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A B S T R A C T   

Age estimation based on epigenetic markers is a DNA intelligence tool with the potential to provide relevant 
information for criminal investigations, as well as to improve the inference of age-dependent physical charac-
teristics such as male pattern baldness or hair color. Age prediction models have been developed based on 
different tissues, including saliva and buccal cells, which show different methylation patterns as they are 
composed of different cell populations. On many occasions in a criminal investigation, the origin of a sample or 
the proportion of tissues is not known with certainty, for example the provenance of cigarette butts, so use of 
combined models can provide lower prediction errors. 

In the present study, two tissue-specific and seven age-correlated CpG sites were selected from publicly 
available data from the Illumina HumanMethylation 450 BeadChip and bibliographic searches, to help build a 
tissue-dependent, and an age-prediction model, respectively. For the development of both models, a total of 184 
samples (N = 91 saliva and N = 93 buccal cells) ranging from 21 to 86 years old were used. Validation of the 
models was performed using either k-fold cross-validation and an additional set of 184 samples (N = 93 saliva 
and N = 91 buccal cells, 21–86 years old). 

The tissue prediction model was developed using two CpG sites (HUNK and RUNX1) based on logistic 
regression that produced a correct classification rate for saliva and buccal swab samples of 88.59 % for the 
training set, and 83.69 % for the testing set. Despite these high success rates, a combined age prediction model 
was developed covering both saliva and buccal cells, using seven CpG sites (cg10501210, LHFPL4, ELOVL2, 
PDE4C, HOXC4, OTUD7A and EDARADD) based on multivariate quantile regression giving a median absolute 
error (MAE): ± 3.54 years and a correct classification rate ( %CP±PI) of 76.08 % for the training set, and an MAE 
of ± 3.66 years and a %CP±PI of 71.19 % for the testing set. The addition of tissue-of origin as a co-variate to the 
model was assessed, but no improvement was detected in age predictions. Finally, considering the limitations 
usually faced by forensic DNA analyses, the robustness of the model and the minimum recommended amount of 
input DNA for bisulfite conversion were evaluated, considering up to 10 ng of genomic DNA for reproducible 
results. The final multivariate quantile regression age predictor based on the models we developed has been 
placed in the open-access Snipper forensic classification website.   

1. Introduction 

Age estimation can provide key information in criminal, legal and 
anthropological investigations [1]. In cases where there are no suspects 
and the DNA profiles recovered from forensic biological samples do not 
match with any profile stored in national DNA databases, age prediction 
can play an important role guiding police investigations, which can 

reduce the number of potential suspects [2]. Age estimation may also 
improve the prediction of phenotypic characteristics related to aging, e. 
g. hair colour [3] or male pattern baldness [4]. Additionally, if the 
prediction models develop enough accuracy, legal disputes could 
potentially be supported by age estimation [5]. In all these cases, 
chronological age rather than biological age needs to be inferred [6]. 

DNA methylation has become the gold standard biomarker for 
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human age estimation. This epigenetic signature consists of the addition 
of a methyl group (-CH3) to the 5′ carbon of cytosines positioned next to 
guanines (CpG nucleotides) [7]. Age correlation with DNA methylation 
has been largely confirmed by a broad range of epigenetic studies 
[8–16]. Based on the DNA methylation values of age correlated CpG 
sites, multiple forensic age prediction models have been developed to 
date, reviewed in [1]. Since DNA methylation is tissue-specific [17], 
most of these epigenetic clocks have been based on specific forensic 
tissues, including blood [18–21], buccal swabs [22–24], saliva [23,25] 
and semen [26,27]. More recently, skeletal remains, e.g., bones and 
teeth have been studied [28,29]. 

Whole blood is not uniformly composed of identical cell types, but 
consists of distinct cell populations in varying proportions. As methyl-
ation profiles of peripheral blood mononuclear cells and granulocytes 
have been identified [30], cell heterogeneity could act as a confounder. 
However, studies have observed that DNA methylation for age corre-
lated CpG sites does not vary significantly across sorted blood cells from 
healthy subjects [13], and subsequently, most forensic age prediction 
models were based on whole blood treated as a homogeneous tissue. 

Another tissue source that lacks cellular homogeneity is the oral 
cavity, where saliva and buccal swabs have different varied proportions 
of leucocytes and epithelial cells [31]. This difference in cell content 
could potentially create differences in DNA methylation for specific CpG 
sites, and this phenomenon was previously observed for ELOVL2 and 
FHL2 [23], indicating that both sample types cannot be considered a 
single biological source beforehand. 

Nevertheless, considering that deconvolution to assign the specific 
biological source - saliva or buccal swabs - to forensic oral cavity spec-
imens is difficult to achieve, e.g., cigarette butts, the development of a 
single age prediction model covering both tissues represents a practical 
approach. 

A similar approach has already been proposed by Horvath et al. [32], 
developing the “skin & blood clock”, an epigenetic clock based on 391 
CpGs that covers samples originating from blood, skin, saliva, buccal 
cells, as well as from four additional somatic tissues. The age prediction 
model reported by Jung et al., is more focused on forensic specimens, 
and is based on 5 CpG sites applicable to either blood, saliva or buccal 
cells [23]. 

In the present study, we focused on specimens from the oral cavity 
aiming to develop a tissue prediction model that can differentiate saliva 
from buccal cells, as well as an age prediction model covering both 
tissues, since most forensic samples related to the oral cavity will 
comprise a mixture of saliva and buccal cells. Additionally, to include 
the tissue-of-origin as a co-variable do not improve age predictions. 
Selection of candidate tissue-specific and age correlated CpG sites was 
based on the assessment of public data from Illumina Human-
Methylation 450 K. Then, 184 volunteers (21–86 years old) were 
analyzed using SNaPshot™, after collection of either saliva and buccal 
swabs from the same individual (N = 368). A proportion of the analyzed 
samples were used to develop the training set (N = 184), while an 
additional part was used as a testing set for model validation purposes 
(N = 184). As a result, a tissue prediction model (saliva vs buccal cells) 
using logistic regression and based on 2 CpG sites was developed. In 
parallel, an age prediction model covering these tissues together and 
based on multivariate quantile regression analysis was developed for 7 
CpG sites showing the highest correlation with age. Since SNaPshot™ 
needs a preliminary step of bisulfite conversion that degrades the DNA, 
requiring high levels of input DNA, we made an evaluation of serial 
dilutions with this detection system to determine the limits of the assay. 

2. Material and methods 

2.1. Samples, DNA extraction and quantification 

A total of 368 samples, 184 total saliva and 184 buccal cells, were 
collected from 184 healthy Spanish volunteers from 21 to 86 years old. 

