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ABSTRACT 

Evolutionary Computation is a sub-field of Machine Learning algorithms based on Darwin’s theory of 

Evolution. Individuals are evolved using the principles of mutation, crossover and natural selection. 

One of the most known Evolutionary Algorithms is Genetic Programming (GP), that evolves as 

individuals computer programs in order to solve regression problems. In this thesis two variations of 

GP, namely Geometric Semantic Genetic Programming(GSGP) and Tree-based Pipeline Optimization 

Tool(TPOT), are applied to two energy consumption time series regression problems. Their 

performance are then compared to state-of-the-art models, LSTM and SVR optimized with DE, and to 

standard GP. It is showed that the variations of GP outperform standard GP and SVR optimized with 

DE, while also having comparable performance to LSTM. Additionally a study on the feature selection 

ability of GSGP is proposed, showing that the algorithm is not actually able to perform feature 

selection. 
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1. INTRODUCTION 

Energy is a fundamental part of our everyday life, and forecasting its consumption is crucial. Energy 

consumption data is often presented as time series, that are sequences of equally distant and ordered 

data points. Time series forecasting has been studied thoroughly, since it is fundamental in many 

aspects of our world, and it gives us the opportunity to “look into the future". This thesis explores the 

performance of new methods based on Genetic Programming(GP), namely Geometric Semantic 

Genetic Programming(GSGP) and Tree-based Pipeline Optimization Tool(TPOT) applied to time series 

forecasting problem. Two datasets were used for this experiment, one is a energy consumption time 

series provided by America Electric Power (AEP), and made of 2500 hourly observations from 2004 to 

2005, the other is the China Energy Consumption(CEC) dataset, that is made up of China’s yearly energy 

consumption from 1965 to 2017. The performance of the two afore mentioned algorithms will be 

compared to state-of-the-art models, LSTM and SVR optimized with DE, and to standard GP. In order 

to prove statistical significance the Wilcoxon rank-sum test for pairwise data comparison will be used. 

To maximize the performance of all the algorithms, a greed search to find the best combination of 

hyperparameters will be performed. For this experiment, it is expected for the variations of GP to 

outperform the standard version of the algorithm, and to have comparable performance with the 

state-of-the-art algorithms. Additionally a study on the feature selection ability of GSGP will be 

performed. The performance of the algorithm on the AEP dataset will be compared with the 

performance on modified versions of the dataset, where either random features are added, or less 

important features are modified. 
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2. PREVIOUS WORK 

 

In the past many approaches have been experimented in order to find a state-of-the-art forecasting 

model for energy consumption time series. Many studies on energy consumption forecasting have 

been done, such as in the Papers [1] and [2], where all the recently developed models for solving 

energy performance in building are reviewed. In the Paper [3] different time series analysis methods, 

such as Holt-Winters (HW), centered moving average (CMA) and others, are tested in order to find the 

best performing one, and it is shown that HW gives the smallest mean absolute error (MAE) and mean 

absolute percentage error (MAPE), while CMA produces the lowest mean square error (MSE) and root 

mean square error (RMSE). Being artificial intelligence on the rise, many authors proposed approaches 

that exploit its upsides applied to energy consumption forecasting. For example in the Paper [4] where 

the results of forecasting of the gas demand obtained with the use of artificial neural networks are 

presented. The training data for this experiment was taken from the actual natural gas consumption 

in Szczecin (Poland). In the model, calendar (month, day of month, day of week, hour) and weather 

(temperature) factors were considered. And it was obtained a multilayer perceptron (MLP) model 

capable of successfully predicting gas consumption. A similar approach was presented in Book [5], 

where different Deep Learning and Artificial Neural Network algorithms, such as Deep Belief Networks, 

