
DEPARTMENT OF
COMPUTER SCIENCE

JOÃO LUÍS GUERREIRO RAMALHO

Master in Computer Science

FROM APP BUILDERS TO APP EDITORS
BIDIRECTIONAL TRANSFORMATIONS OF LOW-CODE MODELS

MASTER IN COMPUTER SCIENCE

NOVA University Lisbon
November, 2021

DEPARTMENT OF
COMPUTER SCIENCE

FROM APP BUILDERS TO APP EDITORS
BIDIRECTIONAL TRANSFORMATIONS OF LOW-CODE MODELS

JOÃO LUÍS GUERREIRO RAMALHO

Master in Computer Science

Adviser: João Ricardo Viegas da Costa Seco
Associate Professor, NOVA University Lisbon

Co-adviser: Hugo Miguel Ramos Lourenço
Principal Research Engineer, OutSystems

MASTER IN COMPUTER SCIENCE

NOVA University Lisbon
November, 2021

From App Builders to App Editors

Copyright © João Luís Guerreiro Ramalho, NOVA School of Science and Technology,

NOVA University Lisbon.

The NOVA School of Science and Technology and the NOVA University Lisbon have the

right, perpetual and without geographical boundaries, to file and publish this dissertation

through printed copies reproduced on paper or on digital form, or by any other means

known or that may be invented, and to disseminate through scientific repositories and

admit its copying and distribution for non-commercial, educational or research purposes,

as long as credit is given to the author and editor.

To my dear parents and brother.

Acknowledgements

I would like to thank the NOVA School of Sciences and Technology, the Department of

Computer Science, and every professor who supported me in this five-year journey. Your

dedication and commitment helped me build the foundations of what I hope to be a

successful career.

Secondly, I would like to thank my advisers for their devotion to this project. This

wouldn’t have been possible without you. Professor João Costa Seco, I can not speak too

highly of your dedication and professionalism. Hugo Lourenço, I thank you for all the

knowledge and expertise you provided. Your serene and well-pondered attitude taught

me a lot.

Thank you OutSystems for this opportunity, and for having embarked on this research

project. Everyone I talked to showed an amazing willingness to help and for that, I am

very grateful. A special thanks to the Experience Builder team, particularly Gonçalo

Martins and Tarik Ayoub for enduring my never-ending questions and requests.

Furthermore, I must address all the support given by my family, in particular my

parents and my brother. During this journey, you encouraged and inspired me to keep

going, always supporting me when I needed it. I hope you understand how important

you were.

I had the good fortune of having two colleagues who walked this long path with me,

Francisco Delgado and João Santos. I never thought I would miss all those restless nights

working on our assignments. It is with great honor and appreciation I can say I have you

as my friends.

A special thanks to my best friend André Coutinho for your wisdom and support.

Your inherent drive to succeed motivated me in more ways than you can imagine.

A word of appreciation for NOVA-LINCS and the GOLEM project 1 for partially sup-

porting this work with the provided grant 2, and last but not least Professor João Lourenço

and everyone behind the this template [10] for their relentless service to every student

who used it. I cannot stress enough how much your work facilitated mine.

1Golem Project, REF Lisboa-01-0247-Feder-045917
2Grant Reference, UIDB/04516/2020

ix

“Start with what is right rather than what is acceptable.”
(Franz Kafka)

Abstract

OutSystems provides a model-driven development and delivery platform aided by a rich

visual environment, allowing developers to create enterprise-grade web and mobile ap-

plications. Until recently, most of this development capability came from Service Studio,

the platform’s Integrated Development Environment (IDE), with which developers can

quickly design a fully-fledged application. Nevertheless, in recent times the company

has strived to offer a new collection of tools more focused on specific aspects of applica-

tion development. The builders are tools that allow for non-IT related users to generate

complete software solutions, with a small number of interactions, therefore reducing com-

plexities correlated with the assembly of multiple-layer applications. Currently, there are

two builders generally available: the Experience Builder providing greater focus towards

the initial User Experience (UX) development, and the Workflow Builder, associated with

the design of task management and automation applications.

Even though the OutSystems platform allows the combined use of the builders with

Service Studio, currently this compatibility is unidirectional. That is, an application cre-

ated using the Experience Builder, for instance, can be edited in the IDE but the inverse

process is not possible. More specifically this shortcoming precludes a builder to update

an application created or edited with any OutSystems tool. This substantially damages

the chance for collaboration between different types of users employing different Out-

Systems tools. The present dissertation sets as its paramount objective the enabling

of different personas, both business and tech-oriented, to collaborate on the develop-

ment of an enterprise-level application, employing the entire set of tools provided by the

platform. From a more detailed standpoint, this work consists in the development of

necessary model transformations proficient in supporting continuous and collaborative

interoperability.

Hence, this dissertation aims to expand the reach of the OutSystems product line, but

also, from an academic standpoint, it hopes to provide a useful contribution to Model

Driven Engineering and model transformations, advancing the state-of-the-art.

xiii

Keywords: OutSystems, Builders, Editors, Model Transformations, BPT, MDE, Continous

Collaboration

xiv

Resumo

A OutSystems fornece uma plataforma de desenvolvimento e entrega, orientada ao mo-

delo e suportada num ambiente visual rico, permitindo aos seus programadores criarem

aplicações móveis e web de nível empresarial. Durante vários anos, grande parte desta

capacidade de desenvolvimento resultava do uso do Service Studio, o Integrated Develop-

ment Environment da plataforma, capaz de rapidamente construir uma aplicação na sua

plenitude. Ainda assim, nos últimos tempos a companhia empenhou-se em oferecer uma

nova coleção de ferramentas, mais focadas em aspetos específicos do desenvolvimento

aplicacional. Os builders, são então ferramentas que possibilitam que utilizadores não

associados a áreas de IT possam gerar soluções completas de software atráves de um nú-

mero reduzido de interações, conseguindo assim minorar complexidades correlacionadas

com a montagem de múltiplas camadas aplicacionais. Atualmente, existem dois buil-

ders disponíveis para o público: o Experience Builder orientado ao desenvolvimento da

User Experience (UX), o Workflow Builder, associado ao design de aplicações associadas

a processos de gestão e automação de tarefas.

Embora a plataforma OutSystems permita o uso combinado dos builders com o Ser-

vice Studio, atualmente esta compatibilidade verifica-se como unidirecional. Isto é, uma

aplicação criada no Experience Builder, por exemplo, pode ser editada no IDE, mas o

processo inverso não é possível. Esta limitação impede um builder de atualizar uma apli-

cação criada ou editada utilizando uma qualquer ferramenta OutSystems. Isto prejudica

substancialmente a colaboração entre diferentes tipos de utilizadores que empreguem

diferentes ferramentas OutSystems.

A presente tese define como objectivo principal capacitar diferentes personas não só

orientadas ao negócio como às tecnologias, com a possibilidade de colaborar no desenvol-

vimento de uma aplicação de nível empresarial, podendo, para isso, utilizar a totalidade

de ferramentas fornecidas pela plataforma. De um ponto de vista mais detalhado, este

trabalho irá consistir no desenvolvimento das transformações de modelo necessárias para

o suporte do desenvolvimento contínuo e colaborativo que se pretende.

Deste modo, esta tese não só tem como propósito a expansão do alcance da linha de

xv

produtos OutSystems, como de um ponto de vista academico, pretende contibuir util-

mente para o paradigma da Model Driven Engineering e das transformações de modelos,

avançando assim o estado da arte.

Palavras-chave: OutSystems, Builders, Editors, Model Transformations, BPT, MDE, Con-

