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Abstract

The constant growth of social networks has not only brought us new ways of interacting
with each other, but has also given way to a severe increase in negative behaviors: hate
speech, racism, gender harassment, cyberbullying, etc. Manually trying to detect this kind of
behaviours in millions of daily social media posts is out of the question. The solution lies in
developing intelligent systems to automate such detection tasks.

As the nature of these texts is completely subjective, this problem falls under the field
of sentiment analysis, which aims to systematically identify and study affective states and
subjective information in textual data using natural language processing techniques.

In particular, this project is focused on the research of different machine learning tech-
niques related to natural language processing, in order to automate and perform a reliable
detection and classification of sexist-related behaviours in social media texts. We will tackle
the task of adequately processing the extracted data from social media, as well as researching
various text classification techniques and models that we will use to develop and evaluate a
variety of classifiers.
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Chapter 1

Introduction

As the world’s digital population grows, so does the reach and usage of social media.
Social media are now a part of our everyday life and continue to transform the way

we interact with one another on a global scale. Social networking is one of the most popular
online activities worldwide. The data provided in Figure 1.1 shows that, as of 2022, global
social media audiences amounted to 4.59 billion users, and that number is expected to increase
up to 5.85 billion in the coming 5 years.

Figure 1.1: Evolution of social network usage [1]

The downside is that, as we interact more and more on social media, negative behav-
iors of regular social interactions increase their presence in these platforms: hate speech,
racism, incitement to terrorism, gender harassment, cyberbullying, etc. Moreover, the feeling
of anonymity these media provide encourages these type of actions. Between March 1st and
April 31st, OBERAXE (Observatorio Español del Racismo y la Xenofobia) [4] has detected a
27% increase in hate speech in social media, compared to the previous time interval. This is a
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CHAPTER 1. INTRODUCTION 1.1. EXIST workshop

very worrying trend.
Manually evaluating millions of daily social media posts searching for those type of phe-

nomena is out of the question. The solution lies in developing intelligent systems to automate
such evaluation tasks. However, human language is riddled with ambiguities that make it in-
credibly difficult for a computer to determine the intended meaning of text accurately. That
is where Text Mining (TM) comes in.

Text mining may be defined as the process of transforming unstructured natural language
text into a structured format to identify meaningful patterns and new insights. By applying
Natural Language Proccessing (NLP) techniques we can explore and discover hidden relation-
ships within such unstructured text data.

NLP is the branch of Artificial Intelligence (AI) concerned with giving computers the
ability to understand human language. In our case, by applying this type of techniques we
can determine which social media posts contain this kind of harmful content. We also must
consider that, by their own nature, these texts are heavily subjective, so to solve this problem
we will have to apply NLP techniques that work with subjective information.

Sentiment Analysis (SA) [5] is a widely used text mining technique for obtaining useful
and subjective information from text-based data. It’s a key component of NLP, applied over
text analysis and computational linguistics to systematically identify, extract, analyse, and
study affective states or emotions from the textual data.

1.1 EXIST workshop

Instead of manually gathering and evaluating social media data, we opted to use the resources
given by the research community at the Iberian Languages Evaluation Forum (IberLEF) [6].
This forum organized a variety of workshops, each centered around the use of NLP techniques
to tackle a specific problem. One of these workshops was the sEXism Identification in Social
neTworks (EXIST) [7], which was focused on implementing intelligent systems capable of
detecting and classifying sexism in social media texts.

In this workshop, participants are asked to perform the following classification tasks:

1. A binary classification task where the systemmust decide whether a given text is sexist
or not (i.e., it is sexist itself, describes a sexist situation or criticizes a sexist behavior).

2. A multiclass classification task where, once a text has been classified as sexist, the sys-
tem categorizes it according to the type of sexism present (according to the catego-
rization proposed by experts and that considers the different facets of women that are
undermined).

2



CHAPTER 1. INTRODUCTION 1.2. Main objective

For these two tasks, the participants are provided a dataset containing 6 977 texts extracted
from Twitter1 and Gabhttps://gab.com/. All these entries have been given two labels, one for
each task. The first label dictates if the tweet/gab is sexist or non-sexist, and the second label
dictates the type of sexism present. The proposed sexist categories are the following:

• Ideological and inequality: The text discredits the feminist movement, rejects in-
equality between men and women, or presents men as victims of gender-based oppres-
sion.

• Stereotyping and dominance: The text suggests that women are more suitable to
fulfill certain roles (mother, wife, tender, submissive, etc.), or they are inappropriate for
certain tasks (driving, hardwork, etc), or claims that men are superior to women.

• Objectification: Women are portrayed as objects, severed from their dignity and per-
sonal aspects, or the text assumes or describes physical qualities that women must have
to fulfill traditional gender roles (hypersexualization of female attributes, compliance
with beauty standards, women’s bodies at the disposal of men, etc.).

• Sexual violence: The text contains requests for sexual favors, sexual suggestions or
rape (or any sexual assault) threats.

• Misogyny and non-sexual violence: The text shows signs of hatred and violence
towards women.

1.2 Main objective

Themain objective of this work is the study and application of SA techniques for the detection
and classification of sexist content in social media texts. For that purpose, we will implement,
train and evaluate different classifiers, each one using a different SA model. The models we
chose are detailed in Section 2.1.3.

We will tackle both tasks presented by the EXIST workshop in Section 1.1, so we will be
implementing a binary and a multiclass variation of each model. We will also use the dataset
they provide for the training and evaluation of our classifiers, in order to have a common
ground to compare them.

Even though the project is aimed at this specific context, it is just an example of a field in
which SA techniques can be applied to. The classifiers that we developed in this work will be
easily adapted to other specific contexts regarding .

1 https://twitter.com/
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Chapter 2

State of the art

As the main objective of this work is to study current state of the art, regarding NLP is
quite settled, as there are some language models that dominate over the rest.

2.1 Sentiment Analysis

As mentioned in Chapter 1, Sentiment Analysis can be used to identify the sentiment polarity
of a text, in order to recognize if the text represents a positive, neutral or negative attitude.
This is extremely useful for any kind of company that offers goods or services, as it can make
use of SA to automate the task of evaluating the customers’ opinions [8]. It’s been used to
analyze movie reviews [9], to make predictions on election opinions [10], to analyze airline
reviews [11], to analyze amazon’s customer reviews [12], etc. It is also extensively used to
analyze textual data from social media [13] [14] [15], which aligns well with the aim of this
project.

As shown in Figure 2.1, sentiment analysis is divided in four main steps: preprocessing,
feature extraction, classification, and interpretation of results.

2.1.1 Preprocessing

Text Preprocessing is the first step in the NLP pipeline, and it has a lot of potential impact
in its final process, being necessary in most cases. It involves. In our case, we will first take
a look at the raw data, checking the label distribution and the general characteristics of the
texts.

Text Preprocessing is an essential part of the NLP pipeline, it has a lot of impact on the
other steps, as well as being necessary in most cases. It consists on analyzing and manipulat-
ing the dataset, bringing it into a form that is predictable and analyzable. Depending on the
problem at hand, this manipulation can range from formatting the text, to correcting spelling
mistakes, or even removing stopwords or other grammatical structures. In domains such as

4
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Figure 2.1: Diagram of the four main steps in sentiment analysis.

twitter data, removing links or mentions can be useful, whereas in other domains such as
movie reviews there aren’t any to remove. We will explore in detail the text preprocessing
techniques we use in Chapter 6.

2.1.2 Feature extraction

Feature extraction is the process of preparing the textual data for the algorithms. It essentially
consists on obtaining features from the text that can be used for the algorithms to learn, as
they can’t work directly with human language. These features range fromword counts, punc-
tuation counts, character length, the language of the text…as well as text-based features such
as tokenzation, vectorization, stemming, etc [16]. There are two types of feature extraction
methods:

• Lexicon-based: In lexicon-based methods, lists of positive and negative words are
provided. These words are counted for each sentence, and the sentiment is decided by
the frequency of the positive-oriented and negative-oriented words.

• Machine learning-based: In machine learning-based methods, the model tries to find
patterns from the data provided. Machine learning methods are divided in supervised
and unsupervised learning. In supervised techniques, the model is trained using la-
belled data, and then it is evaluated using unlabeled data. On the other hand, unsuper-
vised techniques train the model using data that has not been labelled or categorized,
enabling the model to function without the need for supervision.

5
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The most commonly used machine learning techniques for feature extraction are Bag-of-
Words [17] and n-grams. In these feature extraction techniques, the features are retrieved
either using Count Vectorizer or Term Frequency - Inverse Document Frequency (TFIDF)
[18]. These techniques use a one-hot word representation approach, in which the vocabulary
size depends on the total number of words displayed in the document. This makes the fea-
ture space reach high dimensionality, thus raising scalability problems, and they also cannot
capture the syntactical and semantic details of a sentence. In Section 5.1.1, we will further
explain how the bag-of-words model works, as well as what n-grams are and explaining how
the features are extracted with TFIDF.

In order to improve upon the constraints of the Bag-of-Words and N-gram techniques,
word-embedding models were proposed. One of the most common word embedding model
is Word2Vec, which we explain in detail in Section ⁇. These circumvent these problems by
extracting semantic and syntactic details from word representations. These embedding meth-
ods generate feature vectors only for words found in their vocabularies and are unable to cope
with out of vocabulary words [19]. Another limitation of these models is that similar words
from different sentences can have a different context [20], and opposite sentiment expression
words such as ”good” and ”bad” can share very similar vectors [21].

One of the most advanced word embedding models as of today is BERT [3], which allows
for bidirectional training (from left to right and from right to left), in order to learn deeper
context from a given sentence. BERT’s bidirectional encoding allows it to process the position
of a each word in a sequence and incorporate that information into that word’s embedding,
while Word2Vec and previous models aren’t able to account for word position. Thanks to
this, it learns embeddings at a subword level, which allows BERT to generate embeddings for
words outside of its vocabulary, as opposed to the previous models. We will explain in more
detail how Transformers in Section 5.7, as well as detailing how BERT works in Section 5.8.

2.1.3 Classification

The classification part consists on feeding the previously obtained features into a classifier, in
order to train it to predict the sentiment of a given text. Over the years, a variety of machine
learning models have been used for SA classification [22], even specifically for twitter [23].
For our tasks at hand, we will mainly focus on machine learning techniques using supervised
learning to train our classifiers, as our dataset is labeled. To implement the text classifiers of
this work, we decided to use the following models:

• Multinomial Naive Bayes, as it is a simple model that can serve us to create a baseline
classifier. We further expand on it in Section 5.1.2.

