
Facultade de Informática

END-OF-DEGREE THESIS
COMPUTER ENGINEERING DEGREE

MENTION IN SOFTWARE ENGINEERING

Design and implementation of an
e-commerce web application for a food

store

Student: Sara Carril Méndez

Direction: Fernando Bellas Permuy

A Coruña, September 09, 2022
.



To my parents, without whom reaching here would not have been possible.



Acknowledgements

In the first place, tomy parents, for their encouragement at all stages of my life. Tomymother,
for always finding the right words to cheer me up and never allowing me to give up. To my
father, for transmitting me how proud he is and encouraging me to choose this profession. I
love you both.

To my classmates and friends during these four years. Especially to Gema, Anxo and Juan, I
couldn´t have better friends to walk through this path. We did it!

To all the professors, for transmitting their knowledge, it was an honor to learn from you.

And, last but not least, to my mentor Fernando Bellas, for the confidence reposed in me, his
dedication and good advice.



Abstract

Over the last few years, technology has experienced an exponential growth, fuelled in part
by the COVID-19 epidemiological situation. This circumstance has resulted in a remarkable
change in society’s consumption habits, as more and more consumers are choosing to pur-
chase goods over the Internet. Derived from this behavior, companies must adapt to the
demands of the new reality, to gain a foothold in the market and maintain their competitive-
ness.

Related to the previous case, in this final degree project, it has been designed and devel-
oped a web application for online seafood sales. The implemented software will allow users
to sign up and login into the platform, in which they will have access to the different products
from the catalogue, being able to make their purchases, pay them online and view a record of
the orders placed.

To achieve the previously stated objectives, the developed web application has been im-
plemented based on a layered architecture, more in details, following the client-server model
and using Java, Spring Boot and Hibernate for the back-end and JavaScript, React and Redux
for the front-end.

Resumo

A continua evolución e expansión tecnolóxica ao longo dos últimos anos e a situación epi-
demiolóxica da COVID-19 propiciaron novos hábitos de consumo na sociedade actual. Cada
vez son máis os consumidores que optan por comprar bens a través de Internet. Derivado des-
te comportamento, as empresas deben adaptarse ás esixencias da nova realidade, para lograr
un oco no mercado e manter a súa competitividade.

Vinculado a esta casuística, neste traballo de fin de grao deseñouse e desenvolveuse unha
aplicación web para a venda en liña de produtos do mar. O software implementado permitirá
o rexistro e acceso de usuarios á plataforma, na que terán acceso aos diferentes produtos do
catálogo, podendo realizar pedidos, pagalos en liña e consultar un histórico dos mesmos.

Para acadar os obxectivos anteriormente mencionados, implantouse unha aplicación web
baseada nunha arquitectura en capas, seguindo concretamente omodelo cliente-servidor, des-
tacando o uso de Java, Spring Boot e Hibernate para o lado do back-end e JavaScript, React e
Redux para o front-end.



Keywords:

• Web Application

• E-commerce

• Java

• JavaScript

• CSS

• Bootstrap

• MySQL

• React

• Redux

• Spring Boot

Palabras chave:

• Aplicación web

• Comercio electrónico

• Java

• JavaScript

• CSS

• Bootstrap

• MySQL

• React

• Redux

• Spring Boot

2



Contents

1 Introduction 1
1.1 Motivation and context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Global vision of the system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 State of the art 5
2.1 Alternatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Methodology 9
3.1 Development methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.1 Advantages and disadvantages of incremental iterative methodology . 10
3.1.2 Methodology justification . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Global Requirements Analysis 13
4.1 Actors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1.1 Unauthenticated users . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.1.2 Customers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.1.3 Administrators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.2 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2.1 Non-functional requirements . . . . . . . . . . . . . . . . . . . . . . . 14
4.2.2 Functional requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 Planning 21
5.1 Development planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2 Temporary planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.3 Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.3.1 Human resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

i



CONTENTS

5.3.2 Technical resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.3.3 Total cost of the project . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6 Technological fundamentals 28
6.1 Technologies used in the back-end . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.2 Technologies used in the front-end . . . . . . . . . . . . . . . . . . . . . . . . 29
6.3 Other technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

7 Iterative development 31
7.1 Application structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7.1.1 Back-end structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.1.2 Front-end structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

7.2 Data model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.3 Iteration 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7.3.1 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.3.2 Design and implementation . . . . . . . . . . . . . . . . . . . . . . . . 37

7.4 Iteration 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.4.1 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.4.2 Design and implementation . . . . . . . . . . . . . . . . . . . . . . . . 43

7.5 Iteration 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.5.1 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.5.2 Design and implementation . . . . . . . . . . . . . . . . . . . . . . . . 46

7.6 Iteration 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.6.1 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.6.2 Design and implementation . . . . . . . . . . . . . . . . . . . . . . . . 47

7.7 Iteration 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.7.1 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.7.2 Design and implementation . . . . . . . . . . . . . . . . . . . . . . . . 48

7.8 Iteration 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.8.1 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.8.2 Design and implementation . . . . . . . . . . . . . . . . . . . . . . . . 50

7.9 Iteration 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.10 Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

8 Conclusions and future work 55
8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

A Build and run instructions 59

ii



CONTENTS

List of Acronyms 61

Glossary 63

Bibliography 64

iii



List of Figures

1.1 General architecture of the application . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Pescanova responsive online catalog . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Mariscos Campelo catalog, highlighting the functionalities of favorites and

contact. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Palacio de Oriente points of sale. . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 Iterative incremental methodology diagram . . . . . . . . . . . . . . . . . . . . 11

4.1 Actor hierarchy diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Mock-up products from the catalog . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3 Mock-up product details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.4 Mock-up order details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

7.1 Data model diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.2 User case - User sign up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.3 User case - User login . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.4 Sequence diagram authorization with JWT . . . . . . . . . . . . . . . . . . . . 40
7.5 JWT login token on the browser local storage . . . . . . . . . . . . . . . . . . 40
7.6 User case - User information update and change user password . . . . . . . . 41
7.7 User case - User contact form . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.8 Shopping Cart page components . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.9 Test users provided by Paypal . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.10 Layered information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.11 Privacy policy page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.12 Cookies policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.13 Use case - Catalog product edition . . . . . . . . . . . . . . . . . . . . . . . . . 54

iv



List of Tables

5.1 Temporary planning and real time spent . . . . . . . . . . . . . . . . . . . . . 24

v



Chapter 1

Introduction

In this first chapter of the memory, we will focus on the motivation and objectives pursued
with the deployment of the e-commerce web application.

1.1 Motivation and context

Today’s society follows a frenetic pace, people live increasingly faster, overwhelmed by lack
of time and hoping that all problems could be rapidly and efficiently resolved. That is why, in
many sectors e-commerce has overcome traditional businesses. Going to an establishment,
standing in lengthy queues to pay for products, carrying bags on the way home, etc. is a waste
of time and discomfort that the current society cannot afford. On the contrary, not having
geographical or time restrictions, the flexibility in payment methods and the possibility of
purchasing without the need to leave home, are the main factors that have led to the success
of this trade. In addition, e-commerce provides advantages not only for people, but also for
companies; this commerce allows businesses to acquire a strong strategic position in today’s
market and to reach broader market niches. This is why this type of trade is perceived as a
business opportunity capable of modernizing business models of enterprises, assisting them
to continue growing by getting international customers. As Bill Gates said, “If your business
is not on the Internet, then your business will be out of business.”

On the other hand, the idea of this final degree project arises from the demands of a fam-
ily business, specialized in the manufacture and elaboration of several types of sea products
(cod, bivalves and octopus). Currently, the company operates at a wholesale level, with small
and medium-sized companies, restaurants and supermarkets among their clients. These cus-
tomers are providedwithwholesale products via telephone orders and bank paymentmethods
that enable financing, in accordance with the final price of the order placed, such as con-
firming, transfer, promissory notes, etc. Seeking its expansion to new market segments and
expanding the existing lines of business, it intends to reach the general public by offering its

1



CHAPTER 1. INTRODUCTION

products on the Internet, in addition to growing into new market categories and enhancing
current business lines. Inspired by this context, in this end-of-degree project, a web appli-
cation that allows the online sale of the company’s products to the final consumer will be
developed.

1.2 Objectives

Taking into account the aforementioned in the introduction section 1, the objective of this
final degree project is the development of aweb application that enables the online purchase of
seafood products. It is intended that thewebsite provides facilities and a good user experience,
but that also helps the company to expand globally, not just limiting itself to the local. All
of it, without neglecting the application of programming good practices to obtain a robust
software. In more depth, the points that are meant to be touched within the development are
detailed below:

• User management: there are three different user types that can access the online
application. In the first place, unregistered users, who will access the application to
make inquiries about the catalog, recipes or to contact the company’s management with
any questions. They will also have the choice to sign up or login into the application,
abandoning their anonymity and becoming registered users in the system. The regis-
tered users, will be able to change their password, update their profile information,
and log out. Last but not least, a position for an administrator has been created, to
let employees of a business to manage the items in the catalog or the purchases made
by clients via the web application. Additionally, users will be able to authenticate (via
OAuth) using their Google credentials.

• Catalog management: Users will be capable of seeing the entire catalog of products
offered for sale and a detailed view of each one with its specifications (price, sale unit,
description, etc.) In addition, they could also add these products to the cart so they can
buy them later.

• Payment management: Users will be able to make payments straight from the web
application thanks to the usage of Paypal as a payment method.

• Orders record: Users will be able to view their purchases made through the website
as well as the details of each of the orders. In addition, they will also be able to view
and download a PDF ticket of their buyouts.

• Legal compliance: As it is intended to achieve a web page as faithful to reality as
possible, the web page will be adequate, in compliance with the GDPR (General Data

2



CHAPTER 1. INTRODUCTION

Protection Regulation), the Law 34/2002 on ECISSA (E-Commerce and Information So-
ciety Services), and other legislation in force in these sectors.

• Application administration: The administrators will have the ability to change al-
ready existing products and add new ones to the catalog. They will also be able to
examine any orders that clients have placed via the online application and change its
status.

1.3 Global vision of the system

The developed web application is made up of the front-end (client), the web part with which
the users interact and the back-end (server), in charge of connecting with theMySQL database
and of the business logic. More in detail, the back-end has been implemented in Java also using
Spring Boot, and as it is shown on the Figure 1.1, it is subdivided into two layers:

• Model layer: This layer is responsible for data access and contains the business logic
of the application.

• REST (Representational State Transfer) service layer: It defines a REST API (Ap-
plication Programming Interface) and therefore responds to different types of requests
that arrive from the front-end.

On the other hand, the front-end layer is aweb application SPA (Single PageApplication), with
the goal of providing consumers with a more fluid experience. In this kind of applications, all
its screens are displayed on the same page, without having to reload the browser every time
the user switches views. It has been implemented using JavaScript, React and Redux. The
front-end of the application is made up of:

• Service Access Layer: When a user interacts with the page, for example by clicking
on a button, this layer is responsible for doing back-end calls.

