
Future Generation Computer Systems 134 (2022) 123–139

C
C

D
c
a
s
w
n
o
e
b
p
e
m
I
g
C
S
a

j

h
0

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

A unified framework to improve the interoperability betweenHPC and
Big Data languages and programmingmodels✩

ésar Piñeiro ∗, Juan C. Pichel
entro Singular de Investigación en Tecnoloxías Intelixentes (CiTIUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain

a r t i c l e i n f o

Article history:
Received 30 November 2021
Received in revised form 9 March 2022
Accepted 5 April 2022
Available online 11 April 2022

Keywords:
Big Data
HPC
MPI
Multi-language
Programming models

a b s t r a c t

One of the most important issues in the path to the convergence of HPC and Big Data is caused by
the differences in their software stacks. Despite some research efforts, the interoperability between
their programming models and languages is still limited. To deal with this problem we introduce a
new computing framework called IgnisHPC, whose main objective is to unify the execution of Big
Data and HPC workloads in the same framework. IgnisHPC has native support for multi-language
applications using JVM and non-JVM-based languages. Since MPI was used as its backbone technology,
IgnisHPC takes advantage of many communication models and network architectures. Moreover, MPI
applications can be directly executed in an efficient way in the framework. The main consequence
is that users could combine in the same multi-language code HPC tasks (using MPI) with Big Data
tasks (using MapReduce operations). The experimental evaluation demonstrates the benefits of our
proposal in terms of performance and productivity with respect to other frameworks. IgnisHPC is
publicly available for the Big Data and HPC research community.

© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The unification of High Performance Computing (HPC) and Big
ata has received increasing attention in the last years. It is a
ommon belief that exascale computing and Big Data are closely
ssociated since HPC requires processing large-scale data from
cientific instruments and simulations. But, at the same time, it
as observed that tools and cultures of HPC and Big Data commu-
ities differ significantly [1]. One of the most important sources
f divergence comes from the differences between their software
cosystems. In this way, HPC applications have traditionally been
ased on MPI (Message Passing Interface) to support inter-node
arallel execution, and based on OpenMP or other alternatives to
xploit intra-node parallelism. However, Big Data programming
odels are based on interfaces like Hadoop [2] or Spark [3].

n addition to different programming models, programming lan-
uages also differ between both communities: being Fortran and
/C++ the most common languages in HPC applications, and Java,
cala, or Python being the most common languages in Big Data
pplications.

✩ This work has been supported by MICINN, Spain (RTI2018-093336-B-C21,
PLEC2021-007662), Xunta de Galicia, Spain (ED431G/08, ED431G-2019/04 and
ED431C-2018/19) and the European Regional Development Fund (ERDF).

∗ Corresponding author.
E-mail addresses: cesaralfredo.pineiro@usc.es (C. Piñeiro),

uancarlos.pichel@usc.es (J.C. Pichel).
ttps://doi.org/10.1016/j.future.2022.04.002
167-739X/© 2022 The Authors. Published by Elsevier B.V. This is an open access ar
This divergence between programming models and languages
sets out a convergence problem, not only related to the interoper-
ability of the applications but also to the interoperability between
data formats from different programming languages [4]. In this
scenario, we need to consider how to build end-to-end workflows
where, for example, simulations can be MPI applications written
in Fortran or C/C++, and the analytics codes can be written in Java
or Python (maybe parallelized by a Big Data framework).

In this work we introduce a new computing framework called
IgnisHPC1 to deal with that issue. The main goal of IgnisHPC is
to unify in the same framework the development, combination
and execution of HPC and Big Data applications using different
languages and programming models. With this objective in mind,
we can summarize the main contributions of IgnisHPC as follows:

– Unlike other frameworks such as Hadoop and Spark, Ig-
nisHPC supports natively both JVM and non-JVM-based lan-
guages. Applications can be implemented using one or sev-
eral programming languages following an API inspired by
Spark’s one.

– IgnisHPC uses MPI as backbone technology, which allows
the framework to support many communication models
and network architectures. In addition, MPI applications and
libraries can be directly executed in an efficient way in Ig-
nisHPC. In this way, most of the HPC scientific applications,

1 It is publicly available at https://github.com/ignishpc.
ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.future.2022.04.002
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2022.04.002&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:cesaralfredo.pineiro@usc.es
mailto:juancarlos.pichel@usc.es
https://github.com/ignishpc
https://doi.org/10.1016/j.future.2022.04.002
http://creativecommons.org/licenses/by/4.0/

C. Piñeiro and J.C. Pichel Future Generation Computer Systems 134 (2022) 123–139

p
S
n
t
I
f
S
d

2

2

f
o
s
I
t
c
t
r

H
N

which in many cases contain tens of thousands of lines of
code, do not have to be ported to a new API or programming
model. Nowadays, to the best of our knowledge, there is no
other Big Data framework with that feature.

– In IgnisHPC, MPI codes can be easily combined with typ-
ical MapReduce operations to create hybrid applications.
Therefore, users can use the programming models that best
fit their data-intensive and compute-intensive tasks in the
same application.

– A thorough experimental evaluation has been carried out
to demonstrate the benefits of IgnisHPC in terms of perfor-
mance and productivity. The study showed that IgnisHPC
clearly outperforms Spark when considering different types
of Big Data application patterns. Moreover, we proved that
running MPI (and hybrid MPI+OpenMP) applications from
IgnisHPC is easy and as efficient as executing them natively.

– To avoid dependencies, IgnisHPC is fully containerized and
supports some of the most well-known resource and sched-
uler managers.

The remainder of this paper is organized as follows. Section 2
rovides some context about Big Data and HPC technologies.
ection 3 explains in detail the architecture and modules of Ig-
isHPC. Section 4 describes how to implement applications using
he IgnisHPC API. Section 5 focuses on the integration of MPI in
gnisHPC, and how MPI applications can be executed within the
ramework. The experimental evaluation is shown in Section 6.
ection 7 discusses the related work. Finally, the main conclusions
erived from this work are explained.

. Background

.1. Big data frameworks

MapReduce is a programming model introduced by Google
or processing and generating large data sets on a huge number
f computing nodes [5]. Apache Hadoop [2] was the first open-
ource implementation of the MapReduce programming model.
t was widely adopted by both industry and academia, thanks
o that simple yet powerful programming model that hides the
omplexity of parallel task execution and fault-tolerance from
he users. However, most applications do not fit this model and
equire a more general data orchestration.

Apache Spark [3] was designed to overcome some of the
adoop limitations, especially when considering iterative jobs.
owadays Spark is considered the de-facto standard for Big Data

processing. Unlike Hadoop, Spark uses Resilient Distributed
Datasets (RDDs) which implement in-memory data structures
used to cache intermediate data across a set of nodes. Since
RDDs can be kept in memory, algorithms can iterate over RDD
data many times very efficiently. In addition, Spark provides
many attractive features such as fault-tolerance, as RDDs can be
regenerated through lineage when compute nodes are lost. Spark
uses a thread-based worker model for executing the tasks. In this
way, a Spark job is controlled by a driver program, which usually
runs in a separate master node. On the other hand, the parallel
regions in the driver program are shipped to the cluster to be
executed.

Spark is implemented in Scala and also has interfaces to ex-
ecute Java, Python and R applications. Both Hadoop and Spark
are capable of running codes written in other programming lan-
guages, but they suffer performance issues since they require
sharing data outside the Java Virtual Machine (JVM) through sys-
tem pipes [6]. Contrary to the common belief, this behavior also
applies to Python in Spark because, while the Python driver code

can be executed within the JVM thanks to Jython [7], executors

124
are directly executed with the available Python interpreter. As a
consequence, the performance of Python codes is affected like any
non-JVM language such as C++ .

In our previous work [8], we introduced Ignis, a first at-
tempt to build an efficient and scalable multi-language Big Data
framework. Despite being a prototype, Ignis has two significant
contributions with respect to Spark. First, it allows to execute
natively applications implemented using non-JVM languages such
as Python and C/C++. Second, it supports multi-language ap-
plications, so different computing tasks could be implemented
in the programming language that best suits them. However,
there are also some important limitations as the following. For
instance, Ignis is restricted to use TCP sockets for inter-node
communication, so it is not possible to take advantage of typ-
ical HPC networks such as Infiniband, Aries [9], Slingshot [10],
TofuD [11], etc. Another issue is that Ignis only supports one data
partition per worker (executor). As a consequence, in order to
work with big datasets, it is necessary to create new workers,
which causes a degradation in the I/O performance. Ignis is com-
pletely containerized, but it uses a very limited ad-hoc solution
for containers orchestration (named Ancoris). And finally, there
was no submitter in Ignis, so jobs are manually launched using
several configuration scripts.

2.2. MPI

Message Passing Interface (MPI) is the most widely used and
dominant programming model in HPC. In MPI, processes make
explicit calls to library routines defined by the MPI standard
to communicate data between two or more processes. These
routines include both point-to-point (two party) and collective
(many party) communication. Note that from MPI-3 new features
were introduced to enable MPI processes within an SMP node
to collectively allocate shared memory for direct load and store
operations, which enables the shared-memory-processes to more
efficiently share data.

Among the different MPI implementations, the most success-
ful ones are MPICH [12] and Open-MPI [13]. In particular, Ig-
nisHPC uses MPICH as backbone technology to perform all the
communications between processes, which allows the framework
to support many communication models and network architec-
tures (e.g. Infiniband, Slingshot, etc.). As we will explain later,
one of the most important consequences of this design decision
is that IgnisHPC can efficiently execute native MPI applications.
Therefore, it is not necessary to port MPI applications using a
different API. In this way, IgnisHPC is able to bring together the
benefits of HPC and Big Data worlds into the same framework.

We have considered MPICH instead of other MPI implemen-
tations because it is a mature project and provides several im-
portant features that are critical in a Big Data environment. For
example, it is possible to join processes dynamically. It means
that MPICH allows to connect independent instances of an MPI
process at runtime, which is essential for increasing the number
of processes when more parallelism is needed or for replacing lost
processes when a computing node fails.

2.3. Resource managers and schedulers

In a Big Data environment, it is necessary to manage and
balance the cluster resources to allow multiple applications and
frameworks to be efficiently executed together on the same
system. That is the goal of resource managers such as Apache
Mesos [14] and Nomad [15].

In particular, Apache Mesos groups all the physical resources
of each node of the cluster and make them available for the

applications as a single pool of resources. Among the features

C. Piñeiro and J.C. Pichel Future Generation Computer Systems 134 (2022) 123–139

e
w
f
r
a

j
u
t
s
t
e
A
i
i
f
t
m
s
r

r
s
t

3

c
p
t
a
l

t

Fig. 1. Scheme of the architecture of IgnisHPC.

of Mesos we can highlight that it provides resource isolation
thanks to its support to Docker containers [16]. So, it allows the
execution of jobs in a custom independent environment both in
terms of resources and installed software.

