
A Work Project, presented as part of the requirements for the award of a Master's degree in

Finance from the Nova School of Business and Economics.

FORECASTING FINANCIAL ASSET PRICE MOVEMENTS USING CONVOLUTIONAL

NEURAL NETWORKS – APPLICATION TO THE U.S. FINANCIAL SERVICES SEC-

TOR AND COMPARISON ACROSS INDUSTRIES

43949 – Jonathan Boße

Work project carried out under the supervision of:

Patrícia Xufre Gonçalves da Silva Casqueiro

17-12-2021

Abstract:

This thesis explores the applicability of CNNs as a price movement forecasting tool for ETFs,

using a technical analysis approach and three different image encoding techniques. After de-

veloping a general methodology, the thesis focuses on the application to the U.S. financial ser-

vices sector. Subsequently, the research draws comparisons to results obtained for other U.S.

sector ETFs using the same model approach.

Overall results show that the CNN models, while proving some potential and exceeding a ran-

dom model in accuracy, show significant weaknesses for all industries in predicting Buy and

Sell signals. Addressing these weaknesses, limitations of the approach are explored to suggest

methods for model performance improvements.

Key words:

Trading, Technical Analysis, Convolutional Neural Networks, Industry Comparison, Gramian

Angular Fields, Markov Transition Fields, Financial Time Series Forecasting, Financial Ser-

vices Sector

Table of Content

List of Figures ... vi

List of Tables .. vii

List of Abbreviations ... viii

1 Introduction ... 1

2 Trading and Time-Series Forecasting ... 3

2.1 Trading.. 3

2.2 Introduction Financial Time Series Forecasting ... 5

2.3 Technical Analysis with CNNs .. 8

3 Fundamentals and Methodology ... 10

3.1 Introduction to CNNs ... 10

3.1.1 Definitions .. 10

3.1.2 Key Components of CNNs .. 12

3.2 Labelling Approach .. 14

3.2.1 Fixed Time-Horizon Method ... 15

3.2.2 Triple-Barrier Method .. 16

3.2.3 Simplified Triple-Barrier Method .. 17

3.3 Feature Engineering .. 18

3.3.1 Feature Creation ... 18

3.3.2 Stationarity ... 20

3.3.3 Feature Selection .. 22

3.5 Image Construction... 23

3.5.1 Gramian Angular Fields ... 23

3.5.2 Markov Transition Fields ... 25

3.6 Generic Model Architecture ... 25

iv

3.7 Performance Evaluation ... 35

3.7.1 Computational Evaluation ... 35

3.7.2 Financial Evaluation .. 38

4 Industry Implementation ... 41

4.1 Introduction to the industry implementation .. 41

4.2 Industry Analysis .. 41

4.2.1 ETF Description ... 41

4.1.2 Exploration of the IYG price data set .. 43

4.1.3 Dynamics in the Financial Services sector during the analysis period 44

4.3 Data pre-processing, feature engineering and image encoding 46

4.3.1 Data and technical indicators ... 46

4.3.2 Stationarity test and differential calculus ... 47

4.3.3 PCA results .. 47

4.3.4 Image encoding and model training ... 48

4.4 Analysis and interpretation of the model results .. 48

4.4.1 Comparison of overall model metrics and benchmark to purely random model . 48

4.4.2 Comparison of class-specific metrics .. 50

4.4.3 Financial performance evaluation .. 51

4.5 Comparison to results from other sectors ... 52

4.5.1 Computational performance comparison across industries 53

4.5.2 Financial performance comparison across industries .. 53

4.6 Conclusion and outlook .. 54

4.6.1 Limitations ... 54

4.6.2 Outlook .. 55

5 Performance Comparison and Discussion ... 56

v

6. Limitations and Outlook ... 59

6.1 Limitations .. 59

6.2 Outlook ... 60

References .. 61

Appendix .. 70

vi

List of Figures

Figure 1 Illustration of the Convolution Operation. ... 13

Figure 2 Exemplary Max Pooling Operation ... 14

Figure 3 Rolling Forward Cross-Validation ... 27

Figure 4 Model Architecture .. 27

Figure 5 Activation Functions .. 30

Figure 6 iShares U.S. Financial Services ETF (IYG) – Price development from beginning of

2010 until end of 2019………………………………………………………………………...43

vii

List of Tables

Table 1 - Overview Financial Time Series Research ... 7

Table 2 - Technical Indicators and their Parameter Settings ... 20

Table 3 - Parameter Distribution for Randomized Search ... 28

Table 4 - Activation Functions and Formulas .. 30

Table 5 - Optimisers and Formulas .. 33

Table 6 - Top ten holdings of the IYG ETF with their respective relative weight……………42

Table 7 - Variables included in the initial data set …………………………………………….46

Table 8 - Comparison of overall model metrics across the three model types and a purely ran-

dom model…………………………………………………………………………………….48

Table 9 - Comparison of class-specific metrics across the three model types……………..…49

Table 10 - Comparison of financial performances across the three model types…………….51

Table 11 - Average performance metrics across five industries (IT, Healthcare, Energy, Finan-

cial Services and Industrials)…………………………………………………………………53

Table 12 - Financial performance comparison……………………………………………….54

viii

List of Abbreviations

Abbreviation Meaning

ADF Augmented Dickey-Fuller test

ANN Artificial Neural Network

B&H Buy & Hold

CNN Convolutional Neural Network

ETF Exchange Traded Funds

FTH (method) Fixed time-horizon method

GAF Gramian Angular Fields

GADF Gramian Angular Differentiation Field

GASF Gramian Angular Summation Field

MTF Markov Transition Fields

NN Neural Network

PCA Principal Component Analysis

PXL (method) Sezer’s feature pixelation (method)

RF Random Forest

SVR Support Vector Regression

TB (method) Triple-barrier (method)

 1

1 Introduction

For technical traders, i.e. practitioners of technical analysis, image analysis plays a vital role in

their day-to-day decision-making, given that many decision are based on patterns and trends that

can be observed in the stock charts (Drakopoulou 2015, 4). However, when looking at how algo-

rithmic trading, i.e. trading supported by computational resources, is done in practice, one can see

very little use of image recognition; instead, other algorithmic trading techniques are primarily in

use. Due to various factors, such as the emergence of significantly better hardware and new com-

putational approaches, the last 10 to 15 years have seen critical advances in Deep Learning, espe-

cially recently in the field of image recognition and analysis using convolutional neural networks

(CNNs). CNNs have proven to be increasingly good at recognising and distinguishing objects.

Thus, a critical question that needs to be asked is how these advances can be leveraged as appli-

cations to trading, simulating the trader's decision process based on image analysis with the help

of CNNs. There has already been research on the application of CNNs to forecasting stock price

movements, however, within a limited scope. The objective of this paper is to apply CNNs to

different industries to determine whether there are differences in the performance and usability of

CNNs used for stock price predictions across various industries

For this purpose, image recognition with CNNs will be applied to the following six industries and

comparisons be made:

o Information Technology

o Healthcare

o Industrials

o Energy

o Oil & gas

o Financial Services

2

To achieve a high degree of representativeness for each sector and reduce idiosyncratic factors

inherent to individual companies, industry ETFs or indices consisting of a large variety of com-

panies will be used as assets to forecast on, instead of using individual company shares. Moreover,

only ETFs or indices covering the U.S. market will be used to increase comparability across the

industries, avoiding differences in geographic factors as much as possible.

The paper is structured in the following way:

Firstly, an introduction to trading and stock analysis approaches is given to provide context on

how CNNs fit into the scope of stock analysis and time-series forecasting.

Secondly, a high-level introduction to CNNs will be given, and the general methodology used in

this paper will be explained.

The third part focuses on applying an established methodology to the specific industries, respec-

tive adjustments to the methods to account for particular characteristics of the industries and the

results obtained for each sector.

In the fourth, the best-performing hyperparameters as well as model performances across the dif-

ferent industries will be compared and discussed and conclusions on the added value of the appli-

cation of CNNs to price movement forecasts will be drawn.

The fifth focuses on the comparison of the established performance measures across the different

industries.

In the sixth and last part, cross-sectoral limitations of the methodology are faced and an outlook

on potential further research topics is provided.

3

2 Trading and Time-Series Forecasting

The following section will provide a brief introduction to trading and its two essential stock anal-

ysis approaches and a high-level overview of time-series forecasting methods, in order to place

CNNs in the context of trading and price forecasting.

2.1 Trading

There are several types of trading that can be distinguished based on factors such as the frequency

of executed trades, the period of an asset and the underlying method used to determine which

assets to buy and sell (Banton 2021). However, regardless of the trading type they are applying,

traders have the common key objective of maximising their profits. Traditionally, the most com-

mon groups of traders are so-called technical and fundamental traders, based on the stock analysis

approach they use: technical and fundamental analysis, the most important general analysis tools

in the realm of investing and trading (Petrusheva and Jordanoski 2016, 30). They represent two

approaches to determining what shares investors should buy or sell to maximise their profit. Tech-

nical analysis also gives indications on the optimal time to execute the transaction (Petrusheva

and Jordanoski 2016, 31). Although their overall objective is identical, they differ significantly in

the assumptions they are based on, the methods they employ and the time horizons for which they

are used (Petrusheva and Jordanoski 2016, 30). While fundamental analysis focuses on the eco-

nomic forces of supply and demand that cause prices to change (Murphy 1999, 5) and aims at

determining the fair value of corporate securities by studying company-specific key value-driv-

ers, so-called fundamentals, such as a company's earnings, its risks factors, growth rates and com-

petitive positioning (Lev and Thiagarajan 1993, 190), technical analysis focuses solely on the

share price and trading volumes as the two key determinants to forecast future price developments

(Petrusheva and Jordanoski 2016, 28).

4

The main premise of fundamental analysis is that each asset has a fair value that it will always

converge to in the long run, but it may not always reflect this fair value due to temporary mispric-

ing in the markets (Lev and Thiagarajan 1993, 191). The fair value can be determined by an in-

vestor through the analysis of the underlying fundamentals, such as the company's financial state-

ments, the overall economic state of the markets the company operates in as well as developments

of the industry the company belongs to. An investor can then generate profits by identifying mis-

priced assets, capitalising on the eventual price corrections that will take place in the market ac-

cording to the basic premise of fundamental analysis (Abad, Thore and Laffarga 2004, 231).

The core belief of technical analysis, on the other hand, is that all factors affecting the stock price

(fundamentals, political factors, environmental factors, etc.) are already reflected in the price of

that stock, which results in the reasoning that only price and volume data need to be analysed to

forecast future price movements (Murphy 1999, 2).

A second and third concept essential to technical analysis are the assumptions that prices move in

trends and that history repeats itself (Murphy 1999, 2). With these two assumptions in place, an

investor can take investment decisions based on patterns that worked well in the past (history

repeats itself) and can generate profits by identifying trends in early stages of their development

to trade in accordance with the direction of these trends (Murphy 1999, 3).

Regarding the time horizons for which the two methods are used, it can be stated that fundamental

analysis commonly uses longer periods when analysing the underlying data and is mostly used

for longer-term investment decisions, and as such, is often used by investors focusing on value

investing (Petrusheva and Jordanoski 2016, 27). Technical analysis, on the other hand, focuses

stronger on short-term data (price and volume data for single a day, few days or few weeks) and

is often used for the identification of assets that can be traded to generate profits in the short

term, i.e., stocks whose prices will experience significant changes in the near future (Petrusheva

and Jordanoski 2016, 28).

5

Fama’s Efficient Market Theory (1970) states that none of the investment analysis approaches

will allow an investor to generate returns that exceed the market return, given that any new infor-

mation entering the market will be immediately included in the asset price. Following this state-

ment, technical analysis, i.e. forecasting future price movements based on past price develop-

ments, will not generate excess returns above the market. This paper will analyse to which degree

the Efficient Market Theory holds true when applying CNNs to the general technical analysis

approach, given that they are potentially able to recognise patterns that traditional technical anal-

ysis methods miss.

2.2 Introduction Financial Time Series Forecasting

While technical and fundamental analysis have traditionally been the two most widely used ap-

proaches to stock price forecasting, emerging technologies have opened up new possibilities to

stock price analysis, a type of data that is difficult to predict as financial markets are volatile,

representing non-linear, fluctuating, and high noise data (Thakkar & Chaudhari 2021, 1). The use

of machine learning and deep learning approaches has gained increasing attention due to their

ability to detect localised data features at multiple levels. This trend also opens new possibilities

for investment strategies and changes the nature of investing. Relying on deep learning for invest-

ment makes trading and investment decisions more rational than investment decisions based on

human knowledge and experience, with the latter tending to result in more subjective and biased

decisions (Yang et al. 2019, 387). Different forecasting types which might be of prediction inter-

est include either the movement direction of the stock market to predict local extreme values or

turning points to recognise the perfect point to either sell or buy (classification problem) or the

magnitude of change of the market movement including future prices (regression problem) (Peng

et al. 2021, 10).

6

Before the rise of deep learning applications for financial problems, conservative statistical meth-

ods were used. The logistic regression as one popular classification model provides an easy un-

derstanding and interpretation of the results. However, these traditional statistic models assume

linearity – thus, representing a crucial limitation (Peng et al. 2021, 14).

Deep Artificial neural networks as linear models with pieces of nonlinearity bypass these prob-

lems by permitting the learning of more abstract knowledge representations. Nonetheless, by

working with more complex structures and hence more features, they are more prone to overfit-

ting. (Peng et al. 2021, 15).

Extensive research has been conducted about possible other approaches for making predic-

tions in trading. Among others, popular approaches include Artificial Neural Networks (ANNs),

Support Vector Regressions (SVRs), Logistic regressions and Decision Trees (Huang et al. 2019,

134). Examples of extensive research conducted in this area can be found in several research pa-

pers. An overview is presented in Table 1.

Even though all these approaches seem promising, CNN’s have a big advantage: They are able to

work well with data having a spatial relationship (Brownlee 2018). A necessary requirement to

fulfill is the transformation of data into images before being able to make predictions though, as

information is retrieved via multi-scale localized spatial features (Chen et al. 2021, 69) (Xu et al.

2015). They have proven themselves to be highly successful for stock predictions, as stock data

can be illustrated as a 2D matrix (Chen and He 2018).

7

Authors Goal Approach Main Results

Moghaddam
and Esfandyari (2016)

Predict daily
NASDAQ
stock ex-
change returns

ANN R² values above 0.9

Nayak et al. (2016,
441 et sqq.)

Predict daily
and monthly
movements of
the stock
(whether they
go up or
down)

Decision Boosted
Tree

Outperformed a SVM and a
Logistic Regression Model

Henrique et al. (2018,
183)

Predict stock
prices from
different mar-
kets

Support Vector Re-
gression

Performed especially well
for market periods with lower
market volatility and for a
strategy with updating the
model periodically

Patel et al. (2015,
2171)

Predict Indian
Stock market
indices

Two-stage fusion ap-
proach between
ANNs, Random For-
est Models
and SVRs combined
to hybrid models:
SVR–ANN, SVR–
RF and SVR–SVR.
They were after-
wards compared to
single models

Results of this study have
shown ANNs and RFs to bet-
ter perform in a hybrid model
including SVRs rather than as
single models. The best over-
all performance was shown
by the SVR-ANN model

Vijh et al. (2020, 605) Forecast next
day stock clos-
ing prices

Random Forests
and an ANN

They indicate strong results.
Overall, in this case, the ANN
performed better than the RF

Table 1 - Overview Financial Time Series Research

Source: Own illustration

Within the last years, different approaches to financial time series forecasting with CNNs have

been addressed. Cohen, Balch, and Veloso (2020) have created various charts based on open,

high, low, and closing prices to forecast trading signals using a CNN. The results demonstrate that

the transformation of the time series into images is beneficial for the recognition of trading sig-

nals. Sezer and Ozbayoglu (2018) on the other hand create images based on 15 technical indica-

tors over a period of 15 days (15x15 image). Using these images and a CNN-TA architecture, the

8

research team was able to forecast entry and exit points (Buy, Hold, Sell) comparatively better

than with other models. Arratia and Sepúlveda (2020) make use of recurrence plots and data of

12-month periods to predict the direction of the S&P 500 the following month. Their CNN model

attains an accuracy of 63 percent. The most promising and cited methods were proposed by Wang

and Oates (2015). They used Gramian Angular Fields and Markov Transition Fields to transform

time series into images and ran a tiled CNN for classification. Due to the promising results, the

method was adapted and further developed in other research papers.

