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1. Introduction

The plactic monoid (the monoid of Young tableaux) is famous for its connections 
to such diverse areas as symmetric functions [30], representation theory and algebraic 
combinatorics [13,27], Kostka–Foulkes polynomials [28,29], and musical theory [21]. Its 
finite-rank versions were shown to have faithful tropical representations by the second 
and third authors [22, Theorem 2.8]. An important consequence of these representa-
tions, which are specifically representations using upper triangular tropical matrices, 
is that each finite-rank plactic monoid satisfies a non-trivial semigroup identity [22, 
Theorem 3.1], which had been an actively-studied question [24]. The dimension of the 
representation and thus the lengths of the resulting identities are dependent on the rank 
of the monoid. The first and fourth authors, together with Kubat, Klein, and Okniński, 
showed that the rank-n plactic monoid does not satisfy any non-trivial identity of length 
less than or equal to n, which implies that there is no single non-trivial identity satisfied 
by all finite-rank plactic monoids, and, moreover, that the infinite-rank plactic monoid 
does not satisfy any non-trivial semigroup identity [5]. Kubat and Okniński [23], and 
Cédo and the same authors [6] also studied representations over a field of the plactic 
algebra of ranks 3 and 4 (that is, the monoid ring of the plactic monoid of ranks 3 or 4
over the same field).

Plactic monoids belong to a family of ‘plactic-like’ monoids which are connected with 
combinatorics and whose elements can be identified with combinatorial objects. Others in 
the family include the hypoplactic monoids, whose elements are quasi-ribbon tableaux 
and which play a role in the theory of quasi-symmetric functions analogous to that 
of the plactic monoid for symmetric functions [25,26,31]; the sylvester and #-sylvester 
monoids, whose elements are respectively right strict and left strict binary search trees 
[17]; the taiga monoids, whose elements are binary search trees with multiplicities [34]; 
the stalactic monoids, whose elements are stalactic tableaux [18,34]; the Baxter monoids, 
whose elements are pairs of twin binary search trees [14,15] and which are linked to the 
theory of Baxter permutations; and the left and right patience sorting monoids [10,35], 
whose elements are patience sorting tableaux.

For each species of plactic-like monoid, with the exception of the patience sorting 
monoids, there exist fixed identities satisfied by all finite- and infinite-rank monoids of 
that species [7]. For the left patience sorting monoid and its finite-rank versions, only 
the rank-1 monoid satisfies a non-trivial identity (since it is commutative); for higher 
ranks, it contains a free submonoid of rank 2 [10, Corollary 4.4]. For the right patience 
sorting monoid, the situation is similar to the plactic monoid: the rank-n monoid satisfies 
no identity of length less than of equal to n, and consequently the infinite-rank monoid 
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satisfies no identity, but there are identities, dependent on rank, satisfied by the finite-
rank right patience sorting monoids.

This state of knowledge naturally raises the question of whether these plactic-like 
monoids admit faithful tropical representations. Left patience sorting monoids of rank 
greater than 2 are immediately excluded by their free submonoids of rank 2: it is known 
that finitely generated semigroups of tropical matrices have polynomial growth [12] and 
therefore cannot contain free submonoids of rank 2 or more. In this paper, we show that, 
with this exception, faithful tropical representations exist for all the plactic-like monoids 
mentioned above, namely the hypoplactic, sylvester, #-sylvester, Baxter, stalactic, taiga, 
and right patience sorting monoids. In fact we show that each of these monoids can be 
faithfully represented by upper triangular matrices over any unital semiring with zero 
containing an element of infinite multiplicative order.

The paper is structured as follows. In Section 2 we outline some preliminary mate-
rial on words; the main combinatorial objects, insertion algorithms and monoids studied 
in this paper (the ‘plactic-like’ monoids); representations; and identities. Each of Sec-
tions 3–7 studies a family of plactic-like monoids. Each monoid in a given family is 
associated to a class of combinatorial object, and arises from an algorithm that inserts a 
symbol into such an object. Starting from an empty object, it is therefore possible to com-
pute a combinatorial object from a word, and the elements of the monoid are equivalence 
classes of words that correspond to the same object. We shall show that these monoids 
admit faithful representations by upper triangular matrices over certain semirings. Sec-
tion 3 concerns representations of the hypoplactic monoid; Section 4, representations of 
the stalactic monoid; Section 5, representations of the taiga monoid; Section 6, represen-
tations of the sylvester and Baxter monoids; and Section 7, representations of the right 
patience sorting monoid. We use our representations to prove results about the variety 
of monoids generated by a single plactic-like monoid.

2. Preliminaries

2.1. Words

We write N for the set of positive integers and N0 for the set of non-negative integers. 
For n ∈ N we write [n] to denote the set {1, . . . n}. For i, j ∈ N we write [[i, j]] to denote 
the set { k ∈ N : min(i, j) ≤ k ≤ max(i, j) }, or simply [i, j] in the case where i < j, and 
refer to such subsets as intervals. For a non-empty subset X ⊆ N we write X∗ to denote 
the free monoid generated by the set X, that is the set of all words on the (possibly 
ordered) alphabet X, where ε denotes the empty word. We write X+ to denote the set 
of all non-empty words over X. For w ∈ N∗ we write |w| to denote the length of the 
word w, and for each i ∈ N we write |w|i to denote the number of occurrences of the 
letter i in w.
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Each word w ∈ N∗ determines a function N → N0 via x �→ |w|x called the content or 
evaluation of w, denoted ev(w) and a subset supp(w) = {x ∈ N : |w|x �= 0 } ⊂ N, called 
the support of w.

2.2. Combinatorial objects and insertion algorithms

2.2.1. Quasi-ribbon tableaux
A quasi-ribbon tableau is a planar diagram consisting of a finite array of adjacent 

symbols from N, with each symbol lying either to the right or below the previous sym-
bol, and with the property that symbols lying in the same ‘row’ form a non-decreasing 
sequence when read from left to right and symbols lying in the same ‘column’ are strictly 
increasing when read from top to bottom. An example of a quasi-ribbon tableau is:

1 1 2

3 4 4

5

6 6

. (2.1)

Notice that the same symbol cannot appear in two different rows of a quasi-ribbon 
tableau.

The insertion algorithm is as follows:

Algorithm 2.1 ([25, § 7.2]).
Input: A quasi-ribbon tableau T and a symbol a ∈ N.
Output: A quasi-ribbon tableau T ← a.
Method: If there is no entry in T that is less than or equal to a, output the quasi-

ribbon tableau obtained by creating a new entry a and attaching (by its top-left-most 
entry) the quasi-ribbon tableau T to the bottom of a.

If there is no entry in T that is greater than a, output the quasi-ribbon tableau 
obtained by creating a new entry a and attaching (by its bottom-right-most entry) the 
quasi-ribbon tableau T to the left of a.

Otherwise, let x be the right-most and bottom-most entry of T that is less than 
or equal to a. Put a new entry a to the right of x and glue the remaining part of T
(below and to the right of x) onto the bottom of the new entry a. Output the resulting 
tableau.

2.2.2. Stalactic tableaux
A stalactic tableau is a finite array of symbols from N in which columns are top-

aligned, and two symbols appear in the same column if and only if they are equal. For 
example,
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3 1 2 6 5

3 1 6 5

1 5

1

(2.2)

is a stalactic tableau. The insertion algorithm is very straightforward:

Algorithm 2.2.
Input: A stalactic tableau T and a symbol a ∈ N.
Output: A stalactic tableau a → T .
Method: If a does not appear in T , add a to the left of the top row of T . If a does 

appear in T , add a to the bottom of the (by definition, unique) column in which a
appears. Output the new tableau.

2.2.3. Binary search trees with multiplicities
A binary search tree with multiplicities is an ordered (children of each vertex being 

designated left and right), rooted (unless empty) binary tree in which: each vertex is 
labelled by a positive integer; distinct vertices have distinct labels; the label of each 
vertex is greater than the label of every vertex in its left subtree, and less than the label 
of every vertex in its right subtree; each vertex label is assigned a positive integer called 
its multiplicity. An example of a binary search tree with multiplicities is:

42

21

12 31

53

62

71

. (2.3)

The superscript on the label in a vertex denotes its multiplicity.

Algorithm 2.3.
Input: A binary search tree with multiplicities T and a symbol a ∈ N.
Output: A binary search tree with multiplicities a → T .
Method: If T is empty, create a vertex, label it by a, and assign it multiplicity 1. If T

is non-empty, examine the label x of the root vertex; if a < x, recursively insert a into 
the left subtree of the root; if a > x, recursively insert a into the right subtree of the 
root; if a = x, increment by 1 the multiplicity of the vertex label x.

2.2.4. Right strict and left strict binary search trees
A right (respectively, left) strict binary search tree is an ordered (children of each 

vertex being designated left and right), rooted (unless empty) binary tree in which each 
vertex is labelled by a positive integer and the label of each vertex is greater than or 
equal to the label of every vertex in its left subtree, and strictly less than the label of 
every vertex in its right subtree (respectively, the label of each vertex is strictly greater 
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than or equal to the label of every vertex in its left subtree, and less than or equal to 
the label of every vertex in its right subtree).

The following are examples of, respectively, left strict and right strict binary search 
trees:

5

4

1

1

2

4

5

7

6

5

4

2

1

1

4

5

5

5

6

7

. (2.4)

The insertion algorithm for right (respectively, left) strict binary search trees adds the 
new symbol as a leaf vertex in the unique place that maintains the property of being a 
right (respectively, left) strict binary search tree.

