require some computational effort to be solved, the affine model it
delivers is intended to remain effective for a period of time (e.g., weeks or months), and
hence, the task of solving the mixed-integer program (4.22) only has to be undertaken
once in a while.

We finish this discussion with an important remark. In practice, the training pro-
blem (4.22) can be used to upgrade the point prediction L

F to a prescription for bL,
which does account for the asymmetry of the power system’s regulation costs. For this,
it suffices to include L

F as one of the features that are part of the vector of contextual
information x. This is what we do in the following example and in the case study of
Section 4.2.5.

9IBM ILOG CPLEX. See https://www.ibm.com/analytics/cplex-optimizer.

https://www.ibm.com/analytics/cplex-optimizer
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G1

1

Line 1

3

L

2

G2

Line 2

Figure 4.3: Three-bus power system with one random demand and two thermal gener-
ators.

4.2.3 Example

Consider the small three-bus system depicted in Figure 4.3, which is composed of one
random demand L at node 3, two thermal generators, G1 and G2, at buses 1 and 2,
respectively; and two lines, Line 1 and Line 2, connecting nodes 1 and 3, and buses 2
and 3, in that order.

The offer of each unit in characterized by a single generation block with a fix rate.
The technical and economic details of generating units G1 and G2 are collated in Ta-
ble 4.12. Note that, in comparison, unit G1 is smaller and cheaper than G2. In contrast,
the latter is significantly more flexible as it features re-dispatch costs, i.e., Cu

g and C
d
g ,

that are much more competitive. We remark that C
d
1
= �20 e/ MWh implies that

this power unit must be paid 20 e for each MWh its production is decreased in the
real-time market. Unless stated otherwise, line capacities are assumed infinite.

The only demand in the system, namely, L, is random. Suppose we have a sample
{(Li,xi)}Ni=1

, where the feature xi = (1, L
F
i
)
> and each data point correspond to the

period of one hour. Again, L
F
i

represents a classical point prediction of the demand
L built out of whichever available information the forecaster had at her disposal to
produce it by way of whatever machine learning or forecasting technique she could have
developed to that end. We stress that this setup is very common in reality, where power
system operators often count on specialized software to produce good point predictions
L
F
i
. Our objective is to use our methodology and training model (4.22) described in

Section 4.2.2 to recycle this standard point prediction with the aim of fabricating a
better value for bL in Equation (4.18b).

For this small example, we generate samples in the form {(Li,xi)}Ni=1
as follows.

We consider that the per-unit (p.u.) point forecast of the net demand L follows a
uniform distribution between a and b. Therefore, LF ⇠ L · U(a, b), where L is a factor
representing the maximum power load at bus 3. We further assume that the per-unit
net demand itself follows a Beta distribution with mean equal to L

F
/L and standard

deviation �. Hence, L ⇠ L · Beta(↵,�), where the scale and shape parameters are
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Cg C
u
g C

d
g P g R

u
g R

d
g

(e/MWh) (e/MWh) (e/MWh) (MW) (MW) (MW)

G1 5 30 -20 60 60 60
G2 15 20 10 150 150 150

Table 4.12: Illustrative example: Technical and economic specifications of power
plants.

related to the mean L
F
/L and the standard deviation � as follows:

L
F

L
=

↵

↵+ �
, (4.23a)

�
2
=

↵ · �
(↵+ �)2(↵+ � + 1)

. (4.23b)

In this illustrative example we fix � = 0.075 p.u. and generate 20 samples {(Li,xi)}Ni=1

with N = 750. Each L
F
i

in xi is randomly drawn from L · U(a, b). Given L
F
i
/L and �,

and provided that the system of non-linear equations (4.23) has a solution (notice that
↵,� > 0), parameters ↵i and �i can be computed as

↵i = � 1

�2

 ✓
L
F
i

L

◆2

� L
F
i

L
+ �

2

!
L
F
i

L
, (4.24a)

�i =
1

�2

 ✓
L
F
i

L

◆2

� L
F
i

L
+ �

2

!✓
L
F
i

L
� 1

◆
. (4.24b)

Each Li is then randomly taken from L ·Beta(↵i,�i). We take the first 500 data points
of each sample as the training set and the last 250 as the test set.

We postulate the affine model bL = w0 + w1L
F and solve problem (4.22) on the

training set to determine coefficients w0 and w1. Finally, to evaluate the performance
of the affine model, for each data point (Li,xi) in the test set, we simulate the sequential
clearing of the forward and real-time markets (4.18) and (4.20), with bL = w0 + w1L

F
i

in (4.18b), and Li in (4.20e). We then compute the sum of the forward and real-
time production costs averaged over the 250 data points in the test set. This mean
sum is further averaged over the 20 samples we generate. Our approach, which uses
a prescription of the system net demand for market clearing, is referred to as P-MC
(abbreviation of Prescriptive Market Clearing). We compare it with the customary
practice of directly using the point forecast L

F
i

as bL in (4.18b), which is referred to as
F-MC (abbreviation of Forecasting Market Clearing). This procedure is exactly the FO
approach described in Section 2.2. Furthermore, note that our approach boils down to
the conventional one if w0 = 0 and w1 = 1. Finally, the relative cost difference between
these approaches is denoted as �cost.



104 Chapter 4. Contextual optimization via prescriptive estimation

In the results we discuss next, we set a base case with a = 0.03, b = 0.97, L = 100

MW, and the technical and economic parameters of the three-bus system described
above. We take a = 0.03 and b = 0.97 pu to ensure that (4.23) has a real solution. We
then define variants of this case by changing one or some of those parameters.

4.2.3.1 Impact of power regulation costs

Table 4.13 provides the cost savings that our approach achieves with respect to
the conventional one under different G2’s power regulation costs. For completeness,
this table also includes the average cost of these two approaches for the test set and
the values of the intercept w0 and the linear coefficient w1 of the affine model for bL
our approach utilizes. These values represent expectations over the test data points of
the 20 samples generated as indicated above. Furthermore, the first row in the table
corresponds to the base case.

Interestingly, our approach systematically corrects the point forecast of the net de-
mand L downwards, with a linear coefficient w1 which is, on average, lower than or equal
to 1, and a negative intercept w0 in expectation. This is so because it is economically
advantageous for the system to cope with positive net demand errors (i.e., eventual de-
mand increases) by deploying up-regulation from unit G2. Indeed, the alternative would
be to deal with negative demand errors by down-regulating with unit G1, a recourse
that is clearly much more expensive.

C2 C
u
2

C
d
2

F-MC cost P-MC cost �cost w0 w1

(e/MWh) (e/MWh) (e/MWh) (e) (e) (%)

15 20 10 418.59 416.91 0.40 -0.277 0.982
15 15 10 404.40 391.88 3.10 -0.253 0.899
15 20 15 413.65 412.93 0.17 -0.285 1.009

Table 4.13: Cost savings in percentage under different values of G2’s power regulation
costs C

u
2

and C
d
2
.

C2 C
u
2

C
d
2

F-MC cost L-MC cost �cost w0 w1

(e/MWh) (e/MWh) (e/MWh) (e) (e) (%)

15 20 10 418.59 444.05 -6.08 4.967 0.964
15 15 10 404.40 418.84 -3.57 5.490 0.883
15 20 15 413.65 680.92 -64.61 36.807 0.722

Table 4.14: Cost savings in percentage under different values of G2’s power regulation
costs C

u
2

and C
d
2
. Constraints (4.22e)–(4.22h) have been dropped from the training

model (4.22).