2.3 Technical Analysis with CNNs

While there has already been research on the applications of CNNs to stock price prediction, a

status review shows that there is still hardly any practical use of this approach. This paper will

focus on expanding the state of current research, evaluating if there are differences across indus-

tries in terms of computational and financial performance of investment strategies based on CNNs.

Before going into details on CNNs and the applied methodology, it is important to understand

why CNNs are highly applicable to technical analysis. There are two key factors making the com-

bination of technical analysis with the usage of convolutional neural networks an attractive in-

vestment research topic: Firstly, the assumption that no knowledge about factors and trends af-

fecting the markets is necessary as they are already included in the price (Murphy 1999, 4). Tech-

nicians know that there are many reasons why markets move, but do not assume it necessary to

know these reasons in the forecasting process (Murphy 1999, 4). Based on these assumptions, it

is sufficient to use visual representations (such as charts) of past price movements as a base to

predict future price developments. Consequently, it appears reasonable to use CNNs to analyse

the information contained in these visual representations without having to include further exter-

nal information that might be difficult to represent in an appropriate visual input for a CNN.

Secondly, experienced technicians increasingly take intuitive decisions based on the patterns they

see in the charts (Murphy 1999, 6). They learn to intuitively recognise the meaning of a variety

9

of patterns, i.e., what price movements tend to be preceded by what type of patterns in the charts.

Seen from a high level, CNN's have a very similar approach to learning. Through different layers

within the neural network, a CNN learns to recognise patterns in the images it is trained on, giving

it the tools to make inferences from these patterns to the classification of that image, in order to

be able to classify unknown images. Thus, it seems reasonable to assume that a CNN can be

trained to predict future price movements based on patterns in past data in the same way that a

human technician would.

10

3 Fundamentals and Methodology

This chapter provides the theoretical and methodological basis for the thesis. First, an understand-

ing of the concepts of neural networks and convolutional neural networks is given. Then, several

preprocessing methods are considered, and an overview of the generic model architecture and its

evaluation methods are presented. The approach in this chapter is to outline widely established

perspectives regarding the concepts presented in the current research. It is continuously reasoned

which methodology is used for this work. Definitions that are appropriate for this thesis are also

provided.

3.1 Introduction to CNNs

The following section provides an introduction to the deep learning algorithms used in this work.

The terminology related to neural and convolutional neural networks and their essential structure

are described. The associated components are presented to provide a deeper understanding of how

the systems operate.

3.1.1 Definitions

Definition Neural Network

Neural networks (NNs) are ‘computerised intelligent systems’ (Thakkar and Chaudhari

2021, 2) that aim to recognise patterns and learn relationships in data by simulating the signal ex-

change between biological neurons in the human brain. A neural network consists of different

layers of artificial neurons, also called units, which are interconnected and can be divided into

input units, hidden units, and output units (Kröse and Van der Smagt 1993, 15). A set of input

units receives information and applies certain weights, which are translated into an output by the

network through an activation function (Kröse and Van der Smagt 1993, 15). Output units signal

how the network reacts to the learned and processed information. Between input and output units

there are one or more layers of hidden units, which perform nonlinear transformations of the

11

inputs (Kröse and Van der Smagt 1993, 15). A neural network is considered fully con-

nected if each hidden unit is connected to each unit in the layers on both sides of the network. Su-

pervised neural networks learn continuously through a feedback process called backpropagation

(Chollet 2017, 11). In this iterative process, the actual output is compared to the expected output

of the network. The difference is used to adjust the weights between the units in the network, that

is, the strength of the connections, so that inputs match the correct output (Chollet 2017, 52). Neu-

ral networks continuously learn and improve with examples enabling it to respond accordingly to

an entirely new set of inputs. They are particularly popular when modeling highly nonlinear sys-

tems or when unexpected changes in input data may occur. Many applications have employed

neural networks to simulate unknown relationships between various parameters based on a vast

set of examples. Classifications of handwritten digits, speech recognition, and stock price predic-

tion are examples of effective neural network applications (Keijsers 2010).

Neural networks are usually divided into artificial neural network (ANN) and deep neural network

(DNN). A deep neural network is a type of artificial neural network, with multiple hidden layers

between the input and output layers (Thakkar and Chaudhari 2021, 2). The increasing volumes of

structured and unstructured data cause deep learning systems, i.e., neural networks with many

layers, to become increasingly popular.

Definition Convolutional Neural Network

According to Dertat (2017), convolutional neural networks (CNN) are the most popular type of

deep neural networks. They are mainly applied in pattern and image recognition problems since

they are specifically designed to process pixel data (Sezer and Ozbayoglu 2018). However, they

are also useful for natural language processing and prediction purposes. A convolutional neural

network comprises five types of layers: input, convolution, pooling, fully connected, and out-

put layers. Each layer serves a specific purpose and is explained in more detail in Section 3.1.2.

12

CNNs are generally considered superior to regular NNs due to their automatic feature selection

strategy. Using CNNs, it is now possible to build larger models to solve more complex problems,

which was infeasible with conventional NNs (Albawi, Mohammed, and Al-Zawi 2017, 1). Their

deep learning structure with multiple hidden layers allows them to abstract a larger number of

features (Dertat 2017). By analysing the data in greater detail, a higher accuracy of the output can

be achieved. The automatic feature extraction of CNNs, achieved by mapping input data to output,

is especially useful for extracting complex patterns from non-linear data (Thakkar and Chaudhari

2021, 2). This property is particularly relevant for stock market predictions, since stock-based

data is highly complex and non-linear (Thakkar and Chaudhari, 2021, 2,7). A CNN uses convo-

lution to learn the local features of the image, and thus manages to preserve the local connectivity

or spatial relationships between pixels, making them particularly suitable for extracting relevant

information at low computational cost (Arratia and Sepúlveda, 2020).

3.1.2 Key Components of CNNs

Convolutional layer

The convolutional layers are the most important building block in a CNN. Mathematically, con-

volution refers to an integration function that indicates the amount of overlap of a function shifting

over another function. In other words, the convolution describes filters that slide horizontally and

vertically over the input array (our picture) and calculate the dot product at each taken step. In this

context, the filter, also called kernel, refers to a set of weights, usually a 3*3 matrix, that extracts

features (Chollet 2018, 127-128). The so-called stride describes the step size, with which the filter

slides over the picture, meaning that increasing the stride will result in a lower-dimensional output

(Ghosh et al. 2020, 8). The output of the convolution is a feature map which stores information

about the occurrence of features in a matrix along with how well it complements the kernel. In

Figure 1 the convolution operation is demonstrated. In this example a 3*3 filter is applied on a

13

6*6 input array with stride equaling one which results in a 4*4 feature map. Applying zero-pad-

ding, i.e., padding the input array with zeros, can be used to further control the size of the output

array (O'Shea and Nash 2015, 7).

Figure 1 Illustration of the Convolution Operation.

Source: Own illustration

The CNN can contain one or more convolutional layers, each of them allowing through filters to

identify local patterns, which can later be recognised all over unseen pictures. The filters behave

similarly to the human eye and learn patterns hierarchically. The deeper the convolution

layer, i.e., the more convolutional layers applied, the more detailed and higher-level features can

be extracted from the image (Tsai, Chen, and Wang 2018, 942).

Pooling Layer

The pooling layer has the purpose to reduce the dimensionality of the convolved feature map. This

reduces the number of features and the complexity of the model while persevering the most dom-

inant features. For the pooling operation a kernel, usually of dimensionality 2*2, slides over the

feature maps and applies a pooling technique. The most used pooling technique is max pooling,

meaning to extract the maximum value for each window. Similar to the convolutional layer, the

stride size can be adapted. In the pooling layer the usual stride size is two (Chollet 2018, 127). An

example of the max pooling operation with a 2*2 window and stride two is shown in Figure 2.

14

Figure 2 Exemplary Max Pooling Operation

Source: Own illustration

Fully connected layer

Before the created feature can be fed to a fully connected layer, the outputs of the final convolution

or pooling operation are flattened. The following fully-connected layer is analogue to a simple

feed-forward ANN, meaning that each neuron in this layer is connected with each neuron in the

adjacent layers (Ghosh et al. 2020, 9). This step is essential to allow the model to generalise local

patterns. The output of the fully connected layer is a representation of the likelihood of an input

belonging to a certain class.

Descriptions of hyperparameters used for the CNN in this paper can be found in section 3.6.

3.2 Labelling Approach

To train the CNN, labelled training images are required. The approach used in this project opts to

frame the predictions as a multi-class classification instead of a regression (i.e., predicting con-

tinuous return values). The three classes used to label observations in this project are Buy (label

= 1), Sell (label = -1) and Hold (label = 0), based on the price movement during the period after

the observation. There are two general labelling approaches in the context of stock price forecasts

suggested by different papers: the fixed time-horizon method and the triple-barrier method (Lopez

de Prado 2018, 43-48)

15

3.2.1 Fixed Time-Horizon Method

The fixed time-horizon method (hereafter called FTH method) is the more commonly used one

due to its simplicity (Lopez de Prado 2018, 43). Its basic premise is to compare the price of an

asset at the end of an observation period to an upper and lower threshold h that had been previously

set. The thresholds are set as relative values to the price at the beginning of the consideration

period, e.g., 10% above and below the closing price of the previous period (Lopez de Prado 2018,

43).

Y , =

𝑆𝑒𝑙𝑙 if 𝑝 , ≤ (1 − ℎ) ∗ 𝑝 ,

 𝐻𝑜𝑙𝑑 if (1 − ℎ) ∗ 𝑝 , < 𝑝 , < (1 + ℎ) ∗ 𝑝 ,

 𝐵𝑢𝑦 if 𝑝 , ≥ (1 + ℎ) ∗ 𝑝 ,

The FTH method is straightforward and easy to implement. As it requires relatively little amounts

of data, especially compared to the triple-barrier method, it is very suitable for labelling observa-

tions from long-term datasets, for which historic high-frequency data, e.g., price on a per-hour

base, are not or only very limitedly available. However, the FTH method shows an essential short-

coming: the fixed threshold used in this method does not consider the volatility of the underlying

asset and only considers the value of the asset at the end of the observation period, but not during

the period; as such, it is unrealistic in practice, since it implicitly assumes that investors would

only implement a transaction at the end of the consideration period. In reality, an investor can

implement a transaction at any time during trading hours. Moreover, an investor will set limits

beforehand based on the volatility (i.e., inherent risk) of an asset. Furthermore, in practice, invest-

ment strategies usually have stop-loss limits (i.e., bottom limits) and profit taking targets (e.g.,

sell when 10% return target is hit) at which they would exit a position as soon as the limit is met.

As such, a more realistic labelling approach needs to consider price movements during the con-

sideration period as well as the asset's underlying volatility.

(1)

16

3.2.2 Triple-Barrier Method

The triple-barrier method (hereafter called TB method) takes into account intra-period price

movements and the asset's volatility and solves the main shortcoming of the FTH method (Lopez

de Prado 2018, 45). The TB method sets three barriers:

 Two horizontal barriers, representing the profit-taking and stop-loss boundaries. The hor-

izontal barriers are dynamic functions of the estimated volatility experienced by the ana-

lysed asset and the limit approach set for the investment.

 One vertical barrier, representing the end of the observation period.

To construct the barriers, upper and lower multipliers need to be set. These multipliers depend on

return targets an investor is setting (upper multiplier) and their degree of risk aversion, i.e. the

maximum loss they are willing to incur before exiting the position (lower multiplier) and can thus

be different across different types of investors. For simplicity, symmetric multipliers of (1 , 1)

will be used in this paper.

In the TB method, using a multi-class classification approach with three labels (Buy, Hold, Sell),

an observation is labelled based on the first of the three barriers it touches (Lopez de Prado 2018,

45):

 Y = Buy: The observation is labelled as Buy if the upper horizontal barrier is touched first.

This means that the asset's price hits the profit-taking target during the consideration pe-

riod t, and thus, the asset should be bought in period t-1 to realise a positive return.

 Y = Hold: The observation is labelled as Hold if neither the upper nor the lower horizontal

barriers are hit. This implies that the asset's price hits neither the profit-taking target nor is

stopped out by the stop-loss limit. Thus, it means no transaction is made. Depending on

the context of the investment, this either implies not investing (neither long nor short) or

holding the asset (in case the asset had already been previously bought).

17

 Y = Sell: The observation is labelled as Sell if the lower horizontal barrier is touched first.

In this case, the asset's price hits the stop-loss limit first and is stopped out. Thus, the asset

should be sold in t-1. Depending on the context this implies to either sell the asset to avoid

losses or to short-sell to generate a positive return through a shorting strategy.

The TB method is more realistic due to its consideration of intra-period price movements and

volatility, but requires significantly more data (Lopez de Prado 2018, 46). This can pose a chal-

lenge when analysing long-term data for which higher-frequency data is not sufficiently available.

The project described in this paper faces the challenge that it aims at predicting the respective

next day's price movements. As such, using the TB method would require intra-day price data to

determine which barrier is hit first. However, this intra-day price data could not be obtained for

the entire period that is being analysed in this project. To achieve consistency in the labelling

approach across the entire data set, a simplified version of the TB method will be applied.

3.2.3 Simplified Triple-Barrier Method

The upper and lower horizontal limits will be constructed in the same way as in the normal TB

method, with factors h calculated based on asset’s volatility and the chosen multiplier. However,

instead of comparing intra-day price data to the two horizontal limits to create labels on a per-day

base, high and low prices will be compared to the limits. The labelling approach is as follows:

Y , =

Sell if pi, low t+1 ≤(1-h)*pi, close t

 Hold if pi, low t+1> (1-h)*pi, close t and pi, high t+1 <(1+h)*pi, close t

 Buy if pi, high t+1 ≥(1+h)*pi, close t

 Y = Buy: An observation on day t will be labelled as Buy if the high price on the following

day t+1 is higher than or equal to the upper limit at t+1.

 Y = Sell: An observation on day t will be labelled as 2 if the low price on the following

day t+1 is lower than or equal to the lower limit at t+1.

(2)

18

 Y = Hold: Should none of the limits be exceeded on day t+1, the observation on day t will

be labelled as 0.

This labelling approach assumes that the investor is willing to hold the asset as long as necessary

to hit one of the barriers, such that time will have no impact on the position, as long as none of

the barriers are hit.

A limitation of this labelling approach is that it is unable to consider a time dimension and thus,

the issue of double labelling might arise in case that both conditions are met, i.e. the high price

lies above the upper limit and the low price lies below the lower limit. Therefore, when imple-

menting the methodology across the individual industries, the percentage of double labels will be

controlled and alternative measures taken should this percentage be above a threshold of 2%.

3.3 Feature Engineering

Feature Engineering is essential to improve Machine Learning or AI models. In the following all

pre-processing steps are explained and the reasoning for the applied methodologies provided.