Algorithm 2.4 (Right strict leaf insertion).
Input: A right strict binary search tree T and a symbol a ∈ N.
Output: A right strict binary search tree a → T .
Method: If T is empty, create a vertex and label it a. If T is non-empty, examine the 

label x of the root; if a ≤ x, recursively insert a into the left subtree of the root; otherwise 
recursively insert a into the right subtree of the root. Output the resulting tree.

Algorithm 2.5 (Left strict leaf insertion).
Input: A left strict binary search tree T and a symbol a ∈ N.
Output: A left strict binary search tree T ← a.
Method: If T is empty, create a vertex and label it a. If T is non-empty, examine 

the label x of the root; if a ≥ x, recursively insert a into the right subtree of the root; 
otherwise recursively insert a into the left subtree of the root. Output the resulting tree.

2.2.5. Right patience-sorting tableaux
An rPS-tableau is a finite array of symbols of N in which columns are bottom-aligned, 

the entries in the bottom row are strictly increasing from left to right, and the entries in 
each column are non-increasing from top to bottom. For example,

3 7

2 6 6

2 4 6 5

1 3 4 5 7

is an rPS-tableau. The insertion algorithm is as follows:

Algorithm 2.6.
Input: An rPS-tableau T and a symbol a ∈ N.
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Table 1
Insertion algorithms used to compute combinatorial objects, their associated directions, monoids, and sym-
bols.

Algorithm (for combinatorial object) Direction Monoid Symbol
2.1 (Quasi-ribbon tableau) → Hypoplactic hypo
2.2 (Stalactic tableau) ← Stalactic stal
2.3 (Binary search tree with multiplicities) ← Taiga taig
2.4 (Right strict binary search tree) ← Sylvester sylv
2.5 (Left strict binary search tree) → #-sylvester sylv#

2.6 (rPS tableau) → Right patience sorting rPS

Output: An rPS-tableau T ← a.
Method: If a is greater than every symbol that appears in the bottom row of T , add 

a to the right of the bottom row of T . Otherwise, let C be the leftmost column whose 
bottom-most symbol is greater than or equal to a. Slide column C up by one space and 
add a as a new entry of C. Output the new tableau.

2.3. Monoids from insertion

For u ∈ N∗ and each insertion algorithm described above, one can compute from u a 
combinatorial object (of the type associated to the algorithm) by starting with the empty 
combinatorial object (of the same type) and inserting the symbols of u one-by-one using 
the appropriate insertion algorithm and proceeding through the word u either left-to-
right or right-to-left. In Table 1 we associate to each algorithm a symbol and a direction 
(either → or ←). For each of the symbols M ∈ {hypo, stal, taig, sylv, sylv#, rPS} we may 
then write PM(u) to denote the combinatorial object obtained from u by applying the 
algorithm associated to M in the direction specified (i.e. where → denotes that words 
are read from left-to-right and ← denotes that words are read from right-to-left.) We 
also define Pbaxt(u) =

(
Psylv#(u), Psylv(u)

)
.

Now, for each M ∈ {hypo, stal, taig, sylv, sylv#, baxt, rPS}, define the relation ≡M on 
N∗ by

u ≡M v ⇐⇒ PM(u) = PM(v).

In each case, it turns out that the relation ≡M is a congruence on N∗, and so the factor 
monoid M = N∗/≡M can be formed, and is named as in Table 1. The rank-n analogue 
is the factor monoid Mn = [n]∗/≡M, where the relation ≡M is naturally restricted to 
[n]∗ × [n]∗.

It follows from the definition of ≡M that each element [u]≡M of the factor monoid 
M can be identified with the combinatorial object PM(u). We refer to these monoids 
as plactic-like monoids. Each of the plactic-like monoids considered in this paper has a 
canonical generating set with the property that all words representing a given element 
have the same content (and thus the same support). Hence it makes sense to define, for 
an element m of the monoid, ev(m) and supp(m) to be the content and support of the 
words representing m with respect to the canonical generators.
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To help the reader to keep the established left-to-right or right-to-left reading conven-
tions in mind, from now on for each symbol M ∈ {hypo, sylv#, rPS} we shall write P→

M (u)
in place of PM(u), and likewise, for each symbol M ∈ {stal, taig, sylv} we write P←

M (u).

2.4. Matrix representations over semirings

Throughout this paper S will be a commutative unital semiring (with zero denoted 
by 0S and unit denoted by 1S) containing an element of infinite multiplicative order. 
Of particular interest is the tropical semiring T , which is the set R ∪ {−∞} under 
the operations a ⊕ b = max(a, b) and a ⊗ b = a + b for all a, b ∈ T , where we define 
max(a, −∞) = a = max(−∞, a) and −∞ + a = a + −∞ = −∞ for all a ∈ T . Notice 
that 0T = −∞, 1T = 0 and all other elements have infinite multiplicative order.

We write Mn(S) to denote the monoid of all n × n matrices with entries from S
under the matrix multiplication induced from operations of S in the obvious way. The 
n ×n identity matrix (with all diagonal entries equal to 1S and all other entries equal to 
0S) and zero matrix (with all entries equal to 0S) are respectively the identity element 
and zero element in Mn(S). We say that A ∈ Mn(S) is upper triangular if Ai,j = 0S
for all i > j, and write UTn(S) for the submonoid of n × n upper triangular matrices 
over S. If T is a finite set we write MT (S) for the semigroup of matrices with rows and 
columns indexed by elements of T ; this is of course isomorphic to M|T |(S) but it is often 
convenient to index entries by elements of a particular finite set.

From now on fix an element of infinite multiplicative order α ∈ S and let cn : [n]∗ →
UTn(S) be the homomorphism extending the map defined for x ∈ [n] by

cn(x)p,q =

⎧⎪⎪⎨
⎪⎪⎩
α if p = q = x,
1S if p = q �= x,
0S otherwise.

The image of this morphism is the (commutative) semigroup of diagonal matrices, with 
entries from {αi : i ∈ N0 } on the diagonal. Since α is an element of infinite multiplicative 
order, this image is isomorphic to n copies of the monoid (N0, +). Two words w, v ∈ [n]∗

have the same image under cn if and only if they have the same content. (Of course, if 
S has the stronger property that its multiplicative monoid contains a free commutative 
monoid of each finite rank n (as is the case for the tropical semiring, for example), 
then we can instead construct a 1-dimensional representation of [n]∗ which records the 
content of a word.) For each M ∈ {hypo, stal, taig, sylv, sylv#, baxt, rPS}, words in the 
same ≡M class have the same evaluation, and therefore ≡M-equivalent elements of [n]∗

have the same image under the map cn. By a slight abuse of notation, we shall therefore 
consider cn to be a homomorphism from the rank n plactic-like monoid Mn = [n]∗/ ≡M
to UTn(S), with image isomorphic to n copies of the natural numbers.
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2.5. Identities

A semigroup identity is a formal equality u = v where u and v are non-empty words 
over some alphabet of variables X. An identity is non-trivial if u and v are not equal 
as words. Such a semigroup identity u = v is satisfied by a semigroup S if, for every 
homomorphism φ : X+ → S, the equality φ(u) = φ(v) holds in S. The identity is 
balanced (or multihomogeneous) if ev(u) = ev(v).

It is easy to see that any identity satisfied by a semigroup containing a free submonoid 
of rank 1 must be balanced: to see that u and v must contain the same number of the 
variable x, consider the homomorphism sending x to the generator of the free submonoid 
and all other variables to the identity element of the monoid. All of the plactic-like 
monoids considered in this paper contain free submonoids of rank 1.

On the other hand, the monoid variety defined by all balanced identities is Comm, 
the class of commutative monoids.

3. Hypoplactic monoids

For u ∈ [n]∗ and 1 ≤ i < j ≤ n, let Hi,j(u) denote the statement ‘u contains i and j, 
no symbol k with i < k < j, and no scattered subword ji’. The following characterisation
of the hypoplactic monoid is a consequence of [31, Theorem 4.18 and Note 4.10].

Proposition 3.1. Let n be a fixed positive integer and u, v ∈ [n]∗. The quasi-ribbon tableaux 
P→

hypo(u) and P→
hypo(v) are equal if and only if:

(1) u and v have the same content; and
(2) for 1 ≤ i < j ≤ n, Hi,j(u) ⇐⇒ Hi,j(v).

Let

I =
[1S 1S
0S 0S

]
, J =

[0S 0S
0S 1S

]
.

Let K = JI, L = IJ , and let E be the 2 × 2 identity matrix. Note that K is the 2 × 2
zero matrix. It is easy to see that H = {E, I, J, K, L} is a submonoid of UT2(S), with 
presentation 〈I, J | I2 = I, J2 = J, IJI = JI = JIJ〉. It can also be verified that H is 
isomorphic to the monoid C3 of order-preserving and extensive transformations of the 
3-element chain, as studied in [39].

For all i, j ∈ N with i < j, consider the monoid homomorphism hi,j : N∗ → UT2(S)
defined by i �→ I, j �→ J , each k with i < k < j maps to K, and all other letters map to 
E. Note that the image of hi,j is H. Straightforward calculation shows that for w ∈ N∗,
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hi,j(w) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E if w contains no symbols in the interval [i, j];
I if w contains i and no other symbols from [i, j];
J if w contains j and no other symbols from [i, j];
L if w contains i and j, no other symbols from [i, j], 

and no scattered subword ji; and
K otherwise.

