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a b s t r a c t

We present an alternative approach to the vector version of Krasnosel’skĭı
compression–expansion fixed point theorem due to Precup, which is based on
the fixed point index. It allows us to obtain new general versions of this fixed
point theorem and also multiplicity results. We emphasize that all of them are
coexistence fixed point theorems for operator systems, that means that every
component of the fixed points obtained is non-trivial. Finally, these coexistence
fixed point theorems are applied to obtain results concerning the existence of
positive solutions for systems of Hammerstein integral equations and radially
symmetric solutions of (p1, p2)-Laplacian systems.
© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under

the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Krasnosel’skĭı compression–expansion fixed point theorem is between the main tools of Nonlinear Analysis
for proving the existence of non-trivial solutions of different types of boundary value problems. Basically,
assuming cone-compression or cone-expansion conditions on the boundary of an annulus, it ensures the
existence of fixed points of compact operators defined in cones of normed linear spaces.

In the case of systems, the localization of the fixed points obtained by means of Krasnosel’skĭı theorem is
not given independently in each component, so there is not guarantee that all the components of the fixed
point are non-trivial, as already pointed out in [3,25,26]. This fact motivated Precup to establish the vector
ersion of Krasnosel’skĭı fixed point theorem [25,26] (see Theorem 2.3 below), which provides a component-
ise localization of the fixed points. Thus, it gives sufficient conditions for the existence of a coexistence fixed
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oint as coined by Lan [20], that is, a fixed point with all the components different from zero. As far as we
now, there are only a few papers in the literature which deal with theoretical results concerning coexistence
xed points of compact maps, see [3,15,16,20,25,26,29]. These results have direct applications in population
odels when studying the coexistence of several competing species. In this context, the reader may find

ome useful comments in the paper by Dancer [4].
Moreover, under the assumptions of the vector version of Krasnosel’skĭı fixed point theorem, each

omponent of the compact map may have a different behavior, namely, compression or expansion (see
emark 2.1 below). To the best of our knowledge, fixed point theorems for expansive–compressive maps
re not common in the literature, we refer the interested reader to the results due to Mawhin [23] in this
irection.

In this paper, we will refer to the mentioned vector version of Krasnosel’skĭı compression–expansion fixed
oint theorem due to Precup as Krasnosel’skĭı-Precup fixed point theorem in cones. It is well-known that
he classical Krasnosel’skĭı fixed point theorem can be proved via fixed point index for compact maps, so
ur aim here is to present an alternative approach to Krasnosel’skĭı-Precup fixed point theorem based on
his tool. It has its own interest since

(a) it provides a way to extend Krasnosel’skĭı-Precup fixed point theorem to operators defined in more
general domains;

(b) the computation of the fixed point index allows to obtain easily new multiplicity results;
(c) the proof can be replicated for other classes of maps for which a fixed point index theory is available

(as, for instance, upper semicontinuous multivalued maps).

ote that the fixed point index for compact maps was also the main tool employed in order to prove the
oexistence fixed point theorems in [15,16,20].

In addition, we prove that the finite-dimensional version of Krasnosel’skĭı-Precup fixed point theorem is
quivalent to Poincaré–Miranda zeros theorem. This fact gives a connection between it and classical results.

In the last section, we apply the theoretical results obtained in Section 2 to two different problems:
ystems of Hammerstein integral equations and radially symmetric solutions of Dirichlet problems for
p1, p2)-Laplacian systems. Note that Krasnosel’skĭı-Precup fixed point theorem has been already employed

by several authors in order to study the existence, localization and multiplicity of positive solutions for
different types of systems of boundary value problems, see for instance [8,27,31–33]. Our intention is to
emphasize the applicability of the new fixed point theorems established here and so we present a multiplicity
result for a system of Hammerstein type equations, which complements previous results in the literature,
see [2,9,17,20,29] and the references therein. Moreover, concerning radial solutions of (p1, p2)-Laplacian
ystems, our sufficient conditions provide not only the existence of positive solutions, but also a novel
ocalization of them, cf. [24,33]. It is worth mentioning that existence of (not necessarily radial) solutions of
p1, p2)-Laplacian systems with both nonzero components was already studied in [16].

2. Krasnosel’skĭı-Precup fixed point theorem in cones

First, we recall Krasnosel’skĭı compression–expansion fixed point theorem in cones [18] (see also [1,12]).
In the sequel, we need the following notions. A closed convex subset K of a normed linear space (X, ∥·∥)

is a cone if λ u ∈ K for every u ∈ K and for all λ ≥ 0, and K ∩ (−K) = {0}. A cone K induces the partial
order in X given by u ⪯ v if and only if v − u ∈ K. Moreover, we shall say that u ≺ v if v − u ∈ K \ {0}.

The following notations will be useful: for given r, R ∈ R+ := [0, ∞), 0 < r < R, we define

K := {u ∈ K : r ≤ ∥u∥ ≤ R}.
Kr,R := {u ∈ K : r < ∥u∥ < R} and r,R
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heorem 2.1 (Krasnosel’skĭı). Let (X, ∥·∥) be a normed linear space, K a cone in X and r, R ∈ R+,
< r < R.
Consider a compact map T : Kr,R → K satisfying one of the following conditions:

(a) T (u) ⊀ u if ∥u∥ = r and T (u) ⊁ u if ∥u∥ = R;
(b) T (u) ⊁ u if ∥u∥ = r and T (u) ⊀ u if ∥u∥ = R.

Then T has at least a fixed point u ∈ K with r ≤ ∥u∥ ≤ R.

Condition (a) in Krasnosel’skĭı theorem is usually called a compression type condition, whereas authors
often refer to condition (b) as the cone-expansion condition. Similarly, in case (a) we will say that the operator
T is compressive, while in case (b) T is called an expansive operator.

It is well-known that conditions (a) and (b) can be weakened as homotopy type conditions. In this way, we
have the homotopy version of Krasnosel’skĭı theorem or Krasnosel’skĭı-Benjamin theorem, see for instance [1].

Theorem 2.2 (Krasnosel’skĭı-Benjamin). Let (X, ∥·∥) be a normed linear space, K a cone in X and
r, R ∈ R+, 0 < r < R.

Assume that T : Kr,R → K is a compact map and there exists h ∈ K \ {0} such that one of the following
onditions is satisfied:

(a) T (u) + µ h ̸= u if ∥u∥ = r and µ > 0, and T (u) ̸= λ u if ∥u∥ = R and λ > 1;
(b) T (u) ̸= λ u if ∥u∥ = r and λ > 1, and T (u) + µ h ̸= u if ∥u∥ = R and µ > 0.

Then T has at least a fixed point u ∈ K with r ≤ ∥u∥ ≤ R.

In [25,26], Precup proposed a compression–expansion type fixed point theorem for systems of operators.
The main novelty is that compression–expansion conditions are given in a component-wise manner, in what
was called the vector version of Krasnosel’skĭı fixed point theorem. Let us recall this result.

Consider two cones K1 and K2 of a normed linear space X, and so K := K1×K2 is a cone of X2 = X ×X.
For r, R ∈ R2

+, r = (r1, r2), R = (R1, R2), with 0 < ri < Ri (i = 1, 2), we denote

(Ki)ri,Ri
:= {u ∈ Ki : ri ≤ ∥u∥ ≤ Ri} (i = 1, 2),

Kr,R := {u = (u1, u2) ∈ K : ri ≤ ∥ui∥ ≤ Ri for i = 1, 2}.

learly, Kr,R = (K1)r1,R1 × (K2)r2,R2 .
The aim of the vector version of Krasnosel’skĭı theorem is to obtain a solution u = (u1, u2) to the operator

ystem {
u1 = T1(u1, u2),
u2 = T2(u1, u2),

ocated in the set Kr,R, that is, u = (u1, u2) ∈ K and ri ≤ ∥ui∥ ≤ Ri, i = 1, 2.

heorem 2.3 (Krasnosel’skĭı-Precup). Let (X, ∥·∥) be a normed linear space, K1 and K2 two cones in X

nd r, R ∈ R2
+, r = (r1, r2), R = (R1, R2), with 0 < ri < Ri (i = 1, 2).

