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0. Introduction

Linear codes over a mixed alphabet of finite chain rings have become a great research 
avenue in coding theory, see for example [1–5,7,8,14]. In [7], Borges et al. were the 
pioneers in studying the algebraic structure of Z2Z4-additive codes as Z4-submodules 
(additive groups) of Zα

2 × Zβ
4 , where α and β are two positive integers. Later, Aydogdu 

and Siap generalized these Z2Z4-additive codes to Z2Z2s-additive codes in [1] and to 
ZprZps-additive codes in [3], where r and s are positive integers, 1 ≤ r ≤ s, and p is a 
prime number. Note that this last condition implies that the ring Zpr of integers modulo 
pr is the homomorphic image of the ring Zps of integers modulo ps. A general approach 
for codes over a mixed alphabet of finite chain rings is explored in [8] by Borges et al., 
which they called S1S2-linear codes, where S1 and S2 are finite chain rings such that S1
is the homomorphic image of S2 by a ring epimorphism.

Let S|R be a Galois extension of finite chain rings of degree m and denote by σ the 
generator of AutR(S), one can introduce a non-degenerate h-sesquilinear form 〈 ·, · 〉h :
Sn × Sn → S defined as

〈 u, v〉h =
n∑

j=1
ujσ

h(vj),

where 0 ≤ h < m. For any S-linear code C in Sn (i.e. an S-submodule on Sn), one can 
define the h-Galois dual C⊥h of C as C⊥h = {u ∈ Sn : 〈u, v 〉h = 0S for all v ∈ C}. 
A linear code is Galois Linear Complementary Dual (Galois LCD), if it meets one of 
its Galois duals trivially. An S-linear code C of length n is Galois-invariant over R, if 
σ(C) = C, where σ(C) := {(σ(c1), · · · , σ(cn)) : (c1, · · · , cn) ∈ C}.

When h = 0 we have the case of Euclidean LCD codes that have been widely applied 
in data storage, communication systems, consumer electronics, and cryptography. Carlet 
and Guilley in [9] showed an application of LCD codes against side-channel and fault 
injection attacks and presented several constructions of LCD codes. Recently, Z2Z4-
linear and Z2Z2[u]-linear (u3 = 0 and u2 �= 0) complementary dual codes are studied by 
Benbelkacem et al. in [5] and X. Hou et al. in [14], respectively.

In [18,11], the authors studied trace codes, Galois invariance and Galois correspon-
dence over finite commutative chain rings. In [20], R. Wu, and M. Shi, constructed a 
class of mixed alphabet codes with few weights from irreducible cyclic codes. Motivated 
by these previous works, we give a characterization of Galois LCD codes and generalize 
the concept of Galois-invariant codes to a mixed alphabet over finite chain rings.

The paper is organized as follows. In Section 1, we review the concept of Galois 
extensions of finite chain rings and some facts on linear codes over a mixed alphabet. 
The first main results are given in Section 2, where we give a simple characterization 
of Galois LCD codes and Galois-invariant codes over any mixed alphabet of finite chain 
rings and provide a generalized Delsarte’s theorem for linear codes over this type of 
alphabets. Section 3 studies the Gray image of Galois LCD and Galois-invariant codes 
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over some mixed alphabets based on Jitman’s Gray map [15]. In the work, we show 
several examples of these constructions and furthermore, we give an optimal binary 
LCD code, which is the Gray image of a Z2Z4-LCD code.

1. Preliminaries

All the properties and facts about finite chain rings in this section can be found in [19]. 
Throughout all the paper, S will denote a finite chain ring with maximal ideal J(S). We 
will denote by θ a generator of J(S) such that θs−1 �= θs = 0, where s is its nilpotency 
index and Fqm will denote the residue field of S (q is a power of a prime number). S×

will denote the unit group of S and for a fixed positive integer r such that 1 ≤ r < s, 
we will denote by : S → S/〈θr〉, the surjective ring homomorphism that maps x to x, 
where x = x + 〈θr〉 and π : S → Fqm is the canonical ring projection. We set S = S/〈θr〉. 
Note that S is also a finite chain ring which has the same residue field as S. The maximal 
ideal S is J(S) generated by θ with nilpotency index r. Moreover, the ring S is also an 
S-module with the law

∗ : S × S → S

(a, x) 	→ ax.
(1)

1.1. Galois extensions of a finite chain ring

In a finite chain ring S for any θ in J(S)\J(S)2, there exists a unique chain of ideals 
of S given by

{0S} = J(S)s � J(S)s−1 = θs−1S � · · · � J(S) = θS � S. (2)

Thus for any θ in J(S)\J(S)2, and for any t in {0, 1, · · · , s}, J(S)t = θtS = Sθt. This 
chain of ideals allows defining the valuation ϑ of S as follows:

ϑ : S → {0, 1, . . . , s}
x 	→ max {t ∈ {0, 1, . . . , s} : x ∈ J(S)t}. (3)

Note that S× = S\J(S), since the ring S is local. The restriction of the canonical ring 
projection π given by π�S× : S× → Fqm\{0} is a multiplicative group epimorphism and 
its kernel is 1S + J(S). Moreover, there is a unique subgroup Γ(S)∗ of S× such that 
S× = (Γ(S)∗) · (1S + J(S)) with (Γ(S)∗) ∩ (1S + J(S)) = {1S} and the restriction π�S×

is a multiplicative group-isomorphism. The reciprocal bijection of π�S× will be denoted 
by ι : Fqm\{0} → Γ(S)∗. By convention ι(0Fqm

) = 0S . The Teichmüller set of S is given 
by Γ(S) = Γ(S)∗ ∪ {0S}. Therefore, for any θ in J(S)\Ss there is a unique s-tuple of 
surjective maps (γ0, γ1, · · · , γs−1) from S into Γ(S) such that for any x in S

x = γ0(x) + γ1(x)θ + · · · + γs−1(x)θs−1. (4)
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The right-hand side of (4) is called the θ-adic decomposition of x. The degree degθ of 
an element x ∈ S is defined by

degθ : S → {0, 1, . . . , s} ∪ {−∞}
x 	→ max{t ∈ {0, 1, . . . , s− 1} ∪ {−∞} : γt(x) �= 0S}.

(5)

For j in {0, 1, . . . , s − 1} ∪ {−∞}, it denotes Γj(S) := {x ∈ S : degθ(x) ≤ j} and we 
have

Γ−∞(S) = {0S} � Γ(S) = Γ0(S) � Γ1(S) � · · · � Γs−1(S) = S.