• UI (User Interface) layer: this layer manipulates the DOM (Document Object Model)
tree of the page displayed by the browser; that is, it modifies the page to show to the
user the desired view when pressing the button.

3



CHAPTER 1. INTRODUCTION

Figure 1.1: General architecture of the application

4



Chapter 2

State of the art

Nowadays, more and more companies are deciding to take a leap towards digitization
and start their journey in the online product market. That is why there are numerous

examples of web applications for online sales from different sectors: fashion, food, technology,
services, etc. However, it is true that none of the existing pages on the market adapts perfectly
to the demands of another specific company, so a custom development is necessary in each
circumstance.

2.1 Alternatives

In this section of the report, different e-commerce web applications related to the one de-
veloped for this final degree project, are detailed, as they have served as great inspiration
throughout its development:

• Pescanova [1]: is a Spanishmultinational specialized in the capture and sale of seafood.
The corporate group is present in the markets of 19 countries and is supported by ap-
proximately 10,000 employees worldwide. It is currently the first fishing company in
Spain. Part of the large volume of business that this company has every day comes from
its online store, where customers can consult all the products they offer, place orders
and pay for them online by credit or debit card through the Abanca POS (Point of Sales).
In addition to making purchases, customers may browse recipes and cooking sugges-
tions on the website; therefore, in each visit Pescanova adds value to its customers.

This company has been taken as an example, specifically because of its significance on
a commercial level, it belongs to the same industry as the produced web application
and this website has many strong points such as easy navigation, responsive design
and good usability and organization, advantages shown in figure 2.1

5



CHAPTER 2. STATE OF THE ART

Figure 2.1: Pescanova responsive online catalog

• Maricos Campelo [2]: is a Galician processing shellfish company and mollusk treat-
ment plant. It offers a website where customers may browse a catalog of its items,
add them to the cart and pay for the purchases online, by transfer, cash on delivery or
credit card. This e-commerce shop is simple in terms of web design and user interfaces,
which is a very significant non-functional requirement in terms of the page’s user ex-
perience. In addition, there are certain use cases to emphasize that were not seen in
the other choices considered, firstly, it allows to add products to favorites and consult
them later, and it also provides direct WhatsApp communication with their business to
solve doubts or any problem by simply picking a button. In figure 2.2 are shown both
functionalities from the user interface point of view.

Figure 2.2: Mariscos Campelo catalog, highlighting the functionalities of favorites and con-
tact.

6



CHAPTER 2. STATE OF THE ART

• Palacio de Oriente [3]: is the oldest canning company in Spain, specializing in bonito
from the north, light tuna and mussels from the Galician estuaries. Once more, this
website provides the selling of its products while taking into account other common
use cases for online retailers. After studying this website, it has been detected that
it is not implemented using internationalization, a highly unfavorable aspect of this
company’s presentation since, as seen in figure 2.3, the marketing spots are spread out
throughout practically the whole of Europe and part of America, so it does not encour-
age international consumers having a positive shopping experience. However, the very
exact adherence to the law and the inclusion of all user-required legal information were
noted as positive characteristics of this page.

Figure 2.3: Palacio de Oriente points of sale.

2.2 Conclusions

The market is swamped with e-commerce web apps, including the ones for the food industry
and other sectors, which can be used as a model or source of inspiration while developing
this project, due to the commonality in terms of use cases.

Prior to development, the pages indicated above on the section 2.1were examined, in order
to take lessons from other companies past errors or to gain insight into how the top businesses
in the industry create their web applications. What has been detected and concluded is that,
despite the fact that they are virtually all well-known and worldwide enterprises, none of
them execute internationalization, which means that the goal of reaching the broadest pos-
sible audience is not fulfilled. Additionally, some imperfections were also detected, which

7



CHAPTER 2. STATE OF THE ART

highlights the importance of carrying out very exhaustive testing processes in this kind of
applications.

On the other hand, positive aspects and development ideas have been clearly drawn, for
example to carry out a good user experience design by providing clear and simple inter-
faces, by using bolder colors to draw attention to the page’s most important elements, not
compelling users to have to give more than three clicks to get their objectives, assisting con-
sumers in avoiding errors warning them about possible mistakes and helping to recover if
some problem takes place, in addition to establishing an adaptive design, which allows users
to connect from any device.

8



Chapter 3

Methodology

This chapter will go into depth about the methodology that has been employed for the
development of the project, including what it entails, its key features, and how it has

been applied.

3.1 Development methodology

Thedevelopment of a computer application is a complex challenge that requires careful thought,
great effort, planning and rigorous order. Not working in an organized manner has tradition-
ally had negative effects, such as the software crisis of the late 1970s, time in which between
30% and 40% of the software developed was not usable, due to a lack of preparation and struc-
ture.

The majority of software issues are caused by overly optimistic planning or due to subpar
work because of inadequate testing, or unplanned project changes. In order to prevent these
issues, projectsmust be carried out in accordancewithmethodologies that allow for flexibility,
autonomy, and efficiency, which in turn lowers costs and boosts productivity.

This project was carried out utilizing an approach that combines some aspects of linear
and agile methodologies: an iterative and incremental methodology. The primary phases
followed during the development based on this technique are outlined below.

• Preliminary analysis: A preliminary analysis phase is the first step in the incremental
and iterative development. During this step, the requirements that will identify the
division into iterations are gathered, the best technologies to be used in the project are
studied, some of the comparable applications that are already available on the market
are examined, and mock-ups are created for those use cases that call for them.

• Product development: The development of the product is carried out through iter-
ations and in each of them a set of requirements will be implemented. Each iteration

9



CHAPTER 3. METHODOLOGY

begins with the product developed in the previous iteration and when it is done, it must
provide an usable product that increases the functionalities of the previous product. The
steps of analysis, design, implementation, and testing make up each iteration; they are
described in more detail below:

– Analysis: In the first place, it is analyzed what the program must perform pre-
cisely, what the specific objectives are and how the iteration will be approached
to meet these goals.

– Design: This step involves choosing the overall structure of the program to be
developed as well as researching potential implementation alternatives. Addi-
tionally, mock-ups will be used to define how information and functionality will
be presented to the user.

– Implementation: Once the requirements and functionalities of the system are
understood and its structure has been designed through the analysis and design,
these functionalities begin to be implemented with the aim of obtaining a fully
functional but unfinished product in terms of the system’s overall goals.

– Testing: This stage is completed concurrently with the development, with the
goal of catching faults sooner that, absent testing, would not have been discovered
until later stages and would have had a considerably greater detrimental effect on
the project’s progress.

• Final testing: Once all the iterations of the project have been carried out and a final
product has been obtained, more exhaustive tests have been run, with the aim of testing
the complete component, rather than just one part or the performance of each iteration,
in order to identify issues or improvements.

Next, amore graphic and illustrative representation of the iterative and incrementalmethod-
ology employed during the project’s development is presented in figure 3.1.

3.1.1 Advantages and disadvantages of incremental iterative methodology

Given that each project has unique conditions and features, it is probable that the method-
ology will not be suitable to the demands in all aspects of development. The benefits and
drawbacks of the chosen methodology are then outlined.

• Advantages:

– A functioning program is obtained from the beginning, so the user does not have
to wait until the conclusion of development to start using the app.

10



CHAPTER 3. METHODOLOGY

Figure 3.1: Iterative incremental methodology diagram

– Reduces the likelihood of discovering bugs in critical parts of the software too late
because crucial iterations are delivered first, so they undergo a higher number of
tests.

– It is a very adaptable methodology to the changing demands of the project and
allows a flexible development of the project.

– It is possible to readily evaluate the project’s progress in each iteration, making it
easier to refocus the project if substantial deviations from the estimate occur.

• Disadvantages:

– The system design requires proactive attention and may require significant mod-
ifications as iterations proceed.

– It might be challenging to determine the top or most valuable features, since the
requirements for a realistic project with clients are often changeable.

3.1.2 Methodology justification

By the end of this section, a better understanding of why this iterative methodology has been
chosen for this project would be gained. In addition to the iterative and incremental method-
ology, other agile methodologies, such as SCRUM, have been consideredwhen decidingwhich
methodology to use throughout the project’s development.

In terms of the SCRUM methodology, it is a framework for agile software development
that enables the use of an incremental development approach while simultaneously provid-
ing a significant amount of flexibility in response to shifting needs. However, the aim of this
methodology is to provide a set of best practices for teamwork. Additionally, this methodol-
ogy includes a number of roles thatmust fall on various persons, such as the Product Owner or
Scrum Master, and meetings like the Daily scrum meetings, sprint planning meetings, sprint

11



CHAPTER 3. METHODOLOGY

retrospective, etc. must also be held. These qualities are not appropriate for this project be-
cause the development team is made up of a single developer, so, carrying out the aforemen-
tioned actions would be pointless. Additionally, SCRUM is separated into different sprints,
with a very similar duration between each of them, generally lasting a month or two weeks,
depending on how big the project is, so since there is no full-time dedication to this project
due to labor reason, this feature is not appropriate.

Last but not least, the iterative-incremental methodology was selected for this project
due to its adaptability. The functionalities are organized in iterations, which facilitates the
organization and temporary control over the project, this is very similar to the SCRUM sprints,
but without the requirement of meetings, roles, or iteration duration. Additionally, because
the use cases are so well defined and because this project is not a real project with rapidly
changing use cases, the drawbacks of the technique mentioned in point 3.1.1 do not apply to
it.

12



Chapter 4

Global Requirements Analysis

In this chapter of the report, the necessary functionalities and use cases will be analyzed, as
well as the different actors involved in the system.

4.1 Actors

The actors presented below stand in for the different roles that users who access the applica-
tion can take on. There are three primary user groups in the application developed for this
project: unauthenticated users, that are the primary visitors to the web application, customers
and administrators. More information about each of these groups, as well as the actions they
may perform on the application, is provided below.

4.1.1 Unauthenticated users

Any user who accesses the application and has not through the authentication procedure is
considered as an anonymous client. This actor can be authenticated in the system or regis-
ter, if he does not already have an account, obtaining the status of ”Registered customer,” as
indicated in the following point. Furthermore, this sort of profile will be allowed to access
the application’s current static consultation pages, such as the recipe book, home, privacy
policies, cookies, etc. as well as consult the product catalog and the information of each one
of the products.

4.1.2 Customers

These kinds of actors have signed in or registered within the system, demonstrating that they
have successfully completed the authentication procedure. Theywill be capable of performing
all the actions listed above for anonymous users and, in addition, they will be able to browse
their order information, add items to the shopping cart, and make purchases.

13



CHAPTER 4. GLOBAL REQUIREMENTS ANALYSIS

4.1.3 Administrators

This role corresponds to the actor who has been authenticated with the admin role. This sort
of actor can only log in through the application for security reasons; registration is handled
by a developer through the database. The administrator will be able to manage client orders
and update the catalog.

Figure 4.1 depicts a hierarchy diagram of the previously described actors.

Figure 4.1: Actor hierarchy diagram

4.2 Requirements

4.2.1 Non-functional requirements

Non-functional requirements are properties or qualities that the product must have. They do
not relate directly to the specific services supplied by the system, but rather to the system’s
properties: security, and availability, for instance.