Users cannot interact directly with Mesos because it is only
a resource planner, so an orchestration framework is required to
run and schedule tasks. We can find many orchestration frame-
works depending on the type of tasks to be executed. In this
work we have considered two of the most relevant, Apache
Marathon [17] and Apache Singularity [18], which both support
Docker containers orchestration.

Finally, Nomad is a simple workload orchestrator created by
HashiCorp. Its flexible and consolidated workflow provides users
the functionality of both a resource and a scheduler manager,
combined into a single system. Nomad is a modern alternative
to Mesos and also supports containerized and non-containerized
applications with different life cycle. Unlike old legacy platforms,
it is prepared for running heterogeneous applications and using
accelerators such as GPUs in a simple way.

3. IgnisHPC

3.1. Architecture of the framework

We can divide the IgnisHPC architecture into four independent
modules which run inside Docker containers: Submitter, Back-
nd, Driver and Executor. A scheme is shown in Fig. 1. Modules
ere implemented in different languages, using Apache Thrift2

or the inter-module communications. In the figure, thin arrows
epresent those RPC communications, bold arrows data transfers,
nd numbers indicate the call order.
The Submitter module is in charge of launching the IgnisHPC

obs (1) making a request to the resource manager (and sched-
ler), which is an external dependency that is responsible of
he containers orchestration and the management of their re-
ources. Afterwards, the driver container is started (2), where
he Driver module is the container entrypoint. That module
xposes all the available features of IgnisHPC through a user
PI created as interface to the Backend, where the API logic is
mplemented as a service (3). The Backend module is started
nside the driver container after the driver code initializes the
ramework. Since Driver and Backend are in the same container,
hey share the same resources. The Backend is responsible of
aking the requests to the resource manager following the in-
tructions specified in the driver code (4). As a consequence, the
esource manager will create the executor containers (5). The

2 https://thrift.apache.org
 b

125
Executor module contains the low-level implementation of a
set of operations required by the Backend for each supported
programming language. Note that IgnisHPC uses an SSH tunnel
to connect driver and executor containers to encrypt and protect
the communications. Finally, the Backend is connected to the
executors in order to perform the low-level API operations (6).
It is important to highlight that the Driver is also considered an
executor by the Backend to handle data transfers. Note that only
large data transfers are performed using MPI, otherwise RPC is
used.

There are important architectural differences between
IgnisHPC and Ignis [8], our first prototype of a multi-language
Big Data framework. Changes performed to IgnisHPC focused on
emoving some important limitations and performance issues
hown by Ignis (see Section 2.1). Among them we can highlight
he following:

– One of the main goals of IgnisHPC is to unify the execution
of Big Data and HPC workloads in the same framework.
For this reason data transfers in IgnisHPC (bold arrows in
Fig. 1) are performed using MPI. It has enormous advantages
over the inter-node communications with TCP sockets used
by Ignis. First, IgnisHPC supports many different commu-
nication models and network architectures (e.g. Infiniband,
Slingshot, etc.). In this way, it covers the characteristics of
the vast majority of Big Data and/or HPC clusters. Moreover,
MPI applications and libraries can be directly executed in
IgnisHPC. It means that HPC scientific applications, which
in many cases contain tens of thousands of lines of code,
do not have to be ported to the IgnisHPC API. And finally,
it is possible to combine in the same multi-language code
HPC tasks (using MPI) with Big Data tasks (using MapReduce
operations).

– IgnisHPC has a new Submitter module that handles jobs
using an external resource manager. This module includes a
submit script, similar to Spark’s spark-submit, that allows
users to easily launch IgnisHPC jobs. On the contrary, jobs
in Ignis are manually configured and launched using several
scripts. There is no Submitter module in its architecture.

– Ignis used a Manager module (one per executor container)
that acted as middleman between the Backend module
and the executors. To be more efficient, IgnisHPC removed
that module and its functionalities were adopted by the
Backend.

– IgnisHPC supports some of the most well-known resource
and scheduler managers. In addition, it was designed to
easily add new managers. However, Ignis is bonded to work
only with an ad-hoc manager, which has limited function-
alities.

.2. Jobs in the framework

It is important to know the structure of an IgnisHPC job. It
onsists of a set of Docker containers distributed in multiple com-
uting nodes grouped in Clusters (see Fig. 2). Workers are bonded
o a single programming language and run inside a Cluster, so
t least one Worker has to be created for each programming
anguage in order to build multi-language applications. A Worker
instantiates at least one process (executor) on each Docker con-
tainer with the aim of executing its tasks in parallel, processing
them as a pipeline.

Clusters are independent, each one has its own assigned re-
sources, so they can execute different tasks at the same time.
Using multiple Clusters could be useful if stages or phases of
he job have some compatibility issues. In this way, incompati-

le phases would be executed by differently configured Clusters.

https://thrift.apache.org

C. Piñeiro and J.C. Pichel Future Generation Computer Systems 134 (2022) 123–139

H
d
a
r
t

3

i
f

I
l
i
C
B
p
h
S

3

D
s
t
f

t
i
s
g
i
g
A
a
w
T
d
a

n
B
a
p
d
t
d

3

t
i
l
p
A
I
t
p

Fig. 2. Job hierarchy in the IgnisHPC framework.

owever, Workers can be executed in shared mode (disabled by
efault). It means that executors of two or more Workers, which
re located in the same container, would share the available
esources. Normally users configure each Worker to use a part of
he Cluster resources (e.g. cores, memory, etc.).

.3. Resource manager

Since IgnisHPC must be executed inside Docker containers, a
resource and scheduler manager is required to handle the cluster
resources and launch these containers. Note that any framework
that meets these requirements could be used in IgnisHPC by
mplementing a basic interface. Currently IgnisHPC supports the
ollowing managers:

– Docker: It is the easiest way to run IgnisHPC locally on a
single machine. It uses the Docker client to directly launch
containers.

– Ancoris [8]: This is the only one supported by Ignis and it
was designed as a simple and light resource manager. It exe-
cutes itself inside Docker containers and is composed of two
types of instances: master and slaves. The master manages
the available resources in the cluster, and it is responsible
of launching the containers. Slaves expose the resources of
their host to the master when they are deployed.

– Mesos+Marathon: Since Spark supports Mesos, using it as
resource manager together with Marathon as container or-
chestrator allows users to execute in a single environment
Spark and IgnisHPC jobs. In addition, since IgnisHPC is able
to execute efficiently Big Data and MPI-based applications,
we are merging both Big Data and HPC software ecosystems
in just one execution environment.

– Mesos+Singularity: The same benefits commented above ap-
ply to the combination of Mesos and Singularity.

– Nomad: It combines in the same framework a resource and a
scheduler manager. Due to its lack of dependencies, it is the
best option to install in a cluster from scratch. Moreover, it
has better support for devices like GPUs than Mesos, which
allows to create heterogeneous execution environments.

It is important to highlight that the cost of deploying Docker
containers is very low. For instance, considering Nomad, it is
possible to deploy thousands of Docker containers in just a few
seconds.3

3 https://www.hashicorp.com/c1m
 c

126
Fig. 3. Example of a task dependency graph.

3.4. Driver module

The Driver module is a user API that allows access to all
gnisHPC functionalities. The driver program describes the high-
evel control flow of the application, and it can be programmed
n any of the supported languages (currently, Java, Python and
/C++). The Driver was designed as a Thrift RPC interface to the
ackend so the logic has not to be re-implemented for every
rogramming language. More details about the driver API and
ow to implement an application in IgnisHPC are provided in
ection 4.

.5. Backend module

The Backend module contains the services that define the
river’s logic. For instance, the reduceByKey function requires
earching and grouping the keys. These operations are defined in
he Backend, but they are implemented in the Executor module
or a specific programming language.

The Backend module is also responsible of sending requests to
he resource manager in accordance with the instructions spec-
fied in the driver code. These instructions are lazily executed,
o the Backend registers the function calls as a task dependency
raph. When a task that represents an action in the driver code
s created (e.g., a call to count), all the tasks in its dependency
raph are executed. An example is shown in Fig. 3, where the
ction Task depends on Task 3, and Task 3 depends on Task 1
nd 2. Note that a task dependency is only computed if the task
as never executed or if its result was not explicitly cached.
he Executor and Container tasks are always executed as final
ependencies. These tasks check that executors and containers
re running and ready to be used.
Finally, IgnisHPC is able to recover after a failure of a cluster

ode or some of the executors. Affected tasks are traced by the
ackend in such a way that only their executors are reallocated
nd recomputed. If the affected tasks are cached, the recovery
rocess will be faster since it is not necessary to recalculate their
ependencies. Note that this process is automatic, but users can
une the recovery process using the persistence functions in the
river code (see Section 4).

.6. Executor module

The Executor module implements the operations defined by
he Backend, where each supported programming language has
ts own implementation. In order to add support for a new
anguage in IgnisHPC, a minimum implementation only requires
rogramming the context class. The executor context allows the
PI functions to interact with the rest of the IgnisHPC system.
n this way, among the functionalities of the context we find
he exchange of user variables between driver and executors or
roviding the executors access to the MPI communicators.
As we explained previously, IgnisHPC uses MPI (that is, MPI
ommunicators) to perform all the communications related to the

https://www.hashicorp.com/c1m

C. Piñeiro and J.C. Pichel Future Generation Computer Systems 134 (2022) 123–139

a
d
o
-
a
i

3

c
e
w

c
e
a
B
t
D
T
r
p
p
t

Fig. 4. MPI communicators in IgnisHPC.

Executor module. IgnisHPC constructs three types of communi-
cators for data transfers (see Fig. 4):

– Base communicator: for each worker there is a communica-
tor that includes all its executors. This communicator always
exists. If one executor is lost, the communicator is destroyed
and a new communicator is created including a new ex-
ecutor. To that end, the capability of linking dynamically
a single process to a communicator introduced in MPI-3
was of special importance. Without this feature all processes
would have to be launched at the same time, and in case a
process died, it could not be replaced causing the job to fail.

– Driver communicator: it joins a base communicator to the
driver process. It is created when the driver and a worker
exchange data.

– Inter-worker communicator: it is created joining the base
communicators of two workers. It is used to send data
from one worker to another and it will be destroyed as
soon as one of the two workers stops its execution. This
communicator is only created between workers that execute
the operation ImportData.