tinous Collaboration

xvi

Contents

List of Figures xxi

Glossary xxv

Acronyms xxvii

1 Introduction 1

1.1 Context . 1

1.2 Motivation . 2

1.3 Objectives . 2

1.4 Expected Contributions . 3

1.5 Outline . 3

2 Background 5

2.1 Model Driven Engineering . 5

2.1.1 Model . 6

2.1.2 Metamodel . 7

2.1.3 Meta-metamodel . 7

2.1.4 Meta-Object Facility . 7

2.2 Domain Specific Modeling Languages 8

2.3 Model Transformations . 8

2.3.1 Kinds of Model Transformations 9

2.3.2 Lenses . 11

3 OutSystems Platform 13

3.1 Architecture . 13

3.1.1 Service Studio . 13

3.1.2 Platform Server . 14

3.1.3 Integration Studio . 14

3.2 Builders . 15

xvii

CONTENTS

3.2.1 Experience Builder . 16

3.2.2 Workflow Builder . 17

3.2.3 Integration Builder . 18

3.2.4 Example of the current development shortcomings 20

4 Model manipulation 21

4.1 OutSystems Language . 21

4.2 OutSystems Meta-model . 21

4.3 OutSystems Model . 22

4.4 Builders . 24

4.5 Builders Meta-model . 25

4.6 Builders Model . 26

4.7 Model Flow . 29

4.8 ModelAPI . 30

4.9 Builders’ Key Management . 30

4.9.1 Single-Shot Builders . 31

4.9.2 MultiShot Builders . 31

5 Related Work 33

5.1 Delta-based model transformations . 33

5.1.1 Benefits from using a two-stage operation 34

5.2 Concurrent update propagation . 35

5.2.1 Requirements for synchronizing concurrent updates 35

5.2.2 Algorithm . 36

5.3 In summary . 37

6 Design and Implementation 39

6.1 Design . 39

6.1.1 Strategy Overview . 39

6.2 Implementation . 42

6.2.1 Prototype Plan . 42

6.2.2 Console App Functionality . 43

6.2.3 TinyApp . 45

6.3 Backward Transformation . 50

6.3.1 Serialization/Deserialization of the builder model 50

6.3.2 Delta Computation . 51

6.3.3 Operation “Translations” . 54

6.4 Forward Transformation . 61

6.4.1 Metadata Injection . 62

6.4.2 Projection . 66

7 Results and Evaluation 71

xviii

CONTENTS

7.1 Results . 71

7.1.1 Add Flow operation . 72

7.1.2 Add Connection operation . 74

7.1.3 Add Menu Item operation . 75

7.1.4 Backward and Forward Transformations 77

7.1.5 Backward Transformation operation 78

7.1.6 Forward Transformation operation 79

7.2 Evaluation . 80

7.2.1 Validation . 80

7.3 Unattained scenarios . 86

7.3.1 Limitations . 88

7.4 Running example . 88

7.5 Final Remarks . 89

8 Conclusion and Future Work 91

Bibliography 93

xix

List of Figures

2.1 UML Java Class Models . 6

2.2 Meta-model . 7

2.3 MOF hierarchy . 8

2.4 PIM to PSM model transformation . 9

3.1 OutSystems Platform . 14

3.2 Service Studio . 15

3.3 Experience Builder - Template Screen . 16

3.4 Experience Builder - Add Flow Screen . 17

3.5 Experience Builder - Menu Customization 17

3.6 Workflow Builder - Template Screen . 18

3.7 Workflow Builder -

Form Customization . 19

3.8 Workflow Builder -

Business Process Customization . 19

3.9 Integration Builder - Choose Provider Screen 19

3.10 Integration Builder - My Integration Screen 20

4.1 Service Studio Interface - Action ProcessRequest 22

4.2 OutSystems Action Meta-model (UML) . 24

4.3 OutSystems Action Model (UML) . 26

4.4 Experience Builder Interface - Screens and Flows 28

4.5 Experience Builder - Meta-model . 28

4.6 Model Flow . 29

5.1 Diskin Delta-based Model Transformation (Adapted from [4]) 35

5.2 Takeshi et al. Algorithm [29] . 37

6.1 Used Notation . 40

6.2 Backward Transformation - Change Log . 41

6.3 Backward Transformation - Builder-Log Coupling 41

xxi

LIST OF FIGURES

6.4 Backward Transformation - Difference Calculation 42

6.5 Prototype - Console Application . 44

6.6 Service Studio - Application (Flows) . 46

6.7 Service Studio - Application (AnimatedOnboardingOption1 Screen) 49

6.8 Service Studio - Application (BankingDashboard Screen) 49

6.9 Service Studio - Application (SimpleLogin) Screen 49

6.10 Service Studio - Application (Bottom Bar Menu) 49

7.1 Experience Builder Interface - Add Flows button 72

7.2 Prototype Console - Add Flow use-case . 73

7.3 Service Studio - Added Flow Metadata . 73

7.4 Service Studio - Added Screen Metadata . 74

7.5 Experience Builder Interface - Add Connection 74

7.6 Prototype Console - Add Connection . 75

7.7 Service Studio - Added Connection Metadata 75

7.8 Experience Builder Interface - Add Menu Item dialogue window 76

7.9 Experience Builder Interface - Add Menu Item 76

7.10 Prototype Console - Add Menu Item . 77

7.11 Service Studio - Added Menu Item Metadata 77

7.12 Experience Builder Interface - Publish button 78

7.13 Prototype Console - Backward Tranformation 78

7.14 Prototype Console - Forward Tranformation 80

7.15 Added Users entity . 82

7.16 Category 1 - Ann’s prototype commands . 82

7.17 Service Studio - Backward Transformation Result 82

7.18 Service Studio - Bob’s added text widget . 83

7.19 Category 2 - Ann’s prototype commands . 84

7.20 Service Studio - Bob’s added text widget (after Ann’s changes) 84

7.21 Category 3 - Ann’s prototype commands . 85

7.22 Service Studio - Application flows after Ann’s changes 86

7.23 Solution’s behavior . 86

7.24 Experience Builder Interface - Add Flows dialogue window with Empty Screen

selected . 87

7.25 Experience Builder Interface - Side Menu 87

xxii

List of Listings

1 OutSystems Action Meta-model . 23

2 OutSystems Model Instance . 25

3 Experience Builder - JSON Model (Abbreviated) 27

4 ModelAPI . 30

5 Model with Key Management Mechanisms - MultiShot Operation Mode 32

6 JSON Payload - Basic Info . 45

7 JSON Payload - Model (Screens) . 47

8 JSON Payload - Model (Connections) . 48

9 JSON Payload - Model (Menu) . 48

10 Implementation - Experience Builder Model 50

11 Implementation - LoadModel . 51

12 Implementation - SaveModel . 52

13 Change Log . 55

14 Abstract Operation Class . 55

15 Run method - UpdateFlow . 56

16 UpdateFlow method . 57

17 Create connection - Run method . 57

18 Create connection - ConnectScreens method 58

19 Create connection - Connect method . 59

20 Create connection - SetDestination method 60

21 BackwardTransformation method . 62

22 Metadata Injection - AddFlowMetadata method snippet 63

23 Metadata Injection - AddScreenMetadata method snippet 63

24 Metadata Injection - CreateConnection method snippet 64

25 Metadata Injection - CreateMetadata method snippet 65

26 Metadata Injection - CreateMenuItem method snippet 65

27 Projection - Projection method . 67

28 Projection - GetConnectionsFromLinks method 68

29 Projection - ForwardTransformation method 69

xxiii

LIST OF FIGURES

30 Change Log Example . 79

xxiv

Glossary

Add-on Generally, a small program that provides added capabilities to an exist-

ing software i, 14

App An application software designed to satisfy a particular purpose i, 2, 16,

31, 40, 45, 56, 82

Artifact Any tangible or concrete element produced from software development

i

Connection (OutSystems) A link connecting two application screens i, 42, 45, 50, 52,

74

DevOps A collection of practises belonging to the realm of software development

("Dev") and operations ("Ops") i, 13

End-User Person or entity who ultimately uses a (software) product i, 14, 18

Flow (OutSystems) Sequences of screens carried out as the user interacts with

the application i, 16, 42, 45, 50, 52

IT Information Technologies i, xxv

Log Track record of events occuring in the context of a software i, 40, 41

Persona A fictional character representing a user type that might use a site, brand,

or product i, xiii, xv, 2

S3 Bucket A public cloud storage resource available in Amazon Web Services’

(AWS) Simple Storage Service (S3) i, 46

Server Action OutSystems action that runs logic on the server side i, 20

xxv

GLOSSARY

widget Usually referring to a user’s interface button, link, bar, or any other

application element the user can interact with i, 66

xxvi

Acronyms

API Application Programming Interface 30

AWS Amazon Web Services 29, 45, 46

B2C Business-to-Client 16

BX Bidirectional Transformations 1, 2

CRM Customer Relationship Management 18

CRUD Create Read Update Delete 20

DSL Domain-Specific Language 13

DSML Domain Specific Modeling Language 8

ERP Enterprise Resource Planning 18

GUI Graphical User Interface 2, 43, 72

GUID Globally Unique Identifier 31, 32

IDE Integrated Development Environment xiii, xv, 2, 13, 29, 39, 40, 41, 61, 79, 81,

83, 88, 91, 92

ISO International Organization for Standardization 5

IT Information Technologies xiii, xv, 2, 15, 17, 91

MBE Model Based Engineering 5

MDA Model Driven Architecture 5, 9

MDD Model Driven Development 5

MDE Model Driven Engineering xiii, xvi, 1, 3, 4, 5, 6, 8

MDSD Model Driven Software Development 5, 10

MOF Meta-Object Facility 7

xxvii

ACRONYMS

OAP OutSystems Application (Package) 15, 18, 29, 46, 61

OMG Object Management Group 5, 7

OML OutSystems Markup Language 30, 46

SaaS Software-as-a-Service 15, 17, 18

UI User Interface 14, 45, 46, 61, 83, 89

UML Unified Modeling Language 5, 6, 8

UX User Experience xiii, xv, 14, 15, 16, 89

xxviii

1

Introduction

This dissertation was developed under a successful partnership between the OutSystems

Research & Development (R&D) team, the NOVA Lincs Research Center, and the Depart-

ment of Informatics of the School of Sciences and Technology of NOVA University of

Lisbon (NOVA SST). The investigation aimed for the development of a viable solution

regarding the subjects of Model Driven Engineering (MDE) and model transformations.

This work intended not only to enrich the OutSystems Platform together with its product

line but also hoped to provide a valuable contribution to the mentioned paradigms.

1.1 Context

The inadvertent increase of complexity has infamously stood as one of the greatest ene-

mies of software engineering, notably claiming responsibility for crippling the develop-

ment and management distinctively in the realm of enterprise-level applications. This

complexity comes off as a by-product of frequent increases in the amount of data to be

managed by said enterprises as well as the constant need to fulfill market and/or enter-

prises internal requirements [23].

To mitigate the adverse effects of this problem, companies have integrated several

approaches and methodologies in their software development process. An example of

this is MDE - a paradigm where the artifacts used in the traditional software development

lifecycle are models, that is, views of the system to be constructed, using higher-level

abstractions. But in this approach, models relocate themselves away from their classical

use in design and documentation phases and acquire a more central role being used to

produce actual code. Enterprises adopting approaches related to MDE paradigm have

experienced considerable benefits regarding the increase in productivity by working

with human-friendly abstractions, focused on the problem domain at hand, rather than

wasting effort on technical aspects [26].

From a more thorough use of multiple interrelated models in software engineering,

emerged the necessity of simplification. Hence, the research regarding model transfor-

mations was prompted, as well as the study towards the specific branch of Bidirectional

1

CHAPTER 1. INTRODUCTION

Transformations (BX). These concepts relate to the automation of processes responsible

for taking one model and transforming it into another. The particular case of bidirectional

transformations bears a great concern towards mechanisms of consistency maintenance

across models, and its scope has a more straightforward relationship with the present

work [28].

In addition to model-based development methodologies, low-code tools have also

gained prevalence in the enterprise application industry, standing as a valuable resource

against volatile changes in market requirements. These tools provide facilitating mech-

anisms, supported by a Graphical User Interface (GUI), standing as a considerable alter-

native to traditional computer programming, allowing for their users to rapidly design,

develop and deliver software. In addition, due to their emphasis on their visual develop-

ment, these tools commonly do not require professional nor trained developers, hence,

users of a wide specter of backgrounds can put their expertise to better use without

needing Information Technologies (IT) related knowledge [23].

