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A B S T R A C T

Dry-cured ham is a traditional Mediterranean meat product consumed throughout the world. This product
is very variable in terms of composition and quality. Consumer’s acceptability of this product is influenced
by different factors, in particular, visual intramuscular fat and its distribution across the slice, also known as
marbling. On-line marbling assessment is of great interest for the industry for classification purposes. However,
until now this assessment has been traditionally carried out by panels of experts and this methodology cannot
be implement in industry. We propose a complete automatic system to predict marbling degree of dry-cured
ham slices, which combines: (1) the color texture features of regions of interest (ROIs) extracted automatically
for each muscle; and (2) machine learning models to predict the marbling. For the ROIs extraction algorithm
more than the 90% of pixels of the ROI fall into the true muscle. The proposed system achieves a correlation
of 0.92 using the support vector regression and a set of color texture features including statistics of each
channel of RGB color image and Haralick’s coefficients of its gray-level version. The mean absolute error was
0.46, which is lower than the standard desviation (0.5) of the marbling scores evaluated by experts. This high
accuracy in the marbling prediction for sliced dry-cured ham would allow to deploy its application in the
dry-cured ham industry.
1. Introduction

Dry-cured ham is a traditional meat product of many Mediterranean
countries that is widely consumed throughout the world, being its
flavor and texture characteristics highly appreciated by consumers.
There are many factors affecting the final characteristics of dry-cured
ham, such as processing conditions and raw material characteristics,
i.e. fat content (Coll-Brasas et al., 2021). In sliced dry-cured ham, visual
intramuscular fat, subcutaneous fat thickness and color are the param-
eters most used by the consumers for the product evaluation, therefore
affecting consumer’s acceptability and purchase decision (Lorido et al.,
2019). Although several non-invasive technologies can be used to
categorize entire hams according to its fat content (de Prados et al.,
2015), these technologies cannot be used to predict intramuscular fat
(IMF) in sliced products because of its variability between the muscles
of a ham.

Eating quality in meat has been associated to the fat distribution
rather than to the total IMF. Distribution of IMF is usually known
as marbling, because of its appearance similar to marble (Cernadas
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et al., 2002). One of the most important challenges for producers is
the heterogeneity of the marbling in slices, that can vary significantly
among ham pieces and even within the same piece. Classification of
slices of dry-cured ham according to the marbling degree is of special
interest for the food industry. Producers would be able to segment the
market, offering products tailored to consumer’s needs and increasing
the value of their production.

Marbling ranking in different meats and meat products has been
performed by panels of trained experts or relying on standards consist-
ing of pictures depicting a scale of marbling (from 0.0 to 10.0), as it
is the case for the National Pork Producers standards (Moines, 1999).
In the case of dry-cured ham, a marbling ranking has been developed
but it is not still published. However, marbling evaluations by experts
are costly and are not feasible for the ham industry. Computer image
analysis might be a solution because it is a fast and non-destructive
technology, and it is a replicable and repetitive method that has been
successfully applied to the assessment of multiple food characteristics:
fish (Dutta et al., 2016), cheese (Dias et al., 2021) or bread (Srivastava
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et al., 2015). The scientific literature includes several studies that apply
computer image analysis to determine IMF and marbling in different
meat products. Combining magnetic resonance imaging (MRI) and
computer vision techniques, the works (Ávila et al., 2019; Cernadas
et al., 2005) predicted marbling in the biceps muscle of dry-cured hams
and loins, but MRI is a technology that is expensive to install in meat
industries.

For the segmentation of IMF in meat and meat products, several
techniques have been applied: K-means clustering in beef Longis-
simus dorsi muscle (Jackman et al., 2009), automatic thresholding (Liu
et al., 2018) and the Otsu method (Uttaro et al., 2021) in pork
loin, multi-scale line detection (Cernadas et al., 2002), gradient-based
techniques (Santos-Garcés et al., 2014) and convolutional neural net-
works (Muñoz et al., 2019) for dry cured ham. In general, these
segmentation algorithms perform quite well, high correlation values
or low classification errors are obtained, depending on the aim of
the study. For classification of marbling, the following techniques
have been applied: chemical pre-treatments and line detection al-
gorithms (Faucitano et al., 2004), line detection algorithm (Huang
et al., 2013; Liu et al., 2012) in pork meat, neural networks (Muñoz
et al., 2015) and decision trees in hyperspectral images of dry cured
ham (Velásquez et al., 2017). In general, the results of marbling
classification are quite satisfactory with low prediction errors and at
least 90% of the samples correctly classified. However, the evaluation
of IMF and marbling in dry-cured ham slices is still a challenge. A wide
range of variation in the color of lean and fat tissues can be observed
in slices across hams, which poses a challenge for image segmentation
and the evaluation of marbling. These differences are explained by the
different levels of drying of the hams, and the presence of precipitates
such as phosphates of tyrosine crystals, with a white color similar to
that of the fat.

This paper proposes a prototype to automatically predict marbling
of the principal muscles from a ham slice using image segmentation,
texture analysis and regression models. Specifically, we define an al-
gorithm that automatically extracts squared regions inside the main
muscles. Then, color texture features are computed for each region,
which are the inputs to a regression model that predicts the marbling
score for each muscle. The paper is organized as follows. Section 2
describes the materials used to obtain the ham slice, to develop the
sensorial analysis on the ham muscles and to annotate the contour
of ham muscles. Section 3 describes the algorithm used to extract
automatically the square ROIs representing each ham muscle, and
briefly explains the color texture features extraction techniques and
the regression models. Section 4 describes the experimental setup and
statistical evaluation measures used. Section 5 presents and discusses
the results. Finally, Section 6 summarizes the main conclusions and
proposals of future work.

2. Materials

This section describes the material used to obtain the data in this
research: the system used to capture images of ham slice (Section 2.1),
the traditional procedures to determine the marbling of a ham muscle
(Section 2.2), and the process to draw the outline of each muscle on
the ham slice (Section 2.3).

2.1. Image acquisition

High quality images were acquired with a calibrated digital camera
Canon EOS 50D (15.1 megapixels) and an objective Canon EF-S 18–
200 mm f/3,5–5,6 IS. The camera was mounted in a black closet (1.06
× 1.06 × 2.50 m3) with 8 equidistant halogen lights Solux Q50MR16
CG/47/36◦12 V/50 W/4700 K (Eiko Ltd., Shawnee, Kansas, U.S.A.) to
ensure a correct lighting. White balance was carried out with a white
card (Lastolite). The camera was connected to a computer to store the
images. Slices were placed 30 cm below the camera on a uniform black
2

Fig. 1. Scheme of the image acquisition system.

Table 1
Number of images, minimum, maximum, average and standard desviation of the
marbling values for the different ham muscles used in this experimentation.

Muscle #images Min. Max. Avg. Dev.