3.3.1 Feature Creation

Technical Analysis is confined to the analysis of trends and movements in the market (Yang et

al. 2019). These indicators are used to predict future stock movements.

In principle, a distinction is made between two categories of technical indicators: leading and

lagging indicators. Leading indicators lead the price movement as they attempt to predict the

trend in a time series (Fernández-Blanco et al. 2008, 1851). Lagging indicators are trend-follow-

ing indicators that provide delayed feedback as they lag the market (Bogullu, Dagli, and Enke

2002, 722).

Indicators from both categories belong to one of four following types of technical indicators (Sal-

kar et al. 2021, 2).

1. Trend indicators show the direction in which the market is moving along with the

strength of the trend by comparing historical prices to a baseline (Salkar et al. 2021, 2).

19

They typically move between low and high values. The trend can be either downward

(bearish), upward (bullish), or sideways (no clear direction) (Peachavanish 2016, 2).

2. Momentum indicators assess the speed of price fluctuations in a time series by compar-

ing current and previous closing prices (Salkar et al. 2021, 2).

3. Volatility indicators measure the speed of price movement and provide information on

how much the price changes in a given period (Salkar et al. 2021, 2).

4. Volume indicators measures the number of shares traded in a stock and thus provide an

indication of the strength of the market (Salkar et al. 2021, 2).

The use of technical analysis indicators as input features for neural network systems is established

in research (Arratia and Sepúlveda 2020; Sezer, Ozbayoglu, and Dogdu 2017; Sezer and

Ozbayoglu 2018; Sim, Kim, and Ahn 2019; Thakkar and Chaudhari 2021). The selection of tech-

nical indicators was primarily based on their frequency in related studies as analyzed in literature

(Chen et al. 2021, 69; Peng et al. 2021, 5–6; Sezer and Ozbayoglu 2018, 529). In this paper, two

trend and seven momentum indicators are combined with different parameter settings. Most tech-

nical indicators possess a user defined window width as input, affecting the indicators output

(Shynkevich et al. 2017, 72). The window size typically refers to the number of raw observations

or periods processed by the indicator (Shynkevich et al. 2017, 72). The higher the window width,

the more data will be processed. For the two trend indicators, i.e., the moving averages, three

different window sizes were chosen respectively. For the seven momentum indicators, one set of

parameters was chosen for each. A total of 13 technical indicators are calculated based on the

closing price of the used ETF. Table 1 provides an overview of the selected technical indicators.

Definitions and calculations for each indicator can be found in Appendix A.

20

Technical Indicator Type Number

of

features

Parameters:

n = number of periods processed by
the indicator.

T
re

n
d

M
om

en
tu

m

Simple moving average (SMA) x 3 n = {5, 10, 20}

Exponential moving average (EMA) x 3 n = {5, 10, 20}

Rate of change (ROC) x 1 n = 12

Percentage Price Oscillator (PPO) x 1 nlong = 26

nshort = 12

Relative Strength Index (RSI) x 1 n = 14

Know Sure Thing Oscillator (KST) x 1 As defined in Appendix A.

Williams % Range x 1 n = 14

Moving Average Convergence Diver-

gence (MACD)

 x 1 nlong = 26

nshort = 12

Commodity Channel Index (CCI) x 1 n = 20

Table 2 - Technical Indicators and their Parameter Settings

Source: Own illustration

Along with the technical indicators, a set of additional variables is included in the set of predictors

for the convolutional neural network. Those include the high, low, opening and closing prices

along with the volume traded of the respective ETF, the closing prices of S&P 500, gold, and oil

futures as well as the exchange rate of Euro and U.S. Dollar.

3.3.2 Stationarity

When using financial time series, it is common to ensure stationarity as non-stationary time series

usually hamper modelling its behaviour (Hyndman und Athanasopoulos 2018). When data are

non-stationary, their characteristics, i.e. mean and variance, can change over time, impede the

prediction of future values.

21

To evaluate which variables lack stationarity, the Augmented Dickey-Fuller test (ADF) will be

used, one of the most common methods to statistically test for non-stationarity. ADF tests the

existence or absence of a unit root. A unit root test can be mathematically represented as

 𝑦 = 𝐷 + 𝑧 + 𝜀

with 𝐷 representing the deterministic, 𝑧 the stochastic component and 𝜀 the stationary error

(Verma 2021). The ADF test removes autocorrelation from the time series before testing for sta-

tionarity in contrast to the Dickey-Fuller test. The ADF can be represented as

∆ 𝑦 = 𝛼 + 𝛽𝑡 + 𝛾 𝑦 + 𝛿 ∆𝑦 + ⋯ + 𝛿 ∆𝑦 + 𝜀

where 𝛼 denotes a constant, 𝛽 the coefficient over time and 𝑝 the order of the lag. The null hy-

pothesis, 𝛾 = 0, is tested against the alternative hypothesis of 𝛾 > 0. The test statistic value

𝐷𝐹 =
𝛾

𝑆𝐸(𝛾)

is then compared to the critical value of the ADF test. A 95 percent level is chosen, corresponding

to a 𝐷𝐹 statistic of -2.86 (Cheung and Lai 1995, 277-279).

In case of non-stationarity fractional differenciation will be applied. Unlike integer differencing,

a method that simply subtracts a previous value from the current day (Hyndman und Athana-

sopoulos 2018), fractional differencing finds the optimal balance between zero and maximum

differentiation to guarantee stationarity while preserving the maximum amount of memory in the

data (Lopez de Prado 2018, 84). More precisely, it ensures that the mean and variance of the time

series do not change with time while a high correlation with the original series is maintained. A

feature on a current day can be expressed as the sum of all previous days with an assigned weight

for each value. The weight is calculated by the fractional derivative. For this purpose, a transfor-

mation method is applied that automatically finds the minimum order of fractional differentiation

and turns the time-series stationary. Walasek and Gajda (2021) applied fractional differencing to

(3)

(4)

(5)

22

stock prices before training an ANN model. They confirmed improved performance of the model

on stationary data as opposed to non-stationary data.

3.3.3 Feature Selection

Feature Selection plays a crucial role in the creation of successful prediction models, identifying

a final selection of relevant variables (Speiser et al. 2019, 94). If the right features are chosen, it

improves the overall prediction performance while reducing computational costs and diminishing

the complexity of the model.

Especially the progressive application of Machine Learning and Artificial Intelligence in the field

of trading is a driving force for the collection of enormous amounts of data. Special attention

should be paid to strongly correlated features (Peng et al. 2021, 5). The creation of technical anal-

ysis indicators may lead to highly correlated variables, representing redundant information (Haq

et al. 2021, 2). After creating a variety of financial indicators with different parameters in our

approach, a special emphasis should be placed on an efficient feature selection approach to avoid

this problem of multicollinearity and overfitting (Peng et al. 2021, 10).

Therefore, Principal Component Analysis (PCA) is applied to reduce the features' multicollinear-

ity and thus the dimensionality of the dataset while preserving most of its information. This is

achieved by identifying the principal components which are representing new variables as linear

combinations of the original features (Rahoma, Imtiaz, and Ahmed 2021, 2).

Mathematically spoken, the eigenvectors and eigenvalues are computed based on the covariance

matrix of the feature set, such that 𝐴𝑣 = 𝜆𝑣. In this formula A denotes the covariance matrix, v

the eigenvector, and 𝜆 the eigenvalue. The computed eigenvectors describe the direction of the

explained variance whereas the eigenvalues express how much variance is captured in the respec-

tive component. The components are created such that the first principal component explains the

highest percentage of the variance and each additional component captures less information.

(Tharwat 2016)

23

In this work the amount of variance that needs to be explained by the model will be set to 95

percent. This threshold represents a trade-off between capturing as much information of the da-

taset as possible, and reducing the number of components in order to minimise the computing

costs to train the convolutional neural network. Since the algorithm penalises lower variance fea-

tures, it is necessary to standardise the features before applying PCA (Abdi and Williams 2010,

2).

3.5 Image Construction

One of the most common image construction methods used for times series forecasting with

CNN's is the transformation of data into Gramian Angular Fields, as proposed by Wang and

Oates (2015). The research team proposed another image encoding methodology, called Markov

Transition Fields, which will be used in this paper as well.

3.5.1 Gramian Angular Fields

To leverage the advantages of CNNs in the context of trading, the timeseries data must be encoded

to images. One approach to this are Gramian Angular Fields (GAFs). GAFs are capturing spectral

correlation structures, thus being able to capture temporal dependencies, representing time series

in a two-dimensional way. To create a GAF, the first step required is the rescaling of the data

points of a time series 𝑋 = {𝑥 , 𝑥 , … , 𝑥 } to a normalisation range of [-1, 1] (Yang et al. 2019,

189).

𝑥 =
(𝑥 − max(𝑋)) + (𝑥 − min (𝑋))

max(𝑋) − min (𝑋)

GAFs are not using the cartesian coordinate system. Instead, the normalised time series is con-

verted to polar coordinates by computing the angular cosine of the scaled time series. This repre-

sentation shows the value at a certain timestamp, holding N timestamps t with a value of x. The

conducted pairing is of bijective nature, mapping a value represented by the angle uniquely to a

point in time, shown by the radius r (Barra et al. 2020, 685).

(6)

24

 𝜙 = arccos(𝑥) , 𝑥 𝜖 𝑋

𝑟 =
𝑖

𝑁
 , 𝑤𝑖𝑡ℎ 𝑡 𝜖 ℕ

After this transformation, the trigonometric sum between the values of the time series in the set is

conducted to obtain the correlation (Romero et al. 2020, 16692). Two approaches can be used for

turning the vectors into a symmetric Gramian matrix: either the Gramian Angular Summation

Field (GASF) or Gramian Angular Differentiation Field (GADF) (Yang et al. 2019, 190). The

main diagonal of this final matrix holds the original spectral values. As time moves, the image

position moves from the top left to the bottom right corner, representing the time dependencies

(Liu et al. 2022, 4).

𝐺𝐴𝑆𝐹 = cos 𝜙 + 𝜙 = 𝑋 ⋅ 𝑋 − 𝐼 − 𝑋 ⋅ 𝐼 − 𝑋

𝐺𝐴𝐷𝐹 = sin (𝜙 − 𝜙) = 𝐼 − 𝑋 ⋅ 𝑋 − 𝑋 ⋅ 𝐼 − 𝑋

 (Formula: Yang et al. 2019, 190)

The aggregation of separate GAFs into one image has already been researched. Yang et al. cover

this novel approach in their study by stacking images together to feed into the CNN as one (Yang

et al. 2019, 190). This aggregation approach raises the question whether the order of images in-

fluences the performance of the model. Yang et al. reject this hypothesis by conducting experi-

ments, discovering that the sequence of arrangement has no impact on the results (Yang et al.

2019, 191).

(7)

(8)

25

3.5.2 Markov Transition Fields

As a third method to transform the dataset into images, Markov Transition Fields (MTFs) will be

used – also presented by Wang and Oats in 2015. With this method, information can be preserved

in the time sphere of the different features used. As for the Gramian Angular Fields, data from the

previous 10 days are used as a reference point for classification.

Given a variable as a time series X, first, the Q quantile bins of the variable will be identified and

each value xi is assigned to one of the bins (𝑞 ∈ [1, 𝑄]). In a next step, a weighted adjacency

matrix W of size a Q * Q is created by counting the conversions of the bins among the time axis

conforming to a first order Markov chain. Each value in the Matrix W describes the frequency of

a point in a certain quantile which occurs one period after a point in another quantile. The matrix

W is normalised such that the sum of each value in the matrix equals one. The values do now

present the probability by which one value of a quantile is followed by another value of a specific

quantile. (Wang and Oats 2015, 42)

When construting the images for our classification task at hand, a n*n (n refers to the time periods

used for each feature image) matrix is created as following based on the weights defined previ-

ously (Wang and Oats 2015, 42).

𝑀 , =

𝑤 | , … 𝑤 | ,

𝑤 | , … 𝑤 | ,

… … …
𝑤 | , … 𝑤 | ,

For each point in time and each feature a Markov Transition Matrix is calculated. All features

matrices of one time stamp are then stacked, similar to the approach used for the GAFs, before

fed into the CNN.

3.6 Generic Model Architecture

Data set splitting and cross validation for time-series data

(9)

26

An important focus when developing any machine learning model is the generalisation of the

model, i.e. how well it deals with data it has not been trained on (Bergmeir and Benítez 2012,

197). To evaluate the performance of a model on unknown data, parts of the available data set

will be held back as validation and test sets, such that the model will not be trained on all available

data. This produces two problems: firstly, the model would most likely show a better performance

if trained on the full data set, and secondly, by just evaluating the performance on sample, this

performance measurement might not be representative of the true model performance. To solve

these problems, in most cases k-fold cross-validation will be used for training and performance

evaluation. All available data is randomly split into k sets. The model training and performance

evaluation is carried k times, where every set is used once as the test set, and the other sets being

used for model training. This way, the method produces k independent performance measure-

ments, while all available data is used for both training and testing. By averaging the performance

measurement across the k iterations, a relatively robust measurement can be obtained, which is

much more representative of the true model performance than a single measurement (Bergmeir

and Benítez 2012, 197).

However, the standard k-fold cross-validation cannot be applied to time-series data. The data set

cannot be split at random into training and validation sets as there is no sense to using data from

the future to forecast data from the past (Herman-Safar 2021). In other words, the temporal de-

pendency betweens data points needs to be preserved during training and testing. A solution to

this is Rolling Forward Cross-Validation, also referred to as Time Series Split Cross-Validation.

The data set is split into k consecutive subsets, while preserving the continuity of the data, i.e. the

data set is not split at random, but based on its temporal order. Then, rolling forward cross-vali-

dation method will iterate consecutively over the k subsets. In the first iteration, the first subset

will be used for training and the second one for validation. In the second iteration, the first subsets

27

will be used for training and the third one for validation. These iterations continue until the first

k-1 subsets are used for training and the k-th subset for validation (Herman-Safar 2021).

Figure 3 Rolling Forward Cross-Validation

Source: Own illustration

The described cross validation approach is applied to find the best model architecture with the

respective optimal hyper-parameters as specified below. After estimating the best model, the cho-

sen model is evaluated with the test set. To retain the temporal dependencies, the test set consti-

tutes consecutive data points like the validation sets used for the cross validation. This test set

includes 20% of all data, accounting for approximately the last two years of data.

Model Architecture

As a Convolutional Neural Network this paper proposes a rather simple CNN architecture as dis-

played in Figure 4. This basic architecture includes the input layer, two convolutional layers with

64 and 128 filters, one pooling layer, one fully connected layer as well as one output layer.

Figure 4 Model Architecture

Source: Own illustration

28

In order to make the network more flexible to adapt to different ETFs and industries, a hyperpa-

rameter search is added. Since a gridsearch would be computationally too expensive, a random-

ized hyperparameter search is utilized. The search includes an optional dropout layer and batch

normalization layer. Regarding the convolutional operation different hyperparameter settings for

the kernel size, the activation function (output layer exluded due to multiclass classification prob-

lem softmax is used in each model) and padding are included. For the pooling operation a param-

eter to control the type of pooling, either max or average pooling, is used. Lastly, the optimizer,

learning rate, batchsize, the number of epochs and whether class weights should be introduced are

included in the randomized search (Table 3). The following section explains the parameters in

more detail.

