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Abstract

Recently, we have seen a huge growth in the usage of mobile devices, and with this growth,

the data generated has also increased, being in a huge scale, user generated, e.g, photos,

books, texts or messages/e-mails. Usually this data requires a permanent storage and its

respective indexing for users to efficiently access it however, due to the unpredictability

of this data, a concern regarding its indexing starts to raise as it can be hard to predict

labels and indexes capable of representing every possible set of data.

For instance, during a birthday party, users may want to share photos and videos of

this event which can be seen as uploading streams of data to a content sharing system.

This content stream will most likely have no index, unless it is explicitly generated, mak-

ing its retrieval difficult. However, when clustering this stream, as data keeps increasing,

we might, somewhere in the future, be capable of detecting similarities between each

photo (e.g. a guest’s face) and might want to index them. Indices can directly impact a

system’s performance however, there is a drawback from having either too many or too

few indices, posing a challenge when it comes to evolving content.

We propose Chives, a Content-Based Indexing framework, built on top of a content

sharing publish/subscribe system at the edge named Thyme, where we evaluate unsuper-

vised learning in data stream techniques to generate indices. It also offers a content-based

query to automatically subscribe to indices containing similar content, e.g images.

After evaluating our proposal in a simulated environment, we can see that our frame-

work offers a great abstraction, allowing an easy extension, furthermore our implementa-

tion can generate indices from data streams and the indexing follows a clustering criteria,

generating the indices as conditions are met. Furthermore, results show that our clus-

tering quality and consequently its generated indices rely strongly on the quality of the

image discrimination and its ability to extract features representing its face. In Conclu-

sion, more studies should be done regarding this framework as such, our solution is built

in a way where we can exclusively study each component and upgrade it in future work.

Keywords: Content Sharing at the edge, Machine Learning, Unsupervised Learning,

Content-Based Indexing, Computer Vision
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Resumo

Recentemente, tem-se observado um enorme crescimento na adesão a dispositivos móveis

e com este crescimento, tem também aumentado a quantidade de dados partilhados,

sendo em grande escala, gerado pelos utilizadores, por exemplo, fotos, livros, textos ou até

mensagens/e-mails. Normalmente estes dados necessitam de um local de armazenamento

permanente e a sua respectiva indexação de modo a poderem ser acedidos de forma

eficiente por parte dos utilizadores no entanto, dada a imprevisibilidade destes dados,

pode surgir um problema relativamente à indexação dado que poderá ser difícil prever

etiquetas e índices capazes de representar qualquer conjunto de dados.

Por exemplo, durante uma festa de anos, utilizadores poderão partilhar fotografias e

vídeos deste evento que poderá ser também interpretado como um upload de dados em

stream para um sistema de partilha de conteúdo. Esta stream de dados, muito provavel-

mente não terá nenhum índice capaz de o descrever, tornando difícil a obtenção deste

visto que não existe representação semântica desta. No entanto, ao agrupar esta stream, à

medida que os dados vão crescendo, poderemos, algures no tempo ser capaz de detectar

semelhanças entre cada fotografia (por exemplo. a cara de um convidado) e podemos

querer indexar. Índices podem causar um impacto directo sobre o sistema, no entanto o

inverso pode acontecer quando existe índices em défice ou em excesso, apresentando um

desafio acerca de dados evolutivos.

Nós propomos uma framework de indexação baseada em conteúdo, construído por

cima de um sistema de partilha de conteúdo que usa um sistema de Publish/Subscribe na

edge denominado Thyme, onde avaliamos técnicas de aprendizagem não supervisionada

em data streams para gerar dinamicamente índices.

Depois de avaliar a nossa framework, conseguimos concluir que esta oferece uma boa

abstração, facilitando a sua extensão, para além disso a nossa proposta permite gerar

índices quando as condições definidas para o clustering são respeitadas. Para além disso,

os resultados demonstram que o clustering realizado pelo nosso algoritmo dependem

fortemente da qualidade de discriminação de imagens e das características obtidas por

este discriminador em relação às faces. Concluindo, mais estudos devem feitos em relação

à framework, como tal esta foi construída de modo a permitir uma rápida e fácil extensão
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para futuros melhoramentos.

Palavras-chave: Partilha de conteúdo na edge, Aprendizagem Automática, Aprendizagem

não supervisionada, Indexação baseada em conteúdo, Android, Computer Vision
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1

Introduction

1.1 Context & Motivation

Looking at past years, we have seen an incredible technological evolution. Mobiles are

now as powerful as computers available some years ago and we reached to a point where

computation has become ubiquitous. Following this evolution, users have also become

closer and closer to these technologies, up to a point where almost everyone has a mobile,

a computer or a wearable.

In 2018, 2.9 Billions of users worldwide were using smartphones and this number

was expected to increase [58]. Figure 1.1 shows mobile users worldwide from 2016 to

2021, plus forecasts regarding the following years.

This technological synergy led to the implementation of brand new services and ap-

plications with the main objective of trading their services for personal information. The

Internet of Things (IoT) has gained popularity in such a way that we can see IoT-related

technologies deployed in public places or even in our homes. These systems are usually

used for information gathering or conditional computations, e.g. if certain data changes
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Figure 1.1: Number of smartphone users worldwide from 2016 to 2024(forecast).
Adapted from [58].
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CHAPTER 1. INTRODUCTION

beyond a defined threshold. Furthermore, Social media are a trending example, where

images are constantly being published, generating a huge amount of visual data where

users play a huge part in its production.

All these systems are constantly generating data while attending to data retrieval

requests for various reasons. This raises a problem for centralized services: as the amount

of data increases, it becomes more difficult to find the requested data due to the increasing

searching space.

To improve the searching of content, systems use indices. An index is a value used

for labeling a certain piece of data, providing a fast and simple method to get to the data

itself, as now we only need to know the value used for the index. Indices are used in most

systems as they speed up all searches, and decrease computation time, however misusing

them may do the exact opposite.

1.2 Edge Computing

Mahadev Satyanarayanan defines Edge Computing as "a new paradigm in which substancial

computing and storage resources-variously referred to as cloudlets, micro datacenters,

or fog nodes-are placed at the Internet’s edge in close proximity to mobile devices or

sensors." [64]

Edge computing proposes an infrastructure with a higher proximity to the user in

mind. This can be achieved by placing intermediate computer resources at the edge of

the network [27]. This proximity is of big importance as it can reduce infrastructure’s

overall latency by two means. If the edge server is able to handle some of the (less

powerful) tasks, it can attend to the user’s request, hence reducing network hops and

reducing user request travel time. If the edge server is not able to handle a more powerful

request, it then redirects the request to the main server. This approach allows the edge

servers to answer the less powerful requests, decreasing the network congestion directed

to the main server, hence reducing latency in resolving these requests [25].

However there are also challenges that must be taken into consideration. These chal-

lenges include overall management, security [64], resource limitation and programming

abstractions.

Regarding the data and programming abstractions, it comes a challenge in which

server should handle a request in order to guarantee as low latency as possible but also

the optimal and most accurate response. For instance, to endorse privacy, it may be good

idea to process data right at the edge and then send the result to the core server, but if this

processing requires heavy computations we need to question whether or not it should be

done instead at the core. Another question we can make is whether or not a less expensive

computation should be done instead in order to guarantee a fast response even if it causes

a less optimal result.

Resource limitation comes from the edge infrastructure and must be carefully en-

dorsed since they are the main distinction between the main server and its edge. This

2



1.3. PROBLEM

creates, specifically for mobile edge computing, more aspects to consider whilst plan-

ning a system under this paradigm. There is a trade-off between resource saving and

infrastructure latency.

1.3 Problem

Our aim with this thesis is to define and implement a new framework for content-based

image retrieval capable of generating indexes automatically as needed.

Let us assume a common scenario like a social event, for instance, a birthday party.

During the event, users will produce photos and share with other users using an arbitrary

content-sharing system. These photos can be seen as a data stream that will be submitted

continuously and might represent distinct scenarios (e.g. a birthday party or a concert)

and distinct people that may not be known beforehand, making infeasible to the system

to index it. With the ongoing of the event, users might want to retrieve content shared

from the other users, however they will not be able to efficiently retrieve it as the content

is not indexed.

This can be avoided since, as content keeps being published, the size of this data

increases and may begin to present some patterns, e.g, several photos containing a new

party guest that could arrive. These patterns would allow the content to be grouped,

using similarity metrics, increasing its size as more similar content is published.

These groups would then increase into a point where not only it would be recom-

mended to index, but the system could also make assumptions about the label to assign

it to, for instance, using the above example, it could assume the new guest’s name.

During our research, we found work on dynamic indexing [35, 41] and on content-

based indexing applications [47, 74] however, to the best of our knowledge, no system

was found that dynamically generates content-based indices with little to no knowledge

regarding the data stream.

1.4 Proposed Solution

We propose a Content-Based Indexing framework, built on top of a content sharing pub-

lish/subscribe system at the edge named Thyme, which uses the unsupervised learning

clustering nature to offer a novel data retrieval framework.

This system will receive data and, using unsupervised learning, group the content

based on a similarity metric. For this thesis we will focus on images of faces, thus meaning

that each cluster will contain similar faces.

The system will also keep track of each cluster, evaluating if it meets certain conditions

and indexing in case it does, allowing a dynamic indexing of the uploaded content.

For the index value the system will evaluate the content inside the cluster and, using

a popularity heuristic, generate a label capable of representing the content inside of it.
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Furthermore, this system will offer two efficient and distinct content-retrieval meth-

ods:

• Semantic Based Retrieval which receives a index and returns the content being

represented by that value.

• Content Based Retrieval which receives an image and returns to the user images

considered similar.

1.5 Challenges

Regarding our solution there are several challenges that must be faced:

1. How can we efficiently extract facial features?

2. How can we group images based only on their similarity?

3. How do we index the result of the grouping, so a user can retrieve the content, let it

be using content-based search or semantic?

4. How can we dynamically index a cluster?

There are also some extra considerations that needs to done regarding some challenges.

Regarding the second point, we must also consider two aspects:

• Since there is initially no shared content in the system, we must consider strategies

that can evolve from a state where no data was shared yet.

• Due to the features of the system, data will be published continuously, hence strate-

gies considering data streams are important for the efficiency of the implementation.

Finally, being this system implemented over Thyme, another challenge raises as this

framework is implemented with the edge computing paradigm in mind, thus providing

a non optimal environment for most of the algorithms used for the above mentioned

challenges.

1.6 Contributions

With this dissertation, our expected contributions would be as follows:

• Implementation of a content-based indexing system, located at the edge capable

of generating indexes for content as needed whilst providing two distinct query

methods.

• A comparative study between different feature extractors and clustering algorithms.

• Performance evaluation of our proposal, namely the index generation and similarity

between content.
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1.7. DOCUMENT OUTLINE

1.7 Document Outline

The remainder of this document is organized as follows. In Chapter 2 we introduce the

major areas of interest regarding the context of this thesis and state-of-the-art implemen-

tations of technologies regarding those areas In chapter 3 we make a brief description of

Thyme [69] and Oregano [63] which are the building blocks for our solution. In chapter 4

we deeply describe our proposal, beginning with an overview of the framework and how

to extend it, and the workflows for each agent intervening in the system, followed by a

description of the designed architecture to attend this problem and our contributions. In

chapter 5 we describe the tests done to validate our solution and conclusions drawn from

these validations. We end the document with conclusions drawn from this thesis and an

enumeration of future work points in Chapter 6.
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2

State-of-the-Art

The purpose of this chapter is to point out relevant concepts, implementations and similar

work regarding this thesis. For the proper development of our solution, we will approach

each problem with research done regarding that area. We will start by presenting research

done regarding Face Detection and Feature Extraction techniques at section 2.1. Next

we will describe and summarize our main problem regarding the content-based image

retrieval and its indexing in Section 2.2, ending this chapter with a description of related

work in Section 2.3 and concluding remarks in Section 2.4.

2.1 Face Detection & Feature Extraction

For this thesis, since the case study will be focused on image retrieval (more specifically

images with faces), the extraction should result in facial features. In order to successfully

extract these features, it is necessary to first detect the faces. After correct detection of

the faces, it is then necessary to extract descriptive, comparative values from these.

Regarding our system, we can either do this task at the edge server or at the mobile

devices themselves. This task is required both when the user publishes new content and

when it queries based on content. When the user publishes new content, it is expected

from the system to store it and share between other users, therefore assigning this task at

the mobile level would require each device to upload the content plus its features. This

increases network load and may not present any improvement to the overall system at all.

Moreover, assigning this task to the mobile devices during queries would bring several

improvements to the whole system, including:

Privacy Enforcement: The image used for the query would never be uploaded to the

edge node but instead only the resultant features extracted from it. This would ensure

that other privacy-sensitive content would not be submitted.

Increase availability: Assigning these tasks to the device would decrease the number

of operations done at the edge and the size of the data to upload, thus decreasing the time

necessary to attend the request and increasing server availability.
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2.1. FACE DETECTION & FEATURE EXTRACTION

However this would bring a major challenge to our solution, falling inside the re-

source limitations and management of a mobile device as it forces the algorithm to be

as lightweight as possible. Furthermore, assigning this task to the devices may increase

operation time due to its limited resources, thus increasing query’s overall time. These

challenges could be solved when assigning this task to an edge server, but would cause

an overall latency increase, since the edge would now need to do a lot more operations to

attend a single request.

In this scenario, if the algorithm is too heavy, it could also be interesting to implement

an hybrid solution, allowing more powerful devices to do the extraction locally whilst

not making mandatory for less powerful cellphones.

Regarding the process, we can divide this task into two main stages: detection and

feature extraction. These stages represent two common computer vision problems and

their proposals have been increasingly machine learning algorithms.

2.1.1 Machine Learning

In this section we introduce Machine Learning and some important concepts regarding

this area as it will be an important branch for our solutions. The following content are

mostly adapted from [9, 44, 53, 56].

Machine Learning is a branch of computer science that focuses on building systems

or algorithms that can improve with the collection of more data or by past experience.

Machine Learning shines by its autonomy. It allows us to solve problems where we do

not have, or do not want to make, an algorithm but can compensate with data, both

quantitatively and qualitatively.

Looking at our scenario, we struggle to implement an algorithm that is capable of

grouping images by their similarity and even if we find a good approximation, we know

beforehand that it would be computer expensive. However we know that its core func-

tioning will be to, as data is received, detect relevant features and then search for any

group that contains similar features.

However, in order to effectively formulate a machine learning problem, [44] exposes

three main issues that must be considered:

• Which task must be performed?

• How should we evaluate the performance of the system, so we can compare each

solution?

• What data do we have?

Taking a closer look to our problem, these questions would be answered as follows: The

task would be to cluster content by its similarity, thus allowing to return the cluster as

a content grouping. Regarding the evaluation of our learner, we will need to use cluster

specific metrics, more details in Section 2.2.4. Regarding the existing data, initially
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it would be none but, with continuous uploads from the users, this would gradually

increase.