1.2 Motivation

OutSystems provides a model-driven development and delivery platform, based on al-

lowing developers to create enterprise-grade web and mobile applications. Most of this

building capability has come from Service Studio, the platform’s IDE, capable of quickly

delivering a full-fledged application in a singular place.

Nevertheless, in recent years, OutSystems has strived to develop the “Application

Builders”, a set of tools that lower the learning curve even more and provide an inclusive

entrance to non-IT developers. These builders aim to eliminate the complexities of as-

sembling multiple layers of an application that demand more technical knowledge and

experienced developers and can be used together with Service Studio.

However, the use of builders has some drawbacks, such as the impossibility of a

builder to edit an app created by other builders, damaging interoperability. In addition,

an application that is first created with a builder, and then changed in Service Studio, can

no longer be edited with a builder, which hinder the collaboration between business users,

professional developers, and other personas such as designers, front-end specialists, etc.

Consequently, these shortcomings lay the foundation for the present dissertation,

whose fundamental objective resided on the research and creation of a prototype capable

of broadening the reach of the OutSystems Low-Code Platform along with delivering a

continuous collaborative development experience to all their users.

1.3 Objectives

As previously mentioned, the present thesis set as its paramount objective the enabling

of different personas, both business and tech-oriented, to collaborate on the development

of an enterprise-level application, employing the entire set of Low-Code tools provided

2

1.4. EXPECTED CONTRIBUTIONS

by the OutSystems Platform. From a more detailed standpoint, this disseration focused

in the research and development of the necessary model transformations envisioned

to support the development across multiple builders in a continuous and collaborative

fashion. To attain this objective, the following steps were taken:

• Research and comprehension of the life cycle regarding the software development

artifacts (models, meta-models, configurations, etc.) associated with Service Studio

and the builders;

• Study of the current product functionality and current collaborative use between

the OutSystems Platform tools;

• Assess of the desired behavior with stakeholders, as a way of defining the use cases

to be supported;

• Analysis concerning possible infrastructural changes regarding the current collabo-

ration between tools, in regard to application generation;

• Establishment of a feasible strategy detailing how can the builders perform applica-

tion development and generation while adopting a editor related mode of operation;

• Development and implementation of a working prototype, capable of propagating

changes made in a builder to the Service Studio and vice versa;

• Validation of the resulting prototype with thorough testing in a simulated collabo-

rative environment;

1.4 Expected Contributions

This dissertation has a significant potential for expanding the reach of the OutSystems

product line, particularly in the Low-Code development environment. Therefore, the

main objective of this work lied upon in the successful development of a working pro-

totype instantiating a bidirectional flow of interaction between the builders and Service

Studio, allowing for different users to edit the same application, using the OutSystems

development environment in a continuous and collaborative manner.

Moreover, from an academic standpoint, this dissertation’ approach towards handling

interrelated models aims to provide a useful contribution to Model Driven Engineering

and model transformations, therefore aspiring to advance the state-of-the-art regarding

these paradigms.

1.5 Outline

The structure of this document is organized as follows:

3

CHAPTER 1. INTRODUCTION

• Chapter 2. Background:

This chapter addresses relevant concepts that lay the foundations for the present

thesis and establish the framework associated with the discussed problem. Thereby,

it introduces key aspects related to Model Driven Engineering as well as model

transformations.

• Chapter 3. OutSystems Platform:

This chapter presents an overview of the distinct elements that comprise the Out-

Systems Platform providing further emphasis on the components dedicated to the

application development, namely the builders.

• Chapter 4. Model manipulation:

This chapter provides a detailed view of the underlying representation of the ap-

plication models and respective meta-models, describing how these evolve in the

OutSystems development platform and respective infrastructure.

• Chapter 5. Related Work:

This chapter illustrates the vast literature research that was made with the purpose

of contextualizing and justifying the defined approach towards this problem.

• Chapter 6. Design and Implementation:

This chapter elaborates on the delineated strategy deemed as more viable and better

suited to solve the issue at hand. It describes the reasoning behind the design

decisions and depicts the implementation process in thorough detail.

• Chapter 7. Results and Evaluation:

This chapter presents the features of the developed prototype and compares them

with the current behavior of the Experience Builder. In addition, this chapter also

elaborates on the performed evaluation procedures and the prototype’s limitations.

• Chapter 8. Conclusion and Future Work:

This chapter comprises the final remarks conserning the results obtained in this

dissertation, along with several points that could be addressed in the future.

4

cha:background
cha:outsystems_platform
cha:model_manipulation
cha:related_work
cha:design-implementation
cha:results-evaluation
cha:conclusion-futwork

2

Background

2.1 Model Driven Engineering

In 2000, the Object Management Group (OMG), published a white paper about Model

Driven Architecture (MDA) [13] which meant to define the standards and terminology for

a new approach in the software development process, built upon the notion of assigning

greater importance to object models. This lead to the development of paradigms like

Model Driven Development (MDD), Model Based Engineering (MBE), Model Driven

Software Development (MDSD), that in the last years have emerged as effective software

development approaches in both academia and industry contexts. Despite each one

bringing specific assets to the table, the mentioned approaches can all be clustered in

the Model Driven Engineering (MDE) paradigm whose principles distinguish itself from

more classical development methodologies intrinsically correlated with manually written

and maintained code.

Although these approaches have been quite the buzzwords in recent times, they utilize

a very endearing technique in computer science and engineering in general: abstraction.

Nonetheless, these development techniques go beyond the traditional objectives regard-

ing complexity reduction, generally achieved through the expressing of domain-specific

concepts in a concise fashion. Thereby, the model assumes a pivotal role in the context

of Model Driven Engineering, overriding its classical use in design and documentation

phases, and enabling a more coherent vision of the system amongst developers and stake-

holders, therefore facilitating their communication and overall work. The concept of

model transformations has direct application in the above-mentioned context, namely

the realm of model-to-model transformations whose scope is associated with the repre-

sentation of different views regarding the same object logic, consequently optimizing

communication and comprehension. Whilst model-to-code transformations are relevant

to the definition and management of automated software development since they enable

code generation from model resources.

OMG currently manages the Unified Modeling Language (UML), an ISO standard

[6] that help “specify, visualize, and document models of software systems, including their

5

CHAPTER 2. BACKGROUND

structure and design, in a way that meets all of these requirements”[12], by providing a set of

tools that focuses on standardizing the way software’s structure, behavior, and interaction

is expressed. The following key concepts of Model Driven Engineering (MDE) abide the

UML standard.

2.1.1 Model

Figure 2.1: UML Java Class Models

The notion of a model has a cross-sectional meaning and relevance in various fields of

knowledge, such as Engineering, Finance, Economics, Physics, etc. The modeling process

consistently aims to develop a simplified perspective of what in reality is described in

greater detail and complexity.

In the branch of Computer Science, and more particularly in MDE, the model is con-

sidered to be a “first-class artifact” [24] and the cornerstone of this software development

paradigm, corresponding to an abstraction that aims to summarize the main character-

istics regarding the structure, behavior and overall definition of a system under study.

Furthermore, a model allows predictions and inferences to be made with a considerable

degree of correctness and fidelity, empowering engineers and developers to resolve issues

without directly considering the represented system.

Selic [25] claims that the struggle in accepting MDE as a viable and useful software

production technique in the past was in great measure the result of adopting models

lacking the following five characteristics:

• Abstraction: a model must describe the “essence” of the reality it represents;

• Understandability: it must clearly express its meaning, reducing the “intellectual

effort” used to comprehend the model in question;

• Accuracy: it must provide a faithful representation of the system which it intends

to model;

• Predictiveness: it must be capable of allowing correct predictions to be made, with-

out taking into account the modeled system;

• Cheapness: it must be easier to produce and analyze than the modeled system.

6

2.1. MODEL DRIVEN ENGINEERING

Figure 2.2: Meta-model

2.1.2 Metamodel

Another key concept in this methodology resides in metamodels, which can be considered

as the “models of models”, defining the latter’s syntax, schemes, constraints, etc. In

other words, a metamodel consists of a set of specifications that provide a higher level of

abstraction and describe the domain of resources that can be used to construct models.

By defining the rules and constructs needed for creating models, metamodels are

considered models of a modeling language and an interpretation of a given metamodel

resolves to a direct mapping between the metamodel’s elements and the modeling lan-

guage’s elements. Through the analysis of the metamodel’s specifications, the validity of

the respective model can be assessed upon it following the determined "rules".

2.1.3 Meta-metamodel

As one can deduct from this rationale, the mentioned modeling language must also be

described in some terms, hence the notion of meta-metamodels.

Similarly, one may also infer that a higher-level of abstraction should then be required

to define those same meta-metamodels, and this type of multi-level architecture would

never come to an end, with the higher layers always obliging specifications of even higher

layers, and so on. In order to overcome this problem, it is generally employed, within

a certain level of the hierarchy, a language that describes itself in its own language in

a process referred to as reflexive metamodel/meta-metamodel (depending on the level of

its use). This technique is frequently used in Computer Science, p.e. with Bootstrapping
[27], where a compiler of a certain language (C, Lisp, etc.), is written in the source

programming language it was designed to compile.

2.1.4 Meta-Object Facility

Object Management Group proposes a hierarchy layered architecture, that summarizes

the multiple levels of abstraction, as well as the interactions between them, and addresses

this higher abstraction problem with a reflexive meta-metamodel in the top layer.

This architecture is named Meta-Object Facility(MOF) [14], and at the top layer, des-

ignated as M3, lies the meta-metamodel, defining the language used by the MOF to

build the metamodels. As mentioned this layer is instantiated from its metamodel, in

the previously mentioned, reflexive fashion. Further down, in the M2 layer, we have the

metamodels section, instantiated by the MOF defined above. An example of an element

7

CHAPTER 2. BACKGROUND

belonging to this section is the UML. Directly below, M1 defines the model layer, com-

posed of instantiations of the layer up above. And finally, in the lowest layer, M0, we have

the real element that may be modeled.