Assume that T = (T1, T2) : Kr,R → K is a compact map and for each i ∈ {1, 2} there exists hi ∈ Ki \ {0}
uch that one of the following conditions is satisfied in Kr,R:

(a) Ti(u) + µ hi ̸= ui if ∥ui∥ = ri and µ > 0, and Ti(u) ̸= λ ui if ∥ui∥ = Ri and λ > 1;
(b) Ti(u) ̸= λ ui if ∥ui∥ = ri and λ > 1, and Ti(u) + µ hi ̸= ui if ∥ui∥ = Ri and µ > 0.

hen T has at least a fixed point u = (u , u ) ∈ K with r ≤ ∥u ∥ ≤ R (i = 1, 2).
1 2 i i i
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emark 2.1. As already pointed out in [25,26], the operator T may exhibit a different behavior
compression or expansion) in each component. More exactly, the following options are possible:

(i) both operators T1 and T2 are compressive;
(ii) both operators T1 and T2 are expansive;
(iii) one of the operators T1 or T2 is compressive, while the other one is expansive.

Let us recall briefly the main ideas of the proof of Theorem 2.3 given in [25,26], which is essentially divided
nto two cases: (1) both operators T1 and T2 are compressive; (2) one of the operators is expansive. The first
ase relies on Schauder fixed point theorem. In the second case, the fixed point problem is reduced to an
quivalent one in which both operators satisfy the compression type condition and so the existence of a fixed
oint is ensured by the former case.

Note that the same proof due to Precup remains valid for the following n-dimensional vector version of
rasnosel’skĭı fixed point theorem for an operator T = (T1, T2, . . . , Tn) defined in Xn.

heorem 2.4. Let (X, ∥·∥) be a normed linear space, K1, . . . , Kn cones in X, K := K1×· · ·×Kn, r, R ∈ Rn
+,

r = (r1, . . . , rn), R = (R1, . . . , Rn), with 0 < ri < Ri (i = 1, . . . , n), and Kr,R := {u = (u1, . . . , un) ∈ K :
i ≤ ∥ui∥ ≤ Ri for i = 1, . . . , n}.

Assume that T = (T1, . . . , Tn) : Kr,R → K is a compact map and for each i ∈ {1, . . . , n} there exists
i ∈ Ki \ {0} such that one of the following conditions is satisfied in Kr,R:

(a) Ti(u) + µ hi ̸= ui if ∥ui∥ = ri and µ > 0, and Ti(u) ̸= λ ui if ∥ui∥ = Ri and λ > 1;
(b) Ti(u) ̸= λ ui if ∥ui∥ = ri and λ > 1, and Ti(u) + µ hi ̸= ui if ∥ui∥ = Ri and µ > 0.

hen T has at least a fixed point u = (u1, . . . , un) ∈ K with ri ≤ ∥ui∥ ≤ Ri (i = 1, . . . , n).

We highlight that our proof here is completely different to that due to Precup, since it is based on fixed
oint index theory independently of the possibility (i)–(iii) in Remark 2.1. In particular, our approach does
ot require to turn the expansive operators into compressive ones.

.1. Fixed point index computation

First, let us recall some of the useful properties of the fixed point index for compact maps. For more
etails, we refer the reader to [1,5,12] (see also [14]).

roposition 2.1. Let P be a cone of a normed linear space, U ⊂ P be a bounded relatively open set and
: U → P be a compact map such that T has no fixed points on the boundary of U (denoted by ∂ U). Then

he fixed point index of T in P over U , iP (T, U), has the following properties:

1. (Additivity) Let U be the disjoint union of two open sets U1 and U2. If 0 ̸∈ (I − T )(U \ (U1 ∪ U2)), then

iP (T, U) = iP (T, U1) + iP (T, U2).

2. (Existence) If iP (T, U) ̸= 0, then there exists u ∈ U such that u = Tu.
3. (Homotopy invariance) If H : U × [0, 1] → P is a compact homotopy and 0 ̸∈ (I − H)(∂ U × [0, 1]), then

iP (H(·, 0), U) = iP (H(·, 1), U).

4. (Normalization) If T is a constant map with T (u) = u0 for every u ∈ U , then

iP (T, U) =
{

1, if u0 ∈ U,
0, if u0 ̸∈ U.

Moreover, we have the following conditions concerning the computation of the fixed point index.

4
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roposition 2.2. Let U be a bounded relatively open subset of a cone P such that 0 ∈ U and T : U → P

e a compact map.

(a) If T (u) ̸= λ u for all u ∈ ∂ U and all λ ≥ 1, then iP (T, U) = 1.
(b) If there exists h ∈ P \ {0} such that T (u) + λ h ̸= u for every λ ≥ 0 and all u ∈ ∂ U , then iP (T, U) = 0.

In the sequel, let (X, ∥·∥X) and (Y, ∥·∥Y ) be normed linear spaces, K1 ⊂ X, K2 ⊂ Y two cones and
K := K1 × K2 the corresponding cone of X × Y . When no confusion may occur, both norms ∥·∥X and ∥·∥Y

will be simply denoted by ∥·∥.
Now, we present a technical result which will be crucial in the computation of the fixed point index in the

main results of this section. It was already proven in [29, Lemma 2.3], but we include here the proof again
for the reader’s convenience.

Lemma 2.1. Let U and V be bounded relatively open subsets of K1 and K2, respectively, such that 0 ∈ U .
Assume that T : U × V → K, T = (T1, T2), is a compact map and there exists h ∈ K2 \ {0} such that

T1(u, v) ̸= λ u for u ∈ ∂K1U, v ∈ V and λ ≥ 1; (2.1)
T2(u, v) + µ h ̸= v for u ∈ U, v ∈ ∂K2V and µ ≥ 0. (2.2)

hen iK(T, U × V ) = 0.

roof. Consider the homotopy H : U × V × [0, 1] → K given by

H((u, v), t) = (t T1(u, v), T2(u, v) + (1 − t)µ0 h),

ith µ0 > 0 big enough such that v ̸= T2(0, v)+µ0h for all v ∈ V . Note that the existence of such a positive
umber µ0 is guaranteed since V is bounded and T is compact.

Assumptions (2.1) and (2.2) guarantee that the homotopy function H has no fixed points on ∂K(U × V ).
herefore, by the homotopy invariance property of the fixed point index, we have that

iK(H(·, 0), U × V ) = iK(H(·, 1), U × V ) = iK(T, U × V ). (2.3)

n the other hand, for t = 0, the map H((u, v), 0) = (0, T2(u, v)+µ0 h) has no fixed points in U ×V . Indeed,
f (u, v) ∈ U ×V is such a fixed point, then u = 0 and v = T2(0, v)+µ0h, a contradiction with the hypothesis
bout µ0. Hence, iK(H(·, 0), U × V ) = 0 and so the conclusion follows from (2.3). □

emark 2.2. Obviously, the roles that play T1 and T2 in the statement of Lemma 2.1, given by assumptions
2.1) and (2.2), are interchangeable.