As we can see from the questions mentioned earlier, machine learning can have ap-

plications for a diversity of problems. Each task, can have different approaches based

on the expected result and/or the problem analysis. For instance, in our scenario we

could, from the same problem, do other two tasks. We might want to know exactly if

an arbitrary image is similar to another given image, thus expecting either a “right” or

“wrong”. Alternatively we might want to know how similar the images are.

To endorse each problem in Machine Learning, different algorithms and approaches

have emerged. We can split these algorithms into two main groups [53], following we list

these groups and briefly describe each.

Supervised Learning A data set is provided and their respective classification. The

goal of this type of learning is to, whilst training, for each pattern learns how to provide

the best classification and then use the classifier to determine the classification of the

unknown data.

Unsupervised Learning uses a data set without any classification. The objective of this

technique is to find similarities between the given data, resulting in several clusters each

with as much similarities as possible. More on clustering in Section 2.2.2. This learning

process receives a structure of the data unlabelled, and adjusts a model based only on

the data itself. Since labelling is not expected in this learning paradigm, unsupervised

learners do not consider them. The results of this model often expose interesting relations

between the data, being some capable of human interpretation, thus allowing interesting

results. However, as data does not have any label, the traditional evaluation methods can

not be used to evaluate the learner’s performance and the quality of the model since it is

not possible to measure the error with reference to known labels [56]. For our thesis, we

will focus solely on this type of learning as it will be the one used in our strategies.

Conclusively, machine learning can be used for a wide variety of problems, however,

due to the high amounts of data processing done by machine learning algorithms, two

concerns emerge regarding its usage. First we might need an enormous data set in order

to guarantee more accurate solutions, requiring information gathering before engaging

the problem. For some problems, this requirement can be mandatory. Second, since, as

mentioned, these algorithms require high data processing, it might be needed a lot of

computer resources. Although some algorithms offer optimizations regarding this issue,

they always eventually converge to this need in order to process the data in less time and

more efficiently.

However, data is being generated continuously in huge amounts. It is estimated that

in 2025, 175 zetabytes of data will the be created worldwide [78] (more data in Figure

2.1).
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Figure 2.1: Data generated worldwide from 2010 to 2022 (forecast). Adapted from [78]

Furthermore, all systems gradually evolving at a fast pace [29], thus enabling a faster

processing of the data. With this increase, not only machine learning is slowly becoming

more and more accessible but is also becoming more useful. This led to such a huge

increase in its popularity that nowadays its hard to find systems not using this technology

to offer a better user experience.

2.1.2 Features

When tackling a machine Learning problem it is often practical to process the input data

and convert them to a new set that might facilitate the original problem [15] This new

set of data can also be viewed as a set of features, and should not be confused with its

computer vision counterpart as in Machine Learning we describe features as a simple,

measurable, data unit, and are usually compiled to be represented as a vector, where for

Computer Vision it usually represents a new piece of information regarding the content

of an image or part of it, let it be a human-readable value (for example a color) or a

numerical, less readable value (e.g an eigenvalue).

Being our thesis focused on images with faces, it is important to implement a process-

ing stage that can rewrite our input to a set of features that can be fed to our machine

learning system. For instance, when interpreting an image, we can process it, using a

computer vision algorithm, to look for features in the input images and then transform

the resulting features into a set of data that can later be used by our machine algorithm.

Furthermore, when processing an image of a face other, more specific, features come to

mind that can be used as a good descriptor, namely the eyes, mouth, nose. In the fol-

lowing sub-sections, we will describe procedures and adopted techniques in the fields of

computer vision to aid our processing stage for extraction of these features, thus allowing

the transformation of our images into data that can be analysed by our machine learning

system.
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2.1.3 Face Detection

When an image is published or used as a query, its content needs to be reduced into

identifiable faces, which can be done instantly and almost effortless by a human but the

same does not apply to describing an algorithm with the same objective. For that we need

to use algorithms capable of detecting any faces existing in an arbitrary image, falling

inside a computer vision problem. Since this algorithm is crucial for reduction of the

image, we need to use robust algorithm, capable of identifying, in most cases and under

any conditions let it be face rotation or distance, the correct faces whilst maintaining a

low computational power requirements.

During our research we found several classifiers from whom we will list and describe

some relevant discoveries.

For feature based detection methods, we found Haar Classifier and LBP Classifier that

are lightweight but present some issues, e.g, they might not detect rotated faces affecting

the overall results of the system. However, some proposals were also found, offering an

upgrade to these algorithms by making them rotation-invariant[8, 54].

Another popular technique discovered is the Cascade Classifier [76].

The Cascade Classifier [76] is a machine learning approach for face detection, which

uses a ensemble method named Adaptive Boost, or AdaBoost [32]. This approach was

rapidly improved to a faster and more robust face detection algorithm [77].

During our research, we discovered available state-of-the-art implementations for

these three algorithms using the Open Source Computer Vision library (also referred as

OpenCV) [1]. OpenCV is an open source, cross-platform computer vision and machine

learning library [1] that offers several optimized algorithms for these areas and can help

improving the development of our solution with its Java [40] and Android [2] interface.

Alternatively to these algorithms we can make use of Deep learning, which made

huge leaps in the computer vision area. Deep learning is a branch of machine learning

designated to every model containing layers of nonlinear transformations [45] until the

final, output layer. These layers apply consecutively, meaning each nonlinear transfor-

mation apply to its previous layer, allowing the discovery of new representation of the

data. This makes deep learning a broad concept which can be used for any "traditional"

machine learning method, let it be supervised or unsupervised.

However, due to this adaptability, these models can easily result in overfitting, which

happens when a model, while learning, tries to adapt too much to data, thus being

evaluated in training by a low error value, but as soon as new data appears (in example

when testing with new data) it presents poor results due to this over-adaptation. This

should be avoided and in these techniques the best way of preventing is by using data

that can represent the universe as much as possible, leading to a huge amount of data to

be processed which, for more limited systems, might not be feasible to implement.
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However, some pre-trained deep learning models are available online which can re-

move some complexity to our system. During our research we found the following soft-

ware packages:

• Deep Learning For Java (DL4J) [3] is an open source, deep learning library written

in Java [40], which allows us to compose deep neural nets from various shallow

nets.

• TensorFlow [4] is an end-to-end open source platform for machine learning. It

offers several state-of-the-art implementations and tools. It also offers a lightweight

mobile-driven variant which allows the deployment of pre-trained models.

We also found three proposals: Cascade CNN [48], Multi view Face Detection [31] and

R-CNN [20], however none of the software packages appeared to offer any available tools

or modules that meet our problem requirements, thus making infeasible the use of deep

learning in our solution.

In conclusion, deep learning allowed the creation of several new proposals using

Convolutional Neural Networks that outperformed the traditional methods in computer

vision problems, however, it is usually resource expensive to train the models, thus mak-

ing infeasible its use without a state-of-the-art model. This makes the Cascade Classifier

our possible choice as the face detection algorithm.

Being, as already mentioned, the face detection at the mobile level a big upgrade to

our system, we researched and also discovered a library named Machine Learning Kit [55]

developed by Google [5] which offers face detection and other machine learning related

operations at the mobile level. However it is important to mention that, despite being

possible to do face detection at the mobile level, it is still required to implement one at

the edge level since it is still necessary for the edge to do the feature extraction by himself

when content is published. This makes the openCV [1] library, a more interesting choice

as it may reduce aleatory inconsistencies between both implementations.

2.1.4 Feature Extraction

After the images are reduced, the features can then be extracted using image descriptors.

Image descriptors allow the comparison between each image using characteristics such

as colors, textures and shapes [24, 72].

After some research, it was found some experimental comparisons [24, 38] between

various image descriptors and combination techniques. These comparisons point out

some aspects regarding this topic.

Firstly, color histograms tend to present relatively good results by average, further-

more they do not require high computational power in order to effectively perform the

algorithm. However, due to its focus on the image colors, this descriptor can perform

poorly with gray scale images, plus it can bring false positives and negatives when images

present the same color spectrum but different shapes or vice-versa [24]. Furthermore,
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color histograms can be, at the cost of higher computational power requirements, be sur-

passed by the local image descriptors [24]. Some popular local features are SIFT [51],

SURF [11] and ORB [61].

Secondly, the accuracy of the results can be improved by combining features extracted

from several image descriptions [24, 38].

During our research, we also discovered a texture-based image descriptor named Local

Binary Pattern[37, 79]. This algorithm got its attention because it was also mentioned in

facial features extraction.

For our thesis, we will focus mostly in comparing algorithms available using the

openCV [1] implementations to aid our development. This evaluation should be prior as

it is connected to every other part of the clustering processing, meaning that these results

may also affect the system overall results.

2.2 Content-Based Data Retrieval & Indexing

Regarding this topic, for this thesis, we want to focus our research mostly in state-of-

the-art implementations of algorithms and systems created for both Content-based data

retrieval and Indexing. This allows an increase in productivity since it allows us to refrain

from implementing all algorithms and systems necessary for the implementation of our

solution.

In order to better understand our problem, we will split it into content-based data

retrieval and indexing of the content. For the former, we need to implement a system

capable of evaluating a specific set of features and group them by their similarity which

must be reflected to the user as facial similarities. For the latter, we need to deliver to

the user the result of its queries as images. Furthermore, it is important to generate new

indexes as a content group starts to increase in size in order to allow a dynamic indexing

of content.

2.2.1 Content-Based Retrieval

When published content is unknown and indexes have not been generated beforehand,

there should be a way for the system to group this content, so it can later automatically

label this grouping and generate the index. Furthermore, these content should still be

available for users to request it via content-based searches, i.e., it should be possible for

the user to obtain those images as a result of another image he queried.

However, there are some conditions that must be mentioned beforehand. At start, lit-

tle to no data exists in the system which should not be an issue to the system and in worst

case scenario, affect initial responses under the premise of further improvement. Fur-

thermore, we need to ensure that our clustering algorithm is capable of handling a large,

continuous sequence of data and still offer improvement in an evolutionary paradigm.
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A good approach for this system would be to use the clustering methods provided by

unsupervised learning as they naturally offer content grouping by comparison.

2.2.2 Clustering Algorithm

As mentioned in section 2.1.1, clustering algorithms can be classified as unsupervised

learners. Clustering acts as a classification over data with the main purpose of agglomer-

ating, thus allowing further learning from the resultant clusters [81]. Its agglomeration

then returns clusters with the premise of holding content that must be similar as much as

possible [81]. The opposite also applies: content that does not belong in the same cluster

must be as different as possible [81].

Clustering requires both an algorithm specification and a similarity function. The sim-

ilarity function is of big importance, since it is the responsible for the data agglomeration

and distinction between each cluster. These functions can be divided by its comparative

primitive: distance or similarity.

Regarding the algorithm specification, several have emerged each with its own objec-

tives and properties being the most popular the K-means which belongs to the partitional

clustering group. This group has the sole objective of partitioning data into K clusters,

which is usually assumed and not predicted. These clusters represent a disjoint set and

can be graphically identified as spherical.

K-Means [36]: Its main objective is, given a K value which represents the number of

clusters to be created, to generate clusters with the average proximity between each

respective point as high as possible. In other words, K points are chosen as the centroids

of the clusters, then a non assigned point is assigned to its closer centroid, thus updating

it to the mean distance between its points. After this update, this process is repeated

until all points are assigned to a cluster.

This algorithm became very popular due to its utility, simplicity and performance. It

offers a good overall behaviour and its usually enough to fulfill the desired tasks, however

it can be naive, thus bringing several limitations. These limitations include its difficulty

in detecting and protecting from noisy data, its dependency in the initial assignment of

the centroids [23] and variance in its final result, since this algorithm depends on the

initial assignments of the centroids which is randomly defined.

In an attempt to solve some of these limitations, alternatives to the classical k-means

have appeared.

A strong alternative to this algorithm is the model-based algorithm SOM. Model-

based clustering focuses on selecting a model for each cluster and measure its best fitting,

keeping the best one [81].
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Self-Organizing Maps(SOM) [42]: Self-Organizing maps are an artificial neural net-

work which uses competitive learning to assign and adjust the weight to its output neu-

rons. The idea behind SOM is to find and build a mapping with reduced dimensions

from the input data [81] making them particularly useful in data visualization as they

can reduce the dimensions of data while keeping their topological structure, usually gen-

erating a uni or bi-dimensional map however, as mentioned, this learning algorithm can

also be used as model-based clustering algorithm as this mapping also groups similar

data together [23].

Another strong candidate for our problem is the popular Density-based algorithm,

DBSCAN.

Density-Based algorithms try to formalize our perception of a cluster and what we

trivially identify as noisy data [28], generating clusters by evaluating the connection

between several points [33] and density between each.

DBSCAN [28]: This algorithm tries to automatically separate the data by analysing

which points are close enough to be considered in the same cluster. This procedure

allows the cluster to grow in any direction as long as the density allows to, thus allowing

the existence of clusters with arbitrary shape and an innate capability of detecting noisy

data[23].

Unlike k-means, this algorithm does not require beforehand the number of clusters

we wish to separate the data into. However, this algorithm does require two parameters:

Eps and MinPts[28]. To better explain these parameters let us assume two points p and q.

Eps denotes the max distance between p and q which we can consider in the same cluster,

if two points have a distance equal or lower to this value, we can consider them density-

reachable. It is important to mention that even if p and q have a higher distance than eps,

they can still be in the same cluster as long as there is a point s which is density-reachable

by both. MinPts denotes the minimum points required to be in the Eps radius of point p

in order to be considered core point.

Luckily both parameters offer methods of achieving an optimal value beforehand by

using trivial operations. For MinPts it is set by default to 4 as for the Eps it is advised to

generate a set of values for each point with its distance to the k-th nearest neighbor, being

k the value chosen as MinPts, then sort this set in descending order and generate a graph.

The optimal result is the first point inside the first “valley” [28].

This algorithm can be a great choice, however, due to its heavy computational require-

ments, it can be very time consuming for larger data sets [23].

Conclusively, algorithms requiring a pre-defined number of clusters might become

troublesome, thus reducing our choices to both SOM and DBSCAN.
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However, these algorithms are not tailored for a data stream environment, thus mak-

ing the application of these algorithms to our problem infeasible. Luckily, some clustering

algorithms were built in order to allow clustering in such a restrictive environment.

2.2.3 Clustering in Data Streams

In order to ensure the clustering properties in this environment we need to use algorithms

tailored for data-streams.

These algorithms offer new features to the basic clustering, ensuring efficiency and

correctness in a model where the input is a continuous flow of data of data[13, 71]. These

features include time window, and learning approach[57]. During our research, it seemed

these terms did not have an agreement on the names[57, 71], therefore we will refer to

them as mentioned earlier. Following we will describe each feature plus the differences

between each strategy regarding them.