Note that for any j in {0; 1; · · · ; s − 1}, we have θs−jΓj−1(S) = θs−jS and if r ≤ j then 
Γj(S) = Γr−1(S) = S. Thus, the map : Γr−1(S) → S is bijective, its reciprocal map 
will be denoted by ι : S → Γr−1(S). Therefore, the following map

χ : S → θs−jS

x 	→ θs−rι(x),

is an isomorphism of S-modules.
Let S and R be two finite chain rings. We say that S is a ring-extension of R and it 

denotes S | R, if R is a subring of S and 1R = 1S . The ring-extension S | R is a Galois 
extension of degree m, if S ∼= R[X]/〈f〉 (as ring), where f is a monic basic polynomial 
over R of degree m. The group AutR(S) (so-called Galois extension S | R) is given by all 
ring-automorphisms ρ of S such that the restriction ρ|R : R → R is the identity map. 
From [19, Theorem XV.2], AutFq

(Fqm) ∼= AutR(S) and AutFq
(Fqm) ∼= AutR(S) such that 

for any x in S, we have σ(x) = σ(x) and π(σ(x)) = Frq(π(x)) with AutR(S) = 〈 σ 〉
and AutR(S) = 〈 σ 〉. Thus the group AutR(S) is cyclic of order m. The ring S can be 
regarded as a free R-module of rank m and m = rankR(S) = |AutR(S)|.

1.2. Linear codes over a mixed alphabet of finite chain rings

Given the rings S and S as above, we define the set SS = {(x ‖ y) : x ∈ S and y ∈ S}. 
The set SS is called mixed alphabet of chain rings S and S. Let α and β to be positive 
integers, the S-scalar multiplication ∗ on S

α × Sβ is defined as:

a ∗ (x0, x1, . . . , xα−1 ‖ y0, y1, . . . , yβ−1) = (ax0, ax1, . . . , axα−1 ‖ ay0, ay1, . . . , ayβ−1).
(6)

Note that the S-scalar multiplication ∗ provides an S-module structure for S α × Sβ . 
The S-submodules of S α × Sβ are called SS-linear codes of block-length (α, β).

The concept of independence of vectors in codes over rings defined in [10] can be easily 
extended to SS-linear codes as follows: the non-zero elements c1, . . . , cμ in S

α × Sβ are 
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S-independent, if every S-linear combination 
μ∑

i=1
ai ∗ ci = 0 implies that ai ∗ ci = 0, for 

all i ∈ {1, . . . , μ}. Let C be an SS-linear code of block-length (α, β). The codewords 
c1, . . . , cμ in C form an S-basis for C, if they are S-independent (in the previous sense) 
and they generate C.

For any positive integer μ, we denote by Mμ×α(S) and Mμ×β(S) the additive groups 
of (μ × α)-matrices over S and (μ × β)-matrices over S, respectively. We will define the 
set

Mμ(S α
Sβ) =

{
(X ‖Y) : (X,Y) ∈ Mμ×α(S) × Mμ×β(S)

}

of mixed matrices whose μ rows are in S
α × Sβ . Note that Mμ(S α

Sβ) is an additive 
group. For any 1 ≤ δ ≤ μ, the operation in (6) naturally extends to Mμ(S α

Sβ) as follows

P ∗ (X ‖Y) = (PX ‖PY), (7)

for any P in Mδ×μ(S) and for any (X ‖ Y) in Mμ(S α
Sβ). When δ = μ, the additive 

group Mμ×μ(S) is a ring with unit group GLμ(S), so the operation ∗ provides to the set 
Mμ(S α

Sβ) a structure of Mμ×μ(S)-module.
A mixed-matrix G in Mμ(S α

Sβ) is called a generator mixed-matrix for an SS-linear 
code C, if the rows of G form an S-basis for C. This generator mixed-matrix can be 
written as (GX ‖ GY ), where GX is a μ × α-matrix over S and GY is a μ × β-matrix.

It is important to note that the set of mixed generator matrices for any SS-linear code 
C with generator mixed-matrix G in Mμ(S α

Sβ) is {P ∗ G : P ∈ GLμ(S)}. It turns out 
that the number of rows of a generator mixed-matrix of any SS-linear code C depends 
only on the algebraic structure of C and it is called the rank of C and we denote it by 
rk(C). Due to the structure theorem of finite modules over a finite chain ring, for any 
SS-linear code C of length (α, β), there is a unique array (α, β; k0, . . . , kr−1; 0, . . . , s−1)
of positive integers, called the type of C, such that C isomorphic to the S-module 
r−1∏
t=0
kt �=0

(
S/〈θ r−t〉

)kt

×
s−1∏
t=0
�t �=0

(S/〈θs−t〉)�t . The following result shows that any SS-linear 

code of length (α, β) with rank μ admits a generator mixed-matrix in Mμ(S α
Sβ).

Proposition 1. [8, Proposition 3.2.] Any SS-linear code of type (α, β; k0, . . . , kr−1; 0, . . . ,
s−1) has a generator mixed-matrix that is permutation equivalent to

(
B θs−rT
U A

)
, (8)

where
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B =

⎛⎜⎜⎜⎜⎜⎜⎝

Ik0 B0,1 B0,2 B0,3 · · · B0,r−1 B0,r
0 θIk1 θB1,2 θB1,3 · · · θB1,r−1 θB1,r

0 0 θ
2Ik2 θ

2B2,3 · · · θ
2B2,r−1 θ

2B2,r
...

...
...

...
...

...
0 0 0 0 · · · θ

r−1Ikr−1 θ
r−1Br−1,r

⎞⎟⎟⎟⎟⎟⎟⎠ ,

T =

⎛⎜⎜⎜⎜⎜⎜⎝
0 T0,1 T0,2 T0,3 · · · T0,r−1 T0,r
0 0 θT1,2 θT1,3 · · · θT1,r−1 θT1,r
0 0 0 θ2T2,3 · · · θ2T2,r−1 θ2T2,r
...

...
...

...
...

...
0 0 0 0 · · · 0 θr−1Tr−1,r

⎞⎟⎟⎟⎟⎟⎟⎠ ,

U =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 U0,1 U0,2 U0,3 · · · U0,r−1 U0,r
...

...
...

...
...

...
0 Us−r−1,1 Us−r−1,2 Us−r−1,3 · · · Us−r−1,r−1 Us−r−1,r
0 0 θUs−r,2 θUs−r,3 · · · θUs−r,r−1 θUs−r,r

...
...

...
...

...
...

0 0 0 0 · · · 0 θ
r−1Us−2,r

0 0 0 0 · · · 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and

A =

⎛⎜⎜⎜⎜⎜⎜⎝
I�0 A0,1 A0,2 A0,3 · · · A0,s−1 A0,s
0 θI�1 θA1,2 θA1,3 · · · θA1,s−1 θA1,s
0 0 θ2I�2 θ2A2,3 · · · θ2A2,s−1 θ2A2,s
...

...
...

...
...

...
0 0 0 0 · · · θs−1I�s−1 θs−1As−1,s

⎞⎟⎟⎟⎟⎟⎟⎠ .