Biceps femoris 337 1 7 3.1 1.0
Semimembranosus 322 0.5 6 2.0 1.0
Semitendinosus 55 4 9 6.2 1.2

surface. Photos of both sides of the dry-cured ham slices were taken. All
the images were taken during the same session. The white balance of
the images was carried out with Capture One PRO 5.0 software (Phase
One A/S Inc., Frederiksberg, Denmark) and RGB images of 667 × 1000
pixels with 16 bits color were obtained, with one pixel corresponding
to 0.3968 mm2. For the evaluation of marbling, the computer screen was
calibrated so that the colors of the images were as close as possible to
the colors of the samples (NEC Multisync LCD 2690 WUXI2). Fig. 1
shows a scheme of the image acquisition system used.

2.2. Marbling evaluation

Sensory analysis (marbling evaluation) of the samples was carried
out by six trained panelists (ISO 8586-2: 2012) and consisted of a
visual assessment of the marbling of the most representative muscles:
Biceps femoris (BF), Semimembranosus (SM) and Semitendinosus (ST) of
a dry-cured ham (Bermúdez et al., 2014). Marbling was scored by
consensus (in our case three panelists) by means of scoring scale from
0.5 (minimum marbling) to 10 (maximum marbling) at intervals of
0.5. When scoring marbling, the panelists considered the total amount
and the distribution of the fat streaks. Marbling evaluation was done
in triplicate by the panelists. The standard deviation of the panelists
among trials was determined at 0.5 points.

A collection of commercial dry-cured hams were obtained from
different ham producers with crosses from different pig breeds (Large
White, Landrace, Duroc and Iberian) and having a wide range of
marbling. A 2 cm thick slice containing muscles BF, SM and ST
was obtained at 10 cm from the aitch bone in the distal direction
(at the widest part of the ham) and packed into plastic bags of
polyamide/polyethylene (oxygen permeability of 50 cm3/m2/24 h at
23 ◦C and water permeability of 2.6 g/m2/24 h at 23 ◦C and 85%
RH, Sacoliva© S.L., Spain). The image dataset is composed of 714
images obtained in the following way: photos were obtained from 180
commercial dry-cured hams, 2 slices/ham (at different points in the
ham, obtaining slices quite different one from another) and 2 muscles
for each slice, giving a total of 180 hams × 2 slices × 2 muscles = 720
photos. Six of these photos were not included in the evaluation due to
defects on the surface such as cuts and phosphate crystals. For each
image, it was only provided the measure of marbling for one muscle
with values between 0.5 and 9 with the distribution shown in Table 1.
Fig. 2 shows examples of different marbling scores for biceps muscle.
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Fig. 2. Examples of marbling scores for biceps muscle: (a) slice 8372 with score 1; (b) slice 8485 with score 1; (c) slice 8274 with score 3; and (d) slice 8424 with score 6.5.
Fig. 3. Examples of the contours of biceps (left panel) and semimembranosus (right panel) muscles overlapped to images of ham slice.
Fig. 4. Stages of the method to predict the marbling from dry-cured ham slices.
2.3. Muscle annotation

To develop the first experiment, the experts delineated the contour
of the muscle for which the marbling was estimated by sensorial
analysis. To draw the contours for all images, they used a home-made
software, as it can be seen in Fig. 3.

3. Methods

The system proposed to predict the marbling from dry-cured ham
slices, shown in Fig. 4, encloses the following stages: (1) the image
acquisition system already described in Section 2.1; (2) the automatic
extraction of the ROIs in the ham slice; (3) the computation of features
from the ROI extracted; and (4) the regression model to predict the
marbling score of each muscle in the ham slice. The Sections 3.1, 3.2
and 3.3 describe the stages 2, 3 and 4, respectively.

3.1. Automatic extraction of ROIs

The ham slice images are processed to automatically extract square
ROIs from the biceps femoris, semimembranosus and semitendinosus
muscles. These extracted ROIs will be used in the third experiment. In
3

this process, we take into account the anatomical information about the
distribution of the muscles and subcutaneal/intermuscular fat within
the ham. As it can be seen in Fig. 3, some slices present a hole in the
slice (left panel), due to the slice is cut by the ham bone, and others
not (right panel). As well, the biceps muscle can be in the right or left
side of the image. The algorithm to extract the square ROIs encloses
the following steps: (1) extract the ham slice from the image; (2) check
if the slice has the bone hole; (3) if there is not a hole in the slice, find
the biggest intermuscular fat region in the slice; (4) in both previous
cases (step 2 or 3), a reference position is calculated to know the slice
orientation, which allows to know if the muscles are upper/bottom or if
the BF muscle is on left/right side of the slice; and (5) extract a square
region for each muscle. In our case, we use a ROI with length 𝑠 = 64
pixels.

To extract the ham slice, the original RGB image 𝐼(𝑥, 𝑦), with 𝑥 =
1,… , 𝑁 , and 𝑦 = 1,… ,𝑀 , of dimensions 𝑁 ×𝑀 , is transformed to the
Lab color space, because it is more robust to illuminance variance than
the RGB space (Cernadas et al., 2017). Let 𝐼𝑏(𝑥, 𝑦) be the 𝑏 channel of
the ham slice after smoothing with a mask (we use a mask of 5 pixels) in
order to attenuate the small fat features and noise (column b in Fig. 5).
Let ℎ𝑏 be the histogram of image 𝐼𝑏(𝑥, 𝑦). The maximum value 𝐻𝑏 of
ℎ is chosen to calculate the area of ham slice. The 𝐼 (𝑥, 𝑦) image is
𝑏 𝑏
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Fig. 5. Examples of the extraction of square ROIs from the ham slice for all muscles: (a) original images; (b) channel 𝑏 of Lab color space after smoothing; (c) binary mask with
the ham slice and bone hole and (d) the extracted ROIs for each muscle, white for biceps, yellow for semimembranosus and green for semitendinosus.
Fig. 6. Extraction of the square ROIs of each muscle. Upper left panel: scheme of a ham slice. Upper right panel: row 540 of the transformed version 𝐼𝑎 of the ham slice no.
8607. Lower panel: the ham slice with the extracted ROIs overlapped: biceps (white), semimembranosus (yellow) and semitendinosus (green).
thresholded to calculate the binary image 𝐵(𝑥, 𝑦) using the following
expression:

𝐵(𝑥, 𝑦) =
{

0 |𝐼𝑏(𝑥, 𝑦) −𝐻𝑏| ≤ 5
255 otherwise (1)

After thresholding, we apply morphological operators to the binary
image 𝐵 in order to fill small holes. First, the biggest region of 𝐵 is
extracted and it is associated with the contour of ham slice. Next, the
algorithm searches for a large black region inside this contour. If this
4

region is found, it is associated to the bone hole. The contours of ham
slice and bone hole are used to create a binary mask image 𝐵𝑚(𝑥, 𝑦) = 0
(black color in column c of Fig. 5) when (𝑥, 𝑦) is inside the contour and
outside the bone, and 𝐵𝑚(𝑥, 𝑦) = 1 (white color) when (𝑥, 𝑦) is outside
the contour or inside the bone. This process is shown in the columns
a, b and c of Fig. 5. The process to extract the ROI for each muscle,
denoted as 𝐼𝐵𝐹 , 𝐼𝑆𝑀 and 𝐼𝑆𝑇 for biceps femoris, semimembranosus and
semitendinosus, respectively, is drawn in Fig. 6 and summarized by