Figure 2.3: MOF hierarchy

2.2 Domain Specific Modeling Languages

As a natural consequence of having object models as the central piece in the MDE ap-

proach, comes the need of manipulating those same elements in a formal and context-

specific manner, hence the existence of Domain Specific Modeling Language (DSML)s.

These languages provide a closer interaction between the developers and the concepts

of the issue at hand. This is accomplished by reducing the burden associated with the

technical details of the underlying implementation.

These languages allow the formalization of the application elements, structure, its

behavior, and requirements, and can be characterized by two main aspects: it is abstract
syntax, usually supported by the metamodel component, defines language concepts, rules

on how they relate to each other and determine relation constraints between them. While

the concrete syntax maps those same concepts into their programmable representation,

textual or visual. In the case of the OutSystems DSML, the concrete aspect of the language

refers to visual representations, like Actions, Entities, Widgets, etc.

2.3 Model Transformations

The mentioned approach, as it should be clear by now, calls for a recurrent and contin-

uous use of different models. These, in turn, can either provide a more horizontal view,

focusing on the description of different aspects and elements of the system, or they can

have a more vertically-oriented approach, representing the same component(s) through

different abstraction levels. And from this collective and interconnected use of models

arises the importance of defining and automating processes capable of converting a model

into a different one. Such process or set of processes constitute a model transformation,

8

2.3. MODEL TRANSFORMATIONS

and require the existence of one or more Source Model(s)(the input of the transformation),

the corresponding existence of one or more Target Model(s) (the outcome of the process)

and finally a set of transformation rules.

2.3.1 Kinds of Model Transformations

There are multiple kinds of model transformations, whose classification can be made

according to a great variety of features [11], but in the scope of this work, it is important

to distinguish between unidirectional transformations from bidirectional transformations.
The former ones, as the name suggests, comprehends transformations with a consistent

type of input, the source model, and a consistent type of output, the target model, which

is not generally manipulated by a human. No other mode of operation is supported, and

all the processing occurs in one direction only. These transformations are frequent in the

domain of compilers where a model supported in a high-level programming language

(like Java or C#) is transformed into a different model described in a lower-level language

(like assembly or machine code). The bidirectional variant comes off as more relevant

to the domain of this work, and in opposition to the previous kind of transformation, it

accepts both the source model and the target model as its input. A classical example of the

use of this type of transformation is the Model Driven Architecture problem that emerges

from the transformation from Platform Independent Models (PIM) to Platform Specific
Models (PSM). In this scenario, we have a model that specifies structure, behavior, and

functionality generically, without any direct association with a particular implementation,

which is modified in order to comply with the constraints and implementation details of

a specific platform, or vice-versa[2].

Figure 2.4: PIM to PSM model transformation

Another relevant way of grouping model transformations relates to the differences

between the languages defining the models. Thereby, when all models comprising a

transformation are represented in the same language, we are talking about endogenous

9

CHAPTER 2. BACKGROUND

transformations. In the scenario where the source and the target models differ in their

language of representation, it is a question of exogenous transformations. On the one hand,

the endogenous type refers to transformations linked with optimization and refactoring

processes, where an artifact is improved or simplified in order to acquire better under-

standability or reusability, etc. without giving rise to observable behavior changes, for

instance. On the other hand, exogenous transformations comprise software migrations

namely, where artifacts are defined in a different language even though no changes are

made to the original level of provided abstraction.

2.3.1.1 Bidirectional Model Transformations

Bidirectional model transformations are enclosed in the bigger picture of bidirectional

transformations (bx) [3], and sometimes these expressions are used interchangeably own-

ing to the fact that both refer to mechanisms for consistency maintenance across two (or

more) related sources of information, although the former concept perceives those sources

as models. Due to its bidirectional character, the terms “source” and “target” model are

less adequate in this paradigm, but generally speaking, the first model to be generated

and the one usually more prone to changes, is designated as the source model. These

transformations have gained momentum in multiple realms of computer science and engi-

neering, being addressed in several fields such as programming languages, document and

database engineering and naturally in MDSD to provide solutions for long-established

problems such as:

• the mentioned PIM-to-PSM [2];

• the database view problem where changes made by a user in a view must be prop-

agated to the actual database [8];

A relevant and distinctive characteristic of this category of transformations is its em-

phasis on consistency maintenance and change propagation concerns. This emerges from

common scenarios in which the target model is very likely to be changed by some devel-

oper, hence the source model can potentially become outdated forcing restore actions to

take place to guarantee both sides have an updated view of their models.

A bx between two sources/models - let’s name them S and T - consists of a pair of

unidirectional transformations one from S to T and another from T back to S. The process

of going from S to T is called a forward transformation, while naturally, the reverse process

from T to S goes by the name of backward transformation. These transformations can

be further categorized according to the established consistency relation concerning the

pair of models involved. We call a transformation bijective in the case the consistency

relation corresponds to a bijection, that is to say, for any model there exists a unique

corresponding model satisfying the consistency specifications. In particular, for two sets

of models with different cardinalities, the referred bijection is impossible [28].

10

2.3. MODEL TRANSFORMATIONS

Considering a transformation that defines two functions between two models: f : S→
T , and the respective inverse functionf 1 : T → S. The consistency relation is bijective,

therefore the bidirectional transformation is bijective if and only if, both functions are

surjective, that is each model element in S can be part of the transformation to T and

vice-versa. In addition, both functions are required to be injective, i.e. every element of a

model must correspond to at most one element of the other model and conversely.

2.3.2 Lenses

The naive way of developing a bidirectional transformation is to build two unidirectional

transformations and potentially define an explicit consistency relation between them.

This naturally requires added technical effort concerning the definition of the transforma-

tions which can be expensive and error-prone. Furthermore, this naive approach requires

continued maintenance since any change in a data format implies a redefinition of both

transformations and a new consistency proof. [22].

To address this issue Foster et al. in [5] defined the concept of lenses, which can be

considered one of the most prominent approaches in the realm of bidirectional transfor-

mations. Developed to tackle the view-update problem, a lens defines a forward trans-

formation as a projection of concrete models into abstract views and a backward trans-

formation as the reverse process associated with the translation of an abstract view into

an update over concrete models. The first component of this approach consists of the

function get : C → A responsible for abstracting details from the concrete model that

come as unnecessary in the domain in question. Secondly, in order to re-establish the

abstracted information, the lense requires the function put : A ×C → C) that considers

the original concrete instance in the interest of restoring information no longer present in

the view. When this is not possible, a default concrete model can be restored by applying

the function create : A→ C to the view.

11

3

OutSystems Platform

OutSystems provides a model-driven development and delivery platform, allowing de-

velopers to quickly and easily build and deploy enterprise-grade web and mobile appli-

cations, that can be run in the cloud, on company premises, and in hybrid environments.

This platform concentrates in a single place multiple tools and resources, that provide the

user a thorough design and customization capability, in all the major aspects of their ap-

plication, such as business logic and processes, data modeling, user interface, experience

design, DevOps, among others [19].

A huge part of this fast and uncomplicated application development has to do with

the integrated visual Domain-Specific Language (DSL) the OutSystems Platform offers to

its users. Its main goal, like other DSLs, lies in providing an added distance, by means

of abstraction, between the developers and the details and challenges that occur from

building and changing an application. In order to achieve such a feat, users interact

directly with an environment more aligned with the specific problem at hand. With this

added simplicity, enterprises reduce substantially development and deployment time, as

well as overall costs in the production of software.

3.1 Architecture

Several environments, tools, components, and services compose the OutSystems Platform

(Figure 3.1), an infrastructure responsible for gathering in a single place all the required

resources better fitted to address the entire lifecycle of an application, not only covering

the development phase but also addressing concerns related to deployment, management,

and monitoring. This section will provide a brief overview of the main components

comprised in the platform’s architecture.

3.1.1 Service Studio

Service Studio [20] is the platform’s IDE (Figure 3.2), and therefore stands as a crucial

component in the OutSystems developing environment, combining a visual low-code ap-

proach, supported through a Domain-Specific Language, with the capability of creating

13

CHAPTER 3. OUTSYSTEMS PLATFORM

Figure 3.1: OutSystems Platform

all parts of a fully-fledged, enterprise-level application, in a single place. This devel-

opment capacity correlates with the creation and customization of eSpaces, application-

specific modules where processes, business logic, data models, and views can be defined,

as well as custom User Interface (UI) and User Experience (UX).

Using Service Studio, developers can visually build all the necessary layers of an appli-

cation and publish it to the Platform Server (Figure 3.1), which in turn will be responsible

for generating, building, packaging, and finally deploying the created software to a stan-

dard application web server and database, allowing for end-users to access their designed

applications using their devices.

3.1.2 Platform Server

This server is the core component in the OutSystems Platform, comprised of several

servers dedicated to the generation, build, deployment, and packaging of web and mobile

applications. Developers can connect to this component through Service Studio, where

they can create and publish their applications, prompting the Platform Server to compile

and generate optimized code to a standard application server [19].

3.1.3 Integration Studio

Integration Studio stands as a desktop tool, where developers can create and manage

their used extensions, i.e. custom components to integrate with pre-existing systems,

databases, or even code. These extensions can then be consumed in Service Studio, as

add-ons [17].

14

3.2. BUILDERS

Figure 3.2: Service Studio

3.2 Builders

In the last few years, OutSystems has developed and released a set of visual development

tools based on the Software-as-a-Service (SaaS) model, named builders [18]. These tools

optimized for particular aspects of the development cycle and for team collaboration, by

bridging the gap between domain experts with non-IT related backgrounds and software

engineers. The builders allow for users to generate complete software solutions, with

a small number of interactions, therefore reducing complexities correlated with the as-

sembly of multiple-application layers, that frequently require the help of professional

developers.

With these tools, a domain expert can focus on their specific area of knowledge, and

rapidly create a prototype or even a completely functional application that can be rapidly

deployed and used, or furtherly developed by a user in greater technical detail using

Service Studio.

Currently, there are two builders available to the public: the Experience Builder pro-

viding greater focus towards the User Experience (UX) development, and the Workflow

Builder, associated with the design of task management and automation applications.

