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Abstract—This work presents a Sentinel-2 based exploratory
workflow for the estimation of Above Ground Biomass (AGB) in
a Mediterranean forest. Up-to-date and reliable mapping of AGB
has been increasingly required by international commitments
under the climate convention, and in the last decades, remote
sensing-based studies on the topic have been widely investigated.
After the generation of several vegetation and topographic
features, the proposed approach consists of 4 major steps: 1)
Feature selection 2) AGB prediction with k-Nearest Neighbour
(kNN), Random Forest (RF), Extreme Gradient Boosting (XGB),
and Artificial Neural Networks (ANN); 3) hyper-parameters fine-
tuning with Bayesian Optimization; and finally, 4) model expla-
nation with the SHapley Additive exPlanations (SHAP) package.
The following results were obtained: 1) before hyper-parameters
optimization, the Deep Neural Network (DNN) yielded the best
performance with a Root Mean Squared Error (RMSE) of 42.30
t/ha; 2) after hyper-parameters fine-tuning with Bayesian Opti-
mization, the Extreme Gradient Boosting (XGB) model yielded
the best performance with a RMSE of 37.79 t/ha; 3) model
explanation with SHAP allowed for a deeper understanding of the
features impact on the model predictions. Finally, the predicted
AGB throughout the study area showed an average value of 83
t/ha, ranging from 0 t/ha to 346.56 t/ha.

Index Terms—Above Ground Biomass, Sentinel-2, Extreme
Gradient Boosting, SHAP

I. INTRODUCTION

International commitments under the climate convention [1]
as well as sustainable forest management practices require
accurate and up-to-date mapping of forested areas. Forests are
the largest terrestrial carbon pool, counting about 85% of the
total land vegetation biomass, and in them it is found 73%
of the global soil carbon [2]. Additionally, global warming
reports require detailed information on the forests’ carbon
content [3]. Hence, reliable and up-to-date Above Ground
Biomass (AGB) mapping has become worldwide essential.

This work aims to asses the capabilities of Sentinel-2
derived measures for the estimation AGB in a Mediterranean
forest. More specifically, the authors want to identify an
optimal Season for satellite data acquisition, a ranking of the
most influential satellite-generated features, as well as building
an optimal regression model.

II. DATA AND METHODS

A. Study area

The description of the study area was provided by a study
from Torralba et al. (2018) [4]. The area covers a total of
3741.5 ha and is located in the Natural Park of Serra de
Espadan, in the eastern Spain province of Castellon. This
natural park is a Mediterranean forest with soft and rounded
hills, abandoned farming with artificial terraces, and mountain
peaks up to 1100 meters of altitude. The area displays a
heterogeneous landscape dominated by pure and mixed native
coniferous and deciduous forests, with species of the genera
Pinus and Quercus.

B. Field data and field-based Above Ground Biomass

A field inventory with measured AGB at the plot level
was provided by the Geo-Environmental Cartography and
Remote Sensing Group (CGAT) of the Universitat Politècnica
de València (UPV) 1; the collection of this forestry inven-
tory was funded by the Spanish Ministerio de Economı́a y
Competitividad, in the framework of the project CGL2016-
80705-R. The field data were collected in September 2015 for
a total of 73 circular plots with a radius of 15 m distributed
throughout the study area. For each species or forest type
within a plot, AGB was estimated in t/plots using species-
specific and forest type-specific allometric equations from
Monteiro et al. (2005) [5]. The field-based AGB was then
converted from t/plots into t/ha. The field-based AGB ranges
from a minimum of 0.35 t/ha to a maximum of 274.50 t/ha,
with a mean value of 92.49 t/ha;

C. Sentinel-2 and Digital Elevation Model collection

The study area is covered by one single Sentinel-2A Level-
1C tile. One Summer (August 2015) and one Autumn (Novem-
ber 2016) image were downloaded from the Copernicus Open
Access Hub 2. The images were converted from Top of the
Atmosphere (ToA, L1C) to Bottom of the Atmosphere (BoA,
L2A) reflectance, using Sen2Cor. Further preprocessing was

1http://cgat.webs.upv.es/
2https://scihub.copernicus.eu/



carried out using the Sentinel Application Platform (SNAP);
red-edge and SWIR bands were re-sampled from 20 to 10 m
using the nearest neighbor method; the 3 bands with a spatial
resolution of 60 m (band 1, 9 and 10) were excluded from the
analysis.