(3.1)

Lemma 3.2. Let n ≥ 2 be a fixed positive integer and let 1 ≤ i < j ≤ n. The homomor-
phism hi,j : N∗ → UT2(S) factors to give a homomorphism from the hypoplactic monoid 
of rank n to the monoid H.

Proof. Suppose that u, v ∈ [n]∗ are in the same hypoplactic class. Since u and v have the 
same content, it is immediate that either both or neither u and v have image X where 
X ∈ {E, I, J}. Moreover, by Proposition 3.1, u has image L if and only if v has image 
L. Since the only other possible image is K, the result now follows. �
Theorem 3.3. The hypoplactic monoid hypon (respectively, hypo) embeds into a direct 
sum of n copies (respectively, countably infinite copies) of (N0, +) with 

(
n
2
)

copies (re-
spectively, countably infinite copies) of the finite monoid H.

Proof. The direct product of the morphisms ci for i ∈ [n] (respectively, i ∈ N) and hi,j

for i, j ∈ [n] (respectively, i, j ∈ N) with i < j give a morphism to the required monoid, 
and it is clear that for each fixed word w, ci(w) = 1S for all but finitely many i, and 
hi,j(w) = E for all but finitely many pairs i, j. The fact that this is an embedding now 
follows from Proposition 3.1 and from observing from (3.1) that the image of an element 
w under hi,j is equal to L if and only if w contains i and j, no other symbols from [i, j], 
and no scattered subword ji. �
Theorem 3.4. Let S be a commutative unital semiring with zero containing an element 
of infinite multiplicative order. The hypoplactic monoid of rank n admits a faithful repre-
sentation by upper triangular matrices of size n2 over S having block-diagonal structure 
with largest block of size 2 (or size 1 if n = 1).

Proof. Since (N0, +) embeds in UT1(S) and H by definition embeds in UT2(S), this is 
immediate from Theorem 3.3. �
3.1. Variety generated by the hypoplactic monoid

The identities satisfied by the hypoplactic monoid have been completely characterised 
by the first and fourth authors and Ribeiro [8, Theorem 4.1], but we deduce here some 
more information about the corresponding variety.

Let Jk denote the set of identities u = v with the property that u and v admit the 
same set of scattered subwords of length at most k. Let Comm denote the variety of 
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commutative monoids (which is the variety with equational theory given by the balanced 
identities), B denote the variety of monoids generated by the bicyclic monoid, and Jk

the variety of monoids determined by the set Jk.
The monoid varieties Jk have been studied extensively [3,4,33,37,39]. By a result of 

Volkov [39, Theorem 2], Jk is generated by any one of: the monoid of unitriangular 
Boolean matrices of rank k + 1; the monoid of reflexive binary relations on a set of 
size k + 1; and most importantly for our purposes, the monoid of order-preserving and 
extensive transformations of a chain with k+1 elements. In particular, the latter means 
that the five-element monoid H generates the variety J2. By a result of Tischenko [38]
any five element monoid generates a finitely based variety, and so certainly J2 is finitely 
based. More generally, Blanchet-Sadri [3,4] has shown that the monoid variety Jk is 
finitely based if and only if k ≤ 3, providing a basis of identities in those cases: a finite 
basis of identities for J2 is xyxzx = xyzx, and xyxy = yxyx.

Corollary 3.5. Let n ≥ 2 be a fixed positive integer. The variety of monoids generated by 
the hypoplactic monoid of rank n is:

(1) a proper subvariety of B;
(2) the join of Comm and J2;
(3) equal to the variety generated by the (infinite-rank) hypoplactic monoid.

Proof. (1) We have seen that the hypoplactic monoid of rank n embeds in the direct 
product of n copies of (N0, +) (which embeds in UT1(T )) and 

(
n
2
)

copies of UT2(T ). 
Thus hypon is contained in the variety generated by UT2(T ). By [11], the latter is 
equal to the variety generated by the bicyclic monoid. That these varieties are distinct 
follows from the fact that the shortest identity satisfied by UT2(T ) has length 10, 
whilst hypon satisfies the identity xyxy = yxyx [7, Proposition 12].

(2) We begin by showing that the identities satisfied by the hypoplactic monoid of rank 
n are precisely the balanced identities satisfied by the monoid H. By Theorem 3.3, 
it is clear that the hypoplactic monoid of rank n embeds in a direct product of 
copies of (N0, +) with copies of H. Thus hypon satisfies every identity satisfied by 
both (N0, +) and H. The identities satisfied by (N0, +) are precisely identities of the 
form u = v where u and v have the same content, thus hypon satisfies all balanced 
identities satisfied by H. On the other hand, H is an image of hypon under any of the 
homomorphisms hi,j , and so H satisfies every identity satisfied by hypon. Finally, 
note that all identities satisfied by hypon are balanced.

It now follows from the fact that H generates the variety J2 [39, Theorem 2] that 
the variety generated by hypon is the join of Comm and J2.

(3) It is clear that each hypon embeds in hypo, while it is known [8, Proposition 3.6] that 
hypo can be embedded into a direct product of copies of hypo2. Thus, the varieties 
generated by all of these monoids coincide. �
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4. Stalactic monoid

Let u ∈ [n]∗. Notice that the order in which the symbols appear along the first row in 
P←

stal(u) is the same as the order of the rightmost instances of the symbols that appear 
in u. Moreover, if T is a stalactic tableau consisting of a single row (that is, with all 
columns having height 1), then there is a unique word u ∈ N∗, formed by reading the 
entries of T left-to-right, such that P←

stal(u) = T .
For u ∈ [n]∗ and i, j ∈ [n] with i �= j, let Si,j(u) denote the statement ‘u factors as 

u = u′iu′′ where u′′ contains j but not i’. Notice that if i and j are in the support of u, 
then exactly one of Si,j(u) and Sj,i(u) is true. Otherwise both statements are false.

Proposition 4.1. Let n be a fixed positive integer and u, v ∈ [n]∗. The stalactic tableaux 
P←

stal(u) and P←
stal(v) are equal if and only if:

(1) u and v have the same content; and
(2) for 1 ≤ i < j ≤ n, Si,j(u) ⇐⇒ Si,j(v).

Proof. It follows from the insertion algorithm that P←
stal(u) = P←

stal(v) if and only if u
and v have the same content and the order of the rightmost instances of the symbols 
that appear in u is equal to the order of the rightmost instances of the symbols that 
appear in v. For each pair of elements i, j in the support of u, the statement Si,j(u) (if 
i < j) or Sj,i(u) (if j < i) can be used to determine whether j occurs to the right of the 
right-most i, and hence (1) and (2) together imply P←

stal(u) = P←
stal(v).

Conversely, suppose that P←
stal(u) = P←

stal(v). We immediately have (1) (and hence in 
particular, the support of u is equal to the support of v) and so it remains to show 
that (2) holds. For i ∈ supp(u) it follows from the insertion algorithm that if u = u′iu′′

where i /∈ supp(u′′), then i occurs in the (|supp(u′′)| +1)-th column from the right of the 
tableau (recalling here that the insertion algorithm reads the word from right to left) 
and the support of u′′ is the set of entries in the first row preceding the symbol i. Thus 
Si,j(u) holds if and only if in the first row of P←

stal(u) = P←
stal(v) symbol j precedes symbol 

i if and only if Si,j(v) holds. �
Let

I =
[
1S 1S
0S 0S

]
, J =

[
1S 0S
0S 0S

]
,

and let E be the 2 ×2 identity matrix. Then F = {E, I, J} is isomorphic to the ‘flip-flop 
monoid’ (a two element right zero semigroup with an identity adjoined), presented by 
〈I, J | JI = I = I2, IJ = J = J2〉.

For all i, j ∈ N with i < j, consider the monoid homomorphism si,j : N∗ → UT2(S)
defined by i �→ I, j �→ J , and all other letters map to E. Note that the image of si,j is 
F . It is easy to see that for w ∈ N∗
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si,j(w) =

⎧⎪⎪⎨
⎪⎪⎩
E if i, j /∈ supp(w);
I if i ∈ supp(w) and w factors as w = w′iw′′ with j /∈ supp(w′′);
J if j ∈ supp(w) and w factors as w = w′jw′′ with i /∈ supp(w′′).

(4.1)

Lemma 4.2. Let n ≥ 2 be a fixed positive integer and let 1 ≤ i < j ≤ n. The homomor-
phism si,j : N∗ → UT2(S) factors to give a homomorphism from the stalactic monoid of 
rank n to the monoid F .

Proof. Let u, v ∈ N∗ be in the same stalactic class. Since u and v have the same content, 
it is immediate that either both or neither have image E. Moreover, by Proposition 4.1, 
u has image I if and only if v has image I. Since J is the only other possible image, this 
completes the proof. �
Theorem 4.3. The stalactic monoid staln (respectively, stal) embeds into a direct product 
of n copies (respectively, countably infinite copies) of (N0, +) and 

(
n
2
)

copies (respectively, 
countably infinite copies) of the finite monoid F .

Proof. The direct product of the morphisms ci for i ∈ [n] (respectively, i ∈ N) and 
si,j for i, j ∈ [n] (respectively, i, j ∈ N) with i < j give a morphism to the appropriate 
monoid, and it is clear that for each fixed word w, ci(w) = 1S for all but finitely many 
i, and si,j(w) = E for all but finitely many pairs i, j. The fact that this is an embedding 
follows from Proposition 4.1 and observing from (4.1) that in the image of an element w, 
for i < j (respectively j < i) the block corresponding to si,j is equal to I (respectively 
J) if and only if w contains i and factors as w = w′iw′′ with j /∈ supp(w′′). �
Theorem 4.4. Let S be a commutative unital semiring with zero containing an element 
of infinite multiplicative order. The stalactic monoid of rank n admits a faithful repre-
sentation by upper triangular matrices of size n2 over S having block-diagonal structure 
with largest block of size 2 (or size 1 if n = 1).