Expert Systems With Applications 206 (2022) 117765E. Cernadas et al.
Algorithm 1: Automatic extraction of square ROI images for
each muscle from a ham slice.
1 Algorithm: [𝐼𝐵𝐹 , 𝐼𝑆𝑀 , 𝐼𝑆𝑇 ]=ExtractSquaredROI(𝐼, 𝑠)

Data: 𝐼 : original RGB image of ham slice; 𝑠: size of ROI
Result: 𝐼𝐵𝐹 , 𝐼𝑆𝑀 , 𝐼𝑆𝑇 : square ROI images for biceps,

semimembranosus and semitendinosus muscles
2 𝐼𝑏 ← 𝑏 channel of Lab image smoothed by box filter
3 ℎ𝑏 ← histogram of 𝐼𝑏
4 𝐻𝑏 ← maximum of ℎ𝑏
5 𝐵 ← binary image using Eq. (1) and morphological processing
6 𝐵𝑚 ← image mask with ham slice outline and hole if exist
7 𝑅𝑠 ← (𝑥𝑠, 𝑦𝑠, 𝑤𝑅𝑠, ℎ𝑅𝑠) rectangle enclosing ham slice
8 𝐼𝑎 ← 𝑎 channel of Lab image smoothed and masked by 𝐵𝑚
9 𝜇𝑎 ← average value of 𝐼𝑎 inside 𝐵𝑚; offset←10
10 if existsHole(𝐼𝑏) then
11 𝑅ℎ ← (𝑥ℎ, 𝑦ℎ, 𝑤𝑅ℎ, ℎ𝑅ℎ) rectangle enclosing hole
12 𝑑𝑢𝑝𝑝𝑒𝑟 ← 𝑦𝑠 − 𝑦ℎ; 𝑑𝑙𝑜𝑤𝑒𝑟 ← 𝑦𝑠 + ℎ𝑅𝑠 − (𝑦ℎ + ℎ𝑅ℎ)
13 if 𝑑𝑢𝑝𝑝𝑒𝑟 > 𝑑𝑙𝑜𝑤𝑒𝑟 then
14 𝑦𝑐 ← 𝑦𝑠 − (𝑦𝑠 − 𝑦ℎ)∕4
15 𝑦𝑒 ← 𝑦ℎ − 𝑠∕2 − offset
16 else
17 𝑦𝑐 ← 𝑦𝑠 + ℎ𝑅𝑠 − 𝑠 − (𝑦𝑠 + ℎ𝑅𝑠 − 𝑦ℎ − ℎ𝑅ℎ)∕4
18 𝑦𝑒 ← 𝑦ℎ + ℎ𝑅ℎ + 𝑠∕2 + offset
19 end
20 𝑥𝑐 ← middlePointX(row(𝑦𝑐 + 𝑠∕2))
21 𝐼𝑆𝑇 ← extST(𝑥𝑐 − 𝑠∕2,𝑦𝑐,𝑠)
22 [𝐼𝐵𝐹 , 𝐼𝑆𝑀 ] ← extBSM(𝑦𝑒)
23 else
24 𝑇2 ← second Otsu’s threshold of 𝐼𝑎
25 (𝑥𝑖𝑛, 𝑦𝑖𝑛) ← centroid of the largest inner region inside 𝐼𝑎

after thresholding using 𝑇2
26 𝐼𝑆𝑇 ← extSTC(𝑥𝑖𝑛, 𝑦𝑖𝑛, 𝑠)
27 [𝐼𝐵𝐹 , 𝐼𝑆𝑀 ] ← extBSM(𝑦𝑖𝑛)
28 end

algorithm 1. Let 𝑅𝑠 be the rectangle enclosing the ham slice, which is
defined by the top left vertex (𝑥𝑠, 𝑦𝑠) and by its width (𝑤𝑅𝑠) and height
(ℎ𝑅𝑠). Let 𝐼𝑎 be the 𝑎 channel of Lab image of the ham slice masked
(multiplied) by 𝐵𝑚. Two cases can be considered:

(a) When the ham slice has visible bone hole, the algorithm uses
as reference its enclosing rectangle 𝑅ℎ, with initial coordinates
(𝑥ℎ, 𝑦ℎ) and width and height 𝑤𝑅ℎ and ℎ𝑅ℎ, respectively.

(b) When the ham slice has not a visible bone hole, the algorithm
searches for the largest intermuscular fat region and calculates
its centroid. In order to discard the background from the image
𝐼𝑎, we selected a threshold applying the Otsu’s method (Otsu,
1979) with three thresholds {𝑇𝑖}3𝑖=1, that correspond to different
types of materials in the image (background, subcutaneal fat and
muscle). Experimentally, we checked that threshold 𝑇2 ensures
an accurate segmentation of background from the remaining
materials. In the binary image generated by thresholding 𝐼𝑎
with 𝑇2, the inner biggest region is selected as representing the
intermuscular fat region, whose centroid is (𝑥𝑖𝑛, 𝑦𝑖𝑛).

These reference points (bone hole or centroid of intermuscular
fat) allow to select the height where the different muscles should be
extracted. In order to extract the BF and SM muscles, the algorithm
finds out whether the biceps is on the left or right side of the ham slice.
The position in the horizontal axis for extracting the BF and SM muscles
is determined analyzing a specific row in the image 𝐼𝑎. This row is
smoothed in order to attenuate the random noise and it is denoted as
𝚛𝚘𝚠(𝑦 ) = 𝐼 (𝑥, 𝑦 ), 𝑥 = 1,… ,𝑀 (see upper left panel of Fig. 6). In
5

𝑏 𝑎 𝑏
order to locate the BF muscle, we estimate the pixels representing the
subcutaneal fat (close to the biceps muscle) along the 𝚛𝚘𝚠(𝑦𝑏) counting
the number of values. Specifically, the procedure is as follows:

1. Let 𝑘1 be the first value of 𝑥 where 𝐼𝑎(𝑥, 𝑦𝑏) > 0 coming from
left to right (see the upper right panel of Fig. 6). Let 𝑤𝑥1 be
the number of values of 𝑥 where 𝐼𝑎(𝑥, 𝑦𝑏) < 𝜇𝑎, for 𝑥 = 𝑘1, 𝑘1 +
1,… ,𝑀 (i.e. going from left to right side), where 𝜇𝑎 is the
average value of 𝐼𝑎 inside 𝐵𝑚.

2. Let 𝑘2 be the first value of 𝑥 where 𝐼𝑎(𝑥, 𝑦𝑏) > 0 coming from
right to left, and 𝑤𝑥2 the number of values that 𝐼𝑎(𝑥, 𝑦𝑏) < 𝜇𝑎,
for 𝑥 = 𝑘2, 𝑘2 − 1,… , 2, 1 (i.e. going from right to left side).