Category Hyperparameter Parameter distribution

Additional
Layer

Batch Normalization include; exclude

Drop Out (incl. Rate) exclude; include with rate 0.25; include with rate 0.5

Convolution Kernel Size 3*3; 5*5

Activation Function relu; sigmoid; softmax

Padding same; valid

Pooling Pooling Type max pooling, average pooling

Compilation Optimizer Adam; RMSprop; SGD

Learning Rate 0.0001; 0.001; 0.01

Training Epochs 5; 10; 25; 50; 75; 100, 150

Batch Size 16; 32; 64

Class Weights None; Balanced

Activation functions

Activation functions in neural networks essentially take a single value and perform a mathematical

operation on it. When the function converges to a specific value, the neuron 'triggers' the next one,

Table 3 - Parameter Distribution for Randomized Search

29

hence the name activation function. This concept derives from neurons in the human brain and is

also the reason for the framework's name: neural network.

ReLu is the most commonly used activation function, introduced by LeCun et al. (1998). Its pur-

pose is to increase the non-linearity of the neural network. Despite being simple, ReLu is a non-

linear function. Because there is no parameter inside ReLu (the formula can be seen in Table 4),

it also does not require parameter-backpropagation. By setting all negative values to 0, a neuron

only actives for images that actually possess the pattern (Wu 2017, 10).

As a result, this particular activation function is well suited for recognising objects and complex

patterns. The introduction of ReLu in CNNs significantly reduced the difficulty of learning and

improved the accuracy of the networks (Wu 2017, 9).

Before ReLu, Sigmoid was one of the most used non-linear transformations. Sigmoid transforms

to values between 0 and 1 and is best suited for input data that itself is between 0 and 1 (Ittiyavirah

2013, 312). However in many cases, it performs poorer than ReLu (Wu 2017, 11). A commonly

used activation function for the output layer is Softmax, which is a combination of many Sigmoid

functions. Even in networks with ReLu in the inner layer, this is often the preferred output layer

for probabilities or multi-class-classifications. In the latter, probability for each class will be the

output (Ittiyavirah 2013, 314).

Tanh looks quite similar to sigmoid; however, it is centred around the origin of the coordinate

system. That is why it can depict values between -1 and 1 instead of 0 and 1. Its gradient is also

steeper in comparison since it has to reach twice as many y values for the same x value. Generally,

Tanh is preferred to sigmoid because here, the gradient is not as restricted in one direction and

also because it is origin-centred (Sharma 2020, 313). Even though ReLu is the standard in most

CNNs nowadays, it can only outperform Tanh in deeper neural networks. That means when there

are many layers, and problems such as the vanishing gradients occur (Godin 2018, 8).

Activation Function Formula

30

ReLu f(x) = max (0, 𝑥)

Sigmoid
𝑓(𝑥) =

1

1 + exp (−𝑥)

Tanh
𝑓(𝑥) =

𝑒 − 𝑒

𝑒 + 𝑒

Table 4 - Activation Functions and Formulas

Source: Sharma 2020, 313

As depicted in Figure 5, sigmoid and tanh both converge towards specific values, either -1, 0 or

1. This convergence leads to 'vanishing gradients' if the absolute values are too large. ReLu, on

the other hand, erases all negative values and keeps the positive ones as they are, leading to 'ex-

ploding gradients' (Lee and Song 2019, 593).

Figure 5 Activation Functions

Source: Own illustration based on Lee and Song 2019, 594

Padding

(Zero) padding allows to control the spatial size of the output of a CNN by adding an appropriate

number of pixels (with zero values) to the outer edges of the input feature map before it is pro-

cessed by the kernel (Chollet 2017, 126). Padding is used when it is desirable to obtain an output

feature map with the same spatial dimensions as the input. Therefore, the padding parameter is

set to same (Chollet 2017, 126; Lee and Song 2019, 608). Otherwise, valid means that no padding

is performed and that the size of the feature maps gradually decreases along the convolutional

layers (Lee and Song 2019, 599). In case the input feature map has a size of (n,n) and the filters

have a size of (m,m), then a single output feature map is of size (n-m+1, n-m+1) (Lee and Song

2019, 599).

Pooling

31

Pooling layers are used to reduce model complexity, limit computation in the network and control

issues of overfitting by reducing the spatial size of a feature map. The pooling layer partitions the

input into a set of non-overlapping two-dimensional spaces. The pixel values of each subregion

are then mapped according to the type of downsampling operator chosen: In max pooling, the

values are summarized into one maximum value, whereas in case of average pooling the mean

of the activations in the previous layer is computed for each subregion. (Lee and Song 2019, 598).

Batch Normalization

Normalization methods are used to increase the similarity of samples and hence, to improve gen-

eralization, i.e., the models’ ability to perform well to unseen data. However, it is insufficient to

normalize the data in the preprocessing stage, before feeding it into the model, only. Normaliza-

tion is not guaranteed for each output after each transformation operated by the CNN since the

mean and variance can change over time. (Chollet 2017, 260). The batch normalization layer,

typically used after a convolutional layer (Chollet 2017, 261), ensures to continuously normalize

the data during the training process by standardizing the values in each layer to mean 0 and vari-

ance 1 before the activation layers (Ioffe and Szegedy 2015). By making data standardization an

integral part of the model architecture, faster and more stable training is possible, allowing the

model to improve prediction accuracy (Lee and Song 2019, 609; Santurkar et al. 2018). Due to

the implementation of batch normalization layers, higher learning rates can be used (Ioffe and

Szegedy 2015; V. Thakkar, Tewary, and Chakraborty 2018, 2) and deeper networks can be built

(Chollet 2017, 260).

Dropout

Regularisation is a method that is particularly relevant for preventing overfitting and improving

generalization of deep learning models. Dropout is one of the most frequently applied regularisa-

tion techniques for CNNs (Srivastava et al. 2014). It randomly drops out input features during the

training process, meaning it sets some of the weights connected to a given percentage of nodes in

32

a CNN to zero (Chollet 2017, 109; 216). The dropout rate refers to the fraction of features that are

replaced with zero during training and lies usually between 0.2 and 0.5. For each update in each

training epoch, the removed units are not included in the calculations of the current step (Krizhev-

sky, Sutskever, and Hinton 2017). Dropout is not applied to the test or validation set. In this case,

the output of a layer is scaled down by a factor equal to the dropout rate to account for the fact

that there are more units than during training. (Chollet 2017, 109).

Epochs

An epoch refers to the one-time training of the CNN with the entire dataset (Sharma 2017). How-

ever, since the size of an epoch is usually too large to be fed to the network in a single batch, it is

divided into several smaller batches (Chollet 2017, 34). To improve the training process of the

model, the number of epochs is increased, i.e., the data is passed to the same CNN multiple times

(Sharma 2017). This way, the average loss on the training set is decreased until the optimal curve

is met, more precisely, until the network begins to overfit the training data (Wu 2017, 7).

Optimisers

Optimisers are used to tweak the model’s parameters during training. In Table 5, the used opti-

misers and their respective formulas can be inspected.

Adam, short for Adaptive Momentum Estimation, is one of the most widely used optimisation

algorithms in CNNs. Adam is an iterative algorithm that adapts the model variables. Research has

shown that Adam is effective for optimizing large groups of problems (Zhang and Gouza 2018,

1). However, for non-convex objective functions, it has shortcomings as Adam cannot promise to

find a global optimum, as its iterative optimization might get stuck in a local optimum. Therefore

it cannot be described as a particular robust optimizer for noisy data (Zhang and Gouza 2018, 2).

Stochastic gradient descent (SGD) is probably the most widely used optimizer for CNNs (Wu

2017, 7). Generally, it is a fast algorithm that only performs small computations at each descent.

As many image recognition problems are based on noisy data, it is a fitting choice. Choosing the

33

correct learning rate offers a solution to the problem of getting stuck in local optima. When the

dataset is heterogenous it can get unstable, and the loss decreases on average. SGD chooses sam-

ples at random throughout an epoch, so some samples might get chosen twice and some not at all

(Lee and Song 2019, 597).

Optimiser Formula

RMSProp 𝐸(𝑔) = 𝛽𝐸(𝑔) + (1 − 𝛽)
𝛿𝐶

𝛿𝑤

𝑤 = 𝑤 −
𝜂

𝐸(𝑔)

𝛿𝐶

𝛿𝑤

𝑤ℎ𝑒𝑟𝑒 𝐸(𝑔) = 𝑀𝑜𝑣𝑖𝑛𝑔 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠

 =gradient of cost function with respect to the weight

 𝜂 = 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒

𝛽 = 𝑚𝑜𝑣𝑖𝑛𝑔 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟

𝑎𝑛𝑑 𝜃 = 𝑐𝑜𝑠𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

Adam 𝑚 = 𝛽 𝑚 + (1 − 𝛽)𝑔

𝑣 = 𝛽 𝑣 + (1 − 𝛽)𝑔

𝑀 =
𝑚

1 − 𝛽

𝑉 =
𝑣

1 − 𝛽

𝜃 = 𝜃 −
𝜂

𝑉 + 𝜖
𝑀

𝑊𝑖𝑡ℎ 𝜂 = 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒, 𝑚 = 𝑝𝑎𝑠𝑡 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡

 𝑣 = 𝑝𝑎𝑠𝑡 𝑠𝑞𝑢𝑎𝑟𝑒 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡, 𝛽 = 𝑑𝑒𝑐𝑎𝑦 𝑟𝑎𝑡𝑒

 𝜖 = 𝑠𝑚𝑜𝑜𝑡ℎ𝑖𝑛𝑔 𝑡𝑒𝑟𝑚 𝑎𝑛𝑑 𝜃 = 𝑐𝑜𝑠𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

Stochastic Gradient

Descent (SGD)

𝑤 = 𝑤 − 𝜂Δ𝑄(𝑤)

 𝑄(𝑤) =
1

𝑛
Δ𝑄 (𝑤)

𝑤ℎ𝑒𝑟𝑒 𝜂 = 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒

𝑄(𝑤) = 𝑙𝑜𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

𝑤 = 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟

Table 5 - Optimisers and Formulas

Source: Zhang and Gouza 2018, 2; Kingma and Ba 2014, 2; Hinton, Srivastava, and Swersky 2012, 20

RMSProp or Root Mean Squared Propagation has become one of the more popular gradient al-

gorithms beyond SGD. It has been used for very deep CNNs for computer vision and in some

notable cases, outperformed SGD and Adam (Mukkamala and Hein 2017, 3). Even though it was

designed for deep neural networks, it performs quite well with noisy data in deep learning and

34

hence for CNNs. It also offers opportunities like SGD to escape the local optima and contains the

Adagrad optimiser when tuned with the correct parameters (Mukkamala and Hein 2017, 2).

Batch size

Batch size denotes the number of input samples in a single batch used for a training iteration (Lee

and Song 2019, 595). The choice of batch size affects the batch normalization process as the

technique depends on the number of samples in a batch. In general, smaller batch sizes have been

found to provide a faster training process and a better generalization compared to larger batch

sizes (Shen 2018).

Learning rate

The learning rate describes the extent to how much the model weights are changed during the

training process (Brownlee 2019). It takes on a small positive value. The smaller the learning rate,

the smaller the changes made at each iteration and thus the higher the number of training epochs

necessary. Vice versa, a higher learning rate implies a more rapid adaptation and therefore requires

less training epochs. Tuning this hyperparameter is essential as a too high learning rate can cause

the model to converge quickly on a suboptimal solution, whereas a too low learning rate can cause

the training process to become unstable and time-consuming (Brownlee 2019; Lee and Song 2019,

596).

Kernel size

The kernel_size is a key hyperparameter of the convolutional layer referring to the size of the

kernel, a matrix moving over the input data, as explained in section 3.1.2. The input image is

separated into sub-regions by the convolutional layer to have a fixed size set by the kernel size.

The kernel size refers to the height x width of the filter mask. (Lee and Song 2019, 597 – 598).

Class weights

The weights are used for computation between layers and are updated repeatedly in a model by

the algorithm. The aim is to find an optimal set of weights ensuring a minimum loss during the

35

network’s learning. Class weights are commonly used for imbalanced datasets and can be set to

‘balanced’ to replicate the smaller classes to fit the number of samples in the bigger classes. (Lee

and Song 2019, 593).

3.7 Performance Evaluation

To evaluate our model, computational and financial performance measures need to be distin-

guished.

3.7.1 Computational Evaluation

As the stock price movement prediction represents a classification problem, evaluation for com-

putational performance is feasible with the means of common evaluation metrics derived from the

confusion matrix (Chen et al. 2021, 77). For assessing and comparing the computational perfor-

mance of the constructed models, six performance metrics will be considered.

Accuracy

Accuracy as the first metric being used represents one of the simplest and most intuitive methods,

showing how many classes have been predicted correctly.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

The accuracy metric can convey false impression of the performance of a model if classes are

unbalanced. However, high accuracy is very important in the context of trading since every mis-

classification should be seen as a wrong trading decision and thus implying loss.

Precision

Precision is the second metric being used. Class-specific precision measures for each class sepa-

rately the percentage of correct predictions, i.e. the percentage of instances predicted as the re-

spective class that actually belong to the class. Precision values are bound between 0 and 1.

(10)

36

Moreover, the macro-averaged and weighted-averaged precision show the average model preci-

sion across all classes.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

The type I error is penalized by the precision metric, resulting in lower values with a high type I

error. Applied to trading, precision puts more emphasis on risk aversion, showing how many bad

investment choices were impeded or how many trading decisions were predicted correctly. For

buying transactions to prevent the trader to falsely buy although the asset might not further rise in

value, resulting in a loss of value if the price goes down. Falsely predicting to sell will lead to

missing out on possible returns if the asset is further rising in value.

Recall

Recall is a measure of how well the model identifies instances of a specific class in the data set.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

A high recall means that the model is strong at identifying actual instances of its respective class,

whereas a low recall means that the model is only able to identify a small percentage of instances

of the class. Recall values are bound between 0 and 1. Recall is related to the presence of type II

error (Peng et al. 2021, 23). In the context of trading, a higher recall implies not missing out on

potentially profitable trading opportunities, indicating how many truly positive instances were

marked as such and to decrease the number of false positives (Peng et al. 2021, 23). Related to a

real-world trading scenario, a high recall leads to less falsely not-buying decisions although it

would have been profitable. In terms of selling triggers, it denotes to not overlooking selling op-

portunities, preventing to hold the asset when the price will decrease.

(11)

(12)

37

F1-score

The F1-score balances precision and recall and provides a harmonic mid-point between recall and

precision as it is granting a high value only if both values are performing well (Peng et al. 2021,

23–24).

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 𝑥
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

It harmonises indications on how precise the model is as a classifier, i.e. how many instances are

correctly predicted, and how robust the model is, i.e. how good it is at identifying instances of the

class.This metric can be very useful for strongly unbalanced predictions as the accuracy measure

can indicate misleading results (Peng et al. 2021, 24). However, it is less intuitive as it is combin-

ing two metrics and is representing a poor resource allocation in this trading context. To gain

detailed insights into the quality of the model, precision and recall should be checked separately

and relative importance should be placed on recall and precision based on the specific underlying

problem (Peng et al. 2021, 24).

Application of the performance measures

In the context of computational efficiency, the focus will lie on accuracy, since each prediction

represents a trading decision that results in financial loss if misclassified. Since the datasets are

unbalanced (Hold class is dominating each ETF) it is important to make sure that all classes will

be predicted while minimizing the false positive rate. Therefore, the precision, recall and F1-score

will help to get more insights into the models' prediction behaviour.

To ensure cross-industry comparability, a similar methodology including a similar labelling and

model approach is used, except for the Oil and Gas sector. The acquired results will be compared

and analysed based on the previously mentioned computational common performance measures,

as well as on the basis of financial evaluation approaches which will be discussed in the next part.

