
Miguel Sequeira de Oliveira Bernardo

Bachelor Degree in Sciences of Engineering Physics

Construction of Geometries Based on Automatic

Text Interpretation

Dissertation submitted in partial fulfillment
of the requirements for the degree of

Master of Science in
Engineering Physics

Advisers: Professor Dr. Isabel Catarino, Assistant Professor at
NOVA University of Lisbon

Professor Dr. João Pires da Cruz, Partner at Closer
Consulting, Invited Professor at University of Lisbon

Jury

Chair: Professor Dr. Maria Raposo

Examiner: Professor Dr. André Wemans

Supervisor: Professor Dr. Joao Pires da Cruz

November, 2020

Construction of Geometries
Based on Automatic Text Interpretation

Copyright c© Miguel Sequeira de Oliveira Bernardo, NOVA School of Science and
Technology, NOVA University of Lisbon.
NOVA School of Science and Technology and NOVA University of Lisbon have the right,
perpetual and with no geographical boundaries, to archive and publish this dissertation
through printed copies reproduced on paper or digital form, or by any other means known
or hereafter be invented, and through the promotion of scientific repositories and admit
its copy and distribution for noncommercial educational or research purposes, as long as
credit is given to the author and publisher

”Quando a Educação não é libertadora, o
sonho do oprimido é ser o opressor!”
- Paulo Freire

Acknowledgements

Throughout the making of this thesis, the help of a few people was essential to
me and this work. Thus, I wish to express my deepest gratitude to all who took
part and help me finish this chapter.

I would first like to express my gratitude and appreciation to my adviser, profes-
sor Isabel Catarino, whose passion and dedication shaped me and all students who
had the opportunity of interacting with her. Your valuable guidance and patience
throughout my studies were truly vital and your will to improve our school, although
a Dantesque task, is inspiring. And for all this, thank you!

For the opportunity of embarking in this project and the incredible help through
the thesis, I would like to say a personal thank you to my adviser João Cruz.

For the warm welcome, I want to thank all my colleagues from Closer. I would
particularly like to single out Ali and Barroca for their guidance and patience during
my mental blockades.

An extraordinary thankfulness goes to FCT/UNL’s students union and all the
people whom I worked with, for giving me the strength to grow throughout the three
years I had the pleasure to work there.

I would like to say a special thank you to all my colleagues from the Integrated
Master in Physics Engineering for all the companionship throughout these last five
years. Especially an enormous acknowledgement to Ana Isabel Francisco, Ana Clau-
dia Onofre e Eduardo Freitas for all the moments we have shared.

To all my friends and family, from the bottom of my heart, I want to thank you
for accompanying me through this journey. Especially to Maria João, Beatriz and
Sara, for the marvellous company during this pandemic, and Bruno, for forcing me
to work hard to conclude this work on time.

I couldn’t finish without thanking my amazing parents for all their sacrifices and
patience that granted my sister and me all opportunities and privileges throughout
our lives. Thank you so much!

vii

Abstract

When dealing with expanding systems, like the universe or the econ-
omy, due to its constant expansion, the statistical error is remarkably high
to allow an understanding of the behaviour of the system. Thus, arises the
necessity to transform an expanding system into a more straightforward
system to work with. In order to address the problems, a geometric word
space was constructed based on automatic text interpretation. News arti-
cles and economic reports about the European Union were collected and,
using Python scripts, were cleaned and used to train a Word2Vec model.
The trained model created multi-dimensional word spaces from three pe-
riods of the last decades, a pre-2000 period, a 2000-2008 period and a
post-2008 period. After the interpretation of the created word spaces, a
difference in behaviour between the country names was noticed. All the
European Union member states were getting closer to each other until
2008, but after that year there was an abrupt rupture in this trend and
ever country drifted apart. This behaviour can be linked with the 2008
financial crisis, though more research is needed to confirm this behaviour
and hopefully found other correlations connecting the word spaces be-
haviour and the real world. An improvement in the quantity and quality
of the corpus will certainly improve the accuracy of the world space and
enable a better understanding of the word spaces behaviour.

Keywords: Text interpretation, Word space geometry, Word2Vec, Data Sci-
ence, Economy, Python.

ix

Resumo

Ao trabalhar com sistemas em expansão, como o universo ou a econo-
mia, o erro estat́ıstico, decorrente da sua dilatação, é demasiado alto para
permitir a compreensão dos comportamentos do sistema. Dáı surgiu a ne-
cessidade de transformar um sistema em expansão num sistema cuja com-
preensão fosse mais acesśıvel. Para resolver este problema, foi criado um
espaço geométrico constitúıdo por palavras através da interpretação au-
tomática de texto. Foram recolhidas noticias e relatórios sobre a situação
económica da União Europeia e, usando scripts escritos em Python, foram
limpos e utilizados para treinar um modelo de Word2Vec. O modelo
treinado de Word2Vec criou três espaços multidimensionais constitúıdos
por palavras em peŕıodos diferentes. Um dos espaços foi constrúıdo com
dados anteriores a 2000, outro com dados entre 2000 e 2008 e por último
um com dados posteriores a 2008. Após a interpretação dos espaços cri-
ados, foi evidente uma grande mudança de comportamento entre os ob-
jetos que representam os nomes dos páıses. Todos os nomes dos estados
membros da União Europeia estavam a aproximar-se até ao ano de 2008,
no entanto, após esse ano, este comportamento susteve-se abruptamente
e todos os páıses se afastaram. Este comportamento poderá estar ligado
com a crise financeira de 2008, no entanto é necessária mais investigação
para confirmar este comportamento e encontrar mais correlações entre o
espaço criado e o mundo real. Um aumento na quantidade e qualidade
da coleção de textos irá certamente melhorar a precisão na construção do
espaço e contribuir para uma melhor compreensão dos comportamentos
dos espaços criados.

Palavras-chave: Interpretação de texto, Geometria de espaços formados por
palavras, Word2Vec, Data Science, Economia, Python.

xi

Contents

1 Introduction 1

2 Theoretical Concepts 3

2.1 Word Occurrence Frequency . 3

2.2 Word Embedding . 7

2.2.1 Artificial Neural Networks . 7

2.2.2 Word2Vec . 8

2.2.3 The Skip-gram Model . 9

2.2.4 Hierarchical Softmax . 10

2.2.5 Negative Sampling . 10

2.2.6 Dealing with Frequent Words 10

2.3 Cosine Similarity . 11

2.4 Nonlinear Dimensionality Reduction 11

2.4.1 Stochastic Neighbor Embedding 12

2.4.2 t-Distributed Stochastic Neighbor Embedding 12

3 Design and Methodology 13

3.1 Data Collection . 13

3.2 Tools and Libraries . 15

3.2.1 NLTK . 15

3.2.2 GENSIM . 15

3.2.3 Pickle . 15

3.2.4 Multiprocessing . 15

3.2.5 OS . 15

3.2.6 RE . 16

3.2.7 Future . 16

3.2.8 NumPy . 16

3.2.9 Sklearn . 16

3.2.10 Pandas . 16

3.2.11 Matplotlib . 16

3.2.12 Seaborn . 16

3.3 Corpus Cleaning . 17

3.4 Model Implementation . 20

3.5 Dimension Reduction . 23

3.6 Word Space Plot . 24

xiii

Contents

4 Results and Discussion 27
4.1 Word Distance . 27
4.2 Space Visualisation . 30

4.2.1 Pre-2000 Word Space . 30
4.2.2 2000-08 Word Space . 33
4.2.3 Post-2008 Word Space . 36

5 Final Remarks 39

Appendices 43

A Corpus Cleaning 45

B Model Training 49

C Dimension Reduction 51

D Word Space Plot 53

xiv

List of Figures

List of Figures

2.1 Depiction of a random function f(x) and a red area regarding the
f(x) integral from 0 to x. 4

2.2 Example of a NN’s architecture. 7
2.3 Schematic of a neuron. 8
2.4 Schematic of the two approaches to Word2Vec. [13] 9
2.5 Representation of the angle θ between two objects in a word space. . 11

3.1 Zoomed section of the word space created with the Post-2008 corpus. 26

4.1 Country distance measured by cosine similarity on the Pre-2000 Period. 28
4.2 Country distance measured by cosine similarity on the 2000-2008 Pe-

riod. 28
4.3 Country distance measured by cosine similarity on the Post-2008 Period. 29
4.4 Representation of 2000 words from the word space created with the

Pre-2000 corpus. (a) Representation of word without tags and Area
X containing the countries names. (b) Representation of word with
tags. 31

4.5 Area X from Figure 4.4: Zoomed section of the word space, created
with the Pre-2000 corpus, containing the countries’ names. 32

4.6 Zoomed section of Figure 4.5 containing Europe countries. 32
4.7 Representation of 2000 words from the word space created with the

2000-08 corpus. (a) Representation of word without tags and Area X
containing the countries names. (b) Representation of word with tags. 33

4.8 Area X from Figure 4.7: Zoomed section of the word space, created
with the 2000-08 corpus, containing the countries’ names. 34

4.9 Zoomed section of Figure 4.8 containing Europe countries. 34
4.10 Zoomed section of Figure 4.8 containing the word ”exception” and

”uk”. 35
4.11 Representation of 2000 words from the word space created with the

Post-2008 corpus. (a) Representation of word without tags and Area
X containing the countries names. (b) Representation of word with
tags. 36

4.12 Area X from Figure 4.11: Zoomed section of the word space, created
with the 2000-08 corpus, containing the countries’ names. 37

xvii

List of Tables

List of Tables

3.1 Description of the Collected Data per Type and Period. 14
3.2 Number of tokens in each Corpus. 22

xix

List of Tables

Acronyms
CBOW - Continuous Bag Of Words

ECU - European Central Bank

EU - European Union

IILS - International Institute for Labour Studies

IMF - International Monetary Fund

LDA - Latent Dirichlet Allocation

NLP - Natural Language Processing

NLTK - Natural Language Toolkit

NN - Artificial Neural Networks

SNE - Stochastic Neighbor Embedding

SG - Skip-gram Model

SGNS - Skip-gram Model With Negative Sampling

SVD - Singular Value Decomposition

t-SNE - t-Distributed Stochastic Neighbor Embedding

xxi

CHAPTER1
Introduction

Having in mind disastrous events for the world economy that occurred in the past
as the Great Depression in the ’30s and the Great Recession in 2008, produced by
reckless conduct and feeble knowledge of the performance of the economy [1], we can
recognize the importance of a fair comprehension about the economy’s behaviour
and its effects. In some reflection studies regarding these two major crises, it is
revealed that there is some correlation between them, like the rapid decline in global
manufacturing in the subsequent months of the global peaks in industrial production
[2].