Proof. Since (N0, +) embeds in UT1(S) and F by definition embeds in UT2(S), this is 
immediate from Theorem 4.3. �
4.1. Variety generated by the stalactic monoid

The finite basis problem for the stalactic monoid has been studied by Han and Zhang 
[19, Theorem 4.2], but we deduce here some more information about the corresponding 
variety.

For each word u over a finite alphabet, define σu : supp(u) → [|supp(u)|] to be 
the bijection taking each symbol x to the number of distinct symbols appearing in the 
shortest suffix of u containing x, that is, the position of x in an ordering of supp(u)
according to first occurrence when reading u from right-to-left. For example, if u =
dfeebdbf is a word over alphabet {a, b, c, d, e, f}, then σu =

(
b d e f

)
.
2 3 4 1
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Remark 4.5. Let F denote the set of identities u = v with the property that σu = σv

(and so in particular, the two words must have the same support). It is straightforward 
to verify that the identities x2 = x, xyx = yx form a basis for those in F and hence 
F defines the variety of right regular bands RRB (see for example [16]). Moreover, the 
variety RRB is generated by the flip-flop monoid F (see [36, Proposition 7.3.2]).

Recall that Comm denotes the variety of commutative monoids, and B the variety 
of monoids generated by the bicyclic monoid.

Corollary 4.6. Let n ≥ 2 be a fixed positive integer. The variety of monoids generated by 
the stalactic monoid of rank n is:

(1) a proper subvariety of B;
(2) the join of Comm and RRB;
(3) defined by the single identity xyx = yxx;
(4) equal to the variety generated by the (infinite-rank) stalactic monoid.

Proof. (1) By Theorem 4.3, the stalactic monoid of rank n embeds in the direct product 
of copies of (N0, +) (which embeds in UT1(T )) and copies of UT2(T ). Thus staln
is contained in the variety generated by UT2(T ). By [11], the latter is equal to the 
variety generated by the bicyclic monoid. The fact that staln generates a proper 
variety of the bicyclic variety now follows from the fact that Adjan’s identity is 
a minimal length identity for the bicyclic monoid B [1], whilst staln satisfies the 
identity xyx = yxx [7, Proposition 15].

(2) We first show that the identities satisfied by the stalactic monoid of rank n are pre-
cisely the balanced identities satisfied by the flip-flop monoid F . By Theorem 4.3, it 
is clear that the stalactic monoid of rank n embeds in the direct product of copies of 
(N0, +) and copies of F . Thus staln satisfies every identity satisfied by both (N0, +)
and F . The identities satisfied by (N0, +) are precisely identities of the form u = v

where u and v have the same content, thus staln satisfies all balanced identities 
satisfied by F . On the other hand, F is an image of staln under any of the homomor-
phisms si,j , and so F satisfies every identity satisfied by staln. Finally, note that the 
identities satisfied by staln are balanced. It thus follows that the identities satisfied 
by the stalactic monoid of rank n are precisely the balanced identities satisfied by 
the flip-flop monoid F . Hence the variety generated by staln is the join of Comm
and the variety generated by F . The result now follows from Remark 4.5.

(3) This has been established in [19, Theorem 4.2], but we give an alternative proof 
here. We show that each balanced identity in F can be deduced from xyx = yxx. 
Let u = v be such an identity, and suppose that x is the rightmost letter of u. By 
repeatedly applying the identity xyx = yxx where y is a factor of u lying between 
two symbols x, one can move all symbols x to the right. Inductively it follows that 
for any word u we can deduce from the identity xyx = yxx an identity of the 
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form u = (σ−1
u (�))α� · · · (σ−1

u (1))α1 , where � = |supp(u)| and the exponents αi are 
determined by the content of u. Since σu = σv and u and v have the same content, 
we may therefore also deduce u = v. This shows that each stalactic monoid of rank 
at least 2 generates the same variety, namely the variety defined by xyx = yxx.

(4) Finally, it is clear that staln is contained in the variety generated by stal. Since stal
satisfies the identity xyx = yxx, this completes the proof. �

5. Taiga monoid

For a word u ∈ N∗ and a symbol k ∈ supp(u) there is a unique node of P←
taig(u)

containing the symbol k with multiplicity |u|k. The number of vertices of P←
taig(u) is 

therefore equal to |supp(u)|. In a similar way to the stalactic monoid (where the structure 
of P←

stal(u) is determined by the content of the word and the order of the rightmost 
instances of the symbols that appear in u), it is clear that the structure of the tree 
P←

taig(u) is determined by the content of the word and the order of the rightmost instances 
of the symbols that appear in u. The difference here is that the construction of the tree 
also takes into account the ordering of these symbols in the underlying alphabet N.

Recall that for each u ∈ N∗ the bijection σu : supp(u) → [|supp(u)|] is defined to 
take each symbol to the number of distinct symbols appearing in the shortest suffix of 
u containing that letter.

Lemma 5.1. Let u ∈ N∗ and i, j ∈ supp(u) with i �= j. The following are equivalent:

(1) i occurs in a subtree of j in P←
taig(u);

(2) σu(j) < σu(i) and there does not exist k ∈ [[i, j]] with σu(k) < σu(j);
(3) u factorises as u = u′iu′′ju′′′ where u′, u′′, u′′′ ∈ N∗, supp(u′′′) ∩ [[i, j]] = ∅.

Proof. By the insertion algorithm, i is in a subtree of j if and only if i is inserted after j
and no symbol k with i < k < j was inserted before j. The statement (1) is the left-hand 
side of this equivalence; (2) and (3) are different formulations of the right-hand side. �

For u ∈ [n]∗ and 1 ≤ i �= j ≤ n, let Ti,j(u) denote the statement ‘u factorises as 
u = u′iu′′ju′′′ where u′, u′′, u′′′ ∈ N∗, supp(u′′′) ∩ [[i, j]] = ∅’. Notice that if i and j
are in the support of u, then at most one of Ti,j(u) and Tj,i(u) is true. Otherwise both 
statements are false.

Proposition 5.2. Let n be a fixed positive integer and u, v ∈ [n]∗. The binary search trees 
with multiplicities P←

taig(u) and P←
taig(v) are equal if and only if:

(1) u and v have the same content; and
(2) for 1 ≤ i �= j ≤ n, Ti,j(u) ⇐⇒ Ti,j(v).
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Table 2
The multiplication table of the 
monoid T .

E K J I L

E E K J I L
K K K J I L
J J K J I L
I I I L I L
L L I L I L

Proof. If P←
taig(u) = P←

taig(v), then in particular both trees contain the same number of 
each symbol (hence (1) holds) and both trees have the same parent-child structure (and 
hence by Lemma 5.1 (2) also holds).

Conversely, suppose first that conditions (1) and (2) hold. By Lemma 5.1 we have that 
i occurs in a subtree of j in P←

taig(u) if and only if i occurs as a subtree of j in P←
taig(v). 

(Note, if i < j, it will be the left subtree; if i > j, it will be the right subtree.) Thus 
the statements in (2) determine the same parent-child structure of the two trees (the 
ordering of the children of a given vertex is determined by the order on supp(u) ⊆ [n]), 
while the content of the two words determines the multiplicities of the symbols in each 
tree. Thus (1) and (2) together imply that P←

taig(u) = P←
taig(v). �

Let

I =
[1S 1S 0S

0S 0S 0S
0S 0S 0S

]
, J =

[1S 0S 0S
0S 1S 1S
0S 0S 0S

]
,

K =
[1S 0S 0S

0S 1S 0S
0S 0S 0S

]
, L =

[1S 1S 1S
0S 0S 0S
0S 0S 0S

]
,

and let E be the 3 × 3 identity matrix. Straightforward calculation shows that T =
{E, K, J, I, L} is a submonoid of UT3(S) with multiplication table as given in Table 2.

For all i, j ∈ N with i �= j, consider the homomorphism ti,j : N∗ → T defined by 
i �→ I, j �→ J , all other letters k ∈ [[i, j]] map to K, and all remaining letters map to E.

Lemma 5.3. Let w ∈ N∗. Then

(1) ti,j(w) = E if and only if supp(w) ∩ [[i, j]] = ∅;
(2) ti,j(w) = J if and only if w = w′jw′′ where i /∈ supp(w′) and supp(w′′) ∩ [[i, j]] = ∅;
(3) ti,j(w) = L if and only if w can be factored as w = w′iw′′jw′′′ where supp(w′′′) ∩

[[i, j]] = ∅;
(4) ti,j(w) = I if and only if i is in the support of w and w cannot be factored as 

w = w′iw′′jw′′′ where supp(w′′′) ∩ [[i, j]] = ∅; and
(5) ti,j(w) = K otherwise.
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Proof. Let W = ti,j(w). It is easy to see that W3,3 = 1S if and only if supp(w) ∩[[i, j]] = ∅, 
and E is the only element of T in which this entry is 1S . It is also easy to see that 
W2,3 = 1S if and only if w = w′jw′′ where i /∈ supp(w′) and supp(w′′) ∩ [[i, j]] = ∅, and 
J is the only element of T in which this entry is 1S . A similar computation shows that 
W1,3 = 1S if and only if w = w′iw′′jw′′′ where i /∈ supp(w′′) and supp(w′′′) ∩ [[i, j]] = ∅, 
and L is the only element of T in which this entry is 1S. From the multiplication table 
above it is easy to see that if i ∈ supp(w) then either W = L or W = I. Thus W = I if 
and only if i is contained in the support of w, but w cannot be factored as w = w′iw′′jw′′′

where i /∈ supp(w′′) and supp(w′′′) ∩ [[i, j]] = ∅. �
Lemma 5.4. Let n ≥ 2 be a fixed positive integer and let 1 ≤ i �= j ≤ n. Each of the maps 
ti,j : N∗ → T factors to give a homomorphism from the taiga monoid of rank n to T .