The base communicator for each worker is accessible to pro-
grammers by the executor context. It means that IgnisHPC func-
tions can be implemented using that communicator and MPI
primitives (e.g. gather, scatter, broadcast, reduce, etc.). As a result,
IgnisHPC supports the execution of pure MPI applications with
minimal modifications in the original code. A detailed explanation
is provided in Section 5.

Another benefit of using MPI for data transfers is the per-
formance improvement of iterative applications. When using Big
Data frameworks such as Ignis and Spark, an iterative application
requires the driver to perform an evaluation task per iteration to
obtain the final result. Each evaluation has three steps: stopping
the executors, analysis of the partial results by the driver and
restarting the executors. Note that starting and stopping the
executors is very costly in terms of performance. IgnisHPC avoids
the driver evaluations because executors share the partial results
of each iteration using their MPI base communicator. Therefore,
it is not necessary to stop them because they do not need to wait
for the driver. This has even a bigger impact on performance for
those applications with many short iterations.

3.7. Submitter module

The Submitter is an IgnisHPC module consisting of a set of
scripts and utilities for configuring and launching jobs. As we
commented previously, Ignis had no module to launch tasks, and
the Driver module was launched manually using Ancoris (see
Section 3.3). The Submitter is a container, which can be accessed
by SSH. There users can set up jobs in a similar environment
where the IgnisHPC applications will be executed.

The main utility of the Submitter module is the ignis--
submit script that, like spark-submit, allows users to launch
 t

127
Fig. 5. Job submission examples.

IgnisHPC jobs in the cluster. The script only requires as mandatory
arguments a Docker image and the driver program. There are also
the following optional parameters:

– name: a job name can be specified.
– arguments: after the driver program name, all the param-

eters will be considered as driver arguments.
– attach mode: by default, jobs are launched in unattached

mode. That is, ignis-submit launches the job and exits.
Attach mode allows users to control the job as if the driver
runs locally, so output is printed in real time, and it is
possible to manually kill the job.

– properties: users can change the default properties be-
fore launching the Driver module. Executor properties can
be redefined later but Driver properties are set only by
ignis-submit.

Fig. 5 shows two job submission examples. The first one is
Python basic submission with only its base image and the
river application. The second one deals with a C++ driver and
ptional parameters. In particular, --name sets the job name,
-properties changes the driver default memory to 2 GB,
nd 0 -g 2 are considered arguments of mydriver. Note that
gnishpc/cpp is the C++ base image.

.8. Data storage

IgnisHPC provides multiple options for data storage. Users can
hoose a type of storage according to their particular execution
nvironment. Storage must be defined as a property before the
orker creation. IgnisHPC supports the following storage options:

– In-Memory: it is the best performer since all data is stored
in memory. Memory consumption could be an issue, so it is
not suitable for all kinds of jobs.

– Raw memory: data is stored in a memory buffer using a seri-
alized binary format. Extra memory consumption is minimal
and the buffer is compressed by Zlib [19], which has nine
compression levels. Level six is applied by default, but it can
be changed when the worker properties are defined.

– Disk: similar to raw memory but the buffer is stored as a
POSIX file. Performance is much lower but it allows to work
with large amounts of data that cannot be completely stored
in memory.

IgnisHPC behaves very similar to Spark in terms of data lo-
ality. Data is split into several partitions which are assigned to
xecutors. Each partition is assigned to a single executor. In case
nother executor needs that partition, it will be sent using MPI.
y default, IgnisHPC stores all partitions in memory to achieve
he best possible performance. If there is not available memory,
ocker sends some data to the container swap automatically.
he user can modify this policy by changing the swap size or
emoving it. In case the data size exceeds the swap or the swap
erformance is insufficient, IgnisHPC allows users to set disk as
rimary storage, so partitions will always be stored on disk. In
his case partitions will only be loaded into memory at processing

ime.

C. Piñeiro and J.C. Pichel Future Generation Computer Systems 134 (2022) 123–139

m
a
d
c
a
l
o
d
d
s

4

e

Table 1
Example of some IDataFrame functions supported by IgnisHPC.
Type Functions

Conversion map, filter, flatmap, keyBy, mapPartitions,
keys, values, mapValues, etc.

Group groupBy, groupByKey

Sort sort, sortBy, sortByKey

Reduce reduce, treeReduce, aggregate, treeAggregate,
fold, reduceByKey, aggregateByKey, etc.

I/O collect, top, take, saveAsObjectFile,
saveAsTextFile, saveAsJsonFile, etc

SQL union, join, distinct

Math sample, sampleByKey, takeSample, count, max,
min, countByKey, countByValue

Balancing repartition, partitionBy

Persistence persist, cache, unpersist, uncache

On the other hand, there is an important difference in how
emory is handled by Ignis and IgnisHPC. Since Ignis was just
prototype, for simplicity in the implementation, it assigns one
ata partition to each executor. In this way, if it is necessary to in-
rease the partition size, a realloc operation is performed in such
way that the complete partition is copied to a different memory
ocation. The consequence is a noticeable increment in the mem-
ry consumption. This restricts Ignis to work with smaller input
atasets. IgnisHPC overcomes that limitation supporting several
ata partitions per executor. Note that an executor can spawn
everal threads to process the data partitions in parallel.

. Programming applications for ignishpc

IgnisHPC requires a minimal driver code that implements the
application at high-level. To facilitate the adoption from the Big
Data community, the IgnisHPC API is inspired by the Spark API
in such a way that IgnisHPC codes are easily understandable by
users who are familiar with Spark. In comparison to Ignis, we
have extended the API to cover the most important primitives
required by Big Data applications. For instance, IgnisHPC includes
functions such as join and union for graph processing. The
IgnisHPC driver API is composed by six main classes:

– Ignis starts and stops the driver environment.
– IProperties defines the execution environment proper-

ties.
– ICluster represents a group of executors containers. It is

possible, for example, to execute remote commands
(execute, executeScript) and send files (sendFile,
sendCompressedFile) to them.

– IWorker represents a group of processes of the same pro-
gramming language. This class includes functions to read
files (textFile, partitionJsonFile, etc.), import data
partitions from another worker (importData), send data
from the driver (parallelize) and execute external codes
(loadLibrary, call, voidCall). As we explain later, the
former routines allow IgnisHPC to execute MPI applications
within the framework.

– IDataFrame contains all the functions of the MapReduce
paradigm, similarly to Spark RDD. A function can be a trans-
formation that generates another IDataFrame or an action
that generates a final result (see Table 1). With respect to
Ignis, besides the support for new API functions, IgnisHPC
has increased the overall performance for some types of rou-
tines (e.g., Group and Sort) thanks to its complete redesign
using MPI.
128
Fig. 6. Transitive Closure driver code in Python.

– ISource is an auxiliary class used by meta-functions such
as map in the driver. This class acts as a wrapper for the
input parameters. It is also used to store variables and send
them to the executors. Those variables can be obtained by
the executors using the context.

Note that all the API operations that move data between
xecutors perform an internal shuffling operation (e.g., paral-
lelize, collect, partitionBy, etc.).

4.1. An example: Transitive closure

With the goal of illustrating how applications are programmed
in IgnisHPC, Fig. 6 shows an example of a driver implemented in
Python for computing the Transitive Closure of a graph. This algo-
rithm finds out if a vertex x is reachable from another vertex y for
all vertex pairs (x, y) in the graph. Note that an equivalent driver
code could be implemented in any of the IgnisHPC supported
languages (C/C++ and Java) using a similar syntax.

First, the IgnisHPC framework is initialized (line 6). Properties
are created to configure and build a cluster (lines 8 to 14). Note
that the properties definition is optional, and IgnisHPC could
read them from a default configuration file. Moreover, IgnisHPC
introduce the possibility of overwrite the default values when
a job is submitted like Spark using the new Submitter module.
Therefore, the Docker image, the number of containers, the num-
ber of cores and the memory per container could be defined out of
the driver code. Computing the Transitive Closure has two phases.
To illustrate the multi-language support in IgnisHPC, each phase
was implemented in a different programming language. The first
one uses a Python executor and the second a C++ executor. The
first stage consists of a map operation that takes as input a text

C. Piñeiro and J.C. Pichel Future Generation Computer Systems 134 (2022) 123–139

a

f
(
a
t
d
a
c

j
i
2
f
f
s
w
g

a
l

g
o

l

Fig. 7. Function in C++ used by a map operation for the Transitive Closure
pplication.

ile and creates pair values that represent edges in the graph
line 20). As a consequence, it is necessary to previously create
Python worker in the cluster (line 16). It is important to note

hat creating the worker is mandatory and is not related to the
river programming language. On the other hand, if the worker
nd the driver code are in the same language, lambda functions
an be used (line 20).
The following phase of the algorithm is iterative: edges are

oined into a path until there are no new paths. Since this phase
s implemented in C++, a C++ worker should be created (line
2). Data is shared between workers using the importData
unction (line 24). The driver code ends printing the results. The
ramework must be stopped before the driver ends (line 41) to
top the backend. Unlike Ignis, IgnisHPC automatically detects
hen the driver process ends and stops it. However, this is not a
ood practice.
In IgnisHPC a lazy evaluation is performed when a result is

not required explicitly. In the example, the trigger that causes
the tasks to be launched are the calls to the count function. This
pproach is also followed by Spark where RDDs are computed
azily the first time they are used in an action [20].

Most of the driver functions are meta-functions. That is,
eneric functions that require another one to perform an internal
peration. This is the case of map in the example of Fig. 6 (lines

20 and 32–33). To implement those functions we should use the
executor API provided by IgnisHPC. Basically, it defines a simple
interface based on the number of required input parameters.
Fig. 7 shows an example corresponding to the C++ function used
by map in the driver code. Since map takes one parameter and
also returns one parameter, IFunction is used. In case there
are two input parameters (e.g., reduce), IFunction2 would be
used, and so on. Note that if the function does not return any
value (e.g. foreach), functions have the same name but with the
Void prefix.

4.2. Text lambda functions

As explained previously, lambda functions need that driver
and executor codes were implemented in the same language
because native code serialization is required. We refer to code se-
rialization as the process by which a function or set of instructions
are converted into bytes to be sent and executed in a different
environment. Note that although Python and Java are able to
serialize code both languages face compatibility problems. On top
of that, C++ does not allow any type of code serialization. To
overcome these limitations IgnisHPC implements its own multi-
language lambdas without source code serialization, named text
ambdas. In this way, IgnisHPC allows to define lambdas as text,
using the executor language syntax. The executor will transform
the lambda text into source code to be used as a meta-function
129
Fig. 8. Examples of text lambda for a Python and a C++ executor.

parameter. It is important to highlight that the language of the
driver code is indifferent.