To further elaborate on this phenomenon, the second row in Table 4.13 provides
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results for a variant of the base case in which C
u
2

has been decreased from 20 to 15
e/MWh. Now that up-regulating through unit G2 is even cheaper, the downward
correction of our approach to the net demand point forecast is more pronounced and
the associated cost savings due to said phenomenon become larger. On the contrary,
if it is the provision of downward regulation by G2 what becomes 5 e/MWh cheaper
and, hence, free (see third row of Table 4.13), the net demand point forecast is barely
corrected and the costs savings brought by our approach (with regard to F-MC) become
smaller as a result. Note that correcting the point forecast upwards in this case (in
an attempt to profit from the free downward regulation provided by G2) would be
counterproductive in reality, as the system may risk having to resort to the high-cost
down-regulation of unit G1 in those likely scenarios in which the net demand ends up
being lower than the capacity of this unit.

At this point, it may be instructive to see what happens when we drop constraints
(4.22e)–(4.22h) from the mixed-integer program through which we train the affine model
bL = w0 + w1L

F. This is indeed very tempting, because, if these constraints are re-
moved, the training model (4.22) becomes a very pleasant linear program, similar to
the stochastic-programming-based market-clearing formulation advocated, for instance,
in [112] (with the data points in (4.22) playing the role of the “scenarios” in [112]). How-
ever, these constraints ensure the optimality of the lower-level problem (4.21g)–(4.21j)
and guarantee that the above affine model is learned by taking into account that the for-
ward market (4.18) is cleared following a cost-merit-order principle. Therefore, if these
constraints are dropped from (4.22), the affine model bL = w0 + w1L

F is not trained
for the target task. This is exactly what Table 4.14 shows. This table is analogous
to Table 4.13, but for a linear training model made up of constraints (4.22a)–(4.22d)
only. We denote this approach as L-MC from “Linear”). The training model L-MC
ignores the merit order and hence, takes for granted that the system can benefit from
the cheap downward regulation of unit G2 by allocating a non-zero production to this
unit in the forward market regardless of whether unit G1 has been fully dispatched or
not. This is, however, an strategy forbidden by the market, which explains the poor
actual performance of L-MC. This phenomenon is especially notorious for the case C

d
2
=

15 e/MWh, in which the demand is heavily overestimated (the mean of the estimated
demand is increased by 45%) and only the free downward regulation from unit G2 is
used.

Therefore, due to the catastrophic impact that removing the merit-order constraints
(4.22e)–(4.22h) from the training model (4.22) may have on the actual performance of
the obtained affine model, the strategy L-MC is no longer considered in the rest of our
analysis.
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F 1 F-MC cost P-MC cost � cost w0 w1

(MW) (e) (e) (%)

1 418.59 416.91 0.40 -0.277 0.982
30 1034.70 724.46 29.98 15.725 0.175

Table 4.15: Impact of grid congestion on cost savings.

4.2.3.2 Impact of grid congestion

Here we introduce a variant of the base case in which the capacity of Line 1 has
been set to 30 MW. Recall that the capacity of this line in the base case is unlimited,
which we denote by symbol “1” in Table 4.15. The results collated in this new table
are analogous to those in Table 4.13.

Recall that the estimation problem (4.22), whereby we determine the affine function
bL = w0 +w1L

F , explicitly accounts for network constraints. In contrast, the computa-
tion of the net-demand point forecast L

F is typically based on statistical criteria alone
and, consequently, ignores any possible limiting effect of the grid.

When the capacity of Line 1 is limited to 30 MW, our approach strongly corrects
the point prediction L

F downwards, so that bL is kept in between 16 and 32 MW ap-
proximately. Thus, unit G1 is dispatched well below the expected demand. This is
clever because, in doing so, no (expensive) downward regulation from this unit has to
be deployed in real time to comply with the limiting capacity of Line 1. In this way, the
eventual realized demand at bus 3 can be satisfied, instead, with cheaper up-regulation
from unit G2 through Line 2. The ultimate result is that using bL, given by our ap-
proach, to clear the forward market is way more profitable than using the raw point
forecast L

F.

4.2.3.3 Impact of the peak demand

Now we change the peak demand and consider two variants of the base case in which
we take L = 50 MW and L = 150 MW (in the base case, L = 100 MW). The results of
this new analysis are compiled in Table 4.16.

Again, as in the analysis of the impact of G2’s power regulation costs in Sec-
tion 4.2.3.1, our approach systematically corrects the net-demand point forecast down-
wards to reduce the usage of down-regulation from G1 in favor of the up-regulation from
G2. However, the cost savings achieved by our approach get diluted as the peak demand
is augmented. The reason for this is twofold. First, the probability of events where the
net demand takes on a value below the capacity of unit G1 diminishes with growing L.
For instance, when L = 50 MW, the probability that the net demand is smaller than
the capacity of G1 is equal to one, which explains why our method delivers the highest
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L F-MC cost P-MC cost �cost w0 w1

(MW) (e) (e) (%)

50 182.92 181.55 0.75 -0.138 0.982
100 418.59 416.91 0.40 -0.277 0.982
150 751.73 750.54 0.16 -0.421 0.997

Table 4.16: Impact of peak demand.

cost savings in this variant (from among the three cases considered in this analysis). In
contrast, as L grows, that probability diminishes and the cheaper down-regulation from
G2 becomes more available. Second, the regulation costs account for a lower percentage
of the total costs as the peak demand L increases.

4.2.3.4 Impact of the net demand regime

We conclude this small example by studying how the net demand regime affects the
prescriptive power of the affine function bL = w0 + w1L

F that we determine by way of
problem (4.22). To this end, we modify the support of the uniform distribution from
which the per-unit net-demand point prediction is randomly drawn. Thus, we distin-
guish a low-demand regime, with L

F ⇠ L ·U(0.03, 0.5), and a high-demand regime, with
L
F ⇠ L ·U(0.5, 0.97). We also consider the base case, where L

F ⇠ L ·U(0.03, 0.97) and
therefore, no demand regime is differentiated. The corresponding results are provided
in Table 4.17.

In line with the observations in the previous analysis of the impact of the peak de-
mand, under a low-demand regime, the expensive, but flexible unit G2 is not dispatched
in the forward market. The downward correction to the net-demand point forecast our
approach prescribes is then intended to benefit from the up-regulation provided by G2,
which is clearly more competitive than the down-regulation offered by G1. The system
features, therefore, a distinct cost asymmetry given by the expensive down-regulation
of G1 versus the cheap up-regulation of G2. Our approach sees this asymmetry and cor-
rects the net-demand point forecast downwards accordingly. In addition, since the beta
distribution modeling the point forecast error is right-skewed for low levels of demand,
said correction leads to substantial cost savings. In contrast, under a high-demand
regime, G2 is very likely to participate in the forward dispatch, whereas there is a lower
probability that G1 be needed to down-regulate, since the distribution of the point
forecast error is left-skewed. Consequently, the cost structure of the system looks very
different under a high-demand regime, which prompts a quite different affine function
and reduces the cost savings obtained from our method.

Most importantly, in the base case, when no net-demand regime is distinguished,
most of the benefits our approach can potentially bring for low values of net demand
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U(a, b) F-MC cost P-MC cost �cost w0 w1

(e) (e) (%)

U(0.03, 0.97) 418.59 416.91 0.40 -0.277 0.982
U(0.03, 0.50) 239.60 234.54 2.11 -0.102 0.917
U(0.50, 0.97) 587.82 586.42 0.24 -6.646 1.088

Table 4.17: Impact of the net-demand regime.

are lost. This motivates us to cluster net-demand observations into different regimes
and use optimization problem (4.22) to compute a possibly different affine model in
the form bL = w0 + w1L

F for each demand regime, similarly to segmented regression in
classical statistics. This is formalized in the next section.