• FastText, as it is the evolution of the Word2Vec model, and can prove as a middle point

6



CHAPTER 2. STATE OF THE ART 2.1. Sentiment Analysis

between the other two models, regarding its complexity. We expand upon this model
in Section 5.5.

• BERT, as it is one of the most powerful NLP models to this day. It will serve as a state-
of-the art approach to the tasks at hand. In Section 5.8 we explain in detail this model.

2.1.4 Results

The final step is to interpret the results obtained from evaluating the previously trained classi-
fiers. In Section 6.2 wewill explore in detail how supervised classifiers’ results are interpreted.
We will be calculating metric scores from the classifiers, that will denote their performance
regarding the different classification tasks.

7



Chapter 3

Methodology and planning

3.1 Chosen methodology

Choosing a software development methodology is a crucial task, as the whole project will
be affected by this decision. A good model can provide us with a well structured way of
understanding and planning our project.

As this work is mainly focused on the research aspect, we should choose a methodol-
ogy that better suits it. Thus, an Agile methodology has been applied. Agile practices are
based on adaptive planning, evolutionary development, continual improvement and flexible
responses to changes in requirements, and these principles align perfectly with our interests.
We will want to be able to produce working prototypes quickly to get a grasp on its general
performance, in order to study how to further improve them.

Agile methodologies split up development in small increments that severely reduce the
up-front planning and design. These small increments are called iterations or sprints, and each
one of them lasts a short time frame, and work is done in all functions: planning, analysis,
design, coding and testing. This way, at the end of each iteration we will have a working
product that can be evaluated. This is in stark contrast with other developmentmethodologies
that only present the working software near the end of the development. This process also
allows the software to adapt to changes or corrections in a faster way, which is something
usual in research projects.

We decided to use the Iterative and Incremental development strategy. As shown in Figure
3.1, it is a combination of both iterative design and incremental method. For each increment,
we will develop a different sentiment analysis model from start to finish, but we will do it in
several iterations. In the first iteration we will design, code and evaluate a prototype using a
given approach, which will be further improved throughout the following iterations.

8
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Figure 3.1: Incremental development model.
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Figure 3.2: Gantt diagram of our project.
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3.2 Task planning

The Gantt diagram shown in Figure 3.2 represents the development time frame in a best case
scenario. In order to be more precise with the time frame, we’ve made an educated guess
based on other similar project’s time frames.

• Domain Study: The tasks of to this group are oriented towards acquiring the necessary
knowledge regarding NLP techniques and models, as well as getting acquainted with
the tools that are used to develop this project.

• Project outline: Tasks that relate to the elaboration of the project planning, deciding
what models to implement to tackle the main objectives of the project as well as a
scheduling them in an approximate time frame.

• Dataset manipulation: These tasks correspond to the study of the given dataset, in
order to analyze possible ways of reshaping it or even changing it depending on the
model we are going to implement.

• Writing the documentation: Tasks corresponding to the documentation of this work,
as well as the organization of the information and the synthesis of the conclusion of
this work.

Every sentiment analysis model we implement will have its associated increment and as many
iterations as it needs to be improved until a point we consider them finished enough. For
the main design, development and evaluation of these models, we planned on the following
structure:

• First increment: Multinomial Naive Bayes classifier

– First iteration: We will develop and evaluate a baseline classifier using the MNB
algorithm, that will serve as a first point of reference for the later models.

– Second iteration: We will study and improve the previous model, in order to try
to make it reach its fullest potential.

• Second increment: FastText classifier

– First iteration: In this iteration we will use a different approach, a FastText clas-
sifier. We will also compare it to the previous one.

– Second iteration: We aim to improve the model even further by considering
some optimizations and improvements.

• Third increment: BERT classifiers

11
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– First iteration: This time we will develop a baseline BERT model to tackle the
binary classification task, as it takes considerably more time to code than the pre-
vious two models. We will test it and compare its performance with the others.

– Second iteration: We will redesign the previous model implementation, making
changes in order to elevate the quality of the results.

– Third iteration: We will build BERT multiclass classifiers in order to address the
second task of the project, as well as study and implement some different pre-
trained BERT models that can prove to perform better.

– Fourth iteration: Finally, we will look into further enhancing the classifiers pre-
viously developed by trying hyperparameter optimization techniques. We will
compare the results of the different implemented BERT models, as well as the
previously developed MNB and FastText classifiers.

12



Chapter 4

Technological fundamentals

Choosing the adequate tools and technologies for a proper development is a crucial part
of a project. In our case, as our work is mainly artificial intelligence, machine learning-

based, we will choose a programming language that is tailored for that purpose.

4.1 Programming language

Python1 is a general-purpose, high-level, multi-paradigm interpreted programming language.
It supports imperative, object-oriented programming and, to a lesser extent, functional. Has
a dynamic type system, allocates memory when needed and uses a garbage collector that
checks the dereferenced memory to free it.

We decided to pick Python as our main programming language for this project, as it is
one of the most popular languages in the data science field [24]. It provides a lot of libraries
which feature many utilities and tools for developing these kind of projects, as we’ll see in
Section 4.3.

Thanks to this, it proves to be one of the best languages for the incremental and iterative
and incremental strategy that we will use for this work, as detailed in Chapter 3. It will allow
as to quickly prototype and implement the classifiers, which will let us focus on the evaluation
and improvement of said classifiers.

4.2 Development tools

4.2.1 Integrated Development Environment

As for the development of this project, we decided to use Pycharm2 as our IDE. It a multi-
platform program, compatible with Linux, macOS, and Windows architectures, as well as

1 https://docs.Python.org/3/faq/general.html
2 https://www.jetbrains.com/pycharm
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being one of the most used IDEs for Python development. Its quality is on par with the rest
of the JetBrains catalogue, thanks to the powerful features it provides. These features range
from an integrated debugger and test runner, a Python profiler, a built-in terminal, integration
with major version control systems and even more, as well as providing ample customization
via plugins for the user interface.

We chose this IDE thanks to its features and thanks to the fact that we were already
familiarized with it, so we would have a smoother development

4.2.2 Version control

As a version control system, we decided to use Git3. Git is an open source distributed version
control system designed to handle everything, from small to very large projects, with speed
and efficiency. Specifically, we chose Github4 as a Git platform, as we are also familiarized
and used to it.

Having a strict version control allows for a more controlled and safe workflow, being able
to properly track the evolution of a project are fundamental for developing a quality project.

4.3 Main libraries

4.3.1 Numpy

NumPy is a library that adds support for large, multi-dimensional arrays and matrices, along
with a large collection of high-level mathematical functions to operate them. It is an essential
library for any machine learning project.

4.3.2 Pandas

Pandas5 is a Numpy-based general purpose data analysis, cleaning and pre-processing open
source library. It provides fast, flexible and high-level data structures to easily perform data
analysis with labeled datasets. It also features powerful functionalities to combine, split, re-
arrange or reorder sets, so that makes it the perfect tool for us to manipulate our dataset.

4.3.3 EasyNMT

EasyNMT6 is a library that provides some functionalities to easily use state-of-the-artmachine
translation models for an enormous variety of languages. It automatically downloads the pre-

3 https://git-scm.com/
4 https://github.com/
5 https://pandas.pydata.org/
6 https://pypi.org/project/EasyNMT/
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trained translation models, and can be used for both single sentences and whole documents.
It even features threaded translation, in order to speed up the process.

4.3.4 Nlpaug

Nlpaug7 is a library that features data augmentation techniques to expand datasets, specially
useful with machine learning projects. It’s specialized in both text and signal augmentation.
Text augmentation can prove really useful in our project, taking into account that this library
features a variety of pre-trained models that can insert, substitute, remove, swap words or
even characters in sentences. We explain in detail data augmentation in Section 6.1.1.

4.3.5 Matplotlib and Seaborn

Both libraries provide data visualization functionalities. Matplotlib 8 can produce a variety of
different plots and graphics, as well as an ample customization of color palettes and display
settings.

Seaborn9 is built on top of Matplotlib, and it can also compute metrics given the data by
itself, and generate the corresponding graphics

4.3.6 Scikit-learn

Scikit-learn10 is a Python machine learning module that includes a variety of functionalities,
including classification, regression and clustering algorithms, as well as pre-processing tech-
niques and model selection features, such as detailed metrics reports from the evaluation of
supervised models.

4.3.7 NLTK

NLTK11 is one of the most popular libraries for natural language processing. It provides a
large set of functionalities for classification, tokenization, stemming, parsing and more, for a
large variety of languages.

4.3.8 FastText

FastText12 is an open-source, free, lightweight library that allows users to set up a variety of
word representation models to learn text representations. It also provides functionalities to

7 https://pypi.org/project/nlpaug/
8 https://pypi.org/project/matplotlib/
9 https://pypi.org/project/seaborn/

10 https://scikit-learn.org
11 https://www.nltk.org/
12 https://fasttext.cc/
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create different types of text classifiers in a quick and simple way

4.3.9 Pytorch

Pytorch13 is a machine learning framework, that presents a variety of functionalities to de-
velop a variety of applications such as computer vision, deep learning or natural language
processing. It allows building complex neural network with ease thanks to the Tensors, opti-
mized multi-dimensionalk arrays that can be computed with the GPU.

It’s one of the most used deep learning tools in the research community as it is flexible,
fast, easy to get prototypes up and running, and it boasts a lot of well documented examples
and guides, which makes it even more approachable.

4.3.10 Transformers

Transformers14 is a Python library that provides the user with already pre-trained, state-of-
the-art models in a variety of artificial intelligence domains, including NLP, artificial vision,
audio related tasks and even multimodal tasks that combine them. It also features integration
with Pytorch, which will facilitate the implementation of our models.

4.3.11 Ray tune

Ray tune15 is a library that features experiment execution and hyperparameter tuning at any
scale, allowing for quicker executions thanks to its multi-threaded approach. It provides in-
tegrations with many machine learning frameworks, such as Pytorch, and also provides a lot
of state-of-the-art algorithms to perform hyperparameter tuning.

13 https://pytorch.org/
14 https://huggingface.co/docs/transformers/index
15 https://docs.ray.io/en/latest/tune/index.html
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Chapter 5

Theoretical fundamentals

5.1 Multinomial Naive Bayes classifier

In probability theory and statistics, Bayes’ theorem describes the probability of an event, based
on prior knowledge of conditions that might be related to the event.