Regarding the time window, there are four/five different window models. The two

most common are Landmark and Sliding-window[57, 71]. The former selects the whole

data received giving it as input to the model at the time of training. This data is separated

and stored as a landmark A landmark summarizes all data received within a certain

period (which can be either time or a specific entry number). Using this approach no

data is discarded and all is equally important, making old data no different from recent

data. This approach can be naive when applied to a data stream, since data streams can

suffer concept drifts. When this is true, some strategies can be applied, e.g, using a small

window size to store the landmarks [57, 71].

The latter, when processing data uses a window of size N with a FIFO structure

meaning recent data is considered the first element in this window. N represents the most

recent data since the last model update, causing data falling out of this window to be

considered, outdated and usually discarded. This makes the window size very important.

Smaller window sizes requires less computational resources but may not contain enough

data or may not contain enough data to properly simulate the universe, leading to over

fitted models and returning worst results [57, 71]. Bigger window sizes may require more

computational resources but ensure better models. However, if the size is too large there

are cases where the accuracy of the model decreases. There are some proposals that offer

dynamic size to these windows thus allowing a better adaptation to the system.

Regarding the learning approach, it can be either Incremental or Two-phase [57].

Incremental approaches update every time new data arrives, thus incrementally updating

its model. Two-phase approaches separate the learning process into two parts. The first

part, receives the data submitted and abstracts it, adding the result into memory. The

second is triggered when a user requests the system, and will update the model with the

content that was saved in memory [57].

Algorithms with state-of-the-art implementations are listed in Table 2.1. A summary

about each, excepting UbiSOM [67] can also be found in [33, 57, 71].
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Table 2.1: Algorithms grouped by clustering method adapted from [33, 71, 57].

Algorithm Method Clustering Algorithm

[7] Clustream Hierarchical K-means
[43] ClusTree Hierarchical K-means/DBSCAN
[17] Den-Stream Density DBSCAN
[21] D-Stream Grid -
[67] UbiSOM Model SOM

Looking at our problem, being infeasible to predict the number of clusters existing in

our ever increasing data set, algorithms requiring this parameter might present some is-

sues, thus making K-means derivatives a non optimal choice. However several algorithms

can still fit our need and cluster shapes are not known beforehand, hence requiring a

more experimental comparison between each solution.

After some research, we discovered two libraries offering state-of-the-art implemen-

tations of these algorithms and others thus enabling a more easy testing between each

algorithm:

• Massive Online Analysis(MOA) [14] is an open source framework for data stream

mining[18]. It offers a GUI, a library and Maven Dependencies with methods of

classification and clustering in data streams. These methods include implemen-

tations of the CluStream [7], ClusTree [43], Den-Stream [17] and D-Stream [21]

algorithms [14, 18].

• multiSOM [52] is a Java implemented interface, which uses the UbiSOM algorithm

to model the iris dataset which is interpreted as a data stream. This project allows

to change our dataset, thus allowing to visualize and export other models whilst

offering the whole implementation of UbiSOM [67].

However, in order to decide the best cluster, it might be interesting to use comparable

metrics capable of scoring each cluster without the need of a constant human interaction

and analysis.

2.2.4 Cluster Validation Metrics

Since our data does not initially have neither any data set nor user submitted labels, we

cannot apply a generic classification evaluation, i.e, we cannot measure the error in the

predictions but instead we need to define a metric that allows to define a cluster as "good".

This raises a problem regarding the evaluation and comparison of each algorithm. After

some research [44] we found two metrics: cluster cohesion which measures similarity

of all points inside each cluster and separation which measures the similarity, or differ-

ence, between different clusters. It was also studied three metrics that we aim to use

in our unsupervised validation: Silhouette [60] score measures consistency inside each
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cluster and distance between each, the Davies-Bouldin index [22] measures how well

is the cluster by analysing its data and the Calinski-Harabasz index [16] measures the

disparity between each cluster. Using UbiSOM [67] we are also capable, with the aid of

MultiSOM [52] software, of visualizing this data and its respective clustering, allowing us

to also evaluate the impact of the selected features. However, these metrics evaluate the

clusters itself, being useful for early detection of data separation and perhaps relevant

features however, to better evaluate image similarity these metrics will not be enough

requiring other solutions.

2.2.5 Content-Based Indexing

Regarding the indexing of the results, as mentioned earlier, some challenges need to be

faced.

Starting by the location of the indexing system, it will be located at the edge, thus

providing some interesting properties for our solution:

• Local Exclusivity: Providing the index at the edge will naturally generate indexes

for the content shared between the users in the same location as the edge, thus

providing to them exclusively those same indexes.

• Reduced Latency: As this computation is closer to the user, the requests will require

less hops reducing their travel time.

However, this also bring some challenges:

• Limited Resources: Servers at the edge do no have as much power as cloud servers,

which may impact the performance of the algorithms, thus affecting overall perfor-

mance of the system.

• Standardization of the Learners: Having each edge a instance of the learner and

due to the local exclusivity property of the edge, each learner will have their own

clusters and labels, if the overall system desires to have this values stored in a

centralized cloud, it will require to merge all these values in order to do so.

Splitting up the query possibilities, we must consider two types from which a user

can make, being them semantic-based and content-based.

Regarding content based indexing we will need to use our unsupervised learner since

it is the responsible for clustering similar content, in other words, we need to use the

learner to properly predict the cluster belonging to the submitted image and return to

the user the data inside it.

Regarding semantic, the user must be capable of requesting content by asking for

certain index specific labels. This indexes must be generated dynamically and automati-

cally however, the labels representing the index must be human-readable and properly

represent the content inside the respective cluster which may not be a trivial task.
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To solve this problem, we can implement in our learner a “analyser” which under

some circumstances assigns a label to a cluster automatically.

For that we could implement heuristics from which this “analyser” would be triggered.

To simplify our solution we will use a simple heuristic which evaluates whether or not a

cluster reaches a certain size.

Once triggered, this “analyser” could apply the automatic tag by simply assigning to

the cluster an automatically generated label. However, when assigning the label to the

cluster it may be also interesting to assign the same value to each content inside of it.

This label could be a unique random value however, it would not be human-readable and

wouldn’t represent semantically the content. Alternatively, we could analyse the metadata

or the content between each image inside the cluster and assign a label depending those

values. This method allows the assigning of labels that are common between similar

images, thus being a more user-friendly alternative and making it a good and simple

methods to solve this problem.

2.3 Machine Learning At The Edge

In this section we overview works that share goals or approaches close to what we pretend

to develop in this thesis.

We characterized the studied systems according to the following attributes: applica-

tion of the system, i.e, the problem it is trying to solve, their edge nodes, architecture, the

learner used and how they handle the training of the model.

Following we will discuss each of these attributes. To summarize this section we also

built the Table 2.2.

2.3.1 Application

Regarding the applications of the systems, we found the following:

• Data analysis for anomaly detection: J. Schneibl et al [65], HiCH [10] for Arrhyth-

mia detection and DeepIns [49] for defect detection in manufactured items.

• Computation Reuse: FoggyCache [34].

• Video analytics: DeepDecision [59].

• Image recognition: Edge Learning [30], DeepCham [46], Cachier [27] and Pre-

cog [26].

From the researched systems, the closest to our problem are the ones solving image

recognition problems however, these are still not similar to the problem we are aiming to

solve.
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Regarding Edge Learning [30] implementation, it focused on image analytics, im-

plementing a system for the sole purpose of making the recognition of the face and

evaluating its results.

DeepCham [46] focuses on object recognition, trying to identify a generic image.

Cachier [27] is really close to our solution as it uses machine learning for caching,

allowing a faster content retrieval. However, it is used for a classification problem, i.e,

a correct classification of this algorithm works as a cache hit. This does not meet our

requirements as it neither measures content popularity, as it only uses the data to improve

its results, nor generate automatically indexes.

Precog [26] works as Cachier [27] and also does not meet our requirements for the

same motive, however this system offers an interesting feature as it tries to use a similarity

approach for pre-fetching.

In conclusion, it was not discovered any application trying to solve the same problem

as us, however, both Precog [27] and Precog [27] offer interesting solutions as they are

similar in some steps.

2.3.2 Architecture

Regarding the system architecture, we found several architectures being the mostly used

by these systems the edge server-cloud architecture [30, 65, 10, 27, 26, 49] which allowed

an efficient distribution between tasks, assigning the most expensive ones to the cloud

server. This is an interesting synergy because it works well with machine learning al-

gorithms as, to train models, they require more powerful computers, thus making any

training step done at the cloud as no edge server is capable of training a whole model

by himself whilst ensuring a low latency to the user. In the machine learning end, this

architecture also opens doors to a new powerful deep learning technique named Feder-

ated Learning, which allows the training of the model at the device level, allowing a more

collaborative model training, G. Zhu et al [83] explains with more detail this learning

technique and how it can improve machine learning at the edge.

DeepDecision [59] used edge devices with cloud architecture, thus allowing a faster

response and task simplification by using the end device itself to do several simpler

tasks. Although at first glance this architecture looks similar to the cloud computing

paradigm, it is important to highlight that in this architecture, the end user is also part

of the architecture as the mobile device used by him is also responsible for some tasks.

FoggyCache [34] and DeepCham [46] used edge nodes with mobile devices architec-

ture which allowed a more local evolution of the system that might never affect another

edge as it can represent local exclusive properties.

2.3.3 Feature Extraction

Since the feature extraction technique relies on the data used as input, we will focus this

analysis on systems also extracting image features, namely [26, 27, 30, 46].
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From these systems, Edge Learning [30] and DeepCham [46] used pre-trained layers

for feature extraction, thus removing them from our comparison as these extractors would

required pre-trained-models. Alternatively, Cachier [27] and Precog [26] used the ORB

for feature extraction, which is an available image descriptor for our solution. However

it is important to note that these systems are tailored for image recognition, and not

specifically faces, raising the question to whether or not it may be the most efficient

descriptor for faces exclusively.

2.3.4 Learner

We noticed a trend in the usage of the learner however, this can be biased as most prob-

lems requirements of these systems was to classify content. Even so, the trend shown

that most of the learners were using deep learning [30, 46, 49, 59, 65], more specifically

Convolutional Neural Networks, which reflects the popularity growth of this technique.

However HiCH [10] used Support Vector Machines instead and Precog [26] used Local-

Sensitive Hashing Classifiers and both presented overall good results in their solutions.

Overall, this research has shown an absence in unsupervised clustering techniques,

thus reducing our awareness to possible challenges this learner may raise during the

implementation.

2.3.5 Model Training

Another interesting aspect to research is how they addressed the model training task as

it represents one of the most difficult challenges to address when combining Machine

Learning with the Edge Computing paradigm.

The systems presented several proposals and as such we will list each excluding before-

hand systems using solely pre-trained models, namelly FoggyCache [34], as it removes

the desired complexity.

Training at the cloud

During our research, we found three systems training the model at the cloud, namely,

HiCH [10], Edge Learning [30] and Precog [26]. This solution can be simple to implement

however to attend to operations using the models trained, the request must be sent to the

cloud unless the cloud transfer its models to the edge.

An example of this model transfer is Precog [26] as it initially trains the model at

the cloud but also implements, using the LSH Classifier properties, a method to transfer

this training between the edge server and mobile device and another between the edge

server and cloud. This allows to do the recognition at the mobile as Precog prefetches the

training components based on recent requests from this device and sends it back.
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Although Edge Learning [30] isolates the model Training at the cloud, it also uses ma-

chine learning at the edge for lightweight operations, more specifically for the extraction

of the features. This architecture as mentioned at Section 2.1 has several upsides.

Training at the Edge

During our research, for systems including learning at the edge, we found [65] and

DeepCham [46].

J. Schneibl [65] implemented the above mentioned (Subsection 2.3.2) federated learn-

ing technique, allowing a collaborative learning at the edge with agglomerate learning

at the cloud. As soon as the agglomerate learning task finishes, the edge server models

are updated with the result of this task, thus allowing the edge learner to update as well.

However this may remove any local exclusive feature as, during merge, each node model

is assigned with a weight, which can be different between each or a simple average.

Alternatively, DeepCham [46] uses both a pre-trained deep learning model and a

shallow learning model to, using a method called Late-Fusion, generate the recognition

result. To create the shallow model, the system has a training task done at the edge

named Adaptation training, consisting in, after initiation from a device, assigning a node

as master and other devices as workers. Then using the workers, it generates training

instances that are used to create this model.

Both DeepIns [49] and DeepDecision [59] use Convolutional Neural Network Strate-

gies to split the learning task through the system, therefore we won’t mention in detail

their strategies however, a short description of each is mentioned in Table 2.2.

2.4 Summary

This chapter has presented a survey related to state-of-the-art implementations and sys-

tems to our solution as they may aid the implementation of our solution. In order to

better understand each problem and solutions we introduced concepts such as, Machine

Learning and some respective areas and Clustering.

We ended this chapter by researching systems implementing the edge paradigm whilst

using machine learning and concluded that, for feature extraction, using local descriptors

like ORB [61] might present interesting results. Regarding the learner, we didn’t find any

system using similar approaches, thus making this area unexplored.

Before presenting our solution, in the next chapter we will present two systems that

will serve as a base for the implementation of our solution, Thyme [69] and Oregano [63].
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Table 2.2: Systems with machine learning at the edge. Adapted from [50, 82]

System Application Edge Nodes Architecture Learner Model Training

Edge Learn-
ing [30]

Face Recognition Devices & Edge
Learning Server

Devices, Edge
Servers & Cloud

Autoencoder &
Deep learning

At cloud with Fea-
ture extraction at
edge

Technica* [65] Anomaly Detection Edge devices Distributed set of
nodes & Cloud

Autoencoders At edge & Aggre-
gated at cloud

HiCH [10] Medical data analysis
for arrhythmia detec-
tion

Layered Fog Net-
work

Centralized cloud
& distributed fog
nodes

Support Vector
Machine

At cloud

FoggyCache [34] Cross-device approx-
imate computation
reuse system

Edge Server Devices & Edge
Servers

Adaptive Locality
Sensitive Hashing
Classifier

Pre-Trained Mod-
els

DeepCham [46] Object Recognition Edge Server &
Mobile Devices

Edge Server &
Mobile Devices

Convolutional
Neural Networks

Adaptation Train-
ing at edge &
Pre-Trained Deep
Model

Cachier [27] Image Recognition Edge Server Edge Server &
Cloud

Not Mentioned Not Mentioned

Precog [26] Image Recognition &
Prefetching

Edge Server Device & Edge
Server & Cloud

LSH Classifier Initially trained
at cloud & sent,
using the edge, to
device as prefetch
response

DeepIns [49] Manufacture Inspec-
tion

Sensors & Fog
Nodes

Sensors, Fog
Nodes & Central
Server

Convolutional
Neural Networks

Lower-Level
CNN Layers at
Edge & Higher-
Level CNN
Layers Servers

DeepDecision [59] Video Analytics Mobile Devices Mobile Devices &
Cloud

Convolutional
Neural Networks

Small CNN at
edge & Bigger
CNN at back-end

Our proposal Group and Index user-
submitted content by
similarity

Edge Server &
Mobile Devices

Mobile Devices &
Edge Servers

Unsupervised
Stream Cluster-
ing (4)

Principal Compo-
nent Analysis (4)

* although it is not referred directly, the paper uses this name as a reference
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3

Thyme & Oregano

This chapter focuses on the building blocks of our project, Thyme, Oregano and Gar-

denBed. These systems belong to the EdgeGarden ecosystem built under projects "Hyrax:

Crowd-Sourcing mobile devices to develop edge cloud" 1 and "DeDuCe: Distributed Data-

Centric Concurrency Control" 2, and are now used as building blocks for many projects

and thesis. We will begin by giving an overview on the Thyme system in Section 3.1 and

then, describe the system we will work on, GardenBed, in Section 3.2. Finally we will end

this chapter with a description of the Oregano Framework in Section 3.3.