If 𝑤𝑥1 > 𝑤𝑥2 the BF muscle is on the left side of ham slice.
Otherwise, it is on the right side. This process is performed by the
extBSM(y) function in the algorithm 1, where 𝑦 represents the row
to be analyzed in the image. So the square ROIs for muscles BF and
SM, of size 𝑠, are extracted at positions (𝑘1 + 𝑤𝑥1 + 𝑠∕2 + offset, 𝑦)
and (𝑘2 − 𝑤𝑥2 − 𝑠∕2 − offset, 𝑦) (we use an offset of 10 pixels in order
to avoid defects in the contour of ham slice). The regions extracted
for each muscle are shown overlapped to the ham slice in the column
d of Fig. 5. When there is bone hole, the 𝑦 coordinate for extracting
muscles are determined calculating the distances 𝑑𝑢𝑝𝑝𝑒𝑟 = 𝑦𝑠 − 𝑦ℎ and
𝑑𝑙𝑜𝑤𝑒𝑟 = 𝑦𝑠 + ℎ𝑅𝑠 − (𝑦ℎ + ℎ𝑅ℎ). If 𝑑𝑢𝑝𝑝𝑒𝑟 > 𝑑𝑙𝑜𝑤𝑒𝑟, the muscles are above
the bone hole, otherwise the muscles are below the bone hole. The
middlePointX(y) function returns the middle point of the ham slice
for the image row 𝑦. The extST(x,y,s) function extracts a square
ROI of size 𝑠 for the ST muscle from the original RGB image in the
point (𝑥, 𝑦) for ham slices with visible hole. The extSTC(x,y,s)
function extracts a square ROI of the ST muscle for ham slices without
visible hole. Let 𝑥𝑐1 = middlePointX(row(𝑦𝑖𝑛 + 𝑠∕2)) and 𝑥𝑐2 =
middlePointX(row(𝑦𝑖𝑛 − 𝑠∕2)) be two middle points in the ham
slice in the horizontal axis near the centroid of intermuscular fat. Let
𝑟1 and 𝑟2 be two ROIs of size 𝑠, extracted from the image 𝐼𝑎 in the points
(𝑥𝑐1−𝑠∕2, 𝑦𝑠−(𝑦𝑠−𝑦𝑖𝑛)∕6) and (𝑥𝑐2−𝑠∕2, 𝑦𝑠+𝑤𝑅𝑠−𝑠−(𝑦𝑠+𝑤𝑅𝑠−𝑦𝑖𝑛)∕3)
respectively. To select which ROI corresponds to the ST muscle, the
mean value of both ROIs, 𝜇𝑟1 and 𝜇𝑟2, are calculated and the ST muscle
is the ROI with the highest mean value, which corresponds with the
ROI containing more fat.

3.2. Color texture features

Texture analysis has been employed in previous works to predict dif-
ferent qualities or attributes of meat products from MRI images (Ávila
et al., 2019; Cernadas et al., 2005), which are gray level images.
Nevertheless, it is known that the color is also a very important char-
acteristic in other computer vision applications (Cernadas et al., 2017;
González-Rufino et al., 2013). Color texture analysis can be tackled
from different paradigms: simple color features, gray level texture
features and integrative color texture analysis. A recent work (Cernadas
et al., 2017) concluded that parallel approaches, that concatenate the
two former, are superior than analyzing directly the color texture with
integrative approaches.

There are many methods to extract only the color in a strict
sense (Cernadas et al., 2017). In this work we use two color spaces, RGB
and Lab, where the chromatic channels are a and b. We use first-order
features of three types, each with 2 feature vectors:

1. Only mean value for each chromatic channel, denoted as CM,
that stands for ‘‘color mean’’: (1) CMRGB, 3 features: mean color
of the channels R, G, and B of the muscle; (2) CMab, 2 features:
mean color of the channels a and b of the Lab image. In both
cases, the mean values are only calculated inside the muscle

regions.
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2. Mean and variance for each chromatic channel, CMV, or color
mean and variance: (1) CMVRGB, 6 features: mean and variance
of the channels R, G and B of the RGB image. (2) CMVab, 4
features: mean and variance of the channels a and b of the Lab
image.

3. First order statistics, denoted as FOS, for each chromatic chan-
nel, that include mean, variance, skewness, kurtosis and entropy:
(1) FOSRGB, 15 features: 5 features × 3 color channels of the
RGB image. (2) FOSab, 10 features: 5 features × 2 color channels
of the Lab image.

The most popular gray level texture features belong to the families
f statistical, such as second-order features and local binary patterns
LBP), and frequencial, including wavelet and Gabor features. The gray
evel version of the original image is obtained following two alternative
pproaches: (1) converting a RGB image to gray level image; and (2)
sing the L channel of a Lab image.

Among the second-order statistics we selected the Haralick coeffi-
ients (Haralick et al., 1973), derived from the gray level coocurrence
atrix (GLCM). These coefficients describe the probability of finding

wo pixels with the same value at different scales, or distances, and
rientations, or angles. The parameters used normally are: (1) the ori-
ntations 0◦, 45◦, 90◦ and 135◦; and (2) three scales, with pixel distances
f 1, 2, and 3. For each scale, the GLCM matrix is averaged over all ori-
ntations, and the contrast, homogeneity, correlation and energy of the
atrix is computed. Two feature vectors were considered: (1) HarRGB,

that includes the four previous features for scales {1, 2, 3} calculated on
the gray version of the RGB image, with 4 × 3 = 12 features; and (2)
HarLab, which is similar to HarRGB but calculated on the L channel
of Lab image. When the input is an irregular region, the features
are computed only on pixels included in the region (González-Rufino
et al., 2013). The Haralick’s coefficients were computed using the
graycomatrix() function of the Matlab Image Processing Toolbox.1

The LBP operator is a state-of-art texture analysis approach pro-
posed by Ojala et al. (2002), which describes each pixel comparing
its value with the neighboring pixels. For each neighboring pixel, the
result will be set to one if its value is higher than the value of central
pixel, otherwise the result will be set to zero, developing a binary
code for each pixel. We use the uniform LBP, which considers the
binary patterns with only two transitions (from 0 to 1 and vice versa).
In a circularly symmetric neighbor set of 𝑃 pixels can occur 𝑃 + 1
uniform binary patterns. The number of ‘‘1’s’’ in the binary pattern is
the label of the pattern, while the nonuniform patterns are labeled by
𝑃 + 1. This process can be applied to different scales, as in the case
of coocurrence image. The histogram of the pattern labels accumulated
over the intensity image is employed as texture feature vector. The most
common values for these parameters are {(𝑃 ,𝑅) ∈ (8, 1), (12, 2), (16, 3)},
where 𝑃 is the number of neighbors and 𝑅 is the distance between
the central pixel and the neighbors. We construct the texture feature
vectors LBPRGB and LBPLab to be applied on the gray version on RGB
image and on the L channel of the Lab image, respectively. Both vectors
have 42 = (8 + 2) + (12 + 2) + (16 + 2) features, because the uniform LBP
are 𝑃 +2 features. We use the LBPMatlab2 implementation provided by
the LBP creators.

