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Abstract

Age-Related Macular Degeneration (AMD) is the main cause of severe visual impairment and
blindness in Europe, and its prevalence is expected to increase worldwide due to population
aging. Optical Coherence Tomography (OCT) is a noninvasive retinal imaging technique that
has become the standard of care in the diagnosis andmonitoring of late AMD, where the great
majority of severe symptoms are manifested. Neovascular late AMD, where new pathologi-
cal blood vessels are formed that may leak fluid, often results in relatively rapid vision loss.
Treatment exists for neovascular AMD, such that its detection and characterization plays a
key role in patient outcomes.

This project applies deep learning techniques to the task of AMD characterization. To
do so, a data set of OCT scans labeled as to the presence of fluid and neovascularisation is
used to train deep convolutional networks. Analysis of this initial experiment produced two
hypotheses of performance limiting factors: intra-expert variability and data scarcity. The
former was addressed through the development of a machine-assisted review process based
on the Class Activation Mapping (CAM) interpretability technique. A small blinded trial was
favorable to the methodology. The latter resulted in the adaptation of a large public data set
to explore domain-specific transfer learning.

Resumo

A Dexeneración Macular Asociada á Idade (DMAI) é a principal causa de discapacidade
visual severa e cegueira en Europa, e espérase que a súa prevalencia aumente a nivel mun-
dial debido ó envellecemento poboacional. A Tomografía de Coherencia Óptica (TCO) é un
método non invasivo de imaxe retiniana que se converteu no estándar no diagnóstico e moni-
torización da DMAI tardía, onde se manifestan a maioría de síntomas graves. A DMAI tardía
neovascular, onde se forman novos vasos sanguíneos patolóxicos que poden derramar fluído,
a miúdo resulta en perda de visión de forma relativamente repentina. Existen tratamentos pa-
ra a DMAI neovascular, de modo que a súa detección e caracterización xoga un papel crucial
no prognóstico dos pacientes.

Este proxecto aplica técnicas de aprendizaxe profunda á tarefa de caracterización deDMAI.
Con ese fin, un conxunto de datos de TCO anotado en base á presenza de fluído e neovas-
cularización foi empregado para entrenar redes convolucionais profundas. A análise deste
experimento inicial produciu dúas hipóteses sobre factores que limitan o rendemento: a va-
riabilidade intra-experto e a escaseza de datos. O primeiro foi afrontado mediante o desenvol-
vemento dun proceso de revisión de anotacións asistido por computadora, baseado na técnica



de interpretabilidade Class Activation Mapping (CAM). Un pequeno estudo cego foi favora-
ble á metodoloxía. A segunda hipótese resultou na adaptación dun gran conxunto de datos
público para a exploración de transferencia de aprendizaxe específica ó dominio.
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Chapter 1

Introduction

This first chapter introduces the subject of research by presenting its background, moti-
vation and significance. Subsequently, the scope and objectives of the project are de-

scribed, along with the structure and division into chapters of this document.

1.1 Motivation

Age-Related Macular Degeneration (AMD) is the main cause of severe visual impairment
and blindness in Europe [1], and its prevalence is expected to increase worldwide due to
population aging [2]. AMD is a chronic disease of the central retina, with progression into
its late stage being responsible for most vision loss symptomatology. Late AMD can be due
to pathological new blood vessel formation, called neovascular AMD (also known as “wet” or
exudative, as blood vessels may leak); or due to geographic atrophy (”late dry” AMD). While
in geographic atrophy vision deteriorates progressively over many years, neovascular AMD
often results in visual impairment over much shorter time frames [3]. In the last two decades,
effective treatments for neovascular AMD have been introduced, based on the inhibition of
the angiogenic (i.e. blood vessel growth inducing) protein VEGF [4].

AMD is diagnosed on the basis of retinal imaging, traditionally, color photographs of the
eye fundus. Angiography is an invasive technique that allows for more precise detection of
neovascularization. Through the intravenous injection of a fluorescent dye, an image of the
blood vessels of the choroid, situated behind the retina, and possible leakage is obtained.

More recently, Optical Coherence Tomography (OCT) has emerged as an essential ad-
junct for diagnosis and monitoring, especially in light of anti-VEGF therapy [5]. It is a non-
invasive technique that provides high resolution cross-sectional imaging of the retinal layers
and underlying choroid. However, OCT image interpretation is a labor-intensive task that
places great demands on ophthalmologists. As opposed to angiography or fundus examina-
tion, OCT generates a large amount of volumetric data. Furthermore, accurate monitoring of
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CHAPTER 1. INTRODUCTION

the progression of the condition of a patient requires consistency across time and between
different experts.

To that end, the techniques of deep learning have recently been used to develop clas-
sification systems that support the diagnostic process [6]. Unlike human experts, machine
learning systems do not suffer from fatigue when examining large amounts of data, and their
predictions can be completely deterministic. Nevertheless, these systems often provide little
justification for their decisions. The specific situation of a patient must be considered holisti-
cally, as clinical examination, current medication and complementary diagnostic techniques
can alter the interpretation of otherwise ambiguous OCT images. Through the use of in-
terpretability techniques, a deep learning model can help the ophthalmologist integrate the
predictions of the machine into the wider context of the patient.

1.2 Problem statement

Given the desirability of accurate, consistent and interpretable models for OCT image classi-
fication, the problem consists of their construction and evaluation. Within the paradigm of
supervised deep learning, a suitable neural network architecture is trained on a representative
data set of OCT scans annotated by human experts.

Convolutional Neural Networks (CNNs) are highly general models for computer vision
that have seenwide use inmedical imaging, including ophthalmology. Their popularity across
domains has encouraged the development of techniques to better understand their behavior.
Concretely, Class Activation Maps (CAMs) provide human-understandable visualizations of
which parts of an image contributed to each possible class. These characteristics make CNNs
a good fit for our domain.

In general, the second part of the problem consists of the use of interpretability tech-
niques to analyze the resulting model and the method that generated it. Together with the
usual validation methods of machine learning, these techniques can help determine if the
modeling capacity of the architecture is sufficient, as well as investigating the completeness
and consistency of the data.

That second aspect, the feasibility of the training data, is recognized as crucial in what
has recently been termed data-centric AI. Fundamental AI research benefits from consistent
data sets in order to compare approaches, and data is sometimes deliberately restricted to in-
vestigate generalization capacity. Conversely, the application of AI focuses on absolute per-
formance, which is heavily influenced by the data set and, in turn, by the procedure through
which it is constructed.

Inmany important medical domains such as OCT characterization, performance is limited
by our ability to obtain large, accurate data sets. Notice that the same factors, such as fatigue,

2



CHAPTER 1. INTRODUCTION

that affect clinical diagnosis also apply to data set labeling. In fact, labeling accuracy has
recently become a limiting factor even in foundational challenges like the Imagenet data set
[7], where before it was not such a major factor [8]. This suggests that addressing label noise
may be an important part of the problem of constructing an adequate OCT image classification
model.

1.3 Research objectives

The main objective of this project is to research, implement and validate deep learning tech-
niques for the construction of computer-aided diagnosis systems, concretely through the task
of detection and characterization of exudative AMD in OCT images.

This objective is decomposed into iterative sub-goals that allow for the problem to be
approached incrementally. The first of them is to establish the general viability of AMD char-
acterization in a limited data set. The initial task will consist of binary classification, as in
the presence or absence of signs of wet AMD. On the model side, proven architectures such
as the ResNet and the DenseNet will be employed. Training itself will also follow an itera-
tive approach, with the establishing of simple baselines to be superseded by more complex
techniques, such as transfer learning or data augmentation.

If and when the evaluation of the performance of the model is satisfactory, the detection
will be refined to the independent recognition of fluid and neovascularization. If this classifi-
cation were also to produce adequate results, a finer distinction would be made between their
sub-types according to their location with respect to retinal layers.

However, working with a very limited number of annotated examples is expected to pose
challenges even to state-of-the-art models and training methodologies. Furthermore, it is of-
ten difficult to determine what inadequate performance is to be attributed to. This constitutes
another sub-goal, where we will explore the detection of these inadequacies and their recti-
fication through techniques such as data augmentation, domain-specific and general transfer
learning and our proposed model-assisted intra-expert variability mitigation.

3



CHAPTER 1. INTRODUCTION

1.4 Outline

This report is structured according to the goals of the project and the steps and experiments
that were performed to that effect. Therefore, chapters are a reflection of the trajectory of the
project, from its introduction and contextualization to its final conclusion. The main chap-
ter, Methodology, is simultaneously chronologically and logically ordered, following the pro-
gression of experiments. Such structure ultimately results in the following division into 5
chapters:

CHapteR 1: IntRoduction The present chapter, which describes, motivates and provides
this outline for the project.

CHapteR 2: Contextualization A concise introduction to the domain of study and the
techniques applied to it. In both cases it provides a broad overview, beginning from
the anatomy of the human eye and machine learning respectively, and systematically
narrows its focus towards the fields specific to the project.

CHapteR 3: Planning Describes the organization of the project, including tasks and schedul-
ing as well as the management of resources and estimated costs.

CHapteR 4: MetHodology The largest chapter in the document, it is divided according
to the experiments performed throughout the project:

• Detection of nAMD signs

• Model-assisted intra-expert variability mitigation

• Domain-specific pretraining

• nAMD characterization

CHapteR 5: Conclusion and futuRe woRK Summarizes the approaches and results of
the project. Includes a discussion of the general applicability of the methods and pos-
sible lines of future work.

4



Chapter 2

Contextualization

An adequate presentation of the techniques, results and challenges encountered in this
project requires working knowledge of both the specifics of AMD diagnosis and the

Deep Learning paradigm. To that end, a short introduction to the domain is provided, cov-
ering the basics of the relevant anatomy, imaging techniques, and how they can be used to
characterize AMD. Following, there is a brief overview of the fundamentals of Deep Learning,
with a strong focus on concepts relevant to the specific architectures used.

2.1 Domain description

This section provides an overview of the physiology of human vision, describing the alter-
ations that characterize AMD. It also introduces OCT, the imaging technique on which this
project is based.

2.1.1 The human eye

The human eye enables vision through photoreceptor cells, which detect visible light and
generate corresponding electrical neural pulses. The rest of the eye supports this function in
several ways, such as optically processing incoming light, supplying photoreceptors vascu-
larly and propagating neural activations to the visual cortex of the brain.

Anatomically, the eye is an almost spherical organ, with a transparent protrusion on the
front called the cornea (Figure 2.1). Its principle of operation is that of a camera obscura: an
opaque chamber with a small opening, called the aperture, through which light enters. The
aperture of the human eye is the pupil, the hole in the center of the iris, situated behind
the cornea. The smaller the aperture, the more precisely light reaching each point of the
interior is approximated by a single ray that passes through the center of the aperture. A
correspondingly sharp inverted image of the outside scene is projected on the posterior of
the eye.

5



CHAPTER 2. CONTEXTUALIZATION

However, at very small aperture sizes diffraction effects dominate, and a smaller aperture
results in a blurrier image. Crucially, the reduction in the size of the aperture is also accom-
panied by a decrease in the intensity of the image, resulting in a trade-off between spatial
resolution and sensitivity. To address it, the iris contracts and dilates the pupil in response to
changes in light intensity.

Figure 2.1: Structure of the eye [9].

Figure 2.2: Accommodation.
Adapted from [10].

Both man made cameras and the human eye em-
ploy lenses, which converge light to create a sharper
image. The distance at which objects form the sharpest
image depends on the focal length of the lens (a mea-
sure of how much it converges light) and its distance to
the sensor. The latter can be adjusted mechanically in
man made cameras. In the human eye the cornea acts
as the main lens, providing most optical power, and fo-
cal length is adjusted through a process known as ac-
commodation (Figure 2.2). The contraction of the cil-
iary muscle regulates the shape of the crystalline lens,
situated behind the iris, adjusting the combined focal
length of the cornea and the lens [11].
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CHAPTER 2. CONTEXTUALIZATION

The rest of the ocular globe, the posterior segment, can be divided into three layers that
enclose the vitreous body and are crossed by the optic nerve. The innermost tissue, the retina,
contains the photoreceptor cells. These cells perform phototransduction, the detection of
visible light and the corresponding generation of an action potential. The electrical potential
then travels inwards through the retina towards the optic nerve and, eventually, to the visual
cortex of the brain. The next layer, the choroid, surrounds the retina and supplies it vascularly.
Finally, the choroid is enclosed by the sclera, connective tissue with a protective function that
is primarily composed of collagen.

2.1.2 Anatomy of the retina

The anatomy of the retina can be presented through two complementary perspectives. One
describes the back of the eye, the eye fundus, as viewed through an ophthalmoscope. The
other corresponds to the layered structure of the retina, as can be seen in histologic sections
of retinal tissue and, as will be discussed in the next section, through OCT.