P (A|B) = P (A)
P (B|A)

P (B)
(5.1)

Following its formula, we can describe it as the probability of A happening, given that
B has occurred. In this example, B is the evidence and A is the hypothesis. The assumption
made here is that the features are independent of each other. That is presence of one particular
feature does not affect the other.

That leads us to the Naive Bayes Classifier. It is a supervised learning algorithm used
for classification tasks, that uses features to make a prediction on a target variable. As it
employs the Bayes’ theorem, it assumes that features are independent of each other and there
is no correlation between them. However, this is not the case in real life. This assumption of
features being uncorrelated is the reason why this algorithm is called “naive”.

It is computationally very efficient and easy to implement. There are two event models
that are commonly used: the multivariate and the multinomial model. The latter one, fre-
quently called Multinomial Naive Bayes (MNB), generally outperforms the multivariate one
[25]. However, it is still inferior to support vector machine classifiers, in terms of accuracy
[26], but as a baseline model, its performance will be enough for us.

5.1.1 Feature Extraction

In the bag-of-words approach a text is represented as the bag (multiset) of its words, disre-
garding grammar and even word order but keeping multiplicity (the number of times each
word occurs in the text). Each text has the words as their features, and each feature can take
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on an integer value counting the number of times the particular words occurs in said text.
We first have to determine the set of words (also called ”dictionary”) of our dataset by

reading all the texts in it. Then, for each text, we record the number of times each of the
words in the dictionary occurs in it, including those that did not occur by giving them a value
zero.

We apply the Term Frequency - Inverse Document Frequency (TFIDF) [27] formula to
all the texts in our dataset, as to then apply the MNB algorithm. The TFIDF is a numerical
statistic that is intended to reflect how important a word is to a text in a dataset. The TFIDF
value increases proportionally to the number of times a word appears in the document and
is offset by the number of documents in the corpus that contain the word, which helps to
adjust for the fact that some words appear more frequently in general. Its formula is shown
in Equation 5.2, whereD represents the total number of texts, df is the number of documents
containing the desired word and f represents the original word frequency.

TFIDF (word) = log (f + 1)× log (D
df

) (5.2)

5.1.2 Classification

Now we will explain how MNB computes class probabilities for a given text. Let C be the
set of classes, c be any class belonging to C and N the size of our vocabulary. The classifier
assigns a test tweet/gab ti to the class that has the highest probability P(c|ti), which, applying
Bayes’ rule 5.1 is given by Equation 5.3:

P (c|ti) = P (c)
P (ti|c)
P (P (ti)

, c ∈ C (5.3)

The probability of the prior class P(c) can be estimated by dividing the number of texts
belonging to the class c by the total number of texts. P(ti|c) is the probability of obtaining a
text like ti in the class c, and it is calculated as denoted by Equation 5.4:

P (ti|c) = (
∑
n

fni)!
∏
n

P (wi|c)fni

fni
, (5.4)

where fni is the count of word n in our test text ti and P(wn|c) is the probability of word n

given class c. The latter probability is estimated from the training text as seen in Equation 5.5,

P̂ (wn|c) =
1 + Fnc

N +
∑

x=1NFcx
, (5.5)

where Fxc is the count of word x in all the training documents belonging to class c, and the
Laplace estimator is used to prime each word’s count with one to avoid the zero-frequency
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problem [25]. The normalization factor P(ti) in Equation 5.3 can be computed using Equation
5.6:

P (ti) =
∑
k=1

|C|P (k)P (ti|k). (5.6)

Note that the computationally expensive terms
∑
n

fni)! and
∏
n

fni)! in Equation 5.4 can

be deleted without any change in the results, as neither depend on class c. This way, Equation
5.4 can be rewritten as shown in Equation 5.7, where α is a constant that drops out because
of the normalization step.

P (ti|c) = α
∏
n

P (wn|c)fni (5.7)

5.2 Neural Networks

Neural networks are a part of machine learning and constitute the core of deep learning algo-
rithms. Their name and structure are inspired by the human brain, mimicking the way that
biological neurons signal to one another, and they started when Fran Rosenbflatt conceived
the perceptron in the 1950s [28].

The perceptron is the mathematical representation of the workings of a human neu-
ron, and thus it is the most basic neural network. It is composed by a vector of inputs
X⃗ = [x0, x1, ..., xn] that are associated to a set of features, alongside a weight vector W⃗ =

[w0, w1, ..., wn] that is initially randomized. The perceptron is tasked with combining these
values as the sum of the multiplication of each input-weight pair (x0 × w0) + (x1 × w1) +

...+ (xn×wn). Finally, a threshold function is applied to the sum, resulting in the following
Equation 5.8.

f(x) =


1 if(

n∑
i=0

xi × wi) > threshold

0, otherwise
(5.8)

It also features an error function err(x) = ||yf(X)|| (also known as loss function) that
compares the output of the perceptron with the known output.The perceptron’s architecture
can be seen in Figure 5.1.

By combining many perceptrons in a layered structure, we can form a Multi Layer Per-
ceptron (MLP). The input passes through the first layer, whose outputs are connected to the
inputs of the second layer and so forth. But in order to make the neural network work, we
need to train it.
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Threshold
function

∑
w2x2
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wnxn

w1x1

w01

inputs weights

Figure 5.1: Representation of the perceptron’s architecture

In the case of supervised learning, each data sample has a label that contains the infor-
mation to which class it belongs to. The general idea is to make the neural network learn the
patterns relative to each class, so when we input an unkown data sample it will be able to
predict its class.

For this purpose, we will apply the backpropagation algorithm, which consists on recal-
culating the network’s weights according to the error function, starting in the last neuron
layer and proceeding towards the first input layer. The algorithm consists on the following
steps:

• Initalize all weights with random values.

• Feed data into the network and calculate the value of the error function.

• Calculate the gradients of the error function with respect to each weight.

• Keep updating the weights in an iterative way until the error becomes lower than the
stablished error threshold, or the maximun number of iterations is reached.

The general formula to update the weights is given as shown in Equation 5.9

w ← w − α
∂Error

∂w
, (5.9)

where the weight value at the current iteration is the value of the previous iteration minus
a value proportional to the gradient. The parameter α represents the learning rate, which
determines the amount of error correction that is applied to the weights. If the learning rate
is too big, the corrections to the weights might be inefficient, so the error can increase, and
if it is too small, the algorithm might get stuck without improving at all. The expression

20



CHAPTER 5. THEORETICAL FUNDAMENTALS 5.3. Recurrent Neural Networks

∂Error
∂w represents computing the partial derivatives of the error fucntion E with respect to

each weight of the array w.
Regarding the training process, there exist diffferent methods to apply backpropagation.

One of them is the stochastic gradient descent [29], where the weights of the network are
updated after each training sample is processed. This approach is quite slow, as the weights
are updated as many times as the amount of training samples that are used. In the other hand,
batch learning is a faster method where a batch of samples are used to train the network, and
then the weights are updated. This method is much less computationally expensive, but it can
provide worse results due to the reduced weight update frequency.

Moreover, we can train the network in more than one epoch. An epoch is defined as
an entire transit of the training data through the network. Increasing the number of epochs
helps reduce the error further, but it can also adjust the weights too much in favor of the
given inputs, so in this case the model would not be learning the characteristics of the inputs,
but learning the inputs themselves. This phenomenon is known as overfitting, and it gives
the illusion of good performance when in reality the model is just adapting to the training
samples.

5.2.1 Neural Network Language Model

The neural network language model [30] is a probabilistic feedforward neural network specif-
ically tailored for NLP tasks. Its architecture consists of input, projection, hidden and output
layers. It becomes computationally complex between the projection and the hidden layer, as
values in the projection layer are dense. For a common choice of 10 input neurons, the size
of the projection layer might be 500 to 2000, while the hidden layer size is typically 500 to
1000 units. Moreover, the hidden layer is used to compute probability distribution over all
the words in the vocabulary, resulting in an output layer with dimensionality as big as the
number of the words present.

Several optimizations were proposed and applied to this model, such as using the Huffman
tree based hierarchical softmax [31]. In the end, this model served as a base to be used to create
more efficient models, like the CBOW, that will be described in Section 5.4.1.

5.3 Recurrent Neural Networks

A Recurrent Neural Network (RNN) is a neural network that has the following architecture,
as shown in Equation 5.2.

It has an input layer, that takes in a sequence x = (x0, x1, ..., xT ), a hidden layer h and
an optional output layer y. At each time step t, the hidden state ht of the RNN is updated by
the Equation 5.10, where f is a non-linear activation function, like a sigmoid or a sotftmax
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Figure 5.2: Recurrent Neural Networks architecture

function, for example.

ht = f(ht−1, xt). (5.10)

5.3.1 Recurrent Neural Network Language Model

Recurrent Neural Network LanguageModel (RNNLM) was proposed to overcome certain lim-
itations of the NNLM model, (described Section 5.2.1) such as the need to specify the context
length, and because RNNs can efficiently represent more complex patterns [32].

5.4 Word2Vec

Word2vec [33] is a group of related models, composed by shallow, two-layer neural networks
that are trained to reconstruct linguistic contexts of words. Word2vec takes as its input a
large corpus of text and produces a vector space, typically of several hundred dimensions,
with each unique word in the corpus being assigned a corresponding vector in the space.
These vectors that are assigned to words receive the name of word embeddings, and they are
positioned in the vector space such that words that share common contexts in the corpus are
located in close proximity to one another. In Figure 5.3 we have a visualization of the vector
space model.

There are two implementations of Word2Vec, as described by Mikolov et al. in their paper.
Their main goal is to be efficient and simple, minimizing their computational complexity.
These two architectures are based on previous works by Krbec and Mikolov et al., where they
found that NNLM can be successfully trained in two steps: first, continuous word vectors are
learned using simple model, and then the n-gram NNLM is trained on top of the distributed
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Figure 5.3: Example of the vector representation of the words’ relationships

representations of words. For that purpose, they remove the non-linear hidden layer present
in the NNLM and RNNLM models [33].

An n-gram is a contiguous sequence of n items from a given sample of text or speech.
The items can be phonemes, letters, words, or base pairs according to the application. The n-
grams are typically collected from a text or speech corpus. It typically consists of words, and
they can be grouped in pairs to form bigrams, or in trios to form trigrams. These new groups
can provide more context, as they can extract the meaning of compound verbs or other word
formations.