• Security: A non-functional need that was taken into consideration for the application
was security management. First and foremost, in terms of user security and online
accesses, passwords are encrypted in the database so that administrators do not have

14



CHAPTER 4. GLOBAL REQUIREMENTS ANALYSIS

access to them. Furthermore, every application access is done via a signed access to-
ken, in JWT (JSON Web Token) format, which allows the back-end to identify the user
securely. On the other hand, access to the application’s many URLs (Uniform Resource
Locator), are regulated by roles based on the kind of user (unregistered user, registered
user, or administrator), as shown in the following example, in which access to the con-
sultation of all orders is restricted to administrators only:

1 .antMatchers(HttpMethod.GET,
"/shopping/ordersAll").hasRole("ADMIN")

2

• Simplicity: To maintain the web page’s simplicity, three color hues and the same type-
face style were mostly utilized. Furthermore, more prominent tones have been em-
ployed to represent the vital characteristics, while the remainder of the elements, have
been left as neutral tones, among other things.

• Usability: The created website offers simple pages and menus, quick downloads and
intuitive functionalities for the user, attempting to provide user-accessible functionali-
ties that requires no more than three clicks to be completed.

• Language: Spanish, English, and Galician internationalization are available, so users
visiting the created application could understand the information displayed. In order
to do this, the user’s browser’s default language is automatically recognized and the
language that best suits is presented.

4.2.2 Functional requirements

Functional requirements define a function of the software system or its components. The
use cases demonstrate the behavioral demands for each functional requirement. They are
complemented by non-functional requirements, which are concerned instead on design or
implementation. A brief mock-up is then presented in those use cases where it is deemed
pertinent and each use case for the system will be explained in more detail.

• Use cases for unauthenticated users

– UC.001 - User sign up: An anonymous user can sign up for the application by
filling out the form available for this purpose, entering their name, last name,
email address, phone number, and the national identity document number. An
exception will be issued informing the user if any of these data is entered improp-
erly, and the procedure won’t be finished until the problems are fixed.

15



CHAPTER 4. GLOBAL REQUIREMENTS ANALYSIS

– UC.002 - User login: An anonymous user who has previously registered in the
application will be able to log in, either by entering the relevant platform login
credentials (email and password). To accomplish this activity successfully, the
application username and password must be correct; otherwise, an error message
will be shown.

– UC.020 - User login with a Google account: Each and every user will be able
to authenticate in the app by logging in with their Google account. They must
choose the ”Sign in with Google” option and enter their email and password in
the Google pop-up window.

– UC.006 - User contact with the administration through the contact form:
Users can contact the application manager for any requests, questions or ideas,
by providing a name, surname, email address, subject, and body of the message in
the contact form.

– UC.007 - View all the products from the catalog: The products in the catalog
will be visible to every user that visit the online application. An image of the prod-
uct, the name, and the price will be displayed for each of them, as it is illustrated
in figure 4.2.

Figure 4.2: Mock-up products from the catalog

16



CHAPTER 4. GLOBAL REQUIREMENTS ANALYSIS

– UC.008 - Filter products by category: Every user is able to filter the catalog
products by category (Codfish, octopus or seafood).

– UC.009 - View product details: All application users, including clients and ad-
ministrators, will be able to choose a product from the catalog and view its infor-
mation, as shown in figure 4.3.

Figure 4.3: Mock-up product details

– UC.025 - About us page: By choosing the ”About us” option in the top menu,
any user may consult a quick introduction about the company that the page is
about.

– UC.026 - Privacy policy page: By clicking on the related link in the footer, any
user may consult the privacy policy page, which states the procedures taken by a
business or organization to ensure the secure and ethical use of user or client data
that is gathered in the course of a business engagement.

– UC.027 - Cookies policy page: Any user, authenticated or not, can examine the
cookie policy page by looking for the related link in the footer from anywhere on
the website. The cookies policy page aims to inform users about their use, so that
they are aware of the purpose, duration and owner of the cookies.

– UC.028 - Shopping Terms and Conditions page: By checking for the relevant
link in the footer, accesible from any page of the website, any user, authenticated
or not, can examine the Shopping Terms and Conditions page. The terms of the

17



CHAPTER 4. GLOBAL REQUIREMENTS ANALYSIS

contract between the seller and the user are spelled out in full on this page and
serve as the basis for the sale of the products.

– UC.029 - View all the cooking recipes: By clicking on the ”Recipes” part of
the menu, any user, authenticated or not, will be able to see a list of the recipes
accessible in the system.

– UC.030 - View cooking recipe details: Any user who accesses the system will
be able to view the details of a recipe, including the ingredients and method of
preparation. To do so, it is necessary to navigate to the ”Recipes” area of the
menu and choose one.

• Use cases for authenticated users

– UC.003 - User logout: An authorized user will be able to log out from his session
and would thereafter become an anonymous user.

– UC.004 - User information update: A authenticated user will have the ability
to change their name, last name, the national identity document number and the
phone number.

– UC.005 - Change user password : An authenticated user can change their pass-
word by accessing the ”My profile” section, it will be required to enter the old
password and the new one twice, to ensure that the user did not make a mistake
when entering it. If the user enters an incorrect old password or the two new
passwords do not match, an error message will be shown.

• Use cases for client users

– UC.010 - Add products into the shopping cart: A customer can add a variety
of goods to their shopping cart. The user must visit the product information,
choose the quantity, and click the ”Add to basket” button in order to accomplish
this functionality.

– UC.011 - Delete products from the shopping cart: As long as there is one item
in the basket, an authenticated customer can remove any of the products from the
shopping cart.

– UC.012 - Update products from the shopping cart: As long as there is one
item in the basket, an authorized consumer can adjust the quantity to shop of any
item in the shopping cart, introducing firstly the number of units to purchase and
then saving this action through the green shopping cart button.

– UC.013 - View products from the shopping cart: An authenticated consumer
can examine the goods in her/his shopping basket. If the user’s cart is empty, a
warning will be presented.

18



CHAPTER 4. GLOBAL REQUIREMENTS ANALYSIS

– UC.014 - Search for user orders: An authenticated customer will be able to
consult the orders made recently, for this purpose, a table will be provided with
the order identifier, the date of execution, the total price and the shipping address.
If the user has not made any order through the application, a warning will be
displayed indicating such information.

– UC.015 - View order details: An authenticated customer will be able to consult
the details of the orders made, to achieve this, they must pick the identification
of the order they wish to consult from the table and it will display the date of
purchase, the order identifier, the shipping address and a summary with the in-
formation of the products purchased, as shown in the figure 4.4

Figure 4.4: Mock-up order details

– UC.016 - Download order ticket: By clicking on the ”Download order ticket”
option, an authenticated client who has previously placed an order in the program
can download or consult the purchase receipt in pdf format.

– UC.018 - Pay an order with a real payment method: A website user who has
successfully verified their identity and desires to make a purchase, will have the

19



CHAPTER 4. GLOBAL REQUIREMENTS ANALYSIS

option to pay for it through the web application. In the first place, the shipping
address of the package will be requested. For this, the user must complete his/her
address, postal code, country, province and city. Next, payment buttons will be
displayed, and the user can choose the payment method between Sofort, Paypal
or credit or debit card. If Paypal or Sofort is chosen, it will be necessary to log
in to the application through a pop-up window, on the other hand, if making
the payment with a card is desired, it must be completed the required data: card
number, expiration date, security code, etc.

• Use cases for admin users

– UC.021 - Product details edition: By using the ”Update product” button in the
product details page, website managers can change the name, description, image,
further information, unit of sale, or price of any of the goods in the catalog.

– UC.022 - Order status management: The website administrators will be able
to change the status of an order placed by a specific user by selecting the order to
update, choosing a state from the list of options in the picker and then pressing
the save button to put the changes into effect.

– UC.023 - Overview of the list of the purchases made by all of the clients
using the web application: Administrators will be able to view the orders and
details made by any user in the program.

– UC.024 - Add products to catalog: Administrators will be able to add new goods
to the catalog, including the following information: product name, description,
price, category, image, supplementary product information, and unit of sale.

20



Chapter 5

Planning

In this section, the different phases into which the project has been divided and the time
frame of the different tasks will be presented. In addition, the cost of the web application

is detailed, taking as a reference the resources involved, both, human and technical.

5.1 Development planning

Once the overall analysis of the application was completed, as it is described on the section
4 of this document, the next step was to do a planning of how all the incorporated func-
tionalities were intended to be addressed. For doing so, the project was divided into seven
iterations, following an iterative and incremental development model. Each iteration will be
an independent module in which new functionalities and improvements will be implemented.
Finally, in the last iteration, a software that implements all the requirements is achieved.

To carry out the division of labour, it has been considered essential to complete firstly
the functionalities that implied a greater risk, for example, those user stories that something
else depends on, rather than the smallest ones, in case something unforeseen could arise at
any point of the development, in such a way that there would be margin enough for problem
solving. In addition, the development process for each one of the iterations consists of detailed
analysis, design, implementation and testing, following awaterfall life cycle model, in order to
rectify as soon as possible the errors detected during the implementation phase and avoiding
a higher software cost or the unnecessary growth of development times.

Next, each of the iterations in which the project has been divided are detailed:

• Iteration 0: This iteration served as a learning stage, expending time for research and
education into the key technologies that would be used in the application, in order
to choose the most appropriate ones based on accurate criteria. For instance, at this
time, the benefits and drawbacks of different payment gateways were considered, and
Paypal was ultimately chosen over Redsys. Paypal provides easier implementation,

21



CHAPTER 5. PLANNING

more secure testing, and extremely thorough documentation, among other benefits,
to developers. The end user’s comfort was a key factor in the decision to use it, as it
accepts all major credit and debit cards and is a well-known payment method that gives
users confidence when making purchases. If the user has a Paypal account, they can
pay without entering all of their card information each time they make a purchase. If
they don’t have an account, they can still enter their information in the same way as
they would with a traditional virtual POS.

In addition to the above, as discussed in section 2 of this report, time was spent ana-
lyzing other e-commerce sites to make the best possible design, guaranteeing a good
user experience. Additionally, alternative technologies were studied; some were in-
corporated in the project, such as Material UI or Bootstrap, which had been tested by
reading the documentation and writing basic test cases. However, other technologies,
were eventually abandoned owing to time constraints or non-priority use cases in the
web site.

• Iteration 1: The objective of this first iterationwas the development of use cases related
to the user management in the web application, not only the back-end, but also in the
front-end, and taking into account from the beginning the quality of the design and
the look and feel. In addition, anticipating future work, a registry of users by roles
was also left pre-established, to allow differentiation between client users and platform
administrator users. The use cases developed during this iteration are the following
ones:

– UC.001: User sign up

– UC.002: User login

– UC.003: User logout

– UC.004: User information update

– UC.005: Change user password

– UC.006: User contact with the administration through the contact form

• Iteration 2: In this second iteration, most representative use cases of an e-commerce
page were developed. This iteration was the most complete of the entire development,
since the use cases present in it are of vital importance for the development of the rest
of the web application. The developed user cases are numbered below:

– UC.007: View all the products from the catalogue.