Figure 2.3: Fundus photograph of a
normal right eye [12].

The fundus image in Figure 2.3 is centred on the
fovea, the dark, avascular regionwhich corresponds to
the centre of the visual field. However, the fovea is not
aligned with the approximate equivalent of an optical
axis for the eye. It is often displaced temporally, on
average 4 degrees, but with substantial variation [11].

The optic disc can be seen as the bright spot situ-
ated approximately 17 degrees (4.5-5 mm) nasally to
the fovea. Measuring around 2mm vertically and a lit-
tle less horizontally, it constitutes the termination of
the optic nerve in the retina and the source of blood
vessels that supply it [13]. Its central location in the
retina corresponds to the blind spot in the visual field,
as it connects to the nerve fibers on top of the retina.

The macula lutea, after which AMD is named, is the pigmented area that surrounds and
includes the fovea. Its characteristic yellow hue is due to the reflection of the xanthophyll
carotenoids zeaxanthin and lutein. These pigments protect the central retina from short wave-
length radiation such as the ultraviolet [13].

The macula is an example of how the structure of retinal tissue varies radially, from the
center of the fovea to its edge, the ora serrata, close to the ciliary body (Figure 2.1). These
changes are responsible for the varying visual acuity from central to peripheral vision, due
to alterations of the structure below the surface.
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Figure 2.4: Structure of theMammalian Retina.
Ramón y Cajal c. 1900.

The histological perspective of the retina
reveals, as was noticed by Santiago Ramón
y Cajal in the 1890s, the different kinds of
cells that compose retinal tissue and their ar-
rangement into three main layers of nerve
cell bodies. The photoreceptors are situated
in the back, behind, among others, bipolar
neurons, and the ganglion cells whose axons
connect to the optic nerve. This configura-
tion is called an inverted retina, because light
has to traverse several layers before reach-
ing photoreceptors, and is responsible for
the blind spot.

Figure 2.4 demonstrates the division into
9 layers of the neurosensory retina that is
used today. The photoreceptors are sepa-
rated by an outer limiting “membrane” into
their nuclei and the segment layer. Inner
segments contain mitochondria and other
organelles, while outer segments contain
opsins, light sensitive proteins.

There are two types of photoreceptors in these layers, rods and cones, named after their
outer segment shapes. Three types of cones with opsins that respond to different wavelengths
enable color vision. Despite their abundance, the output of several rods converges onto the
same neuron in the retina, improving sensitivity but not resolving fine detail. The variation
in the density of rods and cones on the retinal mosaic is a cause of visual acuity differences
between central and peripheral vision (Figure 2.5).

Figure 2.5: The distribution of rods and cones. Adapted from [14].
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Figure 2.6 illustrates that between the photoreceptor and the inner nuclear layers, the lat-
ter containing horizontal, bipolar and amacrine neurons, and Müller glia; there is a neuropil,
an area where they synaptically connect, called the outer plexiform layer. Similarly, between
the inner and ganglion layers there is another neuropil, the inner plexiform layer. Finally, the
axons of the ganglion cells form the nerve fiber layer that is separated from the vitreous by
the inner limiting membrane.

More recently, a third type of photoreceptor has been discovered. A small subset of gan-
glion cells utilize another opsin based photopigment, melanopsin, and contribute to the regu-
lation of circadian rhythms and the pupilary light response [15]. These intrinsically photosen-
sitive retinal ganglion cells have also been found to contribute to conscious visual awareness
[16].

Figure 2.6: Histology of the retina [17].

The neural retina is separated from the choroid by the Retinal Pigment Epithelium (RPE),
a single layer of pigmented epithelial cells. Along with providing immune privilege to the
retina, supplying nutrients to photoreceptors and regulating their phototransduction chemi-
cally, the RPE absorbs the light that has traversed the retina. Several pigments are involved
in this process, with melanin accounting for most of the light absorption [18].
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2.1.3 OCT

First employed to obtain in vivo images of the retina in 1993, Optical Coherence Tomography
(OCT), is a noninvasive imaging technique whose unique ability to provide near histologic
resolution images of the retina has made it the standard of care in ophthalmology [19].

OCT is a technology analogous to ultrasound, in the sense that it provides images based
on the magnitude and delay of reflected signals. The difference is that while ultrasound uses
sound waves, OCT uses light. This poses several challenges, as light travels the depth of the
retina in around 1 picosecond (one trillionth of a second).

Figure 2.7: Schema of a basic Optical Coherence Tomography (OCT) acquisition system [20].

Initial attempts at ‘optical ultrasound’ utilized femtosecond lasers, but the key to the scal-
ability of OCT is in its use of low coherence interferometry. Figure 2.7 demonstrates the
Michelson interferometer configuration. In the case of OCT, low coherence light is split into
two arms, one being the retina and the other a reference mirror that adjusts its distance to
match that of the depths to be imaged. Some of the light reaching the retina is backscattered
and interferes with the reference at the beam splitter, eventually reaching a sensor.

In the first OCT systems, the sensor is a photodetector, performing time domain OCT.
For any given reference mirror position, only points that are situated around that distance
in the retina, within the coherence length of the light, are the source of interference with
the reference arm. By scanning the depth of the mirror, an A-scan can be obtained. Like in
ultrasound, an A-scan is a plot of the intensity of backscattered light along a line. In OCT,
the line is perpendicular to the retina. By scanning the eye arm laterally, a histologic-cut-like
image can be obtained (Figure 2.8), called a B-scan.
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Figure 2.8: First in vivo OCT image of the normal retina in a human subject [19].

To improve imaging speeds and sensitivity, Fourier Domain OCT (FD-OCT) was devel-
oped. In Spectral Domain OCT (SD-OCT), a subtype, a spectrometer simultaneouslymeasures
all echoes of light, eliminating the need to scan the reference arm. This accelerates image ac-
quisition substantially, which in turn improves motion artifacts and sensitivity. A second
subtype of FD-OCT, Swept Source OCT (SS-OCT), trades the spectrometer for a frequency-
swept laser, allowing the frequency-specific interference to be measured across time [19].

Another development of OCT is the use of several parallel B-Scans to form a C-scan, a
volumetric reconstruction of the retina. The data can then be used to generate en face images
of the retina like those of an ophthalmoscope. Furthermore, by measuring changes in the
image that are not the result of patient or device movement, blood flow is detected. This
allows for the creation of images similar to those of fluorescein angiography, in what is termed
Optical Coherence Tomography Angiography (OCTA).

Figure 2.9: Layers of the retina as they appear on a SD-OCT B-scan [21].
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As we can observe in Figure 2.9, the histological features of the retina (Figure 2.6) are
well correlated to OCT B-scans images. Moreover, the morphological alterations to retinal
histology that are associated with AMD also produce recognizable features in OCT images.
Hence, they can be use to detect and characterize AMD.

2.1.4 Characterizing AMD

AMD is clinically classified into three stages , according to its progression [22]. When drusen
appear of a size beyond what are considered normal aging changes, a patient is considered to
have early AMD.The appearance of either large drusen or pigmentary abnormalities is indica-
tive of the intermediate stage of AMD. These stages are designed to assess clinically relevant
increases in the risk of the late form of AMD and RPE detachment, which are responsible for
most severe symptomatollogy [22].

Late AMD itself can in turn be characterized into Geographic Atrophy (GA) or Neovas-
cular Age-Related Macular Degeneration (nAMD). nAMD represents less than 10% of total
AMD cases, but is responsible for the majority of cases of severe visual loss, and progresses
more rapidly [23]. Within nAMD, it is fluid that causes symptoms and needs urgent treat-
ment, however, a study found that neovascularization was present in 88% of eyes that would
then go on to present exudation [24]. There exist nAMD-specific biomarkers in OCT images
that can be of great utility for the monitoring of the progression and treatment of a patient
[23]. In the following, the consensus characterization of nAMD is briefly presented, as well
as its OCT imaging correlates.

Neovascularization

In nAMD, neovascularization is the invasion by vascular and associated tissues into the outer
retina, subretinal space or sub-RPE space in varying combinations [25]. Thus, three distinct
types of neovascularization are recognized, according primarily to their location.

In type 1 neovascularization (Figure 2.10a), blood vessels from the choriocapillaris layer
of the choroid grow into the sub-RPE space. The accumulation of fibrotic tissue may cause a
detachment of the RPE, resulting in an elevated region in OCT B-scans.

Type 2 neovascularization (Figure 2.10b) implies the crossing of the RPE by the vessel
growth and its development into the sub-retinal space. Nevertheless, the majority of fibrovas-
cular proliferation occurs in the sub-rpe space from which growth is originated.

Finally, type 3 neovascularization (Figure 2.11) refers to vascular proliferation that origi-
nates from the superficial vascular plexus in the inner retina, as opposed to types 1 and 2 that
originate from the choroid. However, the vascularization might progress towards and cross
the RPE, resulting in an angiomatous lesion.
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(a) Type 1 neovascularization. (b) Type 2 neovascularization.

Figure 2.10: Diagrams comparing type 1 and 2 neovascularization, highlighting their location
relative to the RPE [25].

(a) Initial stages of type 3 neovascularization.

(b) Angiomatous lesion resulting from type 3 neovascularization (A) and
angiography of a patient with type 3 neovascularization (B).

Figure 2.11: Progression of type 3 neovascularization [25].
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Fluid

Biomarkers have been researched as a means of predicting the long term outcome of AMD
patients, e.g. fibrovascular RPE detachment as a marker of nAMD [26]. These markers can
be divided into two distinct categories: structural features of the choroidal and retinal layers,
and the distribution of fluid [23]. The appearance of fluid on OCT and fundus imaging is
presented in Figure 2.12.

A distinction is made between Intraretinal Cystoid Fluid (IRC), Subretinal Fluid (SRF) and
Sub-Retinal Pigment Epithelium Fluid (sub-RPE) [23]. Figure 2.13 demonstrates the different
types and the association of sub-RPE with RPE detachment.

Figure 2.12: ‘Fundus photograph (right) showing two different types of deposit: exudates
(blue rectangle) and drusen (red arrow) in the left eye of a patient with wet ARMD; the B-
scan line on the fundus photograph has the same width as the B-scan SD-OCT image (left)’
[21].

Figure 2.13: fluid distribution in nAMD, together with RPE detachment [23].
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2.2 Machine Learning

Machine Learning (ML) is the study of computer algorithms that improve automatically through
experience [27]. The field has its roots in artificial intelligence, where it has been considered
a promising and increasingly necessary approach since its founding [28].

In the last decade, machine learning has experienced a surge in popularity within and
beyond AI research. The availability of large data sets, together with the computing power
and algorithms necessary to utilize them, has enabledmachine learning approaches to surpass
explicitly coded solutions in many commercially important domains, such as computer vision
and natural language processing.

Such advances have had revolutionary consequences inmany applications, of whichmedicine
is no exception. Medical research can be seen as an extremely complex learning task, where
data such as symptoms, diagnostic tests and available interventions are utilized to construct
models of the body, its disease and treatment. Similarly, medical practice can be seen from a
learning perspective, where diagnosis and treatment are predictions made from data.

The deep learning revolution is posed to rapidly increase the scope of the influence of
ML on medicine. OCT constitutes a great example of this paradigm, as its scans generate
great volumes of data, which pair perfectly with deep learning techniques that ingest it with
minimal preprocessing.

2.2.1 Neural networks and backpropagation

Machine learning is a broad field withmany techniques, however, a certain class of models has
risen to prominence during the deep learning revolution: neural networks. Neural networks
consist of many simple, connected processors called neurons [29]. Each neuron computes a
real-valued output, called its activation, from one ormore inputs. Those neuronswhose inputs
come from the environment are called input neurons; the input of the rest is the output of
other neurons. The output of a subset of the neurons is the output of the network.

In practice, the output of a neuron is almost always computed by applying a nonlinear
function to the sum of a parameterized linear combination of the inputs and a parameter called
bias. Several functions are possible, with sigmoids being the historically popular option, and
f(x) := max(x, 0), known as ReLU in machine learning, being a faster modern alternative
[30]. Inputs and activations are represented with floating point numbers, enabling efficient
computation by dedicated hardware.

A neural network with undefined parameters can be seen as a higher order function,
called a neural network architecture. Training is the process of determining the parameters,
often the weights and biases of the linear combinations, that best fit some data. The most
common training method is supervised learning, where a network architecture fits a function
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from sample input and output pairs. Parameters are set such that for each sample input the
network produces an output close to that of the sample output.

Once the network is trained, inputs different from the samples used to train it can be
fed into the network to obtain predictions, a process known as inference. Such predictions
can then be compared with real samples to determine how well the network inferred, or
generalized, the function that generated the samples. These samples constitute the test set,
whose intersection with the training set of samples must be empty.