The Integration Builder which has not been released concentrates on enabling the exten-

sion of existing systems, integrating an OutSystems Application (Package) (OAP) with

external data resources.

15

CHAPTER 3. OUTSYSTEMS PLATFORM

Figure 3.3: Experience Builder - Template Screen

3.2.1 Experience Builder

The Experience Builder [15] targets a faster development of B2C mobile applications

while striving to provide a great User Experience (UX), without burdening the developer

with technical comprehension of the back-end code. Developers can build a fully working

prototype of a mobile app, selecting from a wide array of possible user journeys and pre-

built application templates.

In addition to enabling mobile app basic customization, by changing the icon and

selecting a primary color, this tool allows users to start developing their application

prototype by choosing from several pre-built application templates or starting from a

blank canvas (figure 3.3). Each template is composed of a specific set of predetermined

flows designed to address common user interface patterns such as login or onboarding
processes. Moreover, Experience Builder does also provide built-in templates associated

with industry-specific patterns, such as Mobile Banking or Customer Insurance.

Using this builder, developers can assemble their applications with custom journeys

through the use of flows from different application templates. This means developers are

not bound to flows (figure 3.4) from a specific template. For instance, they can combine

an Authentication flow with a flow included in the Mobile Banking template. Furthermore,

the Experience Builder also provides customization options for the application menu, as

developers can change the button icons and link them to new or existing flows (figure

3.5).

16

3.2. BUILDERS

Figure 3.4: Experience Builder - Add Flow Screen

Figure 3.5: Experience Builder - Menu Customization

3.2.2 Workflow Builder

The second SaaS builder is the Workflow Builder [21]. This tool is coupled with business

logic and processes, aiming to allow multidisciplinary teams to create their workflows

and sequences of activities, leading to improvements in productivity and reducing IT

load, as a result. Equipped with this builder, developers can define, organize and manage

business processes automatizing frequent and predictable activities.

Similar to the Experience Builder, developers can start to build their applications from

scratch or by selecting from one of three pre-built app templates available (figure 3.6) -

Project Request, Approval Request, and Issue Report. Project Request relates to the automated

processing of incoming projects, or requirements, requested within an organization, while

17

CHAPTER 3. OUTSYSTEMS PLATFORM

the Approval Request template handles requests concerned with granting resource access.

Finally, the Issue Report case affiliates with the management of organization incidents,

providing ticket creation and handling mechanisms.

Figure 3.6: Workflow Builder - Template Screen

Every management case is associated with a distinct business process. These processes,

independently of the selected management case, behave similarly and can be furtherly

customized by setting up forms with which the end-users will interact (figure 3.7) and

defining requirements that may trigger a particular action (figure 3.8). These actions

generally take the shape of automated emails sent to business entities such as a finance

group or a manager, whose answer might be evaluated and continue the defined business

process.

3.2.3 Integration Builder

The final builder is the Integration Builder [16]. This SaaS stands as a tool capable of cre-

ating integrations that connect an OutSystems application to external enterprise systems

or records. Those integrations correspond to generated OAPs that support interaction

with the external system as configured by the user. The main purpose of this builder is

to enhance applications with data originated from external providers (figure 3.9) related

with from Enterprise Resource Planning (ERP) and Customer Relationship Management

(CRM) software like SAP, and Salesforce.

In the context of the Integration Builder, a connection to data sources from an external

system (like the ones above-mentioned) is referred to as an Integration. Using this tool,

developers start by selecting the service provider that’s the data source of their desired

integration (e.g. SAP). Consequently, developers can then determine which data source

18

3.2. BUILDERS

Figure 3.7: Workflow Builder -
Form Customization

Figure 3.8: Workflow Builder -
Business Process Customization

Figure 3.9: Integration Builder - Choose Provider Screen

19

CHAPTER 3. OUTSYSTEMS PLATFORM

Figure 3.10: Integration Builder - My Integration Screen

objects they will interact with, using OutSystems applications. This interaction will be

made possible using CRUD and other operations created for each source object selected

(figure 3.10).

After publishing this integration, developers can use it in Service Studio through a

set of server actions that will expose the previously created CRUD operations, further-

more, they can also filter, define the sort order, and paginate results from invoking such

operations.

3.2.4 Example of the current development shortcomings

The following example illustrates the current builders shortcomings in a scenario where

two users work cooperatively on the construction of the same app. The example will

motivate and later on be used to describe the developed algorithm:

Ann and Bob are two developers working on a simple application. Ann is using Expe-

rience Builder, while Bob is using Service Studio. Ann starts by defining and publishing

an application with two flows, AnimatedOnboardingOption1 and the LoginAndPasscode.

The publishing process ends with the generation of an app ready to be used. However,

Bob is not completely satisfied with the name Ann chose for a screen in the second flow.

He opens the application in Service Studio and changes the name from SetFaceID to

ActivateFaceRecognition. In addition, Bob defines the database entities and their corre-

sponding attributes required to store the users of the app, something that Ann couldn’t

have done in Experience Builder. He proceeds to setup a Users entity and several basic

entity attributes and publishes the new version of the application. Unaware of these

changes, Ann returns to Experience Builder where she adds a GoogleLogin flow, changes

the AnimatedOnboardingOption1 flow name to BasicOnboarding and re-publishes the app.

As described, this process will fully regenerate the application, consequently discarding

all the changes made by Bob.

20

4

Model manipulation

This chapter concentrates on the current management and manipulation of an applica-

tion’s models and meta-models, in both the builders’ environment, as well as in Service

Studio. It provides a detailed view of the underlying representation of the application

artifacts, describing how these evolve in the OutSystems development platform and re-

spective infrastructure.

4.1 OutSystems Language

With the aid of Service Studio, developers can swiftly create and publish full-fledged

web and mobile applications. Its promptness and ease of use are the by-products of the

OutSystems visual language, whose internal representation is defined by a set of models

persisted and transported as binary XML files. For the sake of simplification, we only

consider a subset of the OutSystems Language consisting of Actions, which are used to

design business logic, assuming a very similar structure to methods in textual languages

such as C# or Java. The OutSystems language supports client actions, executed in the

client’s device, and server actions, which are run on the server-side. Figure 4.1 illustrates

the Service Studio’s user interface.

Actions are defined as direct graphs composed of different types of nodes, depicted on

the left toolbox.The following example will consider the action ProcessRequest, comprised

of three nodes: Start, SendEmail, and End. Start and End have the expected role, indicating

the beginning and end of the action. SendEmail corresponds to a Run Server Action node,

utilized to propagate a call to another action. As depicted on the right side of figure 4.1,

this action requires a mandatory input parameter, named EmailAddress, of type Email [7,

9].

4.2 OutSystems Meta-model

The language meta-model is persisted in an XML format supported using an in-house

developed schema. In the listing 1, an instance of the meta-model is depicted regarding

21

CHAPTER 4. MODEL MANIPULATION

Figure 4.1: Service Studio Interface - Action ProcessRequest

the example’s subset of the OutSystems Language. Several classes are declared, such

as the ESpace, corresponding to an application module, and Action. The latter, as it

can be seen, features a set of InputParameter and a set of ActionNode (lines 12 and 13,

respectively). Furthermore, the class Execute, representing the Run Server Action node,

discussed above, is comprised of a Property and a Child. The Property corresponds to an

Action, used to store the action which is being executed, while the Child is a collection of

Argument, i.e. particular parameters and their respective values.

It is relevant to note, that the classes declared in the meta-model can be used as the

type for properties and collections in other classes [7, 9].

Figure 4.3, depicts the above mentioned meta-model in UML format.

4.3 OutSystems Model

The meta-model XML is used to generate C# classes used in Service Studio and by the

compiler. Since these generated model classes conform with the meta-model description,

one can define an entirely distinct language by its altering the corresponding meta-model.

Furthermore, as previously mentioned, the OutSystems model is represented in mem-

ory as an object graph persisted as a binary XML file, hence, it should not be surprising

that this file corresponds to the serialization of the discussed model classes. Having said

that, the model regarding the meta-model illustrated in listing 1 is illustrated in listing 2

22

4.3. OUTSYSTEMS MODEL

1 <MetaModel

2 xmlns:xsi="http://www.w3.org/2001/ XMLSchema-instance"

3 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

4 xsi:schemaLocation="http://www.outsystems.com MetaModel.xsd">

5 <Class name="ESpace">

6 <Property name="Name" type="Text"/>

7 <Child name="Actions" type="Action"/>

8 </Class>

9 <Class name="Action">

10 <Property name="Name" type="Text"/>

11 <Child name="InputParameters" type="InputParameter"/>

12 <Child name="Nodes" type="ActionNode"/>

13 </Class>

14 <Class name="InputParameter">

15 <Property name="Name" type="Text"/>

16 <Property name="Type" type="Type"/>

17 <Property name="IsMandatory" type="Bool"/>

18 </Class>

19 <Class name="ActionNode">

20 <Property name="Target" type ="ActionNode"/>

21 </Class>

22 <Class name="Start" base="ActionNode"/>

23 <Class name="End" base="ActionNode"/>

24 <Class name="Execute" base="ActionNode">

25 <Property name="Action" type="Action"/>

26 <Child name="Arguments" type="Argument"/>

27 </Class>

28 <Class name="Argument" verifyDependencies="Parameter.IsMandatory,

29 Parameter.Type">

30 <Property name="Parameter" type="InputParameter"/>

31 <Property name="Value" type="Expression" isOptional="true"/>

32 </Class>

33 </MetaModel>

Listing 1: OutSystems Action Meta-model

23

CHAPTER 4. MODEL MANIPULATION

Figure 4.2: OutSystems Action Meta-model (UML)

and in UML format, in figure 4.3. The representation for object references consists of the

target object’s type and its id, as it may be seen in line 15, where the value for the action

attribute is interpreted as the action SendEmail in line 5, considering the referenced id [7,

9].

4.4 Builders

The builders allow users to generate complete software solutions, with a small number

of interactions, therefore reducing complexities correlated with the assemble of multiple-

application layers. As OutSystems tools, these pieces of software are supported on a

strongly visual development environment, built upon the use of models.