– UC.008: Filter products from the catalogue in categories (octopus, codfish, seafood)

22



CHAPTER 5. PLANNING

– UC.009: View product details

– UC.010: Add products into the shopping cart

– UC.011: Delete products from the shopping cart

– UC.012: Update products from the shopping cart

– UC.013: View products from the shopping cart

– UC.014: Search for user orders

– UC.015: View order details

– UC.016: Download order ticket

• Iteration 3: During this iteration, only the use cases related to real online payments
within the application have been developed. This use cases are detailed below:

– UC.018: Pay an order with a real payment method

• Iteration 4: In this section of the development, an integration with OAuth2 has been
implemented, both on the client side and on the server side, allowing the user, once this
iteration is finished, to register and authenticate in the web application developed with
a Google account. The use following use case was implemented during this iteration:

– UC.020: User login with a Google account

• Iteration 5: During this development iteration, the most specific tasks of design and
adaptation of the web page to the applicable law were developed. Additionally, the
implementation of several static sites like a recipe display have been included in this
iteration.

– UC.025: About us page

– UC.026: Privacy policy page

– UC.027: Cookies policy page

– UC.028: Shopping Terms and Conditions page

– UC.029: View all the cooking recipes

– UC.030: View cooking recipe details

• Iteration 6: In this iteration of the project development, the use cases contemplated
are related to the administrative part of the web page, considering the front-end and
back-end developments. Achieving once the iteration is finished, the existence of an
administrator profile that manages the orders and the products of the catalog exposed
on the web.

23



CHAPTER 5. PLANNING

– UC.021: Catalog product edition.

– UC.022: Order status management.

– UC.023: Overview of the list of the purchases made by all of the clients using the
web application.

– UC.024: Add products to catalog.

• Iteration 7: This iteration refers to the report’s writing as well as the repair and en-
hancement of aspects discovered in the application during the review.

5.2 Temporary planning

The temporary planning procedures used at the time of development are described in depth
in this section of the report. It should be noted that due to job obligations, several iterations
have been prolonged over time while maintaining the predicted total number of hours.

The project’s delivery date of September 2022 has been factored into the time estimate.
Thinking about this, the project was planned, with each iteration being tried individually.
The time frame for each iteration, as well as the estimations made at the start of each one, are
shown below.

Iteration Start date End date Estimation (h) Real time (h)

Iteration 0 20/04/2022 30/04/2022 20 28

Iteration 1 01/05/2022 15/05/2022 55 69

Iteration 2 16/05/2022 20/06/2022 115 133

Iteration 3 21/06/2022 26/06/2022 12 35 27

Iteration 4 27/06/2022 10/07/2022 55 46

Iteration 5 11/07/2022 20/07/2022 35 37

Iteration 6 21/07/2022 14/08/2022 50 47

Iteration 7 15/08/2022 09/09/2022 65 72

TOTAL 20/04/2022 09/09/2022 430 459

Table 5.1: Temporary planning and real time spent

As can be observed from an examination of the findings displayed in the preceding table,
the first development iteration was the one that deviated the most in relation to the expected
time. This was owing to the fact that more time than anticipated had to be committed to the

24



CHAPTER 5. PLANNING

look and feel part of the application due to the lack of knowledge of the use of Bootstrap
and the Material-UI libraries. Furthermore, the report writing process included a review of
all the application’s use cases, thus enhancements occurred that were built concurrently and
prolonged the length of this last iteration. On the other hand, there were also some favorable
transient variances, since a higher complexity was estimated for the Paypal API and OAuth,
because they were new technologies that had not previously been worked with. It should also
be noted that the first two iterations were the longest in terms of time, since they concentrated
the highest number of use cases and the most risky ones, opting to organize it in this manner
in order to handle any unanticipated occurrences early on rather than later where there may
not have been enough time to correct the faults.

In conclusion, the most significant deviations from the plan occurred at the beginning of
the project, so there was enough time to recover from these unforeseen occurrences. How-
ever, taking all of the periods into account as a whole, it can be determined that there were
no substantial deviations that hampered the project’s progress, given that negative deviations
were somewhat offset by other positive ones.

5.3 Costs

By the time of calculating the cost of the project, human and technical resources used within
the time frame covered by the project, have been taken into account. A summary of the
different costs considered are detailed below:

5.3.1 Human resources

During the development of this web application, the collaboration of two human resources
has been needed:

• Project manager: this role was carried out by the director of this final degree project,
Fernando Bellas. He was in charge of defining the scope of the project and the plan-
ning, supervision and correction throughout the duration of the project. Therefore,
taking into account the previous tasks, the overall amount of time spent by the project
manager has been approximately 30 hours, divided between follow-up meetings and
the correction of this final report. On the other hand, after a research on different em-
ployment social networks, we can conclude that the average cost of a senior project
manager is approximately €45 per hour.

• Developer: the development work of the web application was carried out by the stu-
dent, conducting the design, development, implementation, documentation and test-
ing of each of the iterations of the project. In addition, the student also performs an

25



CHAPTER 5. PLANNING

analyst-developer role, studying the best technologies to be used to achieve each of
the objectives set, looking for the greatest alternatives to resolve the needs raised and
solving the problems that have arisen on the fly. Taking into consideration the work
experience of the analyst-developer we will consider it as a junior developer with an
average salary of €30 per hour.

5.3.2 Technical resources

The technical resources employed in this project are presented in the following points:

• Computer: the computer used for the development of this web applicationwas anAsus
Vivobook Pro with an Intel i7 processor and 32GB of RAM (Random Access Memory)
memory, with a cost value of €1,500.00

• Mouse: for greater comfort and speed, a mouse with an approximate value of €12 has
also been used.

• Secondary screen: a secondary 21.5 inches screen was used for the development, in
addition to the one of the computer, having an approximate cost of €125.00

• Software: all the tools used for the development of this project were open-source.
Although the development environment used was free due to the student license, if this
project was developed for a commercial purpose, an annual license would cost €180.29
including VAT (Value Added Tax).

5.3.3 Total cost of the project

The hours invested in the web application by each of the human resources and a proportional
part of the technical resources used, will be taken into account to calculate the total cost of
the project.

• To calculate this percentage account, the depreciation method is going to be used. Fol-
lowing actions listed below, show how the maths behind this computation has been
carried out:

1. Since full time has not been allocated to the project, the first step is to calculate
the number of hours required per week if the commitment were full-time:

1 week = (8 ∗ 5) = 40 hours

26



CHAPTER 5. PLANNING

2. The number of weeks and months that the project would have covered in case of
full time dedication is determined below.

Temporary full-time project coverage = (459/40) ≈ 12 weeks = 4 months

3. For calculation the depreciation it is considered that the technological equipment
will have a useful life of approximately 3 years (except for the license cost of the
IDE used) and as the previous calculations reveal, that the full-time project lasted
4 months:

Technical resources cost = €180.29
4

+(
€125 + €12 + €1500

3 years ∗ 52 weeks/year ∗ 12 weeks) ≈ €171.00

• The developer’s and the project manager’s salaries are then determined:

Project manager cost = 30 hours ∗ 45€/hour = €1350

Developer´s salary = 459 hours ∗ 30€/hour = €13770

• Finally, the project’s overall cost is calculated by summing the earlier monetary results:

Total cost = €171.00+ €1350.00+ €13770.00 = €15291.00

27



Chapter 6

Technological fundamentals

In this chapter we will set out the technologies, frameworks and libraries employed during
the implementation of this project.

6.1 Technologies used in the back-end

• SQL (StructuredQuery Language) [4]: is a domain-specific language designed for stor-
ing, manipulating and retrieving data stored in relational database systems.

• JPQL (Java Persistence Query Language) [5]: is an object-oriented query language
which instead of querying against the database model, uses the persistence cache to
access entities kept in a relational database.

• Java: is a general-purpose, concurrent, strongly typed, object-oriented programming
language. It was originally designed for embeddedmulti-platform network applications
so it is extremely portable, thanks to JRE (Java Runtime Environment), a software layer
that allows to execute source code in different environments.

• JWT [6]: is an open JSON-based standard, which allows to securely transmit signed
information between the client and server. JWTs can be signed using a secret or a
public/private key pair to ensure that the information remains unaltered once the token
is issued.

• Spring Boot [7]: is an open source Java-based framework that allows to build stand-
alone and production ready spring applications. With the help of a set of tools, Spring
Boot aims to make it simple to build and configure Spring applications.

• Hibernate [8]: is an open source object relational mapping tool that provides a frame-
work to speed up the mapping between object-oriented domain models and relational
databases for web applications.

28



CHAPTER 6. TECHNOLOGICAL FUNDAMENTALS

• JUnit [9]: is a free unit testing framework for Java programming language, used for
write and execute automated tests.

• Maven [10]: is an open source project management tool based on POM (Project Ob-
ject Model). It allows to automate the building process of a project, dependencies and
documentation.

• MySQL [4]: is one of the most popular open source SQL database management systems
developed, distributed, and supported by the Oracle Corporation.

• Postman [11]: is an Application Programming Interface (API) platform which simpli-
fies the building, testing, update and the use of APIs by allowing to send HTTP (Hy-
pertext Transfer Protocol) requests to a REST API.

6.2 Technologies used in the front-end

• CSS (Cascading Style Sheets) [12]: is a simple design language used for adding styles to
a web page. It allows to separate the web page content from its visual representation.

• JavaScript: is an object-oriented interpreted computer programming language which
implements dynamic and interactive web content, greatly improving user interaction
within the web page. JavaScript is most known for being a web-based language, being
native to the browser, one of the main reasons for which it is the most commonly used
programming language in the world.

• HTML (Hyper Text Markup Language) [13]: is a standard markup language which al-
lows the creation and structure of web pages, telling the browser how to display the
content.

• Bootstrap [14]: is a free, open source front-end development framework for the cre-
ation of responsive and mobile-first websites. It includes HTML and CSS responsive
templates for buttons, tables, modals, tables, etc. providing visual elements with pre-
set style and behavior, in a way that speeds up the development process of websites.

• React [15]: is a JavaScript development library created by Facebook. This library pro-
vides an extensive, fast, declarative, flexible, and simple development by building UI as
a tree of small pieces called components.

• Redux [16]: is an open source library that works on the front-end of JavaScript, em-
ployed to manage applications state. It helps React components to communicate with
each other through an unidirectional data flow model.

29



CHAPTER 6. TECHNOLOGICAL FUNDAMENTALS

• Material - UI [17]: is an open-source, front-end framework for React components that
provides a simple, customizable, and accessible library of React components.

• npm [18]: is a package manager for the JavaScript programming language consisted
of a command line client used to publish, discover, install, and develop node programs
and dependencies.

• Paypal Payments API [19]: it is a REST API which allows to develop different type of
payments use cases such as authorize payments, refund payments, show the payment
information, etc.

• EmailJS [20]: is a service tool that allows to send emails directly from the JavaScript
client-side, whithout the need to develop the backend.

• OAuth2 [21]: is an authorization framework that provides users with a safe way to
access online services without putting their credentials at risk. It delegates the user’s
authentication to the service that hosts the user’s account and authorizes third-party
applications to access said user’s account.