Based on this set of samples, for the saliva-specific and buccal swab- 
specific age prediction models, the whole set of 184 saliva and 184 
buccal swabs, respectively, were directly used as training sets. For the 
tissue-combined age prediction model, a random selection was made to 
generate training and test sets balanced in terms of sample size, distri-
bution of ages and represented tissues. Each group had 184 individuals 
with the full age range 21–86 years. The training set consisted of 91 
saliva and 93 buccal cell samples, while the testing group had 93 saliva 
and 91 buccal cell samples. 

All samples were taken with written informed consent obtained from 
the donors. Ethical approval was obtained from the ethics committee of 
investigation in Galicia, Spain (CAEI: 2013/543). Buccal swabs were air- 
dried and stored at room temperature and total saliva was collected with 
15 mL falcon tubes and frozen at − 20 ◦C until DNA extraction. Genomic 
DNA was extracted from the whole swab and from 500 µL of total saliva 
with phenol/chloroform extraction [33]. All DNA samples were quan-
tified by Qubit® dsDNA High Sensitivity (HS) or dsDNA Broad Range 
(BR) Assay kits (Thermo Fisher) following manufacturer’s guidelines. 

2.2. CpG site selection 

Selection of candidate CpG sites was based on both bibliographic 
searches as well as statistical assessment of NCBI GEO methylation 
studies using public data from the Illumina Human-
Methylation450KBeadChip. Tissue-specific CpG site selection was based 
on the statistical assessment of the methylation β-values from GSE48472 
[34] (blood, saliva and buccal cells). To check for absence of correlation 
with age for the selected tissue-specific markers; GSE87571 [14] 
GSE92767 [25] and GSE50586 [35] were used. Furthermore, the 
bibliographic review was focused on publications from 2011 to 2019, 
and searched for markers presenting a high correlation with age in 
different tissues: blood [18,20,28,36], saliva [9,37], and buccal cells 
[22,38]. Additionally, methylation β-values from GSE92767 [25] were 
statistically assessed to seek to identify additional age-correlated CpG 
sites. 

2.3. Primer design 

The flanking regions of the selected CpGs were screened using the 
UCSC genome browser (https://genome.ucsc.edu/) for the current 
human genome assembly (GRCh38/hg38), covering 150 bp upstream 
and downstream of the target CpG. The PCR primer and Single Base 
Extension (SBE) primer designs were made using BatchPrimer 3 v1.0 
[39] applying the following parameters for PCR primers: optimal 
melting temperature 58 ◦C, optimal primer length 20 bp and optimal 
amplicon length 90 bp; and for the SBE primer design: optimal melting 
temperature 50 ◦C and optimal probe length 20 bp. Poly-CT tails were 
added to the SBE primers for size separation. 

2.4. Bisulfite conversion, PCR conditions and purification of PCR 
products 

Bisulfite conversion of 100 ng of extracted genomic DNA was carried 
out with the MethylEdge™ Bisulfite Conversion System (Promega) 
following manufacturer’s guidelines, obtaining an elution volume of 20 
µL. A PCR multiplex amplification in 10.7 µL reaction volume adding 
1.5 µL of converted DNA was carried out using 0.3 µL of 250 U AmpliTaq 
Gold™ DNA Polymerase, 1.5 µL of 10X Buffer II, 3.9 µL of 25 mM MgCl2 
(all from Applied Biosystems, AB), 1.5 µL of 32 ng/µL bovine serum 
albumin, 1 µL of 10 mM GeneAmp® dNTP Mix with dTTP (AB) and 1 µL 
of primer mix (0.083–5 µM of each primer, Metabion International). PCR 
cycling used a GeneAmp® PCR system 2720 (AB) with cycling condi-
tions: 95ºC for 11 min; 34 cycles of 94ºC for 20 s, 56ºC for 60 s and 72ºC 
for 30 s, and a final extension of 72ºC for 7 min 

After checking amplification yields in 1 % agarose gels, a purification 
of 2.5 µL of PCR product was performed adding 1 µL of ExoSAP-IT™ PCR 
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Product Cleanup Reagent (AB) at 37 ◦C for 45 min and 80 ◦C for 15 min 

2.5. Single base extension and capillary electrophoresis 

Multiplex SBE reactions were performed in a total volume of 6 µL 
using 2 µL of purified PCR product, 2.5 µL of SNaPshot™ kit (AB) and 
1.5 µL of SBE primers (0.51–6 µM of each primer, Metabion Interna-
tional) with cycling conditions: 30 cycles of 96 ◦C for 10 s, 55 ◦ for 5 s, 
and 60 ◦C for 30 s 

After the SNaPshot reaction, extension products were purified by 
adding 1 µL of Shrimp Alkaline Phosphatase Recombinant (AB) to the 
total SNaPshot reaction and incubating at 37 ◦C for 80 min with inac-
tivation at 85 ◦C for 15 min 

Capillary electrophoresis was performed with an ABI3130xl Genetic 
Analyzer (AB) using 0.1 µL of GeneScan™ 120 LIZ™ dye Size Standard 
(Thermo Fisher) and 10 µL of HiDi™ Formamide (AB) per sample, 
adding 9.5 µL of load mix and 1.5 µL of purified SNaPshot product. 
Results were analyzed with GeneMapperID v3.2 (AB) and the DNA 
methylation level at each CpG was calculated by dividing the height of 
the methylated peak by the sum of the heights of the methylated and 
unmethylated peaks. The latter values were multiplied by a correction 
factor of 2, when working with reverse primers and 1.6 for forward 
primers, to overcome differences at fluorochrome signal intensities. 

2.6. Statistical analyses 

All samples were run in duplicate. The average of the DNA methyl-
ation levels in both replicates was used for the statistical analyses. 
Correlations between age and DNA methylation levels were evaluated 
using the Spearman Correlation test (rs). To analyze the reproducibility 
of the dilutions and the inter-individual variability, the standard devi-
ation (SD) was used (threshold SD > 0.1). Normality was assessed using 
the Shapiro-Wilk test applied to the residuals of the independent linear 
regression models tested for each CpG (p-value < 0.05). Logistic 
regression was used to develop the tissue prediction model using the 
pROC R package [40]. A multivariate quantile regression model was 
used to build the age prediction model using the quantreg R package 
[41]. Cross-validation of the prediction models was performed with a 
k-fold cross-validation (k = 10) using the cvTools R package [42]. The 
corresponding predictive accuracy was measured with the following 
performance metrics: sensitivity, specificity, area under the curve (AUC) 
and percentage of correct classifications for tissue prediction; and the 
median absolute error (MAE), the mean absolute error (MAEmean), the 
root-mean-square error (RMSE) and percentage of correct classifications 

within the prediction intervals ( %CP±PI) for age prediction. The rep-
resentation of predicted versus chronological age was made using the 
ggplot2 R package [43]. All statistical analyses were carried out using R 
software v.4.0.3 [44] with scripts developed in-house. The sensitivity 
analysis was carried out using input DNA quantities for bisulfite con-
version of 100 ng, 75 ng, 50 ng, 25 ng, 10 ng and 1 ng. 