Once again, regarding the interest of simplification, we will concentrate on the Expe-

rience Builder, more specifically on the core-elements manipulated by this tool - Screens,

and Flows.

Figure 4.4 illustrates the Experience Builder interface. As can be noted, the figure

depicts two connected flows AnimatedOnboardingOption1 and LoginAndPasscode. Devel-

opers can incorporate new flows by interacting with the Add Flow button portrayed on the

left side of the figure. Each flow is associated with a pre-built template and is composed of

one or more screens. In this example, AnimatedOnboardingOption1 and LoginAndPasscode
are part of the Authentication template, and it may be seen, the latter flow is composed of

24

4.5. BUILDERS META-MODEL

1 <Model>

2 <ESpace id="1" name="Contacts">

3 <Actions>

4 <Action id="4" name="SendEmail">

5 <InputParameters>

6 <InputParameter id="5" isMandatory="true"

7 name="EmailAddress"

8 type="Type:3"/>

9 </InputParameters>

10 </Action>

11 <Action id="6" name="ProcessRequest">

12 <Nodes>

13 <Start id="7" target="Execute:8"/>

14 <Execute action="Action:4" id="8" target="End:9">

15 <Arguments>

16 <Argument id="10"

17 parameter="InputParameter:5"/>

18 </Arguments>

19 </Execute>

20 <End id="9"/>

21 </Nodes>

22 </Action>

23 </Actions>

24 </ESpace>

25 </Model>

Listing 2: OutSystems Model Instance

four distinct screens: LoginSetPasscode, SetPasscode, SetFaceID, LoginPasscodeOK. Further-

more, connections can be created among flows by linking screen-specific widgets such as

buttons or lists for instance, to a separate flow, therefore defining what is referred to as Ex-

itPoints. Inside a particular flow, screen links are predetermined and cannot be changed.

In the example below, a connection is defined between AnimatedOnboardingOption1 and

LoginAndPasscode, hence establishing the latter flow as the ExitPoint of the former.

4.5 Builders Meta-model

Contrary to the OutSystems model, the builder’s meta-model is not explicitly defined

nor it is uniform across the various builders. Even though the tools manipulate elements

present in the OutSystems model, in order to better accommodate the domain-specific

25

CHAPTER 4. MODEL MANIPULATION

Figure 4.3: OutSystems Action Model (UML)

development features, these elements must assume a distinct representation. Hence, de-

spite the OutSystems meta-model defining a language that overlaps with the one utilized

by the builders, there are discrepancies among them.

The following figure proposes a meta-model for the Experience Builder, specifically

addressing Connections, Flows and Screens.

4.6 Builders Model

While interacting with the Experience Builder web-application, the developers are in-

directly manipulating the builder’s model, which is persisted in a relational database

representation. Once the Publish action is triggered in the builder, the application model

shall be converted into a JSON file, which will be included in the application generation

request sent to the OutSystems infrastructures.

Listing 3 illustrates a snippet of the mentioned JSON representation, focusing on a

subset of the model’s elements, namely on the previously mentioned screens and connec-
tions, while conforming with the meta-model presented in figure 4.5.

Although listing 3 illustrates an abbreviated version of a real model instance, it demon-

strates the correlation within screens, flows, and connections. All the application screens

are defined in the first array of the listing. In our example, the two depicted screens

correspond to the first two screens composing the right flow in figure 4.4. As we can see,

26

4.6. BUILDERS MODEL

{

"screens":[

{

"name":"LoginSetPasscode",

"description":"Log in to the app to set a passcode and

Face ID authentication.",

"flowType":1,

"screenKey":"1+vPGhJzgEu7mM0l6UD5sQ",

"comment":"",

"flowName":"LoginAndPasscode",

"flowKey":"75ca3de1-e1c0-4ce9-8889-e069493d7a57",

"sourceModuleKey":"63W0ewvlEEuH5jvx0qSjcQ",

"hasMenu":true,

"orderInFlow":1,

"imageURL":""

},

{

"name":"SetPasscode",

"description":"Set up a 4-digit passcode.",

"flowType":1,

"screenKey":"emZlwM_srECkHP3PCeVwRQ",

"comment":"",

"flowName":"LoginAndPasscode",

"flowKey":"75ca3de1-e1c0-4ce9-8889-e069493d7a57",

"sourceModuleKey":"63W0ewvlEEuH5jvx0qSjcQ",

"hasMenu":true,

"orderInFlow":2,

"imageURL":""

}

],

...

"connections":[

{

"linkKey":"e48kJtqTBEWSsIEq9odPNw",

"linkType":1,

"originScreenKey":"1+vPGhJzgEu7mM0l6UD5sQ",

"destinationScreenKey":"VOw1e3W3nkiGktcU1SxTXA",

"Label":"Sign Up",

"Order":0

}

...

]

...

}

Listing 3: Experience Builder - JSON Model (Abbreviated)

27

CHAPTER 4. MODEL MANIPULATION

Figure 4.4: Experience Builder Interface - Screens and Flows

Figure 4.5: Experience Builder - Meta-model

each one has personal data such as a name, description, a screenKey, as well as information

regarding the flow to which they belong with the flowName or orderInFlow keys.

In addition, the model must also describe every connection made between screens.

The second array of the listing represents the link between the first two screens of the

flow on the right, depicted in figure 4.4, as the originScreenKey references the screenKey
of the LoginSetPasscode.

28

4.7. MODEL FLOW

Figure 4.6: Model Flow

4.7 Model Flow

As previously stated, the publish event will invoke a new generation request sent to the

OutSystems infrastructure. This request will initiate a building process that requires

the upload of all the artifacts needed to produce the web or mobile application. Hence,

the initial request must include the application definition, i.e. the respective application

model, in this case, described in JSON format.

OutSystems leverages cloud services provided by Amazon Web Services (AWS) to

handle these requests. The provided services render a scalable and isolated environment

of paramount importance to the generation process. In this infrastructure, the application

model is then utilized in AWS Lambda instances running the ModelAPI, which will be

discussed later in this chapter.

The generation process culminates in the creation of a fully functioning OAP, which

can be further customized in the Service Studio. Figure 4.6 illustrates the a state diagram

regarding the model journey from a builder, to Service Studio. In the IDE, the application

elements designed in the builder are now complying with the OutSystems meta-model,

hence they can be edited on a more granular level.

29

CHAPTER 4. MODEL MANIPULATION

using var modelServices =

OutSystems.ModelAPILoader.Loader.CreateModelServices();↪→

using var app =

modelServices.CreateApplication(SegmentationKind.CrossDevice,

"MyApp");

↪→

↪→

var eSpace = app.CreateESpaceFromTemplate("Template_Reactive.oml",

"MyModule");↪→

eSpace.Description = "My First Module";

var entity = eSpace.CreateServerEntity("Person");

var idAttr = entity.CreateAttribute("Id");

idAttr.DataType = eSpace.IntegerType;

entity.IdentifierAttribute = idAttr;

var nameAttr = entity.CreateAttribute("Name");

app.Save("MyApp.oap");

Listing 4: ModelAPI

4.8 ModelAPI

The ModelAPI consists of an Application Programming Interface (API) used to manipu-

late the OutSystems model, currently corresponding to a set of .Net Framework DLL that

allows for changes and creations of new elements in OutSystems applications. Most of

this manipulation power is provided by the API’s multiple model interfaces and a service

interface. The former allows for altering language-specific elements such as web screens

or entity attributes, while the latter provides the entry point methods to the ModelAPI,

allowing e.g. to load or create an ESpace. In addition, this API provides the capability

of creating and managing keys, related to the application and its model elements, and is

endly coupled with the behavior of the OutSystems’ builders. Listing 4 demonstrates the

ModelAPI way of operation. As we can see, the mentioned model services are loaded in

order to create the “MyApp” application. Consequently, an ESpace is initialized using a

pre-defined OutSystems Markup Language (OML) module to which an Entity is added

with an id as well as a name attribute.

4.9 Builders’ Key Management

In the OutSystems environment, a builder can be divided into two categories: Single-Shot

or Multi-Shot. This distinction concerns their usage of the ModelAPI’s generation and

30

4.9. BUILDERS’ KEY MANAGEMENT

control mechanisms associated with the above-mentioned keys. As a Globally Unique

Identifier (GUID), a key unambiguously identifies either an application or the applica-

tion’s elements. This comes across as a device of paramount importance since it bounds

the Platform Server’s behavior in terms of the management of the resources associated

with the application itself. The Server has to analyze each incoming generation request

and establish, based upon their app GUID, if it effectively corresponds to the generation

of a new application or if it concerns an update to an existing application. This discern-

ment is made possible with the analysis of the referred GUID. By default, the GUIDs

are defined randomly for both application of its elements, hence without explicitly spec-

ifying an identifier, an arbitrary one shall be assigned. Therefore, in the circumstances

regarding an application update, the app’s elements must go through a more granular

evaluation. Taking the example of an Entity, for instance, if by mistake, its identifier is

changed, a new table will be created, consequently causing the loss of all data related to

the former Entity.

4.9.1 Single-Shot Builders

On the one hand, the single-shot mode of action is defined by its ability to generate

each application at most once, meaning the definition of an application can only be

made once, leading to future re-generations producing different apps. This means that

when an application is published a subsequent time, using a builder of this type, the

more recent version of the app will always replace any older version, hence ignoring any

eventual changes made to the past version, creating from scratch what is ultimately a new

application, with the same GUID. Internally, this occure due to every new publication

causing the assignment of freshly generated identifiers to every application and their

elements.

4.9.2 MultiShot Builders

On the other hand, MultiShot Builders can redefine an existing application multiple times,

by explicitly declaring and associating formerly used keys to new versions of previously

defined applications and their elements. This means that multiple publications will lead

to new iterations of the same app. The genesis of this feature lies upon the key re-usability

mechanisms provided by the ModelAPI, predicated on a deterministic key generation

process and on the use of known keys.

Nowadays, these mechanisms offer two modes of operation:

• Full App Regeneration: starting from “scratch” and producing what is technically

a new application, but in reality, it consists in a new version of a previous app.