3.1 Thyme

Thyme [19, 70, 69] is a topic-based time aware publish/subscribe system built for mobile

edge networks allowing a persistent collaborative data storage using as backbone for

communication the peer-to-peer architecture. The mobile devices are clustered along Missing bridge

hereregions, scattering and accessing data contained within. Every device’s functionality is

symmetrical, meaning that no master is needed to maintain the system and that each

device can be both a publisher and a subscriber. Thyme can be divided into three layers:

connectivity, network and services.

Connectivity Layer are responsible for the communication between each device and

their respective edge server node by several communication protocols.

Network Layer is responsible for handling communication between the peers and main-

taining the Publish/Subscribe system connected. This layer is also responsible for

discovering each peer through broadcasting.

Services Layer contains three main modules: Time-Aware Publish/Subscribe, Storage,

Grid Manager, whose description follows.

1https://hyrax.dcc.fc.up.pt
2https://sites.google.com/fct.unl.pt/deduce
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Time-Aware Publish/Subscribe offers the Time-Aware publish/Subscribe interface to

the application, allowing the specification of a time-interval for both the subscriptions

and publishes, regardless its time. This layer manages both publish and subscriptions

from the users plus all the notifications involving them.

Grid Manager defines and manages a geographical space named cells. These cells point

to a group of physical devices (i.e. mobile devices) that are located in the same space.

Storage contains both the Publish/Subscribe infrastructure and the actual storage sys-

tem. This service handles the replication within the nodes, allowing a more reliable

storage, preventing data loss and reducing the load at the original publisher as data is

also located at other nodes. Thyme offers two types of replication mechanisms:

Active Replication uses the virtual nodes considered in the same grid and, after a pub-

lish, somewhere in the future, all nodes will download the published data.

Passive Replication leverages on the nodes that already contain the data to provide more

replicas within the network.

3.1.1 Thyme’s API

Thyme offers several operations. These include the regular publish/subscribe operations:

Publish, Subscribe and a their reversed operations, Unpublish and Unsubscribe.

Publish indexes the metadata associated to the object by its respective tags, hashing

each and sending and sending it for storage in the resultant cell. The cells are then

responsible for managing the object’s metadata and evaluate if subscriptions match

the publication. The content however is only stored in the publisher node.

Subscribe allows the user to subscribe to a set of tags, and define a time interval from

which he wishes to keep the subscription. After subscribing, if any content matches

both parameters, the user is then notified and can then download the content. The

user is not limited in the interval provided, allowing him to subscribe to both past

and future content.

Unsubscribe removes the subscription from the user to the provided tags.

Unpublish is an operation consisting in a complete erase of the data from the system.

Since Thyme considers time as a first order dimension, this operation is possible as

by preserving data in a Publish/Subscribe system with awareness to past content, it

allows the deletion of content that is no longer shared and preventing the retrieval

of content that users did not want to share anymore.
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hash(“beach”)

hash(“summer”)

publish(      , “beach.jpg”, 

<“beach”, “summer”>)
13

5

2
hash(“beach”)

subscribe((“sun” & “sand”) | “beach”, 

tsstart, tsend)

hash(“sun”)

Figure 3.1: Publish and subscribe operations. The tags’ hashing determines the cells
responsible for managing the object metadata (cells 2 and 5) and the subscription (cells
2 and 13). If a subscription has overlapping tags with a publication (and vice versa) it
will also have overlapping (responsible) cells, guaranteeing the matching and sending of
notifications to the subscriber. Taken from [70, 75]

Figure 3.1 gives an overall insight of the publish and subscribe operations.

The work done by Thyme is around metadata objects under the format ⟨idobj,T , s, ts
pub, idowner,Lrep⟩.

This metadata represents respectively the object id, its associated tags, summary of the

object, e.g, a thumbnail of an image, publication timestamp, the owner id and a list of

replicas under the format ⟨idnode, cellnode⟩ and are crucial to fully take advantage of the

replication methods.

3.1.2 Mutable Data

Thyme supports mutable datasets for data sharing. This is done through the implementa-

tion of Conflict-Free Replicated Data Type (CRDT) [66]. CRDTs are a family of replicated

data structures designed for highly available systems. CRDTs allows for its objects and

replicas to be modified without the need for an expensive synchronization, while follow-

ing a strong eventual consistency model, guaranteeing from its replicas the convergence

of the data in an uncoordinated and failure-safe way. These assurances are done by

respecting the order of execution of all operations and respecting all dependencies.

CRDTs can synchronize by two distinct methods: State or Operations. CRDTs who

synchronize using state, do so by periodically sending their local values. When another

state is received it is merged using a defined merging function. Although simpler to

design and implement, this type of synchronization usually requires a huge ammount

of requests for the propagation of the entire state. On the other hand, CRDT who use

Operation-based synchronization do so by propagating the update operations. This is

done using a prepare function responsible for generating the operation to be replicated

and an effect, executed at the destination and responsible for aplying the update oper-

ations. Using operation-based synchronization can be more communication efficient,

however it also makes stronger assumptions regarding the environment.

On Thyme, the available CRDTs offer a set of conflict-free operations with causal

consistency and ensure both operation order and dependencies are respected. This offers
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an easy and accessible interface for using them, requiring only to publish the changes

done to the dataset and then subscribe for its updates. As updates are published by other

devices, they can be downloaded and be used to update locally.

3.1.3 Sharing the Index on Thyme

Due to the unpredictability of data, and the possible alteration of its concepts in a contin-

uous nature, our indices need to be dynamic and allow us to both add and remove them

with relative easy and without affecting the quality of the solution. However, these must

also be as descriptive and consistent as possible, since our queries rely strongly on them.

Indices must also be accessible to everyone, let it be a mobile device being used by a user,

or an edge server who needs to evaluate if an index is adequate for an arbitrary content.

Furthermore, these indices must be mutable, and modified by at least one end whilst

being consistent for its readers. This requirement rapidly extends to various ends as we

tailor our solution for GardenBed [75], more details about this system will be provided

in the next section.

Given the aforementioned requirements, our solution must strongly depend on Thyme

interface for the CRDT, and generate a where we will store our indices. These indices

must then be subscribed by each mobile device so they can stay updated.

3.2 GardenBed

GardenBed [68] is a distributed system composed by a set of stationary nodes located at

the edge and a set of devices, capable of storing and sharing content between themselves

using device-to-device communications. These sets are named regions and are unique,

meaning that they do not contain neither a repeating station node nor a repeating mobile

device from other regions.

The edge servers form a distributed system located at the edge and allow a cross-region

topic-based publish/subscribe abstraction. In turn, the mobile devices run a system that

allows for content sharing and storage between the devices contained in a region. In our

setting, mobile devices run both Thyme (Section 3.1) and Oregano (Section 3.3). Overall,

the system offers a cohesive and consistent storage network between multiple regions

under a Publish/Subscribe paradigm, allowing users to publish content and provide a set

of tags and a description of the content, and subscribe to its interests based on the same

properties.

Like Thyme, GardenBed offers a similar interface to a regular publish/subscribe sys-

tem to interact with the system, namely a Publish, Subscribe, Unsubscribe, Unpublish

and Download operations.

Mobile devices can also communicate with outer-region edge servers however, they

must do it so indirectly, communicating first with the local edge server. This happens

because only the edge servers are linked to each other (more details in Section 3.2.1).
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Initially, the data published by a mobile device remains on the device itself, being

only available to the other devices in the region however, as data popularity increases,

the region’s edge server begins to collect and cache the published content so it can be

accessed globally. This brings two upsides:

1. Since, as mentioned earlier, the edge servers are linked to each other, it allows the

sharing of the cached content between other regions.

2. Reduces loading between mobile devices as edge server can now also attend to

subscription requests.

3.2.1 Edge Servers

The deployment of an edge-server requires the implementation of several modules. The

Cell-Head Lookup algorithm determines which region should be contacted when operat-

ing over a given data item. The Matching Logic algorithm which matches subscriptions

with its respective publishes. The Ranking Algorithm which determines the data items

that must be uploaded to the edge. The Notification Priority Policy algorithm decides

who must send a notification, being either the server, the mobile nodes or both (in case

the data is cached on the edge).

Communication between the server and its mobile devices is bidirectional. If the

communication is from the client to the server, then the later is informed of the operations

performed within the region, and can enable, if requested the download of data only

available in other regions. The local information is sent by the cluster node at cluster

level and contains the subscriptions of the cluster nodes, the number of “unpublish”

operations and statistical data regarding the number of downloads done for each data

item, allowing the ranking of the items based on their popularity.

If the communication is from the server to the client, then it can be because of four

different reasons:

• notify the clients about new data published in other regions.

• notify the clients of changes in the server so they may update the metadata of a data

item so it complies with those changes.

• download a data item from other region and cache it or, in the opposite, attend a

download operation from a client from other region

• to “unpublish” a data item, triggering its removal from the system

Being the edge nodes served mainly as a cache, it is important to upload only con-

tent that are considered popular, for that an asynchronous process, using the Ranking

algorithm gathers the most popular items and caches it in the Local Popularity Cache.

Our system could be implemented on top of this infrastructure, beginning its process

as soon as this task retrieves the data.
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3.2.2 Mobile Devices

As mentioned, mobile devices are clustered by regions, operating as a distributed, region-

specific storage. Using this architect tailored for Thyme and its intrinsic operations

we can implement a photo sharing application. When an image is published it can

be done using the publish method. Following the image, we can also set descriptive

tags allowing other users to fetch it via subscription. As mentioned earlier, despite a

regular Publish/Subscribe nature, Thyme allows content to be erased, allowing us to

delete images as well.

Furthermore, we can use GardenBed to upgrade this storage into a multi-region

storage with content indexing, allowing us to extend the indexing process using Machine-

Learning’s clustering. This can be done by processing the images downloaded (using the

aforementioned algorithm done by GardenBed ) and grouping the content based on its

similarity using feature extraction techniques. Afterwards, as a group starts to become

relevant we index it so it can be accessed. However, this proposal is not strong enough

as it does not offer a content-based image retrieval for the devices. To solve this issue,

we use Oregano, which can be run as well in mobile devices and allows the execution of

computations over the data in a distributed manner.

3.3 Oregano

Oregano [62, 63] is a mobile executed framework for distributed computation, capable of

processing data without the need for Internet services and has the main goal of transfer-

ring computation to where the data is located. Oregano uses groups data stored in Thyme

and does the necessary computations over the published data on the network. Oregano

provides two main functionalities, stored data computation and real-time data streams

computation.

Figure 3.2 illustrates the system architecture. Network and Link layers handle the

communication between the devices. Persistent Publish/Subscribe refers to Thyme which

was already mentioned earlier.

3.3.1 Computation

This layer represents the Oregano framework and is responsible for the execution of dis-

tributed data computation. As mentioned earlier, it focuses on moving the computation

to where the data is located. To do that, it uses the network layer to send and receive

system specific messages. It interacts with Thyme, making use of its properties, namely

replication and churn, to handle and optimize user operations allowing, for instance, bal-

ancing of the computation between the devices, avoiding overloading. For that, Oregano

requires the metadata stored in Thyme as it is the main data used for the whole process.
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Link Layer

Network Layer

Persistent Publish/Subscribe (Thyme)

Computation (Oregano)

Application

Figure 3.2: Oregano architecture. Taken from [62]

3.3.2 Application

This layer represents the applications using the Oregano framework. Oregano offers an

API, allowing the interaction and use of its services and the ones provided by Thyme by

any application.

A device using an application using the Oregano framework can play one or more

of the following roles: client, scheduler or computing. These roles can be interpreted

as three important components of the computation layer, being crucial for the proper

termination of a computation request. This means that assigning more than one role to a

mobile device, will assign to it multiple operations which can triggered simultaneously.

Following we will briefly describe each role.

Client is responsible for the management of the subscriptions with computations in-

cluding messages associated with each subscription, e.g, failures. Since this operation

adds a new computing step after the subscription, in order to store both data, the client

does two subscriptions: one with the tag specified, pointing to the desired content and

another with the resulting tag, pointing to the content after the computation. This role

is also responsible for controlling the processing of the results, allowing users to stop or

continue a computation request. While a user can stop the process at any time, the same

does not apply for the continue operation and instead it is only available under some

conditions dependent on the amount of data processed and the amount left including

new publishes. Finally, the user is also responsible for any publish with pre-processing.

Scheduler is responsible for the management of all subscriptions with computation it

receives, scheduling tasks with the devices owning the desired data. This role is more

selective, assigning only to devices positioned in the cell from where the requested tag

maps to, thus having the complete set of metadata necessary. Then, for every matching

publish, it will distribute the computation between the available computation devices

and, using a mechanism of heartbeat, keep track of the status of the computation. If for
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public class Service1 extends Service<Input, Output, ServiceArgs> {

protected Class<Input> getInputClass()

protected Class<ServiceArgs> getArgsClass()

public IMDD<Output> process(IMDDStream<Input> inputStream,

List<ServiceArgs> args)

protected DataItem outputToDescription(Output output)

}

Listing 1: Class extending Service and required implementations

some reason a computation node fails to compute the data, the scheduler is responsible

for rescheduling the data that could not be computed.

Computing is responsible for doing the computation over the objects locally stored in

Thyme. For that, it provides the data to be processed plus the service arguments provided

by the scheduler to the Service deciding, after completing the computation, to publish the

results, assigning a result tag or notify the requesting Client device directly, informing

the location of the data so the user can download it.

3.3.3 Computation Services

As mentioned in the system overview, we can use Oregano to handle several operations

regarding our solution. These can be done by establishing computation servers, and the

service it offers for computation. To establish a computation Service we can extend one

of the two Service classes offered by Oregano: Service and ServiceWithPP.