Here Bi,j are matrices over S, and Ti,j are matrices over S for 0 ≤ i < r, and 0 < j ≤ r. 
Furthermore, for 0 ≤ i < s − 1, 0 < j ≤ r and 0 < t ≤ s, Ui,j are matrices over S, 
and Aj,t are matrices over R. Also, Iki

and I�j are identity matrices of sizes ki and j, 
respectively, where 0 ≤ i ≤ r−1 and 0 ≤ j ≤ s −1. Of course, if r = s, then the matrices 
U and A are suppressed in (8).

We can have a generator mixed-matrix over S α × Sβ as 
(

Iα O
O Iβ

)
of type 

(α, β; α, 0, . . . , 0; β, 0, . . . , 0), whereas S α×Sβ is not free as an S-module. In this case, we 
will say that an SS-linear code is weakly-free if k1 = · · · = kr−1 = 1 = · · · = s−1 = 0. 
Thus, a generator mixed-matrix in the form (8) of any weakly-free SS-linear code C is 
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(
B θs−rT
U A

)
, where A =

(
Ik | A0

)
, B =

(
I� | B0

)
, T =

(
O | T0

)
and 

U =
(

O | U0

)
, where O is the zero matrix in Mμ(S α

Sβ).

Remark 1. Let C be an SS-linear code with generator mixed-matrix G in the form of 
Equation (8) of type (α, β; k0, · · · , kr−1; 0, · · · , s−1). The map

EndG : M(C) → C

m 	→ m ∗ G
(9)

is bijective, where M(C) =
r∏

t=0
kt �=0

(Γr−t(S))kt ×
s∏

t=0
�t �=0

(Γs−t(S))�t . Moreover, |C| =

q
m

(
r−1∑
t=0

(r−t)kt+
s−1∑
t=0

(s−t)�t
)
.

Example 1.1. Let C be a Z4Z8-linear code of block-length (3; 4) with generator mixed-
matrix

⎛⎜⎜⎜⎝
2 1 0 2 6 3 5
0 2 0 1 2 4 0
1 1 1 0 4 0 4
2 1 2 4 2 6 0

⎞⎟⎟⎟⎠ .

Hence, as described in Proposition 1, C is permutation equivalent to a linear code with 
generator mixed-matrix:

⎛⎜⎜⎜⎝
1 0 1 0 0 2 2
0 1 0 0 0 6 6
0 0 0 1 0 6 0
0 0 2 0 1 0 1

⎞⎟⎟⎟⎠ .

Thus the type of C is (3, 4; 2, 0; 2, 0, 0) and |C| = 210. Moreover, C is weakly-free.

2. Characterization of Galois-invariant and Galois LCD codes over mixed alphabets

Throughout this section, S|R will be a Galois extension with degree m and σ a 
generator of AutR(S). Let (x ‖ y) ∈ S

α × Sβ and G ∈ Mμ×α(S) × Mμ×β(S). For any 
h ∈ {0, 1, . . . , m − 1}, the h-Galois image of (x ‖ y) is given by

σh((x ‖ y)) =
(
σh(x0), · · · , σh(xα−1), ‖σh(y0), · · · , σh(yβ−1)

)
,
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and the h-Galois image of G is given by σh(G) =

⎛⎜⎝ σh(G[1 :])
...

σh(G[μ :])

⎞⎟⎠, where G[i :] is the 

i-th row of G. If C is an SS-linear code with generator mixed-matrix G, then σh(C) :={
σh(c) : for all c ∈ C

}
is also an SS-linear code with generator mixed-matrix σh(G).

2.1. Galois duality and Galois LCD codes

The h-Galois inner-product 〈 · ; · 〉h on S
α × Sβ is defined as follows:

〈(x ‖ y) , (x′ ‖ y′)〉h = θs−r

⎛⎝α−1∑
j=0

ι(xjσ
h(x′

j))

⎞⎠+
β−1∑
j=0

yjσ
h(y′j), (10)

where (x ‖ y) and (x′ ‖ y′) are in S
α × Sβ .

Note that 〈(x ‖ y) , (x′ ‖ y′)〉h = χ(〈x , x′〉h) + 〈y , y′〉h, for all (x, x′) in S
α × S

α and 
(y, y′) in Sβ × Sβ . For any (μ, λ) in (N\{0})2, the h-Galois mixed-matrix product is 
defined as follows:

〈· , ·〉h : Mμ(S α
Sβ) × Mλ(S α

Sβ) → Mμ×λ(S)
(X , Y) 	→ 〈X , Y〉h = (〈X[i :] , Y[j :]〉h)0≤i<μ

0≤i<λ
. (11)

Moreover, 〈X , Y〉h =
〈
X , σh(Y)

〉
0 and for any m ∈ Sμ, we have 〈m ∗ X , Y〉h =

m 〈X , Y〉h.
If h = 0, it is just the usual Euclidean inner-product and if m = 2h it is the Hermitian 

inner-product. For any SS-linear code C, the h-Galois dual code of C, denoted by C⊥h , 
is defined as

C⊥h =
{

u ∈ S
α × Sβ : ( for all c ∈ C)(〈u , c〉h = 0)

}
.

Clearly, C⊥h is an SS-linear code of block-length (α, β). Theorem 9 in [3] holds for any 
finite chain ring, which follows that if the type of C is (α, β; k0, . . . , kr−1; 0, . . . , s−1), 
then the type of its h-Galois dual is(

α, β;α−
r−1∑
t=0

kt, kr−1, . . . , k1;β −
s−1∑
t=0

t, s−1, . . . , 1

)
.

Therefore, |C| × |C⊥h | = |S α ×Sβ | and moreover, C is weakly-free if and only if C⊥h is 
weakly-free.

Remark 2. Let C be an SS-linear code. Since 〈u , v〉h =
〈
u ; σh(v)

〉
0 = σh

(
〈u ; v〉m−h

)
, 

it follows that C⊥h = (σh(C))⊥0 = σh(C⊥m−h) and C = (C⊥h)⊥m−h = (C⊥m−h)⊥h .



M. Bajalan et al. / Finite Fields and Their Applications 85 (2023) 102125 9
The h-Galois hull of C is defined to be its intersection with its h-Galois dual, and 
is denoted by Hh(C). Thus, if C is a weakly-free SS-linear code with generator mixed-
matrix G in Mμ(S α

Sβ) then

Hh(C) =
{

m ∗ G : (∃m ∈ M(C)) (〈m ∗ G,G〉h = 0)
}
. (12)

We say that C is h-Galois self-orthogonal Hh(C) = C and C is h-Galois self-dual if 
C = C⊥h . C is a linear complementary h-Galois dual code (h-Galois LCD code) if 
Hh(C) = {0}. Note that if C and C ′ are monomial-equivalent SS-linear codes, then C is 
h-Galois LCD code if and only if C ′ is h-Galois LCD code. Moreover, since |C| ×|C⊥h | =
|S α×Sβ |, it follows that any SS-linear code C of block-length is an h-Galois LCD code 
if and only if C ⊕ C⊥h = S

α × Sβ . Of course, if C is an h-Galois LCD code, then C is 
weakly-free.