6.3 Other technologies

• LaTeX [22]: is a high-quality free software package for typesetting documents.

• IntelliJ IDEA [23]: is an IDE (Integrated Development Environment) for developing
Java programs and designed to maximize developer productivity providing tools such
as code analysis, clever code completion, etc.

• Git [24]: is a version control system generally used for managing source code in soft-
ware development. It allows to maintain a record of project changes and revert them
into a specific point or version.

• Dia [25]: is a open source diagramming software.

• Draw.io [26]: is an open source diagramming tool for collaborative creation of dia-
grams such as flowcharts, wireframes, UML (Unified Modeling Language) diagrams,
organizational charts, etc.

• Overleaf [27]: is a online, real time collaborative editor for documents written in the
LaTeX markup language.

30



Chapter 7

Iterative development

The project’s most important development-related issues are covered in depth in this sec-
tion of the report. The structure of the web application will be presented first, followed

by the implementation details on how each iteration was accomplished.

7.1 Application structure

7.1.1 Back-end structure

This subsection of the report deals with implementation issues of the back-end, made up of
the data access layer, the business logic layer and the REST layer. Next, the structure used for
this project is described in depth.

• /src/main/java: This project directory includes the majority of the source code for the
web application, which manages the data access layer, the business logic layer, and the
REST layer. This directory is then broken into folders, dividing the project into smaller
components, as seen below.

– /model: The source code for the data access layer and the business logic layer are
found in this directory. These two levels denote the folder’s subdivision, which
will be discussed further below:

∗ /entities: This folder houses the application data access layer. It is com-
posed by the entities, which act as the building blocks and serve as the bases
for gathering the data that will be reflected in the database system, and by the
DAOs (Data Access Object), which provide the necessary methods for insert-
ing, updating, deleting, and consulting information, achieving the separation
in the application between the business logic part and the data access part.

31



CHAPTER 7. ITERATIVE DEVELOPMENT

∗ /exceptions: The many exceptions issued by the back-end when some func-
tionality does not behave as intended are saved in this directory, protecting
the user from more serious issues.

∗ /services: The business logic layer, which contains the data processing per-
formed by the application, is located here.

– /oauth2: This folder contains all of the source code related to a user’s login and
registration through Google, as mentioned in point 7.6 below.

– /rest: This package contains the back-end’s REST layer. It is built up of REST con-
trollers and DTOs (Data Transfer Object), which allow information to be gathered
from many sources and condensed into a single basic class.

– Application.java: This application file has the purpose of serving as the pro-
gram’s starting point.

• /src/main/resources: The application.yml file in this package includes the various
back-end configurations, such as the Google OAuth server data, the ports on which
the application operates, the permissible redirect URLs, and so on. It also includes a
subfolder containing the internationalization of the error messages displayed by the
application in the languages Spanish, Galician, and English.

• /src/test/java: All tests completed on the back-end of the application are saved in this
directory.

• /src/sql: The SQL directory contains the MySQL code for creating all of the tables
required to store the application data, as well as the code for directly performing insert
queries while building the application.

• pom.xml: The construction of the application back-end is managed by Maven, for
this, it is necessary to define all the dependencies of the project in the POM file. When
creating the program, this XML (Extensible Markup Language) file makes it simpler for
the executable file to include everything it needs to function.

7.1.2 Front-end structure

• /src: The majority of the project’s front-end source code is located in the /src folder.
Below is a list of every sub-components.

– /backend: The service access layer enabling REST API calls to the application
back-end is contained in this folder.

32



CHAPTER 7. ITERATIVE DEVELOPMENT

– /constants: The most frequently used constants are saved in a file in this folder
during the front-end development process, promoting code simplicity and favor-
ing organization.

– /i18n: This directory includes internationalization files in Galician, Spanish, and
English that allow the language to be adapted to the user’s browser.

– /img: Static pictures used in the application’s user interface are saved here.

– /modules: The modules section mostly includes the user interface code for the
back-end use cases. This directory is separated into additional sub-directories
(catalog, documents, receipts, shopping, data-Protection, and users) to facilitate
proper organization. It also includes two more folders: app, which generates the
application layout, and common, which builds the user interfaces for use cases
common to multiple functionality.

– /store: The primary Redux logic is located in this folder. The RootReducer it is
also included in this directory, it is the application’s standard reducer and imports
all reducers by creating an object with all stateful properties.

– index.js: This application directory is set for internationalization, which achieves
language automation by extracting it from the user’s browser. Additionally, it
renders the App.js component of the front-end in the DOM tree.

• /public: This folder contains several application icons as well as an HTML code file in-
cluding, among other things, executable script references and style sheets to be utilized
in the application.

• package.json: The libraries and versions on which the front-end depends are listed in
this file.

7.2 Data model

Themany entities that are modeled in the relational database of the access layer to the server-
side application data are shown in figure 7.1. Below are descriptions of each entity:

33



CHAPTER 7. ITERATIVE DEVELOPMENT

Figure 7.1: Data model diagram

In accordance to the data model in the preceding figure 7.1, a data dictionary is then
displayed.

• User: This entity maintains the information of all users who register on the application,
whether they are administrators, customers or anonymous users.

– id (Long): Unique user registration key.

– provider (AuthProvider): The kind of registration or login that the user choose
to access the site.

– userName (String): User’s email

– password (String): The application’s user’s login password

34



CHAPTER 7. ITERATIVE DEVELOPMENT

– firstName (String): Stores the first name of the user

– lastName (String): Stores the surname of the user

– comercialComunications (Boolean): Parameter that specifies whether or not
the user wishes to receive commercial communications through his email.

– phoneNumber (String): Stores the phone number of the user.

– clientDNI (String): Stores the national identity document number of the user.

– role (RoleType): Stores the user membership on the app.

• RoleType: Enumeration that represents the user’s membership on the app. It might
be customer or administrator.

• AuthProvider: Enumeration that indicates the user’s login or registration type on the
app. It might be done locally or via Google.

• Category: Entity illustrating the several categories that a product registered in the
system may fit into.

– id (Long): Unique category registration key.

– name (String): Stores the name of a category

• Product: Entity that stores the information about the products that make up the cata-
log.

– id (Long): Unique product registration key.

– name (String): Stores the name of a product.

– description (String): Represents the description of a product.

– price (BigDecimal): Stores the product price.

– category (Category): A reference to the category associated to this product.

– productImage (String): Holds the URL of the repositorywhere the product image
is stored.

– information (String): represents the information relative to a product.

– saleUnit (String): Contains the product’s unit of sale; for instance, a pack of three
cod loins.

• ShoppingCart: Entity that links each of the user’s accounts to a shopping cart.

– id (Long): Unique shopping cart registration key.

– user (User): A reference to the used associated to this shopping cart.

35



CHAPTER 7. ITERATIVE DEVELOPMENT

• ShoppingCartItem: Entity that models a product and quantity added to the shopping
cart.

– id (Long): Unique shopping cart item registration key.

– product (Product): A reference to the product associated to this shopping cart
item.

– quantity (Integer): Keeps track of how much of a product the consumer wants to
buy.

– shoppingCart (ShoppingCart): A reference to the shopping cart associated to
this shopping cart item.

• OrderInformation: Entity that keeps track of the broad details of each of the user
orders.

– id (Long): Unique order registration key.

– user (User): Unique identifier of the user placing the order.

– date (Local Date Time): Keeps track of the day and time when a certain order was
placed.

– postalAddress (String): Territorial constituency to which a specific order must
be delivered.

– postalCode (String): Stores the postal code to which a given user´s purchase
should be delivered.

– city (String): It is saved the city to which a certain user’s purchase should be
delivered.

– province (String): Keeps track of the province to which a certain order should be
shipped.

– country (String): Stores the country to which a specific order should be sent.

• OrderItem: This entity maintains details on each item that makes up an order.

– id (Long): Unique order item registration key.

– product (Product): A reference to the product associated to this order item.

– productPrice (Big Decimal): Attribute that describes the cost that was paid for a
product in a certain order.

– quantity (Integer): Keeps track of howmany units of a product the consumer has
bought.

– order (Order): A reference to the order cart associated to this order item.

36



CHAPTER 7. ITERATIVE DEVELOPMENT

7.3 Iteration 1

7.3.1 Analysis

The creation of the back-end directory structure indicated in point 7.1 above, serves as the
initial stage in this iteration. Once the preceding stage was completed, the development began
with the implementation of the use cases related to user management and the look and feel of
all of them. Finally, once this iteration was accomplished, a completely functional application
was obtained, that allowed the access to anonymous users, clients or administrators. The
following use cases were addressed:

• UC.001: User sign up

• UC.002: User login

• UC.003: User logout

• UC.004: User information update

• UC.005: Change user password

• UC.006: User contact with the administration through the contact form

7.3.2 Design and implementation

The first step for the development of user management was to begin with the implementa-
tion of the back-end, in the first place, the necessary entities were established to record the
information of the users who access the application and in the same way, the User table was
created in database to store such data. JPA/Hibernate is used to implement the entities, which
aids in connecting the database attributes to the entity ones, specified in the data access layer.

UC.001 - User sign up:
The user registrywas created once the general features for any usermanagement functionality
were gained. Next, the DAOs were constructed. In most circumstances, the essential data
may be acquired just by using naming conventions, as demonstrated in the following code,
since the DAO provides the appropriate methods to query, insert, update, and remove the
information.

37



CHAPTER 7. ITERATIVE DEVELOPMENT

1 public interface UserDao extends
PagingAndSortingRepository<User, Long> {

2

3 boolean existsByUserName(String userName);
4

5 Optional<User> findByUserName(String userName);
6

7 Optional<User> findById(Long id);
8

9 }
10

However, DAOs also enables the application to become independent of the database access
method, guaranteeing that adjustments to database administration do not have an impact on
the system as a whole.

Upon completion of this implementation, the service (sign Up) was implemented with
the logic corresponding to the creation of the user. Since services need access to DAOs to
read, update, insert, or delete information, dependency injection is used on services, annotat-
ing each DAO with @Autowired. Additionally, a @Service annotation is added to the newly
constructed service so that controllers may access such implementations. On the other hand,
noteworthy that DAOs shouldn’t be annotated with @Repository because when utilizing Sp-
ing data they are automatically transformed into beans. Regarding how the service will really
be provided, the reasoning followed for this functionality was first to check that the user does
not already exist in the database, if so, the new user is created with all of the data; otherwise a
DuplicatedUserException is thrown. Next, the REST controller and the DTOs were developed
with a POST request for the creation of new users. Once the back-end is finished, the design
of the front-end continues little by little, first a mock-up is created and finally progressing by
generating the interface in the application. To do this, first of all, a post request is created that
calls the back-end service. Following that, a function is constructed in which the components
of the user interface are implemented, among them, a TextField from the Material-UI library,
in which the data related to the name, surnames, email, ID, etc. phone number and password
is input, as it is shown on the figure 7.2.