3. Results 

3.1. Selection of candidate CpGs 

The selection of candidate CpGs was divided into tissue-specific CpGs 
and age-correlated CpGs. 

For selection of tissue-specific CpGs, the GSE48472 dataset was 
assessed [34]. From this dataset, samples from saliva (N = 5), buccal 
cells (N = 5) and blood (N = 5) were selected and differences in the 
corresponding DNA methylation values calculated. A total of 17 CpG 
sites with the highest differences in DNA methylations levels were found 
(Table 1): 5 CpGs presenting the highest differences between blood and 
buccal cells (>|0.72|); 6 CpGs between blood and saliva (>|0.45|) and 6 
CpGs between saliva and buccal cells (≥|0.5|). 

Once the markers had been selected, absence of correlation with age 
was evaluated using the following datasets: GSE92767 (saliva) [25], 
GSE50586 (buccal cells) [35] and GSE87571 (blood) [14]. From the 17 
selected tissue-specific CpGs, three displayed correlations with age (rs >| 
0.5|): cg01680010 (rs =− 0.607) in buccal cells and cg13408086 (rs 
=0.609) and cg08466792 (rs =0.575) in blood, so were discarded. Based 
on these results, one CpG site per tissue combination was selected. This 
selection was initially based on the highest difference displayed by the 
DNA methylation values observed in pairs of tissues. However, several 
failures in PCR primer design led to a final selection of cg04915566 
(RUNX1) for blood-buccal cells, cg16606773 (RIN2) for blood-saliva 
and cg03044684 (HUNK) for saliva-buccal cells. 

Selection of age-correlated CpGs was based on the assessment of 
DNA methylation values from GSE92767 (saliva samples, N = 54, 18–73 
years old) [25]. In order to select the method to be used for marker 
selection, normality was evaluated for GSE92767 data, obtaining that 
15 % of the residuals of the models (independent linear regression 
models for each CpG) presented a lack of normality (p-value < 0.05), 
therefore, the Spearman test was used. For this analysis, CpG sites pre-
senting a Spearman correlation coefficient equal to or greater than |0.8| 
were selected, providing 49 CpG sites correlated with age (Supplemen-
tary Table S1). From this preliminary set of sites, those CpGs with a 
minimum difference of 0.3 between the highest and lowest methylation 

Table 1 
Summary of the 17 selected tissue-specific CpG sites based on the statistical assessment of GSE48472. CpG sites correlated with age (rs >|0.5|) are marked in bold.  

Tissue’s 
comparison 

Gene CpG_ID GRCh38 chromosome 
position 

Differences between 
pairs of tissues 

Correlation with age 
(rs blood) 

Correlation with age (rs 

buccal cells) 
Correlation with age 
(rs saliva) 

Blood-Buccal 
cells 

RUNX1 cg04915566 chr21:35049175  0.723 0.023 0.006 -0.309  

MAML2 cg08141395 chr11:96254218  0.748 0.006 0.043 -0.306  
RGS1 cg10861751 chr1:192575586  0.733 -0.024 0.055 -0.266  
EXD3 cg13408086 chr9:137326945  0.724 0.609 -0.337 -0.481  
NCKAP1L cg16509569 chr12:54497850  0.721 -0.019 -0.190 -0.318 

Blood-Saliva CDC25B cg02737268 chr20:3799535  0.483 0.287 -0.079 0.439  
DOT1L cg04173586 chr19:2167497  0.459 0.001 0.129 0.408  
RIN3 cg15443535 chr14:92687972  0.476 -0.152 0.411 0.399  
none cg16149628 chr11:1771344  0.471 0.023 0.166 0.270  
RIN2 cg16606773 chr20:19975162  0.459 -0.179 -0.153 -0.049  
WDFY1 cg23363263 chr2:223887272  0.452 -0.102 -0.043 0.218 

Saliva-Buccal 
cells 

none cg01680010 chr7:97017805  0.500 0.148 -0.607 -0.079  

none cg02939659 chr14:101587733  0.500 -0.048 0.472 0.389  
HUNK cg03044684 chr21:31875719  0.503 -0.065 0.055 0.247  
PAX9 cg07459252 chr14:36661007  0.502 0.334 -0.104 -0.106  
none cg08466792 chr5:3603113  0.512 0.575 -0.362 -0.378  
SIM2 cg25446076 chr21:36710849  0.523 0.379 -0.349 -0.332  

A. Ambroa-Conde et al.                                                                                                                                                                                                                       



Forensic Science International: Genetics 61 (2022) 102770

4

values were selected, to give ten candidate CpGs (Table 2) for age pre-
diction in saliva. 

As the statistical analysis for selection of age correlated CpG sites was 
based on saliva samples, but the study also covered buccal cells; a 
bibliographic search to find genes that show correlation with age in 
additional somatic tissues was carried out. In the reviewed publications, 
certain markers were repeatedly found to correlate with age in the tis-
sues of interest (saliva, buccal cells and blood): PDE4C [18,20,22,28, 
37], EDARADD [9,28,38] and ASPA [18,20,22,28,36,37], and therefore 
these genes were the focus of further evaluation in our study (included in 
Table 2). 

3.2. Development of an optimized multiplex 

From the above analyses, 16 markers were selected: 3 tissue-specific 
CpG sites (RUNX1, RIN2 and HUNK) and 13 age-correlated CpG sites 
(OTUD7A, FHL2, TRIM59, RHBDL2, cg10501210, cg10804656, LHFPL4, 
cg13327545, ELOVL2, HOXC4, PDE4C, EDARADD and ASPA). PCR and 
SBE primers were successfully designed for the selected tissue-specific 
markers, and 11 age-correlated CpGs, with RHBDL2 and cg10804656 
discarded from subsequent analyses. A summary of PCR and SBE primer 
information is outlined in Supplementary Table S2. 

First, each marker was analyzed in singleplex to check for individual 
amplification performance. Once this initial step was accomplished, a 
multiplex covering all 14 CpGs was optimized. Markers TRIM59 and 
cg13327545 were not amplified in multiplex due to non-specific hy-
bridizations leading to the final optimized multiplex of RUNX1, RIN2, 
HUNK tissue-specific markers plus OTUD7A, FHL2, cg10501210, 
LHFPL4, ELOVL2, HOXC4, PDE4C, EDARADD, ASPA age-correlated CpG 
sites. An example SNaPshot electropherogram of the optimized multi-
plex is shown in Fig. 1. 

