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Abstract: 

This thesis explores the applicability of CNNs as a price movement forecasting tool for ETFs, 

using a technical analysis approach and three different image encoding techniques. After de-

veloping a general methodology, the thesis focuses on the application to the U.S. financial ser-

vices sector. Subsequently, the research draws comparisons to results obtained for other U.S. 

sector ETFs using the same model approach.  

Overall results show that the CNN models, while proving some potential and exceeding a ran-

dom model in accuracy, show significant weaknesses for all industries in predicting Buy and 

Sell signals. Addressing these weaknesses, limitations of the approach are explored to suggest 

methods for model performance improvements. 
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1 Introduction 

For technical traders, i.e. practitioners of technical analysis, image analysis plays a vital role in 

their day-to-day decision-making, given that many decision are based on patterns and trends that 

can be observed in the stock charts (Drakopoulou 2015, 4). However, when looking at how algo-

rithmic trading, i.e. trading supported by computational resources, is done in practice, one can see 

very little use of image recognition; instead, other algorithmic trading techniques are primarily in 

use. Due to various factors, such as the emergence of significantly better hardware and new com-

putational approaches, the last 10 to 15 years have seen critical advances in Deep Learning, espe-

cially recently in the field of image recognition and analysis using convolutional neural networks 

(CNNs). CNNs have proven to be increasingly good at recognising and distinguishing objects. 

Thus, a critical question that needs to be asked is how these advances can be leveraged as appli-

cations to trading, simulating the trader's decision process based on image analysis with the help 

of CNNs. There has already been research on the application of CNNs to forecasting stock price 

movements, however, within a limited scope. The objective of this paper is to apply CNNs to 

different industries to determine whether there are differences in the performance and usability of 

CNNs used for stock price predictions across various industries 

For this purpose, image recognition with CNNs will be applied to the following six industries and 

comparisons be made: 

o Information Technology 

o Healthcare 

o Industrials 

o Energy 

o Oil & gas 

o Financial Services 
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To achieve a high degree of representativeness for each sector and reduce idiosyncratic factors 

inherent to individual companies, industry ETFs or indices consisting of a large variety of com-

panies will be used as assets to forecast on, instead of using individual company shares. Moreover, 

only ETFs or indices covering the U.S. market will be used to increase comparability across the 

industries, avoiding differences in geographic factors as much as possible. 

The paper is structured in the following way: 

Firstly, an introduction to trading and stock analysis approaches is given to provide context on 

how CNNs fit into the scope of stock analysis and time-series forecasting. 

Secondly, a high-level introduction to CNNs will be given, and the general methodology used in 

this paper will be explained. 

The third part focuses on applying an established methodology to the specific industries, respec-

tive adjustments to the methods to account for particular characteristics of the industries and the 

results obtained for each sector. 

In the fourth, the best-performing hyperparameters as well as model performances across the dif-

ferent industries will be compared and discussed and conclusions on the added value of the appli-

cation of CNNs to price movement forecasts will be drawn. 

The fifth focuses on the comparison of the established performance measures across the different 

industries. 

In the sixth and last part, cross-sectoral limitations of the methodology are faced and an outlook 

on potential further research topics is provided. 
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2 Trading and Time-Series Forecasting 

The following section will provide a brief introduction to trading and its two essential stock anal-

ysis approaches and a high-level overview of time-series forecasting methods, in order to place 

CNNs in the context of trading and price forecasting. 

2.1 Trading   

There are several types of trading that can be distinguished based on factors such as the frequency 

of executed trades, the period of an asset and the underlying method used to determine which 

assets to buy and sell (Banton 2021). However, regardless of the trading type they are applying, 

traders have the common key objective of maximising their profits. Traditionally, the most com-

mon groups of traders are so-called technical and fundamental traders, based on the stock analysis 

approach they use: technical and fundamental analysis, the most important general analysis tools 

in the realm of investing and trading (Petrusheva and Jordanoski 2016, 30). They represent two 

approaches to determining what shares investors should buy or sell to maximise their profit. Tech-

nical analysis also gives indications on the optimal time to execute the transaction (Petrusheva 

and Jordanoski 2016, 31). Although their overall objective is identical, they differ significantly in 

the assumptions they are based on, the methods they employ and the time horizons for which they 

are used (Petrusheva and Jordanoski 2016, 30). While fundamental analysis focuses on the eco-

nomic forces of supply and demand that cause prices to change (Murphy 1999, 5) and aims at 

determining the fair value of corporate securities by studying company-specific key value-driv-

ers, so-called fundamentals, such as a company's earnings, its risks factors, growth rates and com-

petitive positioning (Lev and Thiagarajan 1993, 190), technical analysis focuses solely on the 

share price and trading volumes as the two key determinants to forecast future price developments 

(Petrusheva and Jordanoski 2016, 28).   
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The main premise of fundamental analysis is that each asset has a fair value that it will always 

converge to in the long run, but it may not always reflect this fair value due to temporary mispric-

ing in the markets (Lev and Thiagarajan 1993, 191). The fair value can be determined by an in-

vestor through the analysis of the underlying fundamentals, such as the company's financial state-

ments, the overall economic state of the markets the company operates in as well as developments 

of the industry the company belongs to. An investor can then generate profits by identifying mis-

priced assets, capitalising on the eventual price corrections that will take place in the market ac-

cording to the basic premise of fundamental analysis (Abad, Thore and Laffarga 2004, 231). 

The core belief of technical analysis, on the other hand, is that all factors affecting the stock price 

(fundamentals, political factors, environmental factors, etc.) are already reflected in the price of 

that stock, which results in the reasoning that only price and volume data need to be analysed to 

forecast future price movements (Murphy 1999, 2).  

A second and third concept essential to technical analysis are the assumptions that prices move in 

trends and that history repeats itself (Murphy 1999, 2). With these two assumptions in place, an 

investor can take investment decisions based on patterns that worked well in the past (history 

repeats itself) and can generate profits by identifying trends in early stages of their development 

to trade in accordance with the direction of these trends (Murphy 1999, 3).  

Regarding the time horizons for which the two methods are used, it can be stated that fundamental 

analysis commonly uses longer periods when analysing the underlying data and is mostly used 

for longer-term investment decisions, and as such, is often used by investors focusing on value 

investing (Petrusheva and Jordanoski 2016, 27). Technical analysis, on the other hand, focuses 

stronger on short-term data (price and volume data for single a day, few days or few weeks) and 

is often used for the identification of assets that can be traded to generate profits in the short 

term, i.e., stocks whose prices will experience significant changes in the near future (Petrusheva 

and Jordanoski 2016, 28).  
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Fama’s Efficient Market Theory (1970) states that none of the investment analysis approaches 

will allow an investor to generate returns that exceed the market return, given that any new infor-

mation entering the market will be immediately included in the asset price. Following this state-

ment, technical analysis, i.e. forecasting future price movements based on past price develop-

ments, will not generate excess returns above the market. This paper will analyse to which degree 

the Efficient Market Theory holds true when applying CNNs to the general technical analysis 

approach, given that they are potentially able to recognise patterns that traditional technical anal-

ysis methods miss. 

2.2 Introduction Financial Time Series Forecasting   

While technical and fundamental analysis have traditionally been the two most widely used ap-

proaches to stock price forecasting, emerging technologies have opened up new possibilities to 

stock price analysis, a type of data that is difficult to predict as financial markets are volatile, 

representing non-linear, fluctuating, and high noise data (Thakkar & Chaudhari 2021, 1). The use 

of machine learning and deep learning approaches has gained increasing attention due to their 

ability to detect localised data features at multiple levels.  This trend also opens new possibilities 

for investment strategies and changes the nature of investing. Relying on deep learning for invest-

ment makes trading and investment decisions more rational than investment decisions based on 

human knowledge and experience, with the latter tending to result in more subjective and biased 

decisions (Yang et al. 2019, 387). Different forecasting types which might be of prediction inter-

est include either the movement direction of the stock market to predict local extreme values or 

turning points to recognise the perfect point to either sell or buy (classification problem) or the 

magnitude of change of the market movement including future prices (regression problem) (Peng 

et al. 2021, 10). 
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Before the rise of deep learning applications for financial problems, conservative statistical meth-

ods were used. The logistic regression as one popular classification model provides an easy un-

derstanding and interpretation of the results. However, these traditional statistic models assume 

linearity – thus, representing a crucial limitation (Peng et al. 2021, 14).   

Deep Artificial neural networks as linear models with pieces of nonlinearity bypass these prob-

lems by permitting the learning of more abstract knowledge representations. Nonetheless, by 

working with more complex structures and hence more features, they are more prone to overfit-

ting. (Peng et al. 2021, 15).   

Extensive research has been conducted about possible other approaches for making predic-

tions in trading. Among others, popular approaches include Artificial Neural Networks (ANNs), 

Support Vector Regressions (SVRs), Logistic regressions and Decision Trees (Huang et al. 2019, 

134).  Examples of extensive research conducted in this area can be found in several research pa-

pers. An overview is presented in Table 1. 

Even though all these approaches seem promising, CNN’s have a big advantage: They are able to 

work well with data having a spatial relationship (Brownlee 2018). A necessary requirement to 

fulfill is the transformation of data into images before being able to make predictions though, as 

information is retrieved via multi-scale localized spatial features (Chen et al. 2021, 69) (Xu et al. 

2015). They have proven themselves to be highly successful for stock predictions, as stock data 

can be illustrated as a 2D matrix (Chen and He 2018).  
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Authors Goal Approach Main Results 

Moghaddam 
and Esfandyari (2016)  

Predict daily 
NASDAQ 
stock ex-
change returns 

ANN R² values above 0.9 

Nayak et al. (2016, 
441 et sqq.)  

Predict daily 
and monthly 
movements of 
the stock 
(whether they 
go up or 
down) 

Decision Boosted 
Tree  

Outperformed a SVM and a 
Logistic Regression Model  

Henrique et al. (2018, 
183) 

Predict stock 
prices from 
different mar-
kets  

Support Vector Re-
gression  

Performed especially well 
for market periods with lower 
market volatility and for a 
strategy with updating the 
model periodically 

Patel et al. (2015, 
2171) 

Predict Indian 
Stock market 
indices 

Two-stage fusion ap-
proach between 
ANNs, Random For-
est Models 
and SVRs combined 
to hybrid models: 
SVR–ANN, SVR–
RF and SVR–SVR. 
They were after-
wards compared to 
single models 

Results of this study have 
shown ANNs and RFs to bet-
ter perform in a hybrid model 
including SVRs rather than as 
single models. The best over-
all performance was shown 
by the SVR-ANN model 

Vijh et al. (2020, 605)  Forecast next 
day stock clos-
ing prices 

Random Forests 
and an ANN  

They indicate strong results. 
Overall, in this case, the ANN 
performed better than the RF 

Table 1 - Overview Financial Time Series Research 

Source: Own illustration 

Within the last years, different approaches to financial time series forecasting with CNNs have 

been addressed. Cohen, Balch, and Veloso (2020) have created various charts based on open, 

high, low, and closing prices to forecast trading signals using a CNN. The results demonstrate that 

the transformation of the time series into images is beneficial for the recognition of trading sig-

nals. Sezer and Ozbayoglu (2018) on the other hand create images based on 15 technical indica-

tors over a period of 15 days (15x15 image). Using these images and a CNN-TA architecture, the 
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research team was able to forecast entry and exit points (Buy, Hold, Sell) comparatively better 

than with other models. Arratia and Sepúlveda (2020) make use of recurrence plots and data of 

12-month periods to predict the direction of the S&P 500 the following month. Their CNN model 

attains an accuracy of 63 percent. The most promising and cited methods were proposed by Wang 

and Oates (2015). They used Gramian Angular Fields and Markov Transition Fields to transform 

time series into images and ran a tiled CNN for classification. Due to the promising results, the 

method was adapted and further developed in other research papers.  

2.3 Technical Analysis with CNNs  

While there has already been research on the applications of CNNs to stock price prediction, a 

status review shows that there is still hardly any practical use of this approach. This paper will 

focus on expanding the state of current research, evaluating if there are differences across indus-

tries in terms of computational and financial performance of investment strategies based on CNNs. 

Before going into details on CNNs and the applied methodology, it is important to understand 

why CNNs are highly applicable to technical analysis. There are two key factors making the com-

bination of technical analysis with the usage of convolutional neural networks an attractive in-

vestment research topic: Firstly, the assumption that no knowledge about factors and trends af-

fecting the markets is necessary as they are already included in the price (Murphy 1999, 4). Tech-

nicians know that there are many reasons why markets move, but do not assume it necessary to 

know these reasons in the forecasting process (Murphy 1999, 4). Based on these assumptions, it 

is sufficient to use visual representations (such as charts) of past price movements as a base to 

predict future price developments. Consequently, it appears reasonable to use CNNs to analyse 

the information contained in these visual representations without having to include further exter-

nal information that might be difficult to represent in an appropriate visual input for a CNN.  

Secondly, experienced technicians increasingly take intuitive decisions based on the patterns they 

see in the charts (Murphy 1999, 6). They learn to intuitively recognise the meaning of a variety 
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of patterns, i.e., what price movements tend to be preceded by what type of patterns in the charts. 

Seen from a high level, CNN's have a very similar approach to learning. Through different layers 

within the neural network, a CNN learns to recognise patterns in the images it is trained on, giving 

it the tools to make inferences from these patterns to the classification of that image, in order to 

be able to classify unknown images. Thus, it seems reasonable to assume that a CNN can be 

trained to predict future price movements based on patterns in past data in the same way that a 

human technician would.   
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3 Fundamentals and Methodology 

This chapter provides the theoretical and methodological basis for the thesis. First, an understand-

ing of the concepts of neural networks and convolutional neural networks is given. Then, several 

preprocessing methods are considered, and an overview of the generic model architecture and its 

evaluation methods are presented. The approach in this chapter is to outline widely established 

perspectives regarding the concepts presented in the current research. It is continuously reasoned 

which methodology is used for this work. Definitions that are appropriate for this thesis are also 

provided. 

3.1 Introduction to CNNs   

The following section provides an introduction to the deep learning algorithms used in this work. 

The terminology related to neural and convolutional neural networks and their essential structure 

are described. The associated components are presented to provide a deeper understanding of how 

the systems operate. 

3.1.1 Definitions 

Definition Neural Network  

Neural networks (NNs) are ‘computerised intelligent systems’ (Thakkar and Chaudhari 

2021, 2) that aim to recognise patterns and learn relationships in data by simulating the signal ex-

change between biological neurons in the human brain. A neural network consists of different 

layers of artificial neurons, also called units, which are interconnected and can be divided into 

input units, hidden units, and output units (Kröse and Van der Smagt 1993, 15). A set of input 

units receives information and applies certain weights, which are translated into an output by the 

network through an activation function (Kröse and Van der Smagt 1993, 15). Output units signal 

how the network reacts to the learned and processed information. Between input and output units 

there are one or more layers of hidden units, which perform nonlinear transformations of the 
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inputs (Kröse and Van der Smagt 1993, 15). A neural network is considered fully con-

nected if each hidden unit is connected to each unit in the layers on both sides of the network. Su-

pervised neural networks learn continuously through a feedback process called backpropagation 

(Chollet 2017, 11). In this iterative process, the actual output is compared to the expected output 

of the network. The difference is used to adjust the weights between the units in the network, that 

is, the strength of the connections, so that inputs match the correct output (Chollet 2017, 52). Neu-

ral networks continuously learn and improve with examples enabling it to respond accordingly to 

an entirely new set of inputs. They are particularly popular when modeling highly nonlinear sys-

tems or when unexpected changes in input data may occur. Many applications have employed 

neural networks to simulate unknown relationships between various parameters based on a vast 

set of examples. Classifications of handwritten digits, speech recognition, and stock price predic-

tion are examples of effective neural network applications (Keijsers 2010).  