(13)

38

3.7.2 Financial Evaluation

General approach

As the general approach to the financial evaluation of the model performance, a method suggested

by Sezer, Ozbayoglu and Dogdu (2017) will be used. In this approach, the asset is bought, sold or

held in accordance with its predicted label:

 If the prediction is Buy, the asset will be bought at current market price.

 If the prediction is Sell, the asset will be sold at current market price. Any existing long

position will be closed, i.e. held shares sold, and a short position will be entered, i.e. shares

will be short-sold.

 If the prediction is Hold, no operation is performed at that point in time.

Equal to Sezer, Ozbayoglu and Dogdu's approach, a starting capital of 10,000 USD will be used

and each transaction (Buy and Sell) will be made using the full capital available at that moment.

If the same label is repeated directly after one another in a sequence, only the first label will be

considered as a trigger and the respective transaction executed. Repeat labels will be ignored until

a new label comes up. At every executed transaction, trading fees will be considered to achieve a

near-real scenario.

For the evaluation, the total return over the test period will be used. Given that each individual

industry analysis will be applied to the same time period, and as such the test period will be equal,

the comparability of industries with this metric is given.

Basic premises and assumptions

For the approach to be consistent, a number of clear assumptions need to be stated:

1. Trading fees: Trading fees stay constant during the whole test period.

2. Execution price: As the prediction will be based made on the data available at the end of

day t for day t +1, the closing price of day t will be used as execution price.

39

3. Fractional shares: The approach assumes that fractional shares can be purchased. As

such, the number of shares purchased or sold in transaction is equal to the total available

capital divided by the execution price.

4. Short-sell limit: A short-sell limit of 20% of available capital is set, such that in a short-

sell transaction, the short position cannot exceed 20% of the total capital available after

closing the long position at the moment of a sell signal.

Benchmarks strategies

As benchmarks to compare the financial performance of the model to, the following strategies

will be used:

1. Simple, passive Buy & Hold strategy: the asset is bought at the beginning of the test

period and held until its end. The total return is determined by comparing the value of the

investment at the end of the observation period to the start capital.

2. Simple Moving Average Cross-over Strategy: One shorter-term simple moving average

and one longer-term simple moving average will be applied. In line with technical trading

rules, it is considered a buy signal when the shorter-term moving average exceeds, i.e.

crosses over, the longer-term moving average (Mitchell 2021). On the other hand, it is

considered a sell signal when the shorter-term moving average crosses below the longer-

term moving average (Mitchell 2021). For the application in this methodology, in case of

a buy signal, the asset will be bought at market price. In case of a sell signal, any existing

long position will be closed at market price and a short position in line with the short-

selling limit will be entered.

The best performing moving average combination will be found through a‘simplified ran-

domised search based on the training data set.

3. Mean-Reversion Strategy: The mean-reversion trading strategy is built on the premise

that prices eventually will revert back towards their mean (Chen 2021). Upper and lower

40

Bollinger bands are built around the asset price in a distance that is a function of the assets

volatility measured as its standard deviation and a simple moving average is constructed

(Chen 2021). On the one hand, if the asset price is below the Lower Bollinger Band, the

asset is considered oversold and as such undervalued and expected to increase, reverting

back towards its mean. This results in a buy signal, meaning that a long position should

be built. On the other hand, the if the asset price is above the Upper Bollinger Band, the

asset is considered overbought and overvalued and expected to decrease (Chen 2021). This

results in a sell signal, meaning that any long position should be exited and a short position

opened. In addition, for the strategy approach used in this paper moments where the price

crosses the SMA are considered as unclear signals, signalling the investor to go neutral,

i.e. to close any long or short position.

41

4 Industry Implementation

4.1 Introduction to the industry implementation

The following sub-paper focuses on the application of the previously established methodology to

the U.S. financial services sector. For this purpose, a brief analysis of the used ETF will be pro-

vided and important market dynamics driving major events will be explored. These dynamics will

be presented in a simplified way, by focusing on their key drivers, to avoid extending this analysis,

reserving the focus of this sub-paper to the application of the developed CNN forecasting meth-

odology and an analysis of the obtained results. As a next step, a brief description of the chosen

features and the application of the established methodology to the chosen ETF for the U.S. finan-

cial services sector will be provided. After that, the results of the CNN application will be explored

and discussed, comparing them to the results obtained from the other industry applications men-

tioned in the common part. The industry analysis closes with industry-specific conclusions about

and an outlook on the application of CNNs to price movement forecasting in the financial services

sector.

4.2 Industry Analysis

The following section 2 will provide an overview on the ETF that is used in the subsequent anal-

ysis and give brief insights into key market dynamics that drove major events during the ETF

observation period.

4.2.1 ETF Description

The ETF to be analysed in this part of the paper as representative of its underlying sector is the

iShares U.S: Financial Services ETF (IYG). The IYG’s benchmark index, i.e. the index whose

value the ETF is tracking, is the Dow Jones U.S. Financial Services Index ("Ishares U.S. Financial

Services ETF | IYG" 2021). It invests in a market-cap-weighted subset of US stocks exclusively

from the financial services industry. The IYG is a physically replicating ETF, meaning that it

actually invests in the stocks of its underlying benchmark index instead of synthetically replicating

42

its returns (ETF.com 2021). Tracking the Dow Jones U.S. Financial Services Index, which is

composed of publicly traded stocks of investment and commercial banks, consumer finance insti-

tutions, asset managers, credit card companies and securities exchanges, the ETF offers investors

pure exposure to the American financial services sector (ETF.com 2021). The Dow Jones U.S.

Financial Services Index is reconstituted yearly, meaning that companies are added and removed

as needed to ensure that the index reflects the up-to-date status of the sector it is supposed to

represent ("Ishares U.S. Financial Services ETF | IYG" 2021). The IYG is composed entirely of

US equities ("Ishares U.S. Financial Services ETF | IYG" 2021) and invests across the market-

cap spectrum, i.e. is not focused on one market-cap universe only (ETF.com 2021). As of October

31st, 2021, the IYG has a 3-year Equity Beta of 1.31, meaning that on average the index shows a

higher volatility than the market.

The IYG is composed of holdings in 108 companies from the US financial services sector, while

the 10 largest holdings of it account for more than 54% of the total weight of the index ("Ishares

U.S. Financial Services ETF | IYG" 2021).

Table 6 - Top ten holdings of the IYG ETF with their respective relative weight

Source: Own illustration

Rank Company Weight

1 JPMorgan Chase & CO 11.45%

2 Visa Inc. (Class A shares) 8.02%

3 Bank of America Corp. 7.86%

4 Mastercard Inc. (Class A shares) 6.79%

5 Wells Fargo 4.74%

6 Morgan Stanley 3.47%

7 Goldman Sachs Group Inc. 3.12%

8 BlackRock Inc. 3.11%

9 CitiGroup Inc. 3.08%

10 Charles Schwab Corp. 2.85%

Total weight top 10 companies 54,49%

43

Given its composition and exposure to U.S. financial services, the IYG is an ideal ETF to assess

the performance of CNNs in forecasting price movements for the U.S. financial services sector.

4.1.2 Exploration of the IYG price data set

In this paper, price data of the IYG in the period from 01.01.2010 to 31.12.2019 will be analysed.

This period is chosen to exclude most effects of both the financial crisis in 2007/2008 and the

Covid-19 pandemic starting in spring 2020, which both dramatically altered the financial market

conditions and dynamics (Grammatikos and Vermeulen 2014; Zhang, Hu and Ji 2020). The ob-

jective of this paper is to analyse the general applicability of CNN to forecasting price movement

and as such, extremely atypical, long-lasting macro-economic events that significantly alter mar-

ket structures, i.e. the financial crisis and the Covid-19 pandemic, will be excluded to not falsify

the obtained results.

On 01.01.2010, the first day of the analysis period, the price of IYG stands at 54.87 USD. On

31.12.2019, the last day of the analysis period, the price per unit stands at 151.82 USD, showing

a price increase of 96.95 USD, 176.7% in relative terms, over the 10-year period.

Figure 6 iShares U.S. Financial Services ETF (IYG) – Price development from beginning of 2010 until end of 2019

Source: Own illustration

44

Although the overall price trend is positive, three significant downturns can be observed at dis-

tinct points in time:

1. during 2011,

2. between mid of 2015 until the beginning of 2016

3. starting at the end of 2018 until the beginning of 2019

All three downturns are marked by the red dotted lines in figure 1. The reasons for these downturns

will be explored in the section below.

4.1.3 Dynamics in the Financial Services sector during the analysis period

Early 2010s:

During the financial crisis, equity markets in general and especially financial services stocks had

plummeted dramatically (Wehinger 2012). In the early 2010s, supported by large government

stimulus packages and dedicated policies, financial markets were still recovering from the after-

shock of financial crisis. However, this recovery was mostly policy-driven and there was large

uncertainty about future policy developments, inhibiting the recovery (Wehinger 2012). A com-

bination of factors like the Eurozone crisis, the Japanese tsunami and the subsequent meltdown

of the Fukushima nuclear plant, the surge in commodity prices, persisting turmoil in the middle

east and the U.S. sovereign rating downgrade caused a sharp downturn in the stock markets in

2011, explaining the first downturn that can be observed in figure 1 (Wehinger 2012).

China stock market crisis 2015:

The second observed downturn, in 2015, can be attributed to the Chinese stock market turbulence

that dramatically affected stock markets in the U.S. A variety of factors, such as falling borrowing

costs due to a loosened monetary policy, a legal liberalisation of stock markets and new govern-

ment regulations on real estate financing, had led to a dramatic increase in investment activities,

led especially by Chinese retail investors, which accounted for more than 80% of trading activity

45

in China (Allen 2015). This sharp increase in stock market investments inflated stock prices and

caused a stock market bubble. However, at some point, banks and brokers started to issue margin

calls and request paybacks on loans, and a growing number of analysts started warning of a sig-

nificant overvaluation of stocks. This caused widespread selling of stocks and other assets, leading

to a sharp downturn in the Chinese financial markets (Allen 2015). Given China’s complex ties

with many other countries as well as a variety of dynamics in the financial markets, the Chinese

stock market crisis started spilling over to other countries and consequently also affected U.S.

financial markets (Allen 2015).

2018/2019: US-China trade war

Lastly, the third significant downturn that can be observed in the price data set in 2018/2019 can

be attributed to the U.S.-China trade war that had started in 2017. Three main concerns led the

U.S. government under Donald J. Trump to initiate this trade war: (1) concerns that job creation

in the US was harmed by China’s constant trade surplus, (2) suspicions that China applied illegal

and unfair strategies to acquire U.S. technology and knowledge and was trying to weaken U.S.

national security and (3) fears that China was seeking to replace the U.S. in their international

position (Liu and Wing 2019). Although underlying dynamics had existed before, the situation

escalated after the Trump office, which had already taken a strong anti-China position during the

elections, took office (Ferguson and Xu 2018). The trade war between the two countries expressed

itself in a sequence of tariffs and other trade restrictions, which led to disruption in value chains

and caused significant uncertainty in both industrial and financial markets.

Given that 20% of the total data set, i.e. roughly two years of price data, will be held back as a

test data set, the downturn in 2018/2019 will be part of this test data. It might be argued that this

could negatively affect the model performance as it represents an atypical development in the

markets that does not reflect general market conditions. However, given that the model will be

46

trained on data that contains the other two, similar downturns, it is expected that the model can

learn to recognise the respective patterns.

4.3 Data pre-processing, feature engineering and image encoding

Section 3 will describe the data set used as model input as well as the pre-processing of the data

and image encoding in preparation for the model training.

4.3.1 Data and technical indicators

As input for the raw data set, the following variables are included as features:

Price and volume data Open price

 Closing price

 High price

 Low price

 Daily trading volumes

Simple Moving Average 5-day SMA

 10-day SMA

 20-day SMA

Exponential Moving Average 5-day EMA

 10-day EMA

 20-day SMA

Rate of Change (RIC) 12-day rate of change

Percentage Price Oscillator Percentage Price Oscillator based on closing price

 Percentage Price Oscillator based on opening price

Relative Strength Index 14-day Relative Strength Index

Williams % Range 14-day Williams % Range

Commodity Channel Index (CCI) 20-day Commodity Channel Index

Foreign Exchange Rate USD/EUR exchange rate

 USD/GBP exchange rate

 USD/JPY exchange rate

Know Sure Thing Oscillator

Moving Average Convergence Divergence

Table 7 - Variables included in the initial data set

Source: Own illustration

47

Given that foreign exchange rates have a significant impact on financial institutions in general

and banks specifically (Federal Reserve Bank of San Francisco 1996), exchange rates between of

the U.S. dollar (USD) and three major currencies are included as explanatory variables, specifi-

cally, the Euro (EUR), the Japanese Yen (JPY) and the British pound sterling (GBP). Despite its

impact on financial services institutions, an inclusion of the Fed base interest rate was eventually

disregarded since those rates are only adjusted infrequently. This is why an inclusion of the base

interest rate is not expected to add value to forecasting daily prices.

This selection of price and volume data, technical indicators and exchange rates results in an initial

data set with 22 different features, which are used for the further analysis sequence.

4.3.2 Stationarity test and differential calculus

As established in section 3.3.2 of the methodology part, the price data as time-series data needs

to be tested for its stationarity and, in case of stationarity, be adjusted using fractional differenti-

ation to ensure that it does not hamper the modelling process (Hyndman und Athanasopoulos

2018). To avoid data leakage from potentially transforming the entire data set, i.e. train data set

and test data set together, the data is split before the stationarity test and the potential data trans-

formation.

Applying the Augmented Dickey-Fuller test to the train data set, the obtained p-value of 0.9734

indicates non-stationarity of the data, i.e., a trend in the data, which would likely negatively affect

the model performance. Therefore, as explained, fractional differentiation is applied to adjust the

data. For this purpose, the fractional differentiation is fitted to the training set and then applied

separately to the train set and test set. Repeating the stationarity test, a p-value of 0.0000 is ob-

tained, indicating that the data has been successfully adjusted to be stationary.

4.3.3 PCA results

After adjusting the data for stationarity, a Principal Component Analysis (PCA) is applied with a

threshold of 0.95. In the typical procedure of a PCA, the analysis is fitted to the train data set and

48

then applied separately to the train and test data set to avoid data leakage. While the initial raw

data set contained 22 features, the PCA reduces the number of features to 11.

4.3.4 Image encoding and model training

As a next step, the data set obtained from the PCA with 11 features is encoded into three types of

images, i.e. Gramian Angular Differentiation Field, Gramian Angular Summation Fields and Mar-

kov Transition Fields, with a window of 10 days, meaning that each image contains data from 10

subsequent days. Given the 11 features and a window of 10 days, each image has a 10*10*11

shape.

These images are used to train three different CNNs, each based on one of the image types. The

best performing parameters will be found using a randomised search, choosing the model with the

highest F1-score and accuracy and making sure that each model predicts all three classes. The

results of this model training in terms of performance metrics will be presented and analysed in

the following section.

4.4 Analysis and interpretation of the model results

The following section 4 focuses on the analysis and interpretation of the computational and finan-

cial performance of the best performing model for each of the three image types and provides a

comparison between the performances of the three models.

4.4.1 Comparison of overall model metrics and benchmark to purely random model

The following section will provide a comparison of the overall model metrics across the three

constructed model (GADF, GASF and MTF) to draw first conclusions on which model achieves

the highest computational performance.