Training is often seen as a process of minimizing a loss function, a function that quantifies
the difference between the network and sample outputs. By far the most common optimiza-
tion method for neural networks is iterative gradient descent, i.e. to compute the gradient of
the loss function with respect to the parameters and iteratively update the solution in the
opposite direction. The gradient is multiplied by a number called the learning rate. It is a
hyperparameter, because it parameterizes the training process that generates the parameters
of the network. As is often the case with hyperparameters, there is no general theory to
determine it a priori, therefore it is adjusted empirically.

In neural networks, computing the gradient is made feasible by an algorithm called back-

propagation [31], which essentially efficiently computes the gradient of the loss function with
respect to the parameters of the network by iteratively applying the chain rule for composite
function derivation.

2.2.2 Convolutional neural networks

It has been long known in machine learning that an inductive bias, i.e. assumptions about
the source of the training data not provided by the data itself, is necessary for generalization
[32] [33]. Therefore, useful machine learning algorithms must contain a priori knowledge in
order to make generalization possible. In the deep learning for neural networks paradigm,
the architecture constitutes a significant part of the inductive bias. Thus novel architectures
have been a fertile field of research in computer vision.

This is exemplified no better than by convolution, the backbone of themost popular neural
network architectures in computer vision. Inspired by the pioneering neuroscientific work of
Hubel and Wiesel on the visual cortex [36], Fukushima developed the precursor to modern
convolutional networks [34]. Yann LeCun was the first to successfully train them through
backpropagation, applying them to the domain of handwritten digit recognition [35] (Figure
2.14). Remarkably, the convolutional models that ignited the deep learning revolution are not
too dissimilar architecturally from the first models [37]. On the contrary, the performance
improvement is attributed to the general increase in computing power and the use of Graphics
Processing Unit (GPU) to accelerate convolutional and fully connected layers.
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(a) Schematic diagram illustrating the layers
of the neocognitron and its interconnections.
Adapted from [34].

(b) First modern convolutional network.
Adapted from [35].

Figure 2.14: Graphical comparison of the two pioneers of convolutional neural networks.

Indeed, the convolutional architecture of filtering and pooling is as effective as one could
assume from its biological inspiration. 2D convolution is equivalent to sliding a rectangular
filter across the image, multiplying the overlapping values and adding them to obtain a result
(Figure 2.15). Because convolutional networks employ the same filter weights for all of the
image, there is massive weight reuse compared to fully connected layers. This also provides
the property of shift invariance, as filters respond equally to the same pattern in different parts
of the image.

(a) Graphical depiction of convolution by a 3x3
filter without padding.

(b)The number of filters is calculated according
to the input and desired output dimensions. In
this example, 5 different filters would be nec-
essary.

Figure 2.15: Schematic explanations of convolution [38].
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The output of convolution is a slightly smaller image, according to the filter size, or the
same size if padding is used. Furthermore, when applied to multichannel images such as RGB
color, each input channel is convoluted with its own filter and the results are added, such that
information is merged from all channels. In order to preserve or modify the number of output
channels, the group of filters for each input channel is replicated with different weights for
each of the output channels.

Traditional computer vision tasks, such as edge and corner detection or Gabor filtering,
can be implemented as convolutional filters in a very direct manner. In trained convolutional
networks, the initial layers actually learn this kinds of representations, that are then composed
to form higher level features.

Furthermore, convolution can be strided, skipping those coordinates who are not 0 mod-
ulo the stride parameter. Strided convolution leads to smaller maps, which is usually com-
bined with an increasing number of features to obtain more semantic features of lower spatial
resolution. This process can continue until a vector of 1x1 maps is reached. This feature vec-
tor is often utilized as the input to a fully connected classifier. Pooling can be seen as a strided
convolution with a nonlinear kernel, with the most common ones being the mean (average-
pooling) or the maximum (max-pooling).

In summary, convolution is a very strong prior for images that takes advantage of the
properties of locality and translation equivariance to greatly facilitate the training of deep
neural networks.

2.2.3 Training deeper networks: the residual architecture

Figure 2.16: The residual learning block learns
the difference between the desired and identity
mappings [39].

Perhaps the most important architectural
innovation since convolutional networks
themselves, Residual Networks or ResNets
have allowed for the training of substantially
deeper networks, with the corresponding
gains in compositionality and performance
[39]. ResNets simplify Highway Networks
[40], which were among the first architec-
tures to train effectively with depth exceed-
ing 100 layers.

At its core, the residual learning block (Figure 2.17) is a recognition that the training
dynamics of a network are as important as its theoretical representation capacity. They are
the product of analyzing an experimentwhere deeper networks underperform shallower ones.
This must be due to difficulty of optimization, because there is a solution by construction
of equal performance, namely setting the extra layers to the identity mapping. And indeed

18



CHAPTER 2. CONTEXTUALIZATION

this recognition is the foundational prior of the residual block. By adding the input to the
output, layers learn a residual function, i.e., the difference between the desired and the identity
mapping.

As the original Residual Learning paper demonstrates [39], this recasting of the mapping
greatly facilitates the optimization process and hence allows deeper networks to reach su-
perior performance. The improvement in optimization is especially intuitive if we consider
the effect of weight decay. Under ‘plain’ networks, weight decay incentivizes each layer to
destroy all the information of the previous one, multiplying activations with weights close
to zero. Under residual networks, weight decay incentivizes each layer to perfectly propa-
gate the previous activations of the layer, and modifications to this layer by the weights are
reasonably penalized as complexity.

The result is that Residual Networks are a theoretically sound architecture that demon-
strates great performance in state-of-the-art benchmark tasks such as Imagenet [7], among
many others. Residual Networks are very commonly used as baselines, a practice that has
been vindicated by recent results applying modern training methodologies to the architec-
ture [41].

2.2.4 Densely connected convolutional networks

Densely connected convolutional networks [42] take the idea of residual learning further by
concatenating instead of summing feature maps. This can reduce the number of parameters
needed, through feature reuse. Several residual blocks are hence substituted by a correspond-
ing dense block (Figure 2.17).

Figure 2.17: Each layer in the dense learning block receives the concatenation of all previous
outputs as input [42]
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While DenseNets do not seem to significantly outperform ResNets in the Imagenet bench-
mark [43], recent work has found them to be the only architecture invariant to translation
among the ones tested [44]. This is very relevant to our domain because a limited data set
might contain, for example, samples of fluid in one region that must be correctly recognized
as such in other regions in the testing environment.

2.2.5 Transfer Learning: Imagenet pretraining

As was discussed in the introduction to convolutional networks, the first convolutional lay-
ers learn the classical filters of computer vision (Figure 2.18) and later layers compose these
features to eventually perform a task such as classification, regression or segmentation. Be-
cause there is a great degree of statistical similarity between natural images, the weights of
a classifier trained on Imagenet constitute a much better than random initialization for many
different image tasks.

Figure 2.18: Features learned by the first layer of AlexNet [37].

The practice of using these weights as the initialization is known as transfer learning. It
constitutes an effective way to accelerate training and especially to prevent overfitting in
small data sets. A small classifier is often trained with the last convolutional layer as input,
effectively only updating the latest layers and using the rest as a fixed feature extractor. Only
when the classifier is trained are the rest of the layers updated, and then only slightly. This
second process is known as fine tuning.

However, it is not so clear whether the benefits of transfer learning transfer to artificial
images such as OCT scans. In principle the first layers should, because the notions of edge
and texture are common. However, to what extent higher level features contribute to transfer
is probably a matter of empirical investigation. This includes the research of closer, domain-

specific transfer learning, where data sets are increasingly specialized.
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2.2.6 Class Activation Mapping (CAM)

CAM [45] is an attribution technique for CNNs that leverages the spatial nature of convolution
to determine which parts of the input image contributed to the output of the network. It
can be used to obtain class-specific image regions from classifiers trained in whole-image
labels; essentially constituting a very weakly supervised localization or segmentation model.
However, it is most often used in post hoc analysis of classifiers for the sake of interpretability,
including the medical domain. Figure 2.19 presents CAM schematically and illustrates its
application to another ocular imaging domain where deep learning is utilized.

Figure 2.19: CAM applied to glaucomatous optic neuropathy [46].

CAM is only applicable to a particular kind of CNN architectures performing global av-
erage pooling [47] over convolutional maps, immediately before a last layer (e.g. softmax);
Gradient-Weighted Class Activation Mapping (Grad-CAM) is a similar later technique that
removes this limitation [48]. The latter has been used to generate the CAMs for this project,
through the library listed in the next chapter.
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Chapter 3

Planning

When it comes to developing a research project, planning is a critical aspect that can have
a great influence on its outcome. Thus, this chapter describes the planning followed

throughout the course of this project, from the development model chosen to resources and
costs.

3.1 Development model

In order to best manage the characteristics of a research and development project, an itera-
tive and incremental development model has been followed (Figure 3.1). Fundamentally, this
model decomposes the project into discrete iterations, within which progress proceeds incre-
mentally. In the case of this project, iterations map to the experiments that are performed.
The greatest advantage of this approach is that every iteration produces working models and
an analysis of metrics. This decoupling of progress allows for the review of partial results,
whose adequacy is evaluated in a way that informs the development of subsequent ones.

Figure 3.1: Iterative model of the software process [49].
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3.2 Iterations and scheduling

Following the iterative model described above, the project has been scheduled through its
decomposition into discrete iterations, detailed in the following paragraphs. These iterations
were then used to elaborate the Gantt chart of Figure 3.2, that constitutes the baseline for the
project.

Study of the domain and previous approaches The first iteration aims to establish a
theoretical foundation of background knowledge that informs the development of the exper-
iments. This domain-specific knowledge ranges from the anatomy of the eye to the specifics
of AMD characterization. The main materials used will be scholarly sources such as research
papers.

nAMD detection The next iteration includes the development of an initial experiment that
tests the viability of detecting nAMD signs in OCT images. This first task will serve to es-
tablish baselines of performance, as well as to compare how different usual deep learning
techniques compare. Furthermore, a comprehensive analysis of metrics will be performed to
deeply understand the performance characteristics of the best approaches. In doing so, this
iteration provides the grounds for the next technique and experiment.

CAM and review methodology This iteration analyses the results of the previous one
through interpretability techniques. Concretely, it uses the CAM technique to analyze the
factors that influence the outputs of models. This process involves the participation of domain
experts, whose time to interpret results has to be accounted for in the scheduling.

Transfer learning This iteration considers the possibility of leveraging domain-specific
transfer learning to develop better classification models in novel tasks. It relies on the re-
sults from the first experiment to evaluate the effects of transfer. Therefore it includes the
development of compatible data loaders for both data sets and their use to fine tune models.

nAMD classification This iteration reproduces previous results with a finer classification.
It analyses them in the more complex task of multi-label characterization of nAMD signs.

Writing of the report This last iteration includes everything related to the writing of the
report. This is done incrementally from the saved results, discussing them from the perspec-
tive provided by the rest, contextualizing and highlighting their significance, and describing
their relation to existing and future lines of work.
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3.3 Resources

This section describes the resources needed for the development of the project. They have
been divided into human and material resources, the latter including the necessary software.

3.3.1 Material resources

The material resources necessary for this project can be divided into hardware and software.
Both are listed and described in the following sections:

Hardware resources

• Laptop: A laptop computer has been used for bibliographical research, development
and testing, and the writing of the report. Thanks to the use of the server and remote
software listed below, there was no need for specialized hardware to train neural net-
works in the client. Rather, this task has been offloaded to the more appropriately
specified workstation.

• VARPA workstation.

– CPU: Intel(R) Core(TM) i9-9900K; 8 cores, 16 threads

– GPU: Nvidia RTX 2080 Ti; 11 GiB VRAM

– RAM: 32 GiB

Software resources

The following open source programs and libraries were used throughout the project:

• PyTorch and Torchvision (versions 1.12.0 and 0.13.0): PyTorch is the deep learning
library which, together with its Torchvision component, has been used to implement
the data sets, models and training scripts used throughout the project.

• Pandas (versions 1.4.3 and 0.11.2): This data science library was used for exploratory
data analysis, the processing of labels and the creation of summaries from metrics.

• Matplotlib and Seaborn (versions 3.5.2 and 0.11.2): These data visualization libraries
were used to generate the figures that appear on this report.

• scikit-learn (version 1.1.1): Used for calculating metrics such as ROC and its AUC.

• grad-cam (version 1.2.8): This Python library implements the Grad-CAM interpretabil-
ity technique, for use with PyTorch models.
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• scipy (version 1.8.1): The ability of this library to process MATLAB files was used to
extract B-scans out of the public data set.