For r, R ∈ R2
+, 0 < ri < Ri (i = 1, 2), fixed, our aim is to compute the fixed point index of a compact

perator T = (T1, T2) : Kr,R → K in the relatively open set

Kr,R := {u = (u1, u2) ∈ K : ri < ∥ui∥ < Ri for i = 1, 2}

nder the conditions of Krasnosel’skĭı-Precup fixed point theorem. Obviously, we need to assume also that
has no fixed points on the boundary of Kr,R in order to have the fixed point index well-defined over this

et.
In the sequel, we will also use the following notations:
(Ki)ri
= {u ∈ Ki : ∥u∥ < ri},

5



J. Rodríguez–López Nonlinear Analysis 226 (2023) 113138

i

w
O

w

T
h

T

ρ

c

(

P

S

M

(Ki)ri
= {u ∈ Ki : ∥u∥ ≤ ri} (i = 1, 2),

Kr = {u = (u1, u2) ∈ K : ∥ui∥ < ri for i = 1, 2} ,

Kr = {u = (u1, u2) ∈ K : ∥ui∥ ≤ ri for i = 1, 2}.

To compute the fixed point index over Kr,R, we need to extend the definition of T to the set KR. A key
ngredient in our purpose is the definition of a retraction from KR into Kr,R. To do so, we use that (Ki)ri,Ri

is a retract of (Ki)Ri
(i = 1, 2), see [7, Example 3]. Indeed, we have the retraction ρi : (Ki)Ri

→ (Ki)ri,Ri

defined as

ρi(ui) =

⎧⎪⎨⎪⎩ ri
ui + (ri − ∥ui∥)2

hiui + (ri − ∥ui∥)2
hi

 , if ∥ui∥ < ri,

ui, if ri ≤ ∥ui∥ ≤ Ri,

(2.4)

here hi ∈ Ki \ {0} is fixed. Note that ρi is well-defined:
ui + (ri − ∥ui∥)2

hi

 ̸= 0 for all ui ∈ (Ki)ri
.

therwise, −ui = (ri − ∥ui∥)2
hi ∈ Ki, what together with ui ∈ Ki implies ui = 0, from the definition of

cone. Taking ui = 0, we have
r2

i hi

 > 0 since ri > 0 and hi ∈ Ki \ {0}. Moreover, it is clear that ρi is
continuous and ρi(ui) = ui for all ui ∈ (Ki)ri,Ri

.
Now we are in a position to compute the fixed point index over the set Kr,R. First, we study the case in

hich both operators are compressive.

heorem 2.5. Assume that T = (T1, T2) : Kr,R → K is a compact map and for each i ∈ {1, 2} there exists
i ∈ Ki \ {0} such that the following conditions are satisfied in Kr,R:

(i) Ti(u) + µ hi ̸= ui if ∥ui∥ = ri and µ ≥ 0;
(ii) Ti(u) ̸= λ ui if ∥ui∥ = Ri and λ ≥ 1.

hen
iK(T, Kr,R) = 1.

Proof. Consider the retraction ρ : KR → Kr,R defined as ρ(u1, u2) = (ρ1(u1), ρ2(u2)), where the functions
i are given by (2.4), i = 1, 2. Now, define the auxiliary map N = (N1, N2) : KR → K as follows

N(u) := (T ◦ ρ)(u). (2.5)

Clearly, N is a compact operator, N(u) = T (u) for every u ∈ Kr,R and for each i ∈ {1, 2} the following
onditions hold in KR:

(i∗) Ni(u) + µ hi ̸= ui if ∥ui∥ = ri and µ ≥ 0;
ii∗) Ni(u) ̸= λ ui if ∥ui∥ = Ri and λ ≥ 1.

Note that (i∗) implies that N(u) + µ h ̸= u for all u ∈ ∂Kr and µ ≥ 0 (where h = (h1, h2)), so
roposition 2.2 yields

iK(N, Kr) = 0.

imilarly, condition (ii∗) in conjunction with Proposition 2.2 guarantee that

iK(N, KR) = 1.

oreover, by Lemma 2.1,

i (N, (K ) × (K ) ) = i (N, (K ) × (K ) ) = 0.
K 1 R1 2 r2 K 1 r1 2 R2

6
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iK(N, (K1)r1,R1 × (K2)r2) = iK(N, (K1)R1 × (K2)r2) − iK(N, Kr) = 0,

so we obtain

iK(N, Kr,R) = iK(N, KR) − iK(N, (K1)r1,R1 × (K2)r2) − iK(N, (K1)r1 × (K2)R2) = 1.

Finally, since T = N on the set Kr,R, we have iK(T, Kr,R) = iK(N, Kr,R) = 1. □

Next, let us consider the case in which we have compression for one operator and expansion for the other
ne.

heorem 2.6. Assume that T = (T1, T2) : Kr,R → K is a compact map and for each i ∈ {1, 2} there exists
i ∈ Ki \ {0} such that the following conditions are satisfied in Kr,R:

(i) T1(u) + µ h1 ̸= u1 if ∥u1∥ = r1 and µ ≥ 0, and T1(u) ̸= λ u1 if ∥u1∥ = R1 and λ ≥ 1;
(ii) T2(u) + µ h2 ̸= u2 if ∥u2∥ = R2 and µ ≥ 0, and T2(u) ̸= λ u2 if ∥u2∥ = r2 and λ ≥ 1.

Then
iK(T, Kr,R) = −1.

Proof. Consider the map N : KR → K defined as in (2.5). By Proposition 2.2,

iK(N, (K1)R1 × (K2)r2) = 1, iK(N, (K1)r1 × (K2)R2) = 0.

oreover, Lemma 2.1 yields
iK(N, Kr) = iK(N, KR) = 0.

Hence, it follows from the additivity property of the index that

iK(N, (K1)r1,R1 × (K2)r2) = iK(N, (K1)R1 × (K2)r2) − iK(N, Kr) = 1,

and so

iK(N, Kr,R) = iK(N, KR) − iK(N, (K1)r1 × (K2)R2) − iK(N, (K1)r1,R1 × (K2)r2) = −1.

hen, iK(T, Kr,R) = −1. □

emark 2.3. The statement of Theorem 2.6 corresponds to the case in which T1 is compressive and T2 is
xpansive. Clearly, the same conclusion can be obtained if T1 is expansive and T2 is compressive.

Finally, we deal with the case in which both T1 and T2 are expansive.

heorem 2.7. Assume that T = (T1, T2) : Kr,R → K is a compact map and for each i ∈ {1, 2} there exists
i ∈ Ki \ {0} such that the following conditions are satisfied in Kr,R:

(i) Ti(u) + µ hi ̸= ui if ∥ui∥ = Ri and µ ≥ 0;
(ii) Ti(u) ̸= λ ui if ∥ui∥ = ri and λ ≥ 1.

hen
i (T, K ) = 1.
K r,R

7
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roof. Consider again the map N : KR → K defined as in (2.5). Now, by Proposition 2.2,

iK(N, KR) = 0, iK(N, Kr) = 1.

oreover, according with Lemma 2.1,

iK(N, (K1)r1 × (K2)R2) = iK(N, (K1)R1 × (K2)r2) = 0.

As a consequence of the additivity property of the index, we deduce that

iK(N, (K1)r1 × (K2)r2,R2) = iK(N, (K1)r1 × (K2)R2) − iK(N, Kr) = −1.

herefore,

iK(N, Kr,R) = iK(N, KR) − iK(N, (K1)r1 × (K2)r2,R2) − iK(N, (K1)R1 × (K2)r2) = 1.

In conclusion, iK(T, Kr,R) = 1, as wished. □

Remark 2.4. The computation of the fixed point index given by Theorems 2.5–2.7 is independent of
that obtained in [29, Theorem 2.8]. Indeed, in [29], the assumptions on T and, in particular, the homotopy
conditions (i)–(ii) were imposed in the whole set KR instead of its subset Kr,R, as here.