4.2.4 Data clustering and partitioning

Take N = {1, . . . , i, . . . , N}, that is, the index set of the data sample {(Li,xi)}Ni=1

with xi 2 Rp and Li 2 R+
, 8i 2 N . We partition N into a collection {Nk}Kk=1

of K
subsets that are pairwise disjoint and whose union is equal to N . Consider the one-to-
one mapping � : N ! {1, 2, . . . ,K}, such that �(i) = k if data point (Li,xi) 2 Nk.
Therefore, Nk = {i 2 N : �(i) = k}.

We compute K affine models of the form bL = w>

k
x, k  K, by solving the estimation

problem (4.22) for each subset sample Nk. In practice, this means replacing N and N
in (4.22) with |Nk| and Nk, respectively.

To construct a meaningful mapping �, we employ the K-means algorithm that is
implemented in the Python package scikit-learn [108], using the Euclidean distance. We
note that, to construct �, this algorithm receives the feature sample {x}i2N as input.
In addition, the algorithm allows extrapolating the mapping � to new outcomes of the
feature vector x. That is, given a new observation of x, say xN+1, �(xN+1) = k means
that xN+1 is predicted to belong to partition Nk, and therefore, bL = w>

k
xN+1 is to be

used in the clearing of the forward market (4.18).
On a different issue, the estimation problem (4.22) is a MIP program and, as such,

computationally expensive in general. Actually, the size of (4.22) grows linearly with
the sample size. To keep the time to solve (4.22) reasonably low, we reduce the car-
dinality of subsets {Nk}Kk=1

by means of the PAM K-medoids algorithm [78] through
the Python package implementation scikit-learn-extra. This algorithm selects the most
representative data points within each subset Nk, the so-called medoids, by minimizing
the sum of distances between each point in Nk and said medoids. We remark that this
reduction process results in data points (the medoids) with unequal probability masses,
so extra care should be taken when formulating objective function (4.22a) for each sub-
set Nk considering the medoids only. More specifically, the uniform weight 1

N
appearing

in the objective function (4.22a) should be replaced with a medoid-dependent weight
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Country AT BE BG CH CZ DE DK EE ES FI FR GB GR HR
base 0.4 6.1 6.7 3.4 14.4 46 2.4 2.0 16.3 6.5 68.3 20.6 3.9 1.3
peak 5.9 6.8 1.0 0.6 1.3 27.9 1.7 0.2 29.6 3.6 11.9 31.2 4.9 0.7

Country HU IE IT LT LU LV NL NO PL PT RO SE SI SK
base 3.3 1.8 8.7 0.0 0.0 0.0 4.5 0.0 27.8 1.8 5.4 11.1 1.8 2.7
peak 4.1 4.2 46.2 1.8 0.1 1.2 19.3 0.0 3.5 4.6 2.9 1.1 0.7 1.5

Table 4.18: Base and peak generation capacity (GW) installed per node of the European
network.

representing the probability mass assigned to each medoid as a result of the reduction
process.

4.2.5 Case Study

In this section, we assess the performance of our approach in a realistic case study that
is based on the stylized model for the European power system that is described in [103].
Accordingly, we consider a pipeline network model with 28 nodes, each representing an
European country. The capacities of the lines are also obtained from [103], in particular,
we take the values from “Table 14. Transmission capacities between model regions
(GW)” that correspond to the year 2020. We assume that each node in the network
(i.e., each European country) includes two types of power plants technologies, which we
denote as base and peak, respectively. Again, the available capacity of both technologies
has been assigned based on the data in [103] corresponding to 2020 for each country.
More specifically, the base power-plant capacities have been obtained by adding up
the installed capacities of the technologies “Nuclear”, “Hard coal”, “Oil” and “Lignite”
and the peak power-plant capacities from the technologies “Natural Gas”, “Waste” and
“Other gases”. The nodes of the system and the resulting generation capacities of each
type are listed in Table 4.18.

To build a data sample of the form {(Li,xi)}i2N , we have collected the actual
aggregate hourly demand, wind, solar and hydro energy production for each country
(node of the system) in 2020 from the ENTSO-e Transparency Platform10 (ETP). We
have also retrieved the day-ahead forecast of the hourly demand and the produced wind
and solar energy from this platform. To get series of net demand values (both forecast
and actual), we have subtracted the respective wind, solar and hydro power data series
from the aggregate day-ahead forecast/actual demand series. We clarify that no day-
ahead forecast for the hydro power production is available in ETP, so the series of real
hydro power production has been used (instead of the missing day-ahead hydro forecast)
for the computation of day-ahead forecasts of the nodal net demands. Some minor gaps
in the data extracted from ETP have been filled through linear interpolation.

The marginal costs of energy generation and up- and down-regulation of each unit
are randomly sampled from the uniform distributions specified in Table 4.19. The

10ENTSO-e Transparency Platform. See https://transparency.entsoe.eu/.

https://transparency.entsoe.eu/
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C C
u

C
d

base U(8, 12) U(60, 70) U(-40, -50)
peak U(36, 44) U(45, 50) U(30, 35)

Table 4.19: Uniform distributions from which the marginal production, up- and down-
regulation costs of the units in the European system have been sampled.

so-obtained values for these costs have remained fixed throughout the experiments per-
formed in this section. We point out that in the uniform distributions of Table 4.19, we
have considered that base power units are cheap but inflexible, and thus, with costly
regulation. In contrast, peak power plants are expensive, but flexible, and hence, with
more competitive regulation costs.

We conduct a rolling window simulation (see Section 2.3 for more details on the
rolling window setting) on the data of 2020, in which we gradually select non-overlapping
windows of 150 points each. From each window, we randomly sub-sample (without re-
placement) the indexes corresponding to the training and test sets, which are eventually
made up of 100 and 50 samples, respectively. We take ten windows over which we av-
erage the results that follow.

As in the example of Section 4.2.3, we consider a feature vector x made up of the
day-ahead forecast of the system net demand, LF, (measured in MWh), enlarged with
an additional feature fixed to one to accommodate the intercept of the affine models
bL = w>

k
x = w0k + w1kL

F, k  K.
In the analysis we conduct next, we consider various values for K (number of par-

titions and hence of affine models) and several percentage reductions of the number of
data in each partition Nk, k  K. The results of this analysis are summarized in Ta-
ble 4.20, where “r%” in the first column means that only that percentage of medoids in
the partition Nk (more precisely

⌃
r

100
|Nk|

⌥
, where d·e denotes the ceiling operator) have

been used to estimate the affine function bL = w>

k
x through (4.22). This table shows, on

the one hand, the cost savings achieved by our approach in percentage with respect to
the cost of the conventional one and, on the other, the average time the solution to the
K estimation problems (4.22) takes. The reported cost savings have been computed out
of sample, that is, on the test sets. Beyond the fact that these savings are significant in
general, it is clear that our prescriptive approach benefits from exploiting different affine
models under different net-demand regimes, which confirms the preliminary conclusion
we draw in this regard through the small example of Section 4.2.3. Nevertheless, it is
also true that the added benefit rapidly plateaus as K grows. Actually, the bulk of the
economic gains we get through the partitioning of the data sample is already reaped
with K = 2. On the other hand, increasing K has a positive side effect: It remarkably
reduces the time to solve the MIP problem (4.22). In addition, this time can be short-
ened even further, with a tolerable reduction in cost savings, by using only the medoids
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K=1 K=2 K=5 K=7

r

100% 2.83 4.29 4.74 4.75
50% 2.67 4.23 4.39 4.06
20% 2.38 4.12 4.12 3.97

(a) Cost savings in percentage (%).