To check tissue-specificity and age correlation of the optimized 
marker set, a preliminary analysis using both saliva and buccal cells 
from two individuals of age extremes (23 and 86 years old) was 
completed (Supplementary Table S3). Tissue specificity was not detec-
ted for RIN2, since the same absence of methylation pattern was 
observed for both saliva and buccal cells. To check that the absence of 
methylation was not a technical problem, and since RIN2 was selected 
for detecting differences between blood and saliva, blood samples from 
the same individuals were tested and detected DNA methylation levels 
of 0.39 and 0.4, respectively. 

In the case of RUNX1, some dispersion was detected in the patterns 
displayed by age or tissue, preventing objective interpretation with this 
marker. However, HUNK had differences in average DNA methylation 
levels between both tissues (0.31 and 0.17 for saliva and buccal cells, 

respectively). 
For age-correlation, six of the nine CpG sites (cg10501210, LHFPL4, 

ELOVL2, PDE4C, ASPA and EDARADD) gave average DNA methylation 
difference between extreme ages equal to or higher than 0.19. Differ-
ences were displayed by HOXC4, OTUD7A and FHL2 at lower levels (0.1, 
0.05 and 0.12, respectively). 

3.3. A statistical tissue prediction model 

The training set comprising 91 saliva samples and 93 buccal swabs 
was analyzed with the optimized multiplex to develop a tissue predic-
tion model for saliva and buccal cells. The corresponding dispersion 
diagrams for HUNK and RUNX1 markers is shown in Fig. 2. Dispersion 
correlated with the tissue-of-origin is observed, with higher methylation 
levels for HUNK in saliva samples, and for RUNX1 in buccal cells. 

In order to predict tissue of origin, logistic regression was applied 
exploring three different models: model 1 (HUNK plus RUNX1), model 2 
(HUNK) and model 3 (RUNX1). The corresponding performance metrics 
are described in Table 3. Comparable AUC values of 0.95, 0.95 and 0.92 
for model 1, 2 and 3, respectively were obtained. Similar percentage of 
correct classifications was also recorded, with model 1 having the 
highest value at 88.6 %. However, some differences were found with 
sensitivity and specificity values, considering buccal cell samples as the 
control (i.e., a high specificity indicates good classification of buccal cell 
samples and a high sensitivity good classification of saliva samples). 
Model 1 gave a higher sensitivity (0.96) compared to specificity (0.82). 
Therefore, model 1 results show that saliva samples classify better than 
swab samples. In contrast, model 2 gave a sensitivity of 0.78 and a 
specificity of 0.96; model 3 gave a sensitivity of 0.81 and a specificity of 
0.9. Therefore, single marker models classify saliva samples less effi-
ciently than buccal swab samples. 

Considering the highest rate of correct classifications obtained 
(88.59 %), model 1 was selected for validation with a testing set of 184 
samples (N = 93 saliva and N = 91 buccal cells. A correct tissue-of- 
origin prediction rate of 83.7 % for test set samples was obtained. 

3.4. A statistical age prediction model for saliva and buccal swab samples 

Tissue-independent as well as tissue-combined models were explored 
for age prediction. For the saliva-specific and buccal swab-specific age 
prediction models, 184 saliva and 184 buccal swab samples were used as 
training sets, respectively. The training set of 184 volunteers (N = 91 
saliva and N = 93 buccal swabs) was used to develop the combined age 
prediction model for saliva and buccal cell samples. Dispersion plots in  
Fig. 3 indicate the patterns obtained for the cg10501210, LHFPL4, 
ELOVL2, PDE4C, HOXC4, OTUD7A, FHL2, ASPA and EDARADD markers 
adopted. Six markers showed hypermethylation with increased age 
(LHFPL4, ELOVL2, PDE4C, HOXC4, OTUD7A and FHL2); while 
cg10501210, ASPA and EDARADD had decreasing methylation levels 
with increasing age. If considering both tissues combined (saliva and 
buccal swabs), the highest correlation with age was found in PDE4C (rs 
=0.806) and LHFPL4 (rs =0.805), followed by ELOVL2 (rs =0.659), 
OTUD7A (rs =0.642), EDARADD (rs =− 0.572) and HOXC4 (rs =0.569). 
However, low levels of correlation were detected in cg10501210, FHL2 
and ASPA (rs =− 0.313, 0.198 and − 0.332, respectively). At the same 
time, these three markers showed the highest levels of dispersion be-
tween saliva and buccal cells, (SD> 0.1). If taking into account both 
tissues independently, correlations followed a similar trend (Supple-
mentary Fig. S1-S2). Whereas the highest age correlation was displayed 
by LHFPL4 and PDE4C (rs =0.815 and 0.832 in saliva and buccal swabs, 
respectively), the lowest levels of correlation were observed in 
cg10501210 (rs =− 0.429, − 0.422), FHL2 (rs =0.392, 0.231) and ASPA 
(rs =− 0.521, − 0.44). 

Taking into account these observations, multivariate quantile 
regression was tested on several age prediction models consisted of 
different combinations of CpG sites: model 1 (9 CpGs: cg10501210, 

Table 2 
Summary of the ten selected CpG sites correlated with age in saliva, based on the 
statistical assessment of GSE92767, as well as the 3 selected age correlated CpG 
sites in somatic tissues based on bibliographic review.  

Gene CpG_ID GRCh38 
chromosome 
position 

Correlation 
with age (rs) 

Methylation 
differences at 
extreme ages 

GSE92767 assessment 
OTUD7A cg04875128 chr15:31483692 0.860 0.312 
FHL2 cg06639320 chr2:105399282 0.824 0.322 
TRIM59 cg07553761 chr3:160450189 0.803 0.305 
RHBDL2 cg10500653 chr1:38941979 0.814 0.334 
none cg10501210 chr1:207823675 -0.864 0.674 
none cg10804656 chr10:22334531 0.828 0.317 
LHFPL4 cg11084334 chr3:9552580 0.846 0.345 
none cg13327545 chr10:22334619 0.818 0.302 
ELOVL2 cg16867657 chr6:11044644 0.898 0.385 
HOXC4 cg18473521 chr12:54054481 0.824 0.389 
Bibliographic review 
PDE4C none chr19:18233131 na na 
EDARADD cg09809672 chr1:236394382 na na 
ASPA cg02228185 chr17:3476273 na na  
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LHFPL4, ELOVL2, PDE4C, HOXC4, OTUD7A, FHL2, ASPA and EDAR-
ADD), model 2 (8 CpGs with ASPA excluded), model 3 (8 CpGs with 
FHL2 excluded), model 4 (8 CpGs with cg10501210 excluded), model 5 
(7 CpGs with cg10501210 and FHL2 excluded), model 6 (7 CpGs with 
cg10501210 and ASPA excluded), model 7 (7 CpGs with FHL2 and ASPA 
excluded) and model 8 (6 CpGs with cg10501210, FHL2 and ASPA 
excluded). To evaluate the accuracy of the models, a k-fold cross- 
validation was carried out. The “k-fold” divides the total number of 
individuals into groups of similar sizes, in this case, 10 groups were 
created, each containing 10 % of the subjects. Each model was tested for 
each of the clusters, therefore, each time one of the clusters was selected 
as a test set, it faced the remaining nine that make up the training set. 
The corresponding performance metrics for the training sets are 
described in Table 4. 