In the work of Luc Laeven and Fabian Valencia [3], is proposed that in the
midst of numerous causes of financial crises, the leading and most impactful of them
are ”combination of unsustainable macroeconomic policies (including large current-
account deficits and unsustainable public debt), excessive credit booms, large capital
inflows, and balance sheet fragilities, combined with policy paralysis due to a variety
of political and economic constraints.” Furthermore, these are exciting factors that
they used to identify hundreds of systematic banking crises between the ’70s and
2007.

In ”Literature review of past crises” produced by the IILS [1], even though it
is first described as extremely difficult to identify a financial crisis with certainty,
several signs are pointed out that can signify their imminent occurrence. These can
be the presence of widespread bank runs, bank failure or bank insolvencies, sudden
stops in the inflow of foreign capital [4], credit booms [5] or significant ”loss in the
value of important classes of assets such as government debt [6], stocks and housing
[4]. All these signs can be useful tools to understand and predict identical crises like
the ones that happened before.

To complex problems similar to this, Data Science and Machine Learning are
indispensable tools that transform a vast volume of data and, combining them with
statistics and computer science, are able to predict events, recognize patterns and
solve an unimaginable number of tasks. Also, the presence of these innovative tools
is revolutionizing the way economists handle economic research. As Liran Einav and

1

Jonathan Levin concluded [7], ”there is little doubt (. . .) that over the next decades,
“big data” will change the landscape of economic policy and economic research”.

The most common way of understanding the economy’s stochastic behaviour is
through the observation of direct data like fluctuations in the stock market, inter-
est rates, in the country’s sovereign debt, and so on. This observation aids us to
formulate models that seek to predict the changes in the economic environment,
enhancing our knowledge of its behaviour.

However, a substantial portion of the developments in this environment is chal-
lenging to predict or model. Not only because of their stochastic essence but also
due to the factors that generate the changes. The foundation of these factors is
based not on direct data but on the perception that people have towards the mar-
ket, making them extremely hard to predict, if not impossible. The intent of making
as much profit possible in a short period, like in market speculation, is an illustration
of one of these market changes attributed to a person’s behaviour. So is panic felt
throughout the Great Recession, as P. Bacchetta and E. van Wincoop address [8],
that grabbed companies and consumers and drove to a collapse in demand, which
in turn drained the profits leading to a worsening of the crisis.

As direct data is unable to provide us with the knowledge to predict these changes
in the economy’s behaviour, a way to understand them is to look for data that can
provide the perception of the people towards the economy. Hence, the use of text
data gathered from financial newspapers and other fonts of information regarding
the economy may be an interesting approach to understand people’s perceptions
about this topic.

The work present in this document consists of developing a program using Data
Science and Machine Learning techniques to answer the foregoing question. This
program will be supplied with text data, in this case, text data from finance news
articles and economic reports from the European Union and the International Mon-
etary Fund gathered from distinctive periods of the last four decades. It will as-
semble a multi-dimensional space with all the different words present on the corpus.
This constructed space will allow for the study of a geometry based on the relation
between words along with a better understanding of the European economy’s be-
haviour. For instance, the expansion or contraction of the economy, its velocity, or
the relations between each country.

2

CHAPTER2
Theoretical Concepts

This chapter holds the theoretical concepts, methods and theories that laid the
foundation for this work and to the construction of the model present in the next
chapter.

2.1 Word Occurrence Frequency

To think about language modelling, it helps to follow the concepts of the 1916’s
book of Ferdinand de Saussure ”Course in General Linguistics” [9], where is pre-
sented the idea that language is a system in which the linguistic entities, like words,
are related to one another. Considering language as a series of relations within a
multitude of words, the only question is how to access these relations.

As attempted previously by Mandelbrot in 1953 [10] and Simon in 1955 [11], this
problem could be tackled through the word’s distributions given by their frequency of
occurrence on a given corpus using stochastic models. However, problems arise due
to the nature of the data. The continuous increase in corpus size that consequently
increases the error in the prediction of common words, along the intricate relations
among all the words inside the corpus vocabulary make it impossible to see this
problem statistically. In this subsection, we will present the explanation developed
by J. Cruz in his doctoral thesis [12] to demonstrate this statistical problem that
drives the necessity for the construction of a new geometry.

f(x) = 1 + x+ ... ≈ f(x) = 1 + x (2.1)

J. Cruz assumed that the growth in the occurrence of a word close to another
is proportional to a monotonous function that describes the number of times it as
already occurred. This function can be described as a Taylor series in which the
first two terms are the most significant, enabling us to simplify the function as seen
in equation 2.1, where x > 0. As the appearance of new words is a multiplicative
process, the growth of function f(x) depends on itself.

3

2.1. Word Occurrence Frequency

Figure 2.1: Depiction of a random function f(x) and a red area regarding the f(x)
integral from 0 to x.

Considering all the universe of word occurrences as Λ.

Λ =
∑
i

xi (2.2)

The variation of the universe is dependent on the variations of the objects that
compose it. Thus, the relation can be regarded as

dΛ

Λ
=
dx

x
. (2.3)

However, this only occurs when all the objects in the universe are equal, growing
at the same time and are not connected. In the case of this work, all the words
are different, are growing at different rates and are connected. It is impossible to
interact with only one object without disturbing the rest. In a universe like this,
the variation of the universe is proportional, by a factor α, to the variation of an
object, where α is a positive constant. Hence,

dΛ

Λ
= α

dx

x
. (2.4)

Considering a random function of probability like the one in Figure 2.1, it is
possible to say that the probability of occurrence of an event xi smaller than x is
equal to Z, the f(x) integral from 0 to x, over the total area Λ.

P (xi < x) =
Z

Λ
(2.5)

Then is possible to calculate the derivative of the equation 2.5 with respect to
the total area Λ.

dP

dΛ
= − 1

Λ2
Z +

1

Λ

dZ

dΛ
(2.6)

⇔ dP

dΛ
= −P

Λ
+

1

Λ

dZ

dΛ
(2.7)

4

2.1. Word Occurrence Frequency

Knowing that dZ
dΛ

can not be bigger than 1, because if that happens the area Z
would become larger than the total area Λ, which is not possible. Either cannot dZ

dΛ

be smaller than 1 because if that happens the opposite occurs, the area Λ will grow
so much that the area Z disappears. Hence, dZ

dΛ
must be equal to one [12].

dP

dΛ
= −P

Λ
+

1

Λ
=

1− P
Λ

(2.8)

⇔ −d(1− P)

1− P
=
dΛ

Λ
(2.9)

⇔ d(1− P)

1− P
= −αdx

x
(2.10)

It is helpful to introduce here the property seen beneath in equation 2.11.

d(log(x))

dx
=

1

x
(2.11)

With this property, it is possible to change both sides of the equation 2.10 with
logarithms.

d log(1− P) = d log

(
1

xα

)
(2.12)

Now solving both sides of the equation individually as simple integrals from x0

to x, we obtain equation 2.13 and 2.14.

∫ x

x0

d log(1− P (x))dx = log(1− P (x))− log(1− P (x0)) = log(1− P (x)) (2.13)

∫ x

x0

d log

(
1

xα

)
= log

(
1

xα

)
− log

(
1

xα0

)
= log

(
xα0
xα

)
(2.14)

Substituting 2.13 and 2.14 in 2.12, we obtain 2.15, where both logarithms disap-
pear plus the probability P(x) can be isolated.

log(1− P (x)) = log

(
xα0
xα

)
(2.15)

⇔ 1− P (x) =
(x0

x

)α
(2.16)

⇔ P (x) = 1−
(x0

x

)α
(2.17)

With the purpose of obtaining the probability density ρ(x), it is necessary to
calculate the derivative of P (x) in equation 2.17 with respect to x.

ρ(x) =
dP (x)

dx
=

d

dx

(
1− xα0

xα

)
(2.18)

5

2.1. Word Occurrence Frequency

ρ(x) = α
xα0

x(1+α)
(2.19)

Hence, from 2.19, we have:

ρ(x) ∝ x−(1+α). (2.20)

As seen in 2.4, the universe’s growth is related to the growth objects that compose
it by a factor alpha.

If two different objects in the universe are growing independently, the growth of
the universe will be the same as in both objects. Hence, in this case, alpha is equal
to one [12].

ρ(x) ∝ x−2 (2.21)

In the case of the two objects being connected and the growth of both is related,
each event occurs twice, i.e., the growth of the universe is equal to double the growth
of one of the objects. Hence, alpha is equal to two.

ρ(x) ∝ x−3 (2.22)

For the purpose of understanding the error’s behaviour in the system, it is easy
to start by calculating the mean of squares, whose formula is given by:

< x2 >=

∫ ∞
0

x2ρ(x)dx. (2.23)

Since ρ(x) is defined in the equation 2.21 and 2.22 in the cases of α being 2 and 3
respectively, if substituted in 2.23 we observe that in both equations 2.24 and 2.25,
the mean of squares tends to infinity, whatever the value of alpha.

∫ ∞
0

x2x−2dx =

∫ ∞
0

dx = x
∣∣∣∞
0

=∞ (2.24)

∫ ∞
0

x2x−3dx =

∫ ∞
0

1

x
dx = lnx

∣∣∣∞
0

=∞ (2.25)

An infinite < x2 > means that the statistical error will always become too
large as the volume of data increases. In the case of this work, as the number of
words increases the bigger the error becomes. Thus, as it is impossible to work
in the statistical domain due to the sheer amount of data, arises the need for the
construction and transformation of a new geometry space formed by words.