49

 GADF GASF MTF Random model

Accuracy 0.49 0.48 0.47 0.373

Macro-averaged F1-score 0.36 0.26 0.31 0.370

Weight-averaged F1-score 0.43 0.35 0.39 0.333

Table 8 - Comparison of overall model metrics across the three model types and a purely random model

Source: Own illustration

Based on these overall model performance metrics, the GADF model achieves the highest com-

putational performance, outperforming the other two models in all three performance metrics,

however, by relatively small margins, especially regarding the key metric accuracy. Regarding

the comparison of the GASF model to the MTF model, none of the two is clearly outperforming

the other based on their overall model performance metrics, given that they exceed each other in

different performance metrics.

Furthermore, to compare the models to a purely random one, in 10,000 iterations, random predic-

tions were generated, using the length of the test data set and the class probabilities of the train

data set, and the accuracy, macro-averaged F1-score, and weight-averaged F1-score were calcu-

lated for each iteration and averaged. All three models achieve a higher accuracy and weight-

averaged F1-score than the purely random model, indicating a better performance in this key met-

rics. However, all three models’ macro-averaged F1-scores is lower than their weight-averaged

one and lower than the random model’s macro-averaged F1-score. Given their calculation, a

macro-averaged F1-score that is lower than the weight-averaged F1-score indicates lower indi-

vidual F1-scores for at least one of the minority classes and thus a lower precision and/ or recall

for this class. Thus, all three models seem to have difficulties with Sell and/ or Buy class predic-

tions, which each make up approximately 25% of the data set.

50

Thus, in order to develop a better understanding of the performance of these models with respect

to each individual class, as a next step, the class-specific metrics of the three models will be ana-

lysed.

4.4.2 Comparison of class-specific metrics

Given that the overall model performance metrics mentioned in the section above are an aggrega-

tion of different class-specific metrics, they do not provide a detailed impression on strengths and

weaknesses of the models regarding their predictive power for the different classes. Table 5 con-

tains the class-specific metrics for all three models, providing more details on the model perfor-

mance for the Hold, Buy and Sell class.

 GADF GASF MTF

Precision

Hold class precision 0.54 0.50 0.50

Buy class precision 0.34 0.27 0.27

Sell class precision 0.37 0.26 0.37

Recall

Recall: Hold 0.82 0.94 0.85

Recall: Buy 0.23 0.02 0.08

Recall: Sell 0.11 0.05 0.12

F1-Score

F1-score: Hold class 0.65 0.65 0.63

F1-score: Buy class 0.27 0.04 0.13

F1-score: Sell class 0.17 0.08 0.19

Table 9 - Comparison of class-specific metrics across the three model types

Source: Own illustration

51

The GADF-based model outperforms both the GASF- and MTF-based in terms of class-specific

performance metrics, i.e. class precision, class recall and class F1-score. While in terms of class

precisions the three models show similar performances with only small differences, significant

differences can be observed for both recall and F1-score values.

While the GADF model has a lower Hold class recall compared to the GASF and MTF model

(0.82 v 0.94 v 0.85), it achieves a much better recall for the Buy class, indicating that it is better

at identifying Buy class instances than the other two models. The GADF also outperforms the

GASF in the Sell class recall, achieving a recall that is more than 2x as high (0.11 v 0.05). How-

ever, the MTF model achieves a slightly higher Sell class recall than the GADF model (0.12 vs

0.11), with GASF having the highest recall for the Hold class, but the lowest value for both the

Buy and Sell call recall.

In the context of trading, the following conclusions can be drawn on the model performances:

Firstly, the GASF model’s low recall for Buy and Sell means that is weak at identifying Buy and

Sell instances and thus will likely miss a large part of return-generating transactions. Secondly,

the GADF’s comparatively high recall for the Buy and Sell class show that is better at identifying

these classes and indicate that it will thus trigger more Buy and Sell transactions than the other

two models and potentially profit from more return-generating opportunities.

4.4.3 Financial performance evaluation

Given that, in practice, the main objective of a trading strategy is to generate returns and ideally

outperform the market the financial performances need to be assessed.

 CNN Model Buy & Hold SMA MR

GADF 18.78%

GASF -12.75% 16.00% 16.88% 21.76%

MTF -6.25%

Table 10 - Comparison of financial performances across the three model types

Source: Own illustration

52

Only the GADF model is able to generate positive financial returns and to outperform the easiest

strategy, i.e. the Buy & Hold strategy. Both the GASF and MTF model generate losses, with the

GASF generating the greatest loss of 12.75% over the test period. During the test period, the price

of the IYG ETF increases by 16.00%, while the best model achieves a performance of 18.78%,

2.78 percentage points above the Buy & Hold return in absolute terms, 17.38% in relative terms.

Based on this finding, a higher recall for the Buy and Sell classes appears to be related to a better

financial performance. With the return of 18.78%, the GADF model outperforms the simple mov-

ing average cross-over strategy (16.88%) but lies below the return generated by the mean-rever-

sion strategy (21.76%). Based on these findings, it seems that the CNN approach as applied in

this paper is unable to disprove the Efficient Market Theory (Fama 1970) and does not offer sig-

nificant advantages for the financial services sector compared to naïve technical strategies.

4.5 Comparison to results from other sectors

As a last step to the result and performance assessment, the model performances obtained for the

financial services sector will be compared to the results obtained for the other sectors using the

same approach. The purpose of this comparison is to assess if the apparently low performance of

the models is specific to the financial services sector or if similar issues can also be identified in

other sectors.

53

4.5.1 Computational performance comparison across industries

As a first step in the comparison, the computational performance of the models applied to the

financial services sector will be compared to the average computational performance metrics

across all industries.

 GADF

average

GADF

FS

GASF

average

GASF

FS

MTF

average

MTF

FS

Accuracy 0.49 0.49 0.45 0.48 0.44 0.47

Macro-averaged
F1-score

0.35 0.36 0.31 0.26 0.31 0.31

Weight-aver-
aged F1-score

0.47 0.43 0.37 0.35 0.37 0.39

Table 11 - Average performance metrics across five industries (IT, Healthcare, Energy, Financial Services and In-
dustrials)

Source: Own illustration

The key insight of Table 7 is that there are no major differences in the model performance applied

to the financial services sector compared to the average performance metrics across all industries.

The average F1-scores show the same pattern as in the case of the financial services sector model:

the weight-average F1-scores are higher than the macro-averaged F1-scores, indicating a poorer

performance for at least one of the minority classes. Given that for all sectors, Buy and Sell are

minority classes compared to the Hold class, this indicates similar weaknesses regarding the pre-

diction of these classes. Overall, the performance obtained for the financial services sector are in

line with the average results across all sectors using the same approach.

4.5.2 Financial performance comparison across industries

As a second and final step in the industry comparison, the financial performance needs to be

evaluated. Since the different industries show significant differences in their price developments

over the test data period, ranging from -8.0% for the Energy sector to 51.0% in the Information

Technology sector, excess returns calculated as the absolute difference between the model return

54

and the benchmark strategy are being used to ensure comparability of the obtained results. These

excess returns can be seen in Table 8 below.

 Average excess return compared to Buy

& Hold

Financial services excess return compared

to Buy & Hold

GADF 1.30% 2.78%

GASF -6.90% -28.75%

MTF -12.98% -22.25%

Table 12 - Financial performance comparison

Source: Own illustration

Considering the averages across all five industries using the same model approach, one can see

that the approach performs similarly poorly for those other industries as it does for the financial

services sector. On average, only the GADF models outperform the Buy & Hold strategy and thus

the price development of the respective ETFs per se, however, only with a small margin of 1.28

percentage points. On average, both the GASF and MTF models perform worse than the Buy &

Hold strategy, meaning that an investor would achieve better results by just buying and holding

the asset instead of using these two models. As such, the average results across all 5 industries go

in line with the results obtained for the financial services sector. The CNN approach taken in this

paper appears unable to beat the market performance.

4.6 Conclusion and outlook

4.6.1 Limitations

Although all three models achieve a better accuracy than the purely random model, they barely

exceed the random model with respect to their F1-scores, showing weaknesses in recall and/ or

precision. This weakness becomes more obvious when assessing the class-specific performance

metrics. All three models have low recall values for the minority classes Buy and Sell, meaning

that they are relatively weak at identifying those classes, implying that the models are rather badly

suited to identify these kinds of return-generating opportunities. This impression is confirmed by

55

assessing the financial performance, which shows that only the GADF model generates positive

returns, barely exceeding the Buy & Hold return.

One source of this problem is likely the imbalanced data set: The Hold class dominates the data

set, making up roughly 50% of both data sets, which negatively affects model performance. More-

over, considering the complex features, the relatively small train data set of roughly 2000 pictures

might be insufficient for a proper model training, causing an issue of overfitting.

However, the relatively poor performance does not seem to be specific to the financial services

sector, but an overall problem of the approach, as other industries on average show similar per-

formances. This indicates similar problems for the other industries.

4.6.2 Outlook

Further research appears necessary to improve the model performance. As for all industries, the

GADF approach achieves the best performance, further research should be built upon this method.

To address the issue of the small train data set, shorter time windows for the images and higher-

frequency data, e.g. hourly instead of daily data, could be used to increase the number of images

available for model training. Furthermore, seeking to solve the problem of imbalanced data, suit-

able data augmentation techniques and adjusted model training approaches, e.g. the so-called two-

phase learning, presented by Wahab, Khan and Lee (2017), should be explored.

Other approach alterations that should be explored in further research include:

o Experimentation with different model architectures that might be better at extracting the nec-

essary patterns

o Experimentation with different initial variables that might have more predictive power

o Adjustments in the labelling, exploring approaches based on characteristics that are more dis-

tinguishable in the images

Overall, the CNN approach should not be discarded yet, given that it is a relatively young field

and further techniques are expected to develop.

56

5 Performance Comparison and Discussion

In the following section, key findings from the individual analyses conducted in chapter 4 will be

summarised, focusing on common findings regarding the model hyperparameters, as well as the

computational and the financial performance of the models.

Common findings hyperparameters

Comparing the best-performing model parameters across the three model types (GADF, GASF

and MTF) and across the six analysed industries, several findings can be made.

Firstly, for the MTF-based models, a 5*5 kernel achieves the best performance across all indus-

tries. For the majority of GAF-based models, i.e. GADF and GASF, a 3*3 kernel leads to the best

performance, with the exception of the Energy sector, for which a 5*5 leads to the best perfor-

mance for all three models. This tendency can be supported by the PXL-based model, which also

uses a 3*3 kernel.

Secondly, in the majority of models (17 out of 19), the Softmax and Sigmoid activation function

achieve the best performance. The ReLu activation function only leads to the best performance

for 2 of the 19 models.

Thirdly, for 5 out of the 6 ETFs applying the proposed image encoding types, average pooling

achieves the best performance for the GADF model.

Fourthly, for the majority of analysed ETFs (5 out of 6), including the class weights does not have

a positive impact on the model accuracy, i.e. models without class weights achieve a better accu-

racy for these ETFs. However, this tendency is not supported by the PXL-based model.

Common findings computational performance

For the majority of industries, i.e. Information Technology, Healthcare, Energy and Financial

Services, the GADF-based model achieves a better accuracy compared to the GASF- and MTF-

based models. Moreover, for 5 out of 7 analysed ETFs, GADF achieves better weight-averaged

and macro-averaged F1-scores than both GASF and MTF.

57

For the Energy industry, it can be noted that GADF performs above the average of the other

industries, whereas the GASF and MTF perform poorly compared to the other ETF’s in terms of

computational performance. The worst model across all industries can be found within the

Healthcare models, where the MTF showed the poorest performance from a computational per-

spective with a weighted average F1-score of 0.34 and an accuracy of 0.3706. Among all models

and industries, predictions of the Hold class showed the most promising results, with the only

outlier found for the GASF model of the energy sector. It is also worth mentioning that within all

industries and ETF’s, with the VGT (IT sector) as an exception, class predictions show huge dis-

crepancies in predicting the correct class. Hence it is not possible to conclude that a certain image

encoding technique works better to predict a specific signal.

The performance evaluation of the random choice models didn’t produce any important insights.

For all industries, similar scores can be observed. Moreover, they are less performant than all

other models when comparing weighted averages with each other.

Common findings financial performance

For comparing and assessing the financial performances of the models across industries, excess

returns calculated as the absolute difference between the model return and the benchmark strategy

are being used to ensure comparability of the obtained results. Considering the average of these

excess returns, only the GADF models are able to achieve returns that exceed the Buy & Hold

strategy, i.e. to beat the return generated by the general price development of the considered ETF.

Both the GASF and MTF models have negative excess returns compared to Buy & Hold, leaving

the investor with better returns by just buying and holding the asset compared to using a trading

strategy based on the models’ predictions.

For 4 out of the 6 ETFs to which the common methodology was applied, the GADF models out-

perform the Buy & Hold return, with the exception of Healthcare and Industrials. The GASF

models only outperforms the Buy & Hold return for 2 out the 6 ETFs, i.e. Healthcare and Energy.

58

Only for the Energy sector, the MTF model outperforms the Buy & Hold return. Despite being a

subset of the energy industry, the model used on the Oil & Gas sector cannot outperform the Buy

& Hold return. It is also the Energy sector where the model generates the most impact; despite the

negative price development of -8% over the test data period, all three models are able to generate

positive returns between 3% and 10%. Lastly, the CNN approach shows the poorest performance

in the Industrials sector where all three models underperform compared to the Buy & Hold strat-

egy.

59

6. Limitations and Outlook

6.1 Limitations

Predictions for the stock market are challenging, as the stock market represents a dynamic, volatile

and very complex market based on historical data and influenced by unpredictable events. In this

research we face the problem of imbalanced classes, where the largest class is Hold across all

sectors. As a result, the predictions are dominated by the largest class - predictions of the minor

classes turn out worse, which negatively affects the overall model performance. In addition, a

comparatively small train set in combination with complex features further complicates model

development. This makes the models prone to overfitting - whereas the inclusion of multiple train

data would be advantageous. In the present approach of this research accuracy was chosen as the

most important performance measure and model selection criterion. However, there are other

evaluation methods that could be considered as primarily evaluation metric, e.g. financial perfor-

mance, precision or F1-scores. Especially with respect to the financial performance it is important

to mention that only the decisions of the next day are considered. Hence, the prediction is related

to a very short future period and makes no specific statements about longer term behavior. A

further limitation lies in the assessment of the severity in the case of mislabelling. A wrong

Buy/Sell decision has more serious negative effects than a wrong Buy/Hold or Sell/Hold decision.

In the present research a suitable performance measure is missing - here a suitable loss function

would be necessary. A further remark is to be mentioned in the simplification of the labelling

approach. If the upper and lower limits are exceeded on the same day, the first labelling trigger

decides on the label allocated to the trading day. Another limitation can be found in the Efficient

Market Theory (Fama 1970, 383). As mentioned in section 2.1, the theory states that stock prices

already reflect and have priced in all relevant information. This would make a deeper analysis

with additional features, like technical indicators, redundant, as no investment analysis technique

allows investors to generate significant excess returns above the market. However, this is refuted

60

by the thesis that financial markets in many cases do not react immediately to new information

(Cervelló-Royo and Guijarro 2020, 41), which would make returns above the market average still

possible through sufficient analysis and the right timing. This would imply that a better perform-

ing model could potentially outperform market returns.

6.2 Outlook

Forecasting Financial Time Series Movements using CNNs is a recent research field. For this

reason many different topics can be addressed in future research.

Firstly, it would be interesting to test if the proposed methodology can achieve better results with

regard to different prediction horizons. These could include the prediction of price movements

within the next week or month, alternatively intraday data can be used for short-term forecasting.

This work focuses on using technical indicators along with foreign exchange, commodity and

indices as features to feed into the CNN. However, future work could incorporate other types of

features. These could, among others, include data from the news, social media and market seg-

ments. Moreover, machine-learning-based fundamental analysis approaches as suggested by Cao

and You (2020), e.g. for forecasting company earnings, could be included to provide a more ho-

listic impression on the underlying companies’ situation.