K=1 K=2 K=5 K=7

r

100% 2127.7 283.7 75.9 28.0
50% 180.0 27.2 7.4 5.5
20% 8.3 3.2 1.1 1.4

(b) Computational time (s).

Table 4.20: Average cost savings in percentage (%) and average time (s) to solve the
estimation problem (4.22) for a number K of partitions and various levels r of reduction
in the size of the original training sets (out-of-sample results).
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Figure 4.4: Prescribed affine transformation of the day-ahead net-demand forecast (ag-
gregated system-wise). Demand is given in GW.

of the partitions Nk, k  K, when estimating the affine models through (4.22).

To comprehend where those cost savings our approach yields come from, in Fig-
ure 4.4 we plot the predicted aggregate net demand L

F against the one prescribed by
our method, i.e., bL. The plot corresponds to one window of 150 data points taken at ran-
dom out of the ten we have considered in the rolling-window simulation. Furthermore,
the figure depicts results from the case with five partitions (K = 5). It can be seen that,
when the system net demand is predicted low, our method prescribes to overestimate
it. This prescription is motivated by two facts. On the one hand, the overestimation
of the net demand in the forward market is covered by cheap power plants, whereas it
reduces the need for upward regulation. On the other, even though it slightly increases
the demand for downward regulation, the group of units that down-regulate remains
the same in any case, i.e., with and without the overestimation, due to the limitations
of the network. As a result, the cost savings linked to the reduction in up-regulation
outweigh the extra costs incurred by the increase in down-regulation. It is interesting
to note that system operators, based on their accumulated experience, often introduce
an upward bias into the net demand forecast [34].
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As the level of net demand grows, the overestimation of the system net load that
our method prescribes diminishes to a point where the prescribed amount flattens (see
partitions N4 and N5). Again, this phenomenon is caused by the network and the
limitations it imposes. Indeed, our method avoids dispatching power plants in the
forward market which, despite being their turn in the cost-merit order, would have been
irretrievably down-regulated in real time because of network bottlenecks. For instance,
in partition N4, F-MC consistently dispatches the DE base generator, with its massive 46
GW, to maximum capacity. However, due to grid constraints, this unit is subsequently
down-regulated to around 30 GW. On the contrary, P-MC takes into consideration that
this power plant is one of the latest to be scheduled in this partition and foresees the
grid limitation on the power flow, thus constraining the aggregated energy production
and systematically dispatching such a unit to the previously mentioned 30 GW.

4.3 Summary

One of the classical approaches to dealing with problems with uncertain parameters is
to produce statistically accurate forecasts of their expected values. Given the simplicity
and natural intuitiveness of this strategy, this approach is still widely used in many in-
dustrial applications despite its suboptimal performance. In the applications presented
in this chapter, we demonstrate the benefits of smartly estimating the uncertain pa-
rameters using contextual information and taking into account the target optimization
problem. This strategy shows substantial economic gains in the decision-making tasks
while requiring minimal changes in current business procedures.

Along these lines, in the first application, the bilevel framework developed in Sec-
tion 2.2.4 is applied to the problem of a strategic producer, competing in a market for
a homogeneous product, in this case, electricity. The result is two alternative models
with complementary features that can be directly solved by off-the-shelf optimization
solvers. This application evaluates the performance of both models in a realistic case
study of a strategic producer participating in the Iberian electricity market. The il-
lustrative example compares the bilevel framework against the alternative strategies
discussed in this thesis, emphasizing the advantages of BL: it guarantees feasibility and
obtains economic improvements in constrained decision-making problems. Numerical
results show that BL, not only significantly increases the revenue streams of the firm
in general, but also proves to be critical to generation portfolios principally comprising
peak power units. Indeed, the market revenues of a strategic peak generation portfolio
are especially sensitive to the uncertainty in the inverse demand function. Therefore,
in this case, the strategic firm may put at risk the bulk of its market incomes by being
left out of the market or trading in deficit. Our approach, however, is, by construction,
aware of that sensitivity and thus, is able to retain most of the profit the firm would
make under a perfectly predictable inverse demand function.
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In the second application in this chapter, we propose a data-driven method to pre-
scribe the value of net demand that the forward settlement (in a two-stage electricity
market) should clear in order to minimize the expected total cost of operating the un-
derlying power system. Leveraging the problem structure, we formulate a mixed-integer
linear program that trains an affine function to map the predicted net demand into the
prescribed one. This is done taking into account the cost asymmetry and network con-
straints of the underlying power system and ensuring the merit order dispatch of the
generators. Numerical experiments conducted out of sample on a stylized model of the
European electricity market reveal that the cost savings implied by the estimated affine
mappings are substantial. Furthermore, on the grounds that the cost structure of a
power system is highly dependent on its operating point, and hence, on the level of
net demand, we have devised a K-means-based partition strategy of the data sample
to train different affine mappings for different net-demand regimes. The use of this
strategy is shown to have a positive twofold effect in the form of substantially increased
cost savings and a remarkable drop in the computational burden of the proposed MIP
training model. Finally, we have added further to the partitioning of the data sam-
ple with a medoid-based reduction in the size of the partitions, achieving additional
speedups in solution times. Taken together, this opens up the possibility of leveraging
our prescriptive approach in larger instances.
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This chapter summarizes the main aspects of this thesis and discusses some avenues
for future work.

5.1 Summary and conclusions

The development of information technologies has created a new resource for decision
makers: data. The subset of data that is generated within the context of the decision
task and which can help obtain better decisions is called contextual information. This
thesis is part of a new gold rush to exploit the potential of data and, in particular, of
contextual information in decision making. To this end, in this thesis, we have developed
efficient data-driven mathematical frameworks and optimization models that leverage
contextual information to improve decision making in problems characterized by the
presence of uncertain parameters.

Electricity markets are a clear example of a sector in which decision making plays
a crucial role in both the long-term and daily activity. Decision making in electricity
markets became more challenging with the development of renewable energy, because,
among other reasons, it dramatically increased uncertainty, affecting most of the tasks
faced by the agents operating in said markets. Many of these tasks involve operational
decisions characterized by being low risk and due periodically. We refer to those tasks
within this thesis as iterative decision-making tasks. This thesis applies current and
new innovations in contextual decision making, to the iterative decision-making tasks
that agents face in electricity markets.

In Chapter 1, we provide a brief historical evolution of decision making in electricity
markets, highlighting the golden opportunity for agents operating in them to improve
their operations through contextual information.

Chapter 2 picks up the baton, formally discussing the aforementioned classical
decision making paradigms and observing the general presentation that the widespread
use of these techniques in other fields deserves. Chapter 2 continues with a discussion
on the potential of contextual information and how to incorporate this valuable resource
in decision making. Starting from the canonical contextual stochastic problem, we have
confronted the advantages and disadvantages of different state-of-the-art frameworks
designed to address this problem type. Our contribution to this scientific effort is a
bilevel framework with notable features and general scope. The last part of the chapter
addresses the particularities of iterative decision-making tasks and deals with two main,
related topics: the rolling window setting and the online learning paradigm. Concerning
the first topic, we emphasize the benefits of the rolling window setting, which combined
with the frameworks previously described in the chapter, allows for addressing iterative
tasks in practice. As for the second, we review the connections of online learning
with the rolling window and the other decision frameworks and propose a new online
gradient descent algorithm tailored to iterative decision making tasks with contextual
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information.