Neural networks are usually divided into artificial neural network (ANN) and deep neural network 

(DNN). A deep neural network is a type of artificial neural network, with multiple hidden layers 

between the input and output layers (Thakkar and Chaudhari 2021, 2). The increasing volumes of 

structured and unstructured data cause deep learning systems, i.e., neural networks with many 

layers, to become increasingly popular.  

Definition Convolutional Neural Network 

According to Dertat (2017), convolutional neural networks (CNN) are the most popular type of 

deep neural networks. They are mainly applied in pattern and image recognition problems since 

they are specifically designed to process pixel data (Sezer and Ozbayoglu 2018). However, they 

are also useful for natural language processing and prediction purposes. A convolutional neural 

network comprises five types of layers: input, convolution, pooling, fully connected, and out-

put layers. Each layer serves a specific purpose and is explained in more detail in Section 3.1.2. 
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CNNs are generally considered superior to regular NNs due to their automatic feature selection 

strategy. Using CNNs, it is now possible to build larger models to solve more complex problems, 

which was infeasible with conventional NNs (Albawi, Mohammed, and Al-Zawi 2017, 1). Their 

deep learning structure with multiple hidden layers allows them to abstract a larger number of 

features (Dertat 2017). By analysing the data in greater detail, a higher accuracy of the output can 

be achieved. The automatic feature extraction of CNNs, achieved by mapping input data to output, 

is especially useful for extracting complex patterns from non-linear data (Thakkar and Chaudhari 

2021, 2). This property is particularly relevant for stock market predictions, since stock-based 

data is highly complex and non-linear (Thakkar and Chaudhari, 2021, 2,7). A CNN uses convo-

lution to learn the local features of the image, and thus manages to preserve the local connectivity 

or spatial relationships between pixels, making them particularly suitable for extracting relevant 

information at low computational cost (Arratia and Sepúlveda, 2020).   

3.1.2 Key Components of CNNs 

Convolutional layer 

The convolutional layers are the most important building block in a CNN. Mathematically, con-

volution refers to an integration function that indicates the amount of overlap of a function shifting 

over another function. In other words, the convolution describes filters that slide horizontally and 

vertically over the input array (our picture) and calculate the dot product at each taken step. In this 

context, the filter, also called kernel, refers to a set of weights, usually a 3*3 matrix, that extracts 

features (Chollet 2018, 127-128). The so-called stride describes the step size, with which the filter 

slides over the picture, meaning that increasing the stride will result in a lower-dimensional output 

(Ghosh et al. 2020, 8). The output of the convolution is a feature map which stores information 

about the occurrence of features in a matrix along with how well it complements the kernel. In 

Figure 1 the convolution operation is demonstrated. In this example a 3*3 filter is applied on a 
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6*6 input array with stride equaling one which results in a 4*4 feature map. Applying zero-pad-

ding, i.e., padding the input array with zeros, can be used to further control the size of the output 

array (O'Shea and Nash 2015, 7).  

  

Figure 1 Illustration of the Convolution Operation. 

Source: Own illustration 

The CNN can contain one or more convolutional layers, each of them allowing through filters to 

identify local patterns, which can later be recognised all over unseen pictures.  The filters behave 

similarly to the human eye and learn patterns hierarchically. The deeper the convolution 

layer, i.e., the more convolutional layers applied, the more detailed and higher-level features can 

be extracted from the image (Tsai, Chen, and Wang 2018, 942).  

Pooling Layer 

The pooling layer has the purpose to reduce the dimensionality of the convolved feature map. This 

reduces the number of features and the complexity of the model while persevering the most dom-

inant features. For the pooling operation a kernel, usually of dimensionality 2*2, slides over the 

feature maps and applies a pooling technique. The most used pooling technique is max pooling, 

meaning to extract the maximum value for each window.  Similar to the convolutional layer, the 

stride size can be adapted. In the pooling layer the usual stride size is two (Chollet 2018, 127). An 

example of the max pooling operation with a 2*2 window and stride two is shown in Figure 2. 



  

 

14  

  

Figure 2 Exemplary Max Pooling Operation 

Source: Own illustration 

Fully connected layer 

Before the created feature can be fed to a fully connected layer, the outputs of the final convolution 

or pooling operation are flattened. The following fully-connected layer is analogue to a simple 

feed-forward ANN, meaning that each neuron in this layer is connected with each neuron in the 

adjacent layers (Ghosh et al. 2020, 9). This step is essential to allow the model to generalise local 

patterns. The output of the fully connected layer is a representation of the likelihood of an input 

belonging to a certain class.   

Descriptions of hyperparameters used for the CNN in this paper can be found in section 3.6. 

3.2 Labelling Approach  

To train the CNN, labelled training images are required. The approach used in this project opts to 

frame the predictions as a multi-class classification instead of a regression (i.e., predicting con-

tinuous return values). The three classes used to label observations in this project are Buy (label 

= 1), Sell (label = -1) and Hold (label = 0), based on the price movement during the period after 

the observation. There are two general labelling approaches in the context of stock price forecasts 

suggested by different papers: the fixed time-horizon method and the triple-barrier method (Lopez 

de Prado 2018, 43-48) 
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3.2.1 Fixed Time-Horizon Method 

The fixed time-horizon method (hereafter called FTH method) is the more commonly used one 

due to its simplicity (Lopez de Prado 2018, 43). Its basic premise is to compare the price of an 

asset at the end of an observation period to an upper and lower threshold h that had been previously 

set. The thresholds are set as relative values to the price at the beginning of the consideration 

period, e.g., 10% above and below the closing price of the previous period (Lopez de Prado 2018, 

43).  

Y , =

𝑆𝑒𝑙𝑙 if  𝑝 ,  ≤ (1 − ℎ) ∗ 𝑝 ,                                        

    𝐻𝑜𝑙𝑑 if (1 − ℎ) ∗ 𝑝 ,   <  𝑝 ,  < (1 + ℎ) ∗ 𝑝 ,  

  𝐵𝑢𝑦 if 𝑝 ,   ≥ (1 + ℎ) ∗ 𝑝 ,                                          

 

The FTH method is straightforward and easy to implement. As it requires relatively little amounts 

of data, especially compared to the triple-barrier method, it is very suitable for labelling observa-

tions from long-term datasets, for which historic high-frequency data, e.g., price on a per-hour 

base, are not or only very limitedly available. However, the FTH method shows an essential short-

coming: the fixed threshold used in this method does not consider the volatility of the underlying 

asset and only considers the value of the asset at the end of the observation period, but not during 

the period; as such, it is unrealistic in practice, since it implicitly assumes that investors would 

only implement a transaction at the end of the consideration period. In reality, an investor can 

implement a transaction at any time during trading hours. Moreover, an investor will set limits 

beforehand based on the volatility (i.e., inherent risk) of an asset. Furthermore, in practice, invest-

ment strategies usually have stop-loss limits (i.e., bottom limits) and profit taking targets (e.g., 

sell when 10% return target is hit) at which they would exit a position as soon as the limit is met. 

As such, a more realistic labelling approach needs to consider price movements during the con-

sideration period as well as the asset's underlying volatility.  

(1) 
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3.2.2 Triple-Barrier Method 

The triple-barrier method (hereafter called TB method) takes into account intra-period price 

movements and the asset's volatility and solves the main shortcoming of the FTH method (Lopez 

de Prado 2018, 45). The TB method sets three barriers:  

 Two horizontal barriers, representing the profit-taking and stop-loss boundaries. The hor-

izontal barriers are dynamic functions of the estimated volatility experienced by the ana-

lysed asset and the limit approach set for the investment. 

 One vertical barrier, representing the end of the observation period. 

To construct the barriers, upper and lower multipliers need to be set. These multipliers depend on 

return targets an investor is setting (upper multiplier) and their degree of risk aversion, i.e. the 

maximum loss they are willing to incur before exiting the position (lower multiplier) and can thus 

be different across different types of investors. For simplicity, symmetric multipliers of (1 , 1) 

will be used in this paper. 

In the TB method, using a multi-class classification approach with three labels (Buy, Hold, Sell), 

an observation is labelled based on the first of the three barriers it touches (Lopez de Prado 2018, 

45): 

 Y = Buy: The observation is labelled as Buy if the upper horizontal barrier is touched first. 

This means that the asset's price hits the profit-taking target during the consideration pe-

riod t, and thus, the asset should be bought in period t-1 to realise a positive return. 

 Y = Hold: The observation is labelled as Hold if neither the upper nor the lower horizontal 

barriers are hit. This implies that the asset's price hits neither the profit-taking target nor is 

stopped out by the stop-loss limit. Thus, it means no transaction is made. Depending on 

the context of the investment, this either implies not investing (neither long nor short) or 

holding the asset (in case the asset had already been previously bought). 
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 Y = Sell: The observation is labelled as Sell if the lower horizontal barrier is touched first. 

In this case, the asset's price hits the stop-loss limit first and is stopped out. Thus, the asset 

should be sold in t-1. Depending on the context this implies to either sell the asset to avoid 

losses or to short-sell to generate a positive return through a shorting strategy. 

The TB method is more realistic due to its consideration of intra-period price movements and 

volatility, but requires significantly more data (Lopez de Prado 2018, 46). This can pose a chal-

lenge when analysing long-term data for which higher-frequency data is not sufficiently available. 

The project described in this paper faces the challenge that it aims at predicting the respective 

next day's price movements. As such, using the TB method would require intra-day price data to 

determine which barrier is hit first. However, this intra-day price data could not be obtained for 

the entire period that is being analysed in this project. To achieve consistency in the labelling 

approach across the entire data set, a simplified version of the TB method will be applied. 

3.2.3 Simplified Triple-Barrier Method 

The upper and lower horizontal limits will be constructed in the same way as in the normal TB 

method, with factors h calculated based on asset’s volatility and the chosen multiplier. However, 

instead of comparing intra-day price data to the two horizontal limits to create labels on a per-day 

base, high and low prices will be compared to the limits. The labelling approach is as follows: 

Y , =

Sell  if  pi, low t+1 ≤(1-h)*pi, close t                                           

                Hold if pi, low t+1> (1-h)*pi, close t  and pi, high t+1 <(1+h)*pi, close t

   Buy if pi,  high t+1 ≥(1+h)*pi, close t                                            

 

 Y = Buy: An observation on day t will be labelled as Buy if the high price on the following 

day t+1 is higher than or equal to the upper limit at t+1. 

 Y = Sell: An observation on day t will be labelled as 2 if the low price on the following 

day t+1 is lower than or equal to the lower limit at t+1. 

(2) 
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 Y = Hold: Should none of the limits be exceeded on day t+1, the observation on day t will 

be labelled as 0. 

This labelling approach assumes that the investor is willing to hold the asset as long as necessary 

to hit one of the barriers, such that time will have no impact on the position, as long as none of 

the barriers are hit. 

A limitation of this labelling approach is that it is unable to consider a time dimension and thus, 

the issue of double labelling might arise in case that both conditions are met, i.e. the high price 

lies above the upper limit and the low price lies below the lower limit. Therefore, when imple-

menting the methodology across the individual industries, the percentage of double labels will be 

controlled and alternative measures taken should this percentage be above a threshold of 2%. 

3.3 Feature Engineering 

Feature Engineering is essential to improve Machine Learning or AI models. In the following all 

pre-processing steps are explained and the reasoning for the applied methodologies provided. 

3.3.1 Feature Creation 

Technical Analysis is confined to the analysis of trends and movements in the market (Yang et 

al. 2019). These indicators are used to predict future stock movements.   

In principle, a distinction is made between two categories of technical indicators: leading and 

lagging indicators. Leading indicators lead the price movement as they attempt to predict the 

trend in a time series (Fernández-Blanco et al. 2008, 1851). Lagging indicators are trend-follow-

ing indicators that provide delayed feedback as they lag the market (Bogullu, Dagli, and Enke 

2002, 722).  

Indicators from both categories belong to one of four following types of technical indicators (Sal-

kar et al. 2021, 2).  

1. Trend indicators show the direction in which the market is moving along with the 

strength of the trend by comparing historical prices to a baseline (Salkar et al. 2021, 2). 
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They typically move between low and high values. The trend can be either downward 

(bearish), upward (bullish), or sideways (no clear direction) (Peachavanish 2016, 2). 

2. Momentum indicators assess the speed of price fluctuations in a time series by compar-

ing current and previous closing prices (Salkar et al. 2021, 2).  

3. Volatility indicators measure the speed of price movement and provide information on 

how much the price changes in a given period (Salkar et al. 2021, 2).  

4. Volume indicators measures the number of shares traded in a stock and thus provide an 

indication of the strength of the market (Salkar et al. 2021, 2). 

The use of technical analysis indicators as input features for neural network systems is established 

in research (Arratia and Sepúlveda 2020; Sezer, Ozbayoglu, and Dogdu 2017; Sezer and 

Ozbayoglu 2018; Sim, Kim, and Ahn 2019; Thakkar and Chaudhari 2021). The selection of tech-

nical indicators was primarily based on their frequency in related studies as analyzed in literature 

(Chen et al. 2021, 69; Peng et al. 2021, 5–6; Sezer and Ozbayoglu 2018, 529). In this paper, two 

trend and seven momentum indicators are combined with different parameter settings. Most tech-

nical indicators possess a user defined window width as input, affecting the indicators output 

(Shynkevich et al. 2017, 72). The window size typically refers to the number of raw observations 

or periods processed by the indicator (Shynkevich et al. 2017, 72). The higher the window width, 

the more data will be processed. For the two trend indicators, i.e., the moving averages, three 

different window sizes were chosen respectively. For the seven momentum indicators, one set of 

parameters was chosen for each. A total of 13 technical indicators are calculated based on the 

closing price of the used ETF. Table 1 provides an overview of the selected technical indicators. 

Definitions and calculations for each indicator can be found in Appendix A.  
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Technical Indicator Type Number 

of 

features 

Parameters:  

n = number of periods processed by 
the indicator.  

 

T
re

n
d 

M
om

en
tu

m
   

Simple moving average (SMA) x  3 n = {5, 10, 20} 

Exponential moving average (EMA)  x  3 n = {5, 10, 20} 

Rate of change (ROC)   x 1 n = 12 

Percentage Price Oscillator (PPO)  x 1 nlong = 26 

nshort = 12 

Relative Strength Index (RSI)   x 1 n = 14 

Know Sure Thing Oscillator (KST)  x 1 As defined in Appendix A. 

Williams % Range  x 1 n  = 14 

Moving Average Convergence Diver-

gence (MACD)  

 x 1 nlong = 26  

nshort = 12 

Commodity Channel Index (CCI)  x 1 n = 20 

Table 2 - Technical Indicators and their Parameter Settings 

Source: Own illustration 

Along with the technical indicators, a set of additional variables is included in the set of predictors 

for the convolutional neural network. Those include the high, low, opening and closing prices 

along with the volume traded of the respective ETF, the closing prices of S&P 500, gold, and oil 

futures as well as the exchange rate of Euro and U.S. Dollar. 