5.4.1 Continuous bag of words model

CBOWmodel is derived from the NNLM, with the exception that it has no linear hidden layer,
as mentioned before, and the projection layer is shared among all the words. The objective
function of CBOW model is to predict the middle word when given a window size N , using
the previous N/2 words and the following N/2 words. In the projection layer, the word
vectors of the window words are averaged. There is no relevance of the position of the word
in determining the word vector of the middle word, hence it is a bag-of-words model. We can
see the model’s architecture in Figure 5.4.

An averaged vector is passed to the output layer followed by hierarchical softmax to get
distribution over V , which represents the vocabulary size andD is the size of each word rep-
resentation. CBOW is a simple log-linear model where logarithm of the output of the model
can be represented as the linear combination of its weights. Finally, the training complexity
of this model can be defined as shown in Equation 5.11

Q = N×D +D× log 2V. (5.11)
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Figure 5.4: CBOW model architecture

5.4.2 Continuous skip-gram model

Thismodel reverses an objective of CBOWmodel: given the current word, it tries to maximize
the classification of the nearby previous and following context words, whereas CBOW tried
to predict the current word by using the nearby context words. This model predicts the n-
grams words, whith the exception of the current word, as it is used as the input for the model,
as we can see in its architecture in Figure 5.5. As distant words are less related to the current
word, they are sampled less compared to nearby words for generating output labels.

Figure 5.5: Skip-gram model architecture
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The total complexity of the model can be calculated as the denoted by the Equation 5.12,
where C is the maximum distance of the words, and D is the size of rach word representation.
Notice, N also gets multiplied to D × log2(V) term as its not a single class classification problem
compared to CBOW, rather N class classification problem. Hence overall complexity of skip
gram model is greater than the CBOW model. Increasing the range of the window improves
the quality of the resulting word vectors, but it also increases the computational complexity.

Q = C×(D +D× log 2V ). (5.12)

5.5 FastText

FastText is one of the succesors of Word2Vec, primarily based on the skip-gram architecture.
The key improvement that FastText achieved over Word2Vec, or even Glove [36], (another
succesor of Word2Vec, that predates FastText by 2 years) is to incorporate sub-word informa-
tion.

As previously shown in section 5.4.2, the skip-grammodel has as a goal to learn a vectorial
representation for each word of a vocabulary. Given a word vocabulary of size W , where a
word is identified by its index w∈1, ...,W , the goal is to learn a vectorial representation for
each word w. Inspired by the distributional hypothesis [37], word representations are trained
to predict well words that appear in its context.

FastText is able to achieve really good performance for word representations and sentence
classification, specially in the case of rare words by making use of character level information.
Each word is represented as a bag of character n-grams in addition to the word itself. Using
an example, for the word matter, with n = 3, the representations for the character n-grams is
<ma, mat, att, tte, ter, er>. < and > are added as boundary symbols to distinguish the n-gram
of a word from a word itself, so for example, if the word mat is part of the vocabulary, it is
represented as <mat>. This helps preserve the meaning of shorter words that may show up
as n-grams of other words, and also allows us to capture meaning for suffixes/prefixes. The
length of n-grams can be chosen for minimum and maximum number of characters to use
respectively.

We can also turn n-gram embeddings completely off as well by setting them both to 0.
This can be useful when the ‘words’ in our model are not words for a particular language, and
character level n-grams would not make sense. The most common use case is when we’re
putting in ids as our words. During the model update, FastText learns weights for each of the
n-grams as well as the entire word token.

The scoring function used for this model is Equation 5.13, where G is the size of a given
dictionary of n-grams, w is a word, and Gw ⊂ {1, ..., G} is the set of n-grams in the word w,
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we associate a vector representation zg to each n-gram g. With this, we can represent a word
by the sum of the vector representations of its n-grams.

s(w, c) =
∑
g∈Gw

zg
T vc. (5.13)

Thismodel allows sharing the representations across words, thus allowing to learn reliable
representation for rare words. For optimization purposes, fastText uses a hashing function
that maps n-grams by using the hashingtrick [38] with the same hashing function as de-
scribed in Mikolov et al.. Ultimately, a word is represented by its index in the word dictionary
and the set of hashed n-grams it contains.

5.5.1 Model structure

Figure 5.6: Topography of unsupervised Skip-gram fastText model

Figure 5.6 shows us the architecture that a fastText classifier has.
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The input layer vectors, if unspecified, are initialized as amatrix of dimensionM xNwhere
M is the maximum vocabulary size added to the maximun bucket size, and N corresponds
to the dimension both parameters can be setted by the user + bucket_size and N = dim.
bucket_size corresponds to the total size of array allocated for all the n-gram tokens.

n-grams are initialized by a numerical hash (the same hashing function) of the n-gram
text, and fitting the modulo of this hash number onto the initialized matrix at a position corre-
sponding toMAX_V OCAB_SIZE + hash. There could be collisions in the n-grams space,
whereas collisions are not possible for original words. This could affect model performance
as well.

Dim represents the dimension of the hidden layer in training, and thus the dimension
of the embeddings. The matrix is initialized with a uniform real distribution between 0 and
1/dim.

5.6 RNN Encoder-Decoder

The encoder-decoder [2] is an architecture that learns both to encode a variable-length se-
quence into a fixed-length vector representation and to do the opposite, which is given a
fixed-length vector representation decode it back into a variable-length sequence.

Figure 5.7: Encoder-Decoder architecture [2]
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In Figure 5.7 we can see the Encoder-Decoder architecture representation. The encoder
is a RNN that receives an input sequence and reads it symbol by symbol, and as it does it,
its hidden state changes according to the function 5.10. Upon finishing reading the sequence,
the hidden state of the RNN is a summary of the whole input sequence, denoted by c.

On the other hand, the decoder is another RNN that is trained to generate the output
sequence by predicting each symbol using the encoder’s hidden state ht.

When the Encoder-Decoder finishes training, it has two possible uses: generating target
sequences given any input sequences or score employing a probability model a pair of input
and output sequences.

But this sequential approach forbids the usage of parallelization during training, which
severely limits the size of the sequences that can be used, taking into account the memory
constraints of the hardware. Also, long data sequences proved to be a problem for RNNs, due
to the vanishing gradient problem [40]. For example, in machine translation problems, the
RNNs have to find connections between long input and output sentences made of dozens of
words.

A solution to the long sequences of data is the attention mechanism [41]. It was intro-
duced as an extension to the encoder-decoder model, where instead of encoding a whole input
sequence into a vector, it encodes the sequence into a series of smaller vectors and chooses
them adaptively while decoding, choosing the most relevant information each time.

5.7 Transformer model

The Transformer model [42] was conceived in order to simplify the previous dominant archi-
tecture of complex neural networks that had an Encoder-Decoder model architecture, such as
the previously mentioned RNNs 5.6, as well as to facilitate the parallelization of the training
process to drastically reduce the time it consumes.

The architecture of the Transformer follows the same principle as the encoder-decoder,
as depicted in Figure 5.8. The whole architecture is used when addressing translation, but for
other tasks such as text classification only the encoder part is needed.

At its core lies the attention mechanism previously introduced. It is facilitated with the
help of keys queries and values. Keys are labels for each word, used to distinguish them.
Queries are an active request for specific information, i.e. a specific key from all the available
ones. And finally, values are the information that a word contains. Keys and values always
come in pairs, and when a query matches a key, it’s value gets propagated further into the
next layer of the network.
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Figure 5.8: Transformer model architecture [2].
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5.7.1 Scaled Dot-Product Attention

The transformer model uses what is called Scaled Dot-Product Attention. As shown in Figure
5.9, the process consists on computing the dot products using the query vector q and the
key vector k, in order to obtain the vectors k with the most similarity. After this, a softmax
function is applied to obtain the results in a [0,1] interval. Finally, we multiply the result by
the values vector v, so that the more similar vectors will have higher attention. To speed up
the process, the attention function is computed over a set of queries, keys and values packed
into matricesQ,K and V respectively. This matrix attention function can be seen in Equation
5.14, where dk represents the dimension of the keys matrix.

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V. (5.14)

Figure 5.9: Scaled Dot-Product Attention calculation [2].

5.7.2 Multi-Head Attention

In order to efficiently use the attention mechanism, the Transformer model introduces the
concept of Multi-Head Attention, where they employ parallelization to incorporate simulta-
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neously various attention heads to the same input. Each attention head is capable of obtaining
different relations between the input words where each head obtains slightly different rela-
tions, that are concatenated in the final layer, to obtain the results. In Figure 5.10 we have
depicted this Multi-Head Attention mechanism

Figure 5.10: Multi-Head Attention diagram [2].

5.8 BERT

BERT [3] is one of the most advanced deep learning models as of today in NLP. Its framework
is comprised of two tasks: pre-training and fine-tuning. During the first one, the model is
trained on unlabeled data over different pre-training tasks, and for the latter task, the model
is first initialized with the pre-trained parameters, and then all the parameters are tuned using
the labeled data belonging to the tasks we want to tackle.

5.8.1 Architecture

One of the most distinctive feature that BERT exhibits is that it presents a unified architecture
across different applications of the model. The pre-trained parameters are the same for all the
tasks we apply BERT on, each one will have a unique fine-tuned model.
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It’s main architecture is a multi-layer bidirectional Transformer encoder, and as men-
tioned in [3]. In Figure 5.12, we can see the two pre-training and fine-tuning procedures of
the BERT model.

TheBERTbase is composed of 12 Transformer blocks, with a hidden layer of 768 neurons
and 12 self-attention heads. There is another model, the BERTlarge, that features 24 Trans-
former blocks, 1024 hidden neurons and 16 self-attention heads. Both these two architectures
are the base fromwhich other more specialized BERTmodels emerged. We show such models
in section 7.3.2, where we test their performance over our tasks.

5.8.2 Input and output

BERT uses as input token sequences, in which each token represents a word from a sentence,
or even a pair of sentences. This input system allows BERT to be able to tackle an even wider
array of tasks. In Figure 5.11, we can see a diagram depicting the structure that composes the
input sequences.

Figure 5.11: BERT input sequence diagram [3].

The first token of each sequence is always going to be the special classification token
CLS, which is used as the aggregate representation for classification tasks. When multiple
sentences are packed in the same sequence, the SEP token is introduced to differentiate
them. Every token then receives a learned embedding, indicating the sentence to which it
belongs. The input representation of each token is given by summing all its embeddings
(token, segment and position).
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Figure 5.12: BERT architecture, depicting both pre-training and fine-tuning procedures [3].
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5.8.3 Pre-training

BERT, being a bidirectional model, can’t be pre-trained using left-to-right or right-to-left lan-
guage models, so it is instead pre-trained using masked language modeling and next sentence
prediction tasks.