AutoEncoder, and LSTM, were introduced to the field of renewable energy power forecasting. And, 

compared to a standard MLP and a physical forecasting model, showed superior forecasting 

performance. Then in Paper [6] energy consumption time series are transformed in a regression data-

set and neural networks, in particular long-short term memory (LSTM), are used to forecast future 

values. It is proved that regression from time series is more efficient and easier to use than variable 

regression, that was based on data such as GDP, population, the primary sector of the economy, the 

secondary sector of the economy, and tertiary sector of the economy. In the Book [7] long short term 

memory (LSTM), a deep learning technique, is compared with other learning techniques, such as the 

back propagation algorithm and the more recently proposed online sequential learning algorithm, in 

the context of time-series prediction. It is demonstrated that the online sequential learning algorithm 

is more reliable and provides faster convergence resulting in better prediction performance. In Paper 

[8] a hybrid model for building energy consumption forecasting is proposed, the parameters of 

weighted support vector regression(SVR) models with nu-SVR and epsilon-SVR are optimized with a 

differential evolution (DE). A detailed comparison with other evolutionary algorithms show that the 

proposed model yields higher accuracy for forecasting. This thesis focuses on studying the 

performance of evolutionary algorithms in regard of forecasting time series, but previous work already 

exists, for example [9] and [10]. In the former, genetic and evolutionary algorithms (GEAs) with 

arithmetic crossover and Gaussian perturbation are used to optimize the parameters of linear 

combination and ARMA models while forecasting different time series. The handicap of the 

evolutionary approach is then compared with conventional forecasting methods, being competitive. 

While in the latter a variation of Genetic Programming (GP), Geometric Semantic Genetic Programming 

(GSGP) with a deterministic-crossover operator (D-GSGP) is adopted. The experimental results indicate 

that D-GSGP works effectively and the acquired programs are useful for knowledge acquisition of the 

application domain. Another study on evolutionary algorithms applied to time-series is showed in 

Paper [11], where Postfix-GP, a postfix notation based GP, is used. The Postfix-GP uses linear genome 

representation and stack based evaluation to reduce space-time complexity of GP. Its performance 
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indicate that the discussed model offers a new possibility for solving time series modeling and 

prediction problems. The focus of this thesis is to explore the performance of different evolutionary 

algorithms on energy consumption time series, and compare them to the ones of other machine 

learning methods, some of which are mentioned above. 
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3. THEORETICAL BACKGROUND 

This chapter is meant to provide a better and more complete understanding of what discussed further. 

It starts with an introduction of general machine learning concepts in Section 1.1. Then in Section 1.2 

it proceeds with a more in depth description of the models used later in the thesis, and it concludes in 

Section 1.3 with a discussion of evolutionary algorithms, with a focus on Geometric Semantic Genetic 

Programming and Tree-based Pipeline Optimization Tool in Sections 1.3.2.1 and 1.3.2.2. 

3.1.  MACHINE LEARNING 

Machine Learning is the science that studies how computers can learn through data and without being 

provided specific instructions. Machine Learning is commonly divided into two sub fields: supervised 

learning and unsupervised learning. In this paper only examples of supervised learning are shown. The 

process of Machine Learning is made up of different steps: 

▪ Data Cleaning; the practice of transforming raw data taken from various sources into 

useful input for modeling. 

▪ Feature Selection, Preprocessing and Construction; applying changes to the existing 

features in order to extrapolate information. It can include creating new features or 

dropping existing ones. 

▪ Model Selection; applying different Machine Learning models and comparing their 

performance and generalization capability. 

▪ Parameter Optimization; tuning the parameters of the chosen model in order to 

maximize its performance on the data. 

▪ Model Validation; evaluating the chosen model with the fitted parameters on unseen 

data and evaluating its performance. 

▪ All the steps mentioned above can be automated in Pipelines, that are end-to-end 

constructs that orchestrates the flow of data into an output produced by one or more 

models. 