Chapter 3 is the first of the two chapters dedicated to presenting various applica-
tions of the previously introduced contextual decision frameworks in electricity markets.
This chapter discusses the problem of a wind power producer offering her production
in a wholesale electricity market with a dual-price settlement for imbalances. Two mar-
ket variants are analyzed, and in each case an approach designed to better suit the
characteristics of the market. The resulting approaches have in common that the deci-
sion variable (the offer to the market) is encoded through a linear decision rule of the
features.

The first application presented in Chapter 3 proposes an interpretable and effective
method to enhance both the tasks of renewable energy forecasting and trading. Our
method is based on a data-driven newsvendor-type optimization model which leverages
extra available information to produce an improved renewable energy forecast or a
renewable energy offer that can be directly placed in the day-ahead electricity market.
The effectiveness of our approach has been tested on a realistic case study with the aim,
on the one hand, to improve the wind power production forecast issued by the Danish
transmission system operator and, on the other, to formulate a competitive market offer
for a producer managing such a production. To this end, we have built a rolling-window
simulation setup that mimics the actual processes of forecasting and bidding, thereby
exploiting the information available when the forecast is issued or the offer must be
placed. The numerical results highlight the benefits achieved by this approach, which
amounts to a 8.53% of reduction in mean absolute error and a 2.13% of improvement
in the economic metric with respect to the benchmark—the standard “predict, then
optimize” approach—for the simulation period considered. These figures highlight the
intrinsic value of exploiting contextual information such as spatially correlated forecasts.
In the same vein, we have observed that the use (as contextual information) of both on-
and offshore wind power forecasts in areas geographically close to the zone to which the
target wind power production belongs are valuable. This seems to be especially true
if those areas pertain to the same country or domain of the same transmission system
operator.

The second application envisions an hourly wholesale electricity market with a min-
imum time between the offer and the delivery of energy. In this application, we im-
plement the contextual online gradient descent algorithm, proposed in Section 2.3.3,
given the continuous feedback the producer receives in this market setting. To the best
of our knowledge, this is the first time online gradient algorithms have been applied
to this problem. The contextual online gradient descent algorithm is used to improve
the profits obtained by a wind power producer equipped with geographically close wind
forecasts who offers her production to the market. Several numerical experiments were
carried out to assess the properties of the proposed online algorithm. The result ob-
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tained in the case study, built upon realistic data of the Danish transmission system
operator Energinet.dk, shows that the online algorithm achieves a 38.6% imbalance cost
reduction against using a standard point forecast through the “predict, then optimize”
approach and 7.6% imbalance cost reduction compared to a state-of-the-art decision
rule approach. These substantial improvements are, in part, justified due to the fast-
tracking ability, which allows it to follow patterns obviated by other methods based on
a training set of samples, and the design of the market, which enables the algorithm to
exhibit its best performance. Interestingly, these economic gains are accompanied by
a drastic reduction in computational cost, allowing the application of the online algo-
rithm even in the most challenging markets. Furthermore, we have empirically analyzed
several dynamic definitions of the online regret metric, showing the pursued sublinear
convergence.

Chapter 4 discusses two applications that smartly estimate the uncertain parame-
ters, considering the underlying optimization problem. These estimators are constructed
through two approaches that take historical data and contextual information as input.

In the first application, we apply the contextual bilevel approach, presented in Sec-
tion 2.2.4, to the problem of a strategic power producer who manages a portfolio of
thermal units. The producer offers the portfolio generation in a wholesale electricity
market modeled through an uncertain inverse residual demand function. The idea is
to produce prescriptive estimators of the uncertain parameters that shape the inverse
residual demand function, taking into account the objective function and feasibility re-
gion of the underlying problem in their estimation. Under convexity assumptions, the
resulting bilevel optimization program can be reformulated as a non-linear regularized
program and a mixed-integer quadratic program. The former optimization problem is
iteratively solved for decreasing values of a regularization parameter, achieving local
optimal solutions in minimum time. The mixed-integer program is computationally
more expensive but, given the properties of the problem, can be solved to optimality.

We have evaluated the performance of our approach and its practical relevance
through a realistic case study of a strategic producer, participating in the Iberian elec-
tricity market. Specifically, the numerical results show that our framework, not only
significantly increases the revenue streams of the producer in general, but also proves
to be critical to those generation portfolios which mainly comprise peak power units.
Indeed, the market revenues of a strategic peak generation portfolio are especially sen-
sitive to the uncertainty in the inverse demand function. Therefore, in this case, the
strategic producer may put the bulk of the market incomes at risk by being left out of
the market or trading in deficit. Our approach, however, is, by construction, aware of
that sensitivity and thus, is able to retain most of the profit the producer would make
under a perfectly predictable inverse demand function, increasing the benefits obtained
with respect to the “predict, then optimize” strategy by 14.6% in the case of peak units.



120 Chapter 5. Closure

The second application described in this chapter analyzes the problem of a market
operator in charge of clearing a two-stage electricity market consisting of a forward
and a real-time settlement. In this context, we propose a data-driven optimization
program to prescribe the value of net demand that the forward settlement should clear
in order to minimize the expected total cost of operating the underlying power system.
The proposed mixed-integer linear program trains an affine mapping, considering the
technical and economic characteristics of the power plant reserves and grid constraints.
This mapping modifies the available net demand forecast to produce an estimator with
better economic performance. The final procedure respects the merit order dispatch of
the units and requires minimal changes in current business practices to be implemented.

This approach has been investigated in a case study that resembles the European
electricity market. Given that the operating point of the system is highly variable, we
use several clustering techniques to partition the data sample and produce different
affine mappings for different net-demand regimes. The utilization of these clustering
techniques is shown to have a positive twofold effect in the form of substantially in-
creased cost savings and a remarkable drop in the computational burden of training the
proposed mixed-integer program. Numerical experiments reveal that the cost savings
implied by the proposed strategy are substantial, well above 2%.

5.2 Future work

This section discusses some directions for future work related to the main contributions
and applications addressed in this thesis.

Contextual online gradient descent

Our plans for future work include delving into the theoretical guarantees that this
framework offers in terms of average long-term regret in a similar fashion to other online
algorithms. Faster convergence rates or improved performance may be obtained with
another procedure to compute the learning rate. On a different front, non-linear map-
pings, i.e., kernels or generalized additive models, can extend the regression capabilities
of the algorithm.

Contextual bilevel framework

Potential extensions of this work could include the use of more advanced techniques
in the resolution of our bilevel framework, such as those employed in more general
MPCC problems. Another interesting aspect would be to explore alternative formu-
lations aimed at the pessimistic solution of the bilevel program, which could prevent
the known issues of this framework when the lower level has multiple solutions. Like-
wise, the generalization of our approach to multi-stage decision-making problems under
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uncertainty requires further analysis.

Wind power producer

Another possible path to take could be to focus on the development of robust coun-
terparts of the proposed models with the aim of reducing the volatility of the im-
provements achieved. Variable selection methodologies may also be implemented to
determine the best subset of regressors to feed into the models and to enhance model
interpretability. Likewise, non-linear mappings between contextual information and the
response variable (wind forecast or offer) could be captured within our approach by per-
forming non-linear transformations on the features or by way of kernels. Finally, while
the data-driven model for renewable energy trading that we have developed is tailored
to electricity markets with a dual-price settlement for imbalances, such as Nordpool-
DK1 or MIBEL (Spain), it could also be adapted to any market where deviations with
respect to a predefined forward schedule entail an opportunity cost.