As a straightforward consequence of the computation of the fixed point index provided by Theorems 2.5–
.7, we have an alternative version of Theorem 2.3.

heorem 2.8. Assume that T = (T1, T2) : Kr,R → K is a compact map and for each i ∈ {1, 2} there exists
i ∈ Ki \ {0} such that one of the following conditions is satisfied in Kr,R:

(a) Ti(u) + µ hi ̸= ui if ∥ui∥ = ri and µ ≥ 0, and Ti(u) ̸= λ ui if ∥ui∥ = Ri and λ ≥ 1;
(b) Ti(u) ̸= λ ui if ∥ui∥ = ri and λ ≥ 1, and Ti(u) + µ hi ̸= ui if ∥ui∥ = Ri and µ ≥ 0.

hen T has at least a fixed point u = (u1, u2) ∈ K with ri < ∥ui∥ < Ri (i = 1, 2).

roof. By Theorems 2.5–2.7, we have that

iK(T, Kr,R) = ±1,

nd so the existence property of the fixed point index ensures that T has at least a fixed point in Kr,R. □

.2. Other versions of Krasnosel’skĭı -Precup fixed point theorem: different domains

After the previous computation of the fixed point index of T over the set Kr,R, we can think of proving
imilar results for operators T defined in other regions different from Kr,R. In this way, we increase the range
f applicability of the original Krasnosel’skĭı-Precup fixed point theorem.

For each i ∈ {1, 2}, let φi : Ki → R+ be a continuous concave functional on Ki, that is, φi is a continuous
unction and

φi (λ u + (1 − λ)v) ≥ λ φi(u) + (1 − λ)φi(v), for all u, v ∈ Ki, λ ∈ [0, 1].

Then, for r, R ∈ R2
+, 0 < ri < Ri (i = 1, 2), fixed, consider the sets

K φ
r,R := {u = (u1, u2) ∈ K : ri < φi(ui) and ∥ui∥ < Ri for i = 1, 2} ,

K
φ := {u = (u1, u2) ∈ K : ri ≤ φi(ui) and ∥ui∥ ≤ Ri for i = 1, 2} .
r,R

8
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his type of sets has been already considered by Leggett and Williams [21] in the context of their celebrated
xed point theorem. Note that K

φ

r,R is a closed convex set. Hence, by Dugundji extension theorem (see [6,
heorem 4.1] or [12]), the subset K

φ

r,R is a retract of K.
With this in mind, one can easily establish alternative versions of Theorems 2.5–2.7. We sum up them in

the following result.

Theorem 2.9. Assume that there exist continuous concave functionals φi : Ki → R+ such that φi(u) ≤ ∥u∥
for all u ∈ Ki (i = 1, 2), the set K φ

r,R is nonempty, T = (T1, T2) : K
φ

r,R → K is a compact map and for each
i ∈ {1, 2} there exists hi ∈ Ki \ {0} such that one of the following conditions is satisfied in K

φ

r,R:

(i) Ti(u) + µ hi ̸= ui if φi(ui) = ri and µ ≥ 0, and Ti(u) ̸= λ ui if ∥ui∥ = Ri and λ ≥ 1;
(ii) Ti(u) ̸= λ ui if φi(ui) = ri and λ ≥ 1, and Ti(u) + µ hi ̸= ui if ∥ui∥ = Ri and µ ≥ 0.

Then
iK(T, K φ

r,R) = (−1)k,

where k = 0 if both T1 and T2 are compressive, k = 1 if one of the operators T1 or T2 is compressive and the
ther one is expansive and k = 2 if both operators are expansive.

Proof. Consider a retraction ρ : K → K
φ

r,R and define the map N : K → K as follows:

N(u) := (T ◦ ρ)(u).

e introduce the following useful notation:

(Ki)φi
ri

= {u ∈ Ki : φi(u) < ri} and (Ki)φi
ri

= {u ∈ Ki : φi(u) ≤ ri}.

learly, ∂ (Ki)φi
ri ⊂ {u ∈ Ki : φi(u) = ri} (i = 1, 2) and, moreover,

K φ
r,R =

(
(K1)R1 \ (K1)φ1

r1

)
×
(
(K2)R2 \ (K2)φ2

r2

)
,

o now the proof follows as those of Theorems 2.5–2.7, replacing ∥·∥ with φi(·) where needed. □

emark 2.5. The previous fixed point index computation remains true for an operator T defined in a much
ore general domain of type

(
U1 \ V1

)
×
(
U2 \ V2

)
, where for each i ∈ {1, 2}, one has 0 ∈ Vi ⊂ V i ⊂ Ui, Ui

nd Vi are bounded and relatively open sets in Ki and U i \ Vi is a retract of U i. Observe that, in particular,
U i \ Vi is a retract of U i provided that ∂ Vi is a retract of V i, what allows Ui to be an arbitrary bounded
pen set large enough. It can be immediately deduced that this is the case for Vi = (Ki)ri

. Indeed, for a
xed hi ∈ Ki \ {0}, one can define the retraction ρi : V i → ∂ Vi as

ρi(ui) = ri
ui + (ri − ∥ui∥)2

hiui + (ri − ∥ui∥)2
hi

 .

ote that in this case the set Ui needs not be the intersection of a ball with the cone Ki, which enlarges the
pplicability of Theorems 2.5–2.7.

In this context, conditions (i) and (ii) above can be written in the following way:

(i) Ti(u) + µ hi ̸= ui if ui ∈ ∂ Vi and µ ≥ 0, and Ti(u) ̸= λ ui if ui ∈ ∂ Ui and λ ≥ 1;
(ii) Ti(u) ̸= λ ui if ui ∈ ∂ Vi and λ ≥ 1, and Ti(u) + µ hi ̸= ui if ui ∈ ∂ Ui and µ ≥ 0;

nd they must be satisfied over the set
(
U1 \ V1

)
×
(
U2 \ V2

)
.

Obviously, from Theorem 2.9 it follows immediately a new fixed point theorem in the line of Theorem 2.3.

9
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heorem 2.10. Assume that there exist continuous concave functionals φi : Ki → R+ such that
φi(u) ≤ ∥u∥ for all u ∈ Ki (i = 1, 2), the set K φ

r,R is nonempty, T = (T1, T2) : K
φ

r,R → K is a compact map
nd for each i ∈ {1, 2} there exists hi ∈ Ki \{0} such that one of the following conditions is satisfied in K

φ

r,R:

(a) Ti(u) + µ hi ̸= ui if φi(ui) = ri and µ ≥ 0, and Ti(u) ̸= λ ui if ∥ui∥ = Ri and λ ≥ 1;
(b) Ti(u) ̸= λ ui if φi(ui) = ri and λ ≥ 1, and Ti(u) + µ hi ̸= ui if ∥ui∥ = Ri and µ ≥ 0.

Then T has at least a fixed point u = (u1, u2) ∈ K with ri < φi(ui) and ∥ui∥ < Ri (i = 1, 2).

Remark 2.6. It seems hard to adapt the arguments in the original proof of Theorem 2.3 due to
Precup [25,26] to demonstrate Theorem 2.10. In particular, it may be difficult to reduce the expansive type
conditions to compressive ones, since there is no relation between the functional φi and the corresponding
norm. However, our reasonings, based on fixed point index theory, work similarly for both proofs.

As a consequence of the results above, we deduce a coexistence fixed point theorem in the spirit of [15,
Theorem 2.6] and [16, Theorem 2.9].