3.3.2 Stationarity 

When using financial time series, it is common to ensure stationarity as non-stationary time series 

usually hamper modelling its behaviour (Hyndman und Athanasopoulos 2018). When data are 

non-stationary, their characteristics, i.e. mean and variance, can change over time, impede the 

prediction of future values. 
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To evaluate which variables lack stationarity, the Augmented Dickey-Fuller test (ADF) will be 

used, one of the most common methods to statistically test for non-stationarity. ADF tests the 

existence or absence of a unit root. A unit root test can be mathematically represented as 

 𝑦 =  𝐷 + 𝑧 +  𝜀  

 

with 𝐷  representing the deterministic, 𝑧  the stochastic component and 𝜀  the stationary error 

(Verma 2021). The ADF test removes autocorrelation from the time series before testing for sta-

tionarity in contrast to the Dickey-Fuller test. The ADF can be represented as 

∆ 𝑦 =  𝛼 +  𝛽𝑡 +  𝛾 𝑦 +  𝛿  ∆𝑦 + ⋯ +  𝛿  ∆𝑦 +  𝜀  

where 𝛼 denotes a constant, 𝛽 the coefficient over time and 𝑝 the order of the lag. The null hy-

pothesis, 𝛾 = 0, is tested against the alternative hypothesis of 𝛾 > 0. The test statistic value  

𝐷𝐹 =  
𝛾

𝑆𝐸(𝛾)
 

is then compared to the critical value of the ADF test. A 95 percent level is chosen, corresponding 

to a 𝐷𝐹  statistic of -2.86 (Cheung and Lai 1995, 277-279). 

In case of non-stationarity fractional differenciation will be applied. Unlike integer differencing, 

a method that simply subtracts a previous value from the current day (Hyndman und Athana-

sopoulos 2018), fractional differencing finds the optimal balance between zero and maximum 

differentiation to guarantee stationarity while preserving the maximum amount of memory in the 

data (Lopez de Prado 2018, 84). More precisely, it ensures that the mean and variance of the time 

series do not change with time while a high correlation with the original series is maintained. A 

feature on a current day can be expressed as the sum of all previous days with an assigned weight 

for each value. The weight is calculated by the fractional derivative. For this purpose, a transfor-

mation method is applied that automatically finds the minimum order of fractional differentiation 

and turns the time-series stationary. Walasek and Gajda (2021) applied fractional differencing to 

(3) 

(4) 

(5) 
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stock prices before training an ANN model. They confirmed improved performance of the model 

on stationary data as opposed to non-stationary data. 

3.3.3 Feature Selection  

Feature Selection plays a crucial role in the creation of successful prediction models, identifying 

a final selection of relevant variables (Speiser et al. 2019, 94). If the right features are chosen, it 

improves the overall prediction performance while reducing computational costs and diminishing 

the complexity of the model. 

Especially the progressive application of Machine Learning and Artificial Intelligence in the field 

of trading is a driving force for the collection of enormous amounts of data. Special attention 

should be paid to strongly correlated features (Peng et al. 2021, 5). The creation of technical anal-

ysis indicators may lead to highly correlated variables, representing redundant information (Haq 

et al. 2021, 2). After creating a variety of financial indicators with different parameters in our 

approach, a special emphasis should be placed on an efficient feature selection approach to avoid 

this problem of multicollinearity and overfitting (Peng et al. 2021, 10).  

Therefore, Principal Component Analysis (PCA) is applied to reduce the features' multicollinear-

ity and thus the dimensionality of the dataset while preserving most of its information. This is 

achieved by identifying the principal components which are representing new variables as linear 

combinations of the original features (Rahoma, Imtiaz, and Ahmed 2021, 2). 

Mathematically spoken, the eigenvectors and eigenvalues are computed based on the covariance 

matrix of the feature set, such that 𝐴𝑣 =  𝜆𝑣. In this formula A denotes the covariance matrix, v 

the eigenvector, and 𝜆 the eigenvalue. The computed eigenvectors describe the direction of the 

explained variance whereas the eigenvalues express how much variance is captured in the respec-

tive component. The components are created such that the first principal component explains the 

highest percentage of the variance and each additional component captures less information. 

(Tharwat 2016) 
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In this work the amount of variance that needs to be explained by the model will be set to 95 

percent. This threshold represents a trade-off between capturing as much information of the da-

taset as possible, and reducing the number of components in order to minimise the computing 

costs to train the convolutional neural network. Since the algorithm penalises lower variance fea-

tures, it is necessary to standardise the features before applying PCA (Abdi and Williams 2010, 

2).  

3.5 Image Construction 

One of the most common image construction methods used for times series forecasting with 

CNN's is the transformation of data into Gramian Angular Fields, as proposed by Wang and 

Oates (2015). The research team proposed another image encoding methodology, called Markov 

Transition Fields, which will be used in this paper as well.  

3.5.1 Gramian Angular Fields   

To leverage the advantages of CNNs in the context of trading, the timeseries data must be encoded 

to images. One approach to this are Gramian Angular Fields (GAFs). GAFs are capturing spectral 

correlation structures, thus being able to capture temporal dependencies, representing time series 

in a two-dimensional way. To create a GAF, the first step required is the rescaling of the data 

points of a time series 𝑋 =  {𝑥 , 𝑥 , … , 𝑥 } to a normalisation range of [-1, 1] (Yang et al. 2019, 

189).  

𝑥 =
(𝑥 − max(𝑋)) + (𝑥 − min (𝑋))

max(𝑋) −  min (𝑋)
 

GAFs are not using the cartesian coordinate system. Instead, the normalised time series is con-

verted to polar coordinates by computing the angular cosine of the scaled time series. This repre-

sentation shows the value at a certain timestamp, holding N timestamps t with a value of x. The 

conducted pairing is of bijective nature, mapping a value represented by the angle uniquely to a 

point in time, shown by the radius r (Barra et al. 2020, 685).   

(6) 
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 𝜙 = arccos(𝑥 ) , 𝑥 𝜖 𝑋 

𝑟 =
𝑖

𝑁
 , 𝑤𝑖𝑡ℎ 𝑡  𝜖 ℕ

 

 

After this transformation, the trigonometric sum between the values of the time series in the set is 

conducted to obtain the correlation (Romero et al. 2020, 16692). Two approaches can be used for 

turning the vectors into a symmetric Gramian matrix: either the Gramian Angular Summation 

Field (GASF) or Gramian Angular Differentiation Field (GADF) (Yang et al. 2019, 190).  The 

main diagonal of this final matrix holds the original spectral values. As time moves, the image 

position moves from the top left to the bottom right corner, representing the time dependencies 

(Liu et al. 2022, 4).  

 

 

𝐺𝐴𝑆𝐹 =  cos 𝜙 +  𝜙 =  𝑋 ⋅  𝑋 −  𝐼 −  𝑋 ⋅  𝐼 −  𝑋  

𝐺𝐴𝐷𝐹 =  sin (𝜙 −  𝜙 ) =  𝐼 −  𝑋 ⋅ 𝑋 −  𝑋 ⋅  𝐼 −  𝑋  

 

 (Formula: Yang et al. 2019, 190) 

The aggregation of separate GAFs into one image has already been researched. Yang et al. cover 

this novel approach in their study by stacking images together to feed into the CNN as one (Yang 

et al. 2019, 190). This aggregation approach raises the question whether the order of images in-

fluences the performance of the model. Yang et al. reject this hypothesis by conducting experi-

ments, discovering that the sequence of arrangement has no impact on the results (Yang et al. 

2019, 191).   

(7) 

(8) 
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3.5.2 Markov Transition Fields 

As a third method to transform the dataset into images, Markov Transition Fields (MTFs) will be 

used – also presented by Wang and Oats in 2015. With this method, information can be preserved 

in the time sphere of the different features used. As for the Gramian Angular Fields, data from the 

previous 10 days are used as a reference point for classification. 

Given a variable as a time series X, first, the Q quantile bins of the variable will be identified and 

each value xi is assigned to one of the bins  (𝑞 ∈  [1, 𝑄]). In a next step, a weighted adjacency 

matrix W of size a Q * Q is created by counting the conversions of the bins among the time axis 

conforming to a first order Markov chain. Each value in the Matrix W describes the frequency of 

a point in a certain quantile which occurs one period after a point in another quantile. The matrix 

W is normalised such that the sum of each value in the matrix equals one. The values do now 

present the probability by which one value of a quantile is followed by another value of a specific 

quantile. (Wang and Oats 2015, 42)   

When construting the images for our classification task at hand, a n*n (n refers to the time periods 

used for each feature image) matrix is created as following based on the weights defined previ-

ously (Wang and Oats 2015, 42). 

𝑀 , =  

𝑤 | , … 𝑤 | ,

𝑤 | , … 𝑤 | ,

…                 …             …
𝑤 | , … 𝑤 | ,

 

For each point in time and each feature a Markov Transition Matrix is calculated. All features 

matrices of one time stamp are then stacked, similar to the approach used for the GAFs, before 

fed into the CNN. 

3.6 Generic Model Architecture 

Data set splitting and cross validation for time-series data 

(9) 
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An important focus when developing any machine learning model is the generalisation of the 

model, i.e. how well it deals with data it has not been trained on (Bergmeir and Benítez 2012, 

197). To evaluate the performance of a model on unknown data, parts of the available data set 

will be held back as validation and test sets, such that the model will not be trained on all available 

data. This produces two problems: firstly, the model would most likely show a better performance 

if trained on the full data set, and secondly, by just evaluating the performance on sample, this 

performance measurement might not be representative of the true model performance. To solve 

these problems, in most cases k-fold cross-validation will be used for training and performance 

evaluation. All available data is randomly split into k sets. The model training and performance 

evaluation is carried k times, where every set is used once as the test set, and the other sets being 

used for model training. This way, the method produces k independent performance measure-

ments, while all available data is used for both training and testing. By averaging the performance 

measurement across the k iterations, a relatively robust measurement can be obtained, which is 

much more representative of the true model performance than a single measurement (Bergmeir 

and Benítez 2012, 197).  

However, the standard k-fold cross-validation cannot be applied to time-series data. The data set 

cannot be split at random into training and validation sets as there is no sense to using data from 

the future to forecast data from the past (Herman-Safar 2021). In other words, the temporal de-

pendency betweens data points needs to be preserved during training and testing. A solution to 

this is Rolling Forward Cross-Validation, also referred to as Time Series Split Cross-Validation.  

The data set is split into k consecutive subsets, while preserving the continuity of the data, i.e. the 

data set is not split at random, but based on its temporal order. Then, rolling forward cross-vali-

dation method will iterate consecutively over the k subsets. In the first iteration, the first subset 

will be used for training and the second one for validation. In the second iteration, the first subsets 
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will be used for training and the third one for validation. These iterations continue until the first 

k-1 subsets are used for training and the k-th subset for validation (Herman-Safar 2021). 

 

Figure 3 Rolling Forward Cross-Validation 

Source: Own illustration 

The described cross validation approach is applied to find the best model architecture with the 

respective optimal hyper-parameters as specified below. After estimating the best model, the cho-

sen model is evaluated with the test set. To retain the temporal dependencies, the test set consti-

tutes consecutive data points like the validation sets used for the cross validation. This test set 

includes 20% of all data, accounting for approximately the last two years of data. 

Model Architecture 

As a Convolutional Neural Network this paper proposes a rather simple CNN architecture as dis-

played in Figure 4. This basic architecture includes the input layer, two convolutional layers with 

64 and 128 filters, one pooling layer, one fully connected layer as well as one output layer.  

 

Figure 4 Model Architecture 

Source: Own illustration 
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In order to make the network more flexible to adapt to different ETFs and industries, a hyperpa-

rameter search is added. Since a gridsearch would be computationally too expensive, a random-

ized hyperparameter search is utilized. The search includes an optional dropout layer and batch 

normalization layer. Regarding the convolutional operation different hyperparameter settings for 

the kernel size, the activation function (output layer exluded due to multiclass classification prob-

lem softmax is used in each model) and padding are included. For the pooling operation a param-

eter to control the type of pooling, either max or average pooling, is used. Lastly, the optimizer, 

learning rate, batchsize, the number of epochs and whether class weights should be introduced are 

included in the randomized search (Table 3). The following section explains the parameters in 

more detail. 

Category Hyperparameter Parameter distribution 

Additional 
Layer 

Batch Normalization include; exclude 

Drop Out (incl. Rate) exclude; include with rate 0.25; include with rate 0.5 

Convolution Kernel Size 3*3;  5*5 

Activation Function relu; sigmoid; softmax 

Padding same; valid  

Pooling Pooling Type max pooling, average pooling 

Compilation Optimizer Adam; RMSprop; SGD 

Learning Rate 0.0001; 0.001; 0.01 

Training Epochs 5; 10; 25; 50; 75; 100, 150 

Batch Size 16; 32; 64 

Class Weights None; Balanced 

 

 

Activation functions  

Activation functions in neural networks essentially take a single value and perform a mathematical 

operation on it. When the function converges to a specific value, the neuron 'triggers' the next one, 

Table 3 - Parameter Distribution for Randomized Search 
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hence the name activation function. This concept derives from neurons in the human brain and is 

also the reason for the framework's name: neural network.  

ReLu is the most commonly used activation function, introduced by LeCun et al. (1998). Its pur-

pose is to increase the non-linearity of the neural network. Despite being simple, ReLu is a non-

linear function. Because there is no parameter inside ReLu (the formula can be seen in Table 4), 

it also does not require parameter-backpropagation. By setting all negative values to 0, a neuron 

only actives for images that actually possess the pattern (Wu 2017, 10). 

As a result, this particular activation function is well suited for recognising objects and complex 

patterns. The introduction of ReLu in CNNs significantly reduced the difficulty of learning and 

improved the accuracy of the networks (Wu 2017, 9).  

Before ReLu, Sigmoid was one of the most used non-linear transformations. Sigmoid transforms 

to values between 0 and 1 and is best suited for input data that itself is between 0 and 1 (Ittiyavirah 

2013, 312). However in many cases, it performs poorer than ReLu (Wu 2017, 11).  A commonly 

used activation function for the output layer is Softmax, which is a combination of many Sigmoid 

functions. Even in networks with ReLu in the inner layer, this is often the preferred output layer 

for probabilities or multi-class-classifications. In the latter, probability for each class will be the 

output (Ittiyavirah 2013, 314). 

Tanh looks quite similar to sigmoid; however, it is centred around the origin of the coordinate 

system. That is why it can depict values between -1 and 1 instead of 0 and 1. Its gradient is also 

steeper in comparison since it has to reach twice as many y values for the same x value. Generally, 

Tanh is preferred to sigmoid because here, the gradient is not as restricted in one direction and 

also because it is origin-centred (Sharma 2020, 313). Even though ReLu is the standard in most 

CNNs nowadays, it can only outperform Tanh in deeper neural networks. That means when there 

are many layers, and problems such as the vanishing gradients occur (Godin 2018, 8). 

Activation Function Formula 
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ReLu f(x) = max (0, 𝑥) 

Sigmoid 
𝑓(𝑥) =

1

1 + exp (−𝑥)
 

Tanh 
𝑓(𝑥) =

𝑒 − 𝑒

𝑒 + 𝑒
 

Table 4 - Activation Functions and Formulas 

Source: Sharma 2020, 313 

As depicted in Figure 5, sigmoid and tanh both converge towards specific values, either -1, 0 or 

1. This convergence leads to 'vanishing gradients' if the absolute values are too large. ReLu, on 

the other hand, erases all negative values and keeps the positive ones as they are, leading to 'ex-

ploding gradients' (Lee and Song 2019, 593). 