From now on in the paper, 0μ := (0, 0, · · · , 0)︸ ︷︷ ︸
μ times

, for some positive integer μ. We will 

need the following remark in the proof of the first result of this paper.

Remark 3. We have that GLμ(S) = {M ∈ Mμ×μ(S) : det(M) /∈ J(S)}, since S× =
S\J(S). Thus M /∈ GLμ(S) if and only if there exists m ∈ Sμ such that θ s−1m �= 0μ
and θ s−1mM = 0μ.

From Theorem 2 in [6], LCD codes over chain rings are free. Thus from [6, Corollary 2], 
any code over a chain ring with generator mixed-matrix G is an LCD code if and only if 
GGT is invertible. In [5], it was proved that for any Z2Z4-linear code C with generator 
mixed-matrix G, if GGT is invertible then code C is a 0-Galois LCD code, but the 
inverse is not true (see Corollary 3.9 and Remark 3.8). The following result gives a 
characterization of Galois LCD codes over the finite chain ring mixed alphabet SS. Note 
that been weakly-free is not a restriction since, as pointed before, h-Galois LCD codes 
are always weakly-free.

Theorem 1. Let C be a weakly-free SS-linear code with generator mixed-matrix G as in 
(8),

G =
(

G(r)

G(s)

)
=
(

B θs−rT
U A

)
,

where A =
(

Ik | A0

)
, B =

(
I� | B0

)
, T =

(
O | T0

)
and U =

(
O | U0

)
.

Let us denote by C(r) the S-linear code with generator matrix B and by C(s) the S-
linear code with generator matrix A. If ι 

(
Bσh(U)T

)
+ Tσh(A)T ∈ M�×k(J(S)), then the 

following assertions are equivalent.

1. C is an h-Galois LCD code.
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2. Aσh(A)T and Bσh(B)T are invertible.

3. There is a matrix P in GLμ(S) such that 〈G, G〉hP =
(
θs−rIk O

O I�

)
, with μ = k+.

4. C(r) and C(s) are h-Galois LCD codes.

Proof. We have

〈G,G〉h =
(
〈G(r),G(r)〉h 〈G(r),G(s)〉h
〈G(s),G(r)〉h 〈G(s),G(s)〉h

)

=
(
θs−r

(
ι
(
Bσh(B)T

)
+ θs−rTσh(T)T

)
θs−r

(
ι
(
Bσh(U)T

)
+ Tσh(A)T

)
θs−r

(
ι
(
Uσh(B)T

)
+ Aσh(T)T

)
θs−rι

(
Uσh(U)T

)
+ Aσh(A)T

)
.

Assume that ι 
(
Bσh(U)T

)
+ Tσh(A)T ∈ M�×k(J(S)).

1. ⇒ 2. Assume that either Bσh(B)T or Aσh(A)T is a non-invertible matrix.
• If Aσh(A)T is non-invertible in M�×�(S) then, from Remark 3, there ex-

ists m in S� such that θs−1m �= 0� and θs−1mAσh(A)T = 0� ∈ S�. Thus, 
(0k, θs−1m)〈G, G〉h = 0μ. It follows that

(0k, θs−1m)〈G,G〉h = 〈(0k, θs−1m) ∗ G,G〉h = 0μ.

Now (0k, θs−1m) ∗ G = (0k, θs−1m �= 0, θs−1mA0) since θs−1m �= 0�. From 
(12), we have (0k, θs−1m) ∗ G ∈ Hh(C). Hence, C is a non h-Galois LCD 
code.

• If the matrix Bσh(B)T is non-invertible in Mk×k(S) then, again from Re-
mark 3, there exists an element m in (Γr(S))k such that θ r−1m �= 0k and 

θ
r−1m(Bσh(B)T ) = 0k ∈ S

k. Thus, (θr−1m, 0�)〈G, G〉h = 0μ. Since

θr−1m ∗ (Bσh(B)T ) = θ
r−1m(Bσh(B)T ), and

Tσh(A)T + ι
(
Bσh(U)T

)
∈ M�×k(J(S)),

it follows that

(θr−1m, 0�)〈G,G〉h = 〈(θr−1m, 0�) ∗ G,G〉h = 0μ.

From Equation (12), we have

0 �= (θr−1m, 0�) ∗ G = (θ r−1m, θ
r−1mB0, θ

s−1mT) ∈ Hh(C).

Thus, C is a non h-Galois LCD code.
Therefore, either if Bσh(B)T or Aσh(A)T is non-invertible, then C is not an 
h-Galois LCD code.
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2. ⇒ 3. Assume that the matrices Bσh(B)T and Aσh(A)T are invertible. Then 
ι 
(
Bσh(B)T

)
+ θs−rTσh(T)T and 〈G(s), G(s)〉h are also invertible. There are 

invertible matrices P1 and P2 with entries in S such that P1〈G(s), G(s)〉h =
〈G(s), G(s)〉hP1 = I� and P2〈G(r), G(r)〉h = 〈G(r), G(r)〉hP2 = θs−rIk. It follows 
that

〈G,G〉h

(
P2 O
O P1

)
=
(

θs−rIk 〈G(r),G(s)〉hP1

〈G(s),G(r)〉hP2 I�

)
.

Then we have that

〈G,G〉h

(
P2 O
O P1

)(
Ik O

−〈G(r),G(s)〉hP2 I�

)

=
(
θs−rIk − 〈G(r),G(s)〉hP1〈G(s),G(r)〉hP2 〈G(r),G(s)〉hP1

O I�

)
.

Now, 〈G(r), G(s)〉hP1〈G(s), G(r)〉hP2 = θ2(s−r)M1, where M1 is a matrix with 
entries in S. It follows that

θs−rIk − 〈G(r),G(s)〉hP1〈G(s),G(r)〉hP2 = θs−r
(
Ik + θs−rM1

)
and Ik +θs−rM1 is invertible. Hence there is an invertible matrix P3 with entries 
in S such that P3(Ik + θs−rM1) = (Ik + θs−rM1)P3 = Ik. Thus

〈G,G〉h

(
P2 O
O P1

)(
Ik O

−〈G(r),G(s)〉hP2 I�

)(
P3 O
O I�

)

=
(
θs−rIk 〈G(r),G(s)〉hP1

O I�

)

Now, 〈G(r), G(s)〉hP1 = θs−rM2, where M2 is a matrix with entries in S. Thus

〈G,G〉h

(
P2 O
O P1

)(
Ik O

−〈G(r),G(s)〉hP2 I�

)(
P3 O
O I�

)(
Ik −M2

O I�

)

=
(
θs−rIk O

O I�.