3.1.1. Supervised Learning  

The main characteristic of supervised learning is that the data (called training data) used by computers 

for their learning process is composed of features and labels (also known as targets), and the goal is to 

find a function that maps the former into the latter ones. Depending on whether the targets are 

continuous or discrete values, we talk about regression problems (for the first ones) or classification 

problems (for the second ones) . In supervised learning we are looking for the function that generalizes 

the best, that meaning the function that performs the best not only on training data but also on new 

data (called test data or unseen data).   
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3.2. Used Machine Learning Models  

3.2.1.  Neural Networks 

Neural Networks(NN) are a technology that mimics the function of the human brain, made of neurons 

(also called units) connected by set of weights. Neurons are grouped in layers, all Neural Networks 

must have one input layer, one output layer and at least one hidden layer. The most common type of 

NN are feed forward NN trained with back propagation, but many different types exists. In feed 

forward NN the input layer is fed with data (training data) that is then passed to the hidden layers, 

where each neuron is activated by a activation function that determines whether the unit modifies the 

data provided to it, then an understandable output is produced via the output layer ( continuous or 

discrete values depending on the kind of problem we are working on). The output produced by the 

Neural Network is then compared with the label of the training data and a loss is calculated according 

to a predetermined function (called loss function), and thanks to the back propagation of error the 

weights of the Neural Network are adjusted in order to produce an output closer to the label of the 

training data. This process is done for all the data points present in the training data set and the 

iteration of passing all the data points through the Neural Network is called epoch. The number of 

epochs is set by the user before starting to train the Neural Network. 

 

Examples of possible activation functions of the neurons are:  

▪ Hyperbolic Tangent function   𝑓(𝑥) =
(𝑒𝑥 − 𝑒−𝑥)

(𝑒𝑥+𝑒−𝑥)
 

 

▪ Sigmoid / Logistic function 𝑓(𝑥) =
(−1)

(1 + e−𝑥)
 

 

▪ ReLU (Rectified Linear Unit) function 𝑓(𝑥) = max (0, 𝑥) 

 

 

Where x is the input of the singular neuron, that corresponds to the sum of all the values of the neurons 

present in the layer before, multiplied by the weights connecting them to the current neuron, except 

for the input layer, where the input is the raw data. The formula that regulates how the weights are 

updated is the following: 

𝑤𝑖𝑗+1 =  𝑤𝑖𝑗 +  𝛼(𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑙𝑜𝑠𝑠)𝑥𝑗 

Where 𝑤𝑖𝑗+1 is the updated value of the weight connecting neuron i to neuron j, 𝑤𝑖𝑗 is the current 

value of the weight connecting neuron i to neuron j , α is the learning rate and 𝑥𝑗 is the value of the 

neuron j. This formula is also known as the back propagation of error. The learning rate is an hyper 

parameter whose value ranges between 0 and 1, set by the user before starting to train the Neural 

Network. It regulates how much the NN should adjust to the error. A high learning rate provides a 

faster convergence(a consistent error through generations) but it can lead to overfitting, while a lower 
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one would provide a slower convergence, but also a more generalized model . Common practice is to 

set a learning rate decay, meaning that the learning rate decreases after each epoch. 

 

 

3.2.1.1. Recurrent Neural Networks 

Standard Neural Networks don’t have memory of the data points that they have already seen, while 

recurrent Recurrent Neural Networks (RNN) are able to remember thanks to an internal loop. Thanks 

to their ability to remember RNN are mainly used for data where the order matters, such as time series 

and text. Information about previous data is stored in an hidden state that is fed to the network 

together with the subsequent input. 

3.2.1.2. Long-Short Term Memory  

Long-Short Term Memory (LSTM) are a special type of Neural Networks, mainly used for predictions 

on ordered data(such as time series). They are a variation of RNN. In LSTM the output is calculated 

taking in consideration both the input and the current state, that is an output of the previous state. 

This type of Neural Network has the capability to forget certain parts of the current state and to add 

new information to it.[6] 

 

Structure of a Neural Network 3.1 Figure 3.1 Figure 3.1 Structure of a Neural Network. 

Figure 3.2 Structure of LSTM. 
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3.2.2.  Support Vector Machines 

Support Vector Machines (SVM) are a machine learning model based on two components, a kernel 

and an optimizer algorithm. The first component is used to map non-linear data into a high-

dimensional space, where the transformed data is then linearly separable. SVM are normally used for 

classification, and the main idea behind the optimizer algorithm is to find a line or hyper plane 

(depending on the number of dimensions) that separates the classes, and that it maximizes the margin 

between the margin points (also known as support vectors). When used for regression SVM, in this 

case called Support Vector Regression(SVR), uses the support vectors to define a linear regression. SVR 

instead of looking for a boundary is looking for a curve that maps vectors into targets. 