As the name suggests, the former is used for services that convert input data directly

into an output. Its extension requires the definition of three generic data types, namely

its input, its output and the arguments used by the service. It also requires the implemen-

tation of four methods, one to retrieve the Class of the input object, one for the arguments

of the service, one to describe the output and the other for the computation to be done.

The latter implementation receives both the arguments of the service and the input data

as a Mobile Dynamic Data Set and must result in a similar dataset containing the output

Class (an example of its signatures can be viewed at 1).

The latter is used for a service that does require the processing of the input before

executing the implemented computation. To extend this class, it is required to follow

the suggestions mentioned earlier with only some additions and alterations. It is also

required to define the Class of the input after being processed. The method referring to

the input class now refers to the input after being processed while it exists a new method

to get the original data type. We also need to implement the computation to do before the

main computation can be done, it receives the original input and the arguments of the

service and must return an object of the type declared as the input after being processed

(an example of the signature can be viewed at 2).
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public class Service2 extends ServiceWithPP<Input, ProcessedInput,

Output, ServiceArgs> {

// ... Similar methods as the Service1 ...

protected Class<ProcessedInput> getInputClass() // Instead of Class<Input>

protected Class<Input> getOriginalInputClass()

public ProcessedInput preProcess(Input input, List<ServiceArgs> args)

}

Listing 2: Class extending a Service with pre-processing and required implementations

After defined the computation services, it is still required to define the computation

Servers.

3.3.4 Computation Servers

To attend requests with computation using Oregano it is required to establish Compu-

tation Servers. This is done by extending the ComputationInfrastructureServer and

assigning the service to run. After these implementations, it is only required to request

for these services by doing a publish (or subscribe) with computation operation, and

Oregano handles the rest. In this thesis we propose two computation server and processes:

One server for the upload of a photo and another for a content-based image retrieval.

3.3.5 Photo Sharing

Photo sharing applications for mobile are a pratical solution for image visualization,

sharing and processing. Furthermore, mobiles are evolving rapidly both in hardware

and software, allowing a pratical use of several features, namelly image processing and

adding computation possibilities to the region nodes. Local computation reduces the

workload for the stationary server, thus increasing its availability for the core operations.

Oregano allows us to make use of theese available features in our solution using the

aforementioned pratices. We can do so, by establishing computation servers that process

the image and publish its result so it can be accessed later on. This collaborative behaviour

also provides access to computations that older devices would have more dificulty in

running due to its limitations. Establishing this servers would then allow each device to

process the image (let it be locally or using Oregano) and search the index using its result.

More details in the next Chapter.
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Chives

In this chapter we apply every knowledge obtained in the earliest chapters to deeply

design and implement our system proposal. We begin by presenting an overview of the

architecture design for our solution in Section 4.1, describing the proposed architecture

and behaviour for each main role, including its contributions and interactions with the

system. Furthermore, we present our Framework Chives in section 4.2, followed by a

more detailed description of its requirements and design. We begin by describing the im-

age processing in section 4.2.1, followed by our proposed implementation in section 4.2.2.

Thereupon, we describe the clustering algorithm interface and its tasks in section 4.2.3,

followed by our implementation in section 4.2.4 and our integration with framework

specific properties (4.2.5). After describing how to extend our framework, we portray

its design and how it manages its indices in section 4.2.6, followed by a description of

our solution for the dynamic generation of indices in section 4.2.6.1 and a description of

a component aiding this process, the overseer (section 4.2.6.2). Lastly we describe our

designed workflows in section 4.3, followed by the designed integration between Chives

and Oregano regarding the aforementioned workflows in 4.4 and end this chapter with

some final remarks in section 4.5.

4.1 Architecture

Chives is a framework designed to generate content-based indices dynamically and au-

tomatically. It provides the means to: a) build an index of any type of data and b) query

these indices by providing an exemplar set of the data, returning content considered

as similar. As mentioned in Chapter 1, in this thesis we focus on the indexing of pho-

tographs, based on the faces they contain. Accordingly, although Chives was built with a

level of abstraction capable of handling arbitrary content (more details in Section 4.2.6),

we will center its description on the photo indexing scenario.

Chives comprises two main components (an overview is depicted in Figure 4.1):

1. a logical region, containing a set of devices (potentially mobile) connected to each

other through an access point, and
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Figure 4.1: System overview from a single mobile cluster.1

2. a stationary server located at the access point or in close proximity to it.

These components will have Chives built inside Oregano, who is built on top of Gar-
denBed. These components are tailored for the mobile edge, bringing the data storage and

processing closer to the devices. This reduces the navigation of both requests and data

during its operations, which reduces latency and operation time.

4.1.1 Mobile Devices

The mobile devices are the main contributors for the system’s, as they are the actors pub-

lishing the content. As mentioned in sub-section 3.2.2, each device is connected to both

the other devices and to the GardenBed server via an access point. The user interacts with

the device using a mobile application that makes use of Thyme and Oregano (Software

architecture can be seen at figure 4.2). The use of Thyme allows a Publish/Subscribe ab-

straction and a data storage to publish and subscribe to data indexed by the tags. Oregano

extends this concept by adding allowing queries (on the data) that may require compu-

tation, such as content-based search. The position of Chives in this software stack is to

be an integrated component that can be used by Oregano, allowing the latter to access

the indices generated by the former and verify if the content being used for searching is

indexed.

As a result, this system will offer to the device both a publish and a subscribe method,

and its respective computations. Oregano can use Chives to add the extraction of its

features as a pre-processing computation. When subscribing to content, we add a query

allowing to do a content-based search of the content. To do so, the user can provide an

image which will be used in the query to retrieve the tags of similar content. This will

be processed by Chives, who will check for similarities between the image and its stored

samples, returning its deduction.

1This and Future Images may contain icons made by prettycons and Freepik, available at flaticon.
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Figure 4.2: Overview of the software used by the mobile user.

Figure 4.3: Overview of the software used by the stationary server.

4.1.2 Stationary Server

The stationary server is responsible for downloading the content shared between the

users, allowing him to store, cluster and index the content. It is built over GardenBed

as presented in Section 3.2. GardenBed periodically inspects the region it manages to

download the most popular items. In order to provide for content-based queries on the

region, Chives will complement the functionalities of GardenBed with the ability of

processing all incoming data to build a region-wide index. This is done using Oregano

who will allow the processing of the data through the use of its services (Oregano services

are described in section 3.3, design of the software architecture can be seen in figure 4.3).

Being the server our centralized infrastructure, it will also have available other es-

sential services, i.e. the index query. This is done to ensure that it exists at least one

computation server attending these services. These servers are crucial for the system,

as they allow mobile devices with less resources to still operate in the system. During

the elaboration of this thesis, we focused on two main services, the index generation

(described in section 4.4.1) and the index query (described in section 4.4.2).

As mentioned earlier, this is done by using Chives inside the Oregano services, allow-

ing them to process the images, cluster its features and get the generated indices. For the

server, Chives also includes an indexer module, responsible for the generation of indices

so it can disseminate them to the devices.

This module is composed by three main components: the clustering algorithm, the
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index generator and the overseer. The clustering algorithm will save and cluster each

projection, grouping projections regarding to their proximity. The index generator will

receive clusters who meet the indexing conditions and generate an index. It is also

responsible for updating them. The overseer will try to update the indexer and look

for clusters who can be indexed and provide them to the index generator. More details

regarding each component will be mentioned in the next sections, alongside the design

of the architecture 4.4. In conclusion, both the server and the mobile devices use Chives,
however only the server requires the indexer.

4.2 Chives API

Chives was built with abstraction and extension in mind, enabling further studies over

the already implemented process and even the addition of new ones. Our Framework

allows to store, extract and cluster an image, by implementing specific interfaces aimed

to follow the aforementioned workflow. By implementing the interfaces designed, Chives

is then responsible for clustering the images, evaluate its clusters, index the clusters

meeting certain conditions and propagating any changes to each mobile device.

Chives is also aimed to be part of Oregano’s services, however, to best assert over the

quality of our solution without any specific integration, it was also built under a ”testing”

environment.

For both cases, Chives can be instantiated and provided with the following parame-

ters:

An indexing condition: This allows us to evaluate a cluster’s projections and index it if

such condition is true (Default: Cluster has more than 10 projections).

Image Batch Size: Number of images inserted until the clustering algorithm re-evaluates

the mapped clusters (Default: 100 insertions).

Feature Extractor: A feature extractor interface for Chives to operate over.

Cluster DataType: A comparablle and descriptive cluster datatype.

Clustering Algorithm: The algorithm performing the clustering.

In the following sections we will better describe these requirements and their under-

lying processes, followed by some implementations.

4.2.1 Feature Extractor

The Feature Extractor is an abstraction of the task responsible for processing the images

being inserted. Being our thesis focused on facial features, the extractor extends the

process by running first a face detection technique, followed by a feature extraction of

each detected face. This allows the extractor to focus solely on the facial features of an
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public abstract class FeatureExtractor {

// Face detection Algorithm

public abstract List<Image> detectFaces(Image img);

// Feature Extraction Algorithm

public abstract double[] extractFeatures(Image img);

...Pre-Defined Feature Extraction methods

}

Listing 3: Feature Extractor Interface

public interface IProjection {

// Returns a projection features into a set of coordinates

double[] asDoubleArray()

// Gets a specific feature giving the dimension value

double get(int index)

// Obtain the number of dimensions of this projection

int getDimensionSize()

}

Listing 4: Projection Interface

image, and generate more focused features, however this may also add a dependency

layer to the final result.

Chives offers a huge abstraction from this process, requiring from the user to imple-

ment two main operations during the implementation of an algorithm: a face detection

algorithm and a feature extraction algorithm (each method signature can be seen in List-

ing 3). The face detection algorithm should focus on detecting faces inside the image and

extract each detected face into a new, reduced, image. Since many faces can be detected,

the result is expected to be a new set of images with reduced noise for the extractor. The

feature extraction algorithm should receive an image and transform into a set of descrip-

tive coordinates, this set of coordinates are crucial for the clustering, as they will evaluate

the similarity between each face.

This methods are used by a pre-defined method in the same class that will process

the image and create an image projection. Projections are the basis of our clustering and

indexing and represent a position in a N-dimension subspace, containing methods to

access its coordinates and dimension size (this interface can be seen in Listing 4).

Despite the aforementioned abstraction, due to the scope of our thesis, the Feature

Extractor generates an implementation of the aforementioned projection that also con-

tains a reference for its original image. This is important so each face can be referenced

back to its original image.

More details regarding implementation of the feature extractor, will be described in

the following section.
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4.2.2 OpenCV-Based Feature Extractor

Each image can be of different kinds and contain different, possible multiple, descriptive

features in it, making the extraction of its features not an easy task. Being the focus during

this thesis, to generate indices according to faces contained in the image, some studies

were done regarding face detection, image feature extraction algorithms and, giving the

complexity of this problem, it was decided to add a step before the extraction of the facial

features, regarding the detection of the face. This can cause unpredictably errors and

inaccuracies when being processed by a feature extractor which may, later on, be reflected

in our indexer.

Regarding feature extraction, being our main focus to provide a solution portable to

both GardenBed and Android systems, we used out of the box implementations offered

by OpenCV [1], namely pre-trained face detection models. Being OpenCV built to be

cross platform, it offers integration with several commercial systems, namely Android,

allowing us to access the same implementations and models from two distinct systems [1].

OpenCV provides several face detection models, as such we asserted over the best model

(details can be seen in Section 5.4), choosing the one providing less noise and with higher

accuracy. This is important as we prefer to ignore content than adding noise to our

algorithm as this could lead to noise being clustered and generate inaccurate indices from

the indexer.

An important factor to consider as well is the size of the face extracted, as each has no

guarantees regarding its size and most algorithms and strategies may require them to be

of equal size. As such, using OpenCV [1], we resize each face extracted into a pre-defined

size, thus ensuring this may no longer be an issue, however resizing an image may lead

to inaccuracies.

After detecting and isolating the face from a (possibly more generic) image, we can

then proceed to the feature extraction algorithm. The algorithms used are implemented in

the OpenCV [1] library. During the elaboration of this thesis we used JavaCPP Presets [6],

to access the libraries provided by the library for Java. As mentioned in sub-section 2.1.2,

to ensure the processed data can be clustered, it is required to convert the facial features

detected by our computer vision algorithm into a set of features that can be provided into

the clustering algorithm.

During our research, we discovered a face recognition algorithm that offered a similar

approach to a regular clustering algorithm named EigenFaces [73]. EigenFaces was built

to attain only the most relevant features of a face image and encode it in a way that it can,

later on, be used for comparison with other, similarly encoded images. This algorithm

uses Principal Component Analysis [80] in its process and consists on finding the Eigen-
Vectors of the provided images. EigenVectors represent a specific type of vector whose

changes are reflected by a scalar (the eigenvalue) when a linear transformation is applied.

These vectors represent the most characteristic features of the images provided, being

each face described by its respective weights.
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As requisite from a classification problem, EigenFaces requires an initialization phase

that consists in training the algorithm with an initial set of images. This initialization

calculates the corresponding vectors and define an adaptable "face space"containing the

images with the highest resulting eigenvalues [73]. The known images are then projected

inside this space and will serve to determine future, inserted images. After the initializa-

tion is complete, this algorithm performs its recognition by calculating the set of weights

for the input and projecting it into the "face space", returning either the label of the known

image or a default value representing "unknown".

Our solution replicates this procedure but with a clustering system. Three models

were generated to create this projections: a Principal Component Analysis [80] model

and two Linear Discriminant analysis models receiving both eigenvalues and eigenvectors

from two trained face recognition algorithms: EigenFaces [73] and FisherFaces [12]. These

models can project the faces into a subspace, generating a set of coordinates, which

allows an euclidean evaluation and comparison of the data. However, these models

require training, raising an issue regarding its performance at low amounts of data as it

requires a dataset to improve its results. Furthermore, this model is susceptible to bias

and inaccurate projections.

Since the quality of the clusters returned by our indexer will depend highly in the

projections returned by this model, it will be required an evaluation phase regarding the

model, thus adding an evaluation layer. More information regarding this evaluation in

Section 5.4.

4.2.3 Clustering Algorithm

Conceptually, an index should represent a group of similar images, containing little to

no differences between them. Theoretically, considering a good feature extraction as a

good detector of the facial features, we can consider a photo similar if its features are

similar as well (or relatively close). Consequently, we can measure the difference of a

face by measuring the difference of its features and group photos with a lower difference

between them. If we consider each face as a point in a subspace, having each of its

features projected as a coordinate, then we can measure the difference between each face

by measuring the euclidean distance of its point. Furthermore, we can group similar

photos by grouping their points, using clusters as a reference of a group.

The Clustering Algorithm is the component responsible for creating, maintaining

and updating the clusters inside the indexer. It contains both a clustering algorithm

and mapping between the data and the clusters. To detach the logic behind each clus-

tering algorithm and the infrastructure operations, we propose a solution that receives a

clustering algorithm implementing a specific interface and uses it for its operations.