)
.

Now if we take

P =
(

P2 O
O P1

)(
Ik O

−〈G(r),G(s)〉hP2 I�

)(
P3 O
O I�

)(
Ik −M2

O I�

)
,
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we have 〈G, G〉hP =
(
θs−rIk O

O I�

)
and P ∈ GLμ(S), with μ = k + .

3. ⇒ 1. Assume that there is a matrix P in GLμ(S) such that 〈G, G〉hP =
(
θs−rIk O

O I�

)
, 

with μ = k + . Let c ∈ Hh(C). Since

Hh(C) =
{
m ∗ G : (m ∈ (Γr(S))k × S�)(〈m ∗ G,G〉h = 0μ)

}
,

there exists (m, m′) in (Γr(S))k × S� such that 〈(m, m′) ∗ G, G〉h = 0μ. As 

〈(m, m′) ∗ G, G〉h = (m, m′)〈G, G〉h and 〈G, G〉hP =
(
θs−rIk O

O I�

)
, it deduces 

that (m, m′)〈G, G〉h = m
(
θs−rIk O

O I�

)
= 0μP−1 = 0μ. Hence mθs−rIk =

θs−rm = 0k and m′I� = m′ = 0�. But θs−rm = 0k ⇔ m ∈ θrSk. So m ∈
(θrSk) ∩ (Γr(S))k = {0k}. Consequently (m, m′) = 0μ and henceforth C is an 
h-Galois LCD code.

2. ⇔ 4. From [17, Theorem 2.4.], it follows that πr(C(r)) is an h-Galois LCD code if 
and only if the matrix πr(B(σh(B))T ) is invertible, and πs(C(s)) is an h-Galois 
LCD code if and only if the matrix πs(A(σh(A))T ) is invertible. Note that the 
proof of [6, Theorem 4] can be easily adapted to the present situation, and thus 
C(r) is an h-Galois LCD code if and only if B(σh(B))T is invertible, and C(s) is 
an h-Galois LCD code if and only if A(σh(A))T is an invertible matrix. �

An SS-linear code C is called separable if C = CX × CY , where CX is an S-linear 
code and CY is an S-linear code. It is easy to see that C has a generator mixed-matrix in 

the form 

(
B O
O A

)
, where B is a generator matrix for CX and A is a generator matrix 

for CY . From Theorem 1, we have a generalization of [6, Proposition 4.3] as follows:

Corollary 1. A separable SS-linear code C is an h-Galois LCD code if and only if both 
CX and CY are h-Galois LCD codes.

Corollary 2. Let C be an SS-linear code with generator mixed-matrix G.

1. If G = (B || θs−rT) and B := (Ik |B0), then C is h-Galois LCD if and only if 
Bσh(B)T is invertible.

2. If G = (U || A) and A := (I� | A0), then C is h-Galois LCD if and only if Aσh(A)T
is invertible.

Remark 4. An SS-linear code C is an h-Galois LCD code if and only if C⊥h is an h-Galois 
LCD code.
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Example 2.1. Let C be the Z2Z4-linear code of block-length (3, 5) with generator mixed-

matrix 

(
B 2T
U A

)
, where

(
B 2T
U A

)
=

⎛⎜⎝ 1 0 1 0 2 0 2 0
0 1 1 0 0 2 0 2
0 0 1 1 1 1 2 2

⎞⎟⎠ .

We have σ = IdZ4 , TAT +ι(BUT ) = (0, 0)T ∈ {0, 2}2, det(AAT ) = 3 and det(BBT ) = 1. 
Note that applying Theorem 1 we have that C is an LCD code.

2.2. Galois-invariant codes

The extension of a finite chain ring S|R is also Galois and its Galois group AutR(S) is 
generated by σ. The set SS has a ring structure under the component-wise addition and 
multiplication. For example, the set F2S := {(x‖ y) : x ∈ F2, y ∈ S} where S = F2+uF2

with u2 = 0, is a ring structure under the following laws: (x‖ y) +( x′‖ y′) := (x +x′‖ y+y′)
and (x‖ y) · (x′‖ y′) := (xx′‖ yy′).

Therefore, the ring-extension SS | RR is Galois and its Galois group G is 
{
(σi ‖ σi) :

0 ≤ i < m
}
. Without loss of generality, we say that σ is a generator of the Galois group 

of SS | RR. Let C be an SS-linear code of type (α, β; k0, . . . , kr−1; 0, . . . , s−1). One can 
define the subring-subcode of C to RR as ResR(C) = C ∩ (Rα ×Rβ) and the trace code
Tr(C) of C over R as

Tr(C) =
{(

Tr(c0), . . . , Tr(cα−1) || Tr(c′0), . . . , Tr(c′β−1)
)

:

(c0, . . . , cα−1 || c′0, . . . , c′β−1) ∈ C

}
,

(13)

where Tr =
m−1∑
i=0

σi and Tr =
m−1∑
i=0

σi. It is clear that Tr(σ(C)) = Tr(C) and ResR(C), 

Tr(C) are also RR-linear codes. The smallest submodule of the S-module S
α × Sβ

containing C will be denoted Ext(C). So Ext(C) is the set of all S-linear combinations 
of codewords in C. The same arguments as in [18] can be easily adapted to the mixed 
alphabets to prove that ResR(C) = Res(Ext(ResR(C))); ResR(C) ⊆ Tr(C) and C ⊆
Ext(ResR(C)). Note that Ext(H0(C)) = H0(Ext(C)). The following theorem generalizes 
Delsarte’s celebrated result that relates the restriction and the trace operators by means 
of the duality.

Proposition 2 (Generalized Delsarte’s theorem). Let S|R be a Galois extension of a finite 
chain ring. Any SS-linear code C satisfies



14 M. Bajalan et al. / Finite Fields and Their Applications 85 (2023) 102125
Tr(C⊥h) = ResR(C)⊥0 ,

where C⊥h is the h-Galois dual of C in S
α × Sβ and Res(C)⊥0 is the Euclidean dual of 

ResR(C) in R
α ×Rβ.

Proof. Let C be an SS-linear code of block-length (α, β). Let a ∈ Tr(C⊥h). Then there 
exists b in C⊥h such that a = Tr(b). Therefore, for all c in ResR(C), we have 0 =
〈b, c〉h = 〈b, c〉0 and

〈a, c〉0 = θs−r
α−1∑
j=0

ι(Tr(xj)cj) +
β−1∑
j=0

Tr(yj)c′j = Tr(〈b, c〉0) = Tr(0) = 0.