Inter-training set comparisons show that the correct classification 
rates are similar among them ( %CP±PI: 76.66 %, 75.37 % and 76.23 %, 
for saliva, buccal swab and the combined model, respectively). How-
ever, more remarkable differences were found when comparing pre-
diction errors, especially between the buccal swab-specific and the 
combined model (average MAE: ± 3.89 and ± 4.35, respectively). 
Nevertheless, the saliva-specific model showed a better prediction error 
than the combined model (average MAE: ± 3.55). Based on these re-
sults, and due to the fact that many forensic specimens will comprise a 

mixture of saliva and buccal cells with different cell proportions, e.g., 
cigarette butts, the corresponding age prediction model to be developed 
was selected to cover both tissues simultaneously (combined model). 

Intra-training set comparisons of the combined model showed that 
the highest error and lowest correct classification rate were obtained 
with model 8 (MAE: ± 5.23, RMSE: 7.54 and %CP±PI: 74.06 %), which 
lacks the 3 CpG sites with the lowest levels of correlation with age and 
highest dispersion between saliva and buccal cells (cg10501210, FHL2 
and ASPA). When including these CpG sites (model 1), error decreased 
(MAE: ± 3.31) but the correct classification rate is only marginally 
improved (74.38 %). Among all models tested, the best balance between 
error and correct classification was obtained with model 7, which ex-
cludes FHL2 and ASPA (MAE: ± 3.54, RMSE: 6.23 and %CP±PI: 76.08 
%). Subsequently, we selected the age prediction model for saliva and 
buccal cells based on CpGs cg10501210, LHFPL4, ELOVL2, PDE4C, 
HOXC4, OTUD7A and EDARADD. Predicted versus chronological age is 
plotted for the final 7-CpG age prediction model in Fig. 4. The quantiles 
0.5, 0.1 and 0.9 are represented by a black line and dashed dark red 
lines, respectively and the gray line represents perfect correlation. The 
Fig. 4 plot shows that the 0.5 quantile line is more separated in older 
ages, possibly due to the low number of samples available for this age 
range. The non-parallel prediction intervals also show the reduced 
precision in the highest age ranges. 

Fig. 1. Example electropherogram of the optimized SNaPshot™ multiplex assay containing 3 tissue-specific and nine age correlated CpG sites using 100 ng of 
genomic DNA. 

Fig. 2. Dispersion diagrams (DNA methylation values in front of chronological age) for HUNK and RUNX1 (tissue-specific CpG sites) for 184 individuals from 21 to 
86 years old (N = 91 saliva and N = 93 buccal swabs). 

Table 3 
Summary of the predictive performance metrics for the three logistic models tested on the training set (N = 91 saliva and N = 93 buccal swabs, 21–86 years old). AUC: 
Area under the curve.  

Model CpG_ID Gen AUC Sensitivity Specificity Correct classifications 

Model 1 cg03044684 & cg04915566 HUNK & RUNX1  0.95  0.96  0.82  88.59 % 
Model 2 cg03044684 HUNK  0.95  0.78  0.96  86.87 % 
Model 3 cg04915566 RUNX1  0.92  0.81  0.90  85.87 %  
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As well as cross-validation, an additional validation step consisted of 
a testing set of 184 samples (N = 93 saliva and N = 91 buccal swabs) 
ranging from 21–86 years old that were analyzed using the final age 
prediction model, providing an MAE of ± 3.66 % and 71.2 % correct 
classifications. The final online age prediction model developed in our 
study has now been placed in the open-access Snipper forensic classifi-
cation website and is freely available at: http://mathgene.usc.es/cgi- 
bin/snps/age_tools/processmethylation-saliva-buccalswab.cgi. The un-
derlying model equations for predicted age and prediction intervals are 
the following:  

Predicted age in years = 29⋅33 - (50⋅52 x cg10501210) + (9⋅23 x LHFPL4) +
(36⋅46 x ELOVL2) + (74⋅32 x PDE4C) + (11⋅23 x HOXC4) + (84⋅74 x 
OTUD7A) - (15⋅03 x EDARADD)⋅                                                             

Minimum Prediction (MinPred – q10) = 29⋅36 - (42⋅87 x cg10501210) +
(15⋅41 x LHFPL4) + (11⋅09 x ELOVL2) + (74⋅17 x PDE4C) + (32⋅51 x 
HOXC4) + (29⋅13 x OTUD7A) - (20⋅54 x EDARADD)⋅                                

Maximum Prediction (MaxPred – q90) = 11⋅3 - (43⋅57 x cg10501210) +
(20⋅74 x LHFPL4) + (54⋅72 x ELOVL2) + (78⋅25 x PDE4C) - (7⋅06 x HOXC4) 
+ (179⋅95 x OTUD7A) + (4⋅16 x EDARADD)⋅                                          

Once the age prediction model was generated, the possibility that the 
tissue could be considered as an additional variable was evaluated. To 
assess this, the prediction model was generated again by adding the 
tissue-of-origin of each of the samples in the training set as a co-variable. 
For this extended model, an MAE of ± 3.84 years, RMSE of 6.31 and % 
CP±PI of 78.22 % was obtained after cross-validation. Next, in order to 
evaluate the test set, the 2-CpG prediction model was used to predict the 
tissue-of-origin of the test samples. Adding the inferred tissue to the test 
set, produced an MAE of ± 3.78 years, RMSE of 6.6 and %CP±PI of 
70.11 %. Comparing these results with those obtained when using the 
model without tissue source prediction, indicates the tissue as a co- 
variable does not improve the model. 

3.5. Forensic validation of the age prediction model 

To evaluate the predictive tests developed for the analysis of typical 
forensic samples with degradation and/or low-level DNA, the robustness 
and sensitivity of the final model were assessed. 