Discrete wavelet transform (DWT) representation is a theory for
multi-dimensional signal decomposition (Laine & Fan, 1993; Walker,
2008) which recursively apply filters to decompose the image into
low-pass and high-pass frequency bands. A compact representation for
texture analysis can be computed taking the mean and variance of the
energy distribution for the transformed coefficients in each sub-band
and decomposition level. We compute texture feature vectors calculat-
ing the mean and variance of the energy over 3 levels of decomposition

1 https://www.mathworks.com.
2 http://www.cse.oulu.fi/CMV/Downloads/LBPMatlab.
6

and create the feature vectors 𝐖𝑇 𝑖𝑗𝑘, where: (1) 𝑖 = {𝐻𝑎𝑎𝑟,𝐷𝑎𝑢𝑏} is
he type of filters to use, namely Haar (2 coefficients) or Daubechies
iltering with four coefficients; (2) 𝑗 = {𝑅𝐺𝐵,𝐿𝑎𝑏} is the gray level
ersion of the RGB image or the L channel of the Lab image; and (3)
= {𝐿𝐿,𝐴𝑙𝑙} represents if only the low–low decomposition sub-bands

re considered (6 = 2 × 3 features) or all the sub-bands (24 = 2 × 3 × 4
eatures). We used the functions wfilters() and dwt2() of the
atlab Wavelet Toolbox.

Gabor filters are sinusoidal waves modulated by a Gaussian en-
elope that can be used for texture classification (Randen & Husoy,
999). The filters are applied to the images varying their frequency and
rientation. Bianconi and Fernández (2007) analyzed the influence of
hese parameters for texture classification. After applying a set of digital
abor filters 𝐺𝑖𝑗 (𝑥, 𝑦) with 𝑖 ∈ {1,… , 𝑛𝐹 } and 𝑗 ∈ {1,… , 𝑛𝑂}, where 𝑛𝐹
nd 𝑛𝑂 are respectively the number of frequency and orientations, some
tatistical features are computed over each filtered image. We used
he gabor() and imgaborfilt() functions of the Matlab Image
rocessing Toolbox considering the wavelengths [3, 6, 9, 12] and orien-
ations [0, 30, 60, 90, 120, 150], recommended by Bianconi and Fernández

(2007). We compute the feature vectors GaborRGB and GaborLab,
both with 48 features, that include the mean and standard desviation
for each filter (𝑛𝐹 × 𝑛𝑂 = 6 × 4 = 24 filters) applied on the gray
level version of the RBG image or the L channel of the Lab image,
respectively.

3.3. Regression models

We selected for this experimentation several state-of-art regression
models of different families that provided good performances in the
comparative analysis (Fernández-Delgado et al., 2019). One of them is
implemented in the Octave3 scientific programming language, and the
remaining ones in the R4 statistical computing language. Most regres-
sors in our collection have tunable hyper-parameters, i.e., parameters
whose values must be specified previously to training, that often have
a strong influence on the regressor performance. In these cases, it is
a good practice to try several values for each hyper-parameter in a
trial-and-error procedure, and to select the value that provides the
best performance on a separate data collection. This method is called
‘‘grid search’’ tuning. The following is a list of these regressors, with
its tunable hyper-parameters and the list of values tried for each one
in the grid search. For the regressors programmed in R, these values
were provided by the getModelInfo() function of the caret R
package (Kuhn, 2016).

1. lm is the linear regression provided by the stats R pack-
age, which performs multivariate linear regression and has no
tunable hyper-parameter (Bates & Chambers, 1992).

2. svr: epsilon-support vector regression with radial basis function
kernel, using the LibSVM library (Chang & Lin, 2011) through
its Octave interface. The regularization hyper-parameter 𝐶 and
𝛾 = 1∕2𝜎2, where 𝜎 is the kernel spread, are tuned with values
{2𝑖}15−5 and {2𝑖}10−10, respectively.

3. M5: regression tree (Quinlan, 1992) implemented by the Weka
Data Mining Software5 and accessed from a R program through
the RWeka package. It has no tunable hyper-parameter.

4. cubist: M5 rule-based regressor with corrections based on near-
est neighbors in the training set (Quinlan, 1993), implemented
by the Cubist R package. Its tunable hyper-parameters are
the number of neighbors [0,5,9] and the number of committees
[1,10,20].

3 http://www.octave.org.
4 http://www.r-project.org.
5
 http://www.cs.waikato.ac.nz/ml/weka.

https://www.mathworks.com
http://www.cse.oulu.fi/CMV/Downloads/LBPMatlab
http://www.octave.org
http://www.r-project.org
http://www.cs.waikato.ac.nz/ml/weka
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5. gbm: generalized boosting regression model (gbm R package)
with Gaussian distribution. The tunable hyper-parameters are
the maximum depth of input interactions, with values [1,2,3,4,5]
and the number of trees for prediction, with values from 50 to
250 step 50.

6. rf: random forest (Breiman, 2001) ensemble of averaged random
regression trees (randomForest R package). The number of
inputs selected at each tree (mtry) is tuned with 10 values
between 2 and the number of features.

4. Experimental setup

In order to achieve a fully automatic system, which can operate
on-line in the meat industries, we will develop three experiments to
compare the computer predictions with the sensorial procedures:

1. Experiment 1: prediction of the marbling from irregular regions
of the ham muscles that are delineated and annotated by the
food technology experts. In this case, the prediction is done using
the same information (irregular region) as the experts.

2. Experiment 2: prediction of the marbling using square regions
extracted from the irregular regions of the experiment 1. This
experiment tests the reduction of performance when a region of
the slice smaller than the whole irregular region is used to do
the prediction.

3. Experiment 3: fully automatic extraction of square regions of in-
terest (ROI) for each ham muscle, and prediction of the marbling
using these ROIs. This experiment will test the performance loss
when the ROI extraction may be suboptimal, but the method is
fully automatic and does not require any food technology expert.

In order to test the performance of the ROI extraction algorithm, we
efine the overlapping percentage (OP) as:

𝑃𝑚 = 100
𝑁𝑂𝑚
𝑅𝑡

(2)

where 𝑚 may be biceps, semimembranosus or semitendinosus, 𝑅𝑡 is the
number of pixels of the ROI (in our case 𝑠2 = 64 × 64 = 4096 pixels) and
𝑁𝑂𝑚 is the number of pixels overlapped to the true region annotated
by the expert for the muscle 𝑚.