Hence a ∈ ResR(C)⊥0 . This proves that Tr(C⊥h) ⊆ ResR(C)⊥0 .
On the other hand, since the inclusion ResR(C)⊥0 ⊆ Tr(C⊥h) is equivalent to 

Tr(C⊥h)⊥0 ⊆ ResR(C). Let a ∈ Tr(C⊥h)⊥0 . By definition, for all b ∈ C⊥h and for 
all λ ∈ S, we have λ ∗ b ∈ C⊥h and 0 = 〈a, Tr(λ ∗ b)〉0 = Tr(〈λ ∗ b, a〉m−h) =
Tr(λ ∗〈a, b〉m−h) = Tr(λ〈a, b〉m−h). Therefore, for all λ ∈ S, we have 0 = Tr(λ〈a, b〉m−h). 
Since S|R is Galois, the symmetric bilinear form 〈 · ; · 〉 : S × S 	→ R defined by 
〈 x , y 〉 = Tr(xy) is non-degenerate, it follows that for all b in C⊥h , 〈a, b〉m−h = 0. From 
Remark 2, (C⊥h)⊥m−h = C and so a ∈ (C⊥h)⊥m−h = C. Now a ∈ Tr(C⊥h)⊥0 ⊆ R

α×Rβ . 
Hence a ∈ ResR(C). �

The SS-linear code C is G-invariant if σ(C) = C, for some generator σ of G. From 
Remark 2, a relationship between Galois duality and G-invariance is the following

Corollary 3. If C is a G-invariant code, then C⊥h = C⊥0 .

Since the arguments in [18, Lemma 2 and Theorem 1] also hold for any SS-linear code 
C of block-length (α, β). Therefore, we have that

Corollary 4.

1. If C is a G-invariant code, then ResR(C) = Tr(C).
2. If C = Ext(D), where D ⊆ R

α ×Rβ, then C is a G-invariant code.

Consider the map

χ : S α × Sβ → θs−rS α × Sβ

(x ‖ y) 	→ (θs−rι(x) ‖ y).
(14)

Note that θs−rΓr(S) = θs−rS and χ is an isomorphism of S-modules. In Theorem 1 in 
[18], it was proved that if S is a Galois extension of the chain ring R, then any S-linear 
code is a G-invariant code if and only if it has a generator matrix over R. The following 
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result provides a characterization of G-invariant codes over a finite chain ring mixed 
alphabet.

Theorem 2. Let S|R be a Galois extension of a finite chain ring and C an SS-linear code 
with generator mixed-matrix G. The following statements are equivalent.

1. C is a G-invariant code.
2. χ(C) is a G-invariant code.
3. C has a generator mixed-matrix over RR.

Proof. We have σ ◦ χ = χ ◦ σ.

1. ⇒ 2.) Assume that σ(C) = C. Then σ(χ(C)) = χ(σ(C)) = χ(C). Thus, χ(C) is a 
G-invariant code.

2. ⇒ 3.) Assume that the code χ(C) is G-invariant. From [18, Theorem 1], there exists 
a matrix (GX , GY ) in Mk×α(Γr(R)) ×Mk×β(R) and a matrix P in GLμ(S) such 
that χ(G) = P(θs−rGX | GY ). It follows that G = P ∗ (GX ‖ GY ) and thus, 
(GX ‖ GY ) is a generator mixed-matrix of the code C over the ring RR.

3. ⇒ 1.) It is a straightforward consequence of item 2 in Corollary 4. �
The G-core of the code C, denoted by CG, is the largest G-invariant subcode of C. It 

is easy to see that CG =
m−1⋂
i=0

σi(C). Note that C is G-invariant if and only if C = CG. 

From Corollary 4 and Theorem 2, we have the following two results that can be proven 
add in the same steps as the proofs in [18, Corollary 1 and Theorem 2].

Corollary 5. Let S|R be a Galois extension of finite chain rings and C an SS-linear code. 
The following statements follow.

1. CG = Ext(ResR(C)).
2. If ResR(C) = Tr(C), then C is G-invariant.

Corollary 6. Let S|R be a Galois extension with Galois group G and C be an SS-linear 
code. The following assertions are satisfied.

1. C is a G-invariant code if and only if C⊥h is a G-invariant code.
2. If C is a G-invariant code, then C is an h-Galois LCD code for some 0 ≤ h ≤ |G| if 

and only if ResR(C) is an LCD code.

3. Gray image of linear codes over finite chain rings

In [13], a homogeneous weight wtS on the finite chain ring S was defined as follows: 
if r = 1 then wtS is the Hamming weight wH , otherwise
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wtS(x) =

⎧⎪⎨⎪⎩
0, if x = 0S ;
(qm − 1)qm(r−2), if ϑ(x) ≤ r − 2;
qm(r−1), if ϑ(x) = r − 1.

(15)

Thus, for any (x ‖ y) ∈ SS, the weight of (x ‖ y) is defined by: wtqm((x ‖ y)) = wtS(x) +
wtS(y), where wtS and wtS are the homogeneous weights on S and S, respectively. This 
homogeneous weight wtqm can be extended component-wise on S

α × Sβ as:

wtqm(x0, · · · , xα−1 ‖ y0, · · · , yβ−1)

= wtS(x0) + · · · + wtS(xα−1) + wtS(y0) + · · · + wtS(yβ−1).

Let �m = (1, · · · , 1) and εm = (0, 1, ε, · · · , εqm−2) be vectors in (Fqm)q
m

, where ε is 
an element in Fqm of order qm − 1. We use the tensor product ⊗ (expanded from right 
to left) over Fqm to defined the vector

ct = �m ⊗ · · · ⊗�m︸ ︷︷ ︸
r−t−2 times

⊗ εm ⊗�m ⊗ · · · ⊗�m︸ ︷︷ ︸
t times

,

for 0 ≤ t < r ≤ s. Consider the matrix G(qm,r), whose ct is its t-th row. Of course, 
if r = 2, then c0 = εm and c1 = �m. Note that G(qm,r) is a generator matrix of the 
first order generalized Reed-Müller code RMqm(1, r − 1) over Fqm length qr−1 (see for 
example [16] for a definition and reference on Reed-Müller and Generalized Reed-Müller 
codes). Then, Jitman’s Gray map defined in [15] is naturally generalized to S

α × S β as 
follows

Φ(S,r) : S α × S β → (RMqm(1, r − 1))α × (RMqm(1, s− 1))β
(a,b) 	→

(
γ(a)G(qm,r), γ(b)G(qm,s)

)
,

(16)

where

γ : S α → ((Fqm)α)r

a 	→ (γ̃0(a), γ̃1(a), · · · , ˜γr−1(a))
and

γ : S β → ((Fqm)β)s

b 	→ (γ̃0(b), γ̃1(b), · · · , ˜γs−1(b))

are bijective maps defined with the t-th θ-adic coordinate map γt : S → Γ(S) that is 
usually extended coordinate-wise to γt : S

n → Γ(S)n, where n ∈ {α, β}. From [15, 
Proposition 3.1.], it is easy to see that the Jitman’s Gray map Φ(S,r) is an injective 

isometry from 
(
S

α × S β ; dhom
)

to 
(
(Fqm)αq

m(r−1)+βqm(s−1)
; dH
)
, where dH denotes the 

Hamming distance on (Fqm)αq
m(r−1)+βqm(s−1)