Furthermore, within the current research not all papers propose transforming the data into station-

ary time series. Therefore, research regarding the necessity of stationary time series in the context

of forecasting financial time series with CNNs can be conducted. This is particularly interesting

as methods to transform non-stationary data imply information loss within the used variables.

61

References

Abad, Cristina, Sten A. Thore, and Joaquina Laffarga. 2004. ‘Fundamental Analysis Of Stocks

By Two-Stage DEA’. Managerial And Decision Economics 25 (5): 231-241.

doi:10.1002/mde.1145.

Abdi, Hervé, and Lynne J. Williams. 2010. ‘Principal Component Analysis’. Wiley interdiscipli-

nary reviews: computational statistics 2(4): 433-459.

Albawi, Saad, Tareq Abed Mohammed, and Saad Al-Zawi. 2017. ‘Understanding of a Convolu-

tional Neural Network’. In 2017 International Conference on Engineering and Technology

(ICET), 1–6.

Allen, Katie. 2015. "Why Is China's Stock Market In Crisis?". The Guardian,

2015.https://www.theguardian.com/business/2015/jul/08/china-stock-market-crisis-ex-

plained.

Arratia, Argimiro, and Eduardo Sepúlveda. 2020. ‘Convolutional Neural Networks, Image Recog-

nition and Financial Time Series Forecasting’. In Mining Data for Financial Applications,

60–69. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-37720-

5_5.

Banton, Caroline. 2021. ‘An Introduction To Trading Types: Fundamental Traders’. Investopedia.

Accessed December 10, 2021. https://www.investopedia.com/articles/trad-

ing/02/100102.asp.

Barra, Silvio, Salvatore Mario Carta, Andrea Corriga, Alessandro Sebastian Podda, and Diego

Reforgiato Recupero. 2020. ‘Deep learning and time series-to-image encoding for financial

forecasting’. IEEE/CAA Journal of Automatica Sinica 7 (3): 683–692.

https://doi.org/10.1109/JAS.2020.1003132.

Bergmeir, Christoph, and José M. Benítez. 2012. ‘On The Use Of Cross-Validation For Time

Series Predictor Evaluation’. Information Sciences 191: 192-213.

doi:10.1016/j.ins.2011.12.028.

Bogullu, Vamsi Krishna, Cihan H. Dagli, and David Lee Enke. 2002. ‘Using Neural Networks

and Technical Indicators for Generating Stock Trading Signals’. Intelligent Engineering

Systems Through Artificial Neural Networks 12: 721–726.

62

Brownlee, Jason. 2018. ‘When to Use MLP, CNN, and RNN Neural Networks’. Machine Learn-

ing Mastery. Accessed December 10, 2021. https://machinelearningmastery.com/when-to-

use-mlp-cnn-and-rnn-neural-networks/.

Brownlee, Jason. 2019. ‘Understand the Impact of Learning Rate on Neural Network Perfor-

mance’. Machine Learning Mastery. Accessed December 10, 2021. https://machinelearn-

ingmastery.com/understand-the-dynamics-of-learning-rate-on-deep-learning-neural-net-

works/.

Cao, Kai, and Haifeng You. 2020. ‘Fundamental Analysis Via Machine Learning’. SSRN Elec-

tronic Journal 2020 (009). doi:10.2139/ssrn.3706532.

Cervelló-Royo, R., and F. Guijarro. 2020. "Forecasting Stock Market Trend: A Comparison Of

Machine Learning Algorithms". Finance, Markets And Valuation 6 (1): 37-49.

Chen, Sheng, and Hongxiang He. 2018. ‘Stock Prediction Using Convolutional Neural Network’.

IOP Conference Series: Materials Science and Engineering 435 (1).

https://doi.org/10.1088/1757-899X/435/1/012026.

Chen, Wei, Manrui Jiang, Wei-Guo Zhang, und Zhensong Chen. 2021. ‘A Novel Graph Con-

volutional Feature Based Convolutional Neural Network for Stock Trend Prediction’. Infor-

mation Sciences 556 (May): 67–94. https://doi.org/10.1016/j.ins.2020.12.068.

Cheung, Yin-Wong, and Kon S. Lai. 1995. ‘Lag Order and Critical Values of the Augmented

Dickey–Fuller Test’. Journal of Business & Economic Statistics 13 (3): 277–280.

https://doi.org/10.1080/07350015.1995.10524601.

Chollet, Francois. 2017. Deep Learning with Python. New York, NY: Manning Publications.

Chollet, François. 2018. Deep Learning with Python. Shelter Island, New York: Manning Publi-

cations Co.

Cohen, Naftali, Tucker Balch, and Manuela Veloso. 2020. ‘Trading via Image Classification’. In

Proceedings of the First ACM International Conference on AI in Finance, 1–6.

https://doi.org/10.1145/3383455.3422544.

Drakopoulou, Veliota. 2016. ‘A Review Of Fundamental And Technical Stock Analysis Tech-

niques’. Journal Of Stock & Forex Trading 05 (01): 1-8.

63

Dertat, Arden. 2017. ‘Applied Deep Learning - Part 4: Convolutional Neural Networks’. Towards

Data Science. Accessed November 8, 2021. https://towardsdatascience.com/applied-deep-

learning-part-4-convolutional-neural-networks-584bc134c1e2.

Desconfio, Josh. 2018. ‘A Beginner's Guide to Technical Indicators’. Scanz.com. Accessed De-

cember 3, 2021. https://scanz.com/technical-indicators-guide/.

Fama, Eugene F. 1970. ‘Efficient Capital Markets: A Review of Theory and Empirical Work’.

The Journal of Finance, 25(2), 383–417. https://doi.org/10.2307/2325486

Federal Reserve Bank of San Francisco. 1996. Banks and Foreign Exchange Exposure. Eco

nomic Letter, San Francisco: FRBSF.

Ferguson, Niall, and Xiang Xu. 2018. "Trump And The 'Chimerica' Crisis". Wall Street Jour

nal, 2018. https://www.wsj.com/articles/trump-and-the-chimerica-crisis-1525635323.

Fernández-Blanco, Pablo, Diego J. Bodas-Sagi, Francisco J. Soltero, and J. Ignacio Hidalgo.

2008. ‘Technical Market Indicators Optimization Using Evolutionary Algorithms’. In Pro-

ceedings of the 2008 GECCO Conference Companion on Genetic and Evolutionary Com-

putation.

Ghosh, Anirudha, Abu Sufian, Farhana Sultana, Amlan Chakrabarti, and Debashis De. 2020.

‘Fundamental Concepts of Convolutional Neural Network’. In Recent Trends and Advances

in Artificial Intelligence and Internet of Things, 172:519–67. https://doi.org/10.1007/978-

3-030-32644-9_36.

Godin, Fréderic, Jonas Degrave, Joni Dambre, and Wesley De Neve. 2018. ‘Dual Rectified Linear

Units (DReLUs): A Replacement for Tanh Activation Functions in Quasi-Recurrent Neural

Networks’. Pattern Recognition Letters. 10.1016/j.patrec.2018.09.006

Grammatikos, Theoharry, and Robert Vermeulen. 2014. "The 2007-2009 Financial Crisis:

Changing Market Dynamics And The Impact Of Credit Supply And Aggregate Demand

Sensitivity". Applied Economics 46 (8): 895-911.

Haq, Anwar Ul, Adnan Zeb, Zhenfeng Lei, and Defu Zhang. 2021. ‘Forecasting Daily Stock

Trend Using Multi-Filter Feature Selection and Deep Learning‘. Expert Systems with Ap-

plications 168 (April): 114444. https://doi.org/10.1016/j.eswa.2020.114444.

64

Hayes, Adam. 2021. ‘Know Sure Thing (KST)’. StockCharts. Accessed December 10, 2021.

https://stockcharts.com/school/doku.php?id=chart_school:technical_indica-

tors:know_sure_thing_kst.

Henrique, Bruno Miranda, Vinicius Amorim Sobreiro, and Herbert Kimura. 2018. ‘Stock Price

Prediction Using Support Vector Regression on Daily and up to the Minute Prices’. Journal

of Finance and Data Science 4 (3): 183–201. https://doi.org/10.1016/j.jfds.2018.04.003.

Herman-Safar, Or. 2021. ‘Time Based Cross Validation’. Blog. Towards Data Science. https://to-

wardsdatascience.com/time-based-cross-validation-d259b13d42b8.

Hinton, Geoffrey, Nitish Srivastava, and Kevin Swersky. 2012. "Neural networks for machine

learning lecture 6a overview of mini-batch gradient descent." Neural Networks for Machine

Learning 14.

Huang, Boming, Yuxiang Huan, Li Da Xu, Lirong Zheng, and Zhuo Zou. 2019. ‘Automated trad-

ing systems statistical and machine learning methods and hardware implementation: a sur-

vey’. Enterprise Information Systems 13 (1): 132–144. https://doi.org/10.1080/

17517575.2018.1493145.

Hyndman, Rob J., and George Athanasopoulos. 2018. Forecasting: Principles and Practice.

OTexts.

Ioffe, Sergey, and Christian Szegedy. 2015. ‘Batch Normalization: Accelerating Deep Network

Training by Reducing Internal Covariate Shift’. In: International conference on machine

learning. PMLR, 2015. S. 448-456.

"Ishares U.S. Financial Services ETF | IYG". 2021. Blackrock.

https://www.ishares.com/us/products/239509/ishares-us-financial-services-etf.

Ittiyavirah, Sibi, S. Jones and P. Siddarth. 2013. ‘Analysis of different activation functions using

Backpropagation Neural Networks’. Journal of Theoretical and Applied Information Tech-

nology 47: 1344-1348.

Keijsers, N. L. W. 2010. ‘Neural Networks’. In Encyclopedia of Movement Disorders, 257–259.

Elsevier.

Kingma, Diederik P, and Jimmy Ba. 2014. ‘Adam: A method for stochastic optimization’. arXiv

preprint arXiv:1412.6980.

65

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. 2017. ‘ImageNet Classification with

Deep Convolutional Neural Networks’. Communications of the ACM 60 (6): 84–90.

Kröse, Ben, and Patrick Van der Smagt. 1993. ‘An Introduction to Neural Networks’. Journal of

Computer Science 48 (January).

Lee, Hagyeong, and Jongwoo Song. 2019. ‘Introduction to Convolutional Neural Network Using

Keras; an Understanding from a Statistician’. Communications for Statistical Applications

and Methods 26 (6): 591–610.

Lev, Baruch, and S. Ramu Thiagarajan. 1993. ‘Fundamental Information Analysis’. Journal Of

Accounting Research 31 (2): 190. doi:10.2307/2491270.

Liu, Tao, and Wing Thye Woo. 2019. “Understanding the U.S.-China Trade War.” China

Economic Journal, 1-22.

Liu, Shiyu, Shutao Wang, Chunhai Hu, and Weihong Bi. 2022. ‘Determination of Alcohols-Die-

sel Oil by near Infrared Spectroscopy Based on Gramian Angular Field Image Coding and

Deep Learning’. Fuel 309 (February): 122121. https://doi.org/10.1016/j.fuel.2021.122121.

Lopez de Prado, Marcos. 2018. Advances In Financial Machine Learning. 2nd ed. New Jersey:

John Wiley & Sons.

Mitchell, Cory. 2021. ‘How To Use A Moving Average To Buy Stocks’. Investopedia.

https://www.investopedia.com/articles/active-trading/052014/how-use-moving-average-

buy-stocks.asp.

Moghaddam, Amin Hedayati, Moein Hedayati Moghaddam, and Morteza Esfandyari. 2016.

‘Stock Market Index Prediction Using Artificial Neural Network’. Journal of Economics,

Finance and Administrative Science 21 (41): 89–93.

https://doi.org/10.1016/j.jefas.2016.07.002.

Murphy, John J. 1999. Technical Analysis of the Financial Markets: A Comprehensive Guide to

Trading Methods and Applications. New York: New York Institute of Finance.

Nayak, Aparna, M. M.Manohara Pai, and Radhika M. Pai. 2016. ‘Prediction Models for Indian

Stock Market’. Procedia Computer Science 89: 441–449.

https://doi.org/10.1016/j.procs.2016.06.096.

66

O'Shea, Keiron, and Ryan Nash. 2015. 'An Introduction to Convolutional Neural Networks'. arXiv

preprint arXiv:1511.08458.

Patel, Jigar, Sahil Shah, Priyank Thakkar, and K. Kotecha. 2015. ‘Predicting Stock and Stock

Price Index Movement Using Trend Deterministic Data Preparation and Machine Learning

Techniques’. Expert Systems with Applications 42 (1): 259–268.

https://doi.org/10.1016/j.eswa.2014.07.040.

Peachavanish, Ratchata. 2016. ‘Stock Selection and Trading Based on Cluster Analysis of Trend

and Momentum Indicators’. In Proceedings of the International MultiConference of Engi-

neers and Computer Scientists 2016. Vol. 1. IMECS 2016. http://www.iaeng.org/publica-

tion/IMECS2016/IMECS2016_pp317-321.pdf.

Peng, Yaohao, Pedro Henrique Melo Albuquerque, Herbert Kimura, and Cayan Atreio Portela

Bárcena Saavedra. 2021. ‘Feature Selection and Deep Neural Networks for Stock Price Di-

rection Forecasting Using Technical Analysis Indicators ‘. Machine Learning with Appli-

cations 5 (September): 100060. https://doi.org/10.1016/j.mlwa.2021.100060.

Petrusheva, Nada, and Igor Jordanoski. 2016. ‘Comparative Analysis between the Fundamental

and Technical Analysis of Stocks’. Journal of Process Management. New Technologies 4:

26–31. https://doi.org/10.5937/JPMNT1602026P.

Rahoma, Abdalhamid, Syed Imtiaz, and Salim Ahmed. 2021. ‘Sparse Principal Component Anal-

ysis Using Bootstrap Method’. Chemical Engineering Science 246: 116890.

https://doi.org/10.1016/j.ces.2021.116890.

Romero, Luis, Joaquim Blesa, Vicenç Puig, Gabriela Cembrano, and Carlos Trapiello. 2020.

‘First Results in Leak Localization in Water Distribution Networks Using Graph-Based

Clustering and Deep Learning‘. IFAC-PapersOnLine, 21st IFAC World Congress, 53 (2):

16691–96. https://doi.org/10.1016/j.ifacol.2020.12.1104

Salkar, Tanishq, Aditya Shinde, Neelaya Tamhankar, and Narendra Bhagat. 2021. ‘Algorithmic

Trading Using Technical Indicators’. In 2021 International Conference on Communication

Information and Computing Technology (ICCICT), 1–6. https://doi.org/10.1109/IC-

CICT50803.2021.9510135.

67

Santurkar, Shibani, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. 2018. ‘How Does

Batch Normalization Help Optimization?’. Proceedings of the 32nd international confer-

ence on neural information processing systems: 2488-2498.

Sezer, Omer Berat, and Ahmet Murat Ozbayoglu. 2018. ‘Algorithmic Financial Trading with

Deep Convolutional Neural Networks: Time Series to Image Conversion Approach’. Ap-

plied Soft Computing 70: 525–538. https://doi.org/10.1016/j.asoc.2018.04.024.

Sezer, Omer Berat, Murat Ozbayoglu, and Erdogan Dogdu. 2017. ‘A Deep Neural-Network

Based Stock Trading System Based on Evolutionary Optimized Technical Analysis Pa-

rameters’. Procedia Computer Science, 114: 473–80.

https://doi.org/10.1016/j.procs.2017.09.031.