To test the performance of regression models in the prediction of
marbling, we used the classical K-fold cross-validation methodology,
which uses training and test sets. The most popular performance mea-
sures are the Pearson’s correlation coefficient (𝑅) between the true
and predicted marbling, the mean absolute error (average absolute
difference between the predicted and true marbling, MAE) and the root
mean square error (square root of the mean squared difference between
them, RMSE):

𝑅 =

𝑁
∑

𝑖=1
(𝑦𝑖 − �̄�)(𝑜𝑖 − �̄�)

√

√

√

√

( 𝑁
∑

𝑖=1
(𝑦𝑖 − �̄�)2

)( 𝑁
∑

𝑖=1
(𝑜𝑖 − �̄�)2

)

(3)

𝑀𝐴𝐸 = 1
𝑁

𝑁
∑

𝑖=1
|𝑦𝑖 − 𝑜𝑖| (4)

𝑅𝑀𝑆𝐸 =

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1
(𝑦𝑖 − 𝑜𝑖)2 (5)

where 𝑦𝑖 and 𝑜𝑖 are the predicted and true values of marbling respec-
ively for ham slice 𝑖, �̄� and �̄� are the mean values of {𝑦𝑖}𝑁𝑖=1 and
{𝑜𝑖}𝑁𝑖=1, respectively, and 𝑁 is the number of ham slices. The |𝑅| values
can be interpreted according to Colton (1974) as: true and predicted
values are not correlated at all (0–0.25), bad to moderate correlation
(0.25–0.5), moderate to good (0.5–0.75), very good to excellent (0.75–
1). In our study, we use 𝐾 = 4 folds or trials, devoting 𝐾 − 2 = 2
7

Table 2
Distributions of folds in training, validation and test for each trial.
𝐾 =4 Trial 1 Trial 2 Trial 3 Trial 4

Train 𝑇1 = {1,2} 𝑇1 = {2,3} 𝑇1 = {3,4} 𝑇1 = {4,1}
Validation 𝑉1 = {3} 𝑉1 = {4} 𝑉1 = {1} 𝑉1 = {2}
Test 𝑆1 = {4} 𝑆1 = {1} 𝑆1 = {2} 𝑆1 = {3}

folds for training, one for validation and one for test. Since all the
folds have the same size, 50%, 25% and 25% of the data are devoted
to training, validation and test sets, respectively. In our case, each
data corresponds to the image of a ham slice, and it is composed by
the texture feature vector extracted from the image (input) and the
marbling value (output) corresponding to that slice image. In order to
guarantee that training, validation and test sets contain output values
distributed across the whole range of marbling values, the data are
sorted by increasing marbling. After sorting, data 1, 2, 3 and 4 are
included in folds 1, 2, 3 and 4, respectively. Data 5, 6, 7 and 8 are
added to folds 1, 2, 3 and 4, respectively, and so on. Let {𝑇𝑘, 𝑉𝑘, 𝑆𝑘}𝐾𝑘=1
e the training, validation and test folds on 𝑘th trial. Trial 1 uses folds 1
nd 2 for training, fold 3 for validation and fold 4 for test (see Table 2).
rial 2 uses folds 2 and 3 for training, fold 4 for validation and fold 1 for
est, and analogously for trials 3 and 4. Therefore, training, validation
nd test sets in all the trials include data with marbling values in the
hole range of values, composing training sets of higher quality that
re expected to allow regressors learn better.

Algorithm 2 reports the experimental methodology. For each com-
ination 𝐶𝑖 of hyper-parameter values of the model, with 𝑖 = 1,… , 𝑁 ,
nd for each trial 𝑘, with 𝑘 = 1,… , 𝐾, the set 𝑇𝑘 is used to train
he model using the combination 𝐶𝑖 of hyper-parameter values, while
he set 𝑉𝑘 is used as validation set to evaluate the performance 𝑃𝑖𝑘 of
he trained model using 𝐶𝑖 on 𝑉𝑘. The average 𝑃𝑖 of {𝑃𝑖𝑘}𝐾𝑘=1 is thus
he performance associated to the combination 𝐶𝑖 of hyper-parameter
alues. The process is repeated for all the combinations {𝐶𝑖}𝑁𝑖=1, and
he combination 𝐶𝐼 with the highest performance 𝐼 = argmax{𝑃𝑖}𝑁𝑖=1 is
elected. Then, for 𝑘 = 1,… , 𝐾 the model with this best combination
𝐼 is trained on the set {𝑇𝑘, 𝑉𝑘}, that includes 𝐾−1 folds, and tested on

he set 𝑆𝑘 (1 fold), achieving a performance 𝑃𝑘. The average of {𝑃𝑘}𝐾𝑘=1
s the final test performance 𝑃 of the model.

Algorithm 2: Experimental methodology, combining 𝐾-fold
cross-validation and hyper-parameter tuning.
1 for 𝑖 = 1 ∶ 𝑁 do
2 for 𝑘 = 1 ∶ 𝐾 do
3 Train the model with 𝐶𝑖 on dataset 𝑇𝑘
4 Validate the model with 𝐶𝑖 on dataset 𝑉𝑘
5 𝑃𝑖𝑘=performance with 𝐶𝑖 on 𝑉𝑘
6 𝑃𝑖=average of {𝑃𝑖𝑘}𝐾𝑘=1
7 𝐼 = argmax{𝑃𝑖}𝑁𝑖=1
8 for 𝑘 = 1 ∶ 𝐾 do
9 Train the model with 𝐶𝐼 on {𝑇𝑘, 𝑉𝑘}
10 Test the model with 𝐶𝐼 on 𝑆𝑘
11 𝑃𝑘=performance with 𝐶𝐼 on 𝑆𝑘

12 𝑃=average of {𝑃𝑘}𝐾𝑘=1

5. Results and discussion

We present the results obtained from the different points of view:
the automatic extraction of ROIs to represent each muscle (Section 5.1),
the performance of marbling prediction model (Section 5.2), com-
parison among the performance of different prediction models (Sec-
tion 5.3), the method stability with the muscles (Section 5.4) and
the computational time of the different stages of the procedure (Sec-
tion 5.5).
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Fig. 7. Examples of square ROI extraction, in cyan the muscle contour, in pink the square ROI extracted in the centroid, in white, yellow and green the square ROI automatically
extracted for BF, SM and ST muscles respectively: (a) ROI bigger than the BF muscle; (b) the automatic ROI extractor fails in SM muscle; (c) and (d) suboptimal ROIs for SM and
ST, respectively.
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Table 3
Average percentage of overlapping pixels of the automatic extracted ROI (column
Experiment 3) and the extraction from the centroid (column Experiment 2) with
the true muscle annotated by the experts used in the experiment 1 for every muscle.

Muscle (m) #images 𝑂𝑃𝑚

Experiment 3 Experiment 2

Biceps femoris 351 93.79 98.54
Semimembranosus 335 89.92 89.20
Semitendinosus 55 94.76 99.84

5.1. Extraction of ROIs

We tested the performance of the automatic algorithm to extract
square ROIs, of size 64 × 64 pixels, for each muscle described in
Section 3.1, by using the measures described in Eq. (2) of Section 4
between the true muscle and the extracted ROI for each muscle 𝑚.
We compared the results with the extraction done for experiment 2,
in which the ROI is extracted from the centroid of the irregular region
(muscle) annotated by the expert (see Section 2.3). This extraction
is normally satisfactory: in experiment 2, an overlapping of 100% is
achieved for the 47% of images, and the overlapping is below 80% for
only the 8% of the images. In experiment 3, the extraction is perfect
for the 52% of images and the overlapping is lower than 80% for only
the 12% of the images. Fig. 7 shows some examples of suboptimal
ROI extraction: for the ROI extraction using centroid (experiment 2),
the causes of suboptimal extraction are muscles smaller than the ROI
size (Fig. 7a) and muscles not rounded (Fig. 7c). For the automatic
ROI extraction (experiment 3), the causes of failure are: (i) suboptimal
extraction (Fig. 7d) and (ii) exchange SM and ST muscles due to
artifacts in the ham slice (Fig. 7b). Table 3 shows the 𝑂𝑃𝑚 achieved by
the ROI extraction algorithm for each muscle 𝑚 in both experiments.