Corollary 2.1. Assume that there exist continuous concave functionals φi : Ki → R+, i = 1, 2, such that
φi(u) ≤ ∥u∥ for all u ∈ Ki and the functionals φi are monotone with respect to the order defined by Ki

(i.e., if v ⪯ w, then φi(v) ≤ φi(w) for v, w ∈ Ki), the set K φ
r,R is nonempty and T = (T1, T2) : K

φ

r,R → K is
a compact map such that the following conditions are satisfied in K

φ

r,R:

inf
φi(ui)=ri

φi (Ti(u)) > ri, sup
∥ui∥=Ri

∥Ti(u)∥ < Ri (i = 1, 2). (2.6)

Then, iK(T, K φ
r,R) = 1 and, in particular, T has at least a fixed point u = (u1, u2) ∈ K with ri < φi(ui)

nd ∥ui∥ < Ri (i = 1, 2).

roof. It suffices to check that for each i ∈ {1, 2} condition (i) in Theorem 2.9 holds.
Indeed, for any hi ∈ Ki \ {0} and any µ ≥ 0, we have that Ti(u) ⪯ Ti(u) + µ hi for u ∈ K

φ

r,R and, since
i is monotone with respect to the order defined by Ki,

φi(Ti(u) + µ hi) ≥ φi(Ti(u)).

hen, by (2.6), we have for every u ∈ K
φ

r,R with φi(ui) = ri that

φi(Ti(u) + µ hi) ≥ inf
φi(ui)=ri

φi (Ti(u)) > ri = φi(ui),

hich clearly implies Ti(u) + µ hi ̸= ui if φi(ui) = ri and µ ≥ 0. On the other hand, we have that

∥Ti(u)∥ ≤ sup
∥ui∥=Ri

∥Ti(u)∥ < Ri = ∥ui∥ ≤ ∥λ ui∥

or every u ∈ K
φ

r,R with ∥ui∥ = Ri and all λ ≥ 1. Hence, Ti(u) ̸= λ ui if ∥ui∥ = Ri and λ ≥ 1.
Therefore, Theorem 2.9 ensures that iK(T, K φ

r,R) = 1. Finally, the conclusion follows by the existence
roperty of the fixed point index. □

emark 2.7. We stress that in Corollary 2.1 (and also in [15, Theorem 2.6] and [16, Theorem 2.9]) both
perators T and T are compressive.
1 2

10
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.3. Multiplicity results: a three-solutions type fixed point theorem

Topological methods have been frequently employed to establish multiplicity results. For instance, we
ention the three-solutions fixed point theorems in cones due to Amann [1] and due to Leggett and
illiams [21], which are well-known and widely applied in the literature. By using the computations of

he fixed point index obtained in the previous section, we can easily derive a multiplicity result in this line.
For simplicity, we will restrict our comments here to compact operators defined in sets of the form Kr,R,

iven as above in terms of the corresponding norm. Obviously, similar conclusions can be obtained for
perators defined in other distinct regions where the previous computations of the fixed point index remain
alid, for instance those of type K

φ

r,R, defined by means of appropriated functionals.

heorem 2.11. Let X and Y be normed linear spaces, K1 ⊂ X and K2 ⊂ Y two cones, K := K1 ×K2 and
(j), R(j) ∈ R2

+, r(j) = (r(j)
1 , r

(j)
2 ), R(j) = (R(j)

1 , R
(j)
2 ), with 0 < r

(j)
i < R

(j)
i (i = 1, 2, j = 1, 2, 3). Assume

that the sets Kr(j),R(j) are such that

Kr(1),R(1) ∪ Kr(2),R(2) ⊂ Kr(3),R(3) and Kr(1),R(1) ∩ Kr(2),R(2) = ∅.

Moreover, assume that T = (T1, T2) : Kr(3),R(3) → K is a compact map and for each i ∈ {1, 2} and each
j ∈ {1, 2, 3} there exists hj

i ∈ Ki \ {0} such that one of the following conditions is satisfied in Kr(j),R(j) :

(a) Ti(u) + µ hj
i ̸= ui if ∥ui∥ = r

(j)
i and µ ≥ 0, and Ti(u) ̸= λ ui if ∥ui∥ = R

(j)
i and λ ≥ 1;

(b) Ti(u) ̸= λ ui if ∥ui∥ = r
(j)
i and λ ≥ 1, and Ti(u) + µ hi ̸= ui if ∥ui∥ = R

(j)
i and µ ≥ 0.

hen T has at least three distinct fixed points ū1, ū2 and ū3 such that

ū1 ∈ Kr(1),R(1) , ū2 ∈ Kr(2),R(2) and ū3 ∈ Kr(3),R(3) \
(

Kr(1),R(1) ∪ Kr(2),R(2)

)
.

roof. It follows from Theorems 2.5–2.7 that

iK

(
T, Kr(j),R(j)

)
= ±1 (j = 1, 2, 3). (2.7)

y the existence property of the fixed point index, one obtains that T has two fixed points ū1 ∈ Kr(1),R(1)

nd ū2 ∈ Kr(2),R(2) . Clearly, ū1 and ū2 are different, given that Kr(1),R(1) ∩ Kr(2),R(2) = ∅.
On the other hand, since Kr(1),R(1) ∪ Kr(2),R(2) ⊂ Kr(3),R(3) and Kr(1),R(1) ∩ Kr(2),R(2) = ∅, one has

Kr(3),R(3) \
(

Kr(1),R(1) ∪ Kr(2),R(2)

)
̸= ∅.

ence, the additivity property of the fixed point index combined with (2.7) imply that

iK

(
T, Kr(3),R(3) \

(
Kr(1),R(1) ∪ Kr(2),R(2)

))
= iK

(
T, Kr(3),R(3)

)
− iK

(
T, Kr(1),R(1)

)
− iK

(
T, Kr(2),R(2)

)
is an odd number and thus,

iK

(
T, Kr(3),R(3) \

(
Kr(1),R(1) ∪ Kr(2),R(2)

))
̸= 0.

herefore, the operator T has a third fixed point ū3 ∈ Kr(3),R(3) \
(

Kr(1),R(1) ∪ Kr(2),R(2)

)
. □

emark 2.8. We stress that both components of the three fixed points of T from Theorem 2.11 are nonzero.
nlike this, the multiplicity results in [15,16] only guarantee that one of the three solutions is a coexistence
xed point.
11
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.4. Comparison with classical results: Poincaré–Miranda theorem

In this section we show that the finite-dimensional version of Krasnosel’skĭı-Precup fixed point theorem is
quivalent to the classical Poincaré–Miranda theorem concerning the existence of a zero of a nonlinear map-
ing in a rectangle of Rn. Poincaré–Miranda theorem is the n-dimensional version of Bolzano intermediate
alue theorem and it is well-known its equivalence to Brouwer fixed point theorem (see [22] for historical
etails). It has received a renewed interest in recent years, see for instance [7,10,11,23,30] and the references
herein for some new versions, generalizations and applications of this result.

First of all, let us rewrite Theorem 2.4 in the particular case in which X = R with the usual norm ∥·∥ = |·|,
i = R+ (and thus K = Rn

+) and hi = 1 for every i ∈ {1, 2, . . . , n}.

heorem 2.12. Let r, R ∈ Rn
+, r = (r1, . . . , rn), R = (R1, . . . , Rn), with 0 < ri < Ri (i = 1, . . . , n).