A chain of models was generated by deleting one of the CpGs 
included in the final model, simulating random loss of one of the 
markers. For each of the six CpGs models generated, the training set was 

Fig. 3. Dispersion diagrams (DNA methylation values in front of chronological age) for cg10501210, LHFPL4, ELOVL2, PDE4C, HOXC4, OTUD7A, FHL2, ASPA and 
EDARADD (age correlated CpG sites) for 184 individuals from 21–86 years old (N = 91 saliva and N = 93 buccal swabs). 
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evaluated by cross-validation and the test set. Results are outlined in 
Supplementary Table S4. This analysis identified those markers with the 
strongest contribution to the final age prediction model. The exclusion 
of cg10501210 increased the MAE to ± 5.23 years in the cross- 
validation of the training set, and exclusion of PDE4C increased the 
classification error to ± 4.03 years in the testing set. Excluding the four 
other markers did not greatly affect the errors obtained compared to the 
full 7-CpG model, so the impact of their loss is minimal. 

Lastly, bisulfite conversion was performed using 100 ng of genomic 
DNA. To evaluate if lower quantities of input DNA could produce results 
of comparable quality, serial dilutions were tested on two individuals 
(23 and 79 years old) for both saliva and buccal cells, using input DNA 
quantities for bisulfite conversion of 100 ng, 75 ng, 50 ng, 25 ng, 10 ng 
and 1 ng. The corresponding DNA methylation values and predicted 
ages are listed in Supplementary Table S5. To evaluate the differences 
detected in DNA methylation values between input DNAs, the standard 

deviation (SD) was used for comparisons (Supplementary Table S6). No 
standard deviations higher than 0.1 were observed in any of the markers 
up to 10 ng. For 1 ng only 4 markers presented a higher deviation than 
0.1: ELOVL2 (SD=0.19 and SD=0.20) in two of the four samples 
analyzed, RUNX1 (SD=0.20) in one sample, cg10501210 (SD=0.13) and 
HOXC4 also in single samples (SD=0.16). 

4. Discussion 

Individual age estimation has been a topic of great interest in 
forensic genetics for the last years. DNA methylation has become the 
biomarker of choice for inferring this characteristic [45], with predic-
tion models published using several techniques [19,20,24,38,46,47] and 
different tissues [18–29], although most of them have focused on blood 
samples. Other tissues of relevance for forensic DNA analysis, and for 
which age prediction models are beginning to be developed are saliva 

Table 4 
Summary of predictive performance metrics for the eight multivariate quantile regression models tested, based on three training sets: the saliva training set (N = 184 
saliva, 21–86 years old), the buccal swab training set (N = 184 buccal swabs, 21–86 years old) and the combined training set (N = 91 saliva and N = 93 buccal swabs, 
21–86 years old). All data represent the k-fold cross-validation. The selected model, based on the best balance between error and correct classification, is marked in 
bold. MAE: median absolute error, MAEmean: mean absolute error, RMSE: root-mean-square error and %CP±PI: percentage of correct classifications within the pre-
diction intervals.  

Tissue Model CpG number MAE MAEmean RMSE %CP±PI 

Saliva Model 1 9 CpGs ±3.17 ±4.79  6.46 76.55 % 
Model 2 8 CpGs with ASPA excluded ±2.98 ±4.66  6.4 77.11 % 
Model 3 8 CpGs with FHL2 excluded ±3.29 ±4.76  6.47 75.49 % 
Model 4 8 CpGs with cg10501210 excluded ±3.79 ±5.04  6.76 75.59 % 
Model 5 7 CpGs with cg10501210 and FHL2 excluded ±3.85 ±5.17  6.93 76.61 % 
Model 6 7 CpGs with cg10501210 and ASPA excluded ±3.96 ±4.97  6.69 74.45 % 
Model 7 7 CpGs with FHL2 and ASPA excluded ±3.31 ±4.69  6.37 78.74 % 
Model 8 6 CpGs with cg10501210, FHL2 and ASPA excluded ±4.02 ±5.10  6.91 78.74 % 

Buccal swab Model 1 9 CpGs ±3.85 ±5.01  6.35 75.47 % 
Model 2 8 CpGs with ASPA excluded ±4.41 ±5.09  6.45 74.91 % 
Model 3 8 CpGs with FHL2 excluded ±4.13 ±4.90  6.24 75.53 % 
Model 4 8 CpGs with cg10501210 excluded ±4.45 ±5.27  6.66 76.64 % 
Model 5 7 CpGs with cg10501210 and FHL2 excluded ±4.89 ±5.52  6.94 74.42 % 
Model 6 7 CpGs with cg10501210 and ASPA excluded ±4.22 ±5.15  6.63 73.86 % 
Model 7 7 CpGs with FHL2 and ASPA excluded ±4.16 ±4.99  6.36 75.47 % 
Model 8 6 CpGs with cg10501210, FHL2 and ASPA excluded ±4.72 ±5.43  6.86 76.64 % 

Combined (saliva and buccal swabs) Model 1 9 CpGs ±3.31 ±4.57  6.06 74.38 % 
Model 2 8 CpGs with ASPA excluded ±3.66 ±4.75  6.20 74.99 % 
Model 3 8 CpGs with FHL2 excluded ±3.67 ±4.78  6.32 74.36 % 
Model 4 8 CpGs with cg10501210 excluded ±3.78 ±5.05  6.52 77.72 % 
Model 5 7 CpGs with cg10501210 and FHL2 excluded ±4.18 ±5.43  6.96 77.28 % 
Model 6 7 CpGs with cg10501210 and ASPA excluded ±3.77 ±4.93  6.39 80.96 % 
Model 7 7 CpGs with FHL2 and ASPA excluded ±3.54 ±4.79  6.23 76.08 % 
Model 8 6 CpGs with cg10501210, FHL2 and ASPA excluded ±5.23 ±5.93  7.54 74.06 %  

Fig. 4. Predicted versus chronological age for 
the final age prediction model for saliva and 
buccal cells for A) the training set composed of 
184 individuals from 21–86 years old (N = 91 
saliva and N = 93 buccal swabs) and for B) the 
testing set composed of 184 samples from 
21–86 years old (N = 93 saliva and N = 91 
buccal swabs). Predictions were performed 
under multivariate quantile regression using 
seven markers: cg10501210, LHFPL4, ELOVL2, 
PDE4C, HOXC4, OTUD7A and EDARADD. The 
black diagonal line represents the 0.5 quantile 
and the discontinuous dark red lines the corre-
sponding 0.1 and 0.9 quantiles. The gray line 
represents perfect correlation. The data repre-
sent the k-fold cross-validation.   
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and buccal cells [22–25]. Cellular composition of saliva and buccal swab 
samples has been shown to be different, with saliva composed of a 
majority of leukocytes and buccal swab samples of epithelial cells [31]. 
However, it has also been observed in previous studies that cellular 
proportions can vary greatly between individuals, with the saliva sam-
ples containing a variable quantity of leukocytes in the range 16–95 %, 
and buccal swab samples between 5 %–65 % [22,48]. Taking this into 
consideration, an initial step of the present study was to develop a 
prediction model in order to infer the tissue of origin. 