 

 Two version of the SVR algorithm exist, the first one, called eps-SVR, proposed in the Book [12], and 

it uses the parameter ϵ that specifies the epsilon-tube within which no penalty is associated in the 

training loss function with points predicted within a distance epsilon from the actual value. While 

nuSVR, proposed in the Book [13], substitutes the parameter ϵ with ν, that controls the number of 

support vectors and training errors. Common to both the algorithms are the parameters C and γ, the 

first one is inversely proportional to the model’s regularization strength and it specifies the trade-off 

between the empirical risk and the model smoothness. While the second one controls the Gaussian 

function width of the kernel function. [8] 

3.3.  EVOLUTIONARY COMPUTATION 

Evolutionary Computation is a family of algorithms inspired by biological evolution. They are based on 

C. Darwin’s Theory of Evolution presented in [14]. Darwin’s theory can be summarized in 5 steps, show 

in Figure 1.4: 

1. Reproduction  

2.  Ability of adaptation to environment  

3. Inheritage  

4. Variations  

5.  Competition  

The evolutionary process of EC starts with an initial population P (usually randomly created) of size N, 

then via a selection process N individuals (N ≤ N) of P are selected and a new population P’ is created 

Figure 3.3 Structure of SVM. 
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(called population of parents). From the individuals in P’, thanks to the genetic operators, a new 

population P” of size N (same as P) is created, and then process is repeated all over until a certain 

stopping criteria is met. When the iterations are over the best individual of the final population is 

considered the winner, the best solution to the optimization problem. The genetic operators are 

crossover and mutation, the first one is the random combination of two individuals(called parents) and 

corresponds in nature to sexual reproduction, while the second is a random change of the single 

individual, and it corresponds to asexual reproduction. 

3.3.1. Differential Evolution 

Differential Evolution (DE) is a sub-field of Evolutionary Computation where the optimization problem 

is solved by trying to improve the candidate solution iteration after iteration. 

 

 

 In DE a random population of N individuals is created. Then, after setting a crossover probability Pc 

and a mutation scale factor F, each individual Ig in the population is mutated according to the formula: 

Where g indicates the generation of the individual and R1, R2 and R3 are three random individuals of 

the population of the current generation such that R1≠ R2≠ R3≠ I. This process is then repeated until a 

certain stopping criteria is met, usually a certain number of generations. DE is used in [8] to optimize 

the parameters ν, γ and C of nu-SVR, and ϵ, γ and C of eps-SVR, together with the weights {we, wv} of 

the Equation (3.1). 

3.3.2 Genetic Programming 

 
Genetic Programming (GP) is another sub-field on Evolutionary Computation where individ- 
uals are computer programs and usually are represented as trees, as shown in Figure 1.5, and 

Figure 3.4 Illustration of the evolutionary process that 
characterizes Evolutionary Computation algorithms, inspired by 
Darwin’s Theory of Evolution. 

(3.1) 
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are defined by two sets, one of primitive functions and one of terminals, both set by the user. 
In the tree shown in Figure 1.5 sets are terminals = {x1, x2, x3} and functions = {÷,×, +, −} 
and the tree results in the mathematical function f(x1, x2, x3)  =  x1 ÷ (x1 ×  x2). 