 
Figure 5 Activation Functions 

Source: Own illustration based on Lee and Song 2019, 594 

Padding 

(Zero) padding allows to control the spatial size of the output of a CNN by adding an appropriate 

number of pixels (with zero values) to the outer edges of the input feature map before it is pro-

cessed by the kernel (Chollet 2017, 126). Padding is used when it is desirable to obtain an output 

feature map with the same spatial dimensions as the input. Therefore, the padding parameter is 

set to same (Chollet 2017, 126; Lee and Song 2019, 608). Otherwise, valid means that no padding 

is performed and that the size of the feature maps gradually decreases along the convolutional 

layers (Lee and Song 2019, 599). In case the input feature map has a size of (n,n) and the filters 

have a size of (m,m), then a single output feature map is of size (n-m+1, n-m+1) (Lee and Song 

2019, 599). 

Pooling  
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Pooling layers are used to reduce model complexity, limit computation in the network and control 

issues of overfitting by reducing the spatial size of a feature map. The pooling layer partitions the 

input into a set of non-overlapping two-dimensional spaces. The pixel values of each subregion 

are then mapped according to the type of downsampling operator chosen: In max pooling, the 

values are summarized into one maximum value, whereas in case of average pooling the mean 

of the activations in the previous layer is computed for each subregion. (Lee and Song 2019, 598). 

Batch Normalization 

Normalization methods are used to increase the similarity of samples and hence, to improve gen-

eralization, i.e., the models’ ability to perform well to unseen data. However, it is insufficient to 

normalize the data in the preprocessing stage, before feeding it into the model, only. Normaliza-

tion is not guaranteed for each output after each transformation operated by the CNN since the 

mean and variance can change over time. (Chollet 2017, 260). The batch normalization layer, 

typically used after a convolutional layer (Chollet 2017, 261), ensures to continuously normalize 

the data during the training process by standardizing the values in each layer to mean 0 and vari-

ance 1 before the activation layers (Ioffe and Szegedy 2015). By making data standardization an 

integral part of the model architecture, faster and more stable training is possible, allowing the 

model to improve prediction accuracy (Lee and Song 2019, 609; Santurkar et al. 2018). Due to 

the implementation of batch normalization layers, higher learning rates can be used (Ioffe and 

Szegedy 2015; V. Thakkar, Tewary, and Chakraborty 2018, 2) and deeper networks can be built 

(Chollet 2017, 260).  

Dropout  

Regularisation is a method that is particularly relevant for preventing overfitting and improving 

generalization of deep learning models. Dropout is one of the most frequently applied regularisa-

tion techniques for CNNs (Srivastava et al. 2014). It randomly drops out input features during the 

training process, meaning it sets some of the weights connected to a given percentage of nodes in 
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a CNN to zero (Chollet 2017, 109; 216). The dropout rate refers to the fraction of features that are 

replaced with zero during training and lies usually between 0.2 and 0.5. For each update in each 

training epoch, the removed units are not included in the calculations of the current step (Krizhev-

sky, Sutskever, and Hinton 2017). Dropout is not applied to the test or validation set. In this case, 

the output of a layer is scaled down by a factor equal to the dropout rate to account for the fact 

that there are more units than during training. (Chollet 2017, 109). 

Epochs  

An epoch refers to the one-time training of the CNN with the entire dataset (Sharma 2017). How-

ever, since the size of an epoch is usually too large to be fed to the network in a single batch, it is 

divided into several smaller batches (Chollet 2017, 34). To improve the training process of the 

model, the number of epochs is increased, i.e., the data is passed to the same CNN multiple times 

(Sharma 2017). This way, the average loss on the training set is decreased until the optimal curve 

is met, more precisely, until the network begins to overfit the training data (Wu 2017, 7). 

Optimisers 

Optimisers are used to tweak the model’s parameters during training. In Table 5, the used opti-

misers and their respective formulas can be inspected. 

Adam, short for Adaptive Momentum Estimation, is one of the most widely used optimisation 

algorithms in CNNs. Adam is an iterative algorithm that adapts the model variables. Research has 

shown that Adam is effective for optimizing large groups of problems  (Zhang and Gouza 2018, 

1). However, for non-convex objective functions, it has shortcomings as Adam cannot promise to 

find a global optimum, as its iterative optimization might get stuck in a local optimum. Therefore 

it cannot be described as a particular robust optimizer for noisy data (Zhang and Gouza 2018, 2). 

Stochastic gradient descent (SGD) is probably the most widely used optimizer for CNNs (Wu 

2017, 7). Generally, it is a fast algorithm that only performs small computations at each descent. 

As many image recognition problems are based on noisy data, it is a fitting choice. Choosing the 
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correct learning rate offers a solution to the problem of getting stuck in local optima. When the 

dataset is heterogenous it can get unstable, and the loss decreases on average. SGD chooses sam-

ples at random throughout an epoch, so some samples might get chosen twice and some not at all 

(Lee and Song 2019, 597). 

Optimiser Formula 

RMSProp 𝐸(𝑔 ) =  𝛽𝐸(𝑔 ) + (1 − 𝛽)
𝛿𝐶

𝛿𝑤
 

𝑤 =  𝑤 −
𝜂

𝐸(𝑔 )

𝛿𝐶

𝛿𝑤
 

𝑤ℎ𝑒𝑟𝑒 𝐸(𝑔 ) = 𝑀𝑜𝑣𝑖𝑛𝑔 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠 

 =gradient of cost function with respect to the weight 

 𝜂 = 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒  

𝛽 = 𝑚𝑜𝑣𝑖𝑛𝑔 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟  

𝑎𝑛𝑑 𝜃 = 𝑐𝑜𝑠𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

Adam 𝑚 =  𝛽 𝑚 + (1 − 𝛽 )𝑔  

𝑣 =  𝛽 𝑣 + (1 − 𝛽 )𝑔  

𝑀 =  
𝑚

1 − 𝛽
 

𝑉 =  
𝑣

1 − 𝛽
 

𝜃 =  𝜃 −
𝜂

𝑉 + 𝜖
𝑀  

𝑊𝑖𝑡ℎ 𝜂 = 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒, 𝑚 = 𝑝𝑎𝑠𝑡 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 

 𝑣 = 𝑝𝑎𝑠𝑡 𝑠𝑞𝑢𝑎𝑟𝑒 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡, 𝛽 = 𝑑𝑒𝑐𝑎𝑦 𝑟𝑎𝑡𝑒 

 𝜖 = 𝑠𝑚𝑜𝑜𝑡ℎ𝑖𝑛𝑔 𝑡𝑒𝑟𝑚  𝑎𝑛𝑑 𝜃 = 𝑐𝑜𝑠𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

Stochastic Gradient 

Descent (SGD) 

𝑤 = 𝑤 − 𝜂Δ𝑄(𝑤) 

 𝑄(𝑤) =  
1

𝑛
Δ𝑄 (𝑤) 

𝑤ℎ𝑒𝑟𝑒 𝜂 = 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 

𝑄(𝑤) = 𝑙𝑜𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛  

𝑤 = 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 

Table 5 - Optimisers and Formulas 

Source:  Zhang and Gouza 2018, 2; Kingma and Ba 2014, 2; Hinton, Srivastava, and Swersky 2012, 20 

RMSProp or Root Mean Squared Propagation has become one of the more popular gradient al-

gorithms beyond SGD. It has been used for very deep CNNs for computer vision and in some 

notable cases, outperformed SGD and Adam (Mukkamala and Hein 2017, 3). Even though it was 

designed for deep neural networks, it performs quite well with noisy data in deep learning and 
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hence for CNNs. It also offers opportunities like SGD to escape the local optima and contains the 

Adagrad optimiser when tuned with the correct parameters (Mukkamala and Hein 2017, 2). 

Batch size  

Batch size denotes the number of input samples in a single batch used for a training iteration (Lee 

and Song 2019, 595). The choice of batch size affects the batch normalization process as the 

technique depends on the number of samples in a batch. In general, smaller batch sizes have been 

found to provide a faster training process and a better generalization compared to larger batch 

sizes (Shen 2018). 

Learning rate  

The learning rate describes the extent to how much the model weights are changed during the 

training process (Brownlee 2019). It takes on a small positive value. The smaller the learning rate, 

the smaller the changes made at each iteration and thus the higher the number of training epochs 

necessary. Vice versa, a higher learning rate implies a more rapid adaptation and therefore requires 

less training epochs. Tuning this hyperparameter is essential as a too high learning rate can cause 

the model to converge quickly on a suboptimal solution, whereas a too low learning rate can cause 

the training process to become unstable and time-consuming (Brownlee 2019; Lee and Song 2019, 

596). 

Kernel size 

The kernel_size is a key hyperparameter of the convolutional layer referring to the size of the 

kernel,  a matrix moving over the input data, as explained in section 3.1.2. The input image is 

separated into sub-regions by the convolutional layer to have a fixed size set by the kernel size. 

The kernel size refers to the height x width of the filter mask. (Lee and Song 2019, 597 – 598). 

Class weights 

The weights are used for computation between layers and are updated repeatedly in a model by 

the algorithm. The aim is to find an optimal set of weights ensuring a minimum loss during the 
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network’s learning. Class weights are commonly used for imbalanced datasets and can be set to 

‘balanced’ to replicate the smaller classes to fit the number of samples in the bigger classes. (Lee 

and Song 2019, 593). 

3.7 Performance Evaluation 

To evaluate our model, computational and financial performance measures need to be distin-

guished.   

3.7.1 Computational Evaluation 

As the stock price movement prediction represents a classification problem, evaluation for com-

putational performance is feasible with the means of common evaluation metrics derived from the 

confusion matrix (Chen et al. 2021, 77). For assessing and comparing the computational perfor-

mance of the constructed models, six performance metrics will be considered. 

Accuracy 

Accuracy as the first metric being used represents one of the simplest and most intuitive methods, 

showing how many classes have been predicted correctly.   

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

 

The accuracy metric can convey false impression of the performance of a model if classes are 

unbalanced. However, high accuracy is very important in the context of trading since every mis-

classification should be seen as a wrong trading decision and thus implying loss.  

Precision 

Precision is the second metric being used. Class-specific precision measures for each class sepa-

rately the percentage of correct predictions, i.e. the percentage of instances predicted as the re-

spective class that actually belong to the class. Precision values are bound between 0 and 1. 

(10) 
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Moreover, the macro-averaged and weighted-averaged precision show the average model preci-

sion across all classes.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

The type I error is penalized by the precision metric, resulting in lower values with a high type I 

error. Applied to trading, precision puts more emphasis on risk aversion, showing how many bad 

investment choices were impeded or how many trading decisions were predicted correctly. For 

buying transactions to prevent the trader to falsely buy although the asset might not further rise in 

value, resulting in a loss of value if the price goes down. Falsely predicting to sell will lead to 

missing out on possible returns if the asset is further rising in value. 

Recall 

Recall is a measure of how well the model identifies instances of a specific class in the data set.  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

A high recall means that the model is strong at identifying actual instances of its respective class, 

whereas a low recall means that the model is only able to identify a small percentage of instances 

of the class. Recall values are bound between 0 and 1. Recall is related to the presence of type II 

error (Peng et al. 2021, 23). In the context of trading, a higher recall implies not missing out on 

potentially profitable trading opportunities, indicating how many truly positive instances were 

marked as such and to decrease the number of false positives (Peng et al. 2021, 23). Related to a 

real-world trading scenario, a high recall leads to less falsely not-buying decisions although it 

would have been profitable. In terms of selling triggers, it denotes to not overlooking selling op-

portunities, preventing to hold the asset when the price will decrease. 

 

 

 

(11) 

(12) 
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F1-score 

The F1-score balances precision and recall and provides a harmonic mid-point between recall and 

precision as it is granting a high value only if both values are performing well (Peng et al. 2021, 

23–24).  

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 𝑥 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
 

 

It harmonises indications on how precise the model is as a classifier, i.e. how many instances are 

correctly predicted, and how robust the model is, i.e. how good it is at identifying instances of the 

class.This metric can be very useful for strongly unbalanced predictions as the accuracy measure 

can indicate misleading results (Peng et al. 2021, 24). However, it is less intuitive as it is combin-

ing two metrics and is representing a poor resource allocation in this trading context. To gain 

detailed insights into the quality of the model, precision and recall should be checked separately 

and relative importance should be placed on recall and precision based on the specific underlying 

problem (Peng et al. 2021, 24).  

Application of the performance measures 

In the context of computational efficiency, the focus will lie on accuracy, since each prediction 

represents a trading decision that results in financial loss if misclassified. Since the datasets are 

unbalanced (Hold class is dominating each ETF) it is important to make sure that all classes will 

be predicted while minimizing the false positive rate. Therefore, the precision, recall and F1-score 

will help to get more insights into the models' prediction behaviour.  

To ensure cross-industry comparability, a similar methodology including a similar labelling and 

model approach is used, except for the Oil and Gas sector. The acquired results will be compared 

and analysed based on the previously mentioned computational common performance measures, 

as well as on the basis of financial evaluation approaches which will be discussed in the next part.  

(13) 
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3.7.2 Financial Evaluation 

General approach 

As the general approach to the financial evaluation of the model performance, a method suggested 

by Sezer, Ozbayoglu and Dogdu (2017) will be used. In this approach, the asset is bought, sold or 

held in accordance with its predicted label: 

 If the prediction is Buy, the asset will be bought at current market price. 

 If the prediction is Sell, the asset will be sold at current market price. Any existing long 

position will be closed, i.e. held shares sold, and a short position will be entered, i.e. shares 

will be short-sold. 

 If the prediction is Hold, no operation is performed at that point in time. 

Equal to Sezer, Ozbayoglu and Dogdu's approach, a starting capital of 10,000 USD will be used 

and each transaction (Buy and Sell) will be made using the full capital available at that moment. 

If the same label is repeated directly after one another in a sequence, only the first label will be 

considered as a trigger and the respective transaction executed. Repeat labels will be ignored until 

a new label comes up. At every executed transaction, trading fees will be considered to achieve a 

near-real scenario.  

For the evaluation, the total return over the test period will be used. Given that each individual 

industry analysis will be applied to the same time period, and as such the test period will be equal, 

the comparability of industries with this metric is given. 

Basic premises and assumptions 

For the approach to be consistent, a number of clear assumptions need to be stated: 

1. Trading fees: Trading fees stay constant during the whole test period. 

2. Execution price: As the prediction will be based made on the data available at the end of 

day t for day t +1, the closing price of day t will be used as execution price. 
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3. Fractional shares: The approach assumes that fractional shares can be purchased. As 

such, the number of shares purchased or sold in transaction is equal to the total available 

capital divided by the execution price. 

4. Short-sell limit: A short-sell limit of 20% of available capital is set, such that in a short-

sell transaction, the short position cannot exceed 20% of the total capital available after 

closing the long position at the moment of a sell signal. 

Benchmarks strategies 

As benchmarks to compare the financial performance of the model to, the following strategies 

will be used: 

1. Simple, passive Buy & Hold strategy: the asset is bought at the beginning of the test 

period and held until its end. The total return is determined by comparing the value of the 

investment at the end of the observation period to the start capital. 

2. Simple Moving Average Cross-over Strategy: One shorter-term simple moving average 

and one longer-term simple moving average will be applied. In line with technical trading 

rules, it is considered a buy signal when the shorter-term moving average exceeds, i.e. 

crosses over, the longer-term moving average (Mitchell 2021). On the other hand, it is 

considered a sell signal when the shorter-term moving average crosses below the longer-

term moving average (Mitchell 2021). For the application in this methodology, in case of 

a buy signal, the asset will be bought at market price. In case of a sell signal, any existing 

long position will be closed at market price and a short position in line with the short-

selling limit will be entered. 