Sharma, Sagar. 2017. ‘Epoch vs Batch Size vs Iterations - towards Data Science’. Towards Data

Science. Accessed December 10, 2021. https://towardsdatascience.com/epoch-vs-itera-

tions-vs-batch-size-4dfb9c7ce9c9.

Sharma, Siddharth & Sharma, Simone & Athaiya, Anidhya. . 2020. ‘Activation Functions In Neu-

ral Networks’. International Journal of Engineering Applied Sciences and Technology: 310-

316. 10.33564/IJEAST.2020.v04i12.054.

Shen, Kevin. 2018. ‘Effect of Batch Size on Training Dynamics.’ Mini Distill. Accessed Dezem-

ber 3, 2021. https://medium.com/mini-distill/effect-of-batch-size-on-training-dynamics-

21c14f7a716e.

Shynkevich, Yauheniya, T. M. McGinnity, Sonya A. Coleman, Ammar Belatreche, and Yuhua

Li. 2017. ‘Forecasting Price Movements Using Technical Indicators: Investigating the

Impact of Varying Input Window Length’. Neurocomputing, Machine learning in fi-

nance, 264: 71–88. https://doi.org/10.1016/j.neucom.2016.11.095.

Sim, Hyun, Hae Kim, and Jae Ahn. 2019. ‘Is Deep Learning for Image Recognition Applicable

to Stock Market Prediction?’ Complexity 2019: 1–10.

https://doi.org/10.1155/2019/4324878.

Speiser, Jaime Lynn, Michael E. Miller, Janet Tooze, and Edward Ip. 2019. ‘A Comparison of

Random Forest Variable Selection Methods for Classification Prediction Modeling‘. Expert

Systems with Applications 134: 93–101. https://doi.org/10.1016/j.eswa.2019.05.028.

68

Srivastava, Nitish, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.

2014. ‘Dropout: A Simple Way to Prevent Neural Networks from Overfitting’. Journal of

Machine Learning Research: JMLR 15 (56): 1929–1258.

Thakkar, Ankit, and Kinjal Chaudhari. 2021. ‘A Comprehensive Survey on Deep Neural Net-

works for Stock Market: The Need, Challenges, and Future Directions’. Expert Systems

with Applications 177: 114800. https://doi.org/10.1016/j.eswa.2021.114800.

Thakkar, Vignesh, Suman Tewary, and Chandan Chakraborty. 2018. ‘Batch Normalization in

Convolutional Neural Networks — A Comparative Study with CIFAR-10 Data’. In 2018

Fifth International Conference on Emerging Applications of Information Technology

(EAIT), 1–5. https://doi.org/10.1109/EAIT.2018.8470438.

Tharwat, Alaa. 2016. ‘Principal Component Analysis - a Tutorial’. International Journal of Ap-

plied Pattern Recognition 3: 197. https://doi.org/10.1504/IJAPR.2016.079733

Tsai, Yun-Cheng, Jun-Hao Chen, and Jun-Jie Wang. 2018. ‘Predict Forex Trend via Convolu-

tional Neural Networks’. Journal of Intelligent Systems 29 (1): 941–958.

https://doi.org/10.1515/jisys-2018-0074.

Verma, Yugesh. 2021. ‘Complete Guide To Dickey-Fuller Test In Time-Series Analysis’. Ana-

lytics India Magazine. Accessed December 1, 2021. https://analyticsindiamag.com/com-

plete-guide-to-dickey-fuller-test-in-time-series-analysis/.

Vijh, Mehar, Deeksha Chandola, Vinay Anand Tikkiwal, and Arun Kumar. 2020. ‘Stock Closing

Price Prediction Using Machine Learning Techniques’. Procedia Computer Science 167

(2019): 599–606. https://doi.org/10.1016/j.procs.2020.03.326.

Walasek, Rafał, and Janusz Gajda. 2021. ‘Fractional Differentiation and Its Use in Machine

Learning’. International Journal of Advances in Engineering Sciences and Applied Mathe-

matics 13 (2–3): 270–277.

Wahab, Noorul, Asifullah Khan, and Yeon Soo Lee. 2017. "Two-Phase Deep Convolutional

Neural Network For Reducing Class Skewness In Histopathological Images Based Breast

Cancer Detection". Computers In Biology And Medicine 85: 86-97. doi:10.1016/j.comp-

biomed.2017.

69

Wang, Zhiguang, and Tim Oates. 2015. ‘Encoding Time Series as Images for Visual Inspection

and Classification Using Tiled Convolutional Neural Networks’. Workshops at the Twenty-

Ninth AAAI Conference on Artificial Intelligence, 40–46.

Wehinger, Gert. 2012. "The Financial Industry In The New Regulatory Landscape". OECD

Journal: Financial Market Trends 2011 (2): 225-249. doi:10.1787/fmt-2011-

5k9cswmzqp7d.

Wu, Jianxin. 2017. ‘Introduction to convolutional neural networks’. National Key Lab for Novel

Software Technology. Nanjing University. China 5 (23): 495.

Xu, Kelvin, Jimmy Lei Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov,

Richard S. Zemel, and Yoshua Bengio. 2015. ‘Show, Attend and Tell: Neural Image Cap-

tion Generation with Visual Attention’. 32nd International Conference on Machine Learn-

ing, ICML 2015 3: 2048–2057.

Yang, Chao-Lung, Chen-Yi Yang, Zhi-Xuan Chen, and Nai-Wei Lo. 2019. ‘Multivariate Time

Series Data Transformation for Convolutional Neural Network‘. In 2019 IEEE/SICE Inter-

national Symposium on System Integration (SII), 188–192. Paris, France: IEEE.

https://doi.org/10.1109/SII.2019.8700425.

Yang, Zhenhua, Kuangrong Hao, Xin Cai, Lei Chen, and Lihong Ren. 2019. ‘Prediction of Stock

Trading Signal Based on Multi-Indicator Channel Convolutional Neural Networks’. In 2019

IEEE 8th Data Driven Control and Learning Systems Conference (DDCLS), 912–917.

IEEE.

Zhang, Dayong, Min Hu, and Qiang Ji. 2020. "Financial Markets Under The Global Pandemic

Of COVID-19". Finance Research Letters 36: 1-6. doi:10.1016/j.frl.2020.101528.

Zhang, Jiawei, and Fisher B Gouza. 2018. ‘GADAM: genetic-evolutionary ADAM for deep neu-

ral network optimization’. arXiv preprint arXiv:1805.07500.

2021. https://www.etf.com/IYG#overview.

70

Appendix

Apendix A: Technical indicators

The table below displays the technical indicators used cross-sectoral. Along with a description,

the formulas for calculationg the indicator is provided.

Type Technical Indicator Formula (Sezer and Ozbayoglu 2018, 535;
Sim, Kim, and Ahn 2019, 7)

Trend Simple moving average (SMA) calcu-
lates the average price over a given pe-
riod. The indicator is widely used to
detmine price trends (Sezer and
Ozbayoglu 2018, 535).

𝑆𝑀𝐴 =
𝐶 + 𝐶 + ⋯ + 𝐶

𝑛

where:
𝐶 = price of an asset at period i
n = the number of periods used for moving
average

Trend Exponential moving average (EMA)
calculates a moving average such that
greater weights are assigned to more re-
cent values (Sezer and Ozbayoglu 2018,
535).

𝐸𝑀𝐴 = 𝐶 ∗ 𝑘 + 𝐸𝑀𝐴(𝑦) ∗ (1 − 𝑘)
where:
k = 2÷(n+1)
n = number of days in EMA
Ct = closing price of an asset today
y = yesterday

Momen-
tum

Rate of change (ROC) is a momentum
oscillator measuring the speed of changes
in price over a given period (Sezer and
Ozbayoglu 2018, 536). The indicator is
calculated by comparing the current clos-
ing price with the closing price n periods
ago.

𝑅𝑂𝐶 =
(𝐶 − 𝐶)

(𝐶)
∗ 100

where:
Ct = closing price of an asset today
n = number of periods

Momen-
tum

Percentage Price Oscillator (PPO) is a
technical momentum indicator similar to
MACD (Sezer and Ozbayoglu 2018,
536). It exhibits the relation of two mov-
ing averages in percentage, usually a 26-
period and 12-period EMA.

𝑃𝑃𝑂 =
(𝐸𝑀𝐴 − 𝐸𝑀𝐴)

𝐸𝑀𝐴
∗ 100

where:
EMA = Exponential moving average as de-
fined before
n = number of periods

Momen-
tum

The Relative Strength Index (RSI) is an
oscillating indicator measuring the
strength and weaknesses of stock prices
or the magnitude of historical price
changes, indicating whether stock prices
are in the ‘overbought’ or ‘oversold’ re-
gion (Sezer, Ozbayoglu, and Dogdu
2017a,2; Corporate Finance Institute
2020, 4)

𝑅𝑆𝐼 = 100 −
100

1 + (
𝑔
𝑙

)

where:
n = number of periods
gn = average percentage gain during a period
of length n
ln = average percentage loss during a period
of length n

71

Type Technical Indicator
Formula (Sezer and Ozbayoglu 2018, 535;
Sim, Kim, and Ahn 2019, 7)

Momen-
tum

Know Sure Thing Oscillator (KST) is a
momentum oscillator to make rate-of-
change readings easier for traders to in-
terpret (Hayes 2021).

KST = (RCMA #1×1) + (RCMA #2×2) +
(RCMA #3×3) + (RCMA #4×4)

where:
RCMA #1 = 10-period SMA of 10-period
ROC
RCMA #2 = 10-period SMA of 15-period
ROC
RCMA #3 = 10-period SMA of 20-period
ROC
RCMA #4 = 15-period SMA of 30-period
ROC

Momen-
tum

Williams % Range is a momentum-
based indicator determining overbought
and oversold conditions for stock prices
(Sezer and Ozbayoglu 2018, 535).

𝑅 =
max(𝐻) − 𝐶

max(𝐻) − min (𝐿)
∗ −100

where:
C = Closing price today.
max(H) = Highest price in the lookback pe-
riod n.
min(L) = Lowest price in the lookback
period n.
n = number of periods

Momen-
tum

Moving Average Convergence Diver-
gence (MACD) is a momentum indicator
showing the trend of stock prices by rep-
resenting the relationship between two
moving averages of prices. Usually a 26-
period and 12-period EMA is applied
(Sezer and Ozbayoglu 2018, 535).

𝑀𝐴𝐶𝐷 = 𝐸𝑀𝐴 − 𝐸𝑀𝐴

where:
EMA = Exponnetial moving average
n = number of periods

Momen-
tum

Commodity Channel Index (CCI) com-
pare the current price with the average
price over a given period of time (Sezer
and Ozbayoglu 2018, 536).

𝐶𝐶𝐼 =
𝑇𝑦𝑝𝑖𝑐𝑎𝑙 𝑃𝑟𝑖𝑐𝑒 − 𝑀𝐴

0.015 ∗ 𝑀𝑒𝑎𝑛 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

where:

Typical Price = ∑ (
()

)

n= number of periods
H = High price today
L = Low price today
C = Closing price today

MA =
(∑)

Mean Deviation =
(∑ | |)

72

Appendix B: Classification report of the best performing GADF model

The following appendix shows the classification report for the best performing GADF model ob-

tained for the Financial Services ETF (IYG).

Appendix C: Classification report of the best performing GASF model

The following appendix shows the classification report for the best performing GASF model ob-

tained for the Financial Services ETF (IYG).

73

Appendix D: Classification report of the best performing MTF model

The following appendix shows the classification report for the best performing MTF model ob-

tained for the Financial Services ETF (IYG).

 74

Appendix E: Model hyperparameters

The table below shows the selected model hyperparameters chosen through the randomised search for each ETF and image encoding type.

Sector ETF Image
type

Batch
Norm.

Drop-
out

Activation Kernel Padding Pooling Optimizer Learning
rate

Epochs Batch
size

Class
weight

Information
Technology

VGT GADF True 0.25 softmax 3,3 valid average RMSprop 0.0001 150 16 None

GASF True None sigmoid 3,3 valid max SGD 0.001 10 16 None

MTF True 0.25 softmax 5,5 same average RMSprop 0.0001 100 16 None

XSD GADF True 0.5 softmax 3,3 valid average Adam 0.001 50 32 None

GASF False None sigmoid 3,3 same average RMSprop 0.0001 75 64 None

MTF True 0.25 sigmoid 5,5 valid max SGD 0.001 50 16 None

Healthcare IYH GADF False None softmax 3,3 same average RMSprop 0.001 75 64 balanced

GASF False None relu 3,3 valid max Adam 0.0001 100 16 balanced

MTF True None sigmoid 5,5 same average SGD 0.01 10 32 balanced

Energy S&P 500
Energy

GADF False None sigmoid 5,5 same average RMSprop 0.0001 100 64 None

GASF True None sigmoid 5,5 same max SGD 0.001 50 16 None

MTF True None softmax 5,5 valid max Adam 0.001 10 32 balanced

Financial
Services

IYG GADF True 0.25 softmax 3,3 valid average RMSprop 0.0001 100 16 None

GASF True None sigmoid 3,3 valid max RMSprop 0.0001 50 16 None

MTF True None sigmoid 5,5 valid average SGD 0.001 100 16 None

Industrials VIS GADF True None softmax 3,3 same max RMSprop 0.001 25 16 None

GASF False 0.25 softmax 3,3 valid max Adam 0.0001 75 16 None

MTF False 0.25 softmax 5,5 same average RMSprop 0.0001 100 16 None

Oil & Gas XLE PXL False 0.25 relu 3,3 same max Adam 0.001 200 64 balanced

75

Appendix F: Computational and financial performances

The table below summarises the computational and financial performance on the test set for each ETF and image encoding type.

 Benchmark Labelling (on test set)

Sector ETF Image type Accuracy Macro F1
Weighted

F1
Financial Per-

formance
Buy & Hold

Return
SMA Re-

turn
MR Return % Buy % Hold % Sell

Information
Technology

VGT

GADF 0.51 0.34 0.42 55.48%

50.0% 27.57% -8.17% 26.29% 50.19% 23.53% GASF 0.49 0.31 0.40 36.03%

MTF 0.49 0.34 0.42 16.11%

XSD

GADF 0.50 0.28 0.38 53.43%

51.0% 6.66% 6.1% 26.10% 49.45% 24.45% GASF 0.44 0.34 0.40 40.23%

MTF 0.48 0.28 0.37 19.72%

Healthcare IYH

GADF 0.50 0.28 0.37 07.45%

25.00% 20.51% 11.08% 25.31% 47.77% 26.92% GASF 0.47 0.26 0.35 28.59%

MTF 0.37 0.29 0.34 24,64%

Energy
S&P
500

Energy

GADF 0.51 0.46 0.49 10.66%

-8,00% -3,90% 0.06% 29,00% 44,00% 27,00% GASF 0.41 0.34 0.37 2.84%

MTF 0.37 0.31 0.34 3.35%

Financial Ser-
vices

IYG

GADF 0.49 0.36 0.43 18.78%

16.0% 16.88% 21.76% 26.52% 48.99% 24.49% GASF 0.48 0.26 0.35 -12.75%

MTF 0.47 0.31 0.39 -6.25%

Industrials VIS

GADF 0.41 0.38 0.40 2.98%

7,00% 3.76% 19.61% 27.54% 47.16% 25.30% GASF 0.42 0.32 0.37 4.64%

MTF 0.47 0.31 0.37 5.53%

Oil & Gas XLE PXL 0.72 0.46 0.76 5.2% 10.0% 4.8% 0,00% 5,38% 88,88% 6,74%