The selected tissue prediction markers have not been previously re-
ported. Each marker was selected considering differences between pairs 
of tissues: saliva versus buccal cells (HUNK), blood versus buccal cells 
(RUNX1) and blood versus saliva (RIN2). From these three candidate 
markers, RIN2 showed no variation in the DNA methylation patterns for 
the tissues of interest (saliva and buccal swabs) and therefore, was dis-
carded from subsequent analyses. In contrast, differences were distinct 
for RUNX1 and particularly HUNK (Fig. 2), with this pair showing 
opposite trends in DNA methylation levels (average DNA methylation: 
0.576 for saliva versus 0.199 for buccal cells in HUNK, and 0.297 for 
saliva versus 0.670 for buccal cells in RUNX1). Likely due to the possible 
variations in the composition of the tissues collected (higher percentages 
of leukocytes or epithelial cells) [22], in some samples, differences were 
also observed within the same tissue, for example RUNX1 gave differ-
ences up to 0.34 between some saliva samples. Additional cell-specific 
markers such as CD6, SERPINB5 [22] and PTPN7 [25] have been re-
ported in other studies. The selection of these different markers could be 
due to screens made of alternative datasets. For the selection of CD6 and 
SERPINB5, Eipel et. al used datasets GSE50586 [35] and GSE39981 
[49], the former with data from buccal swab samples and the latter from 
blood samples. Using these data in combination, they selected CpGs that 
showed differences according to the tissue of origin. It should be noted 
that in our case we only used GSE50586 to evaluate whether 
tissue-specific markers related to buccal cells were correlated with age. 
On the other hand, the selection of PTPN7 came from the Hong et al. 
study evaluating DNA methylation differences between blood and 
buccal cells. In our case, we selected a dataset containing samples of 
different tissues for each individual [34], trying to limit the possible 
differences between individuals related to the varied cellular pro-
portions in saliva and buccal swab samples. 

HUNK (hormonally up-regulated Neu-associated kinase) is a gene 
predicted to be involved in intracellular signal transduction and protein 
phosphorylation, while the protein encoded by RUNX1 (RUNX family 
transcription factor 1) is involved in the development of normal hema-
topoiesis. Once both genes were selected as candidate markers for the 
inference of the tissue-of-origin, logistic regression was an informative 
system to explore the most accurate combination of markers, i.e., model 
1 (HUNK and RUNK1), model 2 (HUNK only) and model 3 (RUNX1 
only). The main difference between double CpG-sites and each of the 
single CpG-site models was the detected imbalance between the sensi-
tivity and specificity. While the 2-CpG-site model had a higher sensi-
tivity than specificity (0.96 versus 0.82, respectively), the opposite was 
observed for the single-site models (0.78 versus 0.96 for model 2, and 
0.81 versus 0.9 for model 3). Selection of the most accurate tissue pre-
diction model was subsequently based on the additional metric of cor-
rect classification rate, with model 1 giving the best predictive 
performance of 88.59. Nevertheless, classifying these types of samples is 
complicated by the wide range of cellular proportions discussed above, 
as well as the admixed nature of some forensic specimens, e.g., cigarette 
butts. Therefore, for the second stage of the reported study, the gener-
ation of an age prediction model for oral cavity fluids which covered 
both saliva and buccal cells, was considered a better strategy than the 
development of different models for independent tissues. Even so, in-
dependent age prediction models for saliva and buccal cells were 
explored. Although the saliva-specific model showed the most accurate 
prediction (average MAE: ± 3.55), we decided to focus on the combined 
model since it will cover the maximum cell proportion variability in 

most forensic scenarios covering these samples. 
To identify the most accurate age prediction model amongst nine 

saliva/buccal cell age correlated CpGs, different combinations of CpG 
sites were explored under multivariate quantile regression analysis 
testing up to eight different combined models (Table 4). Different age 
prediction models have been published based on different statistical 
tools, including linear regression [19,23–25,36,46,50], quadratic 
regression [28], machine learning [46] and quantile regression [20]. 
Although linear regression is the most commonly applied statistical 
analysis for age prediction, in this study quantile regression was 
selected, as its main advantage is the ability to provide age-specific 
prediction intervals, in addition to the predicted age. 

From the CpG combinations tested, the selection of the most accurate 
age prediction model 7 was based on the best balance between error and 
the correct classification rate, with an MAE of ± 3.54, RMSE: 6.23 and % 
CP±PI: 76.08 %. Model 7 comprised CpG sites cg10501210, LHFPL4, 
ELOVL2, PDE4C, HOXC4, OTUD7A and EDARADD, and discarding FHL2 
and ASPA. Their contribution to the tested models is insufficient to 
improve predictive performance. This was not unexpected given the low 
age-correlations displayed (0.198 and − 0.332, respectively) plus high 
levels of tissue dispersion (SD= 0.145 and 0.162, respectively). 

Previous age predictors targeting the oral cavity have been devel-
oped as tissue-independent models, obtaining prediction errors close to 
± 5 years; including, Bocklandt et. al [9], Eipel et. al [22] and 
Schwender et. al [24] with reported MAEs of ± 5.2 (saliva), ± 4.3 years 
(buccal cells) and ± 5.11 years (buccal cells), respectively. Common to 
all three studies is the use of just three CpG sites compared to the seven 
of the present study, which could explain the higher prediction errors 
observed. Additional tissue-independent models presenting prediction 
errors similar to the present study such as Hong et. al [25], Jung et. al 
[23] and Wozniak et. al [50] with MAEs of ± 3.13 (saliva), ± 3.55 years 
(buccal cells) and ± 2.5 years (buccal cells), respectively, were based on 
5–7 CpG sites. While the models presented by Hong et al. and Wozniak 
et al. are uniquely focused on saliva and buccal swab samples, respec-
tively, the combined model developed by our study covers both tissues, 
being more reliable in forensic scenarios where a mixture of saliva and 
buccal cells is under study, such as cigarette butts. A similar strategy to 
the present study was developed by Jung et al. [23], building a 5-CpG 
tissue-combined age prediction model, including saliva, buccal swabs 
and blood samples. The prediction error obtained was MAE: ± 3.55, 
practically identical to the present study. Considering all these results 
and the fact that models of other tissues also systematically present er-
rors close to ± 3 years, it is reasonable to conclude that the lowest error 
obtainable with current technologies has been reached. Independently 
of the tissues covered, the main improvement provided by the prediction 
model proposed in the present study in comparison to the previous ones 
is the underlying statistical method used – quantile regression – 
providing not only the predicted age but the age-specific prediction 
intervals as well. Since errors are usually narrower at younger samples 
rather than at older individuals, to provide a specific interval of ages 
could improve the accuracy of results. 