This interface (Listing 5) contains a training, an estimate and a clustering operation.

The train method must insert the projection inside the cluster algorithm, updating its

internal clusters. These projections do not need to be saved inside the algorithm as
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public interface ClusteringAlgorithmInterface<PROJ extends IProjection> {

// receives a projection and inserts inside the algorithm

void train(PROJ point)

// receives a list of projections and inserts them inside the algorithm

void train(List<PROJ> points)

// Returns the cluster containing the projection

ICluster estimate(PROJ projection)

// Returns all clusters

List<ICluster> getClustering()

}

Listing 5: Interface for the clustering algorithms

the indexer already does that. Instead the training method must focus on updating its

clusters, allowing the Indexer to query (using the estimate operation) the cluster whom

the projection was inserted into. The estimate method should query the algorithm for a

representative, it receives the projection to query and returns the cluster object considered

adequate. The getClustering method should return all clusters in the algorithm.

The ClusteringAlgorithm interface also requires the return of clusters implementing

the ICluster interface (Listing 6). We require this interface so the indexer can operate

over these clusters and send them to the users for more accessibility over the data. The

ICluster interface contains methods getId and setId to, respectively, get and set an Id,

getInclusionProbability to measure the inclusion probability of a projection, i.e. the

probability of a projection being included in the cluster and getCenterProjection() to

get a projection of the cluster’s center. Since the id of a cluster is its means of identification

and being difficult to distinguish clusters without this value, the indexer carries the id

generated by the algorithm itself, otherwise it would be unfeasible to keep track of each

cluster and its transformations.

Every insertion of the projection is reflected on the clustering algorithm, however to

keep track of any changes that happened inside of it, the Indexer queries, in the back-

ground and periodically, for the clusters. This query allows the Indexer to also update

its internal mapping between each projection and cluster. This internal mapping is the

data being reflected to the user, meaning that data may be outdated before this update

operation is done. After the update is done, the clusters that fulfill the indexing condi-

tion are marked for indexing, adding it to the indexer or updating it. Furthermore, this

component also stores the points and their representative, allowing the user to retrieve

cluster specific projections.

In the following section, we describe the process of extending our clustering algorithm

using the Massive Online Analysis [14] library.
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public interface ICluster extends Comparable<ClusterId> {

// Gets the id of the cluster

double getId()

// Measures the inclusion probability of this cluster

double getInclusionProbability(IProjection projection)

// Gets the center of this cluster as a projection

IProjection getCenterProjection()

}

Listing 6: Interface for the cluster

public abstract class MOAClusterer<PROJ extends IProjection>

implements ClusteringAlgorithmInterface<PROJ> {

// Receives a MOA specific object as the clusterer.

// This enables re-usability for each of its algorithms

public MOAClusterer(AbstractClusterer clusterer) { ... }

// Interface Methods

public void train(PROJ point) { ... }

public void train(List<PROJ> points) { ... }

public ICluster estimate(IProjection projection) { ... }

public List<ICluster> getClustering() { ... }

}

Listing 7: MOA Clustering Algorithm

4.2.4 A MOA-Based Clustering Algorithm

During this thesis, we implemented Chives Cluster Algorithms for four algorithms from

the Massive Online Analysis library: Clustream [7], Clustree [43], Denstream [17] and

Dstream [21]. This was done by adding classes who convert the MOA data types to

implement the required interfaces. For the algorithms, we propose a class who wraps

MOA clustering algorithms and implements our ClusteringAlgorithmInterface (for

more details regarding the class signature and some methods can presented in Listing 7).

This class contains a training method consisting in the operations required for insertion

of a new instance into the clustering algorithm, an estimation method which returns the

cluster whom the projection should belong to (this operation does not insert the queried

projection) and a method to return the existing clusters at that moment. This return is

simplified into a list of clusters, allowing us to make our own estimations using their

inherent getInclusionProbability(...) method.

Wrapping the MOA abstract cluster algorithm brings modularity to this implementa-

tion, allowing the usage of several algorithms from this library just by extending this class

and provide it to the clustering algorithm component whom will operate over it. We also

implemented Cluster and Projection wrappers with a similar objective as the clustering

algorithm.
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##### Indexer Generic Options #####

insertionInterval = 100

algorithm = clustream

##### Clustream Options #####

clustream.timeWindow = 1000

clustream.maxNumKernels = 100

clustream.kernelRadiFactor = 2

Listing 8: Properties File

4.2.5 Customizing Conditions

Since cluster algorithms have their own parameters and these usually need to be

considered for a better clustering quality, we implemented a file parser who reads its

properties and assigns indexer and cluster specific parameters. As a proof of concept, we

use this parser to choose the clustering algorithm to be used by Chives as well as define

its values. Although each algorithm has its own parameters, thus requiring an implemen-

tation beforehand, one parameter can be defined beforehand, the number of insertions to

be done before the indexer should update its clusters. We also had a parameter for the

algorithm name so we can then search the name inserted in the implemented clustering

algorithms and call its dedicated parser. This parser will then parse the file for each

required parameter following the syntax: <algorithm>.<parameter> (an example file of

the configurations file can be seen at 8). If there is no value associated or the key is not

found, a null value will be returned which, in our use case is reflected by maintaining the

default value of the parameter.

After this parse is finished, two properties object are generated, the module and the

algorithm. The former contains parameters for Chives and the later contains parameters

for the clustering algorithm. These are then used to generate both the clustering algorithm

and the clustering update condition and are given to the module.

4.2.6 Indexing

As mentioned in Section 4.2, Chives is responsible for creating, maintaining and prop-

agating indices between all the devices, this is done periodically and under custom cir-

cumstances. The indexer is the most important component in the dynamic generation of

indices. It is responsible for storing, clustering and updating the mapping between the

projections. It is also responsible for updating, creating and removing indices if certain

conditions are met in the cluster.

As mentioned, the indexer can only operate using projections, this done so it allows

any type of projection as long as it follows the interface mentioned in listing 4.

As we can see in figure 4.4, the indexer is composed of three main components: the
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Figure 4.4: Overview of the indexer.

Clustering algorithm, the Index Generation and the Overseer. In section 4.2.3 we de-

scribed the first component, in the following sections we will describe the remaining

components.

4.2.6.1 Index Generation

The indexer is responsible for keeping track of the clusters to be indexed and removing

the ones who should not be. The Index Generation component is triggered by the Overseer

who gives the clusters to be indexed and then tries to either update the cluster’s indices

or, if the cluster does not exist in the map, generate one.

An index contains a collection of tagged clusters. These tagged clusters contain the

cluster as provided by the clustering algorithm and a collection of comparable strings

to be provided and used by the users. Having access to the cluster interface, allows to

autonomously ascertain whether a projection belongs or not inside a cluster, this will be

useful for both the index update and the queries done by the users (more details will be

provided in section 4.4.2). The tags are String representing the cluster content. These

tags can then be interpreted by the subscribe methods allowing subscription to content.

If an index is created, the indexer creates and assigns a unique tag to it. The generated

tag is unique because each cluster should have a unique tag, as this allows to access the

content of the cluster exclusively, this avoids possible wrong mappings caused by a bad

tag generation.

Since clusters are constantly evolving, and being these indices of most importance

in order to retrieve data, it is mandatory at this level to evaluate the evolution of these

clusters in order to best migrate the indices. To do so, this component keeps track of

indices being updated and at each stage, it evaluates the state of old indices. In the

context of our thesis, we focused on two main states being the merged and diverged state.
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Figure 4.5: States of the cluster and validation.

These states try to evaluate if the old clusters have collapsed into a bigger one, or have

split into smaller clusters because a new one was created from them and if so, it assigns

its indices to the ones representing them as well. This allows us to delete unused clusters

whilst maintaining the tags contents.

Merged State: This state represents a cluster who has stopped updating its state be-

cause it was absorbed by another one. If such behaviour happens then it indicates that

content was being unnecessarily being specific, thus meaning that this new cluster should

represent a more sparse definition of the previously published content. This being said,

the indexer simply assigns the indices inside each cluster who was absorbed, into the new

cluster. It is important to mention that this procedure removes precision from the index

as it merges two distinct indices into one.

Diverged State: This state represents a cluster who has stopped updating its state be-

cause it has been split into two distinct clusters. If such behaviour happens then it most

probably indicates that content was being too broad, thus meaning that the resulting clus-

ters should represent a more specific definition of the old content. This being said, the

indexer simply assigns the indices inside the old cluster to each new cluster who might

have been split.

To make these evaluations, we simplified our problem by making some naive assump-

tions. One of the assumptions consists in the containment of a cluster: Let us assume two

clusters, A and B. A is inside B if its center is inside B. The second assumption is that

each index may evolve from either a merge or a diverge, otherwise we do not take any

action nor conclusion.

Now that we mentioned the simplifications done regarding the evaluation of the

clusters, we can now describe the two conditions:

1. Being A an updated cluster, it is a result of a merge if it exists more than one old

cluster inside of him (fig. 4.5, left).

2. Being A an old cluster, it has diverged into new clusters if it exists more than one

new cluster inside of him (fig. 4.5, right).
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As these indices are being created and updated, these changes are being disseminated

to the mobile devices so they can update their indices as well. This is possible due to

the replication offered by a conflict-free replicated data types (CRDTs) supported by

Thyme. To implement this data type, we defined a state for the cluster and a conflict-free

replicated data type object who updates and merges this state.

Being the state defined by the index itself, it is only required to wrap this state in

order to implement the required methods. Although this optimization is important to

ensure both performance but also evolution of the indices, further study may be required

to fully understand if such optimization is recommended as it also raises several issues.

For instance, when removing two old clusters (due to a merge) we also lose the distinc-

tion between these two clusters, which may prove useful for evolution but also delete

information.

4.2.6.2 Overseer

The overseer is a component designed to run independently from the main module and

is responsible for triggering the update from the indexer and updating indices.

This component runs periodically evaluating, when awakened, all projections and the

resulting map between these projection and the clusters inside the clustering algorithm.

This update consists in re-evaluating all insertions, using the clustering algorithm to re-

estimate them and re-assign them to their new representatives. This update is important

since data can, as clusters evolve, be reassigned to a new cluster, requiring to re-evaluate

its indices as well.

After the update is done, the overseer then evaluates each cluster. If this cluster meets

the condition defined then it is called to generate or update its indices. This condition is

arbitrary, however its scope is defined to the list of projections inside the cluster, allowing

predicates regarding both the size of the cluster and validation of its content.

When both updates are done, the overseer logs statistics done regarding each part of

the process, e.g. images inserted, clusters detected and indices registered. This analysis

exposes information regarding the indexer, i.e the number of times indices were merged

(or diverged), indices created and time of last update.

4.3 Workflow

In this section, we describe and illustrate the overall workflow of our systems three main

operations. More details regarding each operation will be provided in the following

sections.

The first workflow allows a user to upload photographs into the system (a sequence

diagram of the operation is presented in figure 4.6). These photos are stored in Thyme

for future access (through its subscribe operation) and also contributes to the evolution

of Chives indices. This is done by the users mobile device, via Oreganos publish with
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computation, providing both the photo, user defined tags and the computation to add

a new projection from Chives. As images are added, the stationary server will (using

GardenBeds ranking algorithm) begin to download popular photographs shared between

its users, applying for each the mentioned add projection computation. This computation

consists in a pipeline of operations starting at a scan for faces inside the photograph. If the

algorithm detects faces, they are then extracted and, for each detected face, it is extracted

comparable features from them. Then, these features are mapped to the original image

and are clustered.

The second main operation consists in the update of its indices (fig. 4.7) and it does

not require an interaction from the user, however it does require some conditions to be

met. This task is asynchronous and called after a certain interval, evaluating parameters

at the clustering level and only updating if conditions are met, i.e. if n points were added

since last update. If these condition are met then Chives gets the clustering and for each

mapped projection, estimates its new representatives. After this estimation is done, it

is then evaluated for each cluster if indexing conditions are met, i.e. if a cluster size

is bigger than x, and if positive, the cluster is saved. The saved clusters are then used

to generate new indices or, if they already exist, are updated instead. As some clusters

may disappear or even merge into other clusters, after the creation/updating phase is

finished, indices who were not updated are also evaluated for both cleanup and to ensure

the cluster evolution is tracked by its indices, more details will be provided in sub-section

4.2.6.1. Finally these updates are replicated to the mobile devices due to the guarantees

offered by the CRDT being used.

The third main operation consists in a query for similar images 4.8). This content-

based image retrieval operation, consists in returning to the user images contained in the

same group as the photo submitted. Chives offers this computation, requiring for the

user to run its operation over the image, returning the estimated indices. This is done by

scanning the image for faces and extracting for each its features. Then for each projection

generated, measure the cluster with more chance to be representative and return it to

the user. If no index is considered representative or its chance falls under a confidence

threshold then the user does not receive any index. Finally, for each index received, it is

only required to subscribe to the tags contained inside the cluster.

Although Chives operation can be run locally (due to its indices being propagated to

the mobile devices), due to mobile devices limited resources, it is not expected for this

operation to run completely local on every device. Furthermore, if resources are met, then

running this operation locally would fasten the operation time considerably. As such we

offer both alternatives, allowing devices with lower resources to run Oreganos subscribe

with computation, providing this query operation (an illustration can be seen in figure

4.10).

More details regarding the evaluation of the old indices and cleanup will be mentioned

in subsection 4.2.6.1
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Figure 4.6: Sequence diagram illustrating the upload of a photo.

4.4 Chives & Oregano

As mentioned in the beginning of this chapter, Chives is aimed to be part of an Oregano

service. This is done so we can allow distributed computations in our solution since

due to the computational weight of processing an image, not every device should be

expected to run all the required processes. Integrating Chives into Oregano can be done

by implementing services who use Chives operations and access its data. Furthermore,

it is required to implement a computation server running the implemented services,

assigning them to the peers responsible for handling the request.

In the following sections we will describe two case-studies: A service that adds an

image to Chives and a service using Chives to retrieve the index containing similar faces.

4.4.1 Index Generation

This service is the one responsible for processing the downloaded images and generate

indices. As mentioned in section 4.2.3, clustering will allow us to create groups (or

clusters) of points regarding their euclidean distances. As the size of a cluster begins to

increase, i.e. the number of points inside it begins to increase, future updates may start

to indicate as worthy to generate indices according to its content. An overview of the

generation of indexes can be viewed in figure 4.9.

The ranking algorithm provided by GardenBed, described in section 3.2, is important

for this operation as it is responsible for deciding which content to download, using

popularity metrics. After this decision is made, GardenBed downloads and stores the
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Figure 4.7: Sequence diagram illustrating the creation, update and propagation of the
indices.

decided content, as required by our system (mentioned in 4.1.2). After the content is

downloaded, Oregano will then process all downloaded content using Chives Indexer to

generate the respective indices.