UC.002 - User login:
The usage of the standard JWT was selected for the implementation of user authentication,
as in this way, the back-end does not have to maintain state between requests, being the client
who supplies the token in each request that is made. To perform the authentication, a process
very similar to the registration was carried out, creating a POST operation in the back-end
and calling it from the front-end. In the user interface of this use case, the user will have to

38



CHAPTER 7. ITERATIVE DEVELOPMENT

Figure 7.2: User case - User sign up

input their registered email and password. Next, the credentials will be compared to those
stored in the database, if they are correct, a web token is generated and it will be stored in the
local storage of the browser, enabling the user to avoid authenticating until after 24 hours,
after that time, is when the session expires. A sequence diagram of this process is shown in
figure 7.4. If the data does not match the information stored in the database, an exception
will be thrown, warning the user of this error. In terms of the front-end, based again on the
previous use case, two TextField type inputs were incorporated to allow the user to enter the
data in the interface, as seen in the figure 7.3. It should be noted that parallel to the previous
development, the front-end files that allow the rendering and design of the application, such
as the Body, Header, Footer, etc., were also implemented.

Figure 7.3: User case - User login

39



CHAPTER 7. ITERATIVE DEVELOPMENT

Figure 7.4: Sequence diagram authorization with JWT

UC.003 - User logout:
Because the information is saved in a web token, as stated above in the login use case ⁇ and
shown in figure 7.5, it must be deleted from local storage of the browser to achieve logout.
This capability also does not introduce any new interface to the website other than the ”Lo-
gout” button that is clicked to initiate the event.

Figure 7.5: JWT login token on the browser local storage

UC.004 - User information update:
Being based on the principle of accuracy of the GDPR law, which establishes that the data
gathered must be correct and duly updated, a new use case has been designed that allows the
user to keep their data updated if some of them had changed over time. To construct this

40



CHAPTER 7. ITERATIVE DEVELOPMENT

use case, it was started by implementing a service that refreshes the data in the database. A
PUT request is then made from the controller and called from the front-end to complete the
request. In the front-end, a new page is developed that includes both, this functionality and
the password change feature explained above, allowing the user to make all relevant adjust-
ments from the same page, as shown in the figure 7.6. When changing their profile, the user
can change their name, surnames, national identity document number and phone number by
entering the new information in the TextField designated for that purpose.

Figure 7.6: User case - User information update and change user password

UC.006: User contact with the administration through the contact form:
This use case entails allowing the user to contact the website’s administrator in order to con-
sult on doubts or other concerns. For its implementation, only the front-end part is required,
since it is not a functionality that generates any data that needs to be stored in the database.
The emailJS library was used to manage this use case, which required it to first access the
website to construct a template, containing the format of the email to send and the variables
to consider. Following that, an email is created in the front-end code by utilizing the service
id, the template id and the user id, all of them provided among the emailJS website, finally is
necessary to supply the variables to fill in the call. TextFields have been added to input the
data, allowing the user to attach their name, surnames, email, email topic, and message, as
seen in the image 7.7.

41



CHAPTER 7. ITERATIVE DEVELOPMENT

Figure 7.7: User case - User contact form

7.4 Iteration 2

7.4.1 Analysis

The goal of this second iteration is to incorporate all of the use cases of an e-commerce busi-
ness, including the catalog, shopping cart and order management. All of this would result in
a completely working e-commerce website, with the exception of payment administration,
which would be handled in a future version. The following are the specific use cases:

• UC.007: View all the products from the catalogue.

• UC.008: Filter products from the catalogue in categories (octopus, codfish, seafood)

• UC.009: View product details

• UC.010: Add products into the shopping cart

• UC.011: Delete products from the shopping cart

• UC.012: Update products from the shopping cart

• UC.013: View products from the shopping cart

• UC.014: Search for user orders

• UC.015: View order details

• UC.016: Download order ticket

42



CHAPTER 7. ITERATIVE DEVELOPMENT

7.4.2 Design and implementation

All use cases except for the UC.016 follow an identical development to the one used in the
first iteration. The shopping cart, categories, and product entities are first built. All of them
have the annotation@Entity, allowing Hibernate to map each one of them to a database table.
The associations between entities are also established by annotations; regarding this project,
@ManyToOne, @OneToOne, and @OneToMany annotations have been used. The @Join-
Column annotation is used to provide the name of the column that represents the foreign key
in both relationships marked with @OneToOne and @ManyToOne. Here is an illustration of
how these annotations are used.

1 @ManyToOne(optional=false, fetch=FetchType.LAZY)
2 @JoinColumn(name="shoppingCartId")
3 public ShoppingCart getShoppingCart() {
4 return shoppingCart;
5 }
6

The services are then constructed utilizing dependency injection once more and the cre-
ation of the REST layer starts as the final back-end task. For its development, each application
service’s controller and DTOs are initially implemented. The development of the controllers
makes use of a number of annotations, such as @RequestMapping to specify that all requests
for the given route are processed in this class, @GetMapping or @PostMapping to specify
that all requests for the given route go to the annotated method or @PathVariable to set a
variable that arrives in the URL, however, it can only set basic data types like String or Long,
and other less noticeable ones.

In contrast, when developing the front end, various functions are used for the retrieval
and display of data in the user interface. First, selectors are used to retrieve the state of the
components. In addition, there is a function called actions that responds to iterations on the
user’s page and enables the user to receive a response afterward. A reducer function is also
present, and it runs the logic necessary to alter the state of the components. Finally, a func-
tion is developed to set the code and components for each of the aforementioned use cases,
which make up the interface.

UC.016: Download order ticket:
This use case, unlike all the others implemented in this iteration, only requires frontend de-
velopment. The@react-pdf/renderer library was utilized for the implementation. This library
does not utilize standard HTML code to generate the components that will be included in the
pdf, but instead is structured in several sorts of tags: a single document tag that has pages

43



CHAPTER 7. ITERATIVE DEVELOPMENT

within, and which in turn is made up of additional elements such as views or pictures. The
internal structure of the document is initially built using these components:

1 <Document>
2 <Page size="A4" style={styles.page}>
3 <Image src={Logo} style={styles.image}></Image>
4 <View style={styles.section}>
5 <Text>Número de pedido:</Text>
6 <Text style={styles.sectionRight}>Fecha del

pedido:</Text>
7 </View>
8 <View style={styles.section}>
9 <Text>{list.id}</Text>
10 <Text

style={styles.sectionRight2}>{dateTime}</Text>
11 </View>
12 <Image src={qr_img} style={styles.image}></Image>
13 <View style={styles.table}>
14 <View style={[styles.row, styles.bold,

styles.header]}>
15 <Text style={styles.row1}>Producto</Text>
16 <Text style={styles.row2}>Precio</Text>
17 <Text style={styles.row3}>Cantidad</Text>
18 </View>
19 {list.items.map(item =>
20 <View key={i} style={styles.row}

wrap={false}>
21 <Text style={styles.row1}>
22 <Text

style={styles.bold}>{item.productName}</Text>
23 </Text>
24 <Text

style={styles.row2}>{item.productPrice} € </Text>
25 <Text

style={styles.row3}>{item.quantity}</Text>
26 </View>
27 )}
28 </View>
29 <View style={styles.totalPrice}>
30 <Text style={styles.totalPriceTextPos}>Precio

total</Text>
31 <Text

style={styles.totalPriceTextPos}>{list.totalPrice}</Text>
32 </View>
33 <Text style={styles.condicion}>Este ticket es

imprescindible para cualquier cambio o devolución.

44



CHAPTER 7. ITERATIVE DEVELOPMENT

34 Puedes presentarlo en tu dispositivo móvil o
imprimirlo.</Text>

35 </Page>
36 </Document>

Finally, to allow the user to download the ticket, a tag <PDFDownloadLink> is inserted in the
function that produces the page’s content, invoking the previously illustrated code. Below is
the complete code that executes the button to perform said download.

1 <PDFDownloadLink document={<OrderTicket list={order} />}
fileName="Ticket"><button
className="button-login-submit"><FormattedMessage
id="project.global.buttons.descargarTicket"/></button>

2 </PDFDownloadLink>

UC.013: View products from the shopping cart:
To display all of the catalog’s items to users in the interface, a page separated into two primary
views was chosen; first, the products and their information are displayed, using the <Shop-
pingCartItem> and <ShoppingItemList> functions; the second part of the page is a summary
of the purchase to be made, indicating the ultimate price of the transaction and other informa-
tion regarding the order. To do this, the product details are presented in a Table component
with one line per product, while the summary is displayed in a container. Figure 7.8 depicts
the many pieces that comprise the page:

Figure 7.8: Shopping Cart page components

45



CHAPTER 7. ITERATIVE DEVELOPMENT

7.5 Iteration 3

7.5.1 Analysis

This iteration’s objective is to complete the functionalities started in the previous iterations,
so that the user can make an online payment, using a payment gateway. The following use
case has been developed to meet this objectives:

• UC.018: Pay an order with a real payment method

7.5.2 Design and implementation

The frontend of the application is where payments through Paypal via the website are man-
aged. The first step was to create a developer account in Paypal Sandbox so that a necessary
client-id could be obtained later, as well as two test users with bogus balances, one represent-
ing the firm and the other representing the customer, as shown in the figure 7.9. Following
that, the code for the class into which the payment would be incorporated was written, and
eventually, the payment gateway itself was created. To begin, the client id must be specified
in the code in order to correlate the test accounts generated, with the platform payments.
Additionally, the Paypal buttons must be placed, using the @paypal/react-paypal-js library
for them. Within the same button, it must be specified the amount to pay, which in the case
of this application is a variable value indicated by the ’totalPrice’ attribute, and what behavior
is desired for the successful response, in this case, an alert is sent to the user indicating that
the payment was made correctly. However, in terms of the user experience while completing
the payment, it might be done in a variety of ways. To begin, the user might want to use their
PayPal account to make a payment. By clicking the Paypal button, a pop-up window will ap-
pear, in which the user must log in with their account and authorize the payment afterwards.
Once this procedure is performed successfully, Paypal will provide an object stating that the
functionality is complete. A user who does not have a Paypal account, on the other hand, can
pay using a credit or debit card by providing the card number, security code, and expiration
date, as well as other information about the user, such as billing address, name, etc.

7.6 Iteration 4

7.6.1 Analysis

This iteration’s purpose is to allow users to register or log in to the app using their Google
account. Once completed, the user who accesses the developed application will be able to
select the ”Log in with Google” button and register directly in the application by entering

46



CHAPTER 7. ITERATIVE DEVELOPMENT

Figure 7.9: Test users provided by Paypal

their credentials in the pop-up window that will appear, because Google will provide the
user’s data, including the name, surname, username, and email, if the user has specified them
in his Google account. These are the use cases associated with this iteration:

• UC.020: User login with a Google account

7.6.2 Design and implementation

We started by generating a Google developer account for this iteration’s implementation. In
said account, a credential for OAuth authentication was produced, resulting in a client iden-
tity. Authorized redirect URLs, in this example ’http://localhost:8080/oauth2/callback/google,’
are also noted. These URLs act as a security mechanism, allowing Google to clearly identify
the person who is authenticating and preventing the services from supplanting one another.
Next, the development begins by creating the AuthProvider class, to be able to detect what
type of start the user has chosen. After that, the entity that retrieves the user information
from the call returned by Google is developed and the services that contain the business logic
of the user’s start and registration are created. Also being consistent with a regular login,
a functionality to update the user’s information is incorporated, in case they modify some-
thing in their Google account, it could be modified also on this web application. In order to
authenticate the user, further calls are performed between the client and the Google server.
Web tokens are once again utilized for them. The process of the calls begins with a request
from the built application to the Google server to access a user’s resources. The user will
then attempt to sign in using their Google credentials, and if successful, they will be granted
access. The application then asks Google for an access token to confirm the user’s authenti-
cation, ensuring that the authorized individual is who they claim to be. Finally, if everything
has been properly developed, the server issues an access token, which is received from the
application, granting the user access to the developed data.