Assume that f = (f1, . . . , fn) : Kr,R → Rn
+ is a continuous function and for each i ∈ {1, . . . , n} one of the

following conditions is satisfied in Kr,R:

(a) fi(x) ≥ xi if |xi| = ri, and fi(x) ≤ xi if |xi| = Ri;
(b) fi(x) ≤ xi if |xi| = ri, and fi(x) ≥ xi if |xi| = Ri.

hen f has at least a fixed point x̄ = (x̄1, . . . , x̄n) ∈ Rn
+ with ri ≤ |x̄i| ≤ Ri (i = 1, . . . , n).

emark 2.9. In this setting, the set Kr,R is the following rectangle in Rn
+: R = [r1, R1] × · · · × [rn, Rn].

urthermore, the points x = (x1, . . . , xn) ∈ Kr,R satisfying that |xi| = ri (respectively, |xi| = Ri) are in fact
hose with xi = ri (resp. xi = Ri).

Let us now recall the Poincaré–Miranda theorem. We shall see that it can be directly deduced from
heorem 2.12.

heorem 2.13 (Poincaré–Miranda). Let R = [a1, b1] × · · · × [an, bn] be a rectangle in Rn. Assume that
= (g1, . . . , gn) : R → Rn is a continuous function and for each i ∈ {1, . . . , n} one of the following conditions

s satisfied in R:

(a) gi(x) ≥ 0 if xi = ai, and gi(x) ≤ 0 if xi = bi;
(b) gi(x) ≤ 0 if xi = ai, and gi(x) ≥ 0 if xi = bi.

hen there exists x̄ ∈ R such that g(x̄) = 0.

roof. Let us divide the proof in two cases.
Case 1: ai > 0 for every i ∈ {1, 2, . . . , n}. Since g is a continuous function in the compact set R, it

s bounded. Then choose λ ∈ (0, 1) such that λ |gi(x)| ≤ a for all x ∈ R and all i ∈ {1, . . . , n}, with
:= min{a1, a2, . . . , an}. Now define the function f : R → Rn as follows

f(x) = λ g(x) + x.

Note that f(R) ⊂ Rn
+. Indeed, for a fixed i ∈ {1, . . . , n}, one has that λ gi(x) ≥ −a ≥ −ai for all x ∈ R

nd thus fi(x) = λ gi(x) + xi ≥ −ai + xi ≥ 0 for all x ∈ R. Moreover, condition (a) implies that

(a∗) fi(x) ≥ xi if xi = ai, and fi(x) ≤ xi if xi = bi,

and, similarly, it follows from (b) that

(b∗) f (x) ≤ x if x = a , and f (x) ≥ x if x = b .
i i i i i i i i
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ence, Theorem 2.12 ensures that f has a fixed point x̄ ∈ R, that is,

x̄ = f(x̄) = λ g(x̄) + x̄,

nd so x̄ is a zero of g.
Case 2: ai ≤ 0 for some i ∈ {1, 2, . . . , n}. A trivial translation moves the rectangle R to the interior of

n
+ and the conclusion follows then from Case 1. □

emark 2.10. Clearly, Theorem 2.12 can be seen as a consequence of Poincaré–Miranda existence theorem.
ndeed, assume that f : R → Rn

+ is a continuous function under the assumptions of Theorem 2.12 and let
: R → Rn be the continuous map defined by g(x) = x − f(x), x ∈ R. It follows from Poincaré–Miranda

heorem that g has a zero in R, which obviously is a fixed point of f .

. Applications

.1. Hammerstein systems

Consider the following system of Hammerstein type equations

u1(t) =
∫ 1

0
k1(t, s)g1(s)f1(u1(s), u2(s)) ds,

u2(t) =
∫ 1

0
k2(t, s)g2(s)f2(u1(s), u2(s)) ds,

(3.8)

where I := [0, 1] and for each i ∈ {1, 2} the following assumptions are satisfied:

H1) the kernel ki : I2 → R+ is continuous;
H2) the function gi : I → R+ is measurable;
H3) there exist an interval [a, b] ⊂ I and a function Φi : I → R+ such that

Φi gi ∈ L1(I),
∫ b

a

Φi(s)gi(s) ds > 0,

and a constant ci ∈ (0, 1] satisfying

ki(t, s) ≤ Φi(s) for all t, s ∈ I,
ci Φi(s) ≤ ki(t, s) for all t ∈ [a, b], s ∈ I;

H4) the function fi : R2
+ → R+ is continuous.

Let us consider the Banach space of continuous functions X = C(I) endowed with the usual maximum
norm ∥v∥∞ = maxt∈I |v(t)| and the cones

Ki =
{

v ∈ C(I) : v(t) ≥ 0 for all t ∈ I and min
t∈[a,b]

v(t) ≥ ci ∥v∥∞

}
(i = 1, 2).

In order to prove the existence of positive solutions of the system of integral Eqs. (3.8), we look for fixed
points of the operator T : K → K, T = (T1, T2), defined as

Ti(u1, u2)(t) :=
∫ 1

0
ki(t, s)gi(s)fi(u1(s), u2(s)) ds (i = 1, 2), (3.9)

where K := K1 ×K2 is a cone in X2. Under assumptions (H1)–(H4), it can be proven by means of standard
arguments (see, for instance, [9,14]) that T maps the cone K into itself and it is completely continuous,

i.e., T is continuous and maps bounded sets into relatively compact ones.

13



J. Rodríguez–López Nonlinear Analysis 226 (2023) 113138

u

µ

c

a

(
T

T

Now, let us fix some notations:

Ai := inf
t∈[a,b]

∫ b

a

ki(t, s)gi(s) ds, Bi := sup
t∈I

∫ 1

0
ki(t, s)gi(s) ds (i = 1, 2).

In addition, for αi, βi > 0, αi ̸= βi, i = 1, 2, denote

mα,β
1 := min{f1(u1, u2) : c1 β1 ≤ u1 ≤ β1, c2 r2 ≤ u2 ≤ R2},

mα,β
2 := min{f2(u1, u2) : c1 r1 ≤ u1 ≤ R1, c2 β2 ≤ u2 ≤ β2},

Mα,β
1 := max{f1(u1, u2) : 0 ≤ u1 ≤ α1, 0 ≤ u2 ≤ R2},

Mα,β
2 := max{f2(u1, u2) : 0 ≤ u1 ≤ R1, 0 ≤ u2 ≤ α2},

where ri := min{αi, βi} and Ri := max{αi, βi}.
We are in a position to establish an existence result for the system of Hammerstein type Eqs. (3.8) as a

consequence of Theorem 2.8.

Theorem 3.1. Assume that conditions (H1)–(H4) are fulfilled. Moreover, suppose that there exist positive
numbers αi, βi > 0 with αi ̸= βi, i = 1, 2, such that

Ai mα,β
i > βi, Bi Mα,β

i < αi (i = 1, 2). (3.10)

Then the system (3.8) has at least one positive solution (u1, u2) ∈ K such that ri < ∥ui∥∞ < Ri (i = 1, 2).

Proof. Consider the operator T : Kr,R → K, T = (T1, T2), defined as in (3.9). Let us check that for every
= (u1, u2) ∈ Kr,R and i ∈ {1, 2} the following conditions are satisfied:

(1) Ti(u) + µ111 ̸= ui if ∥ui∥∞ = βi and µ ≥ 0 (where 111 denotes the constant function equal to one);
(2) Ti(u) ̸= λ ui if ∥ui∥∞ = αi and λ ≥ 1.

First, to prove (1), assume to the contrary that there exist u = (u1, u2) ∈ Kr,R with ∥ui∥∞ = βi and
≥ 0 such that Ti(u) + µ111 = ui. Then we have

ui(t) =
∫ 1

0
ki(t, s)gi(s)fi(u(s)) ds + µ.