5.2. Marbling prediction

The texture features described in Section 3.2 are computed for all
the ham slices. In the experiment 1, the texture features are computed
on the irregular region, 𝑅𝑖, defined by each muscle and annotated
by the food technology experts. So, Gabor and wavelet features were
not computed because they must be applied on a square image. In
experiment 2, squared regions 𝑅𝑆𝑖 of size 64 × 64 pixels are extracted
from the centroid of 𝑅𝑖 and all the texture features were computed.
In experiment 3, the texture features were computed on the square
regions automatically extracted from the ham slice using the algorithm
described in Section 3.1.
8

q

Table 4
Correlation (column 𝑅) and mean absolute error (column MAE) for the marbling
prediction using pure color features (upper part of the table), gray level texture features
(middle part of the table) and color texture features (lower part of the table) using the
support vector regression (svr) for the three experiments.

Feature vector Experiment 1 Experiment 2 Experiment 3

𝑅 MAE 𝑅 MAE 𝑅 MAE

Pure color features

CMRGB 0.85 0.62 0.79 0.70 0.72 0.79
CMab 0.69 0.82 0.63 0.86 0.58 0.93
CMVRGB 0.90 0.50 0.86 0.57 0.81 0.67
CMVab 0.74 0.75 0.66 0.83 0.68 0.86
FOSRGB 0.91 0.47 0.87 0.54 0.84 0.63
FOSab 0.81 0.68 0.74 0.76 0.71 0.78

Gray-level texture features

HarRGB 0.91 0.49 0.88 0.56 0.80 0.72
HarLab 0.90 0.50 0.85 0.61 0.77 0.76

mlbpRGB 0.93 0.43 0.83 0.62 0.73 0.79
mlbpLab 0.92 0.45 0.81 0.66 0.71 0.80

WTrgbHaarLL – – 0.85 0.57 0.80 0.67
WTrgbHaarAll – – 0.88 0.54 0.80 0.66
WTlabHaarLL – – 0.85 0.57 0.80 0.67
WTlabHaarAll – – 0.88 0.54 0.82 0.65
WTrgbDb4LL – – 0.86 0.58 0.79 0.70
WTrgbDb4All – – 0.88 0.53 0.79 0.70
WTlabDb4LL – – 0.87 0.57 0.80 0.70
WTlabDb4All – – 0.89 0.53 0.79 0.70

GaborRGB – – 0.89 0.54 0.80 0.70
GaborLab – – 0.88 0.55 0.80 0.71

Color texture features

CMVHarRGB 0.95 0.38 0.91 0.47 0.84 0.64
FOSHarRGB 0.95 0.39 0.92 0.46 0.83 0.63
CMVmlbpRGB 0.93 0.41 0.89 0.51 0.79 0.68
FOSmlbpRGB 0.94 0.40 0.90 0.48 0.80 0.67
CMVWTLabHaarAll – – 0.89 0.53 0.82 0.65
FOSWTLabHaarAll – – 0.89 0.51 0.83 0.62
CMVGaborRGB – – 0.91 0.48 0.82 0.65
FOSGaborRGB – – 0.91 0.48 0.82 0.64

Table 4 shows the correlation (𝑅) and the mean absolute error
MAE) for marbling prediction using the support vector regression (svr)
or the three experiments. The feature vector FOSRGB achieved the
ighest 𝑅 and lowest MAE among all pure color features (upper part
f the table), with 𝑅 = 0.91, 0.87 and 0.84 in experiments 1, 2 and
, respectively. As expected, when the performance of the automatic
etection degrades, the regression accuracy decreases. But, it is still
uite high for the third experiment, very good to excellent following
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Fig. 8. Graphical representation of the true (blue line) and predicted (red points) ham marbling (vertical axis) for all ham slices (horizontal axis) using the svr regressor: (left
anel) using the CMVHarRGB vector in the experiment 1 and (right panel) using the FOSRGB plus LBPRGB vector in the experiment 3.
t
u

he Colton’s criteria. In relation with gray-level texture features (middle
art of table), the use of irregular regions of the muscle (experiment
) achieves the highest performance (𝑅 = 0.93 and MAE = 0.43 using

the texture vector mlbpRGB). In general, the performance achieved in
experiment 2 is higher than the experiment 3 for all the features vectors
used, noting the loss of information in the automatic selection of the
ROIs. Comparing the different families of gray-level texture features for
square ROIs, the wavelet features achieve the highest performance for
experiment 3 (𝑅 = 0.82 and MAE = 0.65) followed very close by the
Haralick’s coefficients and Gabor features (𝑅 = 0.80), which means that
the model is also from good to excellent. From the color space point of
view, although the best results with wavelet features are achieved using
the Lab color space, the difference with the use of RGB color space is
not significant and the highest performance with the remaining feature
vectors is better using RGB color space.

We developed experiments combining the best pure color features
(vectors FOSRGB and CMVRGB) with the best gray-level texture fea-
tures of each texture features families. Specifically, we chose the gray-
level texture vectors HarRGB for Haralick’s coefficients, mlbpRGB for
local binary patterns, WTLabHaarAll for wavelet features and Gabor-
RGB for Gabor features. The results are shown in the lower part of
Table 4. The performance increases 0.2 for the first experiment (from
𝑅 = 0.93 for mlbpRGB to 𝑅 = 0.95 for CMVHarRGB) and 0.3 for the
xperiment 2 (from 𝑅 = 0.89 for GaborRGB to 𝑅 = 0.92 for FosHar-
GB), but 𝑅 does not increase in experiment 3. In all the cases, the
est results were achieved combining the color information (CMVRGB
r FOSRGB vectors) and the gray-level texture information provided
y the Haralick’s or LBP coefficients (vector HarRGB and mlbpRGB).
he MAE is a performance measure easier to interpret than 𝑅 from the
oint of view of food technology experts. Fig. 8 shows the reliability of
he prediction using the svr regressor for experiments 1 (left panel) and
f regressor for experiment 3 (right panel) for the best feature vectors.
he blue line represents the true marbling for each ham slice provided
y the experts. The red points represent the predicted marbling by svr
r rf for each ham slice. The average difference between the blue and
ed values for each ham slice is the MAE (0.38 and 0.60 in the left
nd right panels, respectively). This means that the prediction of the
omputer is the true value ± MAE in average. Taking in mind that the
xpert’s tolerance in the sensorial analysis to establish the marbling is
.5, the prediction of the computer is comparable with the precision of
he experts.

.3. Comparing different regressors for marbling prediction

In order to find the best prediction of marbling score, we applied
he regressors described in Section 3.3 to the color texture features
escribed in Section 3.2 for the three experiments. Fig. 9 shows the
ox plots comparing the correlation for all regressors considering all
9

eature vectors in the experiments 1, 2 and 3 (left panel) and only in
Table 5
Correlation (𝑅) for the marbling prediction using all the regressors and the best feature
vector (column Feature) for the first and third experiments.