This strategy requires the guarantee that keys are kept the same for the application

31

CHAPTER 4. MODEL MANIPULATION

1 <Module key="68976C33-0F6F-4D13-8B8F-DCFC69000E0A">

2 <Entities>

3 <Entity key="D88C448E-JR91-42D8-B516-B275553073FB">

4 <Attribute name="Name" type="Text" key="..."/>

5 <Attribute name="Type" type="Text" key="..."/>

6 <Attribute name="Price" type="Currency" key="..."/>

7 <Attribute name="Review" type="Integer" key="..."/>

8 </Entity>

9 </Entities>

10 </Module>

Listing 5: Model with Key Management Mechanisms - MultiShot Operation Mode

modules and any element that exists in consecutive versions. This approach is high-

lighted by its efficiency, maintainability, and reduced code size, however, it requires

strict control of the application elements’ keys and proper element identification.

• Incremental Model Generation: allows for an approach more oriented towards a

continuous development approach, where changes in subsequent iterations of the

same application must be evaluated and compared with the previously generated

one, in order to calculate differences and produce a version that can correctly reflect

all the made updates. It should be clear that this alternative is more demanding,

due to its necessary version control.

Listing 5 considers an XML representation and approximation of an OutSystems Ap-

plication model. It depicts a Module composed of an Entity with multiple attributes. For

demonstration purposes, the represented model assumes an abbreviated form, although

it provides a sufficient illustration of the discussed issue. The used GUID associated with

the Module and the Entity are values inserted explicitly by the developer using the Mode-

lAPI with the main objective of having the Platform Server to consider previous versions

of those same application elements and execute an update. As mentioned, when these

keys are not passed explicitly in the Single-Shot mode of operation, a new GUID will be

automatically generated which results in a new application, or application element as far

as the Platform Server is concerned.

32

5

Related Work

This chapter describes the literature research that was made to contextualize and justify

the defined approach towards this problem.

5.1 Delta-based model transformations

A considerable portion of this thesis comes from the challenge of developing bidirectional

transformations able to address change propagation between a model and what can be

perceived as its view since it deals with information originated from the model but rep-

resented in higher abstraction. Having mentioned that, a bidirectional transformation

applied to this model-view coupling will have to take into account that multiple states of

a model might correspond to the same view in a many-to-one type of relationship.

Traditional approaches generally correspond to state-based synchronizations i.e. a

bidirectional transformation that considers exclusively the model state while propagating

changes from the source model to the target model. These procedures use a specific

toolset responsible for mapping the elements of the source model to the corresponding

elements in the target model. Subsequently, it detects changed elements in the source

model and updates the target. However, this strategy has been connected with several

frailties requiring significant technical effort, added complexity, and costs, largely as a

result of the mapping phase, known as model alignment or model differencing.

Diskin et al. portray in [4] a pertinent strategy closely tied with this thesis’ approach.

In their paper, the authors purpose a “delta-based” algebraic framework that tackles the

shortcomings of state-based approaches. The authors define the term delta as “a specifica-
tion of commonalities and differences” between two distinct states of the same model.

This approach describes the process of update propagation across models as a two-

stage operation: in a first instance, is prompted an assessment of the differences between

the models in consideration, producing the above-mentioned deltas. This step is referred

to as model alignment or differencing and noted as dif. Secondly, the computed deltas are

propagated and applied to the models in question, in a step noted as dput.

As to exemplify the described transformation process let’s consider model state A

33

CHAPTER 5. RELATED WORK

and view state B. User interaction with B induced a new state to the view, B′, and the

modifications can be represented by ∆BB′ . In order to propagate the user changes, the

transformation should only consider the alignment of the changed view B′ and the model

A, hence the update propagation operation dput takes place producing ∆AA′ which refer-

ence the differences between the initial model A and its updated version A′. By applying

these differences to the initial model A, we obtain A′. This can be summarized by the

following schema:

A′ = ∆AA′ (A), where ∆AA′ = dput(∆BB′ ,A) and ∆BB′ = difY (B,B′)

Figure 5.1 illustrates the process of transformation using the procedures mentioned

above. On one side of the transformation, we have a concrete model P representing

a Person identified by his or her first name, last name, and birth date. On the other

side, subsists the corresponding view model Q, representing the same Person elements

omitting their birth dates. The get function considers the state A of the concrete model

and produces the corresponding view state B. User interaction with the view produces a

new state where the q1 element was deleted. This, in the light of the author’s approach,

leads to the generation of the delta b that captures the applied modifications through

the model alignment process (difY (B,B′)). In order to propagate the changes made to

the view, the dput is applied considering state A, that is, the concrete model state which

originated the view, and b, the delta associated with the modification itself. This process

culminates in the creation of ∆AA′ , i.e. a, which will consequently be applied to state A,

therefore restoring consistency to the concrete model.

5.1.1 Benefits from using a two-stage operation

This division into two separate operations empowers the approach with increased mod-

ularity, allowing users to tweak the model transformation procedure in greater detail,

according to their needs. Interesting examples of these added customization capabilities

relate to the granularity of the delta discovery, as users can define which model differ-

ences should be considered (in the previously illustrated schema, this functionality refers

to the Y parameter in the dif function). The users can also edit the result of the model

alignment phase, adding or removing differences between models, therefore customizing

the subsequent delta propagation.

Another interesting aspect addressed in this paper, which should be explored in the

thesis relates to the computation of deltas. The authors suggest that the model alignment

phase doesn’t necessarily rely on an actual comparison between two stages of a model. In

fact, Diskin et al., indicate that “if the synchronizer can be tightly coupled with the application,
deltas can be obtained by recording the user operations within the application”[4]. This means

the model alignment phase can be skipped if the performed changes in the model are

registered in some variety of logs.

34

5.2. CONCURRENT UPDATE PROPAGATION

Figure 5.1: Diskin Delta-based Model Transformation (Adapted from [4])

5.2 Concurrent update propagation

The interoperability across the discussed development tools implies a scenario where mul-

tiple interconnected models are changed simultaneously. This parallel process prompts

the necessity of implementing consistency-maintenance mechanisms capable of support-

ing concurrent updates. Takeichi et al., in [29] describe a synchronization algorithm that

can be applied to bidirectional transformation pipelines that satisfy certain requirements,

in order to "ensure a reasonable synchronization behavior".

5.2.1 Requirements for synchronizing concurrent updates

The authors acknowledge the synchronizer as a partial function of the following type:

sync : R× (M ×N) =⇒ M ×N

where M and N as meta-models and R ⊆M ×N is the consistency relation needed to be

established. As an input, the function considers four models: the two original models

satisfying consistency relation R, and their respective updated models, while the output

corresponds to the two new models for which the updates are synchronized. As a function,

35

CHAPTER 5. RELATED WORK

the synchronizer implies a deterministic behavior, i.e. for two equal inputs, the function

should produce an equal output. Due to its partial nature, the function also indicates

that detection of conflicts in updates should occur, meaning that if the updates to the

two models lead to a conflict, the function should be undefined for the input. Apart from

these inferred requirements, Takeichi et al. argue three additional properties to ensure

the synchronizer behaves expectedly:

• Consistency: requiring the synchronization process to generate output models pre-

serving consistency, i.e. relation R is established on the resulting models.

sync(m,n,m,n) is defined =⇒ R(sync(m,n,m,n))

• Stability: If neither of the two models, m or n, has been updated, the synchronizer

should not modify any model.

R(m,n) =⇒ sync(m,n,m,n) = (m,n)

• Preservation: In particular scenarios, user intervention is necessary to select which

updates should be selected to generate a consistent model. This selection process

is generally application-specific and the authors state there should be "an update
preservation relation PM ∈M ×M ×M for any model M, where PM(mo,ma,mc) implies
that the update from mo to ma is preserved in mc. Thereby, users can define partic-
ular preservation requirements by defining different preservation relations." Formally,

let PM ∈ M ×M ×M be a preservation relation over M, and PN ∈ N ×N ×N be a

preservation relation over N.

sync(m,n,m,n) = (m,n) =⇒ PM(m,m,m)

sync(m,n,m,n) = (m,n) =⇒ PN (n,n,n)

5.2.2 Algorithm

Before describing the behavior of the planned algorithm, it is relevant to mention that the

authors construct a three-way merger following the Diskin et al. differencing and update

propagation operations, previously described. The three-way merger, given an original

model mo and two independently modified copies, ma, and mb, is a partial function

defined as the following:

merge(mo,ma,mb) = (diff (mo,ma) + diff (mo,mb)).post

where diff corresponds to the assessment of the differences between two models, therefore,

resembling the model alignment operation in the Diskin et al approach. The + is a union

operation used to merge distinct updates to be applied to the same model, while post
refers to the application of the resulting differences, which will lead to the propagation

of the updates.

36

5.3. IN SUMMARY

The algorithm’s input requires two pre-updated models, corresponding to mo and

no, and the respective pos-updated versions ma and nb. Firstly, is invoked backward

transformation
←−
R to propagate the updates made to nb to mo, therefore generating mb.

Secondly, the three-way merger is constructed regarding model ma containing update a
and model mb that contains update b, thereby producing a synchronized model, mab, on

the M side. If the updates to the two models conflict, the merger operation will detect

the conflict and report an error. The following step is to use forward transformation
−→
R to produce a synchronized model, nab, on the N side. Finally, a preservation testing

procedure is executed, in order to check whether the update from mo to mb is preserved

in nab.

Figure 5.2: Takeshi et al. Algorithm [29]

5.3 In summary

The delta-driven approach discussed by Diskin et al. directly addresses this thesis’ issue,

providing valuable fundament for the planned strategy since the envisioned transforma-

tions regarding the builder-Service Studio direction require segregating and consequently

isolating the change operations made in the builder from their actual application to the

OutSystems model.

Takeshi et al. work is extremely pertinent when discussing the edition of different

models in a concurrent and parallel environment of multiple working developers. The

envisioned solution will consider the requirements stated by the authors as paramount

to a fully working synchronization of concurrent updates. Despite these being valuable

matters to be addressed, the overall performance of the development and implementation

phases of the prototype will ultimately dictate the concrete course of action.