Masked Language Modeling

For this task, a percentage of the input tokens is masked at random, replacing them with the
MASK token, and the network must then predict them. This token only appears during
pre-training, and that creates a mismatch with fine-tuning, as that part of the model doesn’t
feature theMASK token. To mitigate this, only a percentage of words get replaced with the
MASK token, while other words just get replaced with another random word.

Next Sentence Prediction

Next sentence prediction aims to understand the relationship between two sentences, which is
the main focus of many applications of the model, and it’s something that language modeling
can’t achieve properly. BERT is pre-trained with a binarized next sentence prediction task,
due to being easy to generate from any text corpus.

One of the best advantages that BERT provides is that we can use any existing pre-trained
model, and fine-tune it to our specific task. This greatly alleviates the time we have to spend
in order to prepare a model, as the pre-training is the most resource-intensive process with
BERT.

5.8.4 Fine-tuning

Fine-tuning BERT is a really straightforward task, all thanks to the attention mechanism
present in the Transformer. This allows to prepare the model for any given application of it,
be it single sentence or sentence pair based. For sentence pairs, BERT uses the self-attention
mechanism to both encode and apply bidirectional cross attention at the same time. Fine-
tuning is computationally less expensive than pre-training, thus it can be achieved a lot faster.

For any given task, we just put in the inputs and outputs into BERT and it will fine-tune
all the parameters by itself. At the input, we have our given sentences, outputted from pre-
training. The output will be different according to the application of the model. For sequence
tagging or question answering tasks, we would get an output layer made of t outputted to-
ken representations, while for sentiment analysis applications, theCLS token representation
would be our output.

34



Chapter 6

Materials and methods

BefoRe starting with the main development of the classifiers, we will first have an in depth
look at the dataset, analyzing what preprocessing techniques can be applied to it in

order to prepare it for the coming tasks. We will also have a look at how to train our classifier
models, as well as what metrics to use for their evaluation.

6.1 Dataset

Our dataset consists of a Tab-Separated Values (TSV) file, which is a simple text format for
storing data in a tabular structure: each record in the table is one line of the text file, and each
field value of a record is separated from the next by a tab character. This is a variation of the
well-known Comma-Separated Values (CSV) format. Table 6.1 shows the general structure of
the file.

test_case id source language text task1 task2

EXIST2021 000001 twitter en … sexist ideological-inequality

EXIST2021 000002 twitter en … non-sexist non-sexist

EXIST2021 000003 twitter en … sexist objectification

… … … … … … …

… … … … … … …

… … … … … … …

EXIST2021 006975 twitter es … non-sexist non-sexist

EXIST2021 006976 twitter es … sexist objectification

EXIST2021 006977 twitter es … sexist stereotyping-dominance

Table 6.1: Structure of the dataset’s content. The text column contains the unprocessed tweet.

As previously mentioned in Section 1.1, we are given a total of 6 977 tweets and gabs,
of which 3 436 are in English and 3 541 in Spanish. Since we will deal with both classifying
English and Spanish texts, we can take advantage of this and extend our dataset by translating
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the English text to Spanish and vice versa, essentially doubling our training samples. We have
used the EasyNMT library to perform both translations. The resulting doubled dataset, whose
structure is shown in Table 6.2 contains both English and Spanish versions of eath tweet.

Further preprocessing will be applied in each model, as they all have their differences.
They will be expanded upon in sections 7.1.1, 7.2.1 and 7.3.1.

test_case id source language text task1 task2 English Spanish

EXIST2021 000001 twitter en … sexist ideological-inequality … …

EXIST2021 000002 twitter en … non-sexist non-sexist … …

EXIST2021 000003 twitter en … sexist objectification … …

… … … … … … … … …

… … … … … … … … …

… … … … … … … … …

EXIST2021 006975 twitter es … non-sexist non-sexist … …

EXIST2021 006976 twitter es … sexist objectification … …

EXIST2021 006977 twitter es … sexist stereotyping-dominance … …

Table 6.2: Structure of the doubled dataset, with English and Spanish columns containing
their respective translation of the text column.

Now, with our doubled dataset, we are going to check the label distribution. In Figure 6.1
we can see that the binary labels are quite balanced. But on the other hand, if we check the
multi-class label distribution in Figure 6.2, we can see a considerable class imbalance between
the labels, as the sexist class was divided unevenly between 5 other classes, each one having
roughly 1/6 of the representation that the non-sexist class gets.

Figure 6.1: Label distribution for the binary classification.
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Figure 6.2: Label distribution for multiclass classification. NS: non-sexist. II: ideological in-
equality. SD: stereotyping dominance. MNSV: misogyny non sexual violence. SS: stereotyp-
ing dominance. SV: sexual violence.

6.1.1 Class imbalance

The imbalanced nature of the dataset, as seen in Figure 6.2, can prove to be a problem for
the classifiers. This phenomenon can make them unable to properly learn the features of the
minority classes, and thus make lots of wrong classifications. There exist a variety of methods
and approaches to tackle this problem.

There are two main techniques to balance datasets:

• Undersampling: These methods work by reducing the amount of samples from the
majority class. This reduction can be done randomly or it can be done by using some
statistical knowledge, in which case it’s called informed undersampling. Some of the
latter methods and iteration methods also apply data cleaning techniques to further
refine the majority class samples.

• Oversampling: In these methods new samples are added to the minority class (or
classes) in order to provide balance. These methods can be categorized into random
oversampling and synthetic oversampling. In random oversampling, existing minority
samples are replicated in order to increase the size of a given class. On the other hand, in
synthetic oversampling, artificial samples are generated for the minority class, ranging
from textual augmentation, synonym replacement, back translation, etc.
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In our case, we will be using oversampling techniques, as our minority classes are too
imbalanced, and our dataset is not very large. We will use the Python library Nlpaug to
augment our dataset. Data augmentation consists on adding synthetic samples to our dataset
by generating them in various ways. It can be as simple as duplicating the samples of a class,
or as complex as using pre-trained language models to generate whole new sentences to add
them as samples.

We decided to expand the dataset by duplicating the entirety of the minority classes but
applying synonym replacement to them, in order to keep them slightly different to the original
samples. We tried back-translation as well, a process in which we translate a sentence into
a language and then back to its original one, as to try to obtain a similar meaning but with
different wording. In our case, the resulting text entries from back-translation were almost
all the same, so we decided to stick only to synonym replacement. In Figure 6.3 we can see
the resulting plot of the label distribution.

Figure 6.3: Label distribution for multiclass classification, after applying data oversampling
with data augmentation and synonym replacement. NS: non-sexist. II: ideological inequality.
SD: stereotyping dominance. MNSV: misogyny non sexual violence. SS: stereotyping domi-
nance. SV: sexual violence.

Even though non-sexist tweets still compose themajority of the data, part of the imbalance
has been alleviated. This could be further improved with better over-sampling methods, such
as using text generation techniques, but we wanted to keep it quick and simple. We won’t
train any of the binary classifiers with the augmented dataset, as the test with the multiclass
classifiers was enough to prove that over-sampling can improve our results.
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6.2 Training and evaluation

In order to make our classifying algorithms properly learn the patterns of the text features and
evaluate the performance of the classifications, we will divide the execution of each model in
two steps: training and evaluation.

All our classifiers are going to be subjected to supervised learning, as we mentioned in
Section 2.1.3, so the training step is going to be composed of a series of learning cycles where
at the end of each of them, we will evaluate the state of the classifier.

The evaluation step is going to test the model over a subset of the dataset that hasn’t
been fed to the classifiers before. This test subset is more suitable for applying the evaluation
metrics and to reach conclusions about the classifier’s performance.

Evaluation metrics

For supervised learning models, there are many metrics that can measure different aspects of
the model. In our case, as we are developing classifiers, the following metrics will be used to
evaluate performance:

Figure 6.4: Confusion matrix representation.

• Confusion matrix: This matrix shows when a class has been wrongly classified as
other one, comparing the predicted values with the true ones. Themain diagonal shows
the cases in which the algorithm has correctly predicted the class, and outside of the
cases where it failed are shown. In Figure 6.4, we can see an example of a confusion
matrix, where the letters represent the following:
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– positive (P): the model predicted that the class is present.

– negative (N): the model predicted that the class is not present.

– true (T): the model predicted correctly.

– false (F): the model failed to predict correctly.

• Precision: It’s a metric that represents the amount of true positive class predictions
over the total of positive predictions. In the case of minimizing false positives, this
metric should be prioritized. It is calculated as shown in Equation 6.1.

Precision =
True positive

True positive+ False positive (6.1)

• Recall: Also known as sensitivity, it represents the amount of true positive class pre-
dictions over the total amount of true positives. It’s a relevant metric in any field that
aims to minimize the chances of missing positive predictions, and its formula is shown
in Equation 6.2

Recall =
True positive

True positive+ False negative (6.2)

• Specificity: This metric represents the amount of true negative class predictions over
the total amount of true negatives. We can see its formula in Equation 6.3.

Specificity =
True negative

True negative+ False positive (6.3)

• F1-score: This metric combines precision and recall by performing the harmonic mean
of both. It works really well for imbalanced datasets, as it requires a good balance
between both metrics to produce good results. It’s calculated as seen in Equation 6.4

F1-score = 2× precision× recall
precision+ recall (6.4)

• ReceiverOperatingCharacteristic (ROC) curve: As shown in Figure 6.5, this graph-
ical plot illustrates the classification ability of a binary classifier system. It is created
by plotting the true positive rate (TPR) and false positive rate (FPR). The TPR is the
same as the recall, and the FPR can be computed as (1− specificity). The steeper the
curve, means that the classifier is more capable of properly differentiating between the
classes.
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Figure 6.5: Example of a ROC curve.

• Area Under the Curve (AUC) score: The AUC score represents the area under the
ROC curve, and it’s used to summarize the performance of a classifier in a single me-
assure. It is equivalent to the probability that a randomly chosen positive instance is
ranked higher than a randomly chosen negative instance, and ranges from 0.5 up to 1,
being 0.5 a completely random classifier and 1 a perfect classifier.
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Chapter 7

Development and experimental
results

7.1 First increment: Multinomial Naive Bayes Model

7.1.1 First iteration

We decided to start off implementing a baseline model, using the MNB algorithm, as previ-
ously explained in Section 2.1.3. As we are tasked with classifying text either in Spanish and
English, we decided to create one classifier for each language. In principle, this means that
each classifier would be trained with only half the dataset. That’s why we decided to first
extend the dataset by translating all tweets to both languages, as described in Section 6.1.