Online wind power producer

Although the focus of this research is on wind energy producers, the online algorithm
is readily applicable to managing a portfolio of variable renewable energies with zero
marginal cost, including wind, solar and other technologies. Similar algorithms could
therefore be developed when the producer’s portfolio includes other assets such as loads,
thermal power plants, or energy storage facilities, replacing the aggregated source of
uncertainty, i.e., the variable net production of energy by a lineal decision rule. In this
case, the projection step on the feasible region would likely involve solving a quadratic
optimization program that can still be efficiently solved with modern solvers, provided
that the feasible region is convex.

Strategic thermal producer

As a starting point, we suggest the study of more complex functions to model the
cost structure of the producer and the shape of the residual demand. Additionally, the
inter-temporal constraints of the portfolio can be accounted for to prevent technical
issues in the implementation of the strategy. On a different front, analyzing the price-
maker counterpart of this problem could have potential applications in markets where
a reduced number of firms control large portfolios of generating units.

Contextual economic dispatch

Future work may investigate how to optimize the partitioning of the data sample
by embedding it inside the proposed mixed-integer training model. From a market
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clearing perspective, extending this model to those markets that consider more detailed
representations of the network in the forward and real-time stages is also relevant.
Likewise, including inter-temporal constraints, such as ramping limits and minimum up-
/down-times of the units taking part in the market, can produce more precise solutions.
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This appendix includes complementary material related to the bilevel programming
approach (BL) proposed in Section 2.2.4 for contextual decision making under uncer-
tainty. Section A.1 describes how to apply the bilevel approach when the original
stochastic problem includes recourse variables. Section A.2 discusses two theoretical
applications of BL to classical problems in Operations Research, comparing the cases
with and without full recourse. Finally, Section A.3 proves the asymptotic consistency
of the model resulting from applying BL to the strategic producer problem addressed
in Section 4.1.

A.1 Solving the bilevel approach with recourse variables

In this section, we elaborate on how to solve the general-purpose bilevel program (2.23)
when the contextual stochastic program includes recourse variables. For an introduction
on two-stage stochastic problems with recourse variables, we refer the reader to [125].
We start the derivation particularizing the generic formulation (2.10) as follows:

min
z,s(Y)

E[f(z, s(Y);Y )|X = x] (A.1a)

s.t. h
in

k (z, s(Y);Y)  0, 8k (A.1b)

h
eq

l
(z, s(Y);Y) = 0, 8l, (A.1c)

where z constitutes the vector of here-and-now variables independent of the uncertainty,
s(Y) represents the wait-and-see decisions, and constraints (A.1b), (A.1c) must be
satisfied for almost all y given the context x (i.e., with probability one). We also assume
that f, h

in

k
are convex functions with respect to all variables, heq

l
are affine functions,

and function g
BL, already introduced in Section 2.2.4, is continuous in the parameter

vector w.

Our method solves the following bilevel optimization problem:

wBL 2 argmin
w2Rq ; ẑi,ŝi

X

i2N

f(ẑi, ŝi;yi) (A.2a)

s.t. h
in

k (ẑi, ŝi;yi)  0, 8k, 8i 2 N (A.2b)

h
eq

l
(ẑi, ŝi;yi) = 0, 8l, 8i 2 N (A.2c)

ẑi 2 {argmin
z,s

f(z, s; gBL
(xi;w)) (A.2d)

s.t. h
in

k (z, s; gBL
(xi;w))  0, 8k (A.2e)

h
eq

l
(z, s; gBL

(xi;w)) = 0, 8l}, 8i 2 N . (A.2f)

On the assumption that the lower-level minimization problems (A.2d)–(A.2f) satisfy
some constraint qualification, the classical strategy to solve (A.2) is to replace each
lower level (A.2d)–(A.2f) with its equivalent Karush-Kuhn-Tucker (KKT) conditions
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[28], that is,

wBL 2 argmin
w2Rq ; ẑi,ŝi,�ki,�li

X

i2N

f(ẑi, ŝi;yi) (A.3a)

s.t. h
in

k (ẑi, ŝi;yi)  0, 8k, 8i 2 N (A.3b)

h
eq

l
(ẑi, ŝi;yi) = 0, 8l, 8i 2 N (A.3c)

rf(ẑi, ŝi; g
BL

(xi;w)) +

KX

k=1

�kirh
in

k (ẑi, ŝi; g
BL

(xi;w))+

+

LX

l=1

�lirh
eq

l
(ẑi, ŝi; g

BL
(xi;w)) = 0, 8i 2 N (A.3d)

h
in

k (ẑi, ŝi; g
BL

(xi;w))  0, 8k, 8i 2 N (A.3e)

h
eq

l
(ẑi, ŝi; g

BL
(xi;w)) = 0, 8l, 8i 2 N (A.3f)

�ki � 0, 8k, 8i 2 N (A.3g)

�kih
in

k (ẑi, ŝi; g
BL

(xi;w)) = 0, 8k, 8i 2 N , (A.3h)

where �ki, �li 2 R are, respectively, the Lagrange multipliers related to constraints
(A.2e) and (A.2f) for each lower-level problem; (A.3a) and (A.3b)-(A.3c) are, in that
order, the objective function and constraints of the upper-level problem, and constrains
(A.3d), (A.3e)-(A.3f), (A.3g), (A.3h), are, respectively, the stationarity, primal feasibil-
ity, dual feasibility and slackness conditions of the lower-level problems. As we already
mentioned in Section 2.2.4, problem (A.3) violates the Mangasarian-Fromovitz con-
straint qualification at every feasible point [121] and therefore, interior-point methods
fails to find even a local optimal solution to this problem. To overcome this issue, a reg-
ularization approach was first introduced in [122] and further investigated in [114]. This
method replaces all complementarity constraints (A.3h) with inequality (A.4c) below:

wBL 2 argmin
w2Rq ; ẑi,ŝi,�ki,�li

X

i2N

f(ẑi, ŝi;yi) (A.4a)

s.t. (A.3b) � (A.3g) (A.4b)

�
KX

k=1

�kih
in

k (ẑi, ŝi; g
BL

(xi;w))  ✏, 8i 2 N , (A.4c)

where ✏ is a small non-negative scalar that allows to reformulate (A.3) as the para-
metrized non-linear optimization problem (A.4), which typically satisfies a constraint
qualification and can be then efficiently solved by standard non-linear optimization
solvers. Authors of [122] prove that, as ✏ tends to 0, the solution of (A.4) tends to a
local optimal solution of (A.3). In this manuscript, we have referred to this approach
as BL-R.
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Alternatively, following the same procedure already introduced in Section 2.2.4, the
complementarity slackness conditions can be linearized according to [59] as follows:

wBL 2 argmin
w2Rq ; ẑi,ŝi,�ki,�li,uki

X

i2N

f(ẑi, ŝi;yi) (A.5a)

s.t. (A.3b) � (A.3g) (A.5b)

�ki  ukiM
D
, 8k, 8i 2 N (A.5c)

h
in

k (ẑi, ŝi; g
BL

(xi;w)) � (uki � 1)M
P
, 8k, 8i 2 N (A.5d)

uki 2 {0, 1}, 8k, 8i 2 N , (A.5e)

where uki are binary variables, and M
P
,M

D 2 R+ are large enough constants whose
values can be determined as proposed in [109]. The resulting model (A.5) is a single-level
mixed-integer non-linear problem. We have denoted this method as BL-M.