The best performing moving average combination will be found through a‘simplified ran-

domised search based on the training data set. 

3. Mean-Reversion Strategy: The mean-reversion trading strategy is built on the premise 

that prices eventually will revert back towards their mean (Chen 2021). Upper and lower 
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Bollinger bands are built around the asset price in a distance that is a function of the assets 

volatility measured as its standard deviation and a simple moving average is constructed 

(Chen 2021). On the one hand, if the asset price is below the Lower Bollinger Band, the 

asset is considered oversold and as such undervalued and expected to increase, reverting 

back towards its mean. This results in a buy signal, meaning that a long position should 

be built. On the other hand, the if the asset price is above the Upper Bollinger Band, the 

asset is considered overbought and overvalued and expected to decrease (Chen 2021). This 

results in a sell signal, meaning that any long position should be exited and a short position 

opened. In addition, for the strategy approach used in this paper moments where the price 

crosses the SMA are considered as unclear signals, signalling the investor to go neutral, 

i.e. to close any long or short position. 
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4 Industry Implementation 

4.1 Introduction to the industry implementation 

The following sub-paper focuses on the application of the previously established methodology to 

the U.S. financial services sector. For this purpose, a brief analysis of the used ETF will be pro-

vided and important market dynamics driving major events will be explored. These dynamics will 

be presented in a simplified way, by focusing on their key drivers, to avoid extending this analysis, 

reserving the focus of this sub-paper to the application of the developed CNN forecasting meth-

odology and an analysis of the obtained results. As a next step, a brief description of the chosen 

features and the application of the established methodology to the chosen ETF for the U.S. finan-

cial services sector will be provided. After that, the results of the CNN application will be explored 

and discussed, comparing them to the results obtained from the other industry applications men-

tioned in the common part. The industry analysis closes with industry-specific conclusions about 

and an outlook on the application of CNNs to price movement forecasting in the financial services 

sector. 

4.2 Industry Analysis 

The following section 2 will provide an overview on the ETF that is used in the subsequent anal-

ysis and give brief insights into key market dynamics that drove major events during the ETF 

observation period. 

4.2.1 ETF Description 

The ETF to be analysed in this part of the paper as representative of its underlying sector is the 

iShares U.S: Financial Services ETF (IYG). The IYG’s benchmark index, i.e. the index whose 

value the ETF is tracking, is the Dow Jones U.S. Financial Services Index ("Ishares U.S. Financial 

Services ETF | IYG" 2021). It invests in a market-cap-weighted subset of US stocks exclusively 

from the financial services industry. The IYG is a physically replicating ETF, meaning that it 

actually invests in the stocks of its underlying benchmark index instead of synthetically replicating 
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its returns (ETF.com 2021). Tracking the Dow Jones U.S. Financial Services Index, which is 

composed of publicly traded stocks of investment and commercial banks, consumer finance insti-

tutions, asset managers, credit card companies and securities exchanges, the ETF offers investors 

pure exposure to the American financial services sector (ETF.com 2021). The Dow Jones U.S. 

Financial Services Index is reconstituted yearly, meaning that companies are added and removed 

as needed to ensure that the index reflects the up-to-date status of the sector it is supposed to 

represent ("Ishares U.S. Financial Services ETF | IYG" 2021). The IYG is composed entirely of 

US equities ("Ishares U.S. Financial Services ETF | IYG" 2021) and invests across the market-

cap spectrum, i.e. is not focused on one market-cap universe only (ETF.com 2021). As of October 

31st, 2021, the IYG has a 3-year Equity Beta of 1.31, meaning that on average the index shows a 

higher volatility than the market. 

The IYG is composed of holdings in 108 companies from the US financial services sector, while 

the 10 largest holdings of it account for more than 54% of the total weight of the index ("Ishares 

U.S. Financial Services ETF | IYG" 2021). 

 

 

 

 

 

 

Table 6 - Top ten holdings of the IYG ETF with their respective relative weight 

Source: Own illustration 

Rank Company Weight 

1 JPMorgan Chase & CO 11.45% 

2 Visa Inc. (Class A shares) 8.02% 

3 Bank of America Corp. 7.86% 

4 Mastercard Inc. (Class A shares) 6.79% 

5 Wells Fargo 4.74% 

6 Morgan Stanley 3.47% 

7 Goldman Sachs Group Inc. 3.12% 

8 BlackRock Inc. 3.11% 

9 CitiGroup Inc. 3.08% 

10 Charles Schwab Corp. 2.85% 

Total weight top 10 companies 54,49% 
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Given its composition and exposure to U.S. financial services, the IYG is an ideal ETF to assess 

the performance of CNNs in forecasting price movements for the U.S. financial services sector.  

4.1.2 Exploration of the IYG price data set 

In this paper, price data of the IYG in the period from 01.01.2010 to 31.12.2019 will be analysed. 

This period is chosen to exclude most effects of both the financial crisis in 2007/2008 and the 

Covid-19 pandemic starting in spring 2020, which both dramatically altered the financial market 

conditions and dynamics (Grammatikos and Vermeulen 2014; Zhang, Hu and Ji 2020). The ob-

jective of this paper is to analyse the general applicability of CNN to forecasting price movement 

and as such, extremely atypical, long-lasting macro-economic events that significantly alter mar-

ket structures, i.e. the financial crisis and the Covid-19 pandemic, will be excluded to not falsify 

the obtained results.  

On 01.01.2010, the first day of the analysis period, the price of IYG stands at 54.87 USD. On 

31.12.2019, the last day of the analysis period, the price per unit stands at 151.82 USD, showing 

a price increase of 96.95 USD, 176.7% in relative terms, over the 10-year period. 

 

Figure 6 iShares U.S. Financial Services ETF (IYG) – Price development from beginning of 2010 until end of 2019 

Source: Own illustration 
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Although the overall price trend is positive, three significant downturns can be observed at dis-

tinct points in time:  

1. during 2011,   

2. between mid of 2015 until the beginning of 2016  

3. starting at the end of 2018 until the beginning of 2019 

All three downturns are marked by the red dotted lines in figure 1. The reasons for these downturns 

will be explored in the section below. 

4.1.3 Dynamics in the Financial Services sector during the analysis period 

Early 2010s:  

During the financial crisis, equity markets in general and especially financial services stocks had 

plummeted dramatically (Wehinger 2012). In the early 2010s, supported by large government 

stimulus packages and dedicated policies, financial markets were still recovering from the after-

shock of financial crisis. However, this recovery was mostly policy-driven and there was large 

uncertainty about future policy developments, inhibiting the recovery (Wehinger 2012). A com-

bination of factors like the Eurozone crisis, the Japanese tsunami and the subsequent meltdown 

of the Fukushima nuclear plant, the surge in commodity prices, persisting turmoil in the middle 

east and the U.S. sovereign rating downgrade caused a sharp downturn in the stock markets in 

2011, explaining the first downturn that can be observed in figure 1 (Wehinger 2012). 

China stock market crisis 2015: 

The second observed downturn, in 2015, can be attributed to the Chinese stock market turbulence 

that dramatically affected stock markets in the U.S. A variety of factors, such as falling borrowing 

costs due to a loosened monetary policy, a legal liberalisation of stock markets and new govern-

ment regulations on real estate financing, had led to a dramatic increase in investment activities, 

led especially by Chinese retail investors, which accounted for more than 80% of trading activity 
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in China (Allen 2015). This sharp increase in stock market investments inflated stock prices and 

caused a stock market bubble. However, at some point, banks and brokers started to issue margin 

calls and request paybacks on loans, and a growing number of analysts started warning of a sig-

nificant overvaluation of stocks. This caused widespread selling of stocks and other assets, leading 

to a sharp downturn in the Chinese financial markets (Allen 2015). Given China’s complex ties 

with many other countries as well as a variety of dynamics in the financial markets, the Chinese 

stock market crisis started spilling over to other countries and consequently also affected U.S. 

financial markets (Allen 2015). 

2018/2019: US-China trade war 

Lastly, the third significant downturn that can be observed in the price data set in 2018/2019 can 

be attributed to the U.S.-China trade war that had started in 2017. Three main concerns led the 

U.S. government under Donald J. Trump to initiate this trade war: (1) concerns that job creation 

in the US was harmed by China’s constant trade surplus, (2) suspicions that China applied illegal 

and unfair strategies to acquire U.S. technology and knowledge and was trying to weaken U.S. 

national security and (3) fears that China was seeking to replace the U.S. in their international 

position (Liu and Wing 2019). Although underlying dynamics had existed before, the situation 

escalated after the Trump office, which had already taken a strong anti-China position during the 

elections, took office (Ferguson and Xu 2018). The trade war between the two countries expressed 

itself in a sequence of tariffs and other trade restrictions, which led to disruption in value chains 

and caused significant uncertainty in both industrial and financial markets. 

Given that 20% of the total data set, i.e. roughly two years of price data, will be held back as a 

test data set, the downturn in 2018/2019 will be part of this test data. It might be argued that this 

could negatively affect the model performance as it represents an atypical development in the 

markets that does not reflect general market conditions. However, given that the model will be 
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trained on data that contains the other two, similar downturns, it is expected that the model can 

learn to recognise the respective patterns.  

4.3 Data pre-processing, feature engineering and image encoding 

Section 3 will describe the data set used as model input as well as the pre-processing of the data 

and image encoding in preparation for the model training. 

4.3.1 Data and technical indicators 

As input for the raw data set, the following variables are included as features: 

Price and volume data  Open price 

 Closing price 

 High price 

 Low price 

 Daily trading volumes 

Simple Moving Average  5-day SMA 

 10-day SMA 

 20-day SMA 

Exponential Moving Average  5-day EMA 

 10-day EMA 

 20-day SMA 

Rate of Change (RIC)  12-day rate of change 

Percentage Price Oscillator  Percentage Price Oscillator based on closing price 

 Percentage Price Oscillator based on opening price 

Relative Strength Index  14-day Relative Strength Index 

Williams % Range  14-day Williams % Range 

Commodity Channel Index (CCI)  20-day Commodity Channel Index 

Foreign Exchange Rate  USD/EUR exchange rate 

 USD/GBP exchange rate 

 USD/JPY exchange rate 

Know Sure Thing Oscillator 

Moving Average Convergence Divergence 

Table 7 - Variables included in the initial data set 

Source: Own illustration 
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Given that foreign exchange rates have a significant impact on financial institutions in general 

and banks specifically (Federal Reserve Bank of San Francisco 1996), exchange rates between of 

the U.S. dollar (USD) and three major currencies are included as explanatory variables, specifi-

cally, the Euro (EUR), the Japanese Yen (JPY) and the British pound sterling (GBP). Despite its 

impact on financial services institutions, an inclusion of the Fed base interest rate was eventually 

disregarded since those rates are only adjusted infrequently. This is why an inclusion of the base 

interest rate is not expected to add value to forecasting daily prices. 

This selection of price and volume data, technical indicators and exchange rates results in an initial 

data set with 22 different features, which are used for the further analysis sequence. 

4.3.2 Stationarity test and differential calculus 

As established in section 3.3.2 of the methodology part, the price data as time-series data needs 

to be tested for its stationarity and, in case of stationarity, be adjusted using fractional differenti-

ation to ensure that it does not hamper the modelling process (Hyndman und Athanasopoulos 

2018).  To avoid data leakage from potentially transforming the entire data set, i.e. train data set 

and test data set together, the data is split before the stationarity test and the potential data trans-

formation.  

Applying the Augmented Dickey-Fuller test to the train data set, the obtained p-value of 0.9734 

indicates non-stationarity of the data, i.e., a trend in the data, which would likely negatively affect 

the model performance. Therefore, as explained, fractional differentiation is applied to adjust the 

data. For this purpose, the fractional differentiation is fitted to the training set and then applied 

separately to the train set and test set. Repeating the stationarity test, a p-value of 0.0000 is ob-

tained, indicating that the data has been successfully adjusted to be stationary.  

4.3.3 PCA results 

After adjusting the data for stationarity, a Principal Component Analysis (PCA) is applied with a 

threshold of 0.95. In the typical procedure of a PCA, the analysis is fitted to the train data set and 
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then applied separately to the train and test data set to avoid data leakage. While the initial raw 

data set contained 22 features, the PCA reduces the number of features to 11. 

4.3.4 Image encoding and model training 

As a next step, the data set obtained from the PCA with 11 features is encoded into three types of 

images, i.e. Gramian Angular Differentiation Field, Gramian Angular Summation Fields and Mar-

kov Transition Fields, with a window of 10 days, meaning that each image contains data from 10 

subsequent days. Given the 11 features and a window of 10 days, each image has a 10*10*11 

shape. 

These images are used to train three different CNNs, each based on one of the image types. The 

best performing parameters will be found using a randomised search, choosing the model with the 

highest F1-score and accuracy and making sure that each model predicts all three classes. The 

results of this model training in terms of performance metrics will be presented and analysed in 

the following section. 

4.4 Analysis and interpretation of the model results  

The following section 4 focuses on the analysis and interpretation of the computational and finan-

cial performance of the best performing model for each of the three image types and provides a 

comparison between the performances of the three models. 

4.4.1 Comparison of overall model metrics and benchmark to purely random model 

The following section will provide a comparison of the overall model metrics across the three 

constructed model (GADF, GASF and MTF) to draw first conclusions on which model achieves 

the highest computational performance. 
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 GADF GASF MTF Random model 

Accuracy 0.49 0.48 0.47 0.373 

Macro-averaged F1-score 0.36 0.26 0.31 0.370 

Weight-averaged F1-score 0.43 0.35 0.39 0.333 

Table 8 - Comparison of overall model metrics across the three model types and a purely random model 

Source: Own illustration 

Based on these overall model performance metrics, the GADF model achieves the highest com-

putational performance, outperforming the other two models in all three performance metrics, 

however, by relatively small margins, especially regarding the key metric accuracy. Regarding 

the comparison of the GASF model to the MTF model, none of the two is clearly outperforming 

the other based on their overall model performance metrics, given that they exceed each other in 

different performance metrics.  

Furthermore, to compare the models to a purely random one, in 10,000 iterations, random predic-

tions were generated, using the length of the test data set and the class probabilities of the train 

data set, and the accuracy, macro-averaged F1-score, and weight-averaged F1-score were calcu-

lated for each iteration and averaged. All three models achieve a higher accuracy and weight-

averaged F1-score than the purely random model, indicating a better performance in this key met-

rics. However, all three models’ macro-averaged F1-scores is lower than their weight-averaged 

one and lower than the random model’s macro-averaged F1-score. Given their calculation, a 

macro-averaged F1-score that is lower than the weight-averaged F1-score indicates lower indi-

vidual F1-scores for at least one of the minority classes and thus a lower precision and/ or recall 

for this class. Thus, all three models seem to have difficulties with Sell and/ or Buy class predic-

tions, which each make up approximately 25% of the data set. 
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Thus, in order to develop a better understanding of the performance of these models with respect 

to each individual class, as a next step, the class-specific metrics of the three models will be ana-

lysed. 

4.4.2 Comparison of class-specific metrics 

Given that the overall model performance metrics mentioned in the section above are an aggrega-

tion of different class-specific metrics, they do not provide a detailed impression on strengths and 

weaknesses of the models regarding their predictive power for the different classes. Table 5 con-

tains the class-specific metrics for all three models, providing more details on the model perfor-

mance for the Hold, Buy and Sell class. 