• Visual Studio Code: This extensible editor was used together with its Jupyter Note-
book and SSH extensions to access the workstation remotely.

3.3.2 Human resources

The successful development of this project requires the participation of several distinct roles,
of which four can be highlighted as the main ones: project manager, analyst, designer and
developer. That role, as well as research advisor, has been performed by the project advisors.
Their work is reflected in the periodic meetings where the progress and results of the project
were discussed.

3.4 Cost estimation

The costs of this project can be broken down into two major categories, according to the
associated resource: material costs and remuneration of labor :

Material costs: This first cost category is divided into the resource subcategories of hard-
ware and software, with neither incurring any cost. The cost of the former is negligible be-
cause it utilizes resources, namely the laptop and workstation, that were already necessary
for the student and the research group, and whose usage did not conflict.

Remuneration: This second source of costs has been calculated based on scheduling. From
30 20-hour workweeks for the roles of analyst, designer and developer, two hour weekly
meetings by the two project managers and an estimation of their hourly rate, we obtain Table
3.1.

Role Hourly rate Person-hours Investment

Project manager 30 €/h 120 h 3600 €

Analist, designer, developer 20 €/h 600 h 12000 €

Total: 15600 €

Table 3.1: Estimation of costs dedicated to human resources.

Thus, given the negligible material costs, we determine the estimated total cost of the
project to be 15600€.
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Chapter 4

Methodology

This chapter describes the experiments performed during this project, as well as the design
and implementation of methodologies and techniques aimed at addressing the problems

that arise in the tasks considered and related ones.

4.1 Introduction to the data set

Figure 4.1: First image of the data set,
presenting neither fluid nor neovas-
cularization.

The experiments that follow have been performed on
a data set of 1279 labeled scans obtained from an SS-
DRI-Triton-OCTA device (Topcon Corp Inc, Tokyo,
Japan). The labeling of the data set indicates the pres-
ence or absence of neovascularization and fluid. Of
the 779 images that present either, 566 present the
former and 575 the latter. Furthermore, both signs of
AMD are decomposed into three subtypes each, ac-
cording to their position in the retina.

The unprocessed images have a 512 by 992 reso-
lution (Figure 4.2), which under usual settings would
correspond to an area of 7 by 2.57 mm [50]. This
would mean that the physical vertical separation of
pixels is, at 13.67 µm, larger than the horizontal 2.59
µm, resulting in stretched images. However, the
retina and the first layers of the choroid occupy only
a fraction of the image vertically. In order to greatly
reduce the size of the images while retaining all of the
relevant information, a simple and robust algorithm
was developed (Figure 4.2). A window is slid across
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the image, and its average intensity calculated for all positions. The sliding begins from a
vertical offset of 150 pixels, which together with the window size of 262 = 512− 150− 100,
maximizes the average intensity of the retina-sized central region while ignoring the mar-
gins. This proved more robust than edge-based algorithms, especially for cases of posterior
vitreous detachment or unusual morphology.

Figure 4.2: Figure 4.1 after being preprocessed. The red area indicates the window whose
average brightness is maximized by the algorithm.

The scans are divided into 9 groups, corresponding to different eyes. For the purpose
of correct performance assessment, it is important that images from the same eye are only
utilized in one of training, validation or testing. This guarantees that intra-eye regularities
are not contributing to the evaluation, being more representative of unseen images.

The decision to divide the groups according to the eye and not the more strict criterion of
patient is based on the following: “Age-related macular degeneration can be asymmetrical;
one eye may showmanifestations, such as drusen, in the absence of fellow-eye abnormalities.
The risk for progression in the eye without AMD stigmata is nearly zero, and accordingly, one
should not diagnose AMD in an eye without visible abnormalities” [25]. In any case, only fold
1 contains the small matching cubes 4 C and 4 I, so any effect would be small.

Indeed, B-scans are neither equally spaced nor equinumerous across scans. This leads to
a large imbalance, not only in the amount of samples, but in their class distribution. Never-
theless, by grouping scans according to their number of samples and their labels, a split into
5 groups can be achieved that greatly reduces the imbalance (Figure 4.3).
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(a) Original data set distribution.

(b) Data set distribution after grouping.

Figure 4.3: Class distribution of C-scans before and after grouping.
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4.2 First experiment: detection of nAMD signs

This first experiment will provide an initial evaluation of the data set, the selected architec-
tures and their training methodology.

4.2.1 Data set considerations and their impact on the task

The exploratory data analysis described in the last section hints to the expected difficulty of the
data set. The limited amount of samples, and especially of independent scans, motivates an
initial approach that tests the viability of AMD characterization. Therefore, the first iteration
will consist in the task of binary classification.

However, this approach is not equivalent to binary classification of nAMD.The particular-
ities of the data set mean that there is no true control patient, as every C-scan contains some
B-scans with the presence of either neovascularization or fluid. Indeed, the increased gran-
ularity of labeling implies that some samples that are considered negative, as in the lack of
neovascularization and fluid, contain nevertheless other signs of AMD, namely drusen. This
distinction will be especially apparent in the next experiments, where model performance
will be assessed through interpretability techniques and the most problematic samples will
be highlighted, e.g. Figure 4.4. Clearly pathological features, such as large drusen, are labeled
as negative as long as fluid and neovascularization are not present.

Figure 4.4: Sample from the data set demonstrating drusen.
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As is best practice in machine learning, a test set will be reserved, not to be used in model
selection nor fitting. In order to provide the most representative sample possible within the
constraints of the data set, group 0 (figure 4.3b), has been chosen for the purpose. Being
comprised of three independent C-scans, it is the most numerous and well balanced in terms
of class distribution. The remaining groups will be employed for 4-fold cross validation.

In order to further accelerate development, initial experiments were performed with a
down-sampled image, from the original 512 to 256 pixels squared. Subjectively, the image
retains enough resolution not to impede classification, and the fourfold reduction in pixels
entails a corresponding reduction in memory consumption and run time, through the diminu-
tion in convolutional activations. Furthermore, later experiments will demonstrate that the
decreased resolution might be not an impediment, but a small boost to performance through
a hypothesized regularizing effect, especially given the data-constrained regime.

4.2.2 Baseline architecture

The chosen neural network architecture is the ResNet-18. As was mentioned in the contextu-
alization chapter, the Residual Network [39] is a comparatively conceptually simple architec-
ture that proved to be a robust baseline in similar domains, especially in light of advances in
training techniques [41]. The ResNet-18 is the smallest of the networks presented in the orig-
inal paper [39], with comparable performance to “plain” networks. However, this relatively
small size already shows faster convergence empirically, and is theoretically easier to train
thanks to improved gradient flow during backpropagation. Moreover, the weights resulting
from training it on Imagenet are widely available.

Therefore the first experiments were performed with such network. A fixed batch size
of 4 was selected in order to enable direct comparison with other, more memory intensive
architectures. In any case, increases in batch size were found to be detrimental to generaliza-
tion performance, possibly through a decrease in the regularizing effect of stochastic gradient
descent.

Metrics and baseline training procedure

The values in Table 4.1 represent the average cross-validated performance of ResNet-18 on
the unaugmented data set. They provide an approximate baseline of performance against
which further developments will be measured. The rationale for the chosen metrics is that the
mild class imbalance, due to the initial binary task, obviates the need for base-rate-adjusted
metrics such as precision. Binary cross entropy is used as the loss function, as it provides
the most natural loss under the paradigm of maximum likelihood estimation. As a metric,
binary cross entropy provides an evaluation of the confidence of the network, with lower
values indicating more confident correct guesses and less confident mistakes. The Area Under
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the Receiver Operating Characteristic Curve (AUROC) indicates the probability that positive
cases are ranked higher than negative ones, intuitively providing a measure of the quality
of the ranking provided. This has clinical applicability through the prioritized screening of
patients. Finally, accuracy provides a highly intuitive measure of classification performance.

Pretrained LR Cross-entropy Accuracy AUROC

No 10−3 0.4220 0.8029 0.8863

No 10−4 0.5960 0.7252 0.8078

No 10−5 0.6593 0.5765 0.5982

Yes 10−3 0.4810 0.7851 0.8568

Yes 10−4 0.4531 0.7943 0.9023

Yes 10−5 0.4483 0.8090 0.8875

Yes 10−6 0.4554 0.7990 0.8781

Table 4.1: Mean cross-validated performance of ResNet-18 on normalized but otherwise un-
processed data.

While useful for hyperparameter selection, these metrics might not be sufficient for model
assessment. Therefore, full Receiver Operating Characteristic (ROC) analysis will be per-
formed on key models. Unlike summary metrics like the F1 score, ROC analysis provides the
complete range of trade-offs between sensitivity and specificity, extremely common metrics
in the medical domain. It is for this reason that ROC analysis is widely considered the gold
standard of diagnostic test evaluation. Moreover, as was evidenced by the lack of true control
patients, there is reason to suspect that the prevalence of neovascularization and fluid in the
data set is not representative of the patient distribution. Thus, Precision-Recall (PR) analysis,
where precision implies conditioning ‘accuracy’ on prevalence, is deemed less adequate.

Using Imagenet as a fixed feature extractor yielded worse performance, albeit with no
discernible overfitting and highly stable curves. Furthermore, fine tuning after training the
classifier yielded no benefit over using Imagenet as initialization, thus the latter was used
throughout the project.

As for the optimization process, the Adam stochastic optimizer [51] was used with a fixed
learning rate schedule and early stopping with a patience of 10 epochs. This means that after
10 passes through the complete training data set without an improvement in validation loss
training is stopped and the model with the lowest validation loss is returned.
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(a) Fold 0. Patience set to 15. (b) Fold 1.

(c) Fold 2. (d) Fold 3.

Figure 4.5: Mean and 95% confidence interval for the training curves of the baseline model
(ResNet-18 with a learning rate of 10−4)
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4.2.3 Data augmentation

Closer inspection of the baseline results (Figure 4.5) reveals that the limiting factor of perfor-
mance is not the capacity of the model, but rather its generalization. The limited amount of
samples implies a large probability of the model finding spurious correlations in the training
data, leading to overfitting. This may not always be solvable through generic regularization
such as weight decay. Table 4.2 shows the results of applying the AdamW optimiser [52].

WD LR Cross entropy Accuracy AUROC

0 10−4 0.4531 0.7943 0.9023

10−4 10−4 0.4665 0.7959 0.9009

10−3 10−4 0.4731 0.7952 0.8874

10−2 10−4 0.4613 0.8001 0.8684

Table 4.2: Mean performance after weight decay is applied to the baseline models.

Furthermore, the evolution in cross entropy and the ranking metric AUROC seem to de-
couple after the lowest validation loss in folds 0 and 2 (Figure 4.21a and Figure 4.5b). This
leads to a hypothesis asserting the existence of outliers in those validation sets. The reason-
ing is that for a model to obtain a worse than chance cross entropy while simultaneously
obtaining much better than chance AUROC and accuracy, it must be making very confident
wrong predictions. Those could also be the result of the model always predicting the same
class confidently, which would also result in high cross entropy; however the good accuracy
at threshold 0.5 disproves it.

Moreover, in the initial epochs where training loss is still significantly high, the presence
of similar correctly labeled samples provides a reasonable explanation as to why validation
loss starts lower. Indeed, training for less epochs being a regularizer is the basis of early
stopping. The outlier hypothesis fits the observation that if the model is to fit the training
set almost perfectly, as it does, the presence of outliers would result in an increase in cross
entropy without appreciable decreases in accuracy or AUROC, as is also the case.

Perhaps the most powerful form of regularization in computer vision, data augmentation

generates artificial samples that are different from the training data yet retain the same la-
beling. Thus, data augmentation is domain-specific, as certain transformations of the image
modify the labels of one task while leaving others unaffected. As an example, applying a
Gaussian blur to the image of a dog does not turn it into a cat, but blurring the texture of
neovascularization in an OCT scan may make the resulting sample negative. Therefore, data
augmentation must be designed taking into account the particularities of the domain.
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To that end, the transformations employed in the following experiments have been limited
to “realistic” ones, i.e., those that not only maintain the label but that could plausibly belong
to the data distribution. The first one explored, horizontal mirroring of the scans, takes ad-
vantage of bilateral symmetry of the eyes to effectively duplicate the number of samples.
Similarly, applying a small, randomly placed crop to the image provides plausible samples,
given that the scans are not aligned in the data set. Cropping from 256 to 248 pixels incurs
only a small risk of excluding important features from samples.

Augmentations Cross entropy Accuracy AUROC

None 0.4531 0.7943 0.9023

Flipping 0.3390 0.8600 0.9262

Flipping and cropping 0.3419 0.8589 0.9307

Table 4.3: Data augmentation results for the ResNet-18 model. Metrics are the mean of 3
times repeated 4-fold cross-validation.