 
 

3.3.2.1 Geometric Semantic Genetic Programming 
 
In GP the individuals can be seen in two spaces, in genotypic or syntactic space as trees, 
or in a semantic space as vectors that represent the output. Geometric Semantic Genetic 
Programming (GSGP) is a variation of GP where Geometric Semantic (GS) operators are 
used. These GS operators modify the genotype of the individual in such a way that the 
changes are reflected in the semantic space. As shown in the Paper [6] this operators also 
induce a uni-modal error surface on Supervised Learning optimization problems, meaning 
that the optimization algorithm will always reach the global optimum. The GS crossover produces an 
offspring individual To starting form the two parent trees T1 and T2 according to the formula: 

 
where 𝑇𝑟 is a random function whose output values lie in the range [0,1]. While GS mutation 
produces an offspring 𝑇0 starting from a parent 𝑇1 according to the formula: 

 

where 𝑇𝑟1 and 𝑇𝑟2 are random functions whose output values lie in the range [0,1] and ms 

is a parameter called mutation step. GSGP has two major drawbacks, the first one being 
that the GS operators increase the size of the offsprings rapidly, making the algorithm very 

slow and difficult to use. In [16] a solution is proposed, but the final tree produced by the 

algorithm is too big to be visualized. Another drawback of GSGP is that for the GS crossover 

to lead to the global optimum its semantics need to be surrounded by the semantics of the 

individuals in the population, and this makes the initialization of the algorithm extremely 

important. [15] [17] 

Figure 3.5 Example of  a representation of an individual as a tree. 
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3.3.2.2 Tree-based Pipeline Optimization Tool 

 

Tree-based Pipeline Optimization Tool (TPOT) is a GP technique that automates the op- 
timization of Machine Learning pipelines. TPOT represents pipelines as binary expression 
trees with ML operators as terminals, and optimize them according to both performance 
and complexity. [18] 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 Example of a machine learning pipeline.[18] 
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4. EXPERIMENTAL STUDY 

4.1.  DATA USED  

Two datasets were used used for this experiment, one[19] is a energy consumption time series 

provided by America Electric Power (AEP), and made of 2500 hourly observations from 2004 to 2005. 

In order to use it with regression models the data needed to be transformed from simple time series 

to a regression data set. Each observation was used together with the previous 25 as features to 

predict the value two time step ahead, as shown in Figure 4.1. 

 

 The China Energy Consumption(CEC) dataset, taken from [6], is a time series made up of China’s yearly 

energy consumption from 1965 to 2017. In order to use it with regression models the same 

transformations applied to the first dataset were repeated, although this time, following the 

instruction from [6], 5-year data made up the features to predict the 6th year, as shown Figure 4.2. 

 

Figure 4.2 Transformation of the CEC data in order to use it for regression. 

4.2.  EXPERIMENTAL SETTINGS  

In this paper the performance of EC models on time series are compared to the performance of other 

machine learning models used in the literature. In particular LSTM[6] and a combination of nu-SVM 

and epsilon-SVR with parameters and weights optimized with DE[8]. As proved in the literature [17], 

GSGP performs better when trained with a small population, so for this experiment it was trained with 

50 individuals over 20000 generations, while GP with 500 individuals over 2000 generations. In this 

way both algorithms evaluate the same number of total individuals, exactly 1 million each. Instead, 

Figure 4.1 Transformation of the AEP data in order to use it for regression. 
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being computational power a big constraint, TPOT evaluated 25 individuals over 30 generations, in this 

way the computational times of the three algorithms(GSGP, GP and TPOT) are similar. The metric used 

to evaluate the performance of every regression model was the root mean squared error (RMSE) 

between predicted and actual output. 30 independent runs were made for each evaluated method, in 

order to provide statistical significance. Every run was performed with a different train/test split, 

consistent across different methods. The TPOT and the SVR optimized with DE algorithms, after a 

learning/test split that is consistent with the train/test split performed with the other algorithms, were 

trained using a validation set obtained from the split of the learning dataset into train and validation. 

The results presented in Table 4.3 are all taken from the last iteration of the respective algorithms. In 

order to find the best possible combination of parameters a grid search was performed for all the 

models, except for the parameters mentioned above(number of individuals and generations for GSGP, 

GP and TPOT) that were handpicked. Another exception were also the parameters of LSTM applied to 

the CEC dataset, since they were provided in [6]. During the grid search, all the combinations of 

parameters were tested on three different train/test data splits, and the ones that had the best overall 

performance were chosen. The search space for the grid search of both datasets are shown in Table 

4.1 and in Table 4.2. 