Proof. Suppose that u, v ∈ [n]∗ are in the same taiga class of rank n. Since u and v
have the same content, by Lemma 5.3 either both or neither have image E. Moreover, 
it follows from Proposition 5.2 and Lemma 5.3 that u has image L if and only if v has 
image L. Hence i ∈ supp(w) and ti,j(u) �= L if and only if i ∈ supp(v) and ti,j(v) �= L, 
showing that u has image I if and only if v has image I.

Thus it suffices to show that ti,j(u) = J if and only if ti,j(v) = J , or equivalently, that 
either both words admit a factorisation of the form in case (2) of Lemma 5.3, or neither 
do. To this end note that a word admitting a factorisation of this form is equivalent 
to j being the first symbol inserted from the interval [[i, j]] and the symbol i is never 
inserted. Given two words u and v in the same taiga class, it is clear that symbol i is 
either in the support of both or neither. Suppose then that i is in the support of neither 
but, with the aim of obtaining a contradiction, that j is the first symbol to be inserted 
from the interval [[i, j]] when reading u, whilst some symbol k with i �= k �= j is the first 
symbol from [[i, j]] to be inserted when reading v. Since u and v have the same support, 
it follows that we may write u = u′ku′′ju′′′ and v = v′jv′′kv′′′, where k /∈ supp(u′′), 
j /∈ supp(v′′), and supp(u′′′) ∩ [[k, j]] = ∅ = supp(v′′′) ∩ [[k, j]]. But then Lemma 5.1
shows that in the tree associated to w symbol k occurs in a subtree of symbol j, whilst 
in the tree associated to v symbol j occurs in a subtree of symbol k. This gives the 
desired contradiction. �
Theorem 5.5. The taiga monoid taign (respectively, taig) embeds into a direct product of 
n copies (respectively, countably infinite copies) of (N0, +) and n2−n copies (respectively, 
countably infinite copies) of the finite monoid T .

Proof. The direct product of the morphisms ci for i ∈ [n] (respectively, i ∈ N) and ti,j
for i, j ∈ [n] (respectively, i, j ∈ N) with i �= j gives a morphism to the appropriate 
monoid, and it is clear that for each fixed word w, ci(w) = 1S for all but finitely many 
i, and ti,j(w) = E for all but finitely many pairs i, j. The fact that this is an embedding 
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follows from Proposition 5.2 together with the observation from Lemma 5.3 that in the 
image of an element w, the block corresponding to the homomorphism ti,j equals L if 
and only if the statement Ti,j(w) is true. �

Theorem 5.6. Let S be a commutative unital semiring with zero containing an element of 
infinite multiplicative order. The taiga monoid of rank n admits a faithful representation 
by upper triangular matrices of size 3n2−2n over S having block-diagonal structure with 
largest block of size 3 (or size 1 if n = 1).

Proof. Since (N0, +) embeds in UT1(T ) and T by definition embeds in UT3(T ), this is 
immediate from Theorem 5.5. �

5.1. Variety generated by the taiga monoid

The finite basis problem for the taiga monoid has been studied by Han and Zhang; in 
the next corollary we show how our results can be used to give an alternative proof of 
[19, Theorem 4.2]. Recall that Comm denotes the variety of commutative monoids and 
that (from Subsection 4.1) RRB denotes the variety of right regular bands.

Remark 5.7. The variety RRB is generated by the monoid T . Straightforward calcu-
lation shows that T satisfies the identities x2 = x and xyx = yx. On the other hand, 
as can be seen from Table 2, the monoid T contains the submonoid {E, I, L}, which is 
a two element right zero semigroup with an identity adjoined and so isomorphic to F . 
Thus F lies in the variety generated by T , and so the monoids F and T generate the 
same variety RRB.

Corollary 5.8. Let n ≥ 2 be a fixed positive integer. The monoids stal, staln, taign, and 
taig each generate the same variety.

Proof. First, taig is a homomorphic image of stal [34, § 5] and thus lies in the variety 
generated by stal. Since taign is a submonoid of taig, it also lies in the variety generated 
by stal.

On the other hand, the variety generated by taign contains all commutative monoids 
and the monoid T . By Remark 5.7, this variety also contains the flip-flop monoid F , and 
so by Theorem 4.3 it contains stal.

Hence stal, taig, and taign all generate the same variety. Finally, by Corollary 4.6, 
staln generates the same variety. �
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6. Sylvester and Baxter monoids

6.1. The sylvester monoid

The first and fourth authors and Ribeiro proved that the sylvester monoid of rank n
embeds into 

(
n
2
)

copies of the sylvester monoid of rank 2, via a map we now define. For 
1 ≤ i < j ≤ n, define a homomorphism φi,j : [n]∗ → sylv2 by

a �→

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[1]sylv if a = i,
[21]sylv if i < a < j,
[2]sylv if a = j,
[ε]sylv otherwise.

Each of these maps factors to give a homomorphism φi,j : sylvn → sylv2. Define a 
homomorphism Φ : sylvn →

∏
1≤i<j≤n sylv2, where the (i, j)-th component of the image 

of u ∈ [n]∗ is φi,j(u). The map Φ is injective, as the following result shows:

Proposition 6.1 ([9, Lemma 3.6]). Let n be a fixed positive integer and u, v ∈ [n]∗. The 
binary search trees P←

sylv(u) and P←
sylv(v) are equal if and only if φi,j(u) = φi,j(v) for 

i, j ∈ [n] with i ≤ j).

Let

I =
[
1S 1S
0S 0S

]
, J =

[
1S 0S
0S α

]
,

where α is an element of infinite multiplicative order in the commutative semiring S. 
Then let M be the submonoid of UT2(S) generated by {I, J}. Straightforward calcula-
tion shows that I is idempotent, JI = I, and that for any k ∈ N0,

Jk =
[
1S 0S
0S αk

]
and IJk =

[
1S αk

0S 0S

]
.

In particular, it is easy to see that M is the set of all (pairwise distinct) elements Jk and 
IJk for k ∈ N0, and is presented by 〈I, J | JI = I = I2〉. From this one can easily observe 
that M is isomorphic to a quotient of the sylvester monoid of rank 2 (since imposing 
the relations 12 = 1 = 21 on sylv2 = 〈1, 2 | 1211 = 2111, 1221 = 2121〉, yields the monoid 
〈1, 2 | 21 = 1 = 12〉).

Consider the monoid homomorphism s : [2]∗ → UT2(S) defined by 1 �→ I and 2 �→ J . 
Note that the image of s is M, specifically:

s(w) =
{
Jk if w = 2k;
IJk if w = w′12k.

(6.1)
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Lemma 6.2. The homomorphism s : [2]∗ → UT2(S) factors to give a homomorphism 
from sylv2 to the monoid M.

Proof. Let u, v ∈ [2]∗ be such that u ≡sylv v. Write u = u′2k and v = v′2j , where k and j
are maximal; thus if either u′ or v′ is non-empty, then it ends with 1. Then P←

sylv(u) has 
exactly k consecutive nodes labelled 2 descending from the root, and P←

sylv(v) has exactly 
j consecutive nodes labelled 2 descending from the root. Since P←

sylv(u) = P←
sylv(v), it 

follows that j = k and hence by (6.1) we have that s(u) = s(v). �
Theorem 6.3. The sylvester monoid sylvn (respectively, sylv) embeds into a direct prod-
uct of n copies (respectively, countably infinite copies) of (N0, +) and 

(
n
2
)

copies of the 
(infinite) monoid M.

Proof. The direct product of morphisms ci for i ∈ [n] (respectively, i ∈ N) and sφi,j for 
i, j ∈ [n] (respectively, i, j ∈ N) with i < j gives a morphism to the appropriate monoid, 
and it is clear that for each fixed word w, ci(w) = 1S for all but finitely many i, and 
sφi,j(w) is the identity matrix for all but finitely many pairs i, j. We show that this is 
an embedding. Let u, v ∈ [n]∗ and suppose that P←

sylv(u) �= P←
sylv(v). By Proposition 6.1

there exists i < j such that φi,j(u) �= φi,j(v) in sylv2. Since each element of sylv2 can be 
expressed uniquely in the form 2a1b2c where a, b, c ∈ N0, we may assume that φi,j(u) ≡sylv
2a1b2c �= 2p1q2r ≡sylv φi,j(v). If u and v do not have the same content, then the fact 
that P←

sylv(u) �= P←
sylv(v) will be detected in the image of cn. Otherwise, since φi,j(w)

is the element of sylv2 obtained from w by replacing each occurrence of i by 1; each 
occurrence of j by 2; each occurrence of a symbol x, with i < x < j, by 21; and erasing 
each occurrence of any other element, we see that we must have a + c = p + r and b = q

with c �= r. In this case s(φi,j(u)) = αc �= αr = s(φi,j(u)). �
Theorem 6.4. Let S be a commutative unital semiring with zero containing an element 
of infinite multiplicative order. The sylvester monoid of rank n admits a faithful repre-
sentation by upper triangular matrices of size n2 over S having block-diagonal structure 
with largest block of size 2 (or size 1 if n = 1).