The European Digital Elevation Model (DEM) and derived
slope were downloaded in the section Imagery and Reference
Data of the Copernicus website3. These products have a spatial
resolution of 25m. DEM and slope were re-sampled to the
same spatial resolution as the Sentinel-2 images (10m) by
making sure that cell size and cell positioning matched.

D. Methodology

1) Features generation: Vegetation Indices (VI) and bio-
physical parameters have been proved to increase the per-
formance of regression algorithms for AGB estimation in
different ecological zones and forest types [6, 7, 8]. Particular
care was taken in including VIs which required SWIR and red-
edge bands. Hence, VIs were calculated for both dates, that
is August 2015 and November 2016. A total of 10 VIs were
generated: Normalized Difference Vegetation Index (NDVI),
Green Normalized Difference Vegetation Index (GNDVI), Soil
Adjusted Vegetation Index (SAVI), Modified Soil Adjusted
Vegetation Index (MSAVI), Global Environmental Monitoring
Index (GEMI), Normalized Difference Vegetation Index red-
edge 1, 2 and 3 (NDVIre1, NDVIre2 and NDVIre3) , Chloro-
phyll red-edge index (Clre), and Normalized Difference Water
Index (NDWI).

Additionally, 5 biophysical parameters - Leaf Area Index
(LAI), Canopy Water Content (LAI cwc), Canopy Chlorophyll
Content (LAI cab), Fraction of absorbed photo-synthetically
active radiation (FAPAR) and Fraction of vegetation cover
(FCOVER) - were calculated for each image by using the
biophysical processor in SNAP. Such variables have been
found to enhance the estimation of biomass by describing
spatial distribution and dynamics of vegetation [7].

Further spatial predictors were included. This allows to
consider not only the spectral response of different surfaces,
but also the spatial relationships among these surfaces. There-
fore, texture measures derived from the Gray Level Co-
occurrence Matrix (GLCM) were included, as they have been
widely used for enhancing remote sensing-based classification
and regression forestry-related problems [9, 10]. Therefore,
contrast, entropy, and GLCM-mean were derived from both
Sentinel-2 band-2 (blue) and NDVI generated for August 2015
and November 2016.

2) Features selection: In order to build a reliable model,
careful evaluation is required when deciding which and how
many features to include in the said model. To the best of
our knowledge, step-wise regression and Random Forest (RF)
measures are amongst the most frequently used approaches for
feature selection in the field of AGB [11, 12, 13, 7]. Despite
step-wise regression is still widely used for this purpose, it
was decided not to include it. Such a decision is legitimized

3https://land.copernicus.eu/

by the work of several authors proving its unsuitability for
feature selection [14, 15].

Feature ranking is performed using the RF algorithm, which
provides 3 measures of impurity: Gini index, entropy, and
variance. Variance, or residual sum of squares, is used to mea-
sure node impurity in regression problems, and it represents
the total reduction of the variance of the target variable due
to the split of a certain feature at the node [16]. Impurity
measures can be used for feature selection by evaluating the
extent to which each feature contributes to decreasing the
averaged impurity in each tree composing the forest [16], so
as to calculate the MDI for each feature. Those features able
to account for more variance decrease are going to be at the
top of the ranking [16]. Therefore, the MDI can be seen as the
total decrease in node impurity from splitting on the variable,
averaged over all trees [17].