Table 4.1 Search space and final parameters of the grid search for the AEP dataset[19]. 
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Table 4.2 Search space and final parameters of the grid search for the CEC dataset[6] 

 

Table 4.3 Parameters taken from [6] for the LSTM algorithm when applied to the CEC dataset. 

 

4.3.  EXPERIMENTAL RESULTS 

 The results of this study are shown in Tables 4.4 and 4.5, respectively using the AEP dataset [19] and 

the CEC dataset[6]. In order to prove the statistical significance of the experiment the Wilcoxon rank-

sum test for pairwise data comparison was performed, and the p-values are presented in the Tables 

4.6 and 4.7. The Figures 4.3, 4.6, 4.7, 4.10 and 4.13 show the progress of fitness through generations 

for the GSGP, GP and TPOT algorithms. For a better understanding the logarithmic scale of the results 

of the GP algorithm are also presented. The results clearly show that in both cases the variation of GP, 

TPOT and GSGP, have increased performance compared to GP itself and state-of-the-art algorithm SVR 

optimized with DE[8]. While using the the CEC dataset the performance of GSGP and TPOT are 

comparable to each other, being the p-value of the Wilcoxon test greater than 0.05(as shown in Table 

4.7), while with the AEP dataset, the best performing algorithm is LSTM, with comparable performance 

to GSGP, being the p-value of the Wilcoxon test greater than 0.05(as shown in Table 4.6). 
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Table 4.4 Performance of the algorithms on the AEP dataset [19] 

 

Table 4.5 Performance of the algorithms on the CEC dataset. 

 

Table 4.6 Wilcoxon p-test values for each algorithm tested against LSTM, all applied to the AEP 
dataset[19]. Presented with an asterisk(*) if smaller than 0.05. 

 

Table 4.7 Wilcoxon p-test values for each algorithm tested against GSGP, all applied to the CEC 
dataset[6]. Presented with an asterisk(*) if smaller than 0.05. 

 

 

Figure 4.3 Average fitness of the GSGP algorithm over the generations with the AEP dataset [19]. 
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Figure 4.4 Figure 3.4: Average fitness of the GP algorithm over the generations with the AEP dataset 
[19]. 

 

Figure 4.5 Average fitness of the GSGP algorithm over the generations with the CEC dataset. 

 

Figure 4.6 Average fitness of the GP algorithm over the generations with the CEC dataset. 
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Figure 4.7 TPOT’s fitness through generations for both datasets on the learning partition. 

4.3.1.  TPOT models 

Of all the 30 generated TPOT models applied to the AEP dataset [19], two were selected for a deeper 

analysis, the best performing one, shown in Figure 4.8, and the smallest one, shown in Figure 4.9. The 

first one passes the features through two stacked estimators, ExtraTreeRegressor and LassoLarsCV, 

then it scales the output with a MaxAbsScaler and PolynomialFeatures and finally produces the 

estimation by passing the scaled values through another LassoLarsCV and an XGBRegressor. The 

second model is fairly more simple, it passes the data through a SDGRegressor, it scales the results 

with PolynomialFeatures and produces an estimation by passing the scaled values trough a 

LassoLarsCV. 

 

Figure 4.8 Code of the best performing TPOT model. 
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Figure 4.9 Code of the smallest TPOT model. 

4.4.  STUDY ON GSGP FEATURE SELECTION ABILITY 

 As explained in Section 3.3.2.1 the final individuals produced by GSGP are trees, that take as input the 

features and, by applying mathematical functions, produce an output. Since the size of the individuals 

increases rapidly throughout generations, is not possible to visualize the one produced at the last step, 

and therefore we cannot understand what happens to each feature from the dataset and if there is 

any feature selection performed by GSGP. An experiment was set in order to test this, starting from 

the AEP dataset[19] the 7 least relevant features were recognized using to two methods, correlation 

to the target and the presence or not in the best individual at the last generation of the GP algorithm. 

Then random noise was applied to those features and also 7 other random features were created. 

Then the performance of GSGP on normal data were compared to the ones of the same algorithm 

applied to 5 modified datasets: 

▪  one with random noise applied to the 7 least important features according to 

correlation 

▪  one with the addition of 7 new randomly created features  

▪ one with both of the previous methods  

▪ one with random noise applied to the 7 least important features according to both GP 

and correlation 

▪ and finally one with random noise applied to the 7 least important features according 

to both GP and correlation and 7 new random features. 

In order to have statistical significance the algorithm was tested on the data for 30 generations, and 

the average performance are shown in Table 4.8. Additionally the p-values of the Wilcoxon rank-sum 

test for pairwise data comparison between GSGP with the standard dataset and the same algorithm 

with the modified datasets presented above are shown in Table 4.9, and the graphical representation 

of the performance over the generations are shown in the images 4.10, 4.11, 4.12, 4.13 and 4.14. As 

shown GSGP performs worse on the modified datasets and we can assume that it does not perform 

feature selection, but it uses all the information from all the features. 



18 
 

Table 4.8 performance of GSGP on modified versions of the AEP dataset [19] 

 

Table 4.9 P-value of GSGP on modified versions of the AEP dataset compared to the ones on the 
standars dataset [19] 

 

 

Figure 4.10 Fitness of GSGP over generations on AEP dataset and dataset with random noise added on 
least important features according to correlation. 

 

Figure 4.11 Fitness of GSGP over generations on AEP dataset and dataset with added random features. 
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Figure 4.12 Fitness of GSGP over generations on AEP dataset and dataset with random noise added on 
least important features according to correlation and added random features. 

 

  

Figure 4.13 Fitness of GSGP over generations on AEP dataset and dataset with random noise added on least 
important features according to both correlation and GP. 
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Figure 4.14 Fitness of GSGP over generations on AEP dataset and dataset with random noise added on 
least important features according to both correlation and GP plus added random features. 

4.5. FINAL REMARKS 

In this Chapter it was shown how the variations of GP exceed standard GP and have comparable 

performance to state-of-the-art algorithms. In particular we looked at GSGP and TPOT, and compared 

them to GP, LSTM and SVR optimized by DE. Then it was performed a study about the capability of 

GSGP to achieve feature selection. It was done by comparing the performance of GSGP on the standard 

dataset, to modified versions of it, where noise was added to the less important features and new 

random features were created. The results on the latter were statistically worse, and therefore it was 

shown that GSGP is not actually able to perform feature selection.  
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5. CONCLUSION AND FUTURE WORKS 

In this thesis two variations of GP, namely GSGP and TPOT, are applied to two energy consumption 

time series regression problems. Their performance is then compared to state-of-the-art models, LSTM 

and SVR optimized with DE, and to standard GP. All the algorithms are applied to two time series 

forecasting problems. The first one is an energy consumption time series dataset provided by America 

Electric Power (AEP), and made of 2500 hourly observations from 2004 to 2005, the second one is the 

China Energy Consumption(CEC) dataset, that is a made up of China’s yearly energy consumption from 

1965 to 2017. In order to prove statistical significance, the Wilcoxon rank-sum test for pairwise data 

comparison is used and, to maximize the performance of all the algorithms, a greed search to find the 

best combination of hyperparameters is performed. It is shown that GSGP and TPOT outperform 

standard GP in both the scenarios and have also a better performance than SVR optimized with DE. It 

is presented that for the CEC dataset GSGP and TPOT have the best performance. While for the AEP 

dataset LSTM is the best performing algorithm, with performance comparable to TPOT. Additionally a 

study on the feature selection ability of GSGP is performed. The performance of the algorithm on the 

AEP dataset is compared with the performance on modified versions of the dataset, where either 

random features were added, or less important features were modified. Being the performance on the 

standard dataset statistically better than the one on the modified versions, it is shown that GSGP is 

not actually able to perform feature selection. 

In the future the performance of GSGP and TPOT on other time series regression problems should be 

explored, in order to understand better their capabilities.  
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