 GADF GASF MTF 

Precision 

Hold class precision 0.54 0.50 0.50 

Buy class precision 0.34 0.27 0.27 

Sell class precision 0.37 0.26 0.37 

Recall 

Recall: Hold 0.82 0.94 0.85 

Recall: Buy 0.23 0.02 0.08 

Recall: Sell  0.11 0.05 0.12 

F1-Score 

F1-score: Hold class 0.65 0.65 0.63 

F1-score: Buy class 0.27 0.04 0.13 

F1-score: Sell class 0.17 0.08 0.19 

Table 9 - Comparison of class-specific metrics across the three model types 

Source: Own illustration 
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The GADF-based model outperforms both the GASF- and MTF-based in terms of class-specific 

performance metrics, i.e. class precision, class recall and class F1-score. While in terms of class 

precisions the three models show similar performances with only small differences, significant 

differences can be observed for both recall and F1-score values.  

While the GADF model has a lower Hold class recall compared to the GASF and MTF model 

(0.82 v 0.94 v 0.85), it achieves a much better recall for the Buy class, indicating that it is better 

at identifying Buy class instances than the other two models. The GADF also outperforms the 

GASF in the Sell class recall, achieving a recall that is more than 2x as high (0.11 v 0.05). How-

ever, the MTF model achieves a slightly higher Sell class recall than the GADF model (0.12 vs 

0.11), with GASF having the highest recall for the Hold class, but the lowest value for both the 

Buy and Sell call recall. 

In the context of trading, the following conclusions can be drawn on the model performances: 

Firstly, the GASF model’s low recall for Buy and Sell means that is weak at identifying Buy and 

Sell instances and thus will likely miss a large part of return-generating transactions. Secondly, 

the GADF’s comparatively high recall for the Buy and Sell class show that is better at identifying 

these classes and indicate that it will thus trigger more Buy and Sell transactions than the other 

two models and potentially profit from more return-generating opportunities. 

4.4.3 Financial performance evaluation 

Given that, in practice, the main objective of a trading strategy is to generate returns and ideally 

outperform the market the financial performances need to be assessed. 

 CNN Model Buy & Hold SMA MR 

GADF 18.78%    

GASF -12.75% 16.00% 16.88% 21.76% 

MTF -6.25%    

Table 10 - Comparison of financial performances across the three model types 

Source: Own illustration 
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Only the GADF model is able to generate positive financial returns and to outperform the easiest 

strategy, i.e. the Buy & Hold strategy. Both the GASF and MTF model generate losses, with the 

GASF generating the greatest loss of 12.75% over the test period. During the test period, the price 

of the IYG ETF increases by 16.00%, while the best model achieves a performance of 18.78%, 

2.78 percentage points above the Buy & Hold return in absolute terms, 17.38% in relative terms. 

Based on this finding, a higher recall for the Buy and Sell classes appears to be related to a better 

financial performance. With the return of 18.78%, the GADF model outperforms the simple mov-

ing average cross-over strategy (16.88%) but lies below the return generated by the mean-rever-

sion strategy (21.76%). Based on these findings, it seems that the CNN approach as applied in 

this paper is unable to disprove the Efficient Market Theory (Fama 1970) and does not offer sig-

nificant advantages for the financial services sector compared to naïve technical strategies. 

4.5 Comparison to results from other sectors 

As a last step to the result and performance assessment, the model performances obtained for the 

financial services sector will be compared to the results obtained for the other sectors using the 

same approach. The purpose of this comparison is to assess if the apparently low performance of 

the models is specific to the financial services sector or if similar issues can also be identified in 

other sectors. 
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4.5.1 Computational performance comparison across industries 

As a first step in the comparison, the computational performance of the models applied to the 

financial services sector will be compared to the average computational performance metrics 

across all industries. 

 GADF 

average 

GADF 

FS 

GASF 

average 

GASF 

FS 

MTF 

average 

MTF 

FS 

Accuracy 0.49 0.49 0.45 0.48 0.44 0.47 

Macro-averaged 
F1-score 

0.35 0.36 0.31 0.26 0.31 0.31 

Weight-aver-
aged F1-score 

0.47 0.43 0.37 0.35 0.37 0.39 

Table 11 - Average performance metrics across five industries (IT, Healthcare, Energy, Financial Services and In-
dustrials) 

Source: Own illustration 

The key insight of Table 7 is that there are no major differences in the model performance applied 

to the financial services sector compared to the average performance metrics across all industries. 

The average F1-scores show the same pattern as in the case of the financial services sector model:  

the weight-average F1-scores are higher than the macro-averaged F1-scores, indicating a poorer 

performance for at least one of the minority classes. Given that for all sectors, Buy and Sell are 

minority classes compared to the Hold class, this indicates similar weaknesses regarding the pre-

diction of these classes. Overall, the performance obtained for the financial services sector are in 

line with the average results across all sectors using the same approach. 

4.5.2 Financial performance comparison across industries 

As a second and final step in the industry comparison, the financial performance needs to be 

evaluated. Since the different industries show significant differences in their price developments 

over the test data period, ranging from -8.0% for the Energy sector to 51.0% in the Information 

Technology sector, excess returns calculated as the absolute difference between the model return 
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and the benchmark strategy are being used to ensure comparability of the obtained results. These 

excess returns can be seen in Table 8 below.  

 Average excess return compared to Buy 

& Hold 

Financial services excess return compared 

to Buy & Hold 

GADF 1.30% 2.78% 

GASF -6.90% -28.75% 

MTF -12.98% -22.25% 

Table 12 - Financial performance comparison 

Source: Own illustration 
 

Considering the averages across all five industries using the same model approach, one can see 

that the approach performs similarly poorly for those other industries as it does for the financial 

services sector. On average, only the GADF models outperform the Buy & Hold strategy and thus 

the price development of the respective ETFs per se, however, only with a small margin of 1.28 

percentage points. On average, both the GASF and MTF models perform worse than the Buy & 

Hold strategy, meaning that an investor would achieve better results by just buying and holding 

the asset instead of using these two models. As such, the average results across all 5 industries go 

in line with the results obtained for the financial services sector. The CNN approach taken in this 

paper appears unable to beat the market performance. 

4.6 Conclusion and outlook 

4.6.1 Limitations 

Although all three models achieve a better accuracy than the purely random model, they barely 

exceed the random model with respect to their F1-scores, showing weaknesses in recall and/ or 

precision. This weakness becomes more obvious when assessing the class-specific performance 

metrics. All three models have low recall values for the minority classes Buy and Sell, meaning 

that they are relatively weak at identifying those classes, implying that the models are rather badly 

suited to identify these kinds of return-generating opportunities. This impression is confirmed by 
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assessing the financial performance, which shows that only the GADF model generates positive 

returns, barely exceeding the Buy & Hold return.  

One source of this problem is likely the imbalanced data set: The Hold class dominates the data 

set, making up roughly 50% of both data sets, which negatively affects model performance. More-

over, considering the complex features, the relatively small train data set of roughly 2000 pictures 

might be insufficient for a proper model training, causing an issue of overfitting.  

However, the relatively poor performance does not seem to be specific to the financial services 

sector, but an overall problem of the approach, as other industries on average show similar per-

formances. This indicates similar problems for the other industries. 

4.6.2 Outlook 

Further research appears necessary to improve the model performance. As for all industries, the 

GADF approach achieves the best performance, further research should be built upon this method. 

To address the issue of the small train data set, shorter time windows for the images and higher-

frequency data, e.g. hourly instead of daily data, could be used to increase the number of images 

available for model training. Furthermore, seeking to solve the problem of imbalanced data, suit-

able data augmentation techniques and adjusted model training approaches, e.g. the so-called two-

phase learning, presented by Wahab, Khan and Lee (2017), should be explored. 

Other approach alterations that should be explored in further research include:  

o Experimentation with different model architectures that might be better at extracting the nec-

essary patterns 

o Experimentation with different initial variables that might have more predictive power 

o Adjustments in the labelling, exploring approaches based on characteristics that are more dis-

tinguishable in the images 

Overall, the CNN approach should not be discarded yet, given that it is a relatively young field 

and further techniques are expected to develop. 
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5 Performance Comparison and Discussion 

In the following section, key findings from the individual analyses conducted in chapter 4 will be 

summarised, focusing on common findings regarding the model hyperparameters, as well as the 

computational and the financial performance of the models. 

Common findings hyperparameters 

Comparing the best-performing model parameters across the three model types (GADF, GASF 

and MTF) and across the six analysed industries, several findings can be made.  

Firstly, for the MTF-based models, a 5*5 kernel achieves the best performance across all indus-

tries. For the majority of GAF-based models, i.e. GADF and GASF, a 3*3 kernel leads to the best 

performance, with the exception of the Energy sector, for which a 5*5 leads to the best perfor-

mance for all three models. This tendency can be supported by the PXL-based model, which also 

uses a 3*3 kernel. 

Secondly, in the majority of models (17 out of 19), the Softmax and Sigmoid activation function 

achieve the best performance. The ReLu activation function only leads to the best performance 

for 2 of the 19 models. 

Thirdly, for 5 out of the 6 ETFs applying the proposed image encoding types, average pooling 

achieves the best performance for the GADF model. 

Fourthly, for the majority of analysed ETFs (5 out of 6), including the class weights does not have 

a positive impact on the model accuracy, i.e. models without class weights achieve a better accu-

racy for these ETFs. However, this tendency is not supported by the PXL-based model.  

Common findings computational performance 

For the majority of industries, i.e. Information Technology, Healthcare, Energy and Financial 

Services, the GADF-based model achieves a better accuracy compared to the GASF- and MTF-

based models. Moreover, for 5 out of 7 analysed ETFs, GADF achieves better weight-averaged 

and macro-averaged F1-scores than both GASF and MTF. 
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For the Energy industry, it can be noted that GADF performs above the average of the other 

industries, whereas the GASF and MTF perform poorly compared to the other ETF’s in terms of 

computational performance. The worst model across all industries can be found within the 

Healthcare models, where the MTF showed the poorest performance from a computational per-

spective with a weighted average F1-score of 0.34 and an accuracy of 0.3706. Among all models 

and industries, predictions of the Hold class showed the most promising results, with the only 

outlier found for the GASF model of the energy sector. It is also worth mentioning that within all 

industries and ETF’s, with the VGT (IT sector) as an exception, class predictions show huge dis-

crepancies in predicting the correct class. Hence it is not possible to conclude that a certain image 

encoding technique works better to predict a specific signal.  

The performance evaluation of the random choice models didn’t produce any important insights. 

For all industries, similar scores can be observed. Moreover, they are less performant than all 

other models when comparing weighted averages with each other. 

Common findings financial performance 

For comparing and assessing the financial performances of the models across industries, excess 

returns calculated as the absolute difference between the model return and the benchmark strategy 

are being used to ensure comparability of the obtained results. Considering the average of these 

excess returns, only the GADF models are able to achieve returns that exceed the Buy & Hold 

strategy, i.e. to beat the return generated by the general price development of the considered ETF. 

Both the GASF and MTF models have negative excess returns compared to Buy & Hold, leaving 

the investor with better returns by just buying and holding the asset compared to using a trading 

strategy based on the models’ predictions. 

For 4 out of the 6 ETFs to which the common methodology was applied, the GADF models out-

perform the Buy & Hold return, with the exception of Healthcare and Industrials. The GASF 

models only outperforms the Buy & Hold return for 2 out the 6 ETFs, i.e. Healthcare and Energy. 
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Only for the Energy sector, the MTF model outperforms the Buy & Hold return. Despite being a 

subset of the energy industry, the model used on the Oil & Gas sector cannot outperform the Buy 

& Hold return. It is also the Energy sector where the model generates the most impact; despite the 

negative price development of -8% over the test data period, all three models are able to generate 

positive returns between 3% and 10%. Lastly, the CNN approach shows the poorest performance 

in the Industrials sector where all three models underperform compared to the Buy & Hold strat-

egy. 
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6. Limitations and Outlook 

6.1 Limitations 

Predictions for the stock market are challenging, as the stock market represents a dynamic, volatile 

and very complex market based on historical data and influenced by unpredictable events. In this 

research we face the problem of imbalanced classes, where the largest class is Hold across all 

sectors. As a result, the predictions are dominated by the largest class - predictions of the minor 

classes turn out worse, which negatively affects the overall model performance. In addition, a 

comparatively small train set in combination with complex features further complicates model 

development. This makes the models prone to overfitting - whereas the inclusion of multiple train 

data would be advantageous. In the present approach of this research accuracy was chosen as the 

most important performance measure and model selection criterion. However, there are other 

evaluation methods that could be considered as primarily evaluation metric, e.g. financial perfor-

mance, precision or F1-scores. Especially with respect to the financial performance it is important 

to mention that only the decisions of the next day are considered. Hence, the prediction is related 

to a very short future period and makes no specific statements about longer term behavior. A 

further limitation lies in the assessment of the severity in the case of mislabelling. A wrong 

Buy/Sell decision has more serious negative effects than a wrong Buy/Hold or Sell/Hold decision. 

In the present research a suitable performance measure is missing - here a suitable loss function 

would be necessary. A further remark is to be mentioned in the simplification of the labelling 

approach. If the upper and lower limits are exceeded on the same day, the first labelling trigger 

decides on the label allocated to the trading day. Another limitation can be found in the Efficient 

Market Theory (Fama 1970,  383). As mentioned in section 2.1, the theory states that stock prices 

already reflect and have priced in all relevant information. This would make a deeper analysis 

with additional features, like technical indicators, redundant, as no investment analysis technique 

allows investors to generate significant excess returns above the market. However, this is refuted 
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by the thesis that financial markets in many cases do not react immediately to new information 

(Cervelló-Royo and Guijarro 2020, 41),  which would make returns above the market average still 

possible through sufficient analysis and the right timing. This would imply that a better perform-

ing model could potentially outperform market returns. 

6.2 Outlook 

Forecasting Financial Time Series Movements using CNNs is a recent research field. For this 

reason many different topics can be addressed in future research.  

Firstly, it would be interesting to test if the proposed methodology can achieve better results with 

regard to different prediction horizons. These could include the prediction of price movements 

within the next week or month, alternatively intraday data can be used for short-term forecasting.  

This work focuses on using technical indicators along with foreign exchange, commodity and 

indices as features to feed into the CNN. However, future work could incorporate other types of 

features. These could, among others, include data from the news, social media and market seg-

ments. Moreover, machine-learning-based fundamental analysis approaches as suggested by Cao 

and You (2020), e.g. for forecasting company earnings, could be included to provide a more ho-

listic impression on the underlying companies’ situation.  

Furthermore, within the current research not all papers propose transforming the data into station-

ary time series. Therefore, research regarding the necessity of stationary time series in the context 

of forecasting financial time series with CNNs can be conducted. This is particularly interesting 

as methods to transform non-stationary data imply information loss within the used variables. 

 

 



  

 

61  

References  

Abad, Cristina, Sten A. Thore, and Joaquina Laffarga. 2004. ‘Fundamental Analysis Of Stocks 

By Two-Stage DEA’. Managerial And Decision Economics 25 (5): 231-241. 

doi:10.1002/mde.1145. 

Abdi, Hervé, and Lynne J. Williams. 2010. ‘Principal Component Analysis’. Wiley interdiscipli-

nary reviews: computational statistics 2(4): 433-459.  

Albawi, Saad, Tareq Abed Mohammed, and Saad Al-Zawi. 2017. ‘Understanding of a Convolu-

tional Neural Network’. In 2017 International Conference on Engineering and Technology 

(ICET), 1–6. 

Allen, Katie. 2015. "Why Is China's Stock Market In Crisis?". The Guardian,  

2015.https://www.theguardian.com/business/2015/jul/08/china-stock-market-crisis-ex-

plained. 