Regarding the two main classification tasks, we will also create two independent classi-
fiers, one for the binary classification task and the other for the multiclass classification task.
This makes up for a total of four classifiers, each one specialized in their respective task and
language. The architecture of the resulting classifiers can be seen in Figure 7.1, and it’s the
same for all of them.

After the initial preprocessing mentioned in section 6.1, we proceed to further preprocess
the data in order to properly adapt it. The MNB classifier, being a bag of words model, doesn’t
require any punctuation marks or grammar whatsoever; so, we will perform the following
actions:

• Lowercase the input text.

• Replace ”’t” by ”not”.

• Remove Twitter mentions.

• Isolate and remove punctuation marks, except ”?”.
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Figure 7.1: Architecture of our Multinomial Naive Bayes classifier.

• Remove other special characters.

• Remove stopwords except ”not” and ”can” (in the case of English texts).

After having preprocessed the tweet content, the dataset is splitted into training and test sets,
with the following proportions: 90% training and 10% test.

Next, the input text is vectorized with TF-IDF, using both unigrams, bigrams and trigams
(n-grams of size 1, 2 and 3, respectively). This allows to capture the meaning of multi-word
expressions (such as compound verbs), that otherwise would be meaningless.

After this, the MNB classifier is initialized with an alpha of 1. This alpha is the hyperpa-
rameter of themodel (asmentioned in Section 5.1.2) to be fine-tuned in the following iteration.

To evaluate and compare the classifiers, Precision, Recall and F1-score metrics are used,
as shown in Table 7.1, with AUC score being used with the binary classifiers as well, as seen
in Figure 7.2.

Binary Binary Multi Multi

Model Metric English Spanish English Spanish

MNB Precision 71.85 69.52 41.07 52.87

Recall 71.85 69.52 41.07 40.94

F1-score 71.85 69.52 41.07 40.94

Table 7.1: Precision, Recal and F1-score values for the Multinomial Naive Bayes classifier.

The binary English classifier reached an AUC score of 0.7767 and the Spanish one reached
0.7802. These scores indicate that their performance is good, but there is still room for im-
provement. Regarding the Precision, Recall and F1-score, the binary models performed well
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Figure 7.2: AUC plot of the MNB binary classifiers. Red: Spanish. Blue: English.

enough considering this is just a baseline model, but the multiclass ones are quite lacking.
In Table 7.2 we can see that they reach very low F1-scores with all sexist classes due to the
severe class imbalance present in the dataset, as previously shown in Section 6.1.

Label English Spanish Support

NS 67.73 68.06 346

II 09.26 05.83 99

O 06.90 06.78 55

SV 14.81 11.54 48

SD 25.00 26.67 90

MNSV 14.71 20.29 60

Table 7.2: F1-score of each label of theMNBmulticlass classifiers, alongside the number of test
samples for each label. NS: non-sexist. II: ideological inequality. SD: stereotyping dominance.
MNSV: misogyny non sexual violence. SS: stereotyping dominance. SV: sexual violence.

7.1.2 Second iteration

In this iteration we will focus on improving the previous classifiers by fine-tuning them, as
well as tackling the dataset imbalance present for the multiclass task.
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Regarding hyperparameter tuning, there are several techniques to perform it. However,
since we just have a single hyperparameter (alpha), we can train and evaluate the models with
a different alpha value each time and keep the one that performed the best. In this case we
will look for the alpha that yields the best AUC score for the binary classifiers and the best F1-
score for the multiclass ones. We can automate this process easily by using cross-validation
to shuffle the data and then evaluate each model with a different alpha value.

To tackle the class imbalance problem, as previously explained in Section 6.1.1, wewill use
the synonym-augmented dataset to train the multiclass classifiers, looking for improvement.

For the binary classifiers, we sampled alphas between 1 and 10 with a step of 0.1, and
in Figure 7.3 we can see the the evolution of the AUC over each alpha value. For the multi-
class classifiers, we sampled alphas between 0 and 1 with a step of 0.001, and their F1-score
evolution can be seen in Figure 7.4.

(a) Evolution of theAUC score over alpha
in the binary English classifier.

(b) Evolution of the AUC score over al-
pha in the binary Spanish classifier.

Figure 7.3: Evolution of the AUC score over alpha in the MNB binary classifiers

(a) Evolution of the F1-score score over
alpha in the multiclass English classifier.

(b) Evolution of the F1-score score over
alpha in the multiclass Spanish classifier.

Figure 7.4: Evolution of the F1-score score over alpha in the MNB multiclass classifiers

After optimizing alpha, we can see in Figure 7.5 that the AUC score of the binary classifiers
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improved by 0.1. Regarding Precision, Recall and F1-score, we can see in table 7.3 that the
binary classifiers performed almost the same, but the multiclass classifiers reached a Precision
of 70%, improving by 30% and 20% in the English and Spanish classifications, respectively.
The Recall and F1-score of the Spanish classifier improved a 10%, but for the English one they
remained the same. Both multiclass classifiers were able to reach more balanced F1-scores
for each class, as shown in Table 7.4. This shows that increasing the dataset can improve the
classifiers’ ability to distinguish the different classes.

Figure 7.5: AUC plot of both English and Spanish MNB classifiers. Red: Spanish. Blue: En-
glish.

Binary Binary Multi Multi

Model Metric English Spanish English Spanish

MNB Precision 73.36 71.94 70.84 77.26

Recall 69.63 69.48 45.37 56.66

F1-score 68.45 68.68 37.77 52.42

Table 7.3: Scoring metrics of each Multinomial Naive Bayes classifier after training the mul-
ticlass with the augmented dataset and applying hyperparameter tuning.

Since fine tuning alpha didn’t bring much of an improvement to our model, we will now
focus on implementing more powerful models.
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Label English Spanish Support

NS 55.78 60.87 346

II 41.35 76.66 175

O 20.34 24.59 104

SV 17.65 19.42 93

SD 41.05 63.16 179

MNSV 10.74 29.94 139

Table 7.4: F1-score of each label of the MNB multiclass classifiers, alongside the number of
test samples for each label, after training with the augmented dataset. NS: non-sexist. II:
ideological inequality. SD: stereotyping dominance. MNSV: misogyny non sexual violence.
SS: stereotyping dominance. SV: sexual violence.

47



CHAPTER 7. DEVELOPMENT AND EXPERIMENTAL RESULTS7.2. Second Increment: FastText Model

7.2 Second Increment: FastText Model

The MNB classifier was a good baseline model that performed relatively fast and provided
good enough results. Now we will take it a step further and implement a classifier using
FastText, so we can study whether neural networks can provide us with better results.

7.2.1 First iteration

For the first iteration, we decided to approach both binary and multiclass tasks, as well as
both languages separately. This decision was made due to the ease of implementation that
FastText provides. The architecture of the resulting classifiers can be seen in Figure 7.6. It is
very reminiscent of that of the MNB, as they both are bag-of-words models.

Figure 7.6: Architecture of our FastText classifier.

We started by taking the dataset, and applying to it the same preprocessing as with the
MNB classifier but, this time, we replaced existing links with ”link” and hashtags with ”tag”.
This is done because not removing this information could be beneficial to the classifier, as it
provides the classifier with a little more context.

Next, we splitted the dataset into both training (90%) training and test (10%) sets, same as
before. We chose to use the default hyperparameters that the training function provides, as
we are yet to establish a baseline. The results shown in Table 7.5 depict all four classifiers and
their performance.

We’ve got the same problem as before regarding the performance of the multiclass classi-
fiers. Table 7.6 presents the F1-score values corresponding to each label, as well as the number
of training samples. At this point, without applying further improvements, the binary clas-
sifiers performed the same as the MNB ones, while multiclass performed a 15% better. The
baseline FastText model already performed better than the previous model, and it has the ad-
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Binary Binary Multi Multi

Model Metric English Spanish English Spanish

FastText Precision 70.49 72.22 57.02 58.06

Recall 70.49 72.21 57.88 58.60

F1-score 70.48 72.20 56.87 58.08

Table 7.5: Scoring metrics of the first implementation of FastText classifiers.

vantage of being really simple and quick to set up, train and evaluate. We conclude that this
is an overall better model.

Label English Spanish Support

NS 69.31 71.71 346

II 50.00 62.07 99

O 47.83 24.44 55

SV 46.67 39.02 48

SD 46.75 43.48 90

MNSV 29.85 40.88 60

Table 7.6: F1-score of each label of the FastText multiclass classifiers, alongside the number
of test samples for each label. NS: non-sexist. II: ideological inequality. SD: stereotyping
dominance. MNSV: misogyny non sexual violence. SS: stereotyping dominance. SV: sexual
violence.

7.2.2 Second iteration

Now, to improve our previous results, we are going to take a look at tuning the hyperparam-
eters of the FastText classifiers. The library itself already provides us with an easy way of
implementing this optimization, with the only downside that it takes considerably longer to
train, as it is expected. For each classifier, FastText performs over 54 trials, testing different
combinatios of hyperparameters in order to find those ones yielding the best F1-score.

The results obtained are shown in Table 7.7, containing improvements between 3 - 5%,
which is a good starting point. Next we trained the multiclass classifiers with the augmented
dataset, as we previously did with the MNB classifiers, looking for improvements. Table 7.8
and 7.9 show us the results obtained with the newly trained classifiers.

This time multiclass classifiers improved drastically, reaching a 25% improvement in total.
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Binary Binary Multi Multi

Model Metric English Spanish English Spanish

FastText Precision 75.80 75.80 61.24 61.29

Recall 75.64 75.79 62.46 62.61

F1-score 75.62 75.79 59.83 61.25

Table 7.7: Scoring metrics of each FastText classifier after applying hyperparameter tuning.

Binary Binary Multi Multi

Model Metric English Spanish English Spanish

FastText Precision 75.80 75.80 80.16 88.40

Recall 75.64 75.79 81.47 88.32

F1-score 75.62 75.79 81.56 88.33

Table 7.8: Scoring metrics of each Multinomial Naive Bayes classifier after training the mul-
ticlass with the augmented dataset and applying hyperparameter tuning.

Label English Spanish Support

NS 84.91 85.31 346

II 89.08 92.09 175

O 82.35 93.07 104

SV 83.23 88.42 93

SD 91.18 90.65 179

MNSV 84.25 84.56 139

Table 7.9: F1-score of each label of the FastText multiclass classifiers, alongside the number
of test samples for each label, after training with the augmented dataset. NS: non-sexist. II:
ideological inequality. SD: stereotyping dominance. MNSV: misogyny non sexual violence.
SS: stereotyping dominance. SV: sexual violence.