Fig. 8 shows an example of a text lambda that accumulates all
elements (line 2) used by a reduce function. It uses Python syn-
tax so must be evaluated by a Python executor. Another example
is shown in line 7. It defines a text lambda that captures the value
of a variable, which is read from the context. This lambda function
will be compiled and loaded by a C ++ executor. Performance is
not affected by using text lambda functions but it can add some
overhead to the compilation process, especially for C++.

In the same way, using the mechanism that allows to execute
text lambda functions, IgnisHPC can send a complete job or appli-
cation to the executors. This is possible thanks to loadLibrary,
which can be used to execute a full source code as an IgnisHPC
library. It has again a small impact on the compilation time. More
details about loadLibrary are provided in Section 5.2 using MPI
applications as use case.

5. MPI on IgnisHPC

Our first prototype, Ignis, was limited to perform inter-process
communications using only TCP sockets (different computing
nodes) or shared memory (same node). However, IgnisHPC was
completely redesigned to use MPI as backbone technology. As
a consequence, all communications are internally implemented
by MPI routines. As we explained previously in the paper, this
change makes it possible for IgnisHPC to support more com-
munication models and network architectures. In addition, an
important advantage of our approach is that, once IgnisHPC has
configured the MPI communications, users can combine in the
same application pure MPI libraries using the IgnisHPC commu-
nicators together with standard Big Data functions (map, reduce,
collect, etc.).

5.1. Integration of MPI into a big data environment

MPI was not designed to run on Docker containers. As a con-
sequence, there are several problems that should be addressed.
First, by default and to preserve an isolation runtime environ-
ment, Docker creates a private virtual network between the host
and the containers. If two containers are launched on the same
host, we can execute MPI processes in the same way that they
were two real nodes of a cluster. But if we launched those
containers on different hosts, the communication is impossible
since they belong to different networks. We can find in the
literature several works that deal with this issue (see the Related
Work section). For instance, some approaches opt for launching
the container on the host network or creating a virtual network
between the cluster nodes [21]. However, these configurations
are difficult to handle and implement by resource managers in
Big Data environments.

Second, there are important differences in how ports are han-
dled by a Big Data or an HPC environment. For instance, ports are
considered a resource in a Big Data environment because there
are services that require an exclusive port, which is not the case in

C. Piñeiro and J.C. Pichel Future Generation Computer Systems 134 (2022) 123–139

H
b
m
c

p
a
t
c
i
s
i
i
s
d
e
a
t

i

5

t
o
f
i
a
P

w
p
5

m
F
o

v

I
o
g
d
A

PC. MPI needs ports to establish connections between processes
ut restricted to a range. However, ports provided by resource
anagers in a Big Data environment are usually random and not
onsecutive.
Finally, IgnisHPC can internally spawn several threads per MPI

rocess (executor) to increase the performance when processing
nd/or communicating data. All these threads use communica-
ors to exchange data in parallel. Every time a communicator is
reated, MPI assigns a virtual interface to it. However, a virtual
nterface can only be used by one communicator at the same time,
o parallel communications require the use of multiple virtual
nterfaces. In the most recent MPICH version, which is the MPI
mplementation used by IgnisHPC, virtual interfaces are assigned
equentially. Since IgnisHPC creates and destroys communicators
ynamically, it is not possible to assure that threads can always
xchange data in parallel using communicators with different
ssigned virtual interfaces. The consequence is a degradation in
he performance.

To overcome the above problems, IgnisHPC applies the follow-
ng changes to MPICH:

– Containers: MPICH has been designed to work on a local
network. Docker containers can be joined to a network but
only within the same node (internal network). Although
resource managers can export a service from the internal
network to the local network, this causes a problem when
MPI is executed containerized. MPICH uses a service to store
the network addresses of the launched MPI processes, but
when using containers, each MPI process stores the values
corresponding to the internal network which are not valid
outside the node. For this reason, it is necessary to modify
MPICH in order to store the correct network values that
correspond to the local network.

– Ports: now MPICH uses a list of ports provided by the
resource manager instead of a range.

– Multithreading: MPICH was modified to assure that all
threads use a different virtual connection. In this way, com-
munications between threads can always be performed in
parallel.

.2. Running MPI applications in IgnisHPC

IgnisHPC can execute MPI applications implemented in any of
he supported languages. We must highlight that, to the best of
ur knowledge, currently there does not exist another Big Data
ramework with this feature. Most of the MPI codes for HPC are
mplemented in C/C++, while applications in other languages such
s Java and Python are a minority. So although IgnisHPC supports
ython and Java, we will focus on C/C++ MPI applications.
To explain how to execute an MPI application within IgnisHPC,

e have considered LULESH [22] as guiding example. LULESH is a
roxy HPC application for shock hydrodynamics with more than
000 lines of C++ code.
MPI applications, like other IgnisHPC codes, must be imple-

ented using the executor API to be used from the driver (see
ig. 7). However, some minimal modifications should be previ-
usly applied to the original MPI codes:

– MPI initialization: IgnisHPC controls the MPI environment,
so MPI_Init and MPI_Finalize must be removed from
the MPI application.

– MPI_COMM_WORLD: MPI applications use a default commu-
nicator but IgnisHPC requires its own communicator. The
simplest solution is to create a custom header to overwrite
the default communicator. Fig. 9 shows an implementation

of this functionality. 5

130
Fig. 9. C header that replaces MPI_COMM_WORLD by IGNIS_COMM_WORLD (global
ariable).

Fig. 10. Executor code for LULESH using C++.

– I/O data: These modifications are optional. In some sce-
narios, it is interesting to allow IgnisHPC to handle the
operations on input and output data of an MPI application.
This is the case, for example, when the output file of the
application will be afterwards processed by other IgnisHPC
tasks. If IgnisHPC manages the output file, data is kept in
memory. If not, the output file would be written to disk
and read again to continue executing the following tasks,
causing an important degradation in the performance. To do
that, read and write functions related to input/output files
will be removed from the MPI source code. As we explain
next, they will be replaced by input and return parameters
of the call function in the corresponding executor code.

Fig. 10 shows the executor code for calling LULESH from the
gnisHPC driver. First, the global variable for the communicator
f Fig. 9 is created (line 4) and initialized with the IgnisHPC MPI
roup (line 9). LULESH is a benchmark, so it does not receive any
ata from IgnisHPC. As a consequence, according to the executor
PI explained in Section 4, it is of type IVoidFunction0 (line
). The only mandatory method to be implemented is call (line

C. Piñeiro and J.C. Pichel Future Generation Computer Systems 134 (2022) 123–139

(

7
f
i
t
a
t
e
f
u

d
f
N
a
i
c
L
a
c
t
I
r
w
a
i
e

5

d
d
m

w
f
(
i
i
5
f
d
a

–
–
–
–

–

Fig. 11. LULESH usage from a Python driver (top) and its equivalent C++ code
bottom).

Fig. 12. Wordcount example as MPI hybrid application.

). Inside that method, the application arguments are parsed
rom the IgnisHPC context. In our example, each argument is
ndividually parsed to create a user friendly interface. However,
he arguments could be parsed together as a list, reducing notice-
bly the necessary lines of code. The call method ends calling
he LULESH main function (line 34). Afterwards, Lulesh class is
xported (line 38). This operation is only necessary in C++. To
inalize, an IgnisHPC library is created (line 40), which will be
sed to call LULESH from the driver.
Finally, we show how to use an MPI application from the

river. The example of Fig. 11 focuses only in the necessary
unctions to execute LULESH using a Python and a C++ driver.
ote that the MPI application should be previously compiled
s a library (liblulesh.so). The example assumes that there
s a C++ worker in the driver where two functions are exe-
uted: loadLibrary and voidCall. On the one hand, load-
ibrary loads all the classes from the library declared in cre-
te_ignis_library. In this case, Lulesh is the only existent
lass. On the other hand, voidCall is an action that causes
he execution of the library. If the library returns an output to
gnisHPC, voidCall should be replaced by call that would
eturn an IDataFrame object. Library arguments in C++, which
ere parsed in the executor code, are added to the function using
ddParam from the ISource class. This syntax could be also used
n Python. Nevertheless, keyword arguments in Python are a more
legant alternative (see line 2 in Fig. 11).

.3. Hybrid applications

In IgnisHPC an MPI code can be combined with typical MapRe-
uce operations to create a hybrid application. In this way, the
ifferent computing tasks could be implemented in the program-
ing model and language that best suits them.
Fig. 12 shows a simple example of a Wordcount application

here an MPI Python library is combined with IgnisHPC API
unctions. Input data is distributed and prepared by IgnisHPC
Tasks 1 and 2), so MPI is only responsible of the compute-
ntensive part (Task 3). Observe that for using functions included
n a Python library it is only necessary to load the library (line
) and invoke the call routine with the name of the desired
unction (line 11). Finally, results are converted and written to
isk in json format using the IgnisHPC API (Task 4). Fig. 13 shows
nother example. In this case, API functions are combined with
131
Fig. 13. Sum of an array example as MPI hybrid application.

explicit calls to MPI routines (line 9) with the aim of creating the
hybrid application.

6. Experimental evaluation

6.1. Experimental setup

The experiments shown in this section were carried out on a
12-node cluster, where each node consists of:

CPU: 2 × Intel Xeon E5-2630v4 (2.2 GHz, 10 cores)
Memory: 384 GB of RAM
Storage: 8 × 4TB 7.2k SATA
Network: 2 × 10GbE

It is a Linux cluster running CentOS 7 (kernel 3.10.0), Docker
20.10.2-ce and Spark 2.2.0 (with YARN [23] as cluster manager).
Ignis and IgnisHPC run on an Ubuntu 20.04 image with MPICH
3.4.1.

6.2. Big data applications

We have selected five workloads that represent different types
of application patterns for which Spark is considered the best per-
forming Big Data framework [24]: Minebench, TeraSort, K-Means,
PageRank and Transitive Closure.

Table 2 lists the use of the most important operators by each
Big Data application, including basic core operators and specific
ones implemented by the IgnisHPC framework.

Minebench (MB). This application4 performs the calculation of
SHA-256 hashes imitating the Proof-of-Work algorithm used
in the Bitcoin protocol [25]. Do not confuse it with the data
mining benchmark suite NU-MineBench. This algorithm has
two phases which are implemented using two chained map
operations. The first map is data-intensive, while the second
is a compute-intensive task. In particular, in the first stage a
set of Bitcoin transactions are grouped together forming a block
proposal. A binary Merkle tree [26] is calculated for those trans-
actions and its Merkle root hash is added to a block header. The
second stage calculates the hash of the block header iteratively
while the condition is not met. The strong scaling tests were
obtained using an input file containing 300 K blocks (120MB),
while the weak scaling experiments fixed the input data per
core to 300 K blocks.