Since u ∈ Kr,R with ∥ui∥∞ = βi, it follows from the definition of the cone K that ci βi ≤ ui(t) ≤ βi and
j rj ≤ uj(t) ≤ Rj (j ̸= i) for all t ∈ [a, b]. Hence, for t ∈ [a, b], we deduce from (3.10) that

ui(t) ≥
∫ b

a

ki(t, s)gi(s)fi(u(s)) ds ≥ mα,β
i

∫ b

a

ki(t, s)gi(s) ds ≥ Ai mα,β
i > βi,

contradiction.
Now, let us show that ∥Ti(u)∥∞ < αi for all u ∈ Kr,R with ∥ui∥∞ = αi, which clearly implies property

2). Note that, if u ∈ Kr,R with ∥ui∥∞ = αi, then 0 ≤ ui(t) ≤ αi and 0 ≤ uj(t) ≤ Rj (j ̸= i) for all t ∈ I.
hus, we get, for t ∈ I,

Ti(u)(t) =
∫ 1

0
ki(t, s)gi(s)fi(u(s)) ds ≤ Mα,β

i

∫ 1

0
ki(t, s)gi(s) ds ≤ Bi Mα,β

i .

aking the maximum over I and applying condition (3.10), we obtain ∥Ti(u)∥∞ ≤ Bi Mα,β
i < αi.

Finally, the result follows from Theorem 2.8 with r = min{α , β } and R = max{α , β }. □
i i i i i i
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emark 3.1. When we have additional information concerning the monotonicity of the nonlinearities f1
and f2, we may rewrite condition (3.10) in terms of the values of f1 and f2 at certain points. For instance,
if f1 and f2 are nondecreasing on [0, R1] × [0, R2], then (3.10) is equivalent to

A1 f1(c1 β1, c2 r2) > β1, B1 f1(α1, R2) < α1,

A2 f2(c1 r1, c2 β2) > β2, B2 f2(R1, α2) < α2.

Now we will apply Theorem 2.11 in order to give sufficient conditions for the existence of at least three
ositive solutions for the system (3.8).

heorem 3.2. Assume that conditions (H1)–(H4) hold. Moreover, suppose that there exist αj
i , βj

i > 0 with
j
i ̸= βj

i , i = 1, 2, j = 1, 2, 3, such that α1
i , α2

i , β1
i , β2

i ∈ [r3
i , R3

i ] for i ∈ {1, 2}, there exists i ∈ {1, 2} such that
1
i < r2

i , where rj
i := min{αj

i , βj
i } and Rj

i := max{αj
i , βj

i }, and

Ai mαj ,βj

i > βj
i , Bi Mαj ,βj

i < αj
i (i = 1, 2, j = 1, 2, 3). (3.11)

hen the system (3.8) has at least three positive solutions.

roof. Consider the operator T : Kr3,R3 → K, T = (T1, T2), defined as in (3.9).
Since α1

i , α2
i , β1

i , β2
i ∈ [r3

i , R3
i ] for i ∈ {1, 2}, we have that Kr1,R1 ∪ Kr2,R2 ⊂ Kr3,R3 . In addition, the

xistence of some i ∈ {1, 2} such that R1
i < r2

i clearly implies that Kr1,R1 ∩ Kr2,R2 = ∅.
Finally, conditions (a) and (b) in Theorem 2.11 can be verified by using the inequalities given in (3.11)

nd completely analogous reasonings to those in the proof of Theorem 3.1. Therefore, we reach the thesis as
consequence of Theorem 2.11. □

xample 3.1. Consider the following system of second-order equations with Dirichlet boundary conditions

−u′′
1 = f1(u1, u2),

−u′′
2 = f2(u1, u2),

u1(0) = u1(1) = 0 = u2(0) = u2(1),
(3.12)

ith f1(u1, u2) = h(u1)(1 + sin2(u2)), f2(u1, u2) = u2
2(1 + sin2(u1)) and

h(u1) =

⎧⎨⎩
3√u1, if u1 ∈ [0, 1],
u1

3, if u1 ∈ (1, 10),
3√u1 − 10 + 1000, if u1 ∈ [10, +∞).

We can associate to (3.12) a system of Hammerstein type equations of the form (3.8) where the kernels
re given by the corresponding Green’s function

k1(t, s) = k2(t, s) =
{

s(1 − t), if s ≤ t,
t(1 − s), if s > t,

nd g1(t) = g2(t) = 1 for all t ∈ I. It is well-known (see, for instance, [14]) that condition (H3) holds if we
ake

Φi(s) = s(1 − s), [a, b] = [1/4, 3/4], ci = 1/4 (i = 1, 2).

This choice leads to Ai = 1/16 and Bi = 1/8 for i = 1, 2.
Now, it is a routine to check that condition (3.11) is satisfied with β1

1 = β3
1 = 2−9, α1

1 = 2−2, β2
1 = 26,

α2
1 = α3

1 = 29 + 10, αj
2 = 2 and βj

2 = 29 for j = 1, 2, 3. Therefore, Theorem 3.2 guarantees that the system
(3.12) has at least three positive solutions (u1, u2), (v1, v2) and (w1, w2) with the following localizations

1
< ∥u1∥ <

1
, 2 < ∥u2∥ < 512,
512 ∞ 4 ∞

15
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64 < ∥v1∥∞ < 522, 2 < ∥v2∥∞ < 512,

1
4 ≤ ∥w1∥∞ ≤ 64, 2 < ∥w2∥∞ < 512.

e emphasize that the second component of all the three solutions is situated in the same region, so the
ultiplicity is obtained due to we are able to localize their first component in distinct sets.

.2. Radial solutions of (p1, p2)-Laplacian systems

In this section, we consider the existence of positive radial solutions for the (p1, p2)-Laplacian system

−∆p1u = f1(u, v) in B,
−∆p2v = f2(u, v) in B,

u = 0 = v on ∂B,
(3.13)

here ∆pu = div
(

∥∇u∥p−2 ∇u
)

, B is the unit open ball in Rn centered at origin, p1, p2 > n ≥ 2 and
1, f2 : R2

+ → R+ are continuous and nondecreasing functions (that is, if (u1, v1), (u2, v2) ∈ R2
+ with u1 ≤ u2

and v1 ≤ v2, then fi(u1, v1) ≤ fi(u2, v2) for i = 1, 2).
Setting, as usual, r = ∥x∥, u(x) = u1(r) and v(x) = u2(r), the Dirichlet system (3.13) is reduced to the

following system of ordinary differential equations with mixed boundary conditions

−
[
rn−1ϕp1(u′

1)
]′ = rn−1f1(u1, u2) in (0, 1),

−
[
rn−1ϕp2(u′

2)
]′ = rn−1f2(u1, u2) in (0, 1),

u′
1(0) = u1(1) = 0 = u′

2(0) = u2(1),
(3.14)

here ϕp(t) := |t|p−2
t is the p-Laplacian homeomorphism. We will look for positive solutions of (3.14), that

s, radially symmetric solutions of (3.13).
A Harnack type inequality has been established in [28] for problem

−
[
rn−1ϕp(v′)

]′ = rn−1h(r, v) in (0, 1), v′(0) = v(1) = 0,

n terms of the energetic norm. By using Hölder inequality, one can derive a Harnack type inequality in
erms of the usual max-norm, see [13]. The result can be summarized as follows.

emma 3.1. Let p > n. Every function v ∈ C1 [0, 1] with rn−1ϕp(v′) ∈ C1 [0, 1] and
[
rn−1ϕp(v′)

]′ ≤ 0 on
0, 1] satisfies that v′ ≤ 0 on [0, 1]. If, in addition, −r1−n

[
rn−1ϕp(v′)

]′ is nonincreasing on (0, 1], then

v (r) ≥ p − n

p − 1 (1 − r) r
n

p−1 ∥v∥∞ , r ∈ [0, 1] .