Table 4.3 indicates that both of the plausible augmentations provide a boost to perfor-
mance. However, the influence of cropping is mixed, as while it improves AUROC, it comes
at the expense of the other metrics.

Variability across and within groups

As we refine the training methodology, the risk of overfitting hyperparameters, in this case
the data augmentation, increases. Especially given that, in addition to the cross validation
average being an imperfect estimator of performance on the real distribution, performance
within folds is also subject to variation. While the weight initialization is kept consistent
across folds due to the Imagenet pretraining, the shuffling of training samples is controlled
through a seed parameter. Thus experiments may be repeated with different seeds to study
the consistency of convergence.

Figure 4.6 demonstrates the distribution of results of different shuffles for each fold. In-
specting the training and validation curves (Figure 4.7a) reveals that in the case of the accuracy
outlier, the lowest validation loss was obtained in the first epoch. Judging by the similar loss
during the next epochs and the upwards trend in accuracy and AUROC, it is likely that valida-
tion performance was limited by the early stopping. Indeed, Figure 4.7b shows that doubling
the patience to 20 epochs allows the exact same model to continue to train to a validation
performance consistent with the rest of the training shuffles.
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(a) Variation of accuracy with shuffling. (b) Variation of AUROC with shuffling.

Figure 4.6: The augmented baseline was trained with 10 different random shuffles of the train-
ing data. There is significant variation across folds and model instability within fold 0.

(a) Original training and validation curves of
the outlier.

(b) Training repeated with 20 epochs of pa-
tience.

Figure 4.7: The outlier from Figure 4.6a obtained its lowest loss on the first epoch, compared
to the next ten before it was early stopped.

Arguably, this could seem to indicate that the patience parameter should be increased to
obtain a more accurate evaluation of hyperparameters. However, a longer patience not only
gives up shorter training times for better assessment. On the contrary, an excessively long
patience might provide misleading results, given the instability of the validation curves.

Validation performance is random with respect to true performance on the underlying
distribution, and with respect to testing performance. Because the selection criterion of the
early stopping is the lowest loss, it constitutes a biased estimate of true performance. When
the model sufficiently fits the training data, as is the case in 4.7b, where it reaches 100% ac-
curacy and AUROC; stochastic gradient descent provides random samplings of weights with
similarly low loss. The longer this sampling process continues, the more biased the validation
estimate becomes. Therefore, a shorter patience period could be beneficial in this unstable
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regime, implicitly promoting hyperparameters that demonstrate consistently increasing per-
formance with increasing epochs, as opposed to those with high variance in outputs and
therefore validation performance.

In summary, the modest size of the data set and its validation splits implies that valida-
tion performance is especially noisy. Therefore, the early stopping patience parameter must
balance too eagerly cutting training short of convergence and biasing its estimate of perfor-
mance. Given that too eager early stopping was the cause of misleading performance in only
one out of forty training iterations, the choice of ten as the patience parameter is maintained.
Nevertheless, individual validation curves will be monitored for this phenomenon.

4.2.4 Increasing model capacity

Theprevious experiments place the task in the data-constrained overfitting regime. Unlike the
classical statistics view of overfitting, modern ML finds that heavily overparametrized models
exhibit better generalization than those close to the complexity of the task, especially in the
presence of label noise [53]. We explore whether an improvement in performance is possible
through this phenomenon. To do so, we train the ResNet-50, which, as it name indicates, has
more than twice as many layers as ResNet-18, and a similarly increased number of trainable
parameters.

Model Augs. Cross entropy Accuracy AUROC

ResNet-18 F 0.3390 ± 0.0076 0.8600 ± 0.0014 0.9262 ± 0.0026

ResNet-18 F & C 0.3419 ± 0.0317 0.8589 ± 0.0199 0.9307 ± 0.0137

ResNet-50 F 0.3394 ± 0.0188 0.8638 ± 0.0091 0.9192 ± 0.0100

ResNet-50 F & C 0.3760 ± 0.0164 0.8414 ± 0.0056 0.9170 ± 0.0079

DenseNet-121 F 0.3032 ± 0.0287 0.8724 ± 0.0182 0.9439 ± 0.0008

DenseNet-121 F & C 0.2947 ± 0.0020 0.8759 ± 0.0072 0.9446 ± 0.0025

DenseNet-161 F 0.3085 ± 0.0399 0.8774 ± 0.0192 0.9411 ± 0.0155

DenseNet-161 F & C 0.3029 ± 0.0067 0.8732 ± 0.0157 0.9355 ± 0.0003

Table 4.4: Comparison of results for different architectures. F stands for horizontal flipping
and C for randomly cropping to 248 pixels.

We selected DenseNets as the architectural alternative because their increased feature
reuse and gradient propagation might make them easier to train, and their translation in-
variance [44] might help with detecting lesions in new regions of the scans. This turns to be
the case as the DenseNet-121 shows results superior to those of ResNet-50 (Table 4.4), while
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taking approximately the same time to train and producing a smaller number of parameters.
Figure 4.8 demonstrates the ROC curve for all of the folds in the first repetition of training

the DenseNet-121 with horizontal flipping and cropping, i.e., the best performing model. We
can observe the great variability across folds once again, which goes beyond affecting the
AUROC to modify the shape of the ROC curve.

Figure 4.8: Validation ROC curve for the first repetition of the best model tested so far:
DenseNet-121 with horizontal flipping and random cropping augmentations.

Furthermore, the shape of the curves can be used to establish hypotheses about the data
of each fold. For example, the sudden drop-off in sensitivity (True Positive Rate) of fold 3
when increasing specificity (one minus the False Positive Rate) could be caused by samples
mislabeled as negative, such that the threshold needs to be raised too much for them to result
in negative classification.
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One thing that might support the theory that validation variability is due to label noise
in the validation sets is testing. If the patterns described previously do not hold in the testing
set, then there is reason to suspect that validation is the culprit. And indeed Figure 4.9 con-
firms that the pattern of plummeting sensitivity in fold 3 validation does not translate to its
testing results. Moreover, perhaps due to the special care taken to keep the testing set large
and diverse, the ROC curves are much closer to the archetypal curve. Fold 0, however, is a
testing outlier, maintaining its poor performance in the high sensitivity regime, to the point
of dropping below chance.

Figure 4.9: Testing ROC curve for the first repetition of the bestmodel tested so far: DenseNet-
121 with horizontal flipping and random cropping augmentations.

Overall, these results seem to support the theory that data considerations, such as scarcity
and label noise, are the primary drivers behind the outcomes. Therefore, the next experiments
will directly address these concerns, studying the data in more detail and attempting to pro-
vide a solution to its perceived limitations.
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4.3 Second experiment: model-assisted intra-expert variabil-
ity mitigation

While the difficulty of acquiring sufficient amounts of data is widely considered to be one
of the greatest challenges of medical ML, expert variability constitutes an equally important
problem. Due to the rapidly evolving nature of medical research and practice, together with
the sheer difficulty of diagnosis, a certain amount of variability is to be expected. Therefore the
development of techniques for the detection and correction of such variability are paramount
to the advancement of ML in the medical domain.

4.3.1 Proposed methodology

We propose a methodology to perform intra-expert variability detection and mitigation with
the assistance of deep learning models and interpretability techniques. As discussed in the
introduction, OCT image classification is a labor-intensive task where human factors such
as fatigue imply that even the most accurate experts demonstrate a certain level of incon-
sistency in their labels. The methodology herein proposed aims to address this problem by
helping domain experts recognize samples that are inconsistent with the rest, according to
some measure.

Given a graphical reasoning for the change, the expert either accepts or rejects the sug-
gestion to reconsider the supposedly inconsistent label. However, were the expert to accept
the change, there would now be two different labels for the same sample, at different times.
It would not be prudent to give preference to the second one just because the model seems
to agree with it. Therefore we do not. Instead, one or more independent experts are asked
to review those cases where the original labeler admits that the label opposite to the original
is reasonable. In this fashion, we leverage the power of expert committees to obtain more
dependable labels. We do so efficiently, by asking the opinion of more than one expert only
when we detect intra-expert variability.

It is important to highlight and restate that the mitigation of variability, i.e. the change
of the labels, is never done on the basis of a neural network prediction. The outputs of the
network and their associated interpretability data are only used to guide the expert to samples
that are likely to receive different opinions different times; human experts always make the
final decision of true labels. In the case of our project, the final verdict on labels is decided
by a committee that includes both the medical imaging researchers with years of experience
in the OCT domain and nAMD in particular that annotated the data set; and an independent
clinician.
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Several measures could be selected following the literature, from total retinal volume to
thickness of the RPE [54]. However, in this project we capitalize on the ability of deep learning
to extract the features necessary to build a predictor that maximizes the probability of a label
directly. Concretely, for each of the five groups of the data set, we train a classifier on the
other four, using one of them for validation and early stopping. The five models are tested
on their independent group, and a ranking of samples is obtained according to the difference
between the label and the output of the model.

Another benefit of the deep learning approach is that we can leverage the CAM technique
to obtain a graphical reasoning for the disagreement. The CAMs of the highest ranked models
highlight zones that are responsible for the prediction. Therefore, if the expert initially missed
the need to closely inspect that part of the image, for example due to fatigue, an opportunity
to reconsider the label based on it is provided.

For the correct application of the methodology, it is important that the committee that
reviews the samples that present intra-expert variability is blinded from the original and sug-
gested labels. This impartiality also permits the development of a trial to investigate the im-
pact of the model. Selecting images at random from the 1279 samples is unlikely to produce
meaningful results, for the expert has a very low variability which we are trying to further
reduce. Thus we develop an alternative strategy. The expert will select B-scans that are phys-
ically close to the ones suggested by the model and that have a similar rationale for changing,
but that did not rank so highly on model disagreement. This guided search is likely to find ad-
ditional outliers. It will also provide a test of whether the model is presenting samples that are
more likely to change beyond what the expert can interpret from the CAM.While deep learn-
ing models fail in ways that humans do not, they sometimes also make correct predictions
from factors that human experts cannot express formally in classification guidelines.

4.3.2 Results and discussion

A first inspection of the CAM results demonstrates how data set particularities affect model
suggestion quality. Figure 4.10c is an example of how the presence of drusen is interpreted
by the network as an indicator of a positive label. Indeed, from a clinical perspective, large
drusen can be an indicator of AMD progression, and it is expected for the data set to show a
high correlation between them and the other AMD signs that are being labeled.

However, Figure 4.10b also includes a less expected failure mode. In retrospect, fold 2 is
the only one to contain such prominent depictions of the optic nerve. And the optic nerve is
fundamentally a vertical disturbance of the layered structure of the retina, not unlike neovas-
cularization. Thus, it is reasonable for a network that has not been exposed to samples that
both contain the optic nerve and are labeled negative to classify such samples erroneously.

This level of interpretability is of great utility in the screening of potentially misclassified
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(a) CAMs for the samples of fold 2 with the highest error.

(b) The sample with the highest error. The
CAM clearly maps to the optic nerve.

(c) The next sample. The CAM maps to what
the committee later confirmed as drusen.

Figure 4.10: Only fold 2 prominently includes the optic nerve. It is recognized as a depth-wise
interruption of retinal structure and erroneously classified as pathological. Drusen are also
highly correlated with other AMD signs, providing further false positives.

samples. There was no need to interpret an obscure statistical feature of the network activa-
tions or even solve a complicated dichotomy as to whether a B-scan situated between fluid
and negative samples is fluid. Remarkably, an introductory understanding of the anatomy
of the eye, as the one presented in the introduction to the present work, was sufficient to
completely disregard some of the strongest model suggestions. This high level of confidence
allows efforts to be focused on philosophically challenging samples.

Furthermore, this analysis has provided clear, actionable steps to improve the data set
and the performance of subsequent models: obtain negative samples where the optic nerve is
present. Even if such data collection is not possible, the analysis provides an understanding
of which situations are expected to reduce the diagnostic efficacy of the model. Moreover, the
detection of unfavorable situations can be combined to limit the situations where the model
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is recommended for use as a diagnostic aid.

Figure 4.11: Images of fold 2 labeled as positive that the image considered negative.

Figure 4.11 shows the counterpart to the previous analysis. It is a representative example
of the situations where the conservative approach in CAM acceptance prevents ambiguous
CAMs from being reviewed. By selecting only those samples where the change is unam-
biguously justified by the CAM, we evaluate the methodology more fairly against those cases
that the model did not rank highly. Due to this strict, conservative criterion, only one of the
samples in Figure 4.11 was selected. It was accepted by the committee.

Finally, the quantitative analysis of agreement shows that, despite the inclusion of drusen
samples that heavily penalized themodel, those that themodel ranked highly resulted inmore
changes to the data set by the committee. As a demonstration of the impact of drusen on the
results, consider that all false positives in fold 2 were determined to be related to them.