Considering the models discussed above, it is evident that certain 
markers appear recurrently in multiple age predictors for saliva and 
buccal swabs, namely ELOVL2, PDE4C, EDARADD and KLF14. Genes 
ELOVL2, PDE4C and EDARADD are present in our model but with 
different CpG positions (except cg09809672 in EDARADD, shared with 
Schwender’s [24] model). Comparing the markers in these four genes in 
the other studies shows that only the CpG of PDE4C is shared between 
Eipel’s [22] and Schwender’s [24] models. In KLF14, not used in our 
study, only cg14361627 is shared between Hong’s [25] and Jung’s [23] 
models. This CpG is in the list of 49 CpGs of the preselected markers 
(Supplementary Table S1) but did not meet the selection criteria for our 
model. Our marker selection was based on the GSE92767 dataset [25], 
the same dataset used for Hong’s marker selection but different markers 
were selected by each study using the same dataset. Different ap-
proaches were used for marker selection by Hong, with linear regression 
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and stepwise regression used to identify markers with an R2 greater than 
0.65 and a difference between maximum and minimum β-scores greater 
than 0.1. This compares to our use of Spearman’s correlation to select 
markers with a correlation greater than |0.8| and a difference between 
extreme age donors greater than |0.3|. The motivation to change the 
selection criteria for marker selection when assessing the GSE92767 
dataset was based on the lack of normality found for 15 % of the re-
siduals of the models (independent linear regression models for each 
CpG on the dataset). Therefore, a non-parametric method such as the 
Spearman coefficient was found to be more suitable for this analysis. 

Regarding markers included in our prediction model, cg10501210 
was reported as a marker related with aging in blood monocytes [51], 
showing a similar DNA methylation trend when analyzing saliva and 
buccal cells samples in our study. Although less evident than for FHL2 
and ASPA, the correlation with age and tissue dispersion detected for 
this marker (rs = − 0.313 and SD= 0.103) suggested exclusion form the 
final age prediction model. However, its removal from the final model 
has the greatest effect, as shown in the robustness analysis. The gene 
LHFPL4 (LHFPL tetraspan subfamily member 4), is a member of the 
superfamily of tetraspan transmembrane protein encoding genes. Mu-
tations in one LHFP-like gene result in deafness in humans and mice, and 
a second LHFP-like gene is fused to a high-mobility group gene in a 
translocation-associated lipoma. To the best of our knowledge, our study 
detected this marker to be correlated with age in saliva and buccal cells 
for the first time. The cg11084334 CpG analyzed in LHFPL4 presented 
amongst the highest age correlation values (rs = 0.805), as well as 
showing minimal dispersion between tissues (SD= 0.039). Correlation 
with age in blood has been observed in other CpG positions of LHFPL4 
(cg24866418 and cg12841266) [52]. The gene ELOVL2 (ELOVL fatty 
acid elongase 2) has been widely reported as a key age correlated marker 
[12,53,54] and has been incorporated in most of the age prediction 
models developed so far. This marker has been reported to correlate 
with age in multiple forensic tissues such as blood [19,20,23,28,50], 
saliva [23], buccal cells [23,24,50], teeth [28] and bones [50]. More 
specifically, it is noteworthy that the cg16867657 CpG analyzed in our 
study has been reported in other studies to be correlated with age either 
in blood [19,20,28], buccal cells [24] or teeth [28]. Gene PDE4C 
(phosphodiesterase 4 C) had the strongest correlation with age in saliva 
and buccal cells was (rs = 0.806), and has been published in age pre-
diction models for different tissues including saliva, buccal cells and 
blood [18,20,22,28,37]. In gene HOXC4 (homeobox C4), the 
cg18473521 CpG analyzed in this work has shown correlation with age 
in blood samples [55]. Gene OTUD7A (OTU deubiquitinase 7A), which 
encodes a protein acting on TNF receptor associated factor 6 (TRAF6) to 
control nuclear factor kappa B expression, is used for the first time in an 
age prediction model in our study. Although OTUD7A has previously 
shown correlation with age in blood [20] and saliva [25], it was not 
included in published any model. Finally, EDARADD has been reported 
to show age correlated CpG positions, with cg09809672 used in this 
study also reported in previous blood, saliva, buccal cell and bone 
models [9,20,24,28,50]. 

Our studies showed the age predictive performance of the saliva and 
buccal cell model was not improved by adding tissue-of-origin infor-
mation. A similar analysis was performed by Eipel et. al for buccal swab 
samples [22]. In Eipel’s study, combined age and cell-type prediction 
models reported age prediction errors with this model (training MAD 
± 4.66; testing MAD ± 5.09) that improved on age correlated markers 
only (training MAD: ± 4.3; testing MAD: ± 7.03). This suggests that 
introducing the cellular composition as a co-variable has more effect 
than the tissue of origin. Therefore, assessment of the cellular pro-
portions may be the most effective way to introduce tissue-of-origin 
information as a co-variable in an age prediction model – certainly for 
the buccal cavity. 

Finally, considering that in forensic DNA analysis degraded and low- 
level DNA concentrations are commonly encountered, our evaluations 
of the robustness of the model with missing data and amounts of input 

DNA for bisulfite conversion were particularly relevant. 
Similar predictive performance was obtained for all step-wise ex-

clusions of markers with the exception of cg10501210 (MAE: ± 5.23, 
and %CP±PI=74.06 %). The absence of this CpG produced the greatest 
increase in error. However, it should be noted that if missing data are 
present, incorrect DNA methylation measurement could be also occur-
ring at the detected methylated and unmethylated peaks. In this case, to 
run duplicates or even triplicates of the sample is recommended in order 
to double-check the methylation values obtained. 

An important factor for forensic sensitivity of methylation tests is the 
bisulfite conversion step, representing an aggressive reduction of the 
input DNA. Since use of 100 ng is not common practice in casework, the 
serial dilutions that were evaluated up to 10 ng showed no standard 
deviations greater than 0.1. For 1 ng input, some markers showed de-
viation values above the established limit for 3 of 4 samples. Thus, it is a 
viable strategy to start with a minimum of 10 ng of genomic DNA. Very 
similar results have been obtained by Aliferi et.al [21] and Wózniak et.al 
[50], indicating analyses with less than 10 ng of DNA caused significant 
variations in DNA methylation values. When comparing these studies to 
data reported here, it is worth noting that different technologies have 
been used, massive parallel sequencing versus SNaPshot, suggesting the 
limitation is not the detection methodology, but the DNA degradation or 
loss during bisulfite conversion process itself, or the stochastic vari-
ability of the analyzed molecules. 
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