3) Above Ground Biomass prediction: The ranking yielded
by the MDI method was tested and evaluated using several
non-parametric Machine Learning (ML) algorithms: K-Nearest
Neighbour (kNN), Random Forest (RF), Extreme Gradient
Boosting (XGB) and, lastly, 3 Artificial Neural Networks
(ANN). Hence, each model was cross-validated by using cross-
validation and a scaling function.

kNN is a ML algorithm and it does not assume normal
distribution or linear relationships; furthermore, it can be used
for regression and classification problems. This non-parametric
algorithm has been widely tested for the prediction of AGB
[18, 19]. The default value of 5 was used for ”k”.

RF is an ensemble ML algorithm constituted of several
decision trees [20], and it is widely used for classification,
regression, and other tasks. Default hyper-parameters values
were used for the testing of the RF, with 100 estimators.

The Extreme Gradient Boosting (XGB) is a popular variants
of the Gradient Boosting algorithm, and it has been the winner
of many ML competitions [21]. In order to test the feature se-
lection ranking, an Extreme Gradient Boosting algorithms was
trained using default hyper-parameters, with 300 estimators,
and a learning rate of 0.3.

Finally, 3 ANN were generated. These had the following
architecture: a Linear Neural Network (LNN) - with no hidden
layers -, a Shallow Neural Network (SNN) - with 3 hidden
layers of 8,4 and 1 neurons -, and Deep Neural Network
(DNN) - with 5 hidden layers of 128, 64, 32,16, 8 and 1
neurons.

4) Hyper-parameters fine-tuning: Bayesian optimization
was implemented by using a python package by Nogueira
(2004) [22]; who defines it as a constrained global optimiza-
tion tool which needs a performance metric to be maximized in
as few iterations as possible, through Bayesian inference and
Gaussian process. For this work, the negative RMSE (-RMSE)
was set as the value to be maximised. Subsequently, the hyper-
parameters to be tested for each algorithm and their respective
ranges were identified. Hence, Bayesian optimization builds a
probabilistic model for the selected performance metric and
search for the hyper-parameters combination which maximises
the value of such a chosen metric. This approach is here used



as an alternative to the long computational time characterizing
a Grid Search and to the pure randomness which we deal with
when using Random Search.

5) Model explanation with Shapley values: Ideally, a ML
model should be highly accurate and simple to interpret. By
”simple to interpret” is intended the ability to expose its
performance in an understandable and intuitive way. Unfor-
tunately, the more the model complexity increases, the harder
it is to understand how certain values were predicted and
which features had contributed more to those predictions.
When working with a simple model, the impact that a feature
has on the model output is easily interpretable by looking
at its weights; whereas, complex models such as ensemble
methods or deep networks are not as easy to understand; in this
scenario, a model explainer can help interpreting the model
results [23].

The SHapley Additive exPlanations (SHAP) package was
used as model explainer for the best performing model. SHAP
was created by Lundberg (2020) [23]4 and, according to its
author, its implementation allows for appropriate user trust,
provides insights for model improvement, and supports the
understanding of the problem being modelled.

The proposed method was implemented using scikit-learn
and executed in Anaconda 2020.10 on a computer with
NVIDIA GeForce GTX 1650 4 GB RAM.

III. RESULTS

1) Features selection: Figure 1. shows the MDI that each
feature brings to the model. We can observe that the first
9 selected features, apart from the DEM, were all extracted
from the Summer image. Furthermore, biophysical parameters
were often selected, specifically Canopy Chlorophyll Content
(LAIcb), Canopy Water Content (LAIcw), and a chlorophyll
index calculated using red-edge bands (Clre). A SWIR band
(b12), the DEM, and a texture measure, the entropy measure
derived from the summer NDVI, were also included in the top
selected features.