Tables 4.5 and 4.6 contain two columns for the neovascularization agreement: possible and
clear. This is due to the fact that the committee could not achieve consensus on some sam-
ples, rather a the third category of ‘possible’, as in possible neovascularization, was included.
Therefore the agreement values had to be calculated in two ways: taking those possible cases
to be positive or negative. For the purposes of changing labels, where the committee could
not reach consensus the original label was kept.

Model ranking Fluid Neovasc. (positive) Neovasc. (negative)

High 0.7273 0.7273 0.7500

Low 0.7778 1.000 0.8889

Table 4.5: Probability of agreement between the original labels and the clinician for the aided
and unaided suggestions.

Lower values in the tables indicate that the review successfully detected samples of low
agreement, i.e., those where the initial opinion of the expert and that of the committee differ.
Due to the unaided group for fluid containing no originally positive samples, the Kappa mea-
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sure between the low ranking group and the committee is 0. This is a statistical artifact not
indicating perfect performance, for context, the probability of agreement is 77.78% (Table 4.5)

Model ranking Fluid Neovasc. (positive) Neovasc. (negative)

High 0.4261 0.4371 0.4155

Low 0.0000* 1.0000 0.6087

Table 4.6: Cohen’s Kappa measure of inter-expert agreement between the original labels and
the clinician for the aided and unaided suggestions. *The zero value is a statistical artefact.

Even with the small amount of samples changed as a consequence of the revision (18 out
of 1279, 1.4%) and the leaving aside of those used for testing (13 remain, 1%), the new labels
produced a very significant improvement in performance across the board (Table 4.7). Notice
how the performance increase from revision is superior to that obtained through architectural
enhancements (Table 4.4).

Review Model Cross entropy Accuracy AUROC

Before ResNet-18 (F) 0.3390 ± 0.0076 0.8600 ± 0.0014 0.9262 ± 0.0026

After ResNet-18 (F) 0.2847 ± 0.0127 0.8827 ± 0.0088 0.9549 ± 0.0105

Before DenseNet-121 (F) 0.3033 ± 0.0287 0.8724 ± 0.0182 0.9439 ± 0.0088

After DenseNet-121 (F) 0.2623 ± 0.0016 0.8983 ± 0.0080 0.9529 ± 0.0049

Before DenseNet-121 (F & C) 0.2947 ± 0.0020 0.8759 ± 0.0072 0.9446 ± 0.0025

After DenseNet-121 (F & C) 0.2532 ± 0.0136 0.8973 ± 0.0100 0.9560 ± 0.0029

Table 4.7: Improvement in augmented baseline model performance due to label revision. In
all cases results are the mean of three times repeated, 4-fold cross-validation. F stands for
horizontal flipping and C for cropping to 248 pixels.

Aside from the success in improving data set quality and model performance, a subtle
point can be extracted from the unprompted choice of “possible” as an evaluation. Perhaps
whether a B-scan contains or not neovascularization can only be consistently predicted by
experts in the context of surrounding scans and even other imaging modalities. This is testa-
ment to the difficulty of characterizing nAMD, especially with B-scan-level granularity.

One of the key aspects of the following experiment is that it employs per-eye labeling,
circumventing this difficulty. Therefore any improvements in performance in the following
experiment indirectly constitute evidence towards the hypothesis that the specification of
precise B-scans is a major contributor to the difficulty of characterizing nAMD demonstrated
in the last experiment.
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4.4 Third experiment: domain-specific pretraining

The previous two experiments have been an exposition as to the difficulty of characterizing
nAMD. However, their reasoning makes one assumption: model capacity is not the limiting
factor. The following experiment will both explore the possibility of leveraging a larger data
set to transfer features as well as attempt to demonstrate the adequacy of the models and
techniques used for clsasification of AMD OCT images.

4.4.1 Data set and task considerations

We have performed binary classification on the “world’s largest online annotated SD-OCT
data set” [54], which is often used as a state-of-the-art benchmark in the domain. However in
this case we are presented with true binary classification, as in the distinction between eyes
with and without intermediate AMD. The main difference with the approach taken in the
original paper is that for the purposes of our experiment, the network will have to classify
an eye as having signs of AMD or not from a single B-scan. This is a much harder task,
especially in the detection of the positive class, as not all B-scans may present strong signs of
AMD. Some measures have been taken during preprocessing to address this, described within
preprocessing in general.

Figure 4.12: B-scan from a public data set [55] using a Spectralis OCT device.
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After training a classifier in this new task, even if the scans do notmatch exactly, the closer
domain should provide stronger pretraining than the natural images of Imagenet (i.e., images
taken from a natural scene with a camera). Nevertheless, the most important consideration
when selecting a public data set for transfer learning is naturally the similarity to the final task.
Many OCT data sets were considered for the purpose, until the aforementioned prevailed. As
we can observe in Figure 4.12, the appearance of samples, even within SD-OCT devices can
vary substantially. In contrast, as soon as B-scans were extracted from the volumetric data of
the selected data set, we could immediately appreciate the qualitative similarity (Figure 4.13).
Still, the different device from Bioptigen, Inc, implies that the resolution and therefore the
effective dimensions of retinal features differ.

Figure 4.13: Images from the selected public data set [55] show great similarity to the one
employed in the first two experiments.

However, this was also considered during the process of data set selection. The dimen-
sions of the public data set are close to the common settings of the machine used in the first
experiment, comprising an en face square of side 6.7 mm. [54]. The wider resolution can be
easily equalized by down-sampling from 1000 to 512 horizontal pixels. And while the depth
resolution is different, at 4.5 µm.[56], this can also be overcome.

Preprocessing

The depth dimension has been approximately adjusted by cropping the public data set to 416
vertical pixels, removing empty vertical space like in the previous data set, and interpolating
back to 512. A vertical offset of 16 pixels is also applied to remove noise present at the top
of some B-scans. Jointly, this greatly increases the similarity across data sets, both nominally
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and visually. In fact, it becomes nontrivial to distinguish between B-scans from the public
and the nAMD data sets by inspection alone (Figure 4.14).

(a) The same B-scan as Figure 4.13 after pre-
processing. (b) Positive sample after preprocessing

Figure 4.14: Images from the public data set become hard to distinguish from the original ones
after preprocessing.

Additional exploratory analysis of the public data set revealed some problems with the
naïve approach of training a classifier on all samples. Unlike our original data set, as C-scans
are to be considered globally, not all B-scans need to present the same image quality. Indeed
the first C-scan already demonstrates a fading out in B-scans as they get farther away from
the fovea (Figure 4.15). After further inspection of the data set, no samples were found to
contain significant fading in the central area around the macula, but the problem of fading in
the periphery was common.

To address it, the following procedure was performed: of the 100 B-scans in each C-scan
only the middle half were utilized for training and evaluation. Interestingly, the authors of
the data set had already considered the impact of restricting data to a limited distance from
the fovea: They found that distances smaller than this half reduction resulted in negligible
performance degradation [54].

Then, to accelerate training by reducing the vast amount of data, only every fifth B-scan
of the middle half was selected. Unlike the original data set, where only an effectively ran-
dom number of B-scans are provided, the public data set provides full C-scans. We therefore
take advantage of the facts that contiguous samples are almost identical and that most clini-
cally relevant morphological alterations are within the macula to at once eliminate the fading
problem and reduce the amount of data by an order of magnitude.
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(a) 80th B-scan from the same C-scan as 4.13

(b) 95th B-scan from the same C-scan as Figure 4.13

Figure 4.15: Some B-scans from the public data set fade out as they get farther away from the
fovea.
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4.4.2 Results

This heavy reduction in data resulted in outstanding performance both in terms of training
time and testing performance. The first experiment on the data utilized a training recipe with
hyperparameters (learning rate of 10−4) and minimal data augmentation (horizontal flipping
after resizing to 256) identical to those of the first experiment. The new data set is much more
representative, as it has only 10 samples per eye and yet more samples overall. Exploiting
that fact, cross validation was substituted for a single training-validation-testing split. The
first 200 control samples and 400 AMD samples were separated for testing. The same amount
of the next images were selected for validation, and the rest for model fitting. This scheme
produced the results in Table 4.8 after training for just 10 minutes. Furthermore, the Imagenet
pretraining enabled the network to reach great validation metrics on the first epoch (Figure
4.16). The first epoch showing higher training than validation error is a consequence of the
training error being averaged from the training batches, and not calculated again passing
through the complete data set.

Phase Cross entropy Accuracy AUROC

Validation 0.0701 ± 0.0120 0.9767 ± 0.0050 0.9973 ± 0.0012

Testing 0.0837 ± 0.0228 0.9713 ± 0.0066 0.9966 ± 0.0010

Table 4.8: Performance of the augmented baseline configuration of the previous experiment
on the pubic data set. Values represent the means and standard deviations of five repetitions.

To put these results into perspective, the preprocessing allowed a ResNet-18 to discrimi-
nate eyes with and without AMD from a single B-scan; with the lowest testing AUROC of all
repetitions (99.58%) being above the best figure in the original paper’s shallow learning, in-
terpretable approaches [54]. Moreover, the cross entropy and accuracy figures are consistent
with the AUROC value.

The object of this experiment is not, however, to compare the performance of the approach
with others on this public data set; but rather to establish whether the combination of models,
training techniques, hyperparameters and data augmentation are sufficient to obtain adequate
performance in this benchmark domain.

4.4.3 Transfer learning performance and discussion

The second and main objective of the experiment is to determine whether training on this
benchmark data set provides a superior transfer learning over the usual Imagenet. Initially in
the restricted, binary task, and later in the full task of characterization. A unique feature of
pretraining in such a similar task is the possibility of determining the “zero-shot” performance
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Figure 4.16: The training and validation curves from 5 repetitions, showing the 95% confidence
interval.

of the network on the original data set, i.e., its performance without training on it at all. As
demonstrated in Table 4.9, AUROC performance is significantly above chance globally, with
high variability across folds. Moreover, Table 4.10 shows that the review process produced
a modest but consistent improvement in zero-shot performance. Nevertheless, absolute per-
formance remains barely above chance, which is reasonable given the task difference and the
small extent of revision.

Fold Cross entropy 0 Accuracy AUROC

0 2.2417 0.7191 0.6423

1 4.4475 0.5443 0.4835

2 5.4415 0.4453 0.5518

3 4.1339 0.5450 0.6278

4 2.2414 0.7528 0.6311

Mean 3.7012 ± 1.4172 0.6013 ± 0.1300 0.5873 ± 0.0682

Table 4.9: Zero-shot performance on the ‘binary’ task.

While samples from the two data sets present a similar appearance visually, the different
means of their pixel values, together with the consistency of the samples within data sets
might indicate that the pixel intensity distribution is limiting zero-shot performance. Both
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Fold Cross entropy 0 Accuracy AUROC

0 2.1702 0.7258 0.6625

1 4.4475 0.5443 0.4835

2 5.4769 0.4415 0.5520

3 4.1339 0.5450 0.6278

4 2.1319 0.7640 0.6364

Mean 3.6721 ± 1.4748 0.6041 ± 0.1359 0.5924 ± 0.0735

Table 4.10: Zero-shot performance on the original data set with revised labels.

data sets have small but significant differences in mean and standard deviation of their inten-
sities (Table 4.11).

Data set Mean Standard deviation

Ours 0.3130 0.0997

Farsiu et al. 0.3484 0.1401

Table 4.11: Mean and standard deviations of pixel intensities for both data sets.

However, normalizing each data set with the calculated values instead of the ones used
in PyTorch for Imagenet did not significantly improve performance. Even if the results im-
proved, it would be preferable to develop a model robust to variation in intensity and contrast,
as is the case with human experts. Thus, we performed an experiment with data augmenta-
tion specifically for this purpose: randomly changing the intensity and contrast of the images
such that both data sets fall within the margin of variation. This is different from usual data
augmentation in that the objective is not to improve validation measures on the data set, but
rather to construct a model with the intention to generalize outside of the specific data set.

Table 4.12 indicates that zero-shot transfer performance improved slightly by jittering
brightness and contrast 20%, which leaves the values of the original data set within the new
training distribution. The improvement in performance from the original to the revised labels
was also kept. While there was a substantial decrease in cross entropy, accuracy and AUROC
increased very slightly. Even after the improvement, cross entropy remains worse than the
one expected from a random classifier.

In summary, it is reasonable for these augmentations increase zero-shot performance only
slightly, as the tasks are different and good performance is not to be expected even from a
perfect classifier on the public data set. This is because according to the definition of the
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Jitter Revised Cross entropy Accuracy AUROC

0 No 3.701 0.601 0.587

0 Yes 3.672 0.604 0.592

0.2 No 1.656 0.602 0.598

0.2 Yes 1.144 0.605 0.602

Table 4.12: Means of zero-shot performance on the original data set.

task on the public data set, all samples in the nAMD data set should be classified as posi-
tive, resulting in the expected negligible specificity. Even then, AUROC remains a valuable
bias-independent data point that showed a consistent, if small, superiority over the random
classifier.