37

6

Design and Implementation

The design and implementation process intended to address the several solution aspects,

starting from less technical issues and gradually advancing to more challenging areas

of the problem. This chapter describes the reasoning behind the design decisions and

depicts the implementation process in thorough detail.

6.1 Design

The Experience Builder was the tool chosen to develop and implement our approach.

However, it was crucial to come up with a solution that not only contemplated the other

existing builders but could also serve as a proof-of-concept to future cooperations be-

tween development tools and the Service Studio. An important part of the successful

cooperation between those tools correlates with an updated view of the current state of

an application. Thereby, the solution should guarantee that when a new builder session

is started by a developer, the tool should have access to all existing applications in the

developer’s environment, and not only the applications that were originally created us-

ing the tool. Secondly, a pivotal part of collaborative work across tools is continuous and

iterative development, therefore the solution had to ensure that changes made to an appli-

cation using a builder didn’t disregard changes made using Service Studio. Our approach

had to circumvent the current Single-Shot mode of operation currently employed by the

builders.

These limitations should be addressed by defining fully bidirectional builder model

transformations in OutSystems: builder to IDE and IDE to builder. This culminated in

a synchronization algorithm that maintains consistency thus leading to the point where

the builder becomes an editor.

6.1.1 Strategy Overview

The envisioned strategy was comprised of two distinct parts, which aimed to address the

issues mentioned in the objective section, employing model transformations involving

39

CHAPTER 6. DESIGN AND IMPLEMENTATION

both the OutSystems model, denoted as M, and the builders model also referred to as

the view model and denoted as V.

Firstly, we should consider the necessary procedures to enable application develop-

ment in the Service Studio-builder direction. These will comprise the forward transforma-
tion. Secondly, we will contemplate the process that took place regarding the opposite

direction, i.e. builder-Service Studio, which consequently shall be described as the back-
ward transformation.

Figure 6.1: Used Notation

Regarding the Service Studio-builder direction, i.e. the forward transformation process,

the solution had to ensure that editions made to an application using a builder did not

disregard changes made using Service Studio, hence, the view model V had to be ob-

tained by dynamically calculating which elements of the model M had to be considered

in the builder. To attain this goal, the proposed approach considered a Presenter-like

component, capable of applying a transformation to the OutSystems model as a way

of obtaining meaningful elements to the context of the builder. This process, in other

words, corresponds to building a view model adjusted to the builder’s concrete displayed

view. Therefore, the transformation requires the definition of a projection aware of the

target view, and hence, capable of locating and extracting the relevant concepts existing

in the OutSystems model. Furthermore, since the app elements in the IDE conform to

a lower-level representation, the transformation had to implement a conversion to the

higher abstraction specific to the Experience Builder.

In terms of the backward transformation, the design phase suggested employing a log

component assigned with registering changes made to the view model V. This component

was responsible for gathering the update operations carried out by the developer during

his interaction with the builder. Similarly to the reverse transformation, the abstraction

differences required a "translation", in this case, a conversion process that would produce

a sequence of more elementary and lower-level ModelAPI operations, which in turn could

40

6.1. DESIGN

be applied to the OutSystems model M, resulting in the propagation of changes.

The necessity of this conversion process can be easily demonstrated if one consid-

ers the example of a Menu in the Experience Builder and in Service Studio. While the

builders’ meta-model addresses the concept of Menu directly, in Service Studio the same

element must be constructed using several other components since the IDE meta-model

is oblivious to the concept of Menu.

Figure 6.2: Backward Transformation - Change Log

Regarding the log component involved in backward transformation, there were two

choices whose viability would be explored:

• Builder-Log Coupling: The first alternative suggested that while the developer

edits an application in the builder, these update operations should be registered

in the mentioned log component. Hence, a tight coupling had to be implemented

between the builder and the referred record.

Figure 6.3: Backward Transformation - Builder-Log Coupling

• Difference Calculation: The second alternative considered obtaining the modifica-

tion log through an automated process capable of assessing the differences and com-

monalities between two model states: the original view state, V, and the changed

41

CHAPTER 6. DESIGN AND IMPLEMENTATION

view state V’, in what can be noted as dif(V’, V). This approach would benefit from

the implementation of a Single-Unified-Model amidst the builders, i.e. a meta meta-

model common to every builder, responsible for defining a set of general rules and

constraints aiming to standardize model representation and instantiation. Through

the employment of a shared meta meta-model, the model differencing procedure

could be made more efficient, since it wouldn’t have to deal with the current dis-

tinct representations amongst the builders. Nevertheless, the calculated differences

could subsequently be converted to the necessary ModelAPI operations.

Figure 6.4: Backward Transformation - Difference Calculation

It is important to underscore that the envisioned solution operated on the issue of

model transformations by considering model changes as the central characters in the up-

date propagation process. With the aid of the above-mentioned changelog, the execution

mechanism of the backward transformation would focus on the source model elements

that suffered modifications, thus achieving added modularity and isolation of operations.

6.2 Implementation

6.2.1 Prototype Plan

The developed prototype was envisioned to be an augmented version of the Experience

Builder capable of extending the offered interoperability with Service Studio. However,

from the start, the main objective was to produce a prototype that could replicate the

offered functionalities of the builder, allowing users to customize the application’s screens,

flows, connections, and menu items. The development of the prototype would naturally

use as a referential the code associated with the Experience Builder since it aimed to be

an extension of it. Nevertheless, unlike the OutSystems tool, the developed prototype

wouldn’t focus on the generation of a new application from a JSON model. Instead, the

prototype would utilize an existing application with a known JSON model representation,

and allow the user to change it by creating, updating, or deleting elements such as flows,

connections, etc. This enabled an increased focus when tackling the problem of enabling

collaborative development through bidirectional transformations.

42

6.2. IMPLEMENTATION

6.2.2 Console App Functionality

Having a GUI would be beyond the scope of our work therefore, the prototype would

be instantiated as a console exposing the commands associated with the features to be

studied, those being:

• load <file name> - Loads the JSON model with the given file name.

• save <file name> - Saves the loaded JSON model to the given location.

• diff <file name> - Calculates differences between the loaded model and the model

with the given filename.

• avai_flows - Prints the flows that could be added to the JSON model.

• add_flow <flow key> - Adds the JSON model a new flow with the given key.

• rem_flow <flow key> - Removes from the JSON model, the flow with the given key.

• chg_flow_name <flow key> - Changes the name of the flow of the JSON model with

the given key.

• avai_exitpoints - Prints the link keys that could be used to add connections to the

JSON model.

• add_connection <link key> <destination screen key> - Adds a new connection to the

JSON model between the screen with the given link key and the screen with the

given key.

• rem_connection <link key> - Removes the connection of the JSON model with the

given link key.

• chg_connection <link key> <new destination screen key> - Changes the connection

of the JSON model with the given link key setting it to the screen with the given

key.

• chg_screen_name <screen key> <new screen name> - Changes the name of the JSON

model’s screen with the given key to the new given name.

• avai_icons - Prints all the menu item icons, and captions that could be added to the

JSON model.

• add_menu_item <item name> - Adds to the JSON model menu a new menu item

with the given name.

• rem_menu_item <item id> - Adds to the JSON model menu a new menu item with

the given item id.

43

CHAPTER 6. DESIGN AND IMPLEMENTATION

• chg_menu_item_cap <item id> <new caption> - Changes the caption of the JSON

model’s menu item with the given id

• chg_menu_item_ico <item id> <new icon name> - Changes the icon of the JSON

model’s menu item with the given id

• chg_menu_item_scr <item id> <new screen key> - Changes the screen of the JSON

model’s menu item with the given id

• chg_menu_item_ord <item id> <new order> - Changes the order of the JSON

model’s menu item with the given id.

In addition to the currently available functionality provided by the Experience Builder,

the developed prototype, in order to address the goal of this dissertation, had to imple-

ment two additional features regarding the backward and forward transformation:

• back_transf <original JSON model> <changed JSON model path> <OAP path> - Exe-

cutes the backward transformation considering the differences between the original

and the changed JSON models, and applies those changes to the OAP file in the

given path.

• forw_transf <OAP path> <projection JSON model path> - Executes the forward

tranformation, considering the OAP file in the given path, producing a JSON model

to the given path.

Figure 6.5: Prototype - Console Application

44

6.2. IMPLEMENTATION

{

"applicationInfo": {

"appKey": "a4245d4e-be5b-4317-8827-8721094267f7",

"name": "TinyApp",

"description": "",

"icon": {},

"splashscreen": {}

},

"visualProperties": {

"primaryColor": "#C3272B",

"nativeThemeName": "ExB_UI",

"extensibilityProperties": "{\"resource\" : \"res.zip\",\r\n

\"splashscreens\" "...},↪→

"iconTextColor": "#FFFFFF"

}

...

}

Listing 6: JSON Payload - Basic Info

6.2.3 TinyApp

6.2.3.1 JSON Payload

The application used was called TinyApp, and as the name suggests it was the most sim-

plistic app the Experience Builder could generate. The Experience Builder team provided

the JSON of the application holding all the information defined by the user when in-

teracting with the builder’s User Interface (UI), which would be sent in an application

generation request to the company’s AWS infrastructure. Since all the data is included in

a single request, its payload is extensive. The request holds basic information pertaining

to the application’s name, description as well as the application key, a value that uniquely

identifies the app in the OutSystems platform. The request also gathers information re-

garding the visual properties of the app, concerning its primary color or its native theme

for instance.

When it comes to the scope of this dissertation, the most relevant segment of the ap-

plication generation request had to do with the actual representation of the core elements

of the application in the Experience Builder. The TinyApp was composed of three flows,

AnimatedOnboardingOption1, SimpleLogin, BankingDashboard, each one including only

one screen with the same name. When it comes to the connections among flows, the

onboarding screen directed the user to the login, and upon correct credentials, the user

was subsequently directed to the dashboard screen.

45

CHAPTER 6. DESIGN AND IMPLEMENTATION

Regarding the application menu, the TinyApp defined a single menu item which upon

click would lead the user to the BankingDashboard screen.

In