Solving the bilevel problem (A.2) using either BL-R or BL-M is valid for a conditional
stochastic problem that satisfies the conditions described in this section. Nonetheless,
the complexity of solving the regularized non-linear problem (A.4) or the mixed-integer
non-linear program (A.5) highly depends on functions f, h

in

k
, h

eq

l
, g

BL. In some cases
(see, for instance, the particular applications discussed in Chapter 4), problem (A.5)
can be reformulated as a mixed-integer linear/quadratic optimization problem that can
be solved to global optimality using standard optimization solvers. In the general case,
problems (A.4) and (A.5) can also be solved using off-the-shelf optimization solvers, but
global optimality may not be guaranteed. Notwithstanding this, local optimal solutions
of the proposed bilevel formulation (A.2) may still lead to decisions that are significantly
better than those computed by the traditional “predict, then optimize” approach FO
discussed in Section 2.2.

A.2 Applications of BL with and without full recourse

This section shows the application of BL in problems with and without full recourse
using the newsvendor problem—a well-known stochastic programming problem with
simple recourse (Section A.2.1)—and the product placement problem (Section A.2.2),
which is a two-stage stochastic programming problem with full recourse.

A.2.1 Newsvendor problem

We start with the popular newsvendor problem in the spirit of [7], a work that elicited
renewed interest [100, 20] in the solution to the conditional stochastic program (2.10)
presented in Chapter 2. In the newsvendor problem, the goal of the decision maker
is to find the optimal ordering quantity for a product with unknown random demand
(y 2 R+

) ⇠ Y . In turn, this (positive) demand may be influenced by a random vector
of features (x 2 Rp

) ⇠ X representing, for instance, product information, weather
conditions, customer profiles, etc. The decision maker has, therefore, a collection of
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observations {(yi,xi), 8i 2 N}, which s/he would like to exploit to make an informed
ordering quantity z 2 R+ under the context X = x. Let d and r, with r > d > 0, be
the cost and revenue of manufacturing and selling one product unit, respectively. This
problem can be formulated as the following conditional stochastic program:

min
z2R+

E[dz � rmin(z, Y )|X = x]. (A.6)

Approaches FO and BL both follow a “predict-then-optimize” strategy, whereby the
ordering quantity is obtained as the solution to the following surrogate decision-making
model:

min
z2R+

dz � rmin(z, ŷ). (A.7)

We can use an auxiliary variable s to get rid of the inner minimization and write instead

min
z,s

dz � rs (A.8a)

s.t. s  z (A.8b)

s  ŷ, (A.8c)

whose solution is z
⇤
= s

⇤
= ŷ.

FO and BL differ in the particular single value or scenario ŷ that each of them uses.
In the case of FO, ŷ is an estimate of E[Y |X = x]. Consequently, it becomes apparent
that, for the newsvendor problem, approach FO is fundamentally inconsistent, because
it is well-known that the solution to (A.6) corresponds to the quantile r�d

r
of the demand

distribution Y conditional on X = x. Naturally, this quantile is generally different from
E[Y |X = x].

Now, if we take ŷ = g
BL

(x;w) = w>x in our approach, the optimal vector of linear
coefficients wBL is computed as follows:

wBL 2 argmin
w2Rp;ẑi

X

i2N

dẑi � rmin(ẑi, yi) (A.9a)

s.t. ẑi 2 {argmin
zi,si

dzi � rsi (A.9b)

s.t. si  zi (A.9c)

si  w>xi}, 8i 2 N , (A.9d)

which, based on our previous argument, boils down to

wBL 2 argmin
w2Rp;ẑi

X

i2N

dẑi � rmin(ẑi, yi) (A.10a)
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s.t. ẑi = w>xi, 8i 2 N . (A.10b)

Therefore, our approach coincides exactly with that proposed in [7], which, in turn,
is given by problem (2.20) in Chapter 2 when g

DR
(x;w) = w>x. This equivalence is

far from being general though, as we have seen in the strategic producer application
presented in Section 4.1.

A.2.2 Product placement problem

Given a graph G = (B,A) with node-arc matrix A, in the product placement problem,
the goal is to decide the amount zb 2 R+ of a certain product to be placed in each
node b 2 B of the grid [17]. After this decision is made, the demand for the product
at each node yb is realized, and the inventories of product throughout the network are
shipped across the arcs A so as to satisfy the actually observed nodal demands. As in
the newsvendor problem, these demands may be affected by some exogenous factors X

that may be also random, but that are disclosed before the product placement decision
is to be made. Let h 2 R|B| and g 2 R|A| be the cost of initially placing products in
the nodes of the network and the cost of shipping products through the edges of the
graph, respectively. The product placement problem under uncertain demand, but with
contextual information, can be formulated as follows:

min
z�0

E[c(z;Y)|X = x], (A.11)

where

c(z;y) = h>z+ min
f�0,p�0

g>f + r>p (A.12a)

s.t. Af  z� y + p. (A.12b)

In problem (A.12), we have included a variable vector p 2 R|B|

�0
to allow for unsatisfied

demand, with the associated penalty cost r 2 R|B|. Furthermore, the decision vector
f 2 R|A| represents the amount of product shipped across the arcs of the network. The
cost function (A.12a) takes the form of a two-stage linear cost, with the integration of
a recourse problem. More importantly, unlike in the newsvendor problem, the recourse
is given by a full-fledged (linear) minimization problem. The surrogate decision-making
model associated with the predict-then-optimize strategies FO and BL is as follows:

min
z�0,f�0,p�0

h>z+ g>f + r>p (A.13a)

s.t. Af  z� ŷ + p. (A.13b)



A.2. Applications of BL with and without full recourse 131

To ease the exposition and the notation that follows, we make the additional assumption
that r > h > 0, where the inequality holds component-wise. In this case, variable vector
p in (A.13) is zero at the optimum and the surrogate model can be simplified to

min
z�0,f�0

h>z+ g>f (A.14a)

s.t. Af  z� ŷ. (A.14b)

As previously discussed, problem (A.14) is a deterministic mathematical program
whereby the decision z is solely optimized for the point prediction of demand ŷ. While
the traditional FO approach sets such a prediction to E[Y|X = x], the rationale behind
the approach BL is to compute a W -parameterized function such that the surrogate
problem (A.14) delivers the decision z that minimizes the in-sample cost, that is:

WBL 2 argmin

W2R|B|⇥p,⌥

X

i2N

h>ẑi + g>f̂i + r>p̂i (A.15a)

s.t. Af̂i  ẑi � yi + p̂i, 8i 2 N (A.15b)

f̂i, p̂i � 0, 8i 2 N (A.15c)

ẑi 2 {argmin
zi�0,fi�0

h>zi + g>fi (A.15d)

s.t. Afi  zi �Wxi}, 8i 2 N , (A.15e)

where ⌥ = {ẑi, f̂i, p̂i} and we have taken ŷ = g
BL

(x;W) = Wx with W 2 R|B|⇥p. As
discussed in Section 2.2.4, the lower-level problem (A.15d)–(A.15e) must have a unique
solution. This can be guaranteed if, for example, all the shipping routes that can be
taken to satisfy each demand in the graph entail a different cost. If this condition
is not satisfied, the degeneracy of the lower-level problem can be eliminated by using
classical results from the linear programming literature as described in [63]. As stated
in Section 2.2.4, the solution to (A.15) can be addressed by replacing the lower-level
linear program (A.15d)–(A.15e) with its KKT optimality conditions, yielding

WBL 2 argmin

W2R|B|⇥p,⌥0

X

i2N

h>ẑi + g>f̂i + r>p̂i (A.16a)

s.t. Af̂i  ẑi � yi + p̂i, 8i 2 N (A.16b)

f̂i, p̂i � 0, 8i 2 N (A.16c)

0  (h�↵i) ? ẑi � 0, 8i 2 N (A.16d)

0  (g +A>↵i) ? f̂i � 0, 8i 2 N (A.16e)

0  (ẑi �Af̂i �Wxi) ? ↵i � 0, 8i 2 N , (A.16f)
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where ⌥0
= {ẑi, f̂i, p̂i,↵i} and ↵i 2 R|B| is the vector of Lagrange multipliers associated

with constraint (A.15e). Thus, problem (A.16) can be solved by regularizing the com-
plementary slackness conditions or by using their Fortuny-Amat big-M reformulation.
In the latter case, we arrive to a MIP problem that can be solved using commercial
optimization software such as CPLEX or GUROBI.