Aswe see in the Table 7.9, even though the non-sexism class has double the amount of samples
compared with the rest, the F1-score of the other labels surpasses it. But these results have
to be taken with a grain of salt, as the synonym replacement method leaves the samples too
similar between them. Having another test dataset, we could compare more precisely these
results, checking if they still hold up with newer samples.
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7.3 Third increment: BERT Model

At this point we feel comfortable with the obtained results thus far, but we will now focus
on the implementing the last model of classifiers using BERT to see if they can improve even
further.

7.3.1 First iteration: Baseline BERT

For the first iteration, we established a baseline BERT classifier, but this time it’s not as simple
to set up as the previous two models. In this case, we have to get acquainted with the Pytorch
library, as we need a machine learning framework to properly set up a classifier such as BERT.

We started only with the binary English classification, in order to check if the foundation
we create now is strong enough to be used for other BERT pre-trained models as well as for
tackling the multiclass classification task.

First off, we applied some further preprocessing to the dataset, in order to prepare it to
feed it to the network. In a separate file that is executed before the main program, we read the
dataset into a pandas’ dataframe. We take the labels of the ”LabelTask1” column, as previously
seen in Section 6.1 and convert them to 0 and 1, as the classifier needs integer-based labels.
This way, we can reconvert them later to a string in order to show the results.

For the English part of the task, we reindex the dataframe to only contain the id of the
tweet, the text in English (this means the whole dataset, as we mentioned before in Section
6.1, we have translated all tweets to both English and Spanish to duplicate our samples) and
finally the label of the tweet, being a 1 if it sexist and a 0 if it’s non-sexist. We can see the
shape of the new dataframe in the following Table 7.10.

id tweet LabelTask1

000001 … sexist

000002 … non-sexist

… … …

006976 … sexist

006977 … sexist

Table 7.10: Structure of the dataframe used to train and test the BERT classifiers.

Now, we separate the dataframe into an 90% - 10% split between training and test sets,
and we also split the remaining training into a 80% training and a 20% validation.

In the main program, we prepare the data by using the ”base-bert-uncased” tokenizer.
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This tokenizer will be tasked to encode the input text and labels to pass them into the BERT
model. We set up the BERT classifier using the pre-trained ”bert-base-uncased” model by
initializing a Pytorch module, and defining custom batch training and evaluation functions
that make use of the GPU in order to accelerate the process. We input them into the training
function we defined, along with an Adam optimizer [43] of a fixed learning rate of 2× 10−5,
and a set batch size of 16.

Finally, we evaluate the model based on the aforementioned metrics, obtaining the fol-
lowing results, as shown in Table 7.11:

Binary Binary Multi Multi

Model Metric English Spanish English Spanish

BERT base Precision 61.40 - - -

Recall 61.23 - - -

F1-score 61.21 - - -

Table 7.11: Scoring metrics of the first BERT binary English classifier.

As we can see, this basic BERT model underperformed compared to the previous FastText
and MNB classifiers, where they had no problem reaching near 70% F1-score with the English
binary classification. This probably has to do with the way we preprocessed and divided the
data, as this time we divided the dataset in training, validation and test, as well as the lack
of hyperparameter fine-tuning. We decided that the next iteration needed to improve the
implementation overall, so we didn’t implement the remaining tasks this iteration.

7.3.2 Second iteration:

The second iteration focuses on improving the more lacking aspects of the previous iteration,
by rebuilding the previous BERT classifier. The architecture that we implemented can be seen
in Figure 7.7

Figure 7.7: Architecture of our BERT classifiers.
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Some of the more notable issues with the previous iteration were the lack of a better
text preprocessing, so we are going to remove Twitter mentions and links. We don’t need to
remove punctuation marks or stopwords, as we had to do with the previous classifers. This is
thanks to BERT being a model able to recognize grammar and the word order and structure
of the sentences, as opposed to the NMB’s bag of words model, where they are disregarded.

The pretrained BERT model that we use for the tokenization and classification is the same
as before, the ”bert-base-uncased”. We changed the optimizer from Adam to AdamW [44],
and also took a look at the hyperparameters that the huggingface team used during the pre-
training of the model, and changed them as follows:

• Epochs: 5 -> 2

• Batch size: 16 -> 32

• Learning Rate: 2e-5 -> 5e-5

These small changes brought us far better results than the previous iteration, as seen in
the Table 7.13, but there is still room for improvement. For now, we will shift our focus to the
Spanish binary classification task.

Binary Binary Multi Multi

Model Metric English Spanish English Spanish

BERT base Precision 79.35 - - -

Recall 78.47 - - -

F1-score 79.03 - - -

Table 7.12: Scoring metrics of the second BERT binary English classifier.

Even though the ”bert-base-uncased” pre-trainedmodel we are usingwas pre-trainedwith
an English corpus, we want to see how it performs by classifying the Spanish tweets. We took
the English classifier as a base, and changed the preprocessing of the data so it extracts Spanish
tweets from the dataset, reshaping it the same way as previously shown in Table 7.10. The
rest of the architecture stayed the same, and the classifier performed as shown in 7.13. The
results aren’t as good as with the English tweets, but nevertheless it performed decently.

To improve the Spanish classification results, we took a look at other possible BERT mod-
els that could perform better in said language. One of the more prominent ones was Span-
BERTa, a model based on RoBERTa.

RoBERTa [45] is another pre-trained transformers model that has been pre-trained in an
even larger English corpus than the base BERT, making use of the BERTlarge architecture
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Binary Binary Multi Multi

Model Metric English Spanish English Spanish

BERT base Precision 79.35 71.87 - -

Recall 78.87 71.78 - -

F1-score 79.03 71.73 - -

Table 7.13: Scoring metrics of both Spanish and English second BERT binary classifiers.

5.8.1. But unlike the base model, RoBERTa dropped next sentence prediction from its pre-
training phase, and relies only on being trained by using Masked Language Modeling. This
makes it really effective at text classification or question answering, and that’s a feature per-
fectly suited for our tasks.

SpanBERTa is a RoBERTa based model, that has been pre-trained fully in Spanish. It was
created to improve the performance when approaching NLP tasks in Spanish, due to most
BERT models being pre-trained with English texts. It performed better than the regular BERT
did regarding the Spanish tweets, as we can see in Table 7.14.

Binary Binary Multi Multi

Model Metric English Spanish English Spanish

SpanBERTa Precision - 77.90 - -

Recall - 77.79 - -

F1-score - 77.76 - -

Table 7.14: Scoring metrics of the SpanBERTa binary classifier.

After testing the classifier with both languages independently, we also tested it over both
languages at the same time. This means that we trained the ”bert-base-uncased” classifier
using the whole dataset translated to English and Spanish, amounting to a total of 13954
tweets. Table 7.15 shows that even though it performed a bit worse regarding the purely
English-trained classifier, it improved the results for the Spanish task, even taking into account
that the pre-trained model was done so exclusively with an extensive English corpus. This
indicates that the amount of data present in the dataset has great impact on the performance
of the classifier. Overall, it’s a good compromise between the two languages, nevertheless the
optimal classification for nowwould be using the base BERT for English only, and SpanBERTa
for Spanish only.
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Binary Binary Multi Multi

Model Metric English Spanish English Spanish

BERT base (both) Precision 76.46 76.46 - -

Recall 76.29 76.29 - -

F1-score 76.32 76.32 - -

Table 7.15: Scoring metrics of the base BERT binary classifier, trained and evaluated with both
English and Spanish tweets at the same time.

7.3.3 Third iteration: Multiclass classification and new BERT models

Once that we felt comfortable with the state of the binary classifiers, we started preparing the
multiclass ones, in order to tackle the second task of the project.

We started by using the base BERT English binary classifier as a base, and changed the
composition of the Feed Forward classifier layer in order to adapt the architecture for the
multiclass classification. We changed the output from 2 to 6 classes, 1 for non-sexist tweets
and the other 5 for their corresponding type of sexism. We also had to change the way we
preprocess the labels from the dataset, as they are no longer binary, we decided to use a
dictionary that translates the label text into an integer ranging from 0 to 5, so then we are
able to translate them back to a string. After these adaptations, we trained and evaluated the
multiclass classifiers, obtaining the metrics shown in Table 7.16

Binary Binary Multi Multi

Model Metric English Spanish English Spanish

BERT base Precision 79.35 71.87 67.36 58.08

Recall 78.87 71.78 67.48 59.46

F1-score 79.03 71.73 67.26 58.44

SpanBERTa Precision - 77.90 - 59.91

Recall - 77.79 - 61.75

F1-score - 77.76 - 59.83

Table 7.16: Scoring metrics of BERT base trained and evaluated separately in Spanish and
English, as well as SpanBERTa’s metrics upon the Spanish tasks.

BERT base performed surprisingly well against the English multiclass classification, but
it didn’t perform as well in the Spanish task. SpanBERTa proved to fail in the same regard,
as its results are pretty similar with the BERT base. Finally, we tried the BERT base trained
and evaluated with both languages at the same time, and as seen in Table 7.17 it performed
as good as the English only model overall. This reinforces the previous conclusion, that the
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size of the training dataset still holds the most weight over the models’ performance.

Binary Binary Multi Multi

Model Metric English Spanish English Spanish

BERT base (both) Precision 76.46 76.46 67.48 67.48

Recall 76.29 76.29 67.41 67.41

F1-score 76.32 76.32 67.58 67.58

Table 7.17: Scoring metrics of the BERT base trained and evaluated with both English and
Spanish tweets at the same time.

7.3.4 Fourth iteration: Tweet-oriented BERT models

After finishing the basic multiclass models, we are going to implement some more BERT
models that are perfectly suited for our tweet-based sentiment analysis tasks, both in English
and Spanish, as well as testing the multiclass classifiers against the augmented dataset.

BERTweet [46] is another model based on BERTbase. Its main feature is that it was pre-
trained using a huge corpus of English tweets, so it should fit perfectly our classification tasks.
This model is far more suited for the current shape of our text data, and it makes use of special
tokens @USER andHTTPURL to interpret mentions and links, respectively. It also needs
to separate certain word contractions, such as ”can’t” into ”can n’t” or ”you’ll” into ”you ’ll”,
so we changed the text preprocessing accordingly.