4 Publicly available at: https://github.com/brunneis/minebench.

https://github.com/brunneis/minebench

C. Piñeiro and J.C. Pichel Future Generation Computer Systems 134 (2022) 123–139

–

–

–

–

t
t
t
r

Fig. 14. Study of the scalability of IgnisHPC, Ignis and Apache Spark running the Python Minebench application.
Fig. 15. Study of the scalability of IgnisHPC, Ignis and Apache Spark running the Python & C++ Minebench application.
(
f
s
u
t
s
t
J
p
m
i
t
p
i
w
n
M
a
n

TeraSort (TS). It is a sorting algorithm suitable for measuring
the I/O and the communication performance of the considered
frameworks. Elements in IgnisHPC are sorted by means of
the MergeSort algorithm where elements are distributed by a
regular sampling among the executors [27]. Note that this task
requires that executors exchange data. The input data used in
the tests contains 1 TB of text with 1.8B lines.
K-Means (KM). This is a classic machine learning algorithm for
data clustering, and it is a good example of an iterative MapRe-
duce application. This pattern covers a large set of iterative
machine learning algorithms such as linear regression, logistic
regression, and support vector machines. The goal of KM is to
classify a given data set through a certain number of clusters (K
clusters). In each iteration, a data point is assigned to its nearest
cluster center, using a map function. Data points are grouped
to their center to further obtain a new cluster center at the
end of each iteration (reduce). The experimental evaluation was
carried out using the NUS-WIDE dataset [28], which contains
269,648 images with 500 attributes per image. In the tests the
results were obtained after 10 iterations and K = 81.
PageRank (PR). It is a graph algorithm which ranks elements by
counting the number and quality of links. To evaluate the PR
algorithm on IgnisHPC and Spark we used the LiveJournal graph
from the SNAP repository [29], which contains 4.8M vertices
and about 69M edges.
Transitive Closure (TC). One of the most basic questions that
arises when analyzing a complex graph G is whether one vertex
x can reach another vertex y via a directed path. A way to store
this information is to construct another graph, such that there
is an edge (x, y) in the new graph if and only if there is a path
from x to y in the input graph. This new graph is called the
Transitive Closure of G. Since computing the TC is very costly,
we used a small graph with 75 vertices and 200 edges in our
tests.

6.2.1. Analysis and discussion
We now present the performance results from our evaluation

of Spark, Ignis and IgnisHPC considering all the Big Data applica-
ions detailed above. Speedups were calculated using as reference
he Spark sequential time. All experiments have been executed
en times and their average result is reported. In addition, the
elative standard deviation (RSD), also known as the coefficient
 w

132
Table 2
Operations used in each big data application. Minebench (MB), Terasort (TS),
K-means (KM), PageRank (PR) and Transitive Closure (TC). Operators annotated
with I are specific only to IgnisHPC.
Operators Batch (one pass) Iterative (caching)

MB TS KM PR TC

textFile ✓ ✓ ✓ ✓ ✓
map ✓ ✓ ✓ ✓ ✓
mapValues – – – ✓ –
flatMap – – – ✓ –
reduceByKey – – ✓ ✓ –
collectAsMap – – ✓ – –
repartition – ✓ – ✓ –
count – – – ✓ ✓
join – – – ✓ ✓
union – – – – ✓
distinct – – – – ✓
importData (I) ✓ – – – –
sort – ✓ – – –
saveAsTextFile ✓ ✓ ✓ – –

of variation, is calculated as 100 × σ/x. Low RSD values point out
that the data is tightly clustered around the mean.

Figs. 14 and 15 show the scalability study of the Minebench
MB) application using two different implementations. In the
irst one, MB was programmed using only Python, while in the
econd one, the two chained map operations are implemented
sing Python (data-intensive task) and C++ (compute-intensive
ask), respectively. Results show that IgnisHPC exhibits very good
trong-scaling behavior for both implementations. On the con-
rary, the Spark scalability is impacted for the cost of starting
VMs and transferring data through system pipes to the Python
rocesses, causing an important degradation in the overall perfor-
ance [8]. This scenario is even more clear for the multi-language

mplementation in Fig. 15(a) since Spark sends data from Python
o C++ processes through the JVM, increasing the number of
ipe operations. As a consequence, the Spark strong scalability
s really poor. On the other hand, IgnisHPC weak scales very
ell for both code versions (Figs. 14(c) and 15(c)), which is
ot surprising since there is not much communication in the
B application. As a consequence, IgnisHPC is able to extract
ll the existent parallelism. Finally, we must highlight that Ig-
isHPC clearly outperforms Ignis both in terms of strong and
eak scalability, especially when considering the multi-language

C. Piñeiro and J.C. Pichel Future Generation Computer Systems 134 (2022) 123–139

a
0
t
c
n
f
H
M
o

o

s
i
a
s
p
w
w
w
(
T

W
r
I
a
l
p
w
a
m
p

Fig. 16. Study of the scalability of IgnisHPC and Apache Spark running the TeraSort application.
Fig. 17. Study of the scalability of IgnisHPC, Ignis and Apache Spark running the K-Means application.
i
t

6

n
c
t
t
o
f
t

pplication. The RSD for the Minebench experiments ranges from
.3% to 4.9%. Note that for the Python implementation (Fig. 14),
he performance differences between IgnisHPC and Ignis are only
aused by architectural improvements in the framework since
o MPI operations are carried out. Executors read the input data
rom a file and exchange partial results using the shared memory.
owever, if we consider the multi-language implementation of
B (Fig. 15), performance improvements are also due to the use
f MPI for the communication between Workers.
Performance results of the TeraSort (TS) application running

n IgnisHPC and Spark frameworks are displayed in Fig. 16.
Ignis results are not shown because the memory consumption of
sorting 1 TB of data is too high for our cluster. As we explained
in Section 3.8, Ignis assigns one data partition to each executor.
For TS those partitions are very large. Every time an element is
added to a partition, the complete partition is copied to a different
memory location (realloc operation), which causes a boost in the
memory requirements. This restricts Ignis to work with smaller
input datasets. We avoid this limitation since IgnisHPC was de-
igned to allow several partitions per worker. Two different TS
mplementations in IgnisHPC were analyzed: a pure Python code
nd a multi-language Python-C++ code. In the latter case, the
ort operation uses a user-defined C++ function for comparison
urposes. For all the cases IgnisHPC outperforms Spark, especially
hen considering the multi-language implementation. In this
ay, for instance, IgnisHPC is 116× faster than sequential Spark
hen using 160 cores, while Spark reaches a speedup of only 66×
Fig. 16(b)). It allows IgnisHPC to sort 1 TB of data in barely 5 min.
he RSD for the TS experiments ranges from 1.3% to 6%.
Strong scaling results of K-Means (KM) are shown in Fig. 17.
e used as reference the Spark implementation of this algo-

ithm included in MLlib (Machine Learning Library) [30]. For
gnis, a pure C++ and a Python-C++ implementations of KM were
nalyzed. For IgnisHPC, we only show the results for the multi-
anguage Python-C++ code because the numbers obtained by a
ure C++ application are very similar. We can observe that Ignis
as able to beat Spark when considering the C++ code. However,
n important degradation in the scalability was detected for the
ulti-language implementation as the parallelism increases. This

roblem was explained in Section 3.6 and is related to the way

133
Ignis handles iterative applications. Ignis starts and stops the
executors each iteration because the driver must compute the
partial results, which has an important impact on the perfor-
mance. To deal with this, IgnisHPC takes advantage of MPI in
such a way that executors compute the partial results and share
them without intervention of the driver. For this reason IgnisHPC
exhibits a very good strong scalability even for multi-language
iterative applications, decreasing noticeably the execution times
with respect to Spark and Ignis. It can be observed in Fig. 17(b)
that IgnisHPC is about two and four times faster than Spark
and Ignis (multi-language code) when using all the cores in the
cluster, respectively. The RSD for the KM experiments ranges
from 1.1% to 4.8%.

In Big Data analytics many problems require processing graphs.
For this reason it is essential for a Big Data framework as IgnisHPC
to include primitives to support this kind of applications. In
addition, since the size of the graphs to be processed is often very
large, a good scalability is essential. With this goal in mind we
have evaluated two well-known graph algorithms in Spark and
IgnisHPC: PageRank (PR) and Transitive Closure (TC). Performance
results are shown in Figs. 18 and 19, respectively. The algorithms
in Spark were implemented using GraphX [31]. Note that Ignis
does not support several operations that are basic for this type of
applications such as join and union (see Table 3), so it cannot
be evaluated. Despite the fact that GraphX is a highly tuned API
for graph processing, IgnisHPC is capable of outperforming Spark
n both cases. The RSD for the PR experiments ranges from 0.6%
o 2.7%, while for the TC varies from 0.1% to 1.7%.

.2.2. Final remarks
Table 3 summarizes the performance gains obtained by Ig-

isHPC with respect to Spark and Ignis when running all the
onsidered Big Data applications. Results were obtained using
he maximum number of cores available and taking into account
he best Ignis and Spark implementation (if there is more than
ne). In this way, for example, two implementations are available
or Minebench, pure Python and multi-language Python-C++. In
hat case we used as reference for Spark the Python code, while

C. Piñeiro and J.C. Pichel Future Generation Computer Systems 134 (2022) 123–139

1
F
l
w
a
A
a

6

m
t
f
c
T
t
e
S
f

Fig. 18. Study of the scalability of IgnisHPC and Apache Spark running the PageRank application.
Fig. 19. Study of the scalability of IgnisHPC and Apache Spark running the Transitive Closure application.
Table 3
Summary of the IgnisHPC performance results for all the big data applications considering the
maximum number of cores and the best Ignis and Spark implementation (in case there is more
than one). Between brackets the programming language/s used in the IgnisHPC implementation.
Application No. times faster than Spark No. times faster than Ignis

Minebench 3.87×[Python & C++] 1.23×[Python & C++]
1.26×[Python] 1.08×[Python]

TeraSort 1.76×[C++] –1.35×[Python]

K-Means 1.94×[Python & C++] 1.28×[Python & C++]

PageRank 1.10×[Python] –

Transitive Closure 1.12×[Python] –
for Ignis the best performing implementation was the multi-
language one (see the values in Figs. 14(a) and 15(a) when using
240 cores).

According to the results, IgnisHPC is from 1.10× to 3.87×
faster than Spark. The good behavior of IgnisHPC is particularly
relevant when considering multi-language applications. At the
same time, IgnisHPC is a step forward with respect to Ignis in
terms of performance. In this case, IgnisHPC is from 1.08× to
.28× faster than Ignis. However, there are additional benefits.
irst, the memory consumption in IgnisHPC was optimized al-
owing multiple partitions per executor, which allows to work
ith extremely large datasets. That is the reason why Ignis is not
ble to execute TeraSort in our cluster. And second, the IgnisHPC
PI was extended to support, among others, graph processing
lgorithms such as PageRank and Transitive Closure.

.3. HPC applications

For many years MPI has been the dominant parallel program-
ing model in the HPC area. As we explained in Section 5,

hanks to its architectural design, one of the most important
eatures of IgnisHPC is its ability to execute native MPI appli-
ations within the framework just adding a few lines of code.
o evaluate the benefits of our approach we are interested in
wo key areas: performance (with respect to the native MPI
xecution) and productivity (additional Source Lines Of Code -
LOC). In this way, we have selected five HPC applications coming
rom different scientific fields that represent a variety of MPI
134
communication patterns. Table 4 summarizes the most important
MPI calls (point-to-point and collective operations) used in the
applications. Note that during a specific run, an application may
use only a subset of these communications. All the codes were
implemented using C/C++. For some of them we have considered
hybrid implementations (MPI+OpenMP) to demonstrate that is
also possible to efficiently execute this type of applications in
IgnisHPC without additional effort.

Next we provide some information about the selected HPC
applications used in the experimental evaluation:

• LULESH (Livermore Unstructured Lagrange Explicit Shock Hy-
drodynamics). It is a shock hydrodynamics code developed
at Lawrence Livermore National Lab (LLNL) [22]. It has been
ported to a number of programming models: MPI, OpenMP,
MPI+OpenMP, CUDA, etc. In this paper we have considered the
hybrid MPI+OpenMP implementation, which uses MPI between
nodes and OpenMP for cores on a node. Performance tests were
run on 8 nodes with a problem size of 703 on each node, which
corresponds to the most representative problem size [32].

• AMG. It is a parallel algebraic multigrid solver for linear systems
arising from problems on unstructured grids. It is part of the
Exascale Computing Project (ECP) proxy applications suite5
and was derived directly from the BoomerAMG [33] solver.
AMG is an SPMD application with about 65,000 lines of code
which uses OpenMP threading within MPI tasks. Parallelism is

5 http://proxyapps.exascaleproject.org/ecp-proxy-apps-suite

http://proxyapps.exascaleproject.org/ecp-proxy-apps-suite

C. Piñeiro and J.C. Pichel Future Generation Computer Systems 134 (2022) 123–139

•

•

•

6

b
o
f
n

Table 4
MPI calls used for communications in the HPC applications.
Application Point-to-point Collective

Blocking Non-blocking Blocking Non-blocking

LULESH – Isend, Irecv Allreduce, Barrier –

AMG Send, Recv Isend, Irecv,
Irsend

Allreduce, Barrier, Bcast,
Reduce, Alltoall, Allgather(v),
Gather(v), Scan, Scatter(v)

–

MiniAMR Send, Recv Isend, Irecv Allreduce, Barrier, Bcast,
Alltoall

–

MiniVite Sendrecv Isend, Irecv Allreduce, Barrier, Bcast,
Reduce, Alltoall(v), Exscan

Ialltoall

MSAProbs Send, Recv Isend, Irecv Allreduce, Barrier, Bcast –
Fig. 20. Study of the scalability of LULESH (8 nodes).
t
b
s
v
k
l
p
a

N
P
r
n
e

O
a
c
T
a
m
w

h
o
t
r
m
a
d

t

c
o
f
t
a

achieved by simply subdividing the grid into logical P × Q × R
(in 3D) chunks of equal size. AMG is a highly synchronous
and memory-access bound code. The scalability tests were
obtained with a fixed local problem grid size per MPI process
of 100 × 100 × 100 points.
miniAMR. It is a proxy app for adaptive mesh refinement (AMR),
which is a frequently used technique for efficiently solving
partial differential equations (PDEs) [34]. It applies a stencil
calculation on a unit cube computational domain, which is
divided into blocks. This application also belongs to the ECP
proxy app collection and was implemented using MPI. We
used blocks with dimensions 8 × 8 × 8 and a maximum of
4 refinement levels. The test case we considered is that of an
expanding sphere, which closely mimics an explosion. Blocks
are refined along the boundary of the expanding sphere.
miniVite. It implements a parallel Louvain method for com-
munity detection, which is one of the most important graph
kernels used in scientific and social networking applications
for discovering higher order structures within a graph [35].
It is also included in ECP proxy app collection. miniVite was
programmed using MPI and OpenMP. As input we used a graph
with 10% of the vertices of the well-known friendster social
network graph [36]. It consists of 6.6M vertices and 24.2M
edges.
MSAProbs. One basic step in many bioinformatics analyses
is the multiple sequence alignment (MSA). MSAProbs [37]
is a state-of-the-art tool to compute protein MSA based on
hidden Markov models. In this work we have considered its
MPI+OpenMP parallel implementation [38]. The input dataset
PF07085 [39] used in the tests consists of 975 sequences with
an average length of 512.

.3.1. Analysis and discussion
Next we carry out the analysis of the execution of the MPI-

ased HPC applications within IgnisHPC. As mentioned previ-
usly, we will focus on two aspects. First, the performance dif-
erences between running the HPC applications on the cluster as
ative MPI tasks or using IgnisHPC. It is important to highlight
 a

135
hat is out of the scope of this paper to analyze the particular
ehavior of each MPI application in terms of performance and
calability. This was extensively explained in the references pro-
ided in the description paragraphs of Section 6.3. The second
ey aspect is productivity. In our case we measured the source
ines of code (SLOC) of the applications. This metric is very im-
ortant since scientists will only adopt IgnisHPC to execute MPI
pplications if porting them requires little effort.
Performance. Fig. 20 shows the strong scaling results of LULESH.

ote that this application uses a hybrid MPI+OpenMP approach.
erformance differences between native MPI and IgnisHPC are
eally small, always lower than 1.7%. Running LULESH from Ig-
isHPC shows the same scalability trend than the MPI native
xecution.
Weak scalability tests were run to evaluate AMG (MPI +

penMP) and miniAMR (MPI). Results are shown in Figs. 21(a)
nd 21(b). In both cases also, the performance of IgnisHPC comes
lose to that of its counterpart, the native MPI implementation.
he maximum performance difference is only about 1.4% for both
pplications. In this way, for instance, the execution times of
iniAMR using all the cores in the cluster were 520 and 517 s
ith native MPI and IgnisHPC, respectively.
miniVite scalability results are displayed in Fig. 22. The be-

avior replicates the observations commented previously for the
ther HPC applications. That is, running an MPI application within
he IgnisHPC framework achieves very similar performance with
espect to the native execution. In this particular case, the maxi-
um difference drops to only 0.2%. The same scalability analysis
pplied to MSAProbs (Fig. 23) produces a maximum performance
ifference of 0.4%.
So we conclude that running MPI (and MPI+OpenMP) applica-

ions from IgnisHPC is as efficient as executing them natively.
Productivity. As we explained in Section 5, running MPI appli-

ations in IgnisHPC requires some minimal modifications to the
riginal source code and adding a few lines to call the application
rom the driver code. It is important to highlight that most of
hese extra lines are devoted to parsing the arguments of the MPI
pplication. In any case, this is a very simple and repetitive code

s shown in the example of Fig. 10, which can be considered as

C. Piñeiro and J.C. Pichel Future Generation Computer Systems 134 (2022) 123–139
Fig. 21. Study of the weak scalability of AMG (20 threads/cores per node) (a) and miniAMR (b).
Fig. 22. Study of the scalability of miniVite (20 threads/cores per node).
Fig. 23. Study of the scalability of MSAProbs (20 threads/cores per node).
Table 5
SLOC of the HPC applications.
Application SLOC MPI SLOC IgnisHPC

LULESH 5,918 5,993 (+75)
AMG 65,154 65,197 (+43)
MiniAMR 9,958 9,987 (+39)
MiniVite 3,264 3,324 (+60)
MSAProbs 6,045 6,062 (+17)

boilerplate. We measure the SLOC using SLOCcount [40] of each
original MPI application and its counterpart adapted to IgnisHPC
(see Table 5). The number of extra lines, between brackets in the
table, ranges only from 17 to 75. This demonstrates that integrat-
ing MPI applications and libraries in IgnisHPC is a straightforward
process, which is very important for the HPC community since it
is not necessary to port MPI codes to a new API or programming
model. Therefore, IgnisHPC fulfills its design goal of unifying in a
single framework the benefits of HPC and Big Data applications.

7. Related work

7.1. HPC and containers

HPC workloads tend to be monolithic in nature so that each
component and its dependencies must be present for running or
136
compiling the code. In addition, if an update of any component is
required, all modules will be affected. For this reason, the most
common difficulty faced by end-users when creating and imple-
menting scientific software is the installation and configuration
of a framework with thousands of dependencies.

Containers are a good way to self-contain an application and
its dependencies in a controlled environment. Containers do not
interfere with each other and allow to be deleted or updated
without leaving any trace on the physical machine. They are an
alternative to virtual machines while maintaining a similar level
of isolation and showing a superior performance that in some
cases is almost identical to the one obtained when executing
natively on a real machine [41,42].

IgnisHPC can be seen as an MPI application, so it can be
efficiently executed inside containers as it was proven in several
works. For example, running MPI applications on a containerized
cluster using Docker on a cluster [43] or in the Cloud [44], or using
Shifter [45] instead. Other works deal with the orchestration of
Docker containers in an HPC environment. For instance, Higgins
et al. [46] implemented a script based on SSH for the creation of
an MPI environment inside a Docker container. Unlike IgnisHPC,
this approach requires root privileges to modify the hosts con-
figuration. Another paper introduces Scylla [47], a framework
for deploying MPI jobs within Docker Containers using Apache
Mesos. As explained in Section 2, Apache Mesos requires an
orchestration framework such as Marathon or Singularity to be

C. Piñeiro and J.C. Pichel Future Generation Computer Systems 134 (2022) 123–139

u
f
r
p
r

7

f
a
g
o

b
w
o
d
i
i
T
S
t
c
M
t
t
p
t
m
m

c
c
t
m
t
o
p
w
l
c
t

g
t
c
P
h
i
i
c
p

h
t
M
o
t
b
S
m
w
p
d
a
d

sed. However, the authors, instead of considering a third party
ramework, implemented an ad-hoc solution. Their approach also
equires root privileges. We must highlight that IgnisHPC sup-
orts all the functionalities included in Scylla without needing
oot permissions and is not limited to work with Apache Mesos.

.2. Spark and HPC applications

As a general-purpose framework, Spark has been widely used
or many scientific applications and algorithms. However, there
re examples from different areas such as linear algebra [48],
enomics [49] or even data science [50] where Spark does not
btain the expected performance.
One way to approach Big Data and HPC worlds is trying to

oost the performance of well-established Big Data technologies
hen running on HPC systems. For example, taking advantage
f the Infiniband fast interconnection network [51] or the stan-
ard HPC programming models such as MPI. We are especially
nterested in those works that opt for the latter approach. For
nstance, Anderson et al. [52] try to combine Spark and MPI.
hey offload computations to an MPI environment from within
park in such a way that Spark and MPI tasks run at the same
ime, using a socket-based implementation for efficient data ex-
hange between processes. In their approach the results of the
PI processing are copied back to persistent storage (HDFS), and

hen into Spark for further processing. As a consequence, for
hose applications that require few iterations and/or less work
er iteration, there is a degradation in the performance. However,
heir approach shows a good behavior with several graph and
achine learning applications that do not require a lot of data
ovement between Spark and MPI environments.
A similar solution can be found in [53]. They introduce Al-

hemist, a TCP socket-based implementation for inter-process
ommunication between Spark and MPI. Alchemist was designed
o call MPI-based libraries from Spark using the Scala program-
ing language. Like previous work, due to the use of two type of

asks for MPI and Spark, it is always necessary to keep two copies
f the same data. In addition, moving data between Spark and MPI
rocesses is costly since TCP sockets are often a slower alternative
ith respect to shared memory. Therefore, this approach is also

imited to computationally-intensive applications for which the
ost associated with data transfers is negligible when compared
o the overhead that would have been incurred by Spark.

Finally, there are several related works of the same research
roup that make a better integration between Spark and HPC
echnologies. In [54], Spark and MPI tasks share the same pro-
ess, which removes the overhead caused by the data transfers.
ython is used as programming language since Spark and MPI
as an interface for this language. However, as we explained
n [8], Python is not natively supported by Spark which causes an
mportant degradation in its overall performance. IgnisHPC over-
omes that limitation using native executors for each supported
rogramming language.
In their next works, the authors introduce Spark-MPI [55,56], a

ybrid platform that combines Spark and MPI taking advantage of
he MPI Exascale Process Management Interface (PMIx). A Spark-
PI application consists of a driver launched by Spark and a set
f processes launched by MPI. These MPI processes connect to
he Spark driver as workers, and they will be able to execute
oth RDD and MPI functions. Note that using MPI routines in
park-MPI only makes sense when the data is processed using
apPartitions. That is the only way that Spark provides to
ork on a complete partition instead of on each element of the
artition. The authors showed the benefits of Spark-MPI with
eep learning algorithms and ptychographic and tomographic
pplications. However, Spark-MPI has several limitations that we
etailed next:
137
– Spark-MPI requires a hybrid environment for Spark and
MPI, which will be configured with their respective resource
managers. For example, Mesos or Yarn for Spark and Hydra
or Slurm for MPI. It is hard to find a system configured
this way since resource managers cannot share the avail-
able hardware resources. Moreover, a Spark-MPI job should
queue for both Spark and MPI queuing systems, and the
requested resources may not be granted at the same time.
On the other hand, IgnisHPC is a single application so the
previous problems do not apply.

– Due to its particular architecture and how Spark executors
are launched, Spark-MPI loses the fault tolerance system
provided by Spark. As a consequence, after any failure in
the executors, all the job is lost. On the contrary, as we
demonstrated in [8], Ignis and IgnisHPC are able to recover
after a failure of a cluster node or some of the executors.
If some data is lost, IgnisHPC has enough information about
how it was derived in such a way that only those operations
needed to recompute the corresponding portion of data are
performed.

– Spark-MPI can only be used with Python codes (PySpark).
Although communications are performed using MPI, Spark-
MPI would experience the same degradation in the perfor-
mance observed for Spark when executing Python applica-
tions (see Section 6.2.1). Spark suffers performance issues
since it requires sharing data outside the JVM through sys-
tem pipes. Therefore, Spark-MPI performance results would
be similar to those obtained by Spark when running Python
codes (see, for example, the Minebench results in Fig. 14).
On the other hand, although the execution of pure MPI
codes in Spark-MPI is discussed, the vast majority of MPI
applications are implemented in C/C++ for which Spark and
Spark-MPI does not have native support.

– Spark-MPI is limited to access one partition at the same time
per executor. Partition size is restricted to a maximum of
2 GB, which is related to the use of JVMs in Spark. Therefore,
additional executors should be created in case more data
is necessary, degrading the overall I/O performance. This
restriction only applies to IgnisHPC for Java applications, but
not for Python and C/C++.

8. Conclusions

In this work we have introduced a new computing frame-
work named IgnisHPC6 to fill the gap between Big Data and
HPC languages and programming models. IgnisHPC supports the
combination of JVM and non-JVM-based languages in the same
application (currently, Java, Python and C/C++). It was designed
to take advantage of MPI for communications, which allows the
framework to execute efficiently MPI applications and libraries.
As a consequence, the MPI-based HPC scientific applications do
not have to be ported to a new API or programming model.
Moreover, it is possible to combine in the same multi-language
code HPC tasks (using MPI) with Big Data tasks (using MapReduce
operations).

The experimental evaluation demonstrated the benefits of our
proposal in terms of performance with respect to the de-facto
standard for Big Data processing, Spark, and our first prototype of
multi-language framework, Ignis. In particular, IgnisHPC is from
1.1× to 3.9× faster than Spark, and about 1.2× faster than Ignis.
In the same way, we observed that running MPI and MPI+OpenMP
applications in IgnisHPC is as efficient as executing them natively.
Therefore, thanks to IgnisHPC we are merging both Big Data and
HPC software ecosystems in just one execution environment.

6 It is publicly available at https://github.com/ignishpc.

https://github.com/ignishpc

C. Piñeiro and J.C. Pichel Future Generation Computer Systems 134 (2022) 123–139

C

J
W

D

c
t

R

RediT authorship contribution statement

César Piñeiro: Software, Validation, Writing – original draft.
uan C. Pichel: Conceptualization, Methodology, Supervision,
riting – review & editing.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

eferences

[1] S. Heldens, et al., The landscape of exascale research: A data-driven
literature analysis, ACM Comput. Surv. 53 (2) (2020).

[2] T. White, Hadoop: The Definitive Guide, fourth ed., O’Reilly Media,
Inc. 2015.

[3] M. Zaharia, M. Chowdhury, M.J. Franklin, S. Shenker, I. Stoica, Spark: Cluster
computing with working sets, in: Proc. of the 2nd USENIX Conf. on Hot
Topics in Cloud Computing, HotCloud, 2010, p. 10.

[4] M. Asch, et al., Big data and extreme-scale computing: Pathways to
convergence-toward a shaping strategy for a future software and data
ecosystem for scientific inquiry, IJHPCA 32 (4) (2018) 435–479.

[5] J. Dean, S. Ghemawat, Mapreduce: Simplified data processing on large
clusters, in: Symposium on Operating System Design and Implementation,
2004, p. 10.

[6] M. Ding, et al., More convenient more overhead: The performance evalu-
ation of hadoop streaming, in: Proc. of the ACM Symposium on Research
in Applied Computation, 2011, pp. 307–313.

[7] Jython, 2019, Online http://www.jython.org/. (Accessed April, 2019).
[8] C. Piñeiro, R. Martínez-Castaño, J.C. Pichel, Ignis: An efficient and scalable

multi-language big data framework, Future Gener. Comput. Syst. 105
(2020) 705–716.

[9] B. Alverson, E. Froese, L. Kaplan, D. Roweth, Cray XC Series Network, White
Paper WP-Aries01-1112, Cray Inc. 2012.

[10] D. De Sensi, S. Di Girolamo, K.H. McMahon, D. Roweth, T. Hoefler, An
in-depth analysis of the slingshot interconnect, in: Proceedings of the Int.
Conf. for High Performance Computing, Networking, Storage and Analysis,
SC, 2020.

[11] Y. Ajima, et al., The tofu interconnect D, in: IEEE Int. Conference on Cluster
Computing, CLUSTER, 2018, pp. 646–654.

[12] MPICH, 2021, Online https://www.mpich.org. (Accessed October, 2021).
[13] Open-MPI, 2021, Online https://www.open-mpi.org/. (Accessed October,

2021).
[14] B. Hindman, et al., Mesos: A platform for fine-grained resource sharing in

the data center, in: Proc. of the 8th USENIX Conf. on Networked Systems
Design and Implementation, 2011, pp. 295–308.

[15] HashiCorp, nomad: workload orchestration made easy, 2021, Online https:
//www.nomadproject.io/. (Accessed October, 2021).

[16] D. Merkel, Docker: lightweight linux containers for consistent development
and deployment, Linux J. 2014 (239) (2014) 2.

[17] Apache Marathon, https://mesosphere.github.io/marathon/.
[18] Apache Singularity, https://getsingularity.com/.
[19] J.T. Kukunas, V. Gopal, J. Guilford, S. Gulley, A. van de Ven, W. Feghali, High

Performance ZLIB Compression on Intel Architecture Processors, Tech. rep.
Intel, 2014.

[20] M. Zaharia, et al., Resilient distributed datasets: A fault-tolerant abstraction
for in-memory cluster computing, in: Proceedings of the 9th USENIX
Conference on Networked Systems Design and Implementation, USENIX
Association, 2012, p. 2.

[21] M. de Bayser, R. Cerqueira, Integrating MPI with docker for HPC, in: IEEE
Int. Conference on Cloud Engineering, IC2E, 2017, pp. 259–265.

[22] I. Karlin, et al., Exploring traditional and emerging parallel programming
models using a proxy application, in: 27th Int. Symposium on Parallel and
Distributed Processing, 2013, pp. 919–932.

[23] V.K. Vavilapalli, et al., Apache hadoop YARN: Yet another resource nego-
tiator, in: Proc. of the 4th Annual Symposium on Cloud Computing, ACM,
2013, pp. 5:1–5:16.

[24] J. Shi, et al., Clash of the titans: MapReduce vs. Spark for large scale data
analytics, Proc. VLDB Endow. 8 (13) (2015) 2110–2121.

[25] S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system, 2008, http:
//bitcoin.org/bitcoin.pdf.

[26] R.C. Merkle, Protocols for public key cryptosystems, in: IEEE Symposium
on Security and Privacy, 1980, p. 122.

[27] X. Li, P. Lu, J. Schaeffer, J. Shillington, P.S. Wong, H. Shi, On the versa-
tility of parallel sorting by regular sampling, Parallel Comput. 19 (1993)
1079–1103.
138
[28] T.-S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, Y. Zheng, NUS-WIDE: A real-world
web image database from national university of Singapore, in: Proc. of the
ACM CIVR, 2009, pp. 48:1–48:9.

[29] J. Leskovec, A. Krevl, SNAP datasets: Stanford large network dataset
collection, 2014, http://snap.stanford.edu/data.

[30] X. Meng, et al., MLlib: Machine learning in apache spark, J. Mach. Learn.
Res. 17 (1) (2016) 1235–1241.

[31] R.S. Xin, J.E. Gonzalez, M.J. Franklin, I. Stoica, GraphX: A resilient dis-
tributed graph system on spark, in: 1st International Workshop on Graph
Data Management Experiences and Systems, ACM, 2013.

[32] I. Karlin, J. McGraw, J. Keasler, B. Still, Tuning the LULESH Mini-App for
Current and Future Hardware, Tech. rep., 2013.

[33] V.E. Henson, U.M. Yang, BoomerAMG: A parallel algebraic multigrid solver
and preconditioner, Appl. Numer. Math. 41 (1) (2002) 155–177.

[34] A. Sasidharan, M. Snir, MiniAMR - a Miniapp for Adaptive Mesh
Refinement, Tech. rep., 2016.

[35] S. Ghosh, M. Halappanavar, A. Tumeo, A. Kalyanaraman, A.H. Gebremedhin,
Minivite: A graph analytics benchmarking tool for massively parallel sys-
tems, in: IEEE/ACM Performance Modeling, Benchmarking and Simulation
of High Performance Computer Systems, PMBS, 2018, pp. 51–56.

[36] J. Yang, J. Leskovec, Defining and evaluating network communities based
on ground-truth, 2012, arXiv:1205.6233.

[37] Y. Liu, B. Schmidt, D.L. Maskell, MSAProbs: multiple sequence alignment
based on pair hidden Markov models and partition function posterior
probabilities, Bioinformatics 26 (16) (2010) 1958–1964.

[38] J. González-Domínguez, Y. Liu, J. Touriño, B. Schmidt, MSAProbs-MPI:
parallel multiple sequence aligner for distributed-memory systems,
Bioinformatics 32 (24) (2016) 3826–3828.

[39] J. Mistry, et al., Pfam: The protein families database in 2021, Nucleic Acids
Res. 49 (D1) (2020) D412–D419.

[40] D. Wheeler, SLOCCount, 2021, Online http://www.dwheeler.com/sloccount.
(Accessed November, 2021).

[41] T. Adufu, J. Choi, Y. Kim, Is container-based technology a winner for
high performance scientific applications? in: 17th Asia-Pacific Network
Operations and Management Symp, APNOMS, 2015, pp. 507–510.

[42] M.T. Chung, N. Quang-Hung, M.-T. Nguyen, N. Thoai, Using docker in
high performance computing applications, in: IEEE 6th Int. Conference on
Communications and Electronics, ICCE, 2016, pp. 52–57.

[43] L. Benedicic, F.A. Cruz, A. Madonna, K. Mariotti, Portable, high-performance
containers for HPC, 2017, arXiv:1704.03383.

[44] A.J. Younge, K. Pedretti, R.E. Grant, R. Brightwell, A tale of two systems:
Using containers to deploy HPC applications on supercomputers and
clouds, in: IEEE Int. Conference on Cloud Computing Technology and
Science, CloudCom, 2017, pp. 74–81.

[45] P. Saha, A. Beltre, P. Uminski, M. Govindaraju, Evaluation of docker
containers for scientific workloads in the cloud, in: Proc. of the Practice
and Experience on Advanced Research Computing, 2018.

[46] J. Higgins, V. Holmes, C. Venters, Orchestrating docker containers in the
HPC environment, in: HPC. Lecture Notes in Computer Science, Vol. 9137,
Springer Int. Publishing, 2015, pp. 506–513.

[47] P. Saha, A. Beltre, M. Govindaraju, Scylla: a mesos framework for container
based MPI jobs, 2019, CoRR abs/1905.08386 arXiv:1905.08386.

[48] A. Gittens, et al., Matrix factorizations at scale: A comparison of scientific
data analytics in spark and C+MPI using three case studies, in: IEEE Int.
Conf. on Big Data, 2016, pp. 204–213.

[49] J.M. Abuín, N. Lopes, L. Ferreira, T.F. Pena, B. Schmidt, Big data in
metagenomics: Apache spark vs MPI, PLoS One 15 (10) (2020) 1–20.

[50] M. Saxena, S. Jha, S. Khan, J. Rodgers, P. Lindner, E. Gabriel, Comparison
of MPI and spark for data science applications, in: IEEE Int. Parallel
and Distributed Processing Symposium Workshops, IPDPSW, 2020, pp.
682–690.

[51] X. Lu, et al., High-performance design of hadoop RPC with RDMA over
InfiniBand, in: 42nd Int. Conference on Parallel Processing, 2013, pp.
641–650.

[52] M. Anderson, et al., Bridging the gap between HPC and big data
frameworks, Proc. VLDB Endow. 10 (8) (2017) 901–912.

[53] A. Gittens, et al., Accelerating large-scale data analysis by offloading to
high-performance computing libraries using alchemist, in: Proc. of the
24th ACM SIGKDD Int. Conference on Knowledge Discovery & Data Mining,
2018, pp. 293–301.

[54] N. Malitsky, Bringing the HPC reconstruction algorithms to big data
platforms, in: NY Scientific Data Summit, NYSDS, 2016, pp. 1–8.

[55] N. Malitsky, et al., Building near-real-time processing pipelines with the
spark-MPI platform, in: NY Scientific Data Summit, NYSDS, 2017, pp. 1–8.

[56] N. Malitsky, R. Castain, M. Cowan, Spark-MPI: Approaching the fifth
paradigm of cognitive applications, 2018, arXiv:1806.01110.

http://refhub.elsevier.com/S0167-739X(22)00125-X/sb1
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb1
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb1
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb2
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb2
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb2
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb3
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb3
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb3
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb3
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb3
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb4
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb4
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb4
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb4
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb4
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb5
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb5
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb5
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb5
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb5
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb6
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb6
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb6
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb6
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb6
http://www.jython.org/
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb8
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb8
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb8
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb8
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb8
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb9
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb9
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb9
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb10
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb10
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb10
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb10
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb10
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb10
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb10
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb11
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb11
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb11
https://www.mpich.org
https://www.open-mpi.org/
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb14
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb14
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb14
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb14
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb14
https://www.nomadproject.io/
https://www.nomadproject.io/
https://www.nomadproject.io/
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb16
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb16
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb16
https://mesosphere.github.io/marathon/
https://getsingularity.com/
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb19
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb19
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb19
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb19
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb19
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb20
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb20
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb20
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb20
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb20
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb20
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb20
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb21
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb21
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb21
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb22
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb22
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb22
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb22
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb22
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb23
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb23
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb23
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb23
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb23
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb24
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb24
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb24
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb26
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb26
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb26
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb27
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb27
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb27
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb27
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb27
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb28
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb28
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb28
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb28
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb28
http://snap.stanford.edu/data
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb30
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb30
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb30
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb31
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb31
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb31
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb31
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb31
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb32
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb32
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb32
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb33
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb33
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb33
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb34
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb34
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb34
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb35
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb35
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb35
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb35
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb35
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb35
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb35
http://arxiv.org/abs/1205.6233
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb37
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb37
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb37
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb37
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb37
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb38
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb38
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb38
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb38
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb38
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb39
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb39
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb39
http://www.dwheeler.com/sloccount
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb41
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb41
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb41
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb41
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb41
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb42
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb42
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb42
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb42
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb42
http://arxiv.org/abs/1704.03383
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb44
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb44
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb44
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb44
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb44
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb44
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb44
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb45
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb45
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb45
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb45
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb45
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb46
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb46
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb46
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb46
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb46
http://arxiv.org/abs/1905.08386
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb48
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb48
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb48
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb48
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb48
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb49
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb49
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb49
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb50
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb50
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb50
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb50
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb50
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb50
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb50
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb51
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb51
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb51
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb51
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb51
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb52
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb52
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb52
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb53
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb53
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb53
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb53
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb53
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb53
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb53
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb54
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb54
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb54
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb55
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb55
http://refhub.elsevier.com/S0167-739X(22)00125-X/sb55
http://arxiv.org/abs/1806.01110

C. Piñeiro and J.C. Pichel Future Generation Computer Systems 134 (2022) 123–139
César Piñeiro received his B.Sc. in Computer Sci-
ence from the University of Santiago de Compostela
(USC) and M.Sc. in Artificial Intelligence at Menéndez
Pelayo International University (UIMP) organized in
collaboration with the Spanish Association for Artificial
Intelligence (AEPIA) in 2018. Currently, he is a Ph.D.
candidate at CiTIUS. His main interests are focused on
High Performance Computing (HPC) and Big Data.
139
Juan C. Pichel received his B.Sc. and M.Sc. in Physics
from University of Santiago de Compostela (Spain).
In 2006 he received the Ph.D. in Computer Science
from University of Santiago de Compostela. He was a
visiting postdoctoral researcher at University Carlos III
de Madrid (Spain) and University of Illinois at Urbana-
Champaign (USA). He also worked as a researcher
and project manager at Galicia Supercomputing Cen-
ter (Spain). Currently he is an associate professor at
University of Santiago de Compostela. His research in-
terests include parallel and distributed computing, Big

Data technologies, programming models and software optimization techniques
for emerging architectures.

	A unified framework to improve the interoperability between HPC and Big Data languages and programming models
	Introduction
	Background
	Big data frameworks
	MPI
	Resource managers and schedulers

	
	Architecture of the framework
	Jobs in the framework
	Resource manager
	Driver module
	Backend module
	Executor module
	Submitter module
	Data storage

	Programming applications for IgnisHPC
	An example: Transitive closure
	Text lambda functions

	MPI on
	Integration of MPI into a big data environment
	Running MPI applications in
	Hybrid applications

	Experimental evaluation
	Experimental setup
	Big data applications
	Analysis and discussion
	Final remarks

	HPC applications
	Analysis and discussion

	Related work
	HPC and containers
	Spark and HPC applications

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	References