.
Let C be an SS-linear code C of the block-length (α, β). Then

Φ(S,r)(C) ⊆ (RMqm(1, r − 1))α × (RMqm(1, s− 1))β ⊆ (Fqm)αq
m(r−1)+βqm(s−1)
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and Φ(S,r)(C) is called the Jitman’s Gray image of C. Now

(
(RMqm(1, r − 1))α × (RMqm(1, s− 1))β

)⊥h

=
(
(RMqm(1, r − 1))⊥h

)α ×
(
(RMqm(1, s− 1))⊥h

)β
,

and (RMqm(1, r − 1))⊥h = (σ̃(RMqm(1, r − 1)))⊥0 and (RMqm(1, s − 1))⊥h =
(σ̃(RMqm(1, s − 1)))⊥0 . One can check that σ̃(RMqm(1, r − 1)) is also a first order 
Generalized Reed-Müller code over Fqm of length qr−1.

Note that if S = Fqm [θ], then Φ(S,r) is a monomorphism of Fqm-linear spaces. Thus, 
Jitman’s Gray image of any Fqm [θ]Fqm [θ]-linear code with type (α, β; k0, k1, . . . kr−1;

0, 1, . . . , s−1) is a linear code of length qm(r−1)α + qm(s−1)β and dimension 
r−1∑
t=0

(r −

t)kt +
s−1∑
t=0

(s − t)t.

Remark 5. In [13], a Gray map on any finite chain ring is defined, we will call it 
Greferath’s Gray map Ψ(S,r). It is important to note that for Jitman’s Gray map 
Φ(S,r) and Greferath’s Gray map Ψ(S,r) on S

α × S β , there exists a permutation map 

τ : (Fqm)αq
m(r−1)+βqm(s−1)

→ (Fqm)αq
m(r−1)+βqm(s−1)

such that Ψ(S,r) = τ ◦Φ(S,r). With-
out loss of generality in the sequel of this paper, we will use Jitman’s Gray map Φ(S,r)
on S

α × S β . For any SS-linear code C, the subset Φ(S,r)(C) of S α × S β is called the 
Gray image of C. Note that Φ(S,r)(C) is not always linear.

Example 3.1. Consider the finite chain ring R := Fq[θ] with θ �= θ2 = 0. Then we have 

that G(q,2) =
(

0 1 2 · · · q − 1
1 1 1 · · · 1

)
, and Jitman’s Gray map Φ(R,1) is given by

Φq : (Fq)α ×Rβ → (Fq)α+2β

(a||b) 	→
(
a, (γ0(b), γ1(b))G(q,2)

)
.

Thus Φq(a||b) = (a, γ1(b), γ0(b) + γ1(b), γ0(b) + 2γ1(b), · · · , γ0(b) + (q − 1)γ1(b)).

In the following, we will establish the conditions for a Galois LCD SS-linear code C
so that its Gray image C is an LCD code over Fqm . Generalized Reed-Müller codes over 
Fqm of the length qm(r−1) have the following properties (see [16]):

• for i ≤ j ≤ r − 1, RMqm(i, r − 1) ⊆ RMqm(j, r − 1);
• RMqm(i, r − 1)⊥0 = RMqm(j, r − 1), with j = (r − 1)(qm − 1) − i − 1.

If we fix i = 1 in the above term and assume that (r − 1)(qm − 1) ≥ 3. We have

RMqm(i, r − 1)⊥0 = RMqm((r − 1)(qm − 1) − 2, r − 1).
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Thus

RMqm(1, r − 1) ⊆ RMqm(i, r − 1)⊥0 = RMqm((r − 1)(qm − 1) − 2, r − 1).

Since 0 < r ≤ s, it follows that 0 ≤ (r − 1)(qm − 1) ≤ (s − 1)(qm − 1) and we have the 
following result:

Lemma 1. Let C be an SS-linear code C of the block-length (α, β) with 0 < r ≤ s and 
h ∈ {0, 1, . . . , m − 1}. If

(r − 1)(qm − 1) ≥ 3

then Φ(S,r)(C) ⊆ (Φ(S,r)(C))⊥h .

As 0 < r ≤ s, it follows that 0 ≤ (r − 1)(qm − 1) ≤ (s − 1)(qm − 1) ≤ 2 if and only if 
m = 1 and (q, s) ∈ {(2; 2), (2; 3), (3; 2)}. In the case q ∈ {2; 3} and s = 2, either S = Zq2

or S = Fq[θ] with θ �= θ2 = 0. The map

ϕq : Zq2 → Fq[θ]
b + qc 	→ π(b) + θπ(c)

is extended to (Fq)α × (Zq2)β as follows

Υq : (Fq)α × (Zq2)β → (Fq)α × (Fq[θ])β
(a ‖ b + qc) 	→ (a ‖π(b) + θπ(c)).

Denote � the component-wise product. The following result is straightforward.

Proposition 3. The maps ϕq : Zq2 → Fq[θ] and Υq : (Fq)α × (Zq2)β → (Fq)α × (Fq[θ])β
are bijective and for all (v, w) in ((Fq)α × (Zq2)β)2 and (x, y) ∈ {0, 1, . . . , q − 1}2, the 
following assertions are satisfied.

1. dhom(v, w) = dhom(Υq(v), Υq(w)),
2. Υq((x + qy) ∗ u) = (π(x) + θπ(y)) ∗ Υq(u),
3. Υq(u � v) = Υq(u) � Υq(v),
4. Υq(v + w) = Υq(v) + Υq(w) + Υq

(
q ∗
(
u�(q−1) � v�(q−1))), where u�(q−1) =

u � u � · · · � u︸ ︷︷ ︸
q−1 times

.

Note that for any FqZq2-linear code C, the subset Υq(C) of (Fq)α×(Fq[θ])β is FqFq[θ]-
linear if and only if q ∗

(
u�(q−1) � v�(q−1)) ∈ C, for any (u, v) in C × C.

Lemma 2. Let u = (u ‖ u′) and v = (v ‖ v′) in (Fq)α × (Zq2)β such that q ∗(
u�(q−1) � v�(q−1)) = (0α ‖ 0β). The following statements hold.
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1. ϕq(〈u, v〉) = 〈Υq(u), Υq(v)〉 and 〈Φq(Υq(u)), Φq(Υq(v))〉0 ∈ Fq.
2. If q = 2 then 〈Υ2(u), Υ2(v)〉 = θ〈Φ2(Υ2(u)), Φ2(Υ2(v))〉0;
3. If q = 3 then 〈Φ3(Υ3(u)), Φ3(Υ3(v))〉0 = 〈u; v〉0.