On the other hand we have RoBERTuito [47], a model that could be considered an equiv-
alent to BERTweet, but trained with Spanish tweets. It’s relevant to note that this model is
based on the RoBERTA architecture, so it’s more focused on text classification or sentiment
analysis. Even thought it’s been trained on a Spanish corpus, it can perform really well with
English tasks [47]. For this model it doesn’t matter if we preprocess the text to accommodate
for grammatical or spelling errors, as there is no significant improvement over just changing
mentions for ”@usuario” and hashtags for ”hashtag” [47].

After implementing the classifiers and testing them on both binary and multiclass tasks,
we got the following results, as shown in Table 7.19. BERTweet performed extremely well
with the binary task, and RoBERTuito managed to achieve the same results as SpanBERTa.
Regarding the multiclass classification, all BERT classifiers up to this point achieved very
similar results, so we will train them with the augmented dataset to check for improvements.
In Table 7.19 we can observe that the F1-score did improve around 5% and 7% for all the
different models, which is an overall good result.
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Binary Binary Multi Multi

Model Metric English Spanish English Spanish

BERTweet Precision 82.58 - 68.53 -

Recall 82.52 - 69.20 -

F1-score 82.51 - 68.73 -

RoBERTuito Precision - 76.65 - 65.04

Recall - 76.65 - 65.76

F1-score - 76.65 - 65.03

Table 7.18: Scoring metrics of both BERTweet and RoBERTuito in both calssification tasks.

Binary Binary Multi Multi

Model Metric English Spanish English Spanish

BERT base Precision 79.35 71.87 72.45 64.32

Recall 78.87 71.78 72.86 64.29

F1-score 79.03 71.73 72.64 63.97

BERT base (both) Precision 76.46 76.46 72.34 72.34

Recall 76.29 76.29 73.98 73.98

F1-score 76.32 76.32 73.45 73.45

SpanBERTa Precision - 77.90 - 64.46

Recall - 77.79 - 64.86

F1-score - 77.76 - 64.34

BERTweet Precision 82.58 - 70.09 -

Recall 82.52 - 70.01 -

F1-score 82.51 - 70.04 -

RoBERTuito Precision - 75.34 - 72.15

Recall - 75.67 - 71.92

F1-score - 75.49 - 72.04

Table 7.19: Scoring metrics all multiclass BERT classifiers using the augmented dataset.

7.3.5 Fifth iteration: Hyper-parameter tunning

After having implemented all these classifiers, we still have one important improvement left
to make: hyperparameter tuning. It may have a small impact over the performance metrics
of the classifiers, but at this point that’s the only approach left to try. As the BERT model
architecture is more complex than the previous classifiers, we have a lot of hyperparameters
to fine tune:
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• Optimizer:

– Learning rate

– Betas

– Epsilon

• Batch size

• Epochs

Training and evaluating every BERT classifier with different combinations of each of these
parameters is a heavily time-consuming task that would be near impossible to do by hand.
Thus, we decided to automate the process, and for that we tried two approaches: We first
decided to implement a script that executes the training of each classifier, changing each time
the hyperparameters from a list and checking if the metrics improve, but then we found a
faster, more optimized way of doing this.

The Ray-tune Python library allows us to execute in various GPUs each training of the
model, each time with different hyperparameters chosen randomly from a defined list. For
each model, we chose a range of hyperparameters around their respective pre-training hy-
perparameters, which are shown in their huggingface documentation page [48].

After training and evaluating every BERTmodel that we’ve implemented, the final results
are shown in the following Table 7.20. Each classifier was trained 10 times with a different
selection of hyperparameters, to find the ones that yielded the best score metrics. Also, the
multiclass classifiers have been trained with the augmented dataset.

Almost every classifier benefited a bit from the tuning, as their performances increased
around 1-2%. Theoretically, we should train them many more times as to cover for all the
possible combinations of parameters that we inputted for each model, but that would take an
enormous amount of time and resources that we don’t have available. If we were to get access
to Google’s TPUs or other high-end computational devices, we could test every combination
possible and reach the best results possible. Nevertheless, as a proof of concept this method
of hyperparameter tuning proved to be realiable and efficient, as well as showing potential
for further improvement of the classifiers.
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Binary Binary Multi Multi

Model Metric English Spanish English Spanish

BERT base Precision 79.96 74.03 72.64 65.46

Recall 79.94 73.78 72.78 65.78

F1-score 79.94 73.70 72.59 65.77

BERT base (both) Precision 77.46 77.46 74.02 74.02

Recall 77.29 77.29 74.78 74.78

F1-score 77.32 77.32 74.32 74.32

SpanBERTa Precision - 77.90 - 64.46

Recall - 77.79 - 64.86

F1-score - 77.76 - 64.34

BERTweet Precision 83.48 - 72.23 -

Recall 84.12 - 72.12 -

F1-score 83.72 - 72.17 -

RoBERTuito Precision - 76.65 - 74.03

Recall - 76.65 - 73.94

F1-score - 76.65 - 73.87

Table 7.20: Scoring metrics all BERT models after tuning their respective hyperparametrs.
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Chapter 8

Conclusions

Implementing three different SA models is a complex task in and of itself, since each one
requires to be design, studied and approached separately. Despite this, we have managed

to create quite efficient classifiers with the material we have used, suitable for performing the
tasks presented by the EXIST workshop.

Some of the topics studied in this project were already partially covered in the degree,
thanks to the studied computing mention, so they served as a base to start from. All the
research that went into making this project is valuable knowledge that we gained over the
whole field of NLP and specifically, SA. We studied and implemented a plethora of techniques
and methods from text preprocessing, feature extraction, text classification and supervised
learning, etc. This knowledge will serve us in the future, as we further develop our career in
field of computational linguistics.

8.1 Results overview

Wewill make an overview of all the previously obtainedmetrics from each classifier, as shown
in Table 8.1, in order to evaluate and compare their performance.

The MNB classifier is not a bad choice for a more lightweight model that performs de-
cently, but it is really outclassed by the other two models. It served its purpose as an intro-
duction to the bag-of-words model, and thanks to the Scikit-learn Python library it was fairly
quick to set up.

On the other hand, FastText is really easy to set up and to fine tune, as the python library
already provides functions for each task. The only workload comes from preprocessing and
formatting the data properly. Performance-wise, it does a pretty good job, even rivaling BERT
in the multiclass classification. Overall it’s a really versatile model that can be quickly proto-
typed and executed to produce good results, compared to the state-of-the-art BERT models.

Finally we have the various BERT pre-trained models that we tested, including BERTweet

60



CHAPTER 8. CONCLUSIONS 8.1. Results overview

Binary Binary Multi Multi

Model Metric English Spanish English Spanish

MNB Precision 73.36 71.94 70.84 77.26

Recall 69.63 69.48 45.37 56.66

F1-score 68.45 68.68 37.77 52.42

FastText Precision 75.80 75.80 80.16 88.40

Recall 75.64 75.79 81.47 88.32

F1-score 75.62 75.79 81.56 88.33

BERT base Precision 79.96 74.03 72.64 65.46

Recall 79.94 73.78 72.78 65.78

F1-score 79.94 73.70 72.59 65.77

BERT base (both) Precision 77.46 77.46 74.02 74.02

Recall 77.29 77.29 74.78 74.78

F1-score 77.32 77.32 74.32 74.32

SpanBERTa Precision - 77.90 - 64.46

Recall - 77.79 - 64.86

F1-score - 77.76 - 64.34

BERTweet Precision 83.48 - 72.23 -

Recall 84.12 - 72.12 -

F1-score 83.72 - 72.17 -

RoBERTuito Precision - 76.65 - 74.03

Recall - 76.65 - 73.94

F1-score - 76.65 - 73.87

Table 8.1: Final scoring metrics of all classifiers.
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and RoBERTuito that were pre-trained with twitter data. BERT base multilingual (as well
as the extended dataset version) was trained and evaluated with both English and Spanish
tweets at the same time, while the other models have been trained and evaluated for each
language separately, hence the different F1-score between languages. This multilingual model
performed really well, improving upon the Spanish classification and being only 2% shy of
the only English classifier.

The hyperparameter optimization techniques we implemented could be improved by us-
ing higher end computers or other computational devices, as mentioned in Section 7.3.5 to
really evaluate each possible configuration of hyperparameters.

The best classifiers for participating in the EXIST workshop would be BERTweet for the
English binary classification, SpanBERTa or even the base multilingual BERT for the Spanish
binary classification, and finally for themulticlass classificationwewould use themultilingual
base BERT. We wouldn’t use FastText for the second task, even though it achieved a higher
F1-score, as we mentioned in Section 7.2.2 this could be the result of overfitting the model. In
that case, we would be safer using the multilingual BERT model instead, as it could prove to
achieve better results testing it against a different dataset.

8.2 Future work

After adecquately preprocessing the data and fine-tunning the models, as shown in Sections
7.3.2 and 7.3.3, the best improvement that can be done is increasing the entries in the dataset.
Hyperparameter tunning and model optimizations can surely improve the results of the mod-
els, but they reach a point where it’s only a mater of decimals.

Expanding the dataset by acquiring more sexist and non-sexist tweets and properly label-
ing them is a time consuming process, and it has to be done by a human, so that’s out of the
question. But surely, employing advanced over-sampling techniques such as text generation
could prove to be the best way to improve these classifiers.

Apart from augmenting the dataset, other BERTmodels could be used to tackle the EXIST
tasks, as there aremore powerful multilingual models that can benefit from being trainedwith
the whole dataset. This problem could also be expanded to other languages as well, as there
are specific BERT models for the majority of them.
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List of Acronyms

AI Artificial Intelligence. 2

AUC Area Under the Curve. v, 43–46

CBOW Continuous Bag-Of-Words. iv, 21, 23–25

CSV Comma-Separated Values. 35

EXIST sEXism Identification in Social neTworks. 2, 3, 62

IberLEF Iberian Languages Evaluation Forum. 2

MNB Multinomial Naive Bayes. v, vi, 6, 11, 12, 17, 18, 42–44, 46–49, 52, 60

NLP Natural Language Proccessing. 2, 4, 7, 11, 16, 21, 31, 60

NNLM Neural Network Language Model. 22, 23

RNN Recurrent Neural Network. ii, 21, 22, 27, 28

RNNLM Recurrent Neural Network Language Model. 22, 23

SA Sentiment Analysis. 2–4, 6, 60

TFIDF Term Frequency - Inverse Document Frequency. 6, 18

TM Text Mining. 2

TSV Tab-Separated Values. 35
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