What is important for the network is to extract features of broad applicability in order for
the subsequent fine tuning process to be effective, and not somuch the zero-shot performance,
given the different tasks. Given the reasonable looking CAMs of Figure 4.17 and Figure 4.18,
such features were probably extracted. In Figure 4.17, activations seem to follow drusen,
morphological features (samples 1254 and 1250) and choriocapillary alterations. Of Figure
4.18 we can highlight the activations of sample 13, which surrounds an area of fluid, as well
as sample 1164, whose activation focuses not on the area of elevated retina, but rather on the
RPE, which we know to be the possible causal factor. Testing without training revealed that
the performance of a model completely independent from the data set also improves with
label revision, further solidifying the results from the previous experiment.

Finally, fine tuning the best model on the original data set produced no significant im-
provement over the first experiment. This seems to indicate that label scarcity and to a much
lesser extent variability are the main limiting factors in the original experiment, given the
great similarity between the two data sets and the dissimilar performance.
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Figure 4.17: CAM of the model trained only on the public data set for some negative samples
of fold 0 of the nAMD data set.
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Figure 4.18: CAM of the model trained only on the public data set for some positive samples
of fold 0 of the nAMD data set.
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4.5 Fourth experiment: nAMD characterization

Finally, after determining data set and model feasibility through an initial detection approach,
addressing intra-expert variability and data scarcity through a relabeling pipeline and pre-
training, we will evaluate the original task of multi-label classification.

Metrics

The rationale for the chosen metrics is similar to that of the first experiment. As opposed to
multi-class classification, where classes are exclusive, multi-label classification is essentially
performed with multiple binary classifiers that share features. Therefore, the same metrics
utilized in the first experiment will be maintained, but decomposed according to the class. In
the case of the ROC, a curve will be calculated for each class.

4.5.1 Reproduction of the baseline

Model Augs. Fluid accuracy Neovasc. accuracy

ResNet-18 F 0.8576 ± 0.0933 0.7881 ± 0.0944

ResNet-18 F & C 0.8602 ± 0.1042 0.7755 ± 0.0953

DenseNet-121 F 0.8688 ± 0.0770 0.8264 ± 0.0795

DenseNet-121 F & C 0.8910 ± 0.0506 0.8176 ± 0.0637

(a) Multilabel accuracy results.

Model Augs. Fluid AUROC Neovasc. AUROC

ResNet-18 F 0.9183 ± 0.0756 0.8264 ± 0.1137

ResNet-18 F & C 0.9157 ± 0.0951 0.8294 ± 0.0915

DenseNet-121 F 0.9317 ± 0.0530 0.8804 ± 0.0604

DenseNet-121 F & C 0.9499 ± 0.0341 0.8741 ± 0.0605

(b) Multi-label AUROC results.

Table 4.13: Means and standard deviations of the baseline multi-label results.

We begin the experiment by quantifying the performance of the augmented baseline mod-
els, ResNet-18 and DenseNet-121, established during binary classification. Table 4.13 contains
the results of this experiment. Reproducing the procedure of the initial experiment, horizon-
tal flipping alone is compared to flipping and cropping the image to a size of 228 pixels. We
can observe how the 3 times repeated, 4-fold cross-validation means differ between the two
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classes, with fluid always resulting in superior metrics. This was expected from the domain
knowledge presented in the contextualization chapter, as fluid has a more marked appearance
on OCT images, thus making it easier to recognize for domain experts and models alike.

On the other hand, the standard deviation calculated within and across folds shows a
slightly different performance profile. While for the AUROC there is an improvement in con-
sistency from neovascularization to fluid, this trend does not hold for the standard deviation
of accuracy. Another difference is that with the introduction of cropping, the consistency of
the accuracy results of ResNet-18 seems to regress a little, with standard deviation increasing
by 1%. This is one of the only cases where more augmentation hurt performance.

The other one being neovascularization in DenseNet-121. There, the introduction of crop-
ping decreased both accuracy and AUROC. This is in stark contrast to performance in the
classification of fluid, which markedly increased from an AUROC of 93.17% to essentially
95%, all while almost cutting deviation in half. Accuracy reported a similarly large increase
from 86.88% to 89.10%, and again, almost halving the variability of results. Finally, even if neo-
vascularization accuracy decreased, it also experienced a reduction in variability. Therefore
adding cropping improved the consistency of convergence globally.

4.5.2 Analysis of revision

Model Augs. Fluid Neovascularization

ResNet-18 F 0.8560 ± 0.0906 0.7903 ± 0.969

ResNet-18 F & C 0.8603 ± 0.1033 0.7802 ± 0.0988

DenseNet-121 F 0.8688 ± 0.0753 0.8311 ± 0.0836

DenseNet-121 F & C 0.8898 ± 0.0511 0.8223 ± 0.0681

(a) Multi-label accuracy results.

Model Augs. Fluid Neovascularization

ResNet-18 F 0.9178 ± 0.0770 0.8323 ± 0.1191

ResNet-18 F & C 0.9163 ± 0.0914 0.8377 ± 0.0995

DenseNet-121 F 0.9313 ± 0.0506 0.8883 ± 0.0676

DenseNet-121 F & C 0.9471 ± 0.0372 0.8822 ± 0.0678

(b) Multi-label AUROC results.

Table 4.14: Means and standard deviations of the multi-label results after revision.

After investigating the specific performance characteristics of the baseline experiment,
we turn to the revised labels to deepen the analysis. Table 4.14 replicates the layout of the
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baseline, showing the results for the new labels. While improvements outnumber regressions
and have a higher magnitude, they all lie well within one standard deviation.

The best model, DenseNet-121 with flipping and cropping, shows improvements in neo-
vascularization accuracy and AUROC, with a regression in fluid performance of half the mag-
nitude. We can not conclude from these results alone that the improvement in nAMD detec-
tion produced a significant improvement in nAMD characterization.

However, validation loss, which aggregates fluid and neovascularization and ismuchmore
sensitive to outliers, does show a consistent improvement (Table 4.15) in both mean and stan-
dard deviation. There is a general decrease of around 2% with the revised labels. This might
not seem large relative to the standard deviation, but there are two factors to consider that
explain why such a change is relevant.

Model Augs. Before After Difference

ResNet-18 F 0.4339 ± 0.1119 0.4240 ± 0.1086 -0.0099 (2.28%)

ResNet-18 F & C 0.4219 ± 0.1244 0.4152 ± 0.1232 -0.0067 (1.59%)

DenseNet-121 F 0.3670 ± 0.0955 0.3590 ± 0.0918 -0.0080 (2.18%)

DenseNet-121 F & C 0.3750 ± 0.0985 0.3669 ± 0.0951 -0.0081 (2.16%)

Table 4.15: Mean multi-label cross entropy results for the revision.. The difference is mean is
indicated in absolute amount and relative to the original loss (in parentheses).

First, we must recall the absolute amount of change in the data set produced by revision.
The labels of only 13 out of approximately 1300 samples were changed in the training and
validation set. Thus that 1% of labels produced a 2 % decrease in cross validation, meaning
that they were above average contributors to it.

Second, we must also consider that the standard deviations presented for both tables are
calculated from three times repeated cross validation, and that experiment 1 demonstrated
consistent variation in performance between folds. As Figure 4.19 demonstrates, the variation
in performance remains consistent with experiment 1. It is much smaller within that between
folds, whose creation is not random. Therefore, the impact of chance in the comparative
power of mean results is smaller than the standard deviation might suggest. To illustrate this,
we take the standard deviations for the repeated folds, as only those are random. In the case
of DenseNet-121, that implies at least a 5 times reduction in standard deviation for the worst
cases. In fact, the standard deviation of validation loss for the repetitions of fold 3 is smaller
than the 2.16% improvement in mean cross entropy.
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(a) Variation of fluid accuracy with shuffling. (b) Variation of neovascularization accuracy
with shuffling.

(c) Variation of fluid AUROC with shuffling.
(d) Variation of neovascularization AUROC
with shuffling.

Figure 4.19: Multilabel performance across folds.

Considering these two factors, as well as the fact that there was improvement for all model
and augmentation configurations, we conclude that the revision process produced a small but
consistently measurable improvement in cross entropy in the nAMD characterization task.

4.5.3 Further developments

Like in the analysis of experiment 1, we turn to the training curves for more information
about training dynamics. Figure 4.21 illustrates the training curves of the best performing
model, DenseNet-121 with flipping and cropping augmentations trained on the revised labels.
Validation cross entropy does not seem to significantly decouple from accuracy and AUROC
except for the single outlier in fold 2 that managed to evade early stopping through a last
improvement in epoch 18. A possible explanation is that in the more difficult task of nAMD
characterization, it takes more epochs for the model to converge, making the nominally equal
early stopping patience of 10 epochs more aggressive in relative terms.
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Furthermore, validation cross entropy remains below that of the random classifier for the
large majority of the time, which was not the case in the binary task. This hints to a reduced
importance of outliers as a result of the initial revision process andmostly due to the increased
granularity of labeling. Which could mean that a most effective way to continue developing
models for this task would be to collect more labeled data or even unlabeled data from the
same machine and configuration.

Nevertheless, cross entropy is still close to chance performance, much higher than would
be expected from the accuracy and AUROC curves, implying that outliers still play a role.
Indeed, a relatively small number of samples produce disproportionately high erroneous con-
fidence in the model, with reasonable CAMs that warrant investigation (Figure 4.20). Of
course, the great majority of those mistakes are expected to be due to generalization error,
however, it remains an open question whether repeating the variability mitigation with more
detailed labels could provide additional improvements.

Figure 4.20: Class-specific CAMs depicting fluid candidates.

In conclusion, the variabilitymitigation from experiment 2 producedmeasurable improve-
ments in characterization performance. However, due to the limited extent of the changes,
performance improvement was not as dramatic as in the case of binary detection. The anal-
ysis of the training curves seems to imply that label noise is no longer one of the primary
limitations to the generalization performance of the model. Nevertheless, some class-specific
CAMs produced by this new task seem promising for another cycle of intra-expert variabil-
ity mitigations. However, such repetition of the methodology lies outside the scope of the
present project and within the possible lines of future work.
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(a) Fold 0. (b) Fold 1.

(c) Fold 2. (d) Fold 3.

Figure 4.21: Multilabel training curves for DenseNet-121.
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Conclusion and future work

This chapter constitutes the closure of the project. It includes a review of its paradigms,
methods and results, while also providing a view to related lines of research and possible

continuations of the work herein.

5.1 Characterization of nAMD in OCT images

This project has fundamentally consisted in an investigation of the task of AMD character-
ization, which, as presented in the introduction, informs the effective therapy of one of the
leading causes of severe visual impairment. Beginning with the initial task of binary classifi-
cation, development has been a data-centric exploration into the characteristics of neovascu-
larization and fluid, two of the most prominent signs of advanced AMD.

The initial task is a demonstration as to the difficulty of characterizing AMD in the real-
world regime of data scarcity and expert variability uncertainty. These problems were dis-
covered and addressed through the usual tools of machine learning: statistical analysis of the
training and validation metrics resulting from cross validation. Together with the domain
expertise resulting from the bibliographic research and hands on experience from analyzing
the individual samples, the statistical results could be interpreted to diagnose both models
and data.

These results led to the formulation of hypotheses about possible avenues for improve-
ment. Following the discussion of label noise in state of the art research in computer vision,
it was considered whether a model trained on part of the data could not only detect, but help
address the presence of label noise. Because AMD characterization is a complex domain with
subtle labeling, careful manual review could not be utilized to correct the noise introduced by
the usual semi-automated methods.

Instead, amethodology formachine-assisted intra-expert variabilitymitigationwas devel-
oped. For each of the five independent groups in which the data set was divided, a model was
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trained on the rest of the data. Then, the predictions of the model were used to rank samples
according to the disagreement between the model and the original labeler. Naturally, even if
the classifier had developed perfect generalization, some of the samples of high disagreement
could be outside the training distribution and hence simply misclassified. The solution resides
in the application of interpretability techniques, concretely Class Activation Mapping (CAM),
to assist the reviewer through understanding the rationale for model outputs.