47



CHAPTER 7. ITERATIVE DEVELOPMENT

7.7 Iteration 5

7.7.1 Analysis

This iteration mostly comprised analysis and research, which included reviewing the many
regulations pertaining to this form of electronic trade. The goal of this iteration is to cre-
ate a web application that meets the legal standards of Spain, the nation in which the fake
corporation is based. To accomplish total adaptation, many new pages were required to be
developed, setting the requirements of access to the website and supplementing others, as
outlined below. The following are the primary usage cases:

• UC.025: About us page

• UC.026: Privacy policy page

• UC.027: Cookies policy page

• UC.028: Shopping Terms and Conditions page

• UC.029: View all the cooking recipes

• UC.030: View cooking recipe details

7.7.2 Design and implementation

The front-end is responsible for the majority of the work in all use cases, as it is in control
of for providing information to the user through the web interface. As previously stated, in
addition to the use cases indicated above, modifications have been made on those sites where
personal data is input, such as the contact form and the registration form, to comply with the
obligation of information and information by layers, as it is demonstrated in the figure 7.10.
This entails informing all users of the time of data conservation, the purpose for which they
are gathered, the legal basis, the forecast or non-prediction of data transfer, the name of the
person in charge of the treatment, and a reference to the exercise of their rights. To do this,
it is necessary to disclose this information by layers in a clear and unambiguous manner that
the user can view at a glance without having to enter another tab.

UC.026: Privacy policy page:
The goal of this new application page is to inform the user about the methods and practices
employed on the page, giving them confidence in the treatment of their data. Tomeet the goals
of this page, the data of the person responsible for the treatment must be established in it, in
this instance fictitiously established in point 1, as indicated in the figure 7.11. The user must

48



CHAPTER 7. ITERATIVE DEVELOPMENT

Figure 7.10: Layered information

also be informed of the purpose of the use of their data and legitimacy. In the case of this web
application, the legitimization is the execution of a contract since in order to sell the objects it
is necessary to know who they are sold to, where they should be shipped, etc. Furthermore,
the goal varies based on the data involved; in the case of the purchase, the objective is contract
execution, but in the case of the contact form, the purpose is to address the user’s worries;
all of this information is established in point 2 of the image 7.11. In addition, the user must
be informed if transfers to other firms or nations are planned; in this situation, no transfers
are planned because it is a single company. Finally, point 4 of the picture 7.11 states that
the user must be notified of how to use their rights to correction, access, and cancellation of
authorization.

UC.027: Cookies policy page:
A new page in the back-end rendered from App.js was constructed to incorporate the privacy
policy and cookies. The goal of this page is to inform users about the use of cookies, what
they are, their purpose, duration, and how to deactivate them, so that they can consent to
their installation or not, knowing what they consist of and the type of personal data they will
capture, record, and transmit to their owner. Cookies are specifically used on this website to
log in with Google credentials using OAuth2, therefore this information is established in the
privacy and cookies policy, as the picture 7.12 shows. Furthermore, the privacy and cookies
policy must be available from any portion of the website, which is why the links have been
placed in the footer.

UC.028: Shopping Terms and Conditions page:
Finally, it is recommended that the terms and conditions of purchase be established on the
page in order to define the purchase circumstances under which the Products are sold, which
will comprise the contract to be signed between the Seller and the User. Unlike the other
papers, there are no legislative requirements for necessary material to be established in this
document; nonetheless, it must fulfill legal requirements while avoiding abusive terms. For

49



CHAPTER 7. ITERATIVE DEVELOPMENT

example, the scope of application, prices, and delivery conditions could be indicated, such
as whether the prices include VAT or not, how long shipments are expected to take, what
payment methods can be used on the web, and returns, which legally require a period of
14 days, but there is no legal obligation to accept returns in the case of this sector, when
selling perishable food products. In conclusion, the paper defines the purchasing regulations
to safeguard both the supplier and the user.

7.8 Iteration 6

7.8.1 Analysis

This iteration intends to provide use cases that let the administrator control the web applica-
tion’s purchases and items. By the end of this iteration it is aimed to provide an administrator-
only page where they may add and update goods and change the status of orders. The use
cases that are included are shown below.

• UC.021: Catalog product edition.

• UC.022: Order status management.

• UC.023: Overview of the list of the purchases made by all of the clients using the web
application.

• UC.024: Add products to catalog.

7.8.2 Design and implementation

A development order similar to that described in the sections 7.3 and 7.4 was followed for the
implementation of the aforementioned use cases. Since the entities and DTOs required for
these use cases had previously been created in earlier stages, services were created first.

UC.021: Catalog product edition:
The page produced for the visualization of the product information has been utilized to gen-
erate the front-end of this use case, hiding or revealing items depending on the user’s mem-
bership. To carry out the use case in question, the user will access the details of the product
to update, as it is shown in figure 7.13; after, a form will be presented with the product’s
current information will be presented, so that the administrator could modify necessary data,
among the information that can be modified are: the product’s name, description, image,
information, unit of sale, and price.

50



CHAPTER 7. ITERATIVE DEVELOPMENT

7.9 Iteration 7

This last iteration of the end-of-degree project’s major goal is the construction of this memory;
however, throughout the writing process, all of the application’s pages were inspected and
minor problems or improvements were identified and addressed, as shown below.

• Page’s appearance: The login page’s appearance has been changed because it was
poorly organised and lacked a responsive design. In addition, payment management
has also been improved, which means that after a user inputs shipping information and
advances to payment, they cannot change them since, for example, if we added shipping
expenses, they would not be managed effectively.

• Success message: A success message has been incorporated to inform the user when
the use case UC.006 - User contact with the administration through the contact form,
is completed and the message is sent correctly.

• Design changes: Minor design changes to the web app to improve its appearance and
make it more realistic.

• Error in the information displayed: An error detected on the purchase page has
beenmodified, when displaying the user information, if the user had registered through
Google, the name and surnames appeared in the name field, leaving the surname field
empty.

7.10 Tests

Throughout the project’s development, tests were performed on all components, allowing to
discover and solve problems before they had a detrimental influence on the project. Several
sorts of testing have been performed, depending on the tested components.

• Automated tests: Backend components, particularly entities and services, were sub-
jected to unit testing. The JUnit tool was used for this, which provides a set of libraries
used in programming to do unit tests in Java applications. Positive tests, which strive to
check that the software works properly, as well as negative tests, which attempt to test
error instances and verify that the program throws the right exceptions, have been per-
formed, as the one it is shown above. For this, @Transactional-annotated test classes
were constructed, ensuring that each of the test methods is performed in a transaction
and they end with a rollback, reversing changes and preventing data contamination
between tests and other information kept in the system. It should be mentioned that

51



CHAPTER 7. ITERATIVE DEVELOPMENT

the tests are carried out on an auxiliary database dedicated just to the tests in order to
achieve the same goal.

1 @Test
2 public void testSignUpNONValidEmail() throws

DuplicateInstanceException, InstanceNotFoundException,
IncorrectEmailException {

3

4 User user = createUser();
5 user.setUserName("sara");
6

7 assertThrows(IncorrectEmailException.class, () ->
userService.signUp(user));

8

9 }

• AcceptanceTests: After developmentwas completed, acceptance testswere performed
to ensure that the application meet all of the specified criteria. These tests were carried
out in the presence of the developer and the project teacher, in such a way that the
project was validated, albeit some modifications for the implementation were offered.

52



CHAPTER 7. ITERATIVE DEVELOPMENT

Figure 7.11: Privacy policy page

Figure 7.12: Cookies policy

53



CHAPTER 7. ITERATIVE DEVELOPMENT

Figure 7.13: Use case - Catalog product edition

54



Chapter 8

Conclusions and future work

This report’s concluding chapter recapitulates the project’s current state and offers the
author’s perspective on the work and the findings done. New areas of study and ad-

vancements are also suggested for the future.

8.1 Conclusions

The goals for this project may be conclusively determined to have been achieved, after the
web application created for it has been finished. An online store that supports all use cases for
product display, purchases, and administration has been developed, fulfilling the objectives
established in the point 1.2 of this report.

The primary goal was to create a web application that was as similar to a genuine appli-
cation as feasible. Technologies like Bootstrap or Material-UI were employed for this, which
at first gave some worries but after understanding how to use them correctly, substantially
assisted in achieving this aim fast and effectively.
In addition, when selecting this subject for the final degree project, the non-functional goals
included learning mostly about payment gateways, because it is a topic that has not been
examined during the degree and it would be interesting to acquire this knowledge in light
of potential work chances down the road. The same happened with the adaptation of the
application to the current legislation, although in this case, some brushstrokes were learned
in one subject of the degree.

On the other hand, in terms of knowledge gained throughout this project, two categories
of lessons may be distinguished: professional and personal. In the academic setting, it has
been learned how to create an entire application, taking into account the analysis, design,
implementation, and testing of all iterations, the use of a development methodology, and
expertise in new technologies that were previously unheard of, such as Bootstrap, Paypal,
OAuth2, etc. On the other side, personal development has been made in areas such as stress

55



CHAPTER 8. CONCLUSIONS AND FUTURE WORK

management, organization, and problem solving, aptitudes that are crucial for the future.
In conclusion, in light of the fact that this activity has created essential building blocks

upon which to build future endeavors towards even greater professional and personal devel-
opment, it can be said that it has been extremely enriching and productive.

8.2 Future work

Finally, apart from the fact that the objectives determined for said web application have been
met, there is still room for improvement, being able to make a more attractive application
with more value for the company in the future. Some of the functionalities outlined below
were originally intended for development within the framework of this end-of-degree project,
although they were finally discarded because they did not fulfil with the recommended ex-
tension or because there were other functionalities that gave the web application more value
and a greater experience for the user.

• Relative to user´s use cases: In relation to the use cases related to user management,
functionalities which allow the user to easily recover from errors could be implemented,
such as a password recovery option or a show/hide password button. In addition, new
register or login integration could bemadewith other companies like Facebook, Twitter,
GitHub, etc. in case the user does not have a Google account.

• Web application administration improvements: The part related to the adminis-
tration of the website has been minimally implemented in this project, a multitude of
new functionalities could be incorporated, that would help the commercial and man-
agerial part of the company. For instance, representative graphics could be incorporate
to this part, representing the countries in which the product is best sold, which prod-
ucts are the most visited by customers, which are the months in which it is sold the
most, which products are the ones that each client buys the most, etc. With this data,
material acquisition forecasts could be improved, prognosis of future sales would be
more accurate, staff could be hired in advance for campaigns, etc. All in all, it would
greatly help to improve the productivity of companies.

In addition, thiswebsite is adapted to current Spanish legislation regarding Law 34/2002,
of July 11, on services of the information society and electronic commerce and other
applicable laws, so that when registering an user, he can grant or not his permission to
receive commercial communications. Exploiting this acceptance could be a new func-
tionality of the website; sending personalized advertising to customers who have accept
it, based on the products they consume the most by email, would favour the growth of
the company´s sales.

56



CHAPTER 8. CONCLUSIONS AND FUTURE WORK

• Catalog visibility improvements: Regarding the product catalog, improvements could
be implemented to offer a greater experience to the user when searching for products,
for example, adding product subcategories, or a keyword search engine. What is more,
allowing users to add products to favorites, so they can easily find them in the future
is another functionality that would add value to the user.

• Improvements in payment methods: Last but not least among the improvements
designed for this application, are those related to payments and orders. On the one
hand, a new functionality could be added to allow discount codes when doing the pay-
ment of the order. In addition, a very important improvement is payment security.
Currently, payments are only managed through the front-end, trusting the object that
Paypal returns when making the API call when the payment is executed. However, this
call could be fake or someone could be impersonating another one else, so embedding
web tokens when communicating between the back-end and the front-end would be
highly recommended to verify that they are who they say. However, it is true that Pay-
pal guarantees the protection of the buyer against payments, by not having to provide
bank details, only an email and a password would be enough to make the payment. In
addition, to minimize the inconvenience of the user having to input the shipping ad-
dress again, it would also be useful to exchange with Paypal certain data, such as the
shipping address that is already obtained in the application.

• Order management improvements: First of all, a new functionality added to the
web application could be filters to organize the orders according to their status or other
relevant characteristics. What is more, the status of the orders could be automated,
through integration with the transport company, in such a way that once the order is
collected in the seller company, the order state is updated automatically, for instance
with the following status ”In transit”, ”Delivered”, etc. In this way, human errors would
be avoided and the user would be informed in real time of the status of his order.

57



Appendices

58



Appendix A

Build and run instructions

At this point, the instructions for compiling and running the project are specified, since it is
not published on any website.

It should be noted that the following software must be installed before to compilation and
execution: Maven, Java JDK and MySQL are all included. Additionally, tables must be created
in MySQL for both the primary database, which houses the application data, and the database
used for testing; above is shown how to do it:

1 mysqladmin -u root create tfgproject -p
2 mysqladmin -u root create tfgprojecttest -p
3

4 mysql -u root -p
5 CREATE USER 'tfg'@'localhost' IDENTIFIED BY 'tfg';
6 GRANT ALL PRIVILEGES ON tfgproject.* to 'tfg'@'localhost' WITH

GRANT OPTION;
7 GRANT ALL PRIVILEGES ON tfgprojecttest.* to 'tfg'@'localhost'

WITH GRANT OPTION;
8 exit

The project can be assembled and carried out when the aforementioned procedures have been
completed. The following actions must be taken in order to accomplish this:

• 1. Launch a terminal under the back-end’s root project, where the pom.xml file is lo-
cated (../backend). If this is the first time the application has been compiled, it is nec-
essary to first run the mvn sql:execute command in order to create the tables in the
database. The mvn spring-boot:run command must then be executed. Explain that
just this last command will be required if the application has already been started on
earlier occasions.

• 2. The front-end of the application will be launched in this second stage; if this is the
first time the application has been launched, it is necessary to navigate to the root folder

59



APPENDIX A. BUILD AND RUN INSTRUCTIONS

(../frontend) and execute npm install to ensure that all the dependencies set up in the
project are installed. The application will then be opened on port 3000 by the next
command, npm start. Make it clear that if the program has previously been launched
on prior instances, just this last command will be necessary.

60



List of Acronyms

API Application Programming Interface. 3, 29, 30, 32, 57

CSS Cascading Style Sheets. 29

DAO Data Access Object. 31, 37, 38

DOM Document Object Model. 3, 33

DTO Data Transfer Object. 32, 38, 43, 50

ECISSA E-Commerce and Information Society Services. 3

GDPR General Data Protection Regulation. 2, 40

HTML Hyper Text Markup Language. 29, 33

HTTP Hypertext Transfer Protocol. 29

IDE Integrated Development Environment. 27, 30

JPQL Java PersistenceQuery Language. 28

JRE Java Runtime Environment. 28

JSON JavaScript Object Notation. 28

JWT JSON Web Token. iv, 15, 28, 38, 40

POM Project Object Model. 29, 32

POS Point of Sales. 5, 22

RAM Random Access Memory. 26

61



List of Acronyms

REST Representational State Transfer. 3, 29–32, 38

SPA Single Page Application. 3

SQL StructuredQuery Language. 28, 29, 32

UI User Interface. 3, 25, 29, 30

UML Unified Modeling Language. 30

URL Uniform Resource Locator. 15, 43

VAT Value Added Tax. 26

XML Extensible Markup Language. 32

62



Glossary

back-end It is a component of an application responsible for controlling both business logic
and data. 3

bean Reusable software that eliminates the need to program each component independently.
38

front-end It is the client-side part of the application that interacts with users. 3

Mock-up It is a photo montage in which user interface concepts for use cases can be pre-
sented before they are implemented.. iv, 16

63



Bibliography

[1] “Pescanova website,” last accessed August 2022. [Online]. Available: https://www.
pescanova.es/

[2] “Mariscos campelo online store,” last accessed August 2022. [Online]. Available:
https://mariscoscampelo.com/

[3] “Palacio de oriente website,” last accessed August 2022. [Online]. Available: https:
//www.palaciodeoriente.net/es

[4] “Mysql documentation,” last accessed August 2022. [Online]. Available: https:
//dev.mysql.com/doc/

[5] “Jpql documentation,” last accessed June 2022. [Online]. Available: https://docs.oracle.
com/html/E13946_04/ejb3_langref.html

[6] “Jwt libraries and documentation,” last accessed August 2022. [Online]. Available:
https://jwt.io/

[7] “Spring boot documentation,” last accessed July 2022. [Online]. Available: https:
//spring.io/projects/spring-boot/

[8] “Hibernate documentation,” last accessed August 2022. [Online]. Available: https:
//hibernate.org/

[9] “Junit5 user guide,” last accessed September 2022. [Online]. Available: https:
//junit.org/junit5/docs/current/user-guide/

[10] “Maven documentation,” last accessed August 2022. [Online]. Available: https:
//maven.apache.org/

[11] “Postman website,” last accessed March 2022. [Online]. Available: https://www.
postman.com/

64

https://www.pescanova.es/
https://www.pescanova.es/
https://mariscoscampelo.com/
https://www.palaciodeoriente.net/es
https://www.palaciodeoriente.net/es
https://dev.mysql.com/doc/
https://dev.mysql.com/doc/
https://docs.oracle.com/html/E13946_04/ejb3_langref.html
https://docs.oracle.com/html/E13946_04/ejb3_langref.html
https://jwt.io/
https://spring.io/projects/spring-boot/
https://spring.io/projects/spring-boot/
https://hibernate.org/
https://hibernate.org/
https://junit.org/junit5/docs/current/user-guide/
https://junit.org/junit5/docs/current/user-guide/
https://maven.apache.org/
https://maven.apache.org/
https://www.postman.com/
https://www.postman.com/


BIBLIOGRAPHY

[12] “Css reference,” last accessed May 2022. [Online]. Available: https://devdocs.io/css/

[13] “Html guide,” last accessed May 2022. [Online]. Available: https://devdocs.io/html/

[14] “Bootstrap documentation,” last accessed August 2022. [Online]. Available: https:
//getbootstrap.com/docs/4.6/getting-started/introduction/

[15] “React webpage,” last accessed August 2022. [Online]. Available: https://es.reactjs.org/

[16] “Redux documentation,” last accessed August 2022. [Online]. Available: https:
//es.redux.js.org/

[17] “Material - ui components,” last accessed August 2022. [Online]. Available: https:
//mui.com/

[18] “Npmwebsite,” last accessed August 2022. [Online]. Available: https://www.npmjs.com/

[19] “Paypal developer website,” last accessed August 2022. [Online]. Available: https:
//developer.paypal.com/

[20] “Emailjs developer website,” last accessed August 2022. [Online]. Available: https:
//www.emailjs.com/

[21] “Oauth developer website,” last accessed August 2022. [Online]. Available: https:
//oauth.net/2/

[22] “Latex documentation website,” last accessed September 2022. [Online]. Available:
https://www.latex-project.org/

[23] “Intellij documentation,” last accessed May 2022. [Online]. Available: https://www.
jetbrains.com/es-es/idea/

[24] “Git website,” last accessed August 2022. [Online]. Available: https://git-scm.com/

[25] “Dia installer website,” last accessed September 2022. [Online]. Available: http:
//dia-installer.de/

[26] “Draw.io working area website,” last accessed September 2022. [Online]. Available:
https://www.draw.io/

[27] “Overleaft text editing website,” last accessed September 2022. [Online]. Available:
https://www.overleaf.com/

65

https://devdocs.io/css/
https://devdocs.io/html/
https://getbootstrap.com/docs/4.6/getting-started/introduction/
https://getbootstrap.com/docs/4.6/getting-started/introduction/
https://es.reactjs.org/
https://es.redux.js.org/
https://es.redux.js.org/
https://mui.com/
https://mui.com/
https://www.npmjs.com/
https://developer.paypal.com/
https://developer.paypal.com/
https://www.emailjs.com/
https://www.emailjs.com/
https://oauth.net/2/
https://oauth.net/2/
https://www.latex-project.org/
https://www.jetbrains.com/es-es/idea/
https://www.jetbrains.com/es-es/idea/
https://git-scm.com/
http://dia-installer.de/
http://dia-installer.de/
https://www.draw.io/
https://www.overleaf.com/

	Introduction
	Motivation and context
	Objectives
	Global vision of the system

	State of the art
	Alternatives
	Conclusions

	Methodology
	Development methodology
	Advantages and disadvantages of incremental iterative methodology
	Methodology justification


	Global Requirements Analysis
	Actors
	Unauthenticated users
	Customers
	Administrators

	Requirements
	Non-functional requirements
	Functional requirements


	Planning
	Development planning
	Temporary planning
	Costs
	Human resources
	Technical resources
	Total cost of the project


	Technological fundamentals
	Technologies used in the back-end
	Technologies used in the front-end
	Other technologies

	Iterative development
	Application structure
	Back-end structure
	Front-end structure

	Data model
	Iteration 1
	Analysis
	Design and implementation

	Iteration 2
	Analysis
	Design and implementation

	Iteration 3
	Analysis
	Design and implementation

	Iteration 4
	Analysis
	Design and implementation

	Iteration 5
	Analysis
	Design and implementation

	Iteration 6
	Analysis
	Design and implementation

	Iteration 7
	Tests

	Conclusions and future work
	Conclusions
	Future work

	Build and run instructions
	List of Acronyms
	Glossary
	Bibliography