Regressor Experiment 1 Experiment 3

Feature 𝑅 Feature 𝑅

lm CMVmlbpRGB 0.932±0.003 FOSHarRGB 0.831±0.014
svr CMVHarRGB 0.948±0.004 CMVHarRGB 0.839±0.005
m5 FOSmlbpRGB 0.940±0.003 FOSHarRGB 0.834±0.017
cubist FOSmlbpRGB 0.943±0.007 FOSHarRGB 0.838±0.012
gbm FOSmlbpRGB 0.934±0.001 FOSRGB 0.829±0.013
rf FOSmlbpRGB 0.938±0.004 FOSmlbpRGB 0.846±0.008

experiment 3 (right panel). The upper and lower edges of each box
indicate the 25th and 75th percentiles, respectively, the upper and
lower blue segments enclose the remaining data and the red crosses
are the data considered outliers. The red line inside the box is the
median of the data. In both panels, there are not large difference among
regressors. Considering the tree experiments (left panel), svr, rf and
cubist have the highest medians, and svr has the smaller box, similar
to rf but with higher median. In experiment 3 (right panel), the rf box
shows the best median, followed by svr with a shorter box. Table 5
shows the color texture vector that achieved the highest correlation 𝑅,
with the standard deviation over the 𝐾 folds in the cross validation,
for each regressor on the first (irregular regions for each muscle) and
third experiments (square regions for each muscle). In experiment 3,
the highest values of 𝑅 are achieved by the rf regressor using the feature
vector FOSmlbpRGB (𝑅 = 0.846 ± 0.008). Considering that the MAE
values (0.38 and 0.60) reflect the dispersion of the computer marbling
prediction from the true marbling values, the computer predictions
fall near the experts’ tolerance, which is 0.5. Hence, for the first
experiment, the computer predicts correctly the 90.4% (67.8% for the
third experiment) of samples within a tolerance of ±0.5 (the expert’s
tolerance) and within a tolerance of ±1, the 99.3% (88.8% for the third
experiment).

5.4. Comparing performance for different muscles

In order to test if the regressor behavior is stable over the different
muscles, we create two datasets with images belonging to the third
experiment: (1) BFData for images of Biceps femoris (BF) muscle; and
(2) SMData for images of Semimembranosus (SM) muscle. Semitendinosus
muscle is not analyzed because there are few images. For BF muscle, the
best performance is achieved by the feature vector FOSGaborRGB using
the cubist regressor (𝑅 = 0.80 and MAE = 0.50). For the SM muscle,
he best performance is achieved by the feature vector FOSmlbpRGB
sing also the cubist regressor (𝑅 = 0.74 and MAE = 0.55). Although

the correlation loss is 0.12 (0.92−0.80) and 0.18 (0.92−0.74) for the BF
and SM muscles respectively, the loss in MAE is only 0.04 (0.50−0.46)

and 0.09 (0.55−0.46) respectively. Thus, the computer predictions with
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Fig. 9. Box plots showing the correlation 𝑅 for the different regressors (horizontal axis) considering all the experiments together (left panel) and only the experiment 3 (right
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a tolerance of ±1 are correct for the 93.5% of BF and 94.1% of SM
muscles. This facts lead to conclude that our system is stable with the
different muscles.

5.5. Computation time

In order to design a computer system to predict the marbling from
a ham slice, which should operate in real time in the meat industry,
it is very important the computational time needed by the different
stages of the process. The experiments were performed on a desktop
computer with Intel® Core™ i7-9700 processor at 3.6 GHz and 64 GB
RAM memory under Ubuntu 20.04. The algorithm for the extraction
of a square ROIs for the different muscles was done in the C++
programming language using the computer vision library OpenCV6 and
he remaining processing was done using Matlab 2021a.7 The average
omputational time to extract the ROIs was 18.7, 18.4 and 19.9 ms
or biceps, semimembranosus and semitendinosus muscles, respectively.
he time required to compute the color texture features depends on
he method used and the type of experiment (irregular regions in
xperiment 1 and square regions in experiments 2 and 3). For square
egions of 64 × 64 pixels, the average computational time for each
amily of features was: (1) for pure color features the time ranges
rom 0.48 ms. for CMRGB to 2.21 ms. for FOSLab; (2) for Haralick’s
eatures: 7.59 and 9.20 ms. for HarRGB and HarLab, respectively; (3)
or LBP texture features, the time is 170.03 ms. for mlbpRGB and
72.20 ms. for mlbpLab; (4) for wavelet features (vectors 𝑊 𝑇𝑖𝑗𝑘, where
= {𝐻𝑎𝑎𝑟,𝐷𝑎𝑢𝑏}, 𝑗 = {𝑅𝐺𝐵,𝐿𝑎𝑏} and 𝑘 = {𝐿𝐿,𝐴𝑙𝑙}) the time ranges

rom 1.17 ms. for WTrgbHaarLL to 2.73 ms for WTLabDb4All; and (5)
or Gabor texture features: 19.17 and 20.99 ms. for GaborRGB and
aborLab, respectively. The time spent by the svr regressor to predict

he marbling using the texture feature vector is less than 1 millisecond
er image. Overall, the computational time required by the whole
rocess depicted in Fig. 4, discarding the acquisition of the ham slice
mage, can be estimated as 19 ms. for the automatic ROI extraction,
lus less than 10 ms. for color texture feature computation, plus 1 ms.
or regression model, summarized approximately 30 ms.

. Conclusions and future work

This paper proposes a system to predict the marbling of dry-cured
am from a ham slice image. After the acquisition of ham image, a
quare ROI of the semimembranosus (SM), semitendinosus (ST) and biceps
emoris (BF) muscles is automatically extracted using the procedure
escribed by algorithm 1. The overlapping of the ROIs extracted by

6 https://opencv.org.
7 https://mathworks.com.
10
this method with the true muscle area is, in average, higher than 90%
for all the muscles. The prediction of ham marbling using the support
vector regression is: (1) a correlation 𝑅 of 0.95 using the true ham
muscles areas annotated by experts (experiment 1) and the feature
vector CMVHarRGB, composed by the mean and variance of each
channel of RGB color image combined with the Haralick’s coefficients
of the gray-level image; and (2) 𝑅 = 0.85 for square ROIs automatically
extracted, in the experiment 3, using the feature vector FOSmlpbRGB
(statistics of each channel of RGB color image combined with the
MLBP texture features of the gray-level image). The MAE achieved is
0.38 in the first case and 0.60 in the second one. These values are
comparable to 0.5, which is the estimated standard deviation of the
panelists. This leads to think that the computer system can perform the
prediction similarly to a human expert. The computational time to do
the prediction (without the image acquisition time) is approximately 30
ms to extract the square ROI, compute the color texture features and
predict the marbling in a general purpose personal computer.

The good results and high speed of the marbling prediction for
sliced dry-cured ham suggest that this application could be deployed
in the dry-cured ham industry. Future work will be the development
of a software to predict the marbling and other dry-cured sensorial
measures.
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