Arratia, Argimiro, and Eduardo Sepúlveda. 2020. ‘Convolutional Neural Networks, Image Recog-

nition and Financial Time Series Forecasting’. In Mining Data for Financial Applications, 

60–69. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-37720-

5_5. 

Banton, Caroline. 2021. ‘An Introduction To Trading Types: Fundamental Traders’. Investopedia. 

Accessed December 10, 2021. https://www.investopedia.com/articles/trad-

ing/02/100102.asp. 

Barra, Silvio, Salvatore Mario Carta, Andrea Corriga, Alessandro Sebastian Podda, and Diego 

Reforgiato Recupero. 2020. ‘Deep learning and time series-to-image encoding for financial 

forecasting’. IEEE/CAA Journal of Automatica Sinica 7 (3): 683–692. 

https://doi.org/10.1109/JAS.2020.1003132. 

Bergmeir, Christoph, and José M. Benítez. 2012. ‘On The Use Of Cross-Validation For Time 

Series Predictor Evaluation’. Information Sciences 191: 192-213. 

doi:10.1016/j.ins.2011.12.028. 

Bogullu, Vamsi Krishna, Cihan H. Dagli, and David Lee Enke. 2002. ‘Using Neural Networks 

and Technical Indicators for Generating Stock Trading Signals’. Intelligent Engineering 

Systems Through Artificial Neural Networks 12: 721–726. 



  

 

62  

Brownlee, Jason. 2018. ‘When to Use MLP, CNN, and RNN Neural Networks’. Machine Learn-

ing Mastery. Accessed December 10, 2021. https://machinelearningmastery.com/when-to-

use-mlp-cnn-and-rnn-neural-networks/. 

Brownlee, Jason. 2019. ‘Understand the Impact of Learning Rate on Neural Network Perfor-

mance’. Machine Learning Mastery. Accessed December 10, 2021. https://machinelearn-

ingmastery.com/understand-the-dynamics-of-learning-rate-on-deep-learning-neural-net-

works/. 

Cao, Kai, and Haifeng You. 2020. ‘Fundamental Analysis Via Machine Learning’. SSRN Elec-

tronic Journal 2020 (009). doi:10.2139/ssrn.3706532. 

Cervelló-Royo, R., and F. Guijarro. 2020. "Forecasting Stock Market Trend: A Comparison Of 

Machine Learning Algorithms". Finance, Markets And Valuation 6 (1): 37-49. 

Chen, Sheng, and Hongxiang He. 2018. ‘Stock Prediction Using Convolutional Neural Network’. 

IOP Conference Series: Materials Science and Engineering 435 (1). 

https://doi.org/10.1088/1757-899X/435/1/012026. 

Chen, Wei, Manrui Jiang, Wei-Guo Zhang, und Zhensong Chen. 2021. ‘A Novel Graph Con-

volutional Feature Based Convolutional Neural Network for Stock Trend Prediction’. Infor-

mation Sciences 556 (May): 67–94. https://doi.org/10.1016/j.ins.2020.12.068. 

Cheung, Yin-Wong, and Kon S. Lai. 1995. ‘Lag Order and Critical Values of the Augmented 

Dickey–Fuller Test’. Journal of Business & Economic Statistics 13 (3): 277–280. 

https://doi.org/10.1080/07350015.1995.10524601. 

Chollet, Francois. 2017. Deep Learning with Python. New York, NY: Manning Publications. 

Chollet, François. 2018. Deep Learning with Python. Shelter Island, New York: Manning Publi-

cations Co. 

Cohen, Naftali, Tucker Balch, and Manuela Veloso. 2020. ‘Trading via Image Classification’. In 

Proceedings of the First ACM International Conference on AI in Finance, 1–6. 

https://doi.org/10.1145/3383455.3422544. 

Drakopoulou, Veliota. 2016. ‘A Review Of Fundamental And Technical Stock Analysis Tech-

niques’. Journal Of Stock & Forex Trading 05 (01): 1-8. 



  

 

63  

Dertat, Arden. 2017. ‘Applied Deep Learning - Part 4: Convolutional Neural Networks’. Towards 

Data Science. Accessed November 8, 2021. https://towardsdatascience.com/applied-deep-

learning-part-4-convolutional-neural-networks-584bc134c1e2.  

Desconfio, Josh. 2018. ‘A Beginner's Guide to Technical Indicators’. Scanz.com. Accessed De-

cember 3, 2021. https://scanz.com/technical-indicators-guide/.  

Fama, Eugene F. 1970. ‘Efficient Capital Markets: A Review of Theory and Empirical Work’. 

The Journal of Finance, 25(2), 383–417. https://doi.org/10.2307/2325486 

Federal Reserve Bank of San Francisco. 1996. Banks and Foreign Exchange Exposure. Eco 

nomic Letter, San Francisco: FRBSF. 

Ferguson, Niall, and Xiang Xu. 2018. "Trump And The 'Chimerica' Crisis". Wall Street Jour 

nal, 2018. https://www.wsj.com/articles/trump-and-the-chimerica-crisis-1525635323. 

Fernández-Blanco, Pablo, Diego J. Bodas-Sagi, Francisco J. Soltero, and J. Ignacio Hidalgo. 

2008. ‘Technical Market Indicators Optimization Using Evolutionary Algorithms’. In Pro-

ceedings of the 2008 GECCO Conference Companion on Genetic and Evolutionary Com-

putation. 

Ghosh, Anirudha, Abu Sufian, Farhana Sultana, Amlan Chakrabarti, and Debashis De. 2020. 

‘Fundamental Concepts of Convolutional Neural Network’. In Recent Trends and Advances 

in Artificial Intelligence and Internet of Things, 172:519–67. https://doi.org/10.1007/978-

3-030-32644-9_36. 

Godin, Fréderic, Jonas Degrave, Joni Dambre, and Wesley De Neve. 2018. ‘Dual Rectified Linear 

Units (DReLUs): A Replacement for Tanh Activation Functions in Quasi-Recurrent Neural 

Networks’. Pattern Recognition Letters.  10.1016/j.patrec.2018.09.006 

Grammatikos, Theoharry, and Robert Vermeulen. 2014. "The 2007-2009 Financial Crisis: 

Changing Market Dynamics And The Impact Of Credit Supply And Aggregate Demand 

Sensitivity". Applied Economics 46 (8): 895-911. 

Haq, Anwar Ul, Adnan Zeb, Zhenfeng Lei, and Defu Zhang. 2021. ‘Forecasting Daily Stock 

Trend Using Multi-Filter Feature Selection and Deep Learning‘. Expert Systems with Ap-

plications 168 (April): 114444. https://doi.org/10.1016/j.eswa.2020.114444. 



  

 

64  

Hayes, Adam. 2021. ‘Know Sure Thing (KST)’. StockCharts. Accessed December 10, 2021.  

https://stockcharts.com/school/doku.php?id=chart_school:technical_indica-

tors:know_sure_thing_kst. 

Henrique, Bruno Miranda, Vinicius Amorim Sobreiro, and Herbert Kimura. 2018. ‘Stock Price 

Prediction Using Support Vector Regression on Daily and up to the Minute Prices’. Journal 

of Finance and Data Science 4 (3): 183–201. https://doi.org/10.1016/j.jfds.2018.04.003. 

Herman-Safar, Or. 2021. ‘Time Based Cross Validation’. Blog. Towards Data Science. https://to-

wardsdatascience.com/time-based-cross-validation-d259b13d42b8. 

Hinton, Geoffrey, Nitish Srivastava, and Kevin Swersky. 2012. "Neural networks for machine 

learning lecture 6a overview of mini-batch gradient descent." Neural Networks for Machine 

Learning 14. 

Huang, Boming, Yuxiang Huan, Li Da Xu, Lirong Zheng, and Zhuo Zou. 2019. ‘Automated trad-

ing systems statistical and machine learning methods and hardware implementation: a sur-

vey’. Enterprise Information Systems 13 (1): 132–144. https://doi.org/10.1080/ 

17517575.2018.1493145. 

Hyndman, Rob J., and George Athanasopoulos. 2018. Forecasting: Principles and Practice. 

OTexts. 

Ioffe, Sergey, and Christian Szegedy. 2015. ‘Batch Normalization: Accelerating Deep Network 

Training by Reducing Internal Covariate Shift’. In: International conference on machine 

learning. PMLR, 2015. S. 448-456. 

"Ishares U.S. Financial Services ETF | IYG". 2021. Blackrock.  

https://www.ishares.com/us/products/239509/ishares-us-financial-services-etf. 

Ittiyavirah, Sibi, S. Jones and P. Siddarth. 2013. ‘Analysis of different activation functions using 

Backpropagation Neural Networks’. Journal of Theoretical and Applied Information Tech-

nology 47: 1344-1348. 

Keijsers, N. L. W. 2010. ‘Neural Networks’. In Encyclopedia of Movement Disorders, 257–259. 

Elsevier. 

Kingma, Diederik P, and Jimmy Ba. 2014. ‘Adam: A method for stochastic optimization’. arXiv 

preprint arXiv:1412.6980. 



  

 

65  

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. 2017. ‘ImageNet Classification with 

Deep Convolutional Neural Networks’. Communications of the ACM 60 (6): 84–90. 

Kröse, Ben, and Patrick Van der Smagt. 1993. ‘An Introduction to Neural Networks’. Journal of 

Computer Science 48 (January). 

Lee, Hagyeong, and Jongwoo Song. 2019. ‘Introduction to Convolutional Neural Network Using 

Keras; an Understanding from a Statistician’. Communications for Statistical Applications 

and Methods 26 (6): 591–610. 

Lev, Baruch, and S. Ramu Thiagarajan. 1993. ‘Fundamental Information Analysis’. Journal Of 

Accounting Research 31 (2): 190. doi:10.2307/2491270. 

Liu, Tao, and Wing Thye Woo. 2019. “Understanding the U.S.-China Trade War.” China 

Economic Journal, 1-22. 

Liu, Shiyu, Shutao Wang, Chunhai Hu, and Weihong Bi. 2022. ‘Determination of Alcohols-Die-

sel Oil by near Infrared Spectroscopy Based on Gramian Angular Field Image Coding and 

Deep Learning’. Fuel 309 (February): 122121. https://doi.org/10.1016/j.fuel.2021.122121. 

Lopez de Prado, Marcos. 2018. Advances In Financial Machine Learning. 2nd ed. New Jersey: 

John Wiley & Sons. 

Mitchell, Cory. 2021. ‘How To Use A Moving Average To Buy Stocks’. Investopedia. 

https://www.investopedia.com/articles/active-trading/052014/how-use-moving-average-

buy-stocks.asp. 

Moghaddam, Amin Hedayati, Moein Hedayati Moghaddam, and Morteza Esfandyari. 2016. 

‘Stock Market Index Prediction Using Artificial Neural Network’. Journal of Economics, 

Finance and Administrative Science 21 (41): 89–93. 

https://doi.org/10.1016/j.jefas.2016.07.002. 

Murphy, John J. 1999. Technical Analysis of the Financial Markets: A Comprehensive Guide to 

Trading Methods and Applications. New York: New York Institute of Finance.  

Nayak, Aparna, M. M.Manohara Pai, and Radhika M. Pai. 2016. ‘Prediction Models for Indian 

Stock Market’. Procedia Computer Science 89: 441–449. 

https://doi.org/10.1016/j.procs.2016.06.096. 



  

 

66  

O'Shea, Keiron, and Ryan Nash. 2015. 'An Introduction to Convolutional Neural Networks'. arXiv 

preprint arXiv:1511.08458. 

Patel, Jigar, Sahil Shah, Priyank Thakkar, and K. Kotecha. 2015. ‘Predicting Stock and Stock 

Price Index Movement Using Trend Deterministic Data Preparation and Machine Learning 

Techniques’. Expert Systems with Applications 42 (1): 259–268. 

https://doi.org/10.1016/j.eswa.2014.07.040. 

Peachavanish, Ratchata. 2016. ‘Stock Selection and Trading Based on Cluster Analysis of Trend 

and Momentum Indicators’. In Proceedings of the International MultiConference of Engi-

neers and Computer Scientists 2016. Vol. 1. IMECS 2016. http://www.iaeng.org/publica-

tion/IMECS2016/IMECS2016_pp317-321.pdf. 

Peng, Yaohao, Pedro Henrique Melo Albuquerque, Herbert Kimura, and Cayan Atreio Portela 

Bárcena Saavedra. 2021. ‘Feature Selection and Deep Neural Networks for Stock Price Di-

rection Forecasting Using Technical Analysis Indicators ‘. Machine Learning with Appli-

cations 5 (September): 100060. https://doi.org/10.1016/j.mlwa.2021.100060. 

Petrusheva, Nada, and Igor Jordanoski. 2016. ‘Comparative Analysis between the Fundamental 

and Technical Analysis of Stocks’. Journal of Process Management. New Technologies 4: 

26–31. https://doi.org/10.5937/JPMNT1602026P. 

Rahoma, Abdalhamid, Syed Imtiaz, and Salim Ahmed. 2021. ‘Sparse Principal Component Anal-

ysis Using Bootstrap Method’. Chemical Engineering Science 246: 116890. 

https://doi.org/10.1016/j.ces.2021.116890. 

Romero, Luis, Joaquim Blesa, Vicenç Puig, Gabriela Cembrano, and Carlos Trapiello. 2020. 

‘First Results in Leak Localization in Water Distribution Networks Using Graph-Based 

Clustering and Deep Learning‘. IFAC-PapersOnLine, 21st IFAC World Congress, 53 (2): 

16691–96. https://doi.org/10.1016/j.ifacol.2020.12.1104 

Salkar, Tanishq, Aditya Shinde, Neelaya Tamhankar, and Narendra Bhagat. 2021. ‘Algorithmic 

Trading Using Technical Indicators’. In 2021 International Conference on Communication 

Information and Computing Technology (ICCICT), 1–6. https://doi.org/10.1109/IC-

CICT50803.2021.9510135. 



  

 

67  

Santurkar, Shibani, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. 2018. ‘How Does 

Batch Normalization Help Optimization?’. Proceedings of the 32nd international confer-

ence on neural information processing systems: 2488-2498. 

Sezer, Omer Berat, and Ahmet Murat Ozbayoglu. 2018. ‘Algorithmic Financial Trading with 

Deep Convolutional Neural Networks: Time Series to Image Conversion Approach’. Ap-

plied Soft Computing 70: 525–538. https://doi.org/10.1016/j.asoc.2018.04.024. 

Sezer, Omer Berat, Murat Ozbayoglu, and Erdogan Dogdu. 2017. ‘A Deep Neural-Network 

Based Stock Trading System Based on Evolutionary Optimized Technical Analysis Pa-

rameters’. Procedia Computer Science, 114: 473–80. 

https://doi.org/10.1016/j.procs.2017.09.031. 

Sharma, Sagar. 2017. ‘Epoch vs Batch Size vs Iterations - towards Data Science’. Towards Data 

Science. Accessed December 10, 2021. https://towardsdatascience.com/epoch-vs-itera-

tions-vs-batch-size-4dfb9c7ce9c9. 

Sharma, Siddharth & Sharma, Simone & Athaiya, Anidhya. . 2020. ‘Activation Functions In Neu-

ral Networks’. International Journal of Engineering Applied Sciences and Technology: 310-

316. 10.33564/IJEAST.2020.v04i12.054.  

Shen, Kevin. 2018. ‘Effect of Batch Size on Training Dynamics.’ Mini Distill. Accessed Dezem-

ber 3, 2021. https://medium.com/mini-distill/effect-of-batch-size-on-training-dynamics-

21c14f7a716e. 