Finally, if we also take a linear decision mapping z(x) = g
DR

(x;W) = Wx where
W 2 R|B|⇥p, the DR approach solves the following minimization problem to compute
the optimal matrix of linear coefficients WDR:

WDR 2 argmin

W2R|B|⇥p,⌥

X

i2N

h>ẑi + g>f̂i + r>p̂i (A.17a)

s.t. Af̂i  ẑi � yi + p̂i, 8i 2 N (A.17b)

f̂i, p̂i � 0, 8i 2 N (A.17c)

ẑi � 0, 8i 2 N (A.17d)

ẑi = Wxi, 8i 2 N , (A.17e)

where ⌥ = {ẑi, f̂i, p̂i}. It is apparent that the estimation problems (A.16) and (A.17),
which BL and DR solve, respectively, are structurally different and so are WBL and
W

DR in general. For instance, think of a graph for which min{g`}`2A > max{hb}b2B.
This represents a network where it is always cheaper to satisfy the nodal demand yb, b 2
B, through the amount zb of product that is initially placed at the demand location, that
is, a graph where product shipping would be uneconomical if the nodal demands were
certainly known in advance. Indeed, take the `-th row of g+A>↵i in equation (A.16e)
for any i 2 N , that is, g` + ↵o(`),i � ↵e(`),i, where o(`) and e(`) denote the origin
and end nodes of arc `, respectively. We have that inf{g` + ↵o(`),i � ↵e(`),i : ↵o(`),i 2
[0, ho(`)],↵e(`),i 2 [0, he(`)]} = g` � he(`) > 0. Hence, f` = 0, 8` 2 A and the system of
inequalities (A.16d)-(A.16f) boils down to

0  (h�↵i) ? ẑi � 0, 8i 2 N (A.18a)

0  (ẑi �Wxi) ? ↵i � 0, 8i 2 N , (A.18b)

which, unlike (A.17d)–(A.17e), allows for feasible solutions in the form ẑb,i = 0 with
w>

b
xi < 0 (and ↵b,i = 0), where wb is the b-th row of matrix W. Furthermore, recasting

(A.17e) as ẑi �Wxi = 0 and setting ↵i = h, 8i 2 N , it is straightforward to see that
any feasible point of DR is also feasible for BL. Since the feasible region of (A.17) is
contained in the feasible region of (A.16), but the opposite is not true, the optimum of
(A.16) is in general lower than that of (A.17).
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A.3 Asymptotic consistency of the bilevel approach applied

to the strategic producer problem

This section provides a mathematical proof of the asymptotic consistency of the data-
driven bilevel problem (4.8) to the optimal solution under the assumption of a fix joint
distribution that generates the sample S = {(↵0

i
,�

0

i
,xi), 8i 2 N}.

Proposition 1. 1 Let S = {(↵0

i
,�

0

i
,xi), 8i 2 N} be an i.i.d sample of size N and suppose

that there exists a linear relationship between ↵0 and �0 > 0 given by ↵
0

�0 = a>x+ ⇠, with
⇠ being a zero-mean noise independent of x, ↵0 and �0, and that the expectations E[↵0

],
E[�0] and E[↵0x] are all finite. Then, it almost surely holds in the limit N ! 1 that
the optimizer of the problem

min
w�2W; q̂i

1

N

X

i2N

�
0

iq̂
2

i � ↵
0

iq̂i (A.19a)

s.t. q̂i 2 argmin
qqiq

q
2

i �w>

� xiqi, 8i 2 N , (A.19b)

with W ⇢ Rp being a compact set containing a, is attained at w� = a.

Proof. First, notice that ↵
0

�0 = a>x+⇠ implies that E[↵0
|x]

E[�0|x] = a>x, since ↵0
= �

0 a>x+�0⇠,
and thus, E[↵0|x] = a>xE[�0|x] given the independent nature of the noise ⇠.

The true expectation problem associated with the sample average approximation
(A.19) is given by

min
w�2W; q̂(x)

Z

X⇥R+⇥R

�
�
0
q̂
2
(x)� ↵

0
q̂(x)

�
Q(dx, d�0, d↵0

) (A.20a)

s.t. q̂(x) 2 argmin
qqq

q
2 �w>

� xq, 8x 2 X , (A.20b)

where Q is the joint probability law governing the random parameters �0 and ↵
0 and

the feature vector X.
We first show that a is the unique solution to problem (A.20). To this end, we note

that the lower-level problem (A.20b) renders the following decision mapping for almost
all x 2 X : q̂(x) = max

⇣
q,min

⇣
w>

� x
2

, q

⌘⌘
, which is a continuous function in w� .

Now let QX be the probability measure of X. Consider the following optimization
problem, which is a relaxation of (A.20):

min
q(x)2[q,q],8x2X

Z

X⇥R+⇥R

�
�
0
q
2
(x)� ↵

0
q(x)

�
Q(dx, d�0, d↵0

) =

min
q(x)2[q,q],8x2X

Z

X

�
q
2
(x)E[�0|x]� q(x)E[↵0|x]

�
QX(dx) =

Z

X

 
min

q(x)2[q,q]
q
2
(x)E[�0|x]� q(x)E[↵0|x]

!
QX(dx).
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The inner pointwise minimum results in the following optimal decision rule: q(x) =

max

⇣
q,min

⇣
E[↵0

|x]
2E[�0|x] , q

⌘⌘
= max

⇣
q,min

⇣
a>x
2

, q

⌘⌘
for almost all x 2 X .

Therefore, since w� = a is feasible in the true expectation problem (A.20), then it is
also an optimal solution to this problem. Furthermore, this solution is unique, if there
exists a subset of X with measure greater than zero such that q <

E[↵0
|x]

2E[�0|x] < q.
In addition, note that all the samples in S are i.i.d. and that �0q2(x) � ↵

0
q(x)

is dominated by the function max

⇣
�
0
q
2 � ↵

0
q,�

0
q
2 � ↵

0
q,

↵
02

4�0

⌘
, which is integrable be-

cause the expectations E[↵0
], E[�0] and E[↵0x] are all finite. Indeed, since ↵

0

�0 = a>x+ ⇠

by assumption, we have that E[↵02

4�0 ] =
1

4
E[↵0 ↵

0

�0 ] =
1

4
E[↵0

(a>x+ ⇠)] =
a>

4
E[↵0x].

Therefore, by invoking Theorems 5.3 and 7.48 in [125], we have that the minimizer
of the sample average approximation problem (A.19) converges to a almost surely as
the sample size N grows to infinity.
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