Proof. Since (N0, +) embeds in UT1(S) and M embeds in UT2(S), the result follows 
by Theorem 6.3. �
Remark 6.5. It is straightforward to prove analogues of Theorem 6.3 and Theorem 6.4
for the #-sylvester monoid, using a strategy similar to the above. Specifically, let

I# =
[
α 0S
0S 1S

]
, J# =

[
0S 1S
0S 1S

]

where α is an element of infinite multiplicative order in the commutative semiring S. 
Let M# be the submonoid of UT2(S) generated by 

{
I#, J#

}
. Then one finds that
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M# =
〈
I#, J#

∣∣ J#I# = J# = (J#)2
〉

= { (I#)k, (I#)kJ : k ∈ N0 }

is isomorphic to the quotient of sylv#
2 = 〈1, 2 | 2112 = 2121, 2212 = 2221〉 obtained by 

imposing the relations 22 = 2 = 21. It is clear that M# is anti-isomorphic to M. The 
monoid homomorphism s# : [2]∗ → UT2(S) defined by 1 �→ I# and 2 �→ J# has image 
M# with

s#(w) =
{
Ik# if w = 1k,
Ik#J# if w = 1k2w′.

This homomorphism factors to give a homomorphism from sylv#
2 to the monoid M#, 

and then one can construct (i) an embedding of sylv#
n into a direct product of n copies of 

(N0, +) with 
(
n
2
)

copies of M#, and (ii) a faithful upper triangular representation of size 
n2 for sylv#

n, in much the same way as in the proofs of Theorem 6.3 and Theorem 6.4
(this time making use of the fact that sylv#

n embeds into a direct product of copies of 
sylv#

2; see [9] for details).
Alternatively, one can see that an analogue of Theorem 6.4 holds by first observing 

that the permutation δn : i �→ n + 1 − i extends to give an anti-isomorphism Δn :
sylv#

n → sylvn, and so composing Δn first with the faithful representation given by 
Theorem 6.4 and then with the anti-isomorphism given by the transpose map will give a 
faithful representation of sylv#

n by lower triangular matrices. (From this one can easily 
obtain an upper triangular representation by conjugating the result by the permutation 
matrix in Mn(S) corresponding to the permutation δn.)

6.2. Variety generated by the sylvester monoid

The finite basis problem for the sylvester monoid has been studied by Han and Zhang 
[19, Theorem 4.6]; in this section we deduce here some more information about the 
corresponding variety.

Proposition 6.6. Let n ≥ 2. Then the variety of monoids generated by the sylvester 
monoid (respectively, #-sylvester monoid) of rank n is:

(1) a proper subvariety of B;
(2) the variety generated by the (infinite) monoid M (respectively, M#);
(3) not contained in the join of Comm and any variety generated by a finite monoid;
(4) equal to the variety generated by the (infinite-rank) sylvester monoid (respectively, 

infinite rank #-sylvester monoid).

Proof. We prove the result for the case of the sylvester monoids. The arguments follow 
in a dual manner for the case of the #-sylvester monoids, using Remark 6.5 and the fact 
that sylv#

n and sylvn are anti-isomorphic.



840 A.J. Cain et al. / Journal of Algebra 606 (2022) 819–850
(1) By Theorem 6.4, sylvn has a faithful upper-triangular tropical representation with 
maximum block size 2. Since UT2(T ) satisfies the same identities as the bicyclic 
monoid [11], the variety generated by sylvn is a subvariety of B. The containment 
is proper since sylvn also satisfies xyxy = yxxy (see [7, Proposition 20]), while the 
shortest identity satisfied by the bicyclic monoid has length 10 (see [1]).

(2) Since M is a homomorphic image of sylv2, which in turn is a homomorphic image 
of sylvn, it is clear that the identities satisfied by sylvn must form a subset of the 
identities satisfied by M. By Theorem 6.3 the sylvester monoid of rank n embeds 
in the direct product of copies of (N0, +) and copies of M, and so satisfies every 
balanced identity satisfied by M. Since all identities for sylvn and M are balanced, 
the result follows.

(3) Suppose, with the aim of obtaining a contradiction, that the variety generated by 
sylvn is contained in the join of Comm and a variety generated by a finite monoid. 
Then sylvn is an image of a submonoid L of a direct product of a commutative monoid 
and copies of the finite monoid under some surjective homomorphism φ : L → sylvn. 
Let a, b ∈ L be such that φ(a) = [1]sylv and φ(b) = [2]sylv. Then there exist p, q ∈ N

with p �= q where bp and bq differ only in the commutative monoid component. 
Thus abp and abq also differ only in the commutative monoid component and so 
commute with each other. Hence so do their images [12p]sylv and [12q]sylv. This is a 
contradiction, since in P←

sylv(12p12q) there are q nodes 2 above the topmost node 1, 
while in P←

sylv(12q12p) there are p nodes 2 above the topmost node 1.
(4) This follows immediately from the facts that sylv embeds into a direct product of 

copies of sylv2 and that the sylvester monoid of any finite rank is a submonoid of the 
sylvester monoid of any higher (or infinite) rank, as observed in [9, Theorem 3.9]. �

While the varieties generated by the hypoplactic, stalactic, and taiga monoids can 
be expressed as the join of Comm and a variety generated by a finite monoid, Propo-
sition 6.6(3) shows that this is not true for a sylvester monoid. Heuristically, this is 
because there is a bound, dependent only on rank and not on content, on the number 
of quasi-ribbon tableaux, stalactic tableaux, and binary search trees with multiplicities 
that have a given content. On the other hand, there is no such bound, independent of 
content, for binary search trees.

Like the variety generated by the stalactic and taiga monoids, the variety generated 
by the sylvester monoids turns out to be defined by a single identity, although unlike in 
those cases the identity in question is not the shortest satisfied by the generating monoid, 
as the next result (which has been proved by different means in [9, Theorem 4.14] and 
[19, Theorem 4.6]) demonstrates.

Theorem 6.7. The variety of the sylvester monoids is defined by the identity xyzxty =
yxzxty.



A.J. Cain et al. / Journal of Algebra 606 (2022) 819–850 841
Proof. We shall refer to the identity xyzxty = yxzxty as the defining identity in this 
proof. By Proposition 6.6 it suffices to argue using the monoid M.

First, notice that the defining identity holds in M. Indeed, given any consistent sub-
stitution of elements of M for x, y, z and t, it is clear that if zxty maps to an element 
in the right-zero subsemigroup { IJk : k ≥ 0 } then we have xyzxty = yxzxty, otherwise 
each letter must map to a power of J , in which case x and y commute.

Conversely, suppose for a contradiction that some identity holds in M which is not 
a consequence of our defining identity. Any non-trivial identity can clearly be written 
uniquely in the form uaw = vbw where u, v, w are words and a �= b are distinct letters. 
Choose an identity (over any alphabet), from among those which hold in M but are not 
consequences of our defining identity, so that when it is written as uaw = vbw as above 
the words u and v are as short as possible. We shall refer to this as the counterexample 
identity.

First, notice that the letters a and b must both appear in the word w, since if w does 
not contain a (respectively b) the substitution sending a to I, b to J and all other letters 
to the identity element (respectively, the substitution sending a to J , b to I and all other 
letters to the identity element) will clearly falsify our counterexample identity in M.

Since the identity uaw = vbw holds in M, the prefixes ua and vb must have the 
same content, so in particular u contains at least one occurrence of the letter b. Write 
u = pbq with q as short as possible (so in particular q does not contain any occurrence of 
the letter b). Notice that every letter appearing in q also appears in w, since if not, the 
substitution sending a single letter c of q to I, b to J and all other letters to the identity 
element clearly maps uaw to IJ |w|b , whilst vbw is mapped to IJk for some k > |w|b, 
hence falsifying our counterexample identity in M.

Now since a, b and every letter appearing in q appear in w, we may use the defining 
identity |qa| times (with the substitutions mapping x to b, y to each letter of qa in turn, z
to a suffix of qa followed by a prefix of w, and t to a subword of w) to commute b through 
qa and deduce the identity pbqaw = pqabw. So this latter identity is a consequence of 
the defining identity, and hence also holds in M. Combining with the counterexample 
identity, we see that the identity pqabw = vbw holds in M. The words on either side of 
this identity are of the same length as in the counterexample identity and with a longer 
common suffix, so by the minimality assumption on the counterexample identity, the 
new identity pqabw = vbw must be a consequence of the defining identity. But we know 
that uaw = pbqaw as words, and we have shown that pbqaw = pqabw is a consequence 
of the defining identity, so we deduce that the counterexample identity uaw = vbw is a 
consequence of the defining identity, which is the required contradiction. �
Remark 6.8. By Proposition 6.6, the variety of the sylvester (respectively, #-sylvester) 
monoids is generated by sylv2 (respectively, sylv#

2). Since sylv#
2 is anti-isomorphic to 

sylv2, it is clear that reversal of words gives a bijection between the identities satis-
fied by the sylvester monoid and the identities satisfied by the #-sylvester monoids. 
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In particular, the variety of the #-sylvester monoids is defined by the single identity 
ytxzyx = ytxzxy, as observed in [9, Theorem 4.15]; see also [19, Theorem 4.7].