As these indices are being generated and/or updated, they are being replicated as well

to every device who has subscribed to its updates. This is made possible due to Thyme
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Figure 4.8: Sequence diagram illustrating the query for similar images.

support of CRDT since, as mentioned in 3.1.2, they propagate their state to every replica.

This allows for the users to, later on, operate over those indices for numerous operations.

It is important to mention that although the insertion into the system is done imme-

diately, the indexes may not reflect it as fast. This may happen due to two main factors,

the process aforementioned works asynchronously under an update criteria and the con-

sistency offered by the CRDTs which is eventual.

In the following sub-sections we deeply describe Chives contribution to the system.

We begin by describing the module responsible for extracting the features of the faces

inside the images, followed by the indexer We end this section with a more detailed

description of the workflow behind this service.

4.4.2 Index Query

Users may not wish to use subscribe to content by providing keywords. This can happen

due to many reasons and as such, we propose a content-based query, where the user can
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Figure 4.9: Overview of the generation of Indices operation: A. The images are down-
loaded and inserted into the indexer. B. The Indices are disseminated to the users.

subscribe to content just by providing an image as reference. This type of query has

become very popular as it can be a very efficient method to search for similar content

without any analysis nor interpretation beforehand from the user.

Our proposal consists of another computational pipeline with four stages:

Stage 1 - Face Detector: detects all faces found in a given photo.

Stage 2 - Feature Extractor: extracts the features of all face images received.

Stage 3 - Infer Index: we measure, for each projection, the inclusion probability of each

index, returning the most probable. In case of a tie, one of the indices is returned.

If there is not an index with a high enough probability, it is provided feedback and

returned the closest index. The cluster returned in this case is the most probable

one or, as a last resort, a Knn from the projection to each cluster center.

Stage 4 - Retrieve Tags: extracts the tags inside the inferred index and returns them.

If the device has both the indices and enough resources to run the pipeline, then it can

determine the tags by himself, running the pipeline locally. Doing this not only fastens the

operation, but also reduces overall requests to the server, increasing its availability. Using

Oregano, we can increase this availability further by allowing mobile devices capable of

querying the index locally, to act as a server for the mobile devices who can not. Then,
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Figure 4.10: Index Query: The user can behave according to one of the possibilities: Left
- Do the operation by himself. Right - Request assistance.2

if a device cannot do this operation, it only needs to ask for a server who can realize the

computation for him. This can be done by using Oregano subscribe with computation

method and providing an image (an illustration of this process can be viewed at figure

4.10). The server attending to the request will then send to the device requesting the tags

extracted from its inference, allowing him to subscribe to the content contained inside

the tag.

However, it is important to mention that requests attend by the mobiles, may produce

different results from the server. This happens due to the nature of the conflict-free

replicated data type. Since the data is centralized in the server and being it the responsible

for generating and updating tags, it will be the first to provide the updated results to

the user while the devices will receive, eventually, the same updates. Until then, even

though it is available to attend requests, these results will be delivered regarding the

older version.

4.5 Final Remarks

In this chapter we introduced and explained the design of the system plus its integra-

tion with the foundations described in chapter 3. We described the contributions from

each device and the server in the system, how it should work and behave during several

operations and under to some conditions. We also described our proposal, Chives and

how it contributes to the design, describing its two main modules, the feature extractor

and the indexer. We also proposed two important services for the development of our

proposal, the index generator and the index query, describing their workflow as well.

Being our indexer designed with a certain level of abstraction, to allow its use for any

content rather than just images and even any other clustering algorithm implementation,

2This Image contains photos made by Christopher Campbell and Robert Godwin, available at Unsplash.
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we also described some implementation details regarding it in order to aid in any exten-

sion or reuse of this module, starting by describing the projection interface at 4.2.1 and

the process behind the addition of a clustering algorithm, including our implementation

for the clustering algorithms provided by MOA [14], followed by the implementation of

algorithm specific properties (allowing to set parameters).

In the following sections we will describe how we validate our proposal mentioning

our three stages of evaluation and its results, followed by a brief conclusion of the thesis

and enumerate future work.
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Evaluation

In this chapter we will present our experimental evaluations and how they

validate our solution. We begin by establishing the goals of our evaluations

in Section 5.1, splitting into two main points: the framework and our imple-

mentations. After establishing the goals, we begin by evaluating the former

in Section 5.2, followed by the latter in the next sections. We begin with a

clarification of our case study in Section 5.3, followed by our evaluation of the

implemented facial extractor in Section 5.4 and Indexer in Section 5.5. We

end this chapter in Section 5.6 with a summary of the attained results and the

conclusions drawn from the aforementioned evaluations.

5.1 Goal

The main goal of this thesis was to introduce a framework for dynamic index generation

of images, allowing us to bring machine learning’s clustering to the edge and evaluate

its impact. As such, to validate our studies we will validate Chives in both its states:

as a framework and using our own implemented processes. Regarding the former, it is

required to assert over the quality of the code and how can it be further improved for

future related research, to do so we will evaluate three aspects:

Expressivity: How adapted is our framework for distinct scenarios? How much can we

customize from our framework?

Extension Effort: What is the effort to extend our framework?

Abstraction Level: How much does our framework abstract from its underlying logic

and utilities?

Following the evaluation of our framework, it is also required to validate our pro-

posed processes, namely the quality of the indices generated. In a first stage, during the

implementation of our solution, we tested each component to assert over its quality. This
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evaluation was of most importance as each further implemented component had a depen-

dency from the former, meaning that a bad validation could compromise the quality of

future components, thus affecting the following validations. Hereupon, we divided the

evaluation into two main phases, with the following goals:

Facial Extractor: Does it detect and extract faces from a photo and convert the extracted

faces into comparable features?

Clustering Algorithm: Cluster images by their similarity. Build representative clusters

(for example a cluster could represent a person). Allow evolution, permitting adap-

tation to new content.

In the following sections we will begin by validating our infrastructure, asserting over

the aforementioned metrics, followed by a description over the environment implemented

to isolate and test Chives, followed by a deep description of the tests realized.

5.2 Framework

A framework is built to aid, simplify and abstract the user from possible complex prob-

lems. Furthermore, frameworks aim to reduce possible code repeatibility by providing

modular solutions to the problem. Having said that, to evaluate Chives quality we looked

into aspects that could reflect this ease in extending and usage.

5.2.1 Expressivity

Looking at Chives expressivity, although limited by our computational pipeline, the user

has total control over the algorithms being used in the infrastructure, being Chives only

responsible for storing, processing and generate data running the provided implementa-

tion. This allows a bigger personalization of the process, allowing new and more distinct

techniques to be implemented, however it may also require more implementation due to

the lack of details (e.g. Clustering customization for a clustering algorithm).

5.2.2 Extension effort

Regarding implementation, extending Chives can be done with relative ease, requiring

implementation of the processes mentioned in section 4.2. Looking at our proposal we

implemented three datatypes, a projection representing a MOA’s Data Point (containing

currently 82 code lines), an Image extension offering OpenCV specific operations (91

lines of code) and a representation of the Cluster representing a generic MOA Cluster

(42 lines of code) and containing a customized ID (41 lines). This datatypes are solution

specific, so they meet the requirements in our implementation, however Chives is already

expecting and thus requiring in its interface operations such as projection estimation.
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For the clustering algorithm, as we proposed more than a cluster algorithm, we imple-

mented an abstract class wrapping a specifically created algorithm and implementing the

expected interface by translating each operation (75 lines). Furthermore, for each specific

algorithm implemented, it was then required to setup the algorithm (using customized

parameters) and expose its clustering (from 54 to 90 lines). Lastly, for the Feature extrac-

tor, we integrated OpenCV algorithms into both our Face Detector and Feature Extraction.

The Face Detection uses a pre-trained model, requiring mostly to integrate with our re-

quirements, implement an operation for face detection ( 77 lines). This algorithm is then

coupled with the feature extraction into an implementation of the required interface. To

use the three mentioned algorithms (Section 4.2.4), we implemented two levels of ab-

straction scope specific and its setup, after setup is done this algorithm is connected with

Chives framework by implementing the feature extraction process (more than 503 lines

for the 3 algorithms implementations).

5.2.3 Abstraction Level

Regarding abstraction level, Chives focuses on offering a relation between computer

vision, machine learning and edge computing whilst abstracting the edge computing pro-

cess. This allows to focus our implementation in the clustering process whilst abstracting

the user from the underlying logic behind Index formation, update and sharing.

In the following sections we will evaluate our solution using machine learning tech-

niques and metrics in order to evaluate the quality of our solution.

5.3 Case Study: Face Indexing

5.3.1 Setup

As already mentioned, Chives is built to integrate with Oregano (Section 4.2), however

to reduce complexity during our evaluation it is first required to isolate all processes and

evaluate the quality for each stage. Furthermore, being our environment focused on the

process quality, several assumptions were done to test our solution. In this section we

aim to describe our testing environment and the assumptions made to ease the evaluation

process.

Regarding the Extraction of the Features, it was required to define a model capable

of processing each image, this is done so we can effectively extract the required features

and reduce noise in the clustering as much as possible. Our proposal falls under this

requirement of providing face recognition and a face clustering. So, in order to improve

the feature extractor result, we should train a model (or use a pre-trained model instead),

before trying to project the "real"images. To train our model we customized several

datasets that would provide images for both the training and the "real"process.

54



5.4. FACIAL EXTRACTOR

5.3.2 Datasets

During the elaboration of this thesis, to represent images uploaded to the system, we have

used a dataset of facial images: CASIA-WebFace. This dataset contains a total of 494414

images from several celebrities faces grouped by each celebrity, having a total of 10575

folders however, due to its enormous size, smaller subsets were derived from this original

dataset. As our solutions makes use of a trainable model for the extraction of features and

being its quality important for our solution’s quality, for each subset generated, we built

both a Training and a Prediction Set, being the former used for the training of the feature

extractor and the latter for the usual tests and represent the user submitted photographs.

One of the built datasets was named as "PerfectWorld"containing 9 distinct persons

and a total of 119 images for the training set and 155 for the prediction. This dataset was

purposely small and its main objective was to pick images who were visually easier to

distinguish, providing an "easier"dataset for our solution. However, this dataset would

neither represent the real world, nor contain enough data to effectivelly evaluate our

cluster, thus being unreliable for evaluation of our proposal.

For a more reliable evaluation we created a new dataset, named as "SmallerOur-

World"that tries to provide more data for the training and evaluation process whilst

representing a more distinct set of people. This dataset aims to train our Feature Ex-

tractor with distinct people, providing 179 distinct sets of photos (totalling around 3400

images for training) however, to prevent possible bias, the training dataset is also aimed

to contain distinct faces from its evaluation counterpart. Due to limitations regarding

the hardware using OpenCV during the training of these models, the number of images

being processed needed to be reduced to 1600, thus reducing the quality of our model.

For the evaluation process, the generated dataset contains 11 sets of photos (totalling

around 4300 images). During model training, due to the nature of the implemented

processes, models were also trained with distinct dimensionalities sizes, namelly five, ten

and twenty dimensions. These dimensions vary acording to the number of components

established in the algorithm and this variation may also allow to best define the optimal

value for our solution.

5.4 Facial Extractor

5.4.1 Face Detection

The facial extractor is not connected to the indexer, however it is a crucial component of

our system as most of the data processed and indices generated strongly depend on it.

That being said, in order to guarantee an easier and more accurate clustering, this extrac-

tor should provide accurate and descriptive features, so the Clustering Algorithm can

evaluate and operate over it with more ease and accuracy as well without compromising

the clustering algorithm. This brought a need to test this extractor early as it would allow

us to preemptively assert its quality.
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Being the thesis, focused on facial features, we tested the face detection models for

face detection, provided by OpenCV.

We tested several models, evaluating the number of images correctly detected and

wrongly. When an image is detected wrongly, we distinguish between whether it was

not detected or the classifier detected more than one. This is done because it is known

beforehand that the dataset contains one face to be detected and it is mostly probable

that an image lacking a face was also detected (these results can be seen in the table 5.1).

Table 5.1: Face Detection Results.

Model Correct Faces No Faces Multiple Faces Accuracy

HaarCascade FrontalFace Alternative 3357 916 51 77.6
HaarCascade FrontalFace Alternative 2 3415 807 102 79
HaarCascade FrontalFace Alternative 2 CUDA 3505 714 105 81.1
HaarCascade FrontalFace Alternative Tree CUDA 2787 1523 14 64.5
HaarCascade FrontalFace Alternative CUDA 3453 808 63 79.9
HaarCascade FrontalFace Default 3452 561 311 79.8
HaarCascade FrotalFace Default CUDA 3444 541 339 79.6
HaarCascade ProfileFace 1492 2803 29 34.5
HaarCascade ProfileFace CUDA 1778 2504 42 41.1
LBPCascade FrontalFace 3163 1054 107 73.1
LBPCascade FrontalFace Improved 2959 1347 18 68.8

Looking at the results, HaarCascade FrontalFace Alternative 2 CUDA1 offers highest

accuracy whilst reducing a great amount of images with zero or many faces, however due

to practical motives we have chosen an algorithm that could reduce this number the most:

HaarCascade FrontalFace Alternative Tree CUDA.

5.4.2 Feature extraction data analysis

After deciding the model for face detection, there were three algorithms used for ex-

tracting features from the face image for our use case: PCA, EigenFaces, FisherFaces

(section 4.2.2). To assert over the most adequate algorithm, we did a comparative study

using each of these algorithms. Using the aforementioned (subsection 5.3.2) dataset

"DistinctPeople"we trained several models, alternating between the algorithm and the di-

mension size, then using the prediction set, we tested each generated model and analysed

its resulting points. To analyse the generated results, the projections were stored in a file

compatible with the software MulltiSOM [52] (section 2.2.3), allowing the visualization

of the data. MulltiSOM [52] offers a great graphical interface, which allows us to reduce

the dimensions of the data and visualize possible clusters.

In addition, we run our clustering algorithm over the generated projections as well

and evaluate the resulting clusters. Since our focus was not yet to evaluate our clustering

algorithm, we used this method whilst varying all its relevant parameters. To visualise

the resulting cluster we saved the projections and used pyhton’s matplotlib [39] to gener-

ate graphical spaces. Although limited, the two-dimensional generated graphs, allowed

1https://github.com/opencv/opencv/tree/master/data/haarcascades_cuda
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Figure 5.1: Feature Extractor Algorithm Comparison.

to comparatively evaluate each algorithm, figure 5.1 demonstrates the resulting coordi-

nates for the first two principal-component analysis using the DenStream algorithm with

epsilon value of 0.12.

After analysing these results we can see that neither feature extractor algorithm could
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effectively extract the facial features as their results shown distinct faces containing simi-

lar coordinates and the exact opposite. Furthermore, we decided to progress our studies

using EigenFaces as it proved to be a reasonable half-term.