Let us consider the following cones in the space of continuous functions C(I), with I := [0, 1],

Ki =
{

v ∈ C(I) : v ≥ 0 on I, v is nonincreasing on I and min
r∈[a,b]

v(r) ≥ ci ∥v∥∞

}
(i = 1, 2),

where [a, b] ⊂ (0, 1) and ci := pi−n
pi−1 (1 − b) a

n
pi−1 , i = 1, 2. As before, we define the cone K := K1 × K2 in

he product space.
We will look for positive solutions of problem (3.14) as fixed points of the operator T = (T1, T2) : K → K

efined as
Ti(u1, u2)(r) =

∫ 1

r

ϕ−1
pi

(
1

sn−1

∫ s

0
τn−1fi(u1(τ), u2(τ)) dτ

)
ds, (i = 1, 2). (3.15)

The operator T is well-defined, that is, it maps the cone K into itself. Indeed, take u = (u1, u2) ∈ K

nd let us show that v := T (u) ∈ K , for i = 1, 2. Clearly, v ∈ C(I) and v ≥ 0 on I, since f is
i i i i i i

16
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ontinuous and nonnegative. Moreover,
[
rn−1ϕpi

(v′
i)
]′ ≤ 0 on I, so vi is nonincreasing on I, as a consequence

f Lemma 3.1. On the other hand, u1 and u2 are nonincreasing and fi is nondecreasing, which implies that
he map r ↦→ fi(u1(r), u2(r)) is nonincreasing on I and then so is −r1−n

[
rn−1ϕpi

(v′
i)
]′ = fi(u1(r), u2(r)).

ence, again by Lemma 3.1, one has that minr∈[a,b] vi(r) ≥ ci ∥vi∥∞. In conclusion, vi ∈ Ki, as desired.
It is a routine to check that T is completely continuous.
Now, let us define a continuous concave functional on Ki, φi : Ki → R+, as follows

φi(v) = min
r∈[a,b]

v(r), i = 1, 2.

e intend to apply Theorem 2.10 in order to obtain sufficient conditions for the existence of fixed points of
located in a set of the form K φ

r,R. Note that this set can also be written as K φ
r,R = (U1 \ V 1) × (U2 \ V 2),

here
Vi =

{
u ∈ Ki : min

r∈[a,b]
u(r) < ri

}
, Ui = {u ∈ Ki : ∥u∥∞ < Ri} (i = 1, 2).

he bounded open sets Vi were introduced by Lan in [19] and later employed by several authors, see [14]
nd the references therein.

heorem 3.3. Assume that there exist αi, βi > 0 with βi/ci < αi, i = 1, 2, such that

fi(β1, β2) >
β

pi−1
i

(b − a)an−1(1 − b)pi−1 , fi(α1, α2) < α
pi−1
i (i = 1, 2). (3.16)

hen the system (3.14) has at least one positive solution (u1, u2) ∈ K such that

βi < φi(ui) and ∥ui∥∞ < αi, i = 1, 2.

roof. Consider the operator T = (T1, T2) : K
φ

r,R → K defined as in (3.15), with ri = βi and Ri = αi,
= 1, 2. Let us check that it fulfills the assumptions of Theorem 2.10.

First, fix i ∈ {1, 2} and take u = (u1, u2) ∈ K
φ

r,R with φi(ui) = ri. Then (u1(r), u2(r)) ≥ (r1, r2) for all
∈ [a, b] and thus, by the monotonicity assumption on fi, we have that fi(u1(r), u2(r)) ≥ fi(r1, r2) for all
∈ [a, b]. Hence, for r ∈ [a, b],

Ti(u)(r) ≥
∫ 1

b

ϕ−1
pi

(
1

sn−1

∫ s

0
τn−1fi(u1(τ), u2(τ)) dτ

)
ds

≥
∫ 1

b

ϕ−1
pi

(
1

sn−1

∫ b

a

τn−1fi(u1(τ), u2(τ)) dτ

)
ds

≥
∫ 1

b

ϕ−1
pi

(
1

sn−1

∫ b

a

τn−1fi(r1, r2) dτ

)
ds

≥ (1 − b)ϕ−1
pi

(
(b − a)an−1fi(r1, r2)

)
> ri,

here the last inequality follows from (3.16). This clearly implies that Ti(u) + µ111 ̸= ui if u ∈ K
φ

r,R with
i(ui) = ri and µ ≥ 0.
Suppose now that u ∈ K

φ

r,R with ∥ui∥ = Ri for some i ∈ {1, 2}. Then fi(u1(r), u2(r)) ≤ fi(R1, R2) for
very r ∈ I and so, by (3.16), we have

∥Ti(u)∥∞ ≤
∫ 1

0
ϕ−1

pi

(
1

sn−1

∫ s

0
τn−1fi(u1(τ), u2(τ)) dτ

)
ds ≤ ϕ−1

pi
(fi(R1, R2)) < R1.

herefore, alternative (a) in Theorem 2.10 holds and hence we reach the thesis. □
17
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emark 3.2. Assumption (3.16) is guaranteed by the following asymptotic conditions: for every i ∈ {1, 2},

lim
ui→0

fi(u1, u2)
u

pi−1
i

= +∞ and lim
ui→∞

fi(u1, u2)
u

pi−1
i

= 0

niformly with respect to uj , j ̸= i.
In this case, it is said that both functions f1 and f2 are superlinear at 0 and sublinear at infinity with

espect to ϕp1 and ϕp2 , respectively.

emark 3.3. Under the assumptions of Theorem 3.3, both operators T1 and T2 are compressive. Notice
hat the behaviors compressive–expansive and expansive–expansive are also possible:

1. (Compressive–expansive) Assume that there exist αi, βi > 0, i = 1, 2, with β1/c1 < α1 and α2 < β2,
such that

f1(β1, c2 α2) >
βp1−1

1
(b − a)an−1(1 − b)p1−1 , f1(α1, β2/c2) < αp1−1

1 ,

f2(β1, β2) >
βp2−1

2
(b − a)an−1(1 − b)p2−1 , f2(α1, α2) < αp2−1

2 .

Then the operator T = (T1, T2) defined as in (3.15) has at least one fixed point in
(
U1 \ V1

)
×
(
U2 \ V2

)
,

where
V1 = {u ∈ K1 : φ1(u) < β1}, U1 = {u ∈ K1 : ∥u∥∞ < α1},
V2 = {u ∈ K2 : ∥u∥∞ < α2} , U2 = {u ∈ K2 : φ2(u) < β2}.

In this case, the operator T1 is compressive and T2 is expansive on
(
U1 \ V1

)
×
(
U2 \ V2

)
.

2. (Expansive–expansive) Assume that there exist αi, βi > 0, with αi < βi, i = 1, 2, such that

f1(β1, c2 α2) >
βp1−1

1
(b − a)an−1(1 − b)p1−1 , f1(α1, β2/c2) < αp1−1

1 ,

f2(c1 α1, β2) >
βp2−1

2
(b − a)an−1(1 − b)p2−1 , f2(β1/c1, α2) < αp2−1

2 .

Then the operator T = (T1, T2) has at least one fixed point in
(
U1 \ V1

)
×
(
U2 \ V2

)
, where

Vi = {u ∈ Ki : ∥u∥∞ < αi} , Ui = {u ∈ Ki : φi(u) < βi} (i = 1, 2).

Note that both operators T1 and T2 are of expansive type on
(
U1 \ V1

)
×
(
U2 \ V2

)
.

The conclusion can be obtained essentially as in the proof of Theorem 3.3, taking into account Remark 2.5.
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