Theorem 6.9. Let S be a commutative unital semiring with zero containing an element of 
infinite multiplicative order. The Baxter monoid of rank n admits a faithful representa-
tion by upper triangular matrices of size 2n2 − n over S having block-diagonal structure 
with largest block of size 2.

Proof. Both sylvn and sylv#
n have faithful representations by upper triangular matrices 

of size n2, each of which is made up of the image of cn (an n × n diagonal matrix) and (
n
2
)

blocks of size 2.
Construct a representation of baxtn by taking one copy of the image of cn and the 2

(
n
2
)

blocks of size 2 from the representations of sylvn and sylv#
n. Since elements of baxtn are 

equal if and only if their projections into sylvn and sylv#
n are equal, this representation 

is faithful. �
Proposition 6.10. Let n ≥ 2. Then the variety of monoids generated by the Baxter monoid 
baxtn is:

(1) the join of the varieties generated by sylvn and sylv#
n;

(2) the join of the varieties generated by M and M#;
(3) a proper subvariety of B;
(4) not contained in the join of Comm and any variety generated by a finite monoid; 

and
(5) equal to the variety generated by the (infinite-rank) Baxter monoid.

Proof. (1) It is easy to see from the definition that an identity is satisfied in baxtn if 
and only if it is satisfied in both sylvn and sylv#

n.
(2) This follows immediately from part (2) of Proposition 6.6.
(3) That the variety generated by baxtn is a subvariety of B follows from part (1) and 

Proposition 6.6(1). To see that it is a proper subvariety, observe that baxt satisfies 
the identity xyxyxy = xyyxxy[7, Proposition 26], while the shortest identity satisfied 
by semigroups in B has length 10 on each side (see [1]).

(4) This follows from part (1) and Proposition 6.6(3).
(5) This follows from the facts that baxt embeds into a direct product of copies of baxt2

and that the Baxter monoid of any finite rank is a submonoid of the Baxter monoid 
of infinite rank, as shown in [9, Theorem 3.12]. �

Next we provide a finite basis of identities for the variety of Baxter monoids; see also 
[9, Theorem 4.16] or [19, Theorem 4.10] for an alternative approach.

Theorem 6.11. The variety generated by the Baxter monoids is defined by the two iden-
tities:
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xayb xy cxdy = xayb yx cxdy and xayb xy cydx = xayb yx cydx.

Proof. We shall refer to the two identities in the statement as the defining identities.
The defining identities can clearly be deduced from the identity xyzxty = yxzxty

(which by Theorem 6.7 is satisfied in sylv) and separately also from the identity ytxzyx =
ytzxzy (which is the reverse of the previous identity, and hence is satisfied in sylv# by 
Remark 6.8). It follows immediately that they are satisfied in baxt.

Conversely, suppose for a contradiction that some identity is satisfied in baxt (and 
hence also by Proposition 6.10 in M and M#), and is not a consequence of our defining 
identities. As in the proof of Theorem 6.7, choose such an identity (which we shall call 
the counterexample identity) so that when it is written as uaw = vbw with a �= b single 
letters the words u and v are as short as possible, and write u = pbq with q as short 
as possible. Note that ua and vb must have the same evaluation. Since this identity is 
satisfied in M, we deduce by exactly the same argument as in the proof of Theorem 6.7
that a, b and every letter of q all occur in w.

We claim that b occurs at least once in p. Indeed, if not then since a �= b and b does 
not appear in q, we have that b appears only once in the word ua. Since ua has the same 
evaluation as vb, this means that v does not contain b and so the morphism mapping b
to J#, a to I# and all other letters to the identity element distinguishes vbw and uaw, 
hence contradicting the assumption that the counterexample identity holds in M#.

Next we claim that a and every letter of q also occur in p. Indeed, suppose false, say 
some letter c appears in qa but not in p. Then the leftmost appearance of c in the word 
uaw = pbqaw lies within the suffix qaw. Since the counterexample identity holds in M#, 
the leftmost appearance of c in vbw must be in the same position (as can be seen by 
considering the morphism mapping c to J# and all other letters to I#). Since ua = pbqa

and vb have the same content and q does not contain a b, this means there are strictly 
more bs to the left of the leftmost c in uaw than in vbw. But then the morphism mapping 
c to J#, b to I# and all other elements to the identity distinguishes the words vbw and 
uaw, hence contradicting the assumption that the counterexample identity holds in M.

To recap, we have a factorisation (as words) uaw = pbqaw where a, b and every letter 
of q appears in both p and w. Hence we may use the defining identities |qa| times to 
commute b through qa and deduce the identity pbqaw = pqabw. So this latter iden-
tity is a consequence of the defining identities, and hence also holds in baxt. Combining 
with the counterexample identity, we see that the identity pqabw = vbw holds in baxt. 
The words on either side of this identity are of the same length as in the counterex-
ample identity and with a longer common suffix, so by the minimality assumption on 
the counterexample identity, the new identity pqabw = vbw must be a consequence of 
the defining identities. But we know that uaw = pbqaw as words, and we have shown 
that pbqaw = pqabw is a consequence of the defining identities, so we deduce that the 
counterexample identity uaw = vbw is a consequence of the defining identities, which is 
the required contradiction. �
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7. The right patience-sorting monoid

Note that, unlike the sylvester monoid, it is impossible for the right patience sorting 
monoid of arbitrary rank to be embedded into a direct product of copies of right patience 
sorting monoid of rank 2. This is because rPSn does not satisfy any identity of length 
less than n [10, Proposition 4.8], while it does satisfy the identity (xy)n+1 = (xy)nyx
[10, Proposition 4.7]. Since there is no such embedding, and since rPS-tableaux are not 
characterised by content and a bounded amount of extra information, a very different 
approach is needed to construct a faithful finite dimensional representation.

The possible bottom rows of rPS-tableaux are clearly in bijective correspondence 
with subsets of [n] (the correspondence taking each bottom row to the set of elements 
appearing in it). Let B be the power set of [n], the elements of which we think of as 
possible bottom rows of rPS-tableaux, and which we also identify with single-row rPS-
tableaux in the obvious way. (In particular this means we identify the empty set ∅ with 
the identity element in the right patience-sorting monoid.)

If P is an rPS-tableau and z is a generator then, as a direct consequence of the 
nature of the insertion algorithm, the bottom row of the rPS-tableau P ← z is uniquely 
determined by the combination of the bottom row of P and the generator z. Therefore we 
may define an action of the free monoid [n]∗ on the set B, such that for any rPS-tableau 
P with bottom row b ∈ B and any w ∈ [n]∗, the bottom row b · w is the bottom row of 
the rPS-tableau P ← w. Since two words which represent the same element of rPSn act 
the same on every tableau, the action of the free monoid induces an action of the right 
patience-sorting monoid rPSn, where b · s is defined to be b · w for some w ∈ [n]∗ with 
P→

rPS(w) = s.

Lemma 7.1. Let x, y ∈ [n] and s ∈ rPSn and let P be an rPS-tableau. The number of 
times generator x occurs in column y of P ← s is uniquely determined by the combination 
of the element s, the bottom row of P and the number of times x occurs in column y
of P .

Proof. Let z ∈ [n] and consider the insertion of z into the rPS-tableau P . The column 
into which z gets inserted is uniquely determined by z and the bottom row of P . Thus, 
the number of times generator x occurs in column y of P ← z is uniquely determined 
by the combination of the generator z (in particular whether it equals x), the bottom 
row of P and the number of times x occurs in column y of P . The bottom row of P ← z

is clearly also uniquely determined by the generator z and the bottom row of P . The 
result now follows by induction on the length of a word representing the element s. �

We are now ready to define a faithful finite dimensional representation of the right 
patience-sorting monoid over any commutative unital semiring S containing a zero ele-
ment and an element α of infinite multiplicative order. For x, y ∈ [n], define a function 
fx,y : rPSn → MB(S) as follows. For each s ∈ rPSn and each p, q ∈ B,
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• if p · s = q then [fx,y(s)]p,q is equal to αi where i denotes the number of extra 
xs added to column y of any rPS-tableau with bottom row p (for example, p itself 
viewed as a single-row rPS-tableau) and right-multiplying by s. This is well-defined 
by Lemma 7.1.

• if p · s �= q then [fx,y(w)]p,q = 0S .

Notice that, by definition, each row of fx,y(s) contains exactly one non-zero entry; namely 
the entry in column p · s. In particular, the identity element of rPSn is mapped to the 
usual identity matrix under this map.

Lemma 7.2. Let S be a commutative unital semiring with zero containing an element of 
infinite multiplicative order. The map fx,y defined above is a morphism from rPSn to 
MB(S).

Proof. If u, v ∈ rPSn then

[fx,y(u)fx,y(v)]p,q =
∑
r∈B

(
fx,y(u)p,r · fx,y(v)r,q

)
= fx,y(u)p,p·ufx,y(v)p·u,q,

where the left-hand equality is the definition of matrix multiplication, and the right-hand 
equality is because row p of fx,y(u) contains a non-zero entry only in column p · u. Now 
if fx,y(v)p·u,q = 0S then this means (p · u) · v = p · (uv) �= q, so

[fx,y(uv)]p,q = 0S = [fx,y(u)fx,y(v)]p,q.

Otherwise (p ·u) ·v = p · (uv) = q. In this case [fx,y(u)]p,p·u is equal to αi where i denotes 
the number of xs added to column y when taking any rPS-tableau with bottom row p
and right-multiplying by u, and [fx,y(v)]p·u,q = fx,y(v)p·u,p·(uv) is equal to αj where j
denotes the number of xs added to column y when taking any rPS-tableau with bottom 
row p · u and right-multiplying by v. Thus

[fx,y(u)fx,y(v)]p,q = αiαj = αi+j = fx,y(uv)p,q,

since i + j is clearly the number of xs added to column y when taking any rPS-tableau 
with bottom row p and right-multiplying by uv, and so αi+j is, by definition, equal to 
fx,y(uv)p,p·(uv) = fx,y(uv)p,q. �
Theorem 7.3. Let S be a commutative unital semiring with zero containing an element 
of infinite multiplicative order. The right patience-sorting monoid of rank n admits a 
faithful representation by upper-triangular matrices of size 2n−1(n2 + n) over S.

Proof. Construct a block-diagonal representation by taking the blocks to be the images 
of the homomorphisms fx,y for x, y ∈ [n] with x ≥ y.
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To show that the representation is faithful, suppose u, v ∈ rPSn are distinct elements 
of the right patience-sorting monoid. Then we may choose x, y ∈ [n] such that the 
rPS-tableaux corresponding to these two elements differ in the number of times that 
generator x occurs in column y. Clearly we must have x ≥ y, since otherwise neither 
tableau can contain an x in column y. Let b = ∅ · u ∈ B be the bottom row of the 
rPS-tableau corresponding to u. Then by the definition of fx,y the entry in row ∅ and 
column b of fx,y(u) contains αi where i denotes the number of times symbol x occurs 
in column y of the tableau corresponding to u. In contrast, the corresponding entry in 
fx,y(v) is different: either it is 0S (if the tableau of v has a different bottom row) or else 
it is αj where j denotes the number of times symbol x occurs in column y of the tableau 
corresponding to v, where i �= j by assumption. Hence, fx,y(u) �= fx,y(v) so f(u) �= f(v).

Notice that the action of rPSn on the set B has no cycles except for fixed points: 
right-multiplying an rPS-tableau by a generator increases the length of the bottom row, 
or keeps the length the same and decreases the sum along the row, or leaves the row 
unchanged. It follows that the relation on B defined by p ≤ q if and only if p · s = q for 
some s ∈ rPSn is a partial order. For each x and y it is immediate from the definition of 
fx,y that for any w ∈ [n]∗ we will have fx,y(w)p,q = 0S unless p ≤ q. Thus, completing 
this partial order to a linear order on B yields an order with respect to which fx,y(w)
is upper triangular for all w ∈ [n]∗. Using such a linear order within each block of the 
representation thus ensures that the representation is upper triangular.

For each x and y, the dimension of the representation fx,y is |B| = 2n. The block 
diagonal representation has 

(
n+1

2
)

blocks of this size and so has total dimension 2n
(
n+1

2
)

=
2n−1(n2 + n). �
7.1. Identities satisfied by the right patience-sorting monoid

An immediate consequence of Theorem 7.3 is that the right patience-sorting monoid 
rPSn satisfies every semigroup identity satisfied by UTN (S), where N = 2n−1(n2 + n). 
Taking S = T one can therefore determine families of non-trivial identities satisfied 
by rPSn by appealing to the known results about UTN (T ) (see for example [20], [32]). 
In fact, since the representation f constructed in the proof is block-diagonal where each 
block has size 2n, one could instead take N = 2n in the above statement. Since the variety 
generated by UTN (T ) properly contains the variety generated by UTd(T ) whenever 
d < N (see [2, Theorem 2.4]), one may be tempted to seek ways to reduce the dimension 
of the representation, for the purpose of studying identities.

The dimension of the representation in Theorem 7.3 could be refined down slightly 
by ad hoc arguments showing that certain rows and columns are not needed, but any 
significant reduction in the asymptotics is likely to require a completely different repre-
sentation, if it is possible at all. Therefore we instead turn our attention to the so-called 
chain length of the representation. Given an N -dimensional upper triangular matrix rep-
resentation φ : M → UTN (S) of a semigroup M over a semiring S, let Γφ denote the 
transitive closure of the directed graph with node set {1, . . . , N} with an edge from i to 
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j whenever i = j or there exists A ∈ φ(M) with Ai,j �= 0S . Writing i � j if there is an 
edge from i to j in Γφ, it is clear that � is a partial order. We define the chain length 
of the representation φ to be the maximal length of a chain in this partial order. In the 
case where S = T one can use the results of [11] to show that if φ : M → UTN (T ) is 
a faithful tropical representation of chain length d, then M is contained in the variety 
generated by UTd(T ). To see this, let Γφ(T ) be the set of all matrices A ∈ UTN (T )
such that Ai,j = −∞ whenever i � j in Γφ. By construction, the image of the faithful 
representation φ is contained in Γφ(T ), and so the statement follows from [11, Theorem 
5.3] which states that the variety generated by Γφ(T ) is equal to the variety generated 
by UTd(T ).

We now demonstrate that the chain length of our faithful representation of the right 
patience-sorting monoid turns out to be far smaller than the dimensions of the blocks.

Proposition 7.4. The maximum chain length of the representation f is 
(
n+1

2
)

+ 1.

Proof. If P is a tableau and x a generator then the bottom row of P ← x differs from 
the bottom row of P if and only if insertion of x into P places the new x in a column not 
already containing an x. It follows that for w ∈ [n]∗, the number of times the bottom 
row changes during the iterative construction of the tableau ∅ ← w is equal to the sum 
over columns in ∅ ← w of the number of distinct generators appearing in each column. In 
particular, this number is an invariant of the element of rPSn (independent of the choice 
of representative word w). Since the yth column from the left cannot contain more than 
n −y+1 distinct generators (those symbols x with x ≥ y), this number is bounded above 
by 

∑n
y=1 n − y + 1 =

(
n+1

2
)
.

Now, notice that the block structure of the representation f means that any chain 
in the partial order Γf must lie within Γfx,y

for some x and y which is clearly the 
partial order on B given by p ≤ q if and only if p · s = q for some s ∈ rPSn. Suppose 
b1, . . . , bk ∈ B is a chain of distinct sets such that there exist words w1, . . . wk−1 ∈ [n]∗
with fx,y(wi)bi,bi+1 �= 0S for each i ∈ [k − 1]. By the definition of fx,y this means that 
bi · wi = bi+1 for each i ∈ [k − 1]. Let w0 ∈ [n]∗ be a word representing the single-row 
tableau b1, and let w = w0w1 . . . wk−1 ∈ [n]∗. Consider the corresponding rPS-tableau 
∅ ← w. Clearly each bi appears as a bottom row during the iterative insertion of the 
symbols in w. But the number of bottom rows so appearing exceeds by at most 1 the 
number of times the bottom row changes. Thus, by the previous paragraph, k ≤

(
n+1

2
)
+1.

Conversely, consider the word

w =
n∏

i=1

⎛
⎝ i∏

j=1
(n− j + 1)

⎞
⎠ .

It is easy to see that the corresponding tableau ∅ ← w is of size 
(
n+1

2
)

with distinct entries 
in every column. Consider the iterative construction of this tableau using the word w. 



848 A.J. Cain et al. / Journal of Algebra 606 (2022) 819–850
By the first paragraph of the proof, the bottom row changes 
(
n+1

2
)

times, yielding a 
sequence of 

(
n+1

2
)

+ 1 distinct bottom rows which form a chain. �
Corollary 7.5. The right patience-sorting monoid of rank n satisfies all semigroup iden-
tities satisfied by UTd(T ) where d =

(
n+1

2
)

+ 1.

Remark 7.6. Using some straightforward generalisations of proofs from [11, Section 5], 
one can establish an analogue of Corollary 7.5 in which T is replaced by any commutative 
unital semiring S with both a zero element and an element of infinite multiplicative 
order. However, to our knowledge the only such semirings where much is known about 
identities in UTd(S) either satisfy no identities (for example, S = N and hence also 
S any ring of characteristic 0) in which case the result is vacuous, or satisfy the same 
identities as T (for example, the tropical natural number semiring T ∩ (N ∪ {−∞})) 
in which case the stronger statement adds nothing. However, we note that the rPSn

certainly satisfies identities which do not come from UTd(T ) (for example, those given 
by [10, Proposition 4.7], which are shorter than any which hold in UTd(T )), so it may 
be interesting to investigate representations over other semirings.

Remark 7.7. The right patience-sorting monoid of rank n does not satisfy any identity 
of length less than n [10, Proposition 4.8]. Thus, in contrast to the monoids considered 
in the previous sections, the identities satisfied by rPSn, and hence the variety generated 
by rPSn, are dependent on n. Thus there is no direct analogue for right patience-sorting 
monoids of Corollaries 3.5, 4.6, or 5.8 or Proposition 6.6 (which state that the variety 
generated by one of our previous plactic-like monoids of infinite rank is equal to the 
variety generated by any one of the finite rank plactic-like monoids of the same kind). 
However, there is scope to study other aspects of these varieties further (for example, 
bases of identities).

Remark 7.8. Since our initial motivation was to study identities for plactic-like monoids 
via tropical representations, we have not attempted to construct representations of the 
left patience-sorting monoids; as explained in the introduction, the existence of free sub-
monoids in lPSn implies that faithful representations by tropical matrices simply do not 
exist. However, one could investigate whether faithful finite-dimensional representations 
of lPSn monoids exist over other semirings. A key property of right patience-sorting 
tableaux used in the construction of our representations is that there are finitely many 
possible ‘bottom rows’ in an rPS-tableau. This is not the case for left patience-sorting 
monoids, and so a completely different approach to that for rPS-monoids would be re-
quired.
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