Shynkevich, Yauheniya, T. M. McGinnity, Sonya A. Coleman, Ammar Belatreche, and Yuhua 

Li. 2017. ‘Forecasting Price Movements Using Technical Indicators: Investigating the 

Impact of Varying Input Window Length’. Neurocomputing, Machine learning in fi-

nance, 264: 71–88. https://doi.org/10.1016/j.neucom.2016.11.095. 

Sim, Hyun, Hae Kim, and Jae Ahn. 2019. ‘Is Deep Learning for Image Recognition Applicable 

to Stock Market Prediction?’ Complexity 2019: 1–10. 

https://doi.org/10.1155/2019/4324878. 

Speiser, Jaime Lynn, Michael E. Miller, Janet Tooze, and Edward Ip. 2019. ‘A Comparison of 

Random Forest Variable Selection Methods for Classification Prediction Modeling‘. Expert 

Systems with Applications 134: 93–101. https://doi.org/10.1016/j.eswa.2019.05.028. 



  

 

68  

Srivastava, Nitish, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. 

2014. ‘Dropout: A Simple Way to Prevent Neural Networks from Overfitting’. Journal of 

Machine Learning Research: JMLR 15 (56): 1929–1258. 

Thakkar, Ankit, and Kinjal Chaudhari. 2021. ‘A Comprehensive Survey on Deep Neural Net-

works for Stock Market: The Need, Challenges, and Future Directions’. Expert Systems 

with Applications 177: 114800. https://doi.org/10.1016/j.eswa.2021.114800. 

Thakkar, Vignesh, Suman Tewary, and Chandan Chakraborty. 2018. ‘Batch Normalization in 

Convolutional Neural Networks — A Comparative Study with CIFAR-10 Data’. In 2018 

Fifth International Conference on Emerging Applications of Information Technology 

(EAIT), 1–5. https://doi.org/10.1109/EAIT.2018.8470438. 

Tharwat, Alaa. 2016. ‘Principal Component Analysis - a Tutorial’. International Journal of Ap-

plied Pattern Recognition 3: 197. https://doi.org/10.1504/IJAPR.2016.079733 

Tsai, Yun-Cheng, Jun-Hao Chen, and Jun-Jie Wang. 2018. ‘Predict Forex Trend via Convolu-

tional Neural Networks’. Journal of Intelligent Systems 29 (1): 941–958. 

https://doi.org/10.1515/jisys-2018-0074.  

Verma, Yugesh. 2021. ‘Complete Guide To Dickey-Fuller Test In Time-Series Analysis’. Ana-

lytics India Magazine. Accessed December 1, 2021. https://analyticsindiamag.com/com-

plete-guide-to-dickey-fuller-test-in-time-series-analysis/. 

Vijh, Mehar, Deeksha Chandola, Vinay Anand Tikkiwal, and Arun Kumar. 2020. ‘Stock Closing 

Price Prediction Using Machine Learning Techniques’. Procedia Computer Science 167 

(2019): 599–606. https://doi.org/10.1016/j.procs.2020.03.326. 

Walasek, Rafał, and Janusz Gajda. 2021. ‘Fractional Differentiation and Its Use in Machine 

Learning’. International Journal of Advances in Engineering Sciences and Applied Mathe-

matics 13 (2–3): 270–277. 

Wahab, Noorul, Asifullah Khan, and Yeon Soo Lee. 2017. "Two-Phase Deep Convolutional  

Neural Network For Reducing Class Skewness In Histopathological Images Based Breast 

Cancer Detection". Computers In Biology And Medicine 85: 86-97. doi:10.1016/j.comp-

biomed.2017. 

 



  

 

69  

Wang, Zhiguang, and Tim Oates. 2015. ‘Encoding Time Series as Images for Visual Inspection 

and Classification Using Tiled Convolutional Neural Networks’. Workshops at the Twenty-

Ninth AAAI Conference on Artificial Intelligence, 40–46. 

Wehinger, Gert. 2012. "The Financial Industry In The New Regulatory Landscape". OECD  

Journal: Financial Market Trends 2011 (2): 225-249. doi:10.1787/fmt-2011-

5k9cswmzqp7d. 

Wu, Jianxin. 2017. ‘Introduction to convolutional neural networks’. National Key Lab for Novel 

Software Technology. Nanjing University. China 5 (23): 495. 

Xu, Kelvin, Jimmy Lei Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, 

Richard S. Zemel, and Yoshua Bengio. 2015. ‘Show, Attend and Tell: Neural Image Cap-

tion Generation with Visual Attention’. 32nd International Conference on Machine Learn-

ing, ICML 2015 3: 2048–2057. 

Yang, Chao-Lung, Chen-Yi Yang, Zhi-Xuan Chen, and Nai-Wei Lo. 2019. ‘Multivariate Time 

Series Data Transformation for Convolutional Neural Network‘. In 2019 IEEE/SICE Inter-

national Symposium on System Integration (SII), 188–192. Paris, France: IEEE. 

https://doi.org/10.1109/SII.2019.8700425. 

Yang, Zhenhua, Kuangrong Hao, Xin Cai, Lei Chen, and Lihong Ren. 2019. ‘Prediction of Stock 

Trading Signal Based on Multi-Indicator Channel Convolutional Neural Networks’. In 2019 

IEEE 8th Data Driven Control and Learning Systems Conference (DDCLS), 912–917. 

IEEE. 

Zhang, Dayong, Min Hu, and Qiang Ji. 2020. "Financial Markets Under The Global Pandemic  

Of COVID-19". Finance Research Letters 36: 1-6. doi:10.1016/j.frl.2020.101528. 

Zhang, Jiawei, and Fisher B Gouza. 2018. ‘GADAM: genetic-evolutionary ADAM for deep neu-

ral network optimization’. arXiv preprint arXiv:1805.07500. 

2021. https://www.etf.com/IYG#overview. 

 

 

  



  

 

70  

Appendix 

Apendix A: Technical indicators 

The table below displays the technical indicators used cross-sectoral. Along with a description, 

the formulas for calculationg the indicator is provided. 

 

 

Type Technical Indicator Formula (Sezer and Ozbayoglu 2018, 535; 
Sim, Kim, and Ahn 2019, 7) 

Trend Simple moving average (SMA) calcu-
lates the average price over a given pe-
riod. The indicator is widely used to 
detmine price trends (Sezer and 
Ozbayoglu 2018, 535). 

𝑆𝑀𝐴 =  
𝐶 + 𝐶 + ⋯ + 𝐶

𝑛
 

where: 
𝐶  = price of an asset at period i  
n = the number of periods used for moving 
average 

Trend Exponential moving average (EMA) 
calculates a moving average such that 
greater weights are assigned to more re-
cent values (Sezer and Ozbayoglu 2018, 
535). 

𝐸𝑀𝐴 =  𝐶 ∗ 𝑘 + 𝐸𝑀𝐴(𝑦) ∗ (1 − 𝑘) 
where: 
k = 2÷(n+1) 
n = number of days in EMA 
Ct = closing price of an asset today 
y = yesterday 

Momen-
tum 

Rate of change (ROC) is a momentum 
oscillator measuring the speed of changes 
in price over a given period (Sezer and 
Ozbayoglu 2018, 536). The indicator is 
calculated by comparing the current clos-
ing price with the closing price n periods 
ago. 

𝑅𝑂𝐶 =  
(𝐶 − 𝐶 )

(𝐶 )
∗ 100 

where: 
Ct = closing price of an asset today 
n = number of periods 
 

Momen-
tum 

Percentage Price Oscillator (PPO) is a 
technical momentum indicator similar to 
MACD (Sezer and Ozbayoglu 2018, 
536). It exhibits the relation of two mov-
ing averages in percentage, usually a 26-
period and 12-period EMA.  

𝑃𝑃𝑂 =
(𝐸𝑀𝐴 − 𝐸𝑀𝐴 )

𝐸𝑀𝐴
∗ 100 

where: 
EMA = Exponential moving average as de-
fined before 
n = number of periods 

Momen-
tum 

The Relative Strength Index (RSI) is an 
oscillating indicator measuring the 
strength and weaknesses of stock prices 
or the magnitude of historical price 
changes, indicating whether stock prices 
are in the ‘overbought’ or ‘oversold’ re-
gion (Sezer, Ozbayoglu, and Dogdu 
2017a,2; Corporate Finance Institute 
2020, 4) 

𝑅𝑆𝐼 = 100 −
100

1 + (
𝑔
𝑙

)
 

where:  
n = number of periods 
gn = average percentage gain during a period 
of length n  
ln = average percentage loss during a period 
of length n  
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Type Technical Indicator 
Formula (Sezer and Ozbayoglu 2018, 535; 
Sim, Kim, and Ahn 2019, 7) 

Momen-
tum 

Know Sure Thing Oscillator (KST) is a 
momentum oscillator to make rate-of-
change readings easier for traders to in-
terpret (Hayes 2021). 
 

KST = (RCMA #1×1) + (RCMA #2×2) + 
(RCMA #3×3) + (RCMA #4×4) 

where: 
RCMA #1 = 10-period SMA of 10-period 
ROC 
RCMA #2 = 10-period SMA of 15-period 
ROC 
RCMA #3 = 10-period SMA of 20-period 
ROC 
RCMA #4 = 15-period SMA of 30-period 
ROC 

Momen-
tum 

Williams % Range is a momentum-
based indicator determining overbought 
and oversold conditions for stock prices 
(Sezer and Ozbayoglu 2018, 535). 

𝑅 =  
max(𝐻) − 𝐶

max(𝐻) − min (𝐿)
∗ −100 

where: 
C = Closing price today. 
max(H) = Highest price in the lookback pe-
riod n. 
min(L) = Lowest price in the lookback 
period n.  
n = number of periods 

Momen-
tum 

Moving Average Convergence Diver-
gence (MACD) is a momentum indicator 
showing the trend of stock prices by rep-
resenting the relationship between two 
moving averages of prices. Usually a 26-
period and 12-period EMA is applied 
(Sezer and Ozbayoglu 2018, 535). 

𝑀𝐴𝐶𝐷 = 𝐸𝑀𝐴 − 𝐸𝑀𝐴  

where: 
EMA = Exponnetial moving average 
n = number of periods 

Momen-
tum 

Commodity Channel Index (CCI) com-
pare the current price with the average 
price over a given period of time (Sezer 
and Ozbayoglu 2018, 536). 

𝐶𝐶𝐼 =
𝑇𝑦𝑝𝑖𝑐𝑎𝑙 𝑃𝑟𝑖𝑐𝑒 − 𝑀𝐴

0.015 ∗ 𝑀𝑒𝑎𝑛 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
 

where: 

Typical Price = ∑ (
( )

) 

n= number of periods 
H = High price today 
L = Low price today 
C = Closing price today 

MA = 
(∑  )

 

Mean Deviation = 
(∑ |   |)
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Appendix B: Classification report of the best performing GADF model 

The following appendix shows the classification report for the best performing GADF model ob-

tained for the Financial Services ETF (IYG). 

 

Appendix C: Classification report of the best performing GASF model 

The following appendix shows the classification report for the best performing GASF model ob-

tained for the Financial Services ETF (IYG). 
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Appendix D: Classification report of the best performing MTF model 

The following appendix shows the classification report for the best performing MTF model ob-

tained for the Financial Services ETF (IYG). 
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Appendix E: Model hyperparameters 

The table below shows the selected model hyperparameters chosen through the randomised search for each ETF and image encoding type.  

 

Sector ETF Image 
type 

Batch 
Norm. 

Drop- 
out 

Activation Kernel Padding  Pooling Optimizer Learning 
rate 

Epochs Batch 
size 

Class 
weight 

Information 
Technology 

VGT GADF True  0.25 softmax 3,3 valid average RMSprop 0.0001 150 16 None 

GASF True  None sigmoid 3,3 valid max SGD 0.001 10 16 None 

MTF True  0.25 softmax 5,5 same average RMSprop 0.0001 100 16 None 

XSD GADF True  0.5 softmax 3,3 valid average Adam 0.001 50 32 None 

GASF False None sigmoid 3,3 same average RMSprop 0.0001 75 64 None 

MTF True  0.25 sigmoid 5,5 valid max SGD 0.001 50 16 None 

Healthcare IYH GADF False None softmax 3,3 same average RMSprop 0.001 75 64 balanced 

GASF False None relu 3,3 valid max Adam 0.0001 100 16 balanced 

MTF True None sigmoid 5,5 same average SGD 0.01 10 32 balanced 

Energy S&P 500 
Energy 

GADF False None sigmoid 5,5 same average RMSprop 0.0001 100 64 None 

GASF True  None sigmoid 5,5 same max SGD 0.001 50 16 None 

MTF True  None softmax 5,5 valid max Adam 0.001 10 32 balanced 

Financial 
Services 

IYG GADF True 0.25 softmax 3,3 valid average RMSprop 0.0001 100 16 None 

GASF True None sigmoid 3,3 valid max RMSprop 0.0001 50 16 None 

MTF True None sigmoid 5,5 valid average SGD 0.001 100 16 None 

Industrials VIS GADF True  None softmax 3,3 same max RMSprop 0.001 25 16 None 

GASF False 0.25 softmax 3,3 valid max Adam 0.0001 75 16 None 

MTF False 0.25 softmax 5,5 same average RMSprop 0.0001 100 16 None 

Oil & Gas XLE PXL False 0.25 relu 3,3 same max Adam 0.001 200 64 balanced 
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Appendix F: Computational and financial performances 

The table below summarises the computational and financial performance on the test set for each ETF and image encoding type. 

              Benchmark Labelling (on test set)  

Sector ETF Image type Accuracy Macro F1 
Weighted 

F1 
Financial Per-

formance 
Buy & Hold 

Return 
SMA Re-

turn 
MR Return  % Buy % Hold % Sell 

Information 
Technology 

VGT 

GADF 0.51 0.34 0.42 55.48% 

50.0% 27.57% -8.17% 26.29% 50.19% 23.53% GASF 0.49 0.31 0.40 36.03% 

MTF 0.49 0.34 0.42 16.11% 

XSD 

GADF 0.50 0.28 0.38 53.43% 

51.0% 6.66% 6.1% 26.10% 49.45% 24.45% GASF 0.44 0.34 0.40 40.23% 

MTF 0.48 0.28 0.37 19.72% 

Healthcare IYH 

GADF 0.50 0.28 0.37 07.45% 

25.00% 20.51% 11.08% 25.31% 47.77% 26.92% GASF 0.47 0.26 0.35 28.59% 

MTF 0.37 0.29 0.34 24,64% 

Energy 
S&P 
500 

Energy 

GADF 0.51 0.46 0.49 10.66% 

-8,00% -3,90% 0.06% 29,00% 44,00% 27,00% GASF 0.41 0.34 0.37 2.84% 

MTF 0.37 0.31 0.34 3.35% 

Financial Ser-
vices 

IYG 

GADF 0.49 0.36 0.43 18.78% 

16.0% 16.88% 21.76% 26.52% 48.99% 24.49% GASF 0.48 0.26 0.35 -12.75% 

MTF 0.47 0.31 0.39 -6.25% 

Industrials VIS 

GADF 0.41 0.38 0.40 2.98% 

7,00% 3.76% 19.61% 27.54% 47.16% 25.30% GASF 0.42 0.32 0.37 4.64% 

MTF 0.47 0.31 0.37 5.53% 

Oil & Gas XLE PXL 0.72 0.46 0.76 5.2% 10.0% 4.8% 0,00% 5,38% 88,88% 6,74% 

 

 