This proved highly effective for several reasons. First, spatial information was a boon for
the recognition of positive samples that were not correctly labeled as such. For example, one
sample was reviewed where the model presented highly concentrated activations around a
hyporeflective zone. With the benefit of context, namely adjacent scans and their labels, the
expert was able to confidently identify as fluid an otherwise difficult sample. Second, it al-
lowed for the immediate rejection of unpromising candidates, promoting a better allocation of
expert time towards challenging samples. The paramount example of this was the prominent
presence of the optic nerve in one of the five groups. The CAM enabled the correct discovery
of a large amount of false positives due to the optic nerve being a depth-wise disruption to
the layered structure of the retina. And third, the interpretable review process provided a
new perspective into the data set and the model. Concretely, through the last example, it pro-
vided actionable insight for its improvement. If examples of patients without signs of AMD
where the optic nerve was prominently depicted were added to the groups, the model would
become robust to it. Alternatively, if such data could not be obtained, it would bring valuable
information as to the applicability of the model to different situations.

The methodology was evaluated through a blinded, controlled trial. For each sample
where the expert was convinced by the CAM as to the opposite label, similar samples were
found that were not detected by the model. The review committee was not informed about the
proposed labels, nor as to whether the review suggestions were proposed with or without as-
sistance. Instead, a set of samples were presented to be classified, to prevent the introduction
of bias. The results were compared to the original labels and the suggestions, and sugges-
tions by the model were found to consistently outperform similar images, both for fluid and
neovascularization.

The other major hypothesis examined data quantity as opposed to quality. Similarly to
how pretraining on natural images, such as the ubiquitous Imagenet, improved generalization
performance on the initial domain, perhaps transfer learning from a closer domain could
provide additional gains. Instead of the inductive bias of images in general, a classifier trained
on another OCT data set could possibly contain more adequate feature extractors. If the data
set contained signs of AMD, even higher level features could be relevant.
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To test it, a similar but much larger data set had to be found. Through bespoke prepro-
cessing, the scans of a large public data set became close to indistinguishable from the nAMD
data. This was achieved through careful consideration of resolution and its corresponding
physical dimensions, as well as the basic distinction between OCT modalities. Then a strat-
egy was devised to, ironically, reduce the amount of training data. Through equally spaced
sampling of the middle half of the 3D scans, the number of 2D scans was reduced by an order
of magnitude, while theoretically remaining representative due to the high correlation be-
tween contiguous folds. This meant that the time to train a model was measured in minutes,
and not hours.

Porting the training recipe from the original experiment immediately produced great re-
sults. As a reference, it beat the already impressive AUROC of 0.9917 of the original paper.
This constituted great evidence for the capability of the exact configuration used in the ini-
tial experiment to classify, if not characterize, AMD. However, the zero-shot results on the
original data set were less impressive. Because the original data set only contained eyes with
AMD, the model trained to detect AMD from a single B-scan had negligible specificity. Nev-
ertheless, its ranking capability, measured through AUROC, showed a small but significantly
above chance zero-shot performance.

The attempt to fine tune this pretrained model did not result in an improvement in per-
formance, however. Given the rest of the experiments, a reasonable explanation is that the
task is in the data-constrained regime, and as such, better representations for the model are
unlikely to provide sizeable benefits. Nonetheless, as soon as the data is extended, model ca-
pacity could start to play a bigger role on performance. Therefore, a model pretrained on an
extremely close domain could be a useful asset during the process of assisted review or even
labeling, as will be discussed in the section on future work.

Finally, once the hypotheses had been tested, their impact on the multi-label task was
evaluated, including CAMs. The conclusion is that, while performance is perhaps short of
what would ideally be clinically applicable, this research project gained insight into the re-
quirements for building a AMD characterization system, as well as the specific but generally
applicable methodologies for its construction.

5.2 General methods

While the project has been focused on and guided by the task of AMD characterization in OCT
images, it is important to point out that the methods herein developed could be of interest for
machine learning in medical imaging in general. Quality of labels is of paramount importance
in the development of such systems and, given that medicine is not an exact science, some
amount of expert variability is to be expected. However, simply accepting that labels should
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ideally be reviewed by a committee does not make it cost effective, especially in light of the
data and labor-intense nature of medical imaging.

The application of model-based ranking with CAM analysis demonstrated in this work
can scale with compute to serve much larger data sets, allowing for domain expert time to be
intelligently allocated to challenging samples. And it can in principle do so for any domain
where spatial activation is relevant, including imaging modalities and scales ranging from
histology to radiography.

In the modern ML regime of heavily overparametrized models, training error converges
to essentially zero, and generalization ability depends on the probability of reasonable in-
terpolations. Bigger models together with the implicit bias of SGD empirically demonstrate
better performance, but this new paradigm beyond classical machine learning has no corre-
spondingly extensive theoretical basis. Transfer learning is empirically found to be a power-
ful method for biasing large models toward reasonable interpolations. Therefore pretraining
in an adjacent task acts synergistically with the proposed review methodology, raising the
probability of outputs being the result of reasonable CAMs.

In closing, this project has explored how the changing paradigms of machine learning
translate to medical imaging. Taking the recognition that even in benchmark-grade, state-of-
the-art data sets label noise is a major limit to model performance, it considers whether the
models themselves could serve as a driving factor behind the solution. And through inter-
pretability, how more nuanced suggestions for data gathering can be provided. Finally, with
the advent of ever larger models, domain-specific transfer learning was leveraged for research
into increasingly specific tasks.

5.3 Future work

Taking this project as a starting point, there are many possible avenues for continuation that
could provide interesting new insights and answer some of the open questions. The following
sections provide a view into some of the most promising ones.

5.3.1 Interpretability techniques

Interpretability techniques have proven their usefulness throughout this work as a means of
demystifying what used to be black box models. Many in the ML branch of medical imaging
vouch for the urgent implementation of explainable and interpretable techniques in the field,
given the crucial need for justification in medicine.
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While Grad-CAM is one of the most popular techniques, it is by no means the only one.
Further work could explore the application of other useful methods, such as occlusion tests, to
complement the perspective offered by gradient-based methods. The greater variety in class
attribution techniques could make their results more robust, benefiting all the applications of
them seen throughout this project.

This includes the workflow of intra-expert and inter-expert variability mitigation, which
in itself constitutes another line of research. Bigger trials could shed light into what are
the contributing factors to variability among and within experts from a data set standpoint.
Deep learning models can help select the toughest examples to classify, greatly increasing the
efficiency of inter-expert agreement trials by removing the large majority of samples where
overwhelming agreement is expected.

Another promising approach follows the fields of semi-supervised learning and human-
in-the-loop ML, leveraging the great asymmetry present between samples and labels. During
usual clinical practice, a large number of OCT C-scans is collected; nevertheless, to the best of
our knowledge, it is extremely rare for them to be labeled B-scan-wise with the level of detail
presented in this work. Self-supervised learning capitalizes on this asymmetry by extracting
relevant features without the need for labeling, greatly widening the potential for data inges-
tion. Semi-supervised learning elaborates on this approach by providing a relatively small
number of labels, which have an outsized impact on performance thanks to self-supervision.
Several techniques exist that exploit model knowledge to select samples for labeling with the
most expected impact, not unlike the review methodology presented in this project.

While labeling and testing is to be determined exclusively by human experts, the use of
human-in-the-loop techniques that help construct large training sets is a promising way to
improve testing performance in data sets that have not been influenced by any model.

Applying human-in-the-loop principles to this work would result in the iterative appli-
cation of the review methodology, investigating whether better labels produce better review,
which in turn produces better labels, compounding the effects until only the most ambiguous
samples remain.

5.3.2 Segmentation

Another interesting open question is whether the increse in efficiency provided by these
methods could be applied to the task of segmentation of neovascularization and fluid. Given
the correlation between reasonable CAMs and classification performance, a simple bounding
box labeling pipeline could be sufficient for improved results. Even if there was only an in-
terest in classification, the bounding box or full segmentation labels allow for sophisticated
data augmentation such as obstructions or deformations to the image that leave the crucial
region unaffected.
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5.3.3 Data augmentation

As discussed in the main work, this project has limited itself to a conservative policy of aug-
mentation where only those transformations that produce images that could plausibly belong
to the data set were considered. This strict approach has the benefit of almost guarantee-
ing that augmentation is not negatively influencing results, which proved very useful for the
purposes of this project.

However, transformations that produce implausible samples might nonetheless improve
classification performance in unaugmented samples. The most salient example is the ap-
plication of elastic transformations, that are capable of smoothly deforming the large scale
morphology of the image while retaining texture and smaller features. This would negatively
impact the interpretability of aspects such as CAM activations following retinal morpholog-
ical changes due RPE detachment. Nevertheless, it would be interesting to consider the con-
sequences of its application on performance and attribution.

5.3.4 Conclusion

In closing, this project has demonstrated how the application of machine learning, inter-
pretability and domain specific knowledge can help improve the performance of nAMD char-
acterization in OCT images and better inform as to its limitations. The development of the
further advances outlined in the sections above could prove to be a crucial factor in the in-
troduction of machine learning assistance to clinical practice.
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List of Acronyms

AMD Age-Related Macular Degeneration. 1, 3, 5, 7, 12, 14, 23, 27, 30, 41, 42, 45, 49, 61–63

AUC Area Under the Curve. 25

AUROC Area Under the Receiver Operating Characteristic Curve. 31, 32, 34–36, 38, 49–52,
55–59, 63

CAM Class Activation Mapping. i, iv, 1, 2, 21, 23, 41–43, 52–54, 59, 62–66

CAMs Class Activation Maps. 2

CNNs Convolutional Neural Networks. 2, 21

CPU Central Processing Unit. 25

FD-OCT Fourier Domain OCT. 11

GA Geographic Atrophy. 12

GPU Graphics Processing Unit. 16, 25

Grad-CAM Gradient-Weighted Class Activation Mapping. 21, 25, 65

IRC Intraretinal Cystoid Fluid. 14

ML Machine Learning. 15, 37, 40, 64, 65

nAMD Neovascular Age-Related Macular Degeneration. ii, iii, 4, 12, 14, 23, 30, 40, 44, 45, 47,
52–55, 57, 58, 61, 63, 66, 69

OCT Optical Coherence Tomography. ii–iv, 1–3, 5, 7, 10–12, 14, 15, 20, 23, 34, 40, 45, 46, 56,
61–63, 65, 66, 69
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List of Acronyms

OCTA Optical Coherence Tomography Angiography. 11

PR Precision-Recall. 32

RAM Random Access Memory. 25

ROC Receiver Operating Characteristic. 25, 32, 38, 39, 55

RPE Retinal Pigment Epithelium. 9, 12–14, 41, 52, 66, 69

SD-OCT Spectral Domain OCT. iii, 11, 45, 46

SGD Stochastic Gradient Descent. 64

SRF Subretinal Fluid. 14

SS-OCT Swept Source OCT. 11

sub-RPE Sub-Retinal Pigment Epithelium Fluid. 14

VRAM Video Random Access Memory. 25
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Glossary

A-scan Amplitude scan: Unidimensional OCT signal, perpendicular to the retina.. 10

B-scan Bidimensional OCT signal providing a cross-sectional image of the retina. Often
constructed through the grouping of A-scans. iii, 10–12, 26, 28, 30, 41, 42, 44–49, 63, 65

C-scan Three-dimensional OCT signal providing a volumetric image of the retina. Often
constructed through the grouping of B-scans. iii, 11, 29–31, 47, 48, 65

choroid The choroid of the eye is primarily a vascular structure supplying the outer retina
[57]. 7, 9, 12, 14, 27

convolution A convolution is an integral that expresses the amount of overlap of one func-
tion g as it is shifted over another function f [58]. 16, 17

druse Accumulation of extracellular, polymorphous material between the RPE and the inner
collagenous zone of Bruch’s membrane, that presents a yellow appearance in fundus
imaging [59]. 12

exudate In the context of nAMD characterization, the accumulation of serum components
in excess of the local capability of removal due to the breakdown of the blood-retinal
barrier [25]. Synonym of fluid. iii, 14

fine tuning The practice of adjusting the some or all layers of a pretrained model, often after
fully training the last layers. 20

fluid In the context of nAMD characterization, the accumulation of serum components in
excess of the local capability of removal due to the breakdown of the blood-retinal
barrier [25]. Synonym of exudate. iii, 3, 12, 14, 20, 27, 30, 32, 42, 43, 52, 56, 57, 61, 62, 65
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Glossary

neovascularization Invasion by vascular and associated tissues into the outer retina, sub-
retinal space or sub-RPE space in varying combinations [25]. iii, 1, 3, 12, 13, 27, 30, 32,
34, 41, 43, 44, 56, 57, 61, 62, 65

overfitting Refers to the process of learning specific idiosyncrasies from a training set such
as spurious artifacts or random noise, which results in an over-adaption to the training
set and therefore in a degradation of the ability to generalize to new, unseen data [60].
20, 32, 34, 35, 37

transfer learning The practice of using the parameters of a network trained in one data set
for another task. 20
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