5.5 Clustering Projections

Although the results provided in subsection 5.4.2 allowed a preemptive assertion over

the data, those results required both human intervention and analysis, resulting in a

qualitative and less reliable evaluation. As such, in this section we will evaluate the

quality of our clustering algorithm and its respective clusters using both unsupervised

and supervised metrics.

For our extractor, in consideration with the aforementioned evaluation (section 5.4),

we used a feature extractor with the HaarCascade FrontalFace Alternative Tree CUDA

model as our face detection algorithm and EigeinFaces with dimensionality 10 as our

feature extraction algorithm. For the clustering algorithm, although implemented an

integration with four MOA algorithms, due to technical issues regarding integration of

some of the algorithms that rendered their results incoherent and uninterpretable, our

evaluation focused solely on the density-based clustering algorithm DenStream. These

tests consist in varying the algorithm’s parameters whilst analysing its clustering. After

evaluating the disparity between results when altering each parameters of the algorithm,

we decided to focus these tests on the epsilon parameter.

5.5.1 Unsupervised metrics

More than evaluating the labels of each image inside the cluster, it is important to under-

stand if the data can be discriminated and clustered. In this subsection we aim to use

unsupervised metrics to best assert over the generated clusters and determine the more

adequate parameters for the established algorithm.

To evaluate our clusters, we created several instances of the clustering algorithm al-

ternating the epsilon parameter and clustered the projections generated by our feature

extractor. After the insertions were done, we registered each projection and its represen-

tative cluster and measured the silhouette, Calinski-Harabasz and Davies-Bouldin score

(section 2.2.4) for the registered clustering (table 5.2 shows the unsupervised score for

the first six variations of epsilon).

Comparing these results we can conclude several aspects. Analysing the first coef-

ficient, the silhouette score, we notice that for epsilon values of 0.1 this score is higher,

meaning that clusters are better defined when this parameter is used. However this result

can also happen due to the smaller clusters, as decreasing the epsilon value reduces the

cluster radius threshold. When evaluating the second score, the Calinski-Harabasz index,

we can notice that scores are effectively higher for higher epsilon values, however this

increase is not proportional as for epsilon value of 0.16, the result was higher than for
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Table 5.2: Unsupervised scores for a range of epsilon values in the Denstream algorithm

Epsilon Silhouette Calinski-Harabasz Davies-Bouldin

0.10 0.4792 28.7847 0.6190
0.12 0.3148 34.9826 0.8375
0.14 0.3167 72.3828 0.8747
0.16 0.2898 106.6503 0.9610
0.18 0.1162 98.3177 0.9990
0.20 0.2409 122.1313 1.0272

0.18. Joining with Davies-Bouldin index, we notice that score is lower for lower epsilons

as well.

Considering these results we can detect that lowering our epsilon may provide a better

clustering and, accordingly, a better separation between each cluster. However, a lower

epsilon may also decrease the number of images clustered (and be classified as noise).

Furthermore, regarding their absolute values, it is also important to note that for convex

clusters, the resulting scores from these metrics tend to increase, meaning that density

based clusters may have inherently increased scores. As such, we focus our conclusions

in a comparative manner between the same algorithm.

Since lowering our parameter increases our score but may contain less images clus-

tering, we also evaluated each clustering content. In this evaluation we analysed each

cluster images based on its original label and introduced a purity metric following this

formula:

P opularitycluster =
nx∑nlabels\x
i=0

Where x represents the most occurring label and labels represents all distinct labels.

Tables 5.3 and 5.4 present the resulting analysis for both the clustering using an

epsilon parameter value of 0.1 and 0.14.

Table 5.3: Cluster purity regarding faces clustered for Epsilon 0.1.

Cluster P1 P2 P6 P7 P8 P10 Purity

0 0 0 1 0 0 1 0.5
1 1 0 0 0 1 0 0.5
2 0 1 1 0 0 0 0.5
3 1 0 0 0 1 0 0.5
4 1 0 1 0 0 0 0.5
5 0 0 0 2 0 0 1.0

Analysing the tables we confirm the lack of content when providing the lower value

of epsilon. The presented result for epsilon value of 0.1 also indicated a required trade-off
between the scores presented in the beginning of this section and the content inside each

cluster. Furthermore, we can conclude that for epsilon values of 0.14, no cluster is pure,

meaning that there is not a cluster containing images of a specific person but instead
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Table 5.4: Cluster purity regarding faces clustered for Epsilon 0.14.

Cluster P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Purity

0 1 0 0 1 0 0 1 0 0 0 0 0.33
1 0 0 0 0 0 0 5 0 0 0 1 0.83
3 0 0 1 0 2 0 0 0 0 0 0 0.67
4 1 1 1 1 0 0 2 0 0 0 0 0.33
5 1 0 0 0 0 1 0 0 2 0 0 0.5
7 0 1 0 0 0 0 2 0 0 0 0 0.67
8 0 2 1 1 0 0 0 0 2 0 0 0.33
9 0 1 1 1 0 0 1 0 0 1 0 0.2

11 4 6 0 0 0 1 3 2 3 0 2 0.29
12 2 3 0 0 0 0 1 0 2 0 2 0.3
16 3 3 1 1 1 2 10 0 2 0 1 0.42
17 11 0 4 0 0 0 7 0 1 0 0 0.48
18 3 1 1 0 0 0 7 1 0 0 0 0.54
19 0 4 0 2 0 0 1 1 2 0 0 0.4

contains several images of distinct people. For epsilon values of 0.14 we can also notice

distinct clusters representing the same face label (e.g. Cluster 7 and 16), thus scattering

content that should be grouped. Both cluster’s purity and label ambiguity affect the

descriptiveness of an index, reducing index labels accuracy as well.

5.5.2 Supervised metrics

In this section we evaluate the quality of the cluster considered the closest to the queried

projection. We started, by projecting ten images for each face group being represented

in the prediction set (totalling 110 images) and added a ground truth label to all our

images (based on their face group). After adding the labels, we compared each projected

image with the resulting cluster most popular label, being the popularity measured by

evaluating the ground truth labels of each image inside the cluster and assigning the most

occurring to the cluster. If the returned cluster shared a similar label as the image being

queried, we assumed a correct query. We then measured the precision, recall, f1-score

and support of the resulting labels.

When evaluating the scores for the multiple epsilon values, we can conclude that the

measured scores tend to be low, meaning that the clusters could not represent all faces

inside the set(table 5.5 shows the scores for an epsilon value of 0.14). Furthermore several

face groups (e.g. two and three) have mostly scored zero, this can happen when either no

image could be exclusively identified, i.e. the images could not be projected into a cluster

containing similar labels or if the face is not clustered, for instance, it could be scattered

through other clusters.
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Table 5.5: Supervised scores for epsilon values of 0,14

Face Precision Recall F1-Score Support

0 0.3077 0.4 0.3478 10.0
1 0.1667 0.625 0.2632 8.0
2 0.0 0.0 0.0 9.0
3 0.0 0.0 0.0 9.0
4 0.25 0.6 0.3529 5.0
5 0.0 0.0 0.0 7.0
6 0.2273 0.5556 0.3226 9.0
7 0.0 0.0 0.0 6.0
8 0.0 0.0 0.0 7.0
9 0.0 0.0 0.0 5.0
10 0.0 0.0 0.0 5.0
accuracy 0.2125 0.2125 0.2125 0.2125
macro average 0.0865 0.1982 0.1170 80.0
weighted average 0.0963 0.2125 0.128 80.0

Figure 5.2: Clustering Results for epsilon values of 0.14.

5.5.3 Image Clustering and Indexing

After evaluating the clustering algorithm, in this section we visualise the resulting cluster-

ing and discuss over the indexing of our system. For data visualization we used an epsilon

value of 0.14 as it presented to be a reasonable trade-off between the obtained scores and

the number of images clustered. Figure 5.2 shows both the cluster labels and its original

images projected in a two dimensional space representing its first two coordinates.

As noticed in the earlier evaluations, only a small set of the projected data is being

clustered, this can happen due to the noise detection of DenStream. Density-based algo-

rithms can easily be affected by noise, meaning that their algorithms are usually built

with this factor in mind. However, since our solution is not expected to contain any noise,

this behaviour reinforces the lack of discrimination of the data projected.
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When evaluating the mapping of the indices we can also validate their creation, exist-

ing only indices for cluster who do meet the requirements established, however further

studies are required in order to validate the implemented operations and adaptation to a

constantly changing cluster. These validations are important to also detect and discuss

the drawbacks caused by the assumptions made in sub-section 4.2.6.1.

5.6 Summary

After analysing the results, we can see that, providing our face detection, for 81%, we

can detect and reduce the original images to its faces. Providing us with 3500 images

for clustering. However, When processing these images with the feature extractor, the

features provided do not effectively represent each face, meaning that distinct people can

often end in close proximity. Furthermore, similar faces can also end in distinct positions.

Since our clustering algorithm clusters based on each points euclidean distances, this

downside generated a difficult subspace to cluster on, thus diminishing the results pro-

vided by our clustering algorithm. However, despite its results we could detect, although

in smaller dimensions, clustering. This could happen due to DenStream’s noise detection,

imbued in density-based clustering algorithms. Furthermore, as cluster increased their

size, clusters containing a total size bigger than the one defined in the predicate, were

saved in the index maps, however further studies should be done in order to best assert

and validate over its process.

In conclusion, further studies and improvements should be done in regards to the final

solution, this could be done by introducing new algorithms to our processing pipeline or

improving the already proposed ones.
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Conclusions

This chapter will contain our final remarks regarding this thesis. We will

begin by enumerating our conclusions regarding our solution as described

in chapter 4 and its respective results, shown in chapter 5. Following our

conclusions, in section 6.2 we will enumerate aspects to be improved in this

thesis, these aspects range from infrastructure improvement to work planned

to extend this thesis.

6.1 Conclusions

In this thesis, we present Chives, a solution for dynamic generation of indices for devices

running in the edge. Chives is built for use by Oregano, to allow both automatic genera-

tion of indices by the centralized stationary server and content-based query for indices of

content.

It is comprised of two main, detached, components: the feature extractor and the

indexer. The feature extractor implements algorithms to project images regarding the

focus of our thesis: extracting faces and projecting each to a subspace understandable by

the indexer. This extractor is also built with the clustering algorithm used in mind. The

indexer is purposely built with a level of abstraction, allowing the clustering and indexing

of any content and also allows the usage of a specific clustering algorithm (detaching the

clustering algorithm from the indexer).

This implementation is not yet finished, therefore we proposed, in chapter 4, the archi-

tecture designed during the elaboration of this thesis. This design uses the foundations

mentioned in 3, to provide a system running at the edge, using both mobile devices and

a stationary server located at the access point or close to it.

We can also conclude that, by using clustering, we can cluster content by its similarity

and even use the generated clusters to reduce the complexity of a content-based query

to both the devices and the server. This enables a new method of querying content for a

system running with limited resources on the edge. However this solution also revealed

aspects that must be considered as it can easily affect these results and compromise its
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accuracy. The feature extractor can hide or wrongly detect faces in an image, which

can increase the number of outliers being inserted in the algorithm and lead to more

"noise"inside of it. To prevent these outliers, we can use a density-based clustering al-

gorithm which can filter this noise, however this can also cause the algorithm to falsely

accuse a projection as noise, which will reduce the number of clusters, hence reducing

the number of indices as well as their sizes. Our results shown these aspects, providing

the means of clustering content but also ignoring other great clusters.

This study, serves as a proof of concept of our solution and presents results who can

motivate to further study this solution.

6.2 Future Work

Chives is a framework built with our problem in mind, however as we can see in chapter

5 there is still a lot of room for improvement regarding our proposal. In this section we

present several considerations that could be done so our solution could be improved and

worked on to get closer to the designed architecture. These considerations will be listed

according to our evaluation method, followed by architectural proposals.

6.2.1 Feature Extractor

As already mentioned, the Feature Extractor, plays a very important role in the system,

meaning that improving the extractor would mean a direct improvement in the indexer as

well (as seen in the 5.4 and 5.5). However, extracting features is not an easy task moreover

considering the limited resources from the mobile devices. Following, we propose two

possible improvement points to extend our work.

Accuracy: As seen in the section 5.4, although this extractor provides means to cluster,

it still has trouble distinguishing some faces and not every face is detected for clustering.

This is caused by both the model for face detection and PCA. A good aproach could be to

improve this processing pipeline, either by upgrading both the face detection algorithm

and feature extractor or by providing better models. The former could consist in research-

ing better techniques for feature extraction, improving our processing pipeline or the

already defined stages by introducing better algorithms, e.g. deep learning algorithms.

Alternatively, as later described, we could try to improve the already proposed algorithm

by deriving better models and evaluate if it does provide an interesting result that may

suffice in comparison to other, more computationally expensive, solutions.

Image Range: For now, this extractor was only tested using photos containing only a

single face. This has eased our research however, this is only true under a simulated envi-

ronment (as image-sharing software can receive any content, who may or may not have

faces). To enhance our solution and extend it to more than just a proof of concept, it could
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be also interesting to extend the researching environment by removing this assumption

and evaluate our framework adaption to this solution.

6.2.2 Clustering Algorithm

Although limited by the subspace generated, the clustering algorithm allowed to visualise

potential clusters, however it also provided several false positives in regards to noise,

clustering only a small set of the provided images. That being said, it could be also

interesting to invest in improving the clustering algorithm as well by providing new

algorithms or test the already implemented exhaustively. However, it is important to

consider that before upgrading the clustering algorithm, the feature extractor should

already provide a reasonable projection set for clustering as most of the presented results

for the clustering algorithm being tested may have been hindered by this factor.

6.2.3 Indexer

As mentioned in chapter 5, the Indexer could not be effectively validated, as such several

validations should be done to Chives as well to better understand and detect possible

drawbacks. Future work in this topic could consist in studying and improving the dy-

namic evolution of these indices as for now we only know they exist.

6.2.4 System

After improving our solution, there are still points to work upon in order to integrate our

solution with Oregano.

Services and Servers: Our proposed services and computation servers should be evalu-

ated and improved in order to best fulfill the defined workflows and integrate with the

remaining architecture.

Mobile devices: A mobile application can be implemented running the software stack

mentioned in figure 4.2 and offer a photo sharing service inside our environment that

meets the defined workflows.

Access Points: Access points can be extended to add processing during the download

of popular content, thus allowing the usage of Chives for image insertion and clustering

whilst the content is being downloaded.

6.2.5 Data streaming environment

More than upgrading our solution, evaluation must also be improved to represent a more

realistic environment. Since our focus is on edge computing, future upgrades in the

evaluation process could be done by simulating a data stream dataset and evaluate the
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adaptability of the solution. Furthermore, this validation should also be improved by

integrating with other components being implemented as suggested in the earlier sections

up to a scenario where it is possible to evaluate and simulate the designed architecture.
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