6

2.2. Word Embedding

2.2 Word Embedding

Since it is ineffective to understand the relations between words by their fre-
quency of occurrence in a statistical manner, it is necessary to introduce a different
way of interpreting text. Word Embeddings come into the forefront of this discussion
as techniques of word representation that take into account their intrinsic meaning,
i.e., the closer the connotation of these words is, the closer these words will be in
the geometrical space created.

Mikalov et al. [13] established two new and revolutionary methods that seem
to resonate with Saussure’s hypothesis [9]. The Mikalov et al. [13] methods of
Natural Language Processing (NLP) are unsupervised neural networks that, using
word embedding techniques, interpret the word’s relations within a given data and
assign to each word a specific vector in a vector space. These vectors create a
multi-dimensions space that represents the complexities of the human language.

2.2.1 Artificial Neural Networks

A common feature among the majority of NLP methods such as Word2Vec is
their foundation upon Artificial Neural Networks (NN). NN are structures composed
of simple computational units called neurons that are connected via links, creating
network-like structured inspired by the connections of our brains, thus similar names.
An example of an NN architecture can be seen in Figure 2.2, where the input is
received in the layer z, where it is interpreted and processed before passing on to
the following layers. These ideas were initially proposed by Rosenblatt F. in his
early work in the ’50s. [14]

Figure 2.2: Example of a NN’s architecture.

The basis of NN falls under the idea that information is received from the outside
world by the neuron, in which it is interpreted and processed before producing a
result that is sent to another neuron, repeating the process until there is a final
output with a result. We can simply conceive a neuron as shown in Figure 2.3, where

7

2.2. Word Embedding

the inputs are received, interpreted and transformed in a single output. There are
several inputs (xi) arriving at the neuron, having each one of them a weight (w(i,j))
associated with it, i.e., a real value that expresses their importance to the process.

Figure 2.3: Schematic of a neuron.

Inside the neuron, an operation occurs that can be represented as uj, the sum
of all the r inputs, having in mind their relative weight, as shown in equation 2.26.

uj =
r∑
i=1

wi,jxi (2.26)

A sigmoid function f(ui − τi) is then used to limit the amplitude of the output
yi of the neuron as it shows below in equation 2.27.

yi = f(uj − τj) =

{
0 if uj ≤ τj,

1 if uj > τj.
(2.27)

Being τj the threshold of the specific neuron. Several sigmoid functions can be
used accordingly but choosing a sigmoid function is an important step, as different
functions have different complexities that influence the processing power required to
run the model. Depending on the purpose and the complexity, there can be several
layers of neurons between the input and output layers in the NN’s architecture, and
these are called hidden layers.

2.2.2 Word2Vec

Word2Vec is a method used to create and perfect the vector representation
that gives form to the word embeddings. There are two different approaches to
Word2Vec, in which both receive an extensive text corpus. In Continuous Bag Of
Words (CBOW), the concept of this approach revolves around the prediction of a
word given a context, and in Skip-gram, the prediction focus on the context sur-
rounding a specific word [15]. Can be seen in Figure 2.4 a schematic representing
the idea of these two different approaches to Word2Vec.

Mikolov et al. [16] identified an interesting feature, in these multiple dimensions
spaces where the words are mapped as a function of their relations, words can be
located using simple arithmetics, as they put it ”To find a word that is similar
to small in the same sense as biggest is similar to big, we can simply compute
vector X = vector(”biggest”) − vector(”big”) + vector(”small”). Then, we search

8

2.2. Word Embedding

Figure 2.4: Schematic of the two approaches to Word2Vec. [13]

in the vector space for the word closest to X measured by cosine distance1 and
(...) when the word vectors are well trained, it is possible to find the correct answer
(word smallest) using this method” [16]. This reveals to be an impressive feature of
Word2Vec that offers an interesting manner of interacting with the output data.

2.2.3 The Skip-gram Model

The goal of the Skip − gram (SG) is to predict the context of a given word
and, behind this model, it is the objective of maximizing the average logarithmic
probability.

LSG(S) =
1

T

T∑
t=1

∑
−c≤j≤c,j 6=0

log p(wt+j|wt) (2.28)

Where S = {w1, w2, ..., wi} is the sequence of the words trained, T is the total
number of trained words and c is the length of the training context, i.e., the number
of words that make the interval of context. The conditioned probability p(wt+j|wt)
can be written using the softmax function, a function that converts the number it
receives into a sum of probabilities.

p(wO|wI) =
exp(v,wO

> vwI
)∑W

w=1 exp(v
,
w
> vwI

)
(2.29)

Where W is the number of all the words in the vocabulary trained, vn and v,n,
are the vectors representing w in the input and output respectively, > is the vector
transpose, making v,w> the transpose of the input vector [16].

1Cosine distance or Cosine similarity is a similarity measurement described in subsection 2.3.

9

2.2. Word Embedding

2.2.4 Hierarchical Softmax

Both the Skip-gram Model and the CBOW Model, though revolutionary in re-
lation to the existing ones, had a huge problem, the duration of their computation
time, which put them behind in the moment of choice. To solve this dilemma, as
it is explained in Mnih et al. [17], the vocabulary is structured in a tree-like ar-
rangement that gives more frequent words a smaller distance from the root to their
respective position in the tree. Mikolov et al. [16] goes one step further defining
p(w|wI), he considers n(w, j) to be the jth node of the path from the root to the
word in question, L(w) the length of this path, ch(n) an arbitrary fixer child of n,
σ(x) = 1/(1 + exp(−x)) and JxK to be 1 if J0K is true and -1 otherwise.

p(w|wI) =

L(w)−1∏
j=1

σ(Jn(w, j + 1) = ch(n(w, j))K.v,n(w,j)
>vwI

) (2.30)

This apparently simple change in the architecture of the model has a dramatic
effect in its computation time, outperforming non-hierarchical models by at least
two orders of magnitude. [16]

2.2.5 Negative Sampling

Negative Sampling is an additional technique used by Mikolov et al. [16] to
improve the Skip-gram model. It works by adding to each word of the vocabulary
a small group of words that are unlikely to be present in the phrase in which that
word is present. These lists of words are referred as Skip-gram model with negative
sampling (SGNS) and are defined as follows:

LSGNS(S) = log σ(v,wO

>vwI
) +

k∑
i=1

Ewi∼Pn(w)[log σ(−v,wi

>vwI
)] (2.31)

As it only adds a small number of negative samples in each word, it does not
increase the time of computation and improves the accuracy of this model.

2.2.6 Dealing with Frequent Words

The occurrence of very frequent words in large text corpora creates a discrepancy
in the value of the information of the vocabulary, i.e., the value of a word that
appears several times in a corpus should be less than the value of the words that
appear less often. Mikolov et al. [16] counteracted this discrepancy by subsampling
frequent words using the following formula:

P (wi) = 1−

√
t

f(wi)
(2.32)

Where f(wi) is the frequency of the given word in the vocabulary and t is a
chosen threshold. This subsampling has proven to be a good addition to the model
as it improved his learning rate and accuracy.

10

2.3. Cosine Similarity

2.3 Cosine Similarity

When working with multi-dimensional spaces, measuring the Euclidean distance
is not always a reliable way to perceive the similarity between objects. When the
multi-dimensional space is formed by dimensions that represent words, similarly to
the space created for this work, the use of the Euclidean distance can be misleading.
If two similar words, with different usage frequencies, are distant in a euclidean
manner, they are both similarly oriented in the word space. Thus, making the
usage of the cosine similarity an advantage, because it measures the difference in
orientation.

Figure 2.5: Representation of the angle θ between two objects in a word space.

Cosine similarity between two objects, similarly to the word vectors on Figure
2.5, is defined by the cosine of the angle between them. The formula that describes
the cosine similarity is displayed below.

cos(θ) =
~a ·~b

‖ ~a ‖‖ ~b ‖
(2.33)

The results of equation (2.34) range between [-1,1]. However, in the case of this
work, the cosine similarity is employed in a positive space, shaping the outcome of
the cosine similarity between [0,1].

2.4 Nonlinear Dimensionality Reduction

When working with high-dimensional data like word embeddings, the data vi-
sualization is remarkably complicated due to our inability to perceive more than
three dimensions. Many tried to tackle this problem throughout the years by creat-

11

2.4. Nonlinear Dimensionality Reduction

ing methods that aid in studying these high-dimensional data. One of the paths is
through the reduction of dimensions of the data.

2.4.1 Stochastic Neighbor Embedding

G. Hinton and S. Roweis introduced, in their 2002 paper [18], Stochastic Neighbor
Embedding (SNE) as a nonlinear dimensionality reduction technique. It was a
groundbreaking technique that significantly improved the study of high-dimensional
data. G. Hinton and S. Roweis propose using a Gaussian in each object of the
high-dimensional universe [18]. The density underneath the Gaussian defines the
probability distribution over all the neighbour objects. Assigning the minimization
of the difference between the distribution values in the high-dimensional and the
low-dimensional spaces the goal of this technique.

Later, Laurens van der Maaten and Geoffrey Hinton described this technique
from a physics perspective, imagining each object having springs connecting him
and the remaining objects in the space. Each spring could result in an attractive
or repulsive force on the object, depending on the distance between himself and the
other connecting object in the high-dimensional space. The sum of all the forces
places the objects previously in a multi-dimensional space into a low-dimensional
and more straightforward to interpret space [19].

2.4.2 t-Distributed Stochastic Neighbor Embedding

Due to the difficulty in optimizing the cost function and, as Laurens van der
Maaten and Geoffrey Hinton call, ”crowding problems” [19], they presented a new
technique that aims to overtake these problems.

The authors implemented two improvements to the previous SNE. First, they
used a symmetrized cost function introduced by Cook et al. [20] similar to the one
used in SNE but with simpler gradients. Second, instead of using a Gaussian to
estimate the similarity among the various objects in the low-dimensional space, a
Student-t distribution is used [19].

This improvement to the already revolutionary SNE technique allows for better
visualization of considerably large data while using less computational power.

12

CHAPTER3
Design and Methodology

This chapter’s main objective is to present and explain the steps taken through-
out the work, from data gathering, through the model’s development until the prepa-
ration of the results. In our work, several files were programmed using the program-
ming language Python and some of these files can be found in the Appendices.

3.1 Data Collection

This work aims to understand the overtime geometry evolution of corpora about
economy and finance from different periods; thus, the first step was to gather text
data about the intended topic. In this case, the topic was economy and finance,
focusing explicitly on the European Union data.

As said previously, news articles about finance and the economy are beneficial
to projects like this as they can provide interesting information about people’s per-
spectives about the state of the economy. Hence, the primarily focus was gathering
the most considerable amount of news articles from the top economic and financial
news agencies:

• From the Webhose web page [21], a dataset called ”Financial news articles” was
acquired containing several news articles from the 2015’s period between July
and October. This dataset contains news articles from several news agencies
worldwide, each of them categorized with various labels as the date, news
agency, country of interest.

• Although older, the ”Reuters-21578, Distribution 1.0” dataset [22] was a vital
addition to our database, considering that it brought us a large number of
news articles from 1987. As the name suggests, this free dataset consists of a
total of 10788 documents from Reuters financial newswire.

• The ”Financial News Unprocessed” dataset [23] contains news articles from
Reuters, and The Wall Street Journal collected in June 2017. It is available
for public use.

13

3.1. Data Collection

Besides news articles, it was also essential to gather data from other sources to
widen our dataset. Thus, reports were collected about the European economy from
several EU organizations and the IMF:

• The Annual Reports from the European Central Bank were collected since
1991 as well as all the Economic Bulletins since 2015. The Annual Reports
consist of reports on Eurosystem’s monetary policies and descriptions about
the European System of Central Banks’ tasks and activities. Economic Bul-
letins contain information about the economic and monetary situation in which
the Governing Council policies’ decisions are based.

• With the intent of focusing on the EU’s future and the Euro Zone, the Euro-
pean Commission publishes the Economic Forecasts. These contain economic
outlooks for individual member states as well as for future ones. Economic
Forecasts also include projections about some of the World’s largest economies,
as these economies can affect the EU and the Euro Zone performance.

• The Regional Economic Outlooks published by the IMF discuss economic de-
velopments and prospects for countries of specific regions, in this case, Europe.
It also contains information about the outcomes created by the economic poli-
cies put in place and their effects on the region’s economic performance.

Collected Data
Name Data Type Period
European Union Annual Reports Reports Post-1991
European Union Economic Bulletins Reports Post-2015
European Union Economic Forecast Reports Post-2000
Financial News Unprocessed News Articles 2017
IMF European Regional Economic Outlook Reports Post-2008
Reuters-21570 News Articles Pre-2000
Webhose - Financial News Articles News Articles 2015

Table 3.1: Description of the Collected Data per Type and Period.

The data collected was then divided into periods in order to study the evolution
of the word geometry formed by the model. The periods chosen were intervals
separated by significant events so it is possible to understand the effects of these
events on the data. The events chosen were the turn of the millennium and the
2008’s financial crisis as they were big turning events to the financial sector. Three
TXT files were created, one from each period between the chosen events.

Due to the sheer amount of data collected to be used in the model implemen-
tation, it was not feasible to place it in the appendix. Hence, a permanent online
project was created in GitHub to store the data, making it available to anyone who
wants to use it [24].

14

3.2. Tools and Libraries

3.2 Tools and Libraries

Oftentimes in programming projects, open-sourced toolkits and libraries are used
to facilitate some processes, and this work is not an exception. Therefore, in this
chapter, the tools and libraries are introduced and explained to facilitate their use
throughout the program.

3.2.1 NLTK

The Natural Language Toolkit (NLTK) is an open-source program consisting of
several modules that, along with a straightforward structure, aids in computational
linguistics projects like this one [25]. It incorporates highly useful graphical tools
to display data structures. It is also compatible with Python, a very intuitive and
easy-to-write language.

3.2.2 GENSIM

Gensim is a Python library precious for data analysis because of its quick,
memory-efficient, scalable algorithms for Singular Value Decomposition (SVD) and
latent Dirichlet Allocation (LSA). It is ideal for operating with Natural Language
Processing as it is a prominent package concerning processing extensive text data
in word models [26].

3.2.3 Pickle

Pickle is a useful module that serializes and de-serializes Python objects by
employing binary protocols. This module converts the Python objects and converts
them into a character stream quickly and easily. The pickling and unpickling process
occur without damaging the objects hierarchy, allowing reconstructing the object in
another python script.

3.2.4 Multiprocessing

Sometimes, when programming with complex code, the machine’s processing
power is not enough or is not optimized, delaying the code’s processing. Multi-
processing is a package that grants programmers more control over the processing
power of a given machine. This module is remarkably useful in data processing and
AI projects to enhance the device’s performance to faster results.

3.2.5 OS

So as to interact with the device’s operating system, the OS module presents
several functions that grant the programmer easy access to information or to produce
changes in the device.

15

3.2. Tools and Libraries

3.2.6 RE

The RE module is a helpful tool in searching and manipulating text data. It uses
matching operations to locate strings in the data and provides multiple functions
that allow the simple manipulation of the located string.

3.2.7 Future

The future module is an adaptability layer connecting Python 2 and Python
3. It enables the interpreter to compile some semantics available in futures versions
easily in the current interpreter.

3.2.8 NumPy

NumPy, Numerical Python, is an open-source Python library used to do numer-
ical computing with multi-dimensional arrays [27]. It is a useful tool to use when
working on scientific computing since arrays are the conventional representation
concerning numerical data.

3.2.9 Sklearn

Sklearn, SciKit-learn, is a machine learning library freely available on Python.
It was created using other libraries like NumPy, pandas, and Matplotlib, providing
several supervised and unsupervised learning algorithms.

3.2.10 Pandas

Pandas is a robust, quick, and accessible library to use that allows the program-
mer to store, interpret, and manipulate data. This tool, built upon the NumPy
package, enables manipulating extensive tabular data and times series, useful to
data science projects.

3.2.11 Matplotlib

In order to understand the behaviour of the data, it is useful to visualize it inter-
actively. The Matplotlib library adds an extensive collection of functions to Python
that allows easy and interactive visualizations of data, both static or animated.

3.2.12 Seaborn

Similarly to Matplotlib, Seaborn is a data visualization library for Python. It
is built upon Matplotlib and produces engaging and instructive charts and graphs
with a distinguished interface.

16

3.3. Corpus Cleaning

3.3 Corpus Cleaning

Before feeding the data into the model, it is necessary to clean it, i.e., it is
necessary to remove all the unnecessary content from the corpus. The preprocessing
of the corpus is essential in Natural Language Processing (NLP) in order to construct
a functional model.

The preprocessing of the corpus consists of removing all non-alphabetic char-
acters, such as numeric, punctuation and symbol characters, as well as removing
stopwords. The removal of the non-alphabetic characters is straightforward to un-
derstand as they do not convey meaning to the corpus. However, stopwords are
actual words, so their dismissal is due to their intricate meaning. Stopwords are
the most common words in a natural language, and are words like ”and,” ”but,”
”a,” ”or,” and ”what”. Although necessary in a natural language, they add little
significance to a corpus besides connecting the phrases.

An additional step while preprocessing the corpus is through its simplification,
which can be achieved by a process called lemmatization. The lemmatization process
consists of tagging words according to their morphology and then reducing the word
to its simplest form. For example, the word ”cats”, a noun in plural, becomes ”cat”,
”best”, an adjective, becomes ”good” and ”was”, a verb in the past, becomes ”be”.
Lemmatization is a powerful tool because considerably reduces the size of the corpus,
consequently decreasing the processing time when training the model and improves
the accuracy of the trained model.

For this purpose, a Python file was written in order to preprocesses the raw
corpus to be trained. In the remaining of this subsection, the code will be explained
step by step. The code can be found in full on Appendix A.

Firstly it is necessary to import all the essential libraries to the preprocessing
of the raw corpus. These libraries are NLTK and Pickle, as well as some specific
functions.

Then the lemmatization function was defined as ”lemmatizer”, using the NLTK
function ”WordNetLemmatizer”.

1 lemmatizer = WordNetLemmatizer ()

To aid in the cleaning process, word vectors were created. These vectors are,
”ord”, a vector containing special words that firstly escaped through the cleaning
process but are necessary to the corpus, ”countries”, a vector comprised of country
names, and ”stopW”, a vector containing the English language stopwords.

1 ord_ = [’Europe ’, ’European ’, ’Union’, ’Brexit ’, ’Parliament ’,

2 ’Commission ’, ’Investment ’, ’Single ’, ’Market ’, ’Gulf’, ’War’,

3 ’ECB’, ’Asia’, ’OECD’, ’UAE’, ’NATO’]

4
5 # Country List

6 countries = []

7 with o p e n (’Lists/Countries_upper.txt’, ’r’) as fp:

8 f o r line in fp:

17

3.3. Corpus Cleaning

9 countries.append(line.replace(’\n’, ’’))

10
11 # StopWords List

12 stopW = []

13 with o p e n (’Lists/stopW.txt’, ’r’) as fp:

14 f o r line in fp:

15 stopW.append(line.replace(’\n’, ’’))

So that it is possible to lemmatize the corpus, the tagging of the words is fun-
damental. Thus, two functions where define to execute this function, the function
”tagging” and ”nltk tag to wordnet tag”. The function ”tagging” receives a string
containing a phase, converts the string into a vector including the words on the
phrase with the function ”word tokenize”, using the ”nltk.pos tag” function tags
every word in the vector and ultimately returns the tagged vector. The purpose of
function ”nltk tag to wordnet tag” is to convert the NLTK tags into WordNet tags,
as the ”WordNetLemmatizer” uses WordNet tags instead of NLTK’s.

1 # Tagging function for name removal

2 d e f tagging(phrase):

3 phrase = word_tokenize(phrase)

4 phrase = nltk.pos_tag(phrase)

5 r e t u r n phrase

6
7 # function to convert nltk tag to wordnet tag

8 d e f nltk_tag_to_wordnet_tag(nltk_tag):

9 if nltk_tag.startswith(’J’):

10 r e t u r n wordnet.ADJ

11 e l i f nltk_tag.startswith(’V’):

12 r e t u r n wordnet.VERB

13 e l i f nltk_tag.startswith(’N’):

14 r e t u r n wordnet.NOUN

15 e l i f nltk_tag.startswith(’R’):

16 r e t u r n wordnet.ADV

17 e l s e :

18 r e t u r n None

Subsequently, the function that lemmatizes the sentences is defined with the
name ”lemmatize sentence”. This function receives a string input containing a sen-
tence that is tokenized and tagged with NLTK tags using the ”tagging” function.
Creates a variable ”wordnet tagged” which contains all the words on the sentence
and the respective WordNet tag, and an empty variable ”lemmatized sentence” that
will receive, as the name suggests, the sentences lemmatized. Then, inside a for loop
running on the ”wordnet tagged” variable, the tagged words are simplified and ap-
pended on the empty variable ”lemmatized sentence”, and the ones that do not
have tags are solely appended as they are. This function returns the input sentence
lemmatized.

18

3.3. Corpus Cleaning

1 d e f lemmatize_sentence(sentence):

2 nltk_tagged = tagging(sentence)

3 wordnet_tagged = m a p (l a m b d a x: (x[0],

4 nltk_tag_to_wordnet_tag(x[1])), nltk_tagged)

5 lemmatized_sentence = []

6 f o r word , tag in wordnet_tagged:

7 if tag is None:

8 lemmatized_sentence.append(word.lower ())

9 e l s e :

10 lemmatized_sentence.append(

11 (lemmatizer.lemmatize(word , tag)). lower ())

12 r e t u r n " ".join(lemmatized_sentence)

The corpus must be imported into the program before anything else. Thus,
the file containing the corpus is imported into the ”text” variable. Which is then
tokenized by sentences using the NLTK function ”sent tokenize”.

1 # Open Corpus

2 f i l e = o p e n (’File.txt’, encoding=’latin -1’)

3 text = f i l e .read()

4 f i l e .close ()

5
6 # Tokenize

7 sentences = sent_tokenize(text)

8 text_ = [], trash = []

The cleaning process occurs inside a for loop, running through the vector con-
taining the tokenized sentences. Firstly, the hyphens on the sentence are replaced
by a space in order to prevent words like multi-dimensional to become attached
when the non-alphabetic characters are removed. The sentence is tokenized into a
vector that then passes through three steps. The first removes all the non-alphabetic
characters, the second removes the stopwords and the third removes words smaller
than two characters. A for loop is then introduced to remove all the words that are
not able to be decoded with the ”latin-1” Unicode. Using the ”tagging” function
and another for loop, the proper nouns, NNP, are removed from the text, with the
objective of reducing the corpus size. Finally, the sentences are lemmatized using
the ”lemmatized sentence” function and appended into a variable containing the
clean corpus.

1 f o r sentence in sentences:

2 sentence = sentence.replace(’-’, ’ ’)

3
4 words = word_tokenize(sentence)

5
6 # Removes all the Non -Alphabetic characters

7 words = [word f o r word in words if word.isalpha ()]

8

19

3.4. Model Implementation

9 # Remove StopWords

10 words = [w f o r w in words if n o t w in stopW]

11
12 # Remoce words smaller than 2 characters

13 words = [w f o r w in words if l e n (w) >= 2]

14
15 aux = [], aux_ = [], sent = []

16
17 f o r word in words:

18 if l e n (word) > 0:

19 t r y :

20 word.encode(’latin -1’)

21 aux.append(word)

22 e x c e p t :

23 trash.append(word)

24
25 sent = ’ ’.join(aux)

26 tags = tagging(sent)

27 d e l aux , sent

28
29 phrase = []

30
31 f o r tag in tags:

32 if tag [1] == ’NNP’ a n d tag [0] n o t in countries

33 a n d tag [0] n o t in ord_:

34 trash.append(tag [0])

35
36 e l s e :

37 phrase.append(tag [0])

38
39 phrase = ’ ’.join(phrase)

40
41
42 # Simplify the text

43 phrase = lemmatize_sentence(phrase)

44
45 text_.append(phrase)

46 text_.append(’.’)

In order to use the variables with the clean text and the removed words later,
these variables are saved in TXT files.

3.4 Model Implementation

After cleaning the corpus, the Word2Vec Model has to be generated and trained.
Thus, a Python file was built in which the corpus is prepared to be fed into the model,

20

3.4. Model Implementation

and the model is trained and saved. In this subsection, the code found in Appendix
B is explained.

The first lines of the code contain the imported functions and libraries needed for
the program’s operation, followed by the import of the cleaned corpus into a vector.
This vector is then tokenized using the ”sent tokenize” function that transforms
each sentence in the corpus into a token.

1 # Open Book

2 f i l e = o p e n (’CLEAN_TEXT.txt’, encoding=’utf -8’, errors=’ignore ’)

3 book = f i l e .read()

4 f i l e .close ()

5 p r i n t ("Book loaded!")

6
7 raw_sentences = sent_tokenize(book)

Before tokenize the corpus by words, it is necessary to remove the full stop at
the end of each sentence, consequently, the ”word tokenizer” function is defined.

1 d e f word_tokenizer(raw):

2 clean = re.sub("[^a-zA -Z]"," ", raw)

3 words = word_tokenize(clean)

4 r e t u r n words

The variable ”sentences” is created and filled with the tokenized corpus in a for
loop.

1 sentences = []

2 f o r raw_sentence in raw_sentences:

3 if l e n (raw_sentence) > 0:

4 sentences.append(word_tokenizer(raw_sentence))

The vector ”sentences” has, in each element, the tokenized sentence and is now
ready to be feed into the model. The size of the corpus is an important variable on
the accuracy of the model. Thus, the length of the ”sentences” vector is determined
and printed.

1 # Tokens Counter

2 token_count = s u m ([l e n (sentence) f o r sentence in sentences])

3 p r i n t ("This corpus contains {} tokens.". f o r m a t (token_count))

The extent of the files compiled for this work is presented in Table 3.2.

The model is defined as well as some of its parameters. In the ”sg” parameter,
the Skip-gram model was chosen instead of the CBOW because although CBOW is
faster and provides good results for frequent words, Skip-gram represents well, not
only frequent words but also rare ones. The ”workers” parameter sets the number
of worker threads, so, with the help of the ”multiprocessig.cpu counter” function,
the workers were maximized to the number of cores of the machine in use. The

21

3.4. Model Implementation

Corpus Size
Corpus Period Token Number
Pre-2000 1.124.496
2000 until 2008 780.732
Post-2008 10.542.623

Table 3.2: Number of tokens in each Corpus.

parameter ”size” defines the size of the word vectors. The common values vary
between 100 and 300, and due to the size of the corpus, the size was set as 300. [13]
With a corpus size like the one used on this work, it’s not practical the usage of words
with very small frequencies. Thus, it was decided to disregard all the words that
occurred less than eight times throughout the corpus by setting the ”min count” at
eight. The ”window” variable marks the range of surrounding context words, i.e.,
indicates the range in which the words before and after a given word are included
in its context. This variable was set at eight because large windows usually achieve
further information concerning the realm of the respective word. [28] The final
variable to be established was ”sample”. This variable defines the threshold to
which words with high-frequency of occurrence are down-sampled. The variable
was set at 1e-4, a value within the range of (0, 1e-5) recommended by the package
creators.

1 # Train The Model

2 Model = w2v.Word2Vec(

3 sg = 1, #Skip -Gram

4 workers = multiprocessing.cpu_count (),

5 size = 300,

6 min_count = 8,

7 window = 8,

8 sample = 1e-4

9)

With the model parameters defined, a vocabulary is created with all the words
in the corpus.

1 Model.build_vocab(sentences)

Finally, the model is trained and saved in a folder named ”Trained”. As a result
of the data size and depending on the machine in use, the training process might
take a few minutes.

1 Model.train(sentences , total_examples=Model.corpus_count ,

2 epochs=Model. i t e r)

3
4 # Save The Model

5 if n o t os.path.exists("Trained"):

6 os.makedirs("Trained")

22

3.5. Dimension Reduction

7 Model.save(os.path.join("Trained", "Model.w2v"))

3.5 Dimension Reduction

After training, the model produces a high-dimensional space geometry contain-
ing all the words in the vocabulary. This space has three hundred dimensions,
established earlier while defining the model variable ”size”. In order to visualise the
objects efficiently in the space to process the results, the high-dimensional space suf-
fered a dimension reductions operation. Hence, a Python file was created to progress
the dimension reduction along with its description is present within this subsection.
The code can be found in Appendix C.

On the first lines, the necessary libraries, like Numpy, Word2Vec and TSNE,
were imported. The trained model is imported and its vocabulary is then placed
into a variable called ”vocab len”.

1 # Open the trained model

2 model = w2v.Word2Vec.load("Model.w2v")

3 p r i n t ("Model loaded")

4
5 # Vocabulary length

6 vocab_len = l e n (model.wv.vocab)

7 p r i n t ("Vocabulary length is ", vocab_len)

To aid the dimension reduction process, the vocabulary must be put inside a
matrix, so a matrix is defined with the dimensions necessary to place all words
and their respective tokens. Then, inside a for loop, the matrix is filled with the
vocabulary.

1 # Define Matix

2 word_vectors_matrix = np.ndarray(shape=(vocab_len , 300),

3 dtype=’float64 ’)

4 word_list = []

5 i = 0

6
7 # Fill the Matix

8 f o r word in model.wv.vocab:

9 word_vectors_matrix[i] = model[word]

10 word_list.append(word)

11 i += 1

12 if i == vocab_len:

13 b r e a k

In order to convert the high-dimensional space in only two dimensions, the TSNE
function is defined followed by the creation of the matrix holding the transformed
two-dimensional space. Ultimately, both the matrices are stored for later use.

23

3.6. Word Space Plot

1 # Compress the word vectors into 2D space

2 tsne = TSNE(n_components = 2, random_state = 0, metric="cosine")

3 word_vectors_matrix_2d = tsne.fit_transform(word_vectors_matrix)

4
5 # Save Matrix

6 np.save("Mtx_name", word_vectors_matrix)

7 np.save("Mtx_2d_name", word_vectors_matrix_2d)

3.6 Word Space Plot

With the two-dimensional matrix defined by the code in Appendix C, is now
possible to plot the words in a graph and to interact with the word space. In order
to plot the words, a Python file was programmed and it is displayed in Appendix
D.

The code starts with the import of various functions necessary to run it, like
Numpy, Pandas, Word2Vec, Mathplotlib and Seaborn. The saved model and matri-
ces containing the model vocabulary are also imported.

1 # Open the trained model

2 model = w2v.Word2Vec.load("Model.w2v")

3 p r i n t ("Model loaded")

4
5 # Vocabulary length

6 vocab_len = l e n (model.wv.vocab)

7 p r i n t ("Vocabulary length is ", vocab_len)

8
9 # Open the trained model matrix

10 word_vectors_matrix_2d = np.load("Mtx_name.npy")

11
12 # Open the multi -dimensional matrix

13 word_vectors_matrix = np.load("Mtx_2d_name.npy")

Then, a for loop fills the ”word list” vector with all the words on the vocabulary.

1 word_list = []

2 i = 0

3 f o r word in model.wv.vocab:

4 word_list.append(word)

5 i += 1

6 if i == vocab_len:

7 b r e a k

With the help of the Pandas library, a data frame is created to build a table with
three columns, one for the words and two for the x and y coordinates.

24

3.6. Word Space Plot

1 # Word points DataFrame

2 points = pd.DataFrame ([

3 (word , coords [0], coords [1])

4 f o r word , coords in [

5 (word , word_vectors_matrix_2d[word_list.index(word)])

6 f o r word in word_list

7]

8], columns =["Word", "x", "y"])

To create a plot environment, the context is set at ”poster” with the ”sns.set context”
function, and a figure is created with the ”plt.subplots” function. Then, the words
are plotted with a red marker and the axes defined. Ultimately, the word tags are
plotted with the help of a for loop.

1 sns.set_context("poster")

2 fig , ax = plt.subplots ()

3
4 # Plot the word points

5 ax.plot(points.x, points.y, ’ro’, markersize =15)

6
7 # Defining Axes

8 offset = 1.0

9 ax.set_xlim(m i n (points.x) - offset , m a x (points.x) + offset)

10 ax.set_ylim(m i n (points.y) - offset , m a x (points.y) + offset)

11
12 # Plot the point tags

13 k = 0

14 f o r i, j in z i p (points.x, points.y):

15 corr = -0.05 # correction for annotation in marker

16 ax.annotate(points.Word.values[k], xy=(i + corr , j + corr))

17 k += 1

18
19 plt.show()

This code produces a graph similar to the one shown in Figure 3.1, where the
units of the axes are intrinsic to the word universe and have no relations to the units
of the universe we live in. Based on the concept of distributed representation [29],
each word is represented by more than one axis. In this case, each word is represented
in relation to all the other words, creating a space based on total interconnectivity
among words. This process was a result of the TSNE technique.

25

3.6. Word Space Plot

Figure 3.1: Zoomed section of the word space created with the Post-2008 corpus.

The word spaces created using the models and their two-dimensional represen-
tation are discussed in chapter four.

26

CHAPTER4
Results and Discussion

In this chapter, as the objective of constructing a geometric space based on
natural language text was achieved, the results gathered throughout this master
thesis are here exhibited and debated. The assembled space offers us the possibility
to interact, measure and observe its behaviour through different periods.

The chapter is divided into two sections. The first section presents the data
collected from the high-dimensional space created with the model described earlier.
The second section displays the plots generated with the dimensionally reduced word
space.

4.1 Word Distance

From our multi-dimensional word space, it is possible to measure the words’
closeness through the cosine similarity. The cosine similarity can be obtained using
the function ”similarity” from the Gensim library. This function receives two strings
that must be words present in the corpus vocabulary and returns the cosine similarity
between them.

Since our generated word space places together words that have a similar meaning
or belong within the same topic according to peoples perspective emerged the idea of
measure the distance between the European countries according to that perspective.
This measurement was carried out, comparing the cosine similarity between the
European country names in the corpus during the three different periods of gathered
data.

The similarity results are displayed on the three different periods of collected
data. The Figures 4.1, 4.2 and 4.3 represent respectively, the period before the year
2000, the period between 2000 and 2008, and the period after 2008. The tables
within the figures show a colour gradient to help interpret the similarities between
words. This colour gradient progresses from red, meaning zero similarity between
words and cosine similarity = 0, till green, meaning the cosine similarity = 1 and
the words are entirely similar, i.e., it is the same word.

27

4.1. Word Distance

Figure 4.1: Country distance measured by cosine similarity on the Pre-2000 Period.

Figure 4.2: Country distance measured by cosine similarity on the 2000-2008 Period.

28

4.1. Word Distance

Figure 4.3: Country distance measured by cosine similarity on the Post-2008 Period.

Although with caution, we are able to hypothesise the interpretation of the data
portrayed in the previous figures. Focusing on the idea that all the collected data
derives from financial news and economic reports, the word space construction is
based on the assumption of the people who wrote the data. This implies that,
ideally, our word space portrays a word representation based on the assumptions
about the economy from the people of a specific period. Thus, it is theoretically
possible to evaluate the differences in the cosine similarity between the words and
understand the evolutions in people’s perspective throughout time.

Looking at the figures previously shown, it is helpful to have in mind the events
that took place at the European stage in the last three decades.

Starting with Figure 4.1, with data from the last decade of the twentieth century,
at first glance, it is possible to observe that all the countries belonging to the Euro-
pean Union at this time are fairly close to one another, including the newly joined
members states of Portugal and Spain. Poland, as a Non-European Union mem-
ber at this time, is placed further away from the European Union members states.
Norway and Switzerland, while close, keep a distance from the other countries.

In Figure 4.2, with data from the first eight years of the new millennium, we
can witness that, in general, all countries came closer to each other as the thought
of a unified Europe was a shared perspective among the financial sector. With the
introduction of the Euro, countries like Portugal, Spain and Greece became also
closer to their European neighbours. In 2004, Poland joined the Union and can now
be seen closer to every country. The Non-European Union countries, although still
at a considerable distance, are also closer than before to the Union members and

29

4.2. Space Visualisation

even closer to each other.

In Figure 4.3, with post-2008 data, we can see a severe divergence between
all the countries in the aftermath of the 2008 financial crisis. Even though the
bigger economies like Germany, France, Italy and Spain maintain some closeness,
the distances between the countries are much greater than any period during the
last three decades. The most significant differences can be seen among the Non-
European Union members, as the distances between them and the Union members
increased immensely, alongside the distance between them.

Without jumping to conclusions, as these are preliminary results of an ongoing
work that needs further research, we can just hypothesize regarding this behaviour.

As closer we get to 2008, the closer the countries are plotted, as the European
project grew and consolidated its presence in the financial sector. However, after
the devastating 2008 crisis, the perception was that the European Union was not
so consolidated as people thought. The distance between the countries increased as
the relationship between them soured and internal conflicts arise as a consequence
of the crisis. People’s perspective post-crisis was in general an estrangement among
the European Union member states and a weaker union than before 2008, and the
three figures seem to resemble this divergence.

4.2 Space Visualisation

An interesting way of interpreting the result data is through the plotting of the
two-dimensional reduced word space using the process explained on subsections 3.5
and 3.6.

Due to the limited available memory of the machine used in this work, it was
impossible to create a matrix and to reduce the high-dimensional space with all
the words in the vocabulary. Hence, the vocabulary was reduced to two thousand
words. This helped not only to work with the available memory but also with the
visualisation of the word space once plotted.

This section is broken into three subsections in order to present and discuss the
different periods in which the results are divided.

4.2.1 Pre-2000 Word Space

In Figure 4.4, we can see the representation of the word space created by the
2000 corpus, containing data from the period before the year 2000. The image above
shows the plotting of the words, derived from the word space, in which the words
are represented as red dots. The picture below shows the plotting of the words and
their respective tags.

30

4.2. Space Visualisation

Figure 4.4: Representation of 2000 words from the word space created with the
Pre-2000 corpus. (a) Representation of word without tags and Area X containing
the countries names. (b) Representation of word with tags.

31

4.2. Space Visualisation

Figure 4.5: Area X from Figure 4.4: Zoomed section of the word space, created with
the Pre-2000 corpus, containing the countries’ names.

Although difficult to locate, with patience we are able to discover some interesting
regions on the plot. One of this zones is located on the top left corner of Figure 4.4,
and is displayed on Figure 4.5. This section contains the countries names arranged
according to their similarity. We can observe two more densely packed regions in
the countries area. One, shown in Figure 4.6, contains the countries belonging to
the European Union and the other contains the remaining countries further apart
from the Europe region.

Figure 4.6: Zoomed section of Figure 4.5 containing Europe countries.

32

4.2. Space Visualisation

4.2.2 2000-08 Word Space

With the word space created over data from the first eight years of the twenty first
century, the words were plotted of its vocabulary in Figure 4.7. This figure contains
two graphs, one contains only red dots that represent words for the vocabulary, the
other contains the tags alongside the red dots.

Figure 4.7: Representation of 2000 words from the word space created with the
2000-08 corpus. (a) Representation of word without tags and Area X containing the
countries names. (b) Representation of word with tags.

Similarly to the plots of the pre-2000 word space, the names of the countries
are all grouped in one region. In this case, the area is located on the bottom of
the graph and it is outlined in Figure 4.8. This region can also be divided into
European Union member states and Non-members. A zoomed section, containing
the European Union member states, can be seen in Figure 4.9.

33

4.2. Space Visualisation

Figure 4.8: Area X from Figure 4.7: Zoomed section of the word space, created with
the 2000-08 corpus, containing the countries’ names.

Figure 4.9: Zoomed section of Figure 4.8 containing Europe countries.

34

4.2. Space Visualisation

It is also interesting to note the smaller region on the center top area of Figure 4.8,
depicted in Figure 4.10, containing the words ”uk” and ”exception”. The proximity
between these two words might reveal an abiding account of exceptions in UK’s
economic behaviour towards the remaining European countries. Portraying a long-
lasting rivalry between the United Kingdom and the European Union that eventually
lead to their parting in 2020.

Figure 4.10: Zoomed section of Figure 4.8 containing the word ”exception” and
”uk”.

35

4.2. Space Visualisation

4.2.3 Post-2008 Word Space

Finally, with the word space created by the data from the aftermath of the
financial crisis, the words we plotted from the vocabulary into the graph shown in
Figure 4.11. Similarly to the Figures 4.4 and 4.7, Figure 4.11 contains two graphs
with the representation of the words with and without the respective tags.

Figure 4.11: Representation of 2000 words from the word space created with the
Post-2008 corpus. (a) Representation of word without tags and Area X containing
the countries names. (b) Representation of word with tags.

However, this plot displays a different behaviour then those previously shown.
In this period, the country names are much more sparsely distributed throughout
the plot. As seen in the previous subsection, the contrast in the word space post-
financial crisis shows a severe divergence in the representation of the name of the
countries compared to preceding periods. The region containing the country names,
located at the centre of the graph of Figure 4.11, is plotted in Figure 4.12.

36

4.2. Space Visualisation

Figure 4.12: Area X from Figure 4.11: Zoomed section of the word space, created
with the 2000-08 corpus, containing the countries’ names.

The plots of the reduced word spaces shown in this subsection present a similar
behaviour of that seen in the prior. In which the objects that represent the country’s
names came closer to each other until the year 2008, but after the financial crisis
occurs a divergence between them.

37

CHAPTER5
Final Remarks

This project was set out to build a geometric space based on the automatic
interpretation of text about finance and economy so that the space could be used
to understand the changes in people’s perspective about this topic.

The first step taken was the gathering of the data to be interpreted. For this,
financial news and economic reports were cleaned and preprocessed, as explained in
chapter three. A Word2Vec model was constructed and trained with the gathered
data, creating a multi-dimensional word space. To improve the interpretation of the
high-dimensional space, a dimension reduction mechanism was applied to the word
space, making it into a two-dimensional space.

The geometric space was successfully built, providing us with interesting results
about people’s perspective about the economy throughout the years. It is possible
to gauge that, in both the measurements of the distances and the plot of the word
spaces, there is a severe difference in people’s perspective about the relation among
European countries after the year 2008. During the end of the millennium until
2008, the measured distances between European countries seem to follow a pattern
of approximation. However, suddenly after 2008, there is an abrupt rupture in the
approximation behaviour followed by fast seclusion of every country. This behaviour
of the word vectors is also observed in the plots of the reduced word spaces. The
2008 financial crisis might be to blame for this distancing between countries, but
further research is necessary to link these behaviours to actual events.

All the materials and procedures are available for public use on https://github.

com/ms-bernardo/Geometries-Based-on-Automatic-Text-Interpretation.

Further improvements could be performed in order to enhance the results to
create a more accurate and responsive word space. These include an increase in
data size, specifically on the data before 2008; chose smaller periods of time so more
changes in behaviour can be observed; more thorough cleaning and preprocessing of
the data, so to reduce the vocabulary and increase the model training accuracy.

This work, although preliminary, could pave the way for new and interesting
projects using automatic text interpretation to map the perspectives of people.
These projects can further advance our knowledge concerning the financial sector,
helping economists predict a crisis or enhance mechanisms searching for fake news,
for a more democratic information industry.

39

https://github.com/ms-bernardo/Geometries-Based-on-Automatic-Text-Interpretation
https://github.com/ms-bernardo/Geometries-Based-on-Automatic-Text-Interpretation

In a physics panorama, there are several prospects following this work. With a
constructed space, it is possible to, for example, look for symmetries, that according
to Noether’s Theorem could present us with a conservation law for expanding sys-
tems like our word space, or grant a new mechanism for physicists and economists
to understand the economy’s behaviour.

40

Bibliography

[1] “Ec-iils joint discussion paper series no. 1: Financial crises: A review of liter-
ature,” Economic Policy, CEPR, Nov. 2011.

[2] M. Almunia, A. S. Bénétrix, B. Eichengreen, K. H. O’Rourke, and G. Rua,
“From great depression to great credit crisis: Similarities, differences and
lessons,” Economic Policy, CEPR, 2009.

[3] F. Valencia and L. Laeven, “Systemic banking crises : A new database,” IMF
WORKING PAPERS, Sep. 2008.

[4] M. D. Bordo and O. Jeanne, “Boom-busts in asset prices, economic instability,
and monetary policy,” NBER Working Paper Series W8966, May 2002.

[5] M. Terrones and E. G. Mendoza, “An anatomy of credit booms: Evidence from
micro and aggregate data,” IMF WORKING PAPERS, Sep. 2008.

[6] C. M. Reinhart and K. S. Rogoff, This Time Is Different: Eight Centuries of
Financial Folly. Princeton University Press, 2009.

[7] L. Einav and J. Levin, “The data revolution and economic analysis,” NBER
Working Paper No. 19035, May 2013.

[8] P. Bacchetta and E. van Wincoop, “The great recession: A self-fulfilling global
panic,” American Economic Journal: Macroeconomics, vol. 8, no. 4, pp. 177–
98, Oct. 2016.

[9] F. de Saussure, Course in General Linguistics. London: Duckworth, [1916]
1983.

[10] B. B. Mandelbrot, “An informational theory of the statistical structure of
languages,” in Communication theory: papers read at a Symposium on “Ap-
plications of Communication Theory”, W. Jackson, Ed., 1953.

[11] H. A. Simon, “On a class of skew distribution functions,” Biometrika, vol. 42,
no. 3/4, pp. 425–440, 1955.

[12] J. P. da Cruz, “Emergent behavior in multiplicative critical processes and ap-
plications to economy,” PhD thesis, Universidade de Lisboa (Portugal), 2014.

[13] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word
representations in vector space,” International Conference on Learning Rep-
resentations, Jan. 2013.

[14] L. Saitta, A.Giordana, and A. Cornujols, Phase Transitions in Machine Learn-
ing. Cambridge University Press, 2011.

41

Bibliography

[15] K. V. Kalidindi, “Deconstructing word embeddings,” CoRR, vol. abs/1902.00551,
2019. [Online]. Available: http://arxiv.org/abs/1902.00551, (accessed:
08.11.2020).

[16] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed
representations of words and phrases and their compositionality,” Conference
and Workshop on Neural Information Processing Systems, Oct. 2002.

[17] A. Mnih and G. E. Hinton, “A scalable hierarchical distributed language
model,” Neural Information Processing Systems, 2008.

[18] G. E. Hinton and S. T. Roweis, “Stochastic neighbor embedding,” S. Becker,
S. Thrun, and K. Obermayer, Eds., pp. 857–864, 2003.

[19] L. van der Maaten and G. E. Hinton, “Visualizing data using t-sne,” Journal
of Machine Learning Research, Sep. 2008.

[20] J. Cook, I. Sutskever, A. Mnih, and G. Hinton, “Visualizing similarity data
with a mixture of maps,” M. Meila and X. Shen, Eds., ser. Proceedings of
Machine Learning Research, vol. 2, PMLR, 21–24 Mar 2007, pp. 67–74.

[21] Webhose, Financial news articles, Sep. 2019. [Online]. Available: https://
webhose.io/free-datasets/financial-news-articles/.

[22] Reuters, Reuters-21578, distribution 1.0. [Online]. Available: http://kdd.
ics.uci.edu/databases/reuters21578/reuters21578.html, (accessed:
16.11.2020).

[23] Finance-And-ML, News article and full details dataset. [Online]. Available:
https : / / github . com / Finance - And - ML / News - Article - And - Full -

Details-Dataset, (accessed: 16.11.2020).

[24] M. Bernardo, Geometries based on automatic text interpretation. [Online].
Available: https://github.com/ms- bernardo/Geometries- Based- on-

Automatic-Text-Interpretation, (accessed: 16.11.2020).

[25] E. Loper and S. Bird, “Nltk: The natural language toolkit,” Association for
Computational Linguistics, Jul. 2004.

[26] P. S. Radim Řeh̊uřek, “Gensim – statistical semantics in python,” 2011. [On-
line]. Available: http://www.euroscipy.org/conference/euroscipy2011,
(accessed: 25.01.2020).

[27] T. Oliphant, “Guide to numpy,” Jan. 2006.

[28] O. Levy and Y. Goldberg, “Dependency-based word embeddings,” in Proceed-
ings of the 52nd Annual Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), Association for Computational Linguistics,
Jun. 2014, pp. 302–308.

[29] D. E. Rumelhart and J. L. McClelland, Eds., Parallel Distributed Processing
(Volume I: Foundations). MIT Press, 1986, pp. 77–109.

42

http://arxiv.org/abs/1902.00551
https://webhose.io/free-datasets/financial-news-articles/
https://webhose.io/free-datasets/financial-news-articles/
http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html
http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html
https://github.com/Finance-And-ML/News-Article-And-Full-Details-Dataset
https://github.com/Finance-And-ML/News-Article-And-Full-Details-Dataset
https://github.com/ms-bernardo/Geometries-Based-on-Automatic-Text-Interpretation
https://github.com/ms-bernardo/Geometries-Based-on-Automatic-Text-Interpretation
http://www.euroscipy.org/conference/euroscipy2011

Appendices

43

APPENDIXA
Corpus Cleaning

1 i m p o r t nltk

2 i m p o r t pickle

3
4 f r o m nltk.stem.wordnet i m p o r t WordNetLemmatizer

5 f r o m nltk.corpus i m p o r t wordnet

6 f r o m nltk.tokenize i m p o r t word_tokenize

7 f r o m nltk i m p o r t sent_tokenize

8
9 lemmatizer = WordNetLemmatizer ()

10
11 ord_ = [’Europe ’, ’European ’, ’Union’, ’Brexit ’, ’Parliament ’,

12 ’Commission ’, ’Investment ’, ’Single ’, ’Market ’, ’Gulf’, ’War’,

13 ’ECB’, ’Asia’, ’OECD’, ’UAE’, ’NATO’]

14
15 # Country List

16 countries = []

17 with o p e n (’Lists/Countries_upper.txt’, ’r’) as fp:

18 f o r line in fp:

19 countries.append(line.replace(’\n’, ’’))

20
21 # StopWords List

22 stopW = []

23 with o p e n (’Lists/stopW.txt’, ’r’) as fp:

24 f o r line in fp:

25 stopW.append(line.replace(’\n’, ’’))

26
27 # Tagging function for name removal

28 d e f tagging(phrase):

29 phrase = word_tokenize(phrase)

30 phrase = nltk.pos_tag(phrase)

31 r e t u r n phrase

32

45

33 # function to convert nltk tag to wordnet tag

34 d e f nltk_tag_to_wordnet_tag(nltk_tag):

35 if nltk_tag.startswith(’J’):

36 r e t u r n wordnet.ADJ

37 e l i f nltk_tag.startswith(’V’):

38 r e t u r n wordnet.VERB

39 e l i f nltk_tag.startswith(’N’):

40 r e t u r n wordnet.NOUN

41 e l i f nltk_tag.startswith(’R’):

42 r e t u r n wordnet.ADV

43 e l s e :

44 r e t u r n None

45
46 d e f lemmatize_sentence(sentence):

47 nltk_tagged = tagging(sentence)

48 wordnet_tagged = m a p (l a m b d a x: (x[0],

49 nltk_tag_to_wordnet_tag(x[1])), nltk_tagged)

50 lemmatized_sentence = []

51 f o r word , tag in wordnet_tagged:

52 if tag is None:

53 lemmatized_sentence.append(word.lower ())

54 e l s e :

55 lemmatized_sentence.append(

56 (lemmatizer.lemmatize(word , tag)). lower ())

57 r e t u r n " ".join(lemmatized_sentence)

58
59 # Open Corpus

60 f i l e = o p e n (’File.txt’, encoding=’latin -1’)

61 text = f i l e .read()

62 f i l e .close ()

63
64 # Tokenize

65 sentences = sent_tokenize(text)

66 text_ = [], trash = []

67
68 f o r sentence in sentences:

69 sentence = sentence.replace(’-’, ’ ’)

70
71 words = word_tokenize(sentence)

72
73 # Removes all the Non -Alphabetic characters

74 words = [word f o r word in words if word.isalpha ()]

75
76 # Remove StopWords

77 words = [w f o r w in words if n o t w in stopW]

78

46

79 # Remoce words smaller than 2 characters

80 words = [w f o r w in words if l e n (w) >= 2]

81
82 aux = [], aux_ = [], sent = []

83
84 f o r word in words:

85 if l e n (word) > 0:

86 t r y :

87 word.encode(’latin -1’)

88 aux.append(word)

89 e x c e p t :

90 trash.append(word)

91
92 sent = ’ ’.join(aux)

93 tags = tagging(sent)

94 d e l aux , sent

95
96 phrase = []

97
98 f o r tag in tags:

99 if tag [1] == ’NNP’ a n d tag [0] n o t in countries

100 a n d tag [0] n o t in ord_:

101 trash.append(tag [0])

102
103 e l s e :

104 phrase.append(tag [0])

105
106 phrase = ’ ’.join(phrase)

107
108
109 # Simplify the text

110 phrase = lemmatize_sentence(phrase)

111
112 text_.append(phrase)

113 text_.append(’.’)

114
115 with o p e n ("CLEAN_TEXT.txt", "w", encoding=’utf -8’) as txt_file:

116 f o r text in text_:

117 txt_file.write("".join(text) + " ")

118
119 with o p e n ("REMOVED_NAMES.txt", "w", encoding=’utf -8’) as txt_file:

120 f o r row in trash:

121 txt_file.write("".join(row) + " ")

47

APPENDIXB
Model Training

1 f r o m __future__ i m p o r t absolute_import , division , print_function

2 f r o m nltk i m p o r t sent_tokenize

3 f r o m nltk.tokenize i m p o r t word_tokenize

4
5 i m p o r t multiprocessing

6 i m p o r t os

7 i m p o r t re

8 i m p o r t gensim.models.word2vec as w2v

9
10 # Open Book

11 f i l e = o p e n (’CLEAN_TEXT.txt’, encoding=’utf -8’, errors=’ignore ’)

12 book = f i l e .read()

13 f i l e .close ()

14 p r i n t ("Book loaded!")

15
16 raw_sentences = sent_tokenize(book)

17
18 d e f word_tokenizer(raw):

19 clean = re.sub("[^a-zA -Z]"," ", raw)

20 words = word_tokenize(clean)

21 r e t u r n words

22
23 sentences = []

24
25 f o r raw_sentence in raw_sentences:

26 if l e n (raw_sentence) > 0:

27 sentences.append(word_tokenizer(raw_sentence))

28
29 # Tokens Counter

30 token_count = s u m ([l e n (sentence) f o r sentence in sentences])

31 p r i n t ("This corpus contains {} tokens.". f o r m a t (token_count))

32

49

33 # Train The Model

34 Model = w2v.Word2Vec(

35 sg = 1, #Skip -Gram

36 workers = multiprocessing.cpu_count (),

37 size = 300,

38 min_count = 8,

39 window = 8,

40 sample = 1e-4

41)

42
43 Model.build_vocab(sentences)

44
45 Model.train(sentences , total_examples=Model.corpus_count ,

46 epochs=Model. i t e r)

47
48 # Save The Model

49 if n o t os.path.exists("Trained"):

50 os.makedirs("Trained")

51
52 Model.save(os.path.join("Trained", "Model.w2v"))

50

APPENDIXC
Dimension Reduction

1 f r o m __future__ i m p o r t absolute_import , division , print_function

2 i m p o r t numpy as np

3 i m p o r t gensim.models.word2vec as w2v

4 f r o m sklearn.manifold i m p o r t TSNE

5
6 # Open the trained model

7 model = w2v.Word2Vec.load("Model.w2v")

8 p r i n t ("Model loaded")

9
10 # Vocabulary length

11 vocab_len = l e n (model.wv.vocab)

12 p r i n t ("Vocabulary length is ", vocab_len)

13
14 # Define Matix

15 word_vectors_matrix = np.ndarray(shape=(vocab_len , 300),

16 dtype=’float64 ’)

17 word_list = []

18 i = 0

19
20 # Fill the Matix

21 f o r word in model.wv.vocab:

22 word_vectors_matrix[i] = model[word]

23 word_list.append(word)

24 i += 1

25 if i == vocab_len:

26 b r e a k

27
28
29 # Compress the word vectors into 2D space

30 tsne = TSNE(n_components = 2, random_state = 0, metric="cosine")

31 word_vectors_matrix_2d = tsne.fit_transform(word_vectors_matrix)

32

51

33 # Save Matrix

34 np.save("Mtx_name", word_vectors_matrix)

35 np.save("Mtx_2d_name", word_vectors_matrix_2d)

52

APPENDIXD
Word Space Plot

1 f r o m __future__ i m p o r t absolute_import , division , print_function

2 i m p o r t numpy as np

3 i m p o r t gensim.models.word2vec as w2v

4 i m p o r t pandas as pd

5 i m p o r t matplotlib.pyplot as plt

6 i m p o r t seaborn as sns

7
8 # Open the trained model

9 model = w2v.Word2Vec.load("Model.w2v")

10 p r i n t ("Model loaded")

11
12 # Vocabulary length

13 vocab_len = l e n (model.wv.vocab)

14 p r i n t ("Vocabulary length is ", vocab_len)

15
16 # Open the trained model matrix

17 word_vectors_matrix_2d = np.load("Mtx_name.npy")

18
19 # Open the multi -dimensional matrix

20 word_vectors_matrix = np.load("Mtx_2d_name.npy")

21
22 word_list = []

23 i = 0

24 f o r word in model.wv.vocab:

25 word_list.append(word)

26 i += 1

27 if i == vocab_len:

28 b r e a k

29
30 # Word points DataFrame

31 points = pd.DataFrame ([

32 (word , coords [0], coords [1])

53

33 f o r word , coords in [

34 (word , word_vectors_matrix_2d[word_list.index(word)])

35 f o r word in word_list

36]

37], columns =["Word", "x", "y"])

38
39 sns.set_context("poster")

40 fig , ax = plt.subplots ()

41
42 # Plot the word points

43 ax.plot(points.x, points.y, ’ro’, markersize =15)

44
45 # Defining Axes

46 offset = 1.0

47 ax.set_xlim(m i n (points.x) - offset , m a x (points.x) + offset)

48 ax.set_ylim(m i n (points.y) - offset , m a x (points.y) + offset)

49
50 # Plot the point tags

51 k = 0

52 f o r i, j in z i p (points.x, points.y):

53 corr = -0.05 # correction for annotation in marker

54 ax.annotate(points.Word.values[k], xy=(i + corr , j + corr))

55 k += 1

56
57 plt.show()

54

	Introduction
	Theoretical Concepts
	Word Occurrence Frequency
	Word Embedding
	Artificial Neural Networks
	Word2Vec
	The Skip-gram Model
	Hierarchical Softmax
	Negative Sampling
	Dealing with Frequent Words

	Cosine Similarity
	Nonlinear Dimensionality Reduction
	Stochastic Neighbor Embedding
	t-Distributed Stochastic Neighbor Embedding

	Design and Methodology
	Data Collection
	Tools and Libraries
	NLTK
	GENSIM
	Pickle
	Multiprocessing
	OS
	RE
	Future
	NumPy
	Sklearn
	Pandas
	Matplotlib
	Seaborn

	Corpus Cleaning
	Model Implementation
	Dimension Reduction
	Word Space Plot

	Results and Discussion
	Word Distance
	Space Visualisation
	Pre-2000 Word Space
	2000-08 Word Space
	Post-2008 Word Space

	Final Remarks
	Appendices
	Corpus Cleaning
	Model Training
	Dimension Reduction
	Word Space Plot