Proof. We set u = (u ‖ u′
1 + qu′

2) and v = (v ‖ v′1 + qv′2), where (u, v) ∈ ((Fq)α)2 and 
(u′

1, u
′
2, v

′
1, v

′
2) ∈ {0, 1, . . . , q − 1}4β . Suppose that q ∗

(
u�(q−1) � v�(q−1)) = (0α ‖ 0β). We 

have

q ∗
(
u�(q−1) � v�(q−1)

)
= (0α ‖ q ∗ (u′

1 � v
′
1)�(q−1)).

Therefore, q∗(u′
1�v

′
1)�(q−1) = 0β implies that either q(u′

1)�(q−1) = 0β or q(v′1)�(q−1) = 0β . 
It follows that 〈u′

1, v
′
1〉0 = 0. Thus

1. 〈Υq(u), Υq(v)〉 = θ (〈u, v〉0 + π(〈u′
1, v

′
2〉0 + 〈u′

2, v
′
1〉0)) and 〈u, v〉 = q(ι(〈u, v〉0) +

〈u′
1, v

′
2〉0 + 〈u′

2, v
′
1〉0), since 〈u′

1 + qu′
2, v

′
1 + qv′2〉0 = q(〈u′

1, v
′
2〉0 + 〈u′

2, v
′
1〉0). Hence, 

ϕq(〈u, v〉) = 〈Υq(u), Υq(v)〉.
2. If q = 2, then

〈Φ2(Υ2(u)),Φ2(Υ2(v))〉0 = 〈u, v〉0 + (π(u′
1), π(u′

2))G(2,2)GT
(2,2)

(
π(v′1)T
π(v′2)T

)
, and

G(2,2)GT
(2,2) =

(
1 1
1 0

)
.

Thus (π(u′
1), π(u′

2))G(2,2)GT
(2,2)

(
π(v′1)
π(v′2)

)
= 〈π(u′

1), π(v′2)〉0 + 〈π(u′
2), π(v′1)〉0 ∈ Fq, 

since 〈u′
1, v

′
1〉0 = 0. Hence 〈Υ2(u), Υ2(v)〉 = θ〈Φ2(Υ2(u)), Φ2(Υ2(v))〉0.

3. If q = 3, then

〈Φ3(Υ3(u)),Φ3(Υ3(v))〉0 = 〈u, v〉0 + (π(u′
1), π(u′

2))G(3,2)GT
(3,2)

(
π(v′1)T
π(v′2)T

)
, and

G(3,2)GT
(3,2) =

(
2 0
0 0

)
.

Thus 〈Φ3(Υ3(u)), Φ3(Υ3(v))〉0 = 〈u, v〉0 ∈ Fq, since 〈u′
1, v

′
1〉0 = 0. Hence 

〈Φ3(Υ3(u)), Φ3(Υ3(v))〉0 = 〈u; v〉0. �
Let C be an FqZq2-linear code of block-length (α, β). We will define the set DC as

DC =
{
q ∗
(
u�(q−1) � v�(q−1)

)
: (u, v) ∈ C× C⊥

}
.

Note that Υ(DC) = DΥ(C) and DC ⊆ {0α} × {0, q}β. The following results are conse-
quences of Lemma 2.
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Corollary 7. Let C be an FqZq2-linear code such that DC = {(0α ‖ 0β)}. The following 
assertions hold.

1. Υq(C⊥) = Υq(C)⊥, where (Υq(C))⊥ denotes the Euclidean dual of Υq(C) as an 
FqFq[θ]-linear code.

2. If q = 2, then Φ2(Υ2(C⊥)) = Φ2(Υ2(C))⊥, where Φ2(Υ2(C))⊥ denotes the Euclidean 
dual of Φ2(Υ2(C)) as an F2-linear code.

3. If q = 3, then Φ3(Υ3(C⊥)) = (CX)⊥, where CX is the punctured code obtained from 
C by deleting these β last coordinates.

Theorem 3. Let C be an FqZq2-linear code such that DC = {(0α ‖ 0β)}. The following 
statements hold.

1. C is an FqZq2-LCD code if and only if Υq(C) is an FqFq[θ]-LCD code.
2. If q = 2, then C is a Z2Z4-LCD code if and only if Φ2(Υ2(C)) is a binary LCD code.
3. If q = 3, then C is a Z3Z9-LCD code if and only if CX is a ternary LCD code.

We end the paper with an example of an optimal LCD code over Fp (p ∈ {2; 3}) 
derived from this family of FpR-LCD codes (either R = Zp2 , or R = Fp[θ] with u2 = 0).

Example 3.2. Consider the Z2Z4-LCD code C given in Example 2.1. From [7, Theorem 
3.], the parity-check matrix H of C is given by:

H =

⎛⎜⎜⎜⎜⎜⎝
1 1 1 0 0 0 0 2
0 1 0 1 0 0 0 3
0 0 1 0 1 0 0 3
0 1 0 0 0 1 0 2
0 0 1 0 0 0 1 2

⎞⎟⎟⎟⎟⎟⎠ .

Thus

2 ∗ H =

⎛⎜⎜⎜⎝
0 0 0 2 0 0 0 2
0 0 0 0 2 0 0 2
0 0 0 0 0 2 0 0
0 0 0 0 0 0 2 0

⎞⎟⎟⎟⎠ .

Then, we have

DC =
{
2 ∗ (u � v) : (u, v) ∈ C× C⊥

}
= {(03 ‖ 05)}.

From Theorem 3, Υ2(C) is an F2F2[θ]-LCD code. The binary image Φ2(Υ2(C)) has 
parameters [13, 4, 6]. This is an optimal code which is obtained directly in contrast to 
the indirect constructions presented in [12].



M. Bajalan et al. / Finite Fields and Their Applications 85 (2023) 102125 21
4. Conclusions

The concept and basic properties of LCD and Galois-invariant codes over finite chain 
rings have been generalized to linear complementary dual codes over a mixed alphabet 
of finite chain rings. We have studied the Jitman’s Gray image of an SS-code and when 
it is an LCD code. When q ∈ {2; 3}, any FqZq2-linear code C such that DC = {(0α ‖ 0β)}, 
is an LCD code if and only if the code given by its Jitman’s Gray image is an LCD code. 
Thus we have covered the rings Z4, Z8, Z9, F2[X]/〈X2〉, F2[X]/〈X3〉, F3[X]/〈X2〉. The 
construction of binary or ternary LCD codes from Jitman’s Gray image of Z4Z8-LCD 
code, Z2Z8-LCD code, F2F2[u]-LCD code, or F2[v]F2[u]-LCD code (u2 �= u3 = 0 and 
v �= v2 = 0) remains as an open problem.
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