2) Above Ground Biomass prediction: The worst perform-
ing predictive model was the LNN, which yielded 77.2 t/ha
as its lowest RMSE, using the first 40 features selected by
the MDI method. For the KNN, the lowest RMSE (44.5t/ha)
was reached when the first 25 features selected by MDI
were included; The RF algorithm yielded the best predictive
performance when only the first 5 features selected by the MDI
where included, with a RMSE of 44.29. Whereas, for the XGB
algorithm, after an initial arise of the model performance, the
error started erratically increasing once more than 23 features
were included in the model. The lowest RMSE corresponds to
45.44 t/ha and it was achieved by using the first 23 features
of the ranking generated by MDI. The SNN ended up in a
RMSE of 43.23 t/ha when using 15 variables. Finally, for the
DNN, the RMSE had a very erratic pace, and after an initial
decrease, it started increasing once more than 5 features were
added. The best performing DNN was achieved when using the

4https://github.com/slundberg/shap

Fig. 1. Feature selection based on Mean Decrease in Impurity

5 features identified by MDI, which yielded an error of 42.30
t/ha. Furthermore, the LNN, SNN and DNN were tested for
over-fitting, without showing important signs of it.

3) Hyper-parameters fine-tuning: When working with neu-
ral networks, hyper-parameters fine tuning is a complex and
time-consuming task, due to the high number of hyper-
parameters to be taken into account. Therefore, the Bayesian
Search algorithm was applied only to the remaining 3 regres-
sion models. After optimization, RF showed an error of 44.16
t/ha, KNN of 42.68 t/ha, and the XGB achieved the lowest
error, 37.79 t/ha.

Hyper-parameters optimization for XGB was performed by
using as model input the 23 previously selected variables
from the MDI feature selection method, and by fine-tuning
6 hyper-parameters within their respective range of values:
Alpha (from 0 to 0.9), Gamma (from 0 to 0.9), learning rate
(from 0 to 0.9), Number of estimators (from 30 to 1000),
maximum depth (from 1 to 8), and the sub-sample (from 0 to
0.9).

Finally, the AGB throughout the study area was predicted
using the XGB with Bayesian Optimization and feature selec-
tion using the MDI method. The predictions show an average
value of 83 t/ha, ranging from 0 t/ha to 346.56 t/ha.

4) Model explanation with Shapley values: By observing
the SHAP summary plot in Figure 2, which contain 20 of the
23 selected features, these can be divided into 2 groups: 1)
features which increasing in values pushed the model to output
AGB higher than the base value; 2) features which increasing
in values would push the model to output AGB lower than the
base value.

Belonging to the first group are: The Chlorophyll index
based on red-edge bands from the Summer month (ClreAug),
the Fraction of absorbed radiation from both months (FAPA-
RAug and FAPARNov), the Canopy Chlorophyll Content from
the Summer month (LAIcbAug), and the slope; while, band



12 from the Summer image (b12Aug) and the DEM belong
to the second group. The remaining features do not show any
clear visual pattern in the way they impacted the model output.

Fig. 2. Summary plot with SHAP

IV. DISCUSSION AND CONCLUSION

Overall, Summer features had a higher position in the
ranking than Winter features when using the MDI method.
Out of the 63 variables, only 23 were used for the final model.
These can be observed in figure 1, as figure 2 only shows the
first 20 features, due to a limitation of the SHAP algorithm.

Bayesian Search improved the XGB model predictions; this
search method had advantageous computation time compared
to the Grid Search, yet its implementation is complex. The
XGB algorithm was found to be the best performing algorithm
when used in combination with MDI and Bayesian Search.

For all the tested models, AGB values lower than 40-50
t/ha were slightly overpredicted, whereas values higher than
150-160 t/ha were underpredicted. This is a typical issue
when estimating AGB with the use of ML and satellite images
[8, 19, 7], and it is exacerbated by a limited number of
representative samples for low and high values of the forestry
inventory.

The insights gathered with SHAP showed the utility of a
model explainer for the scientific community. Further work
should be focusing on the exploration of model explainers
so as to allow for appropriate user trust, and to support the
understanding of the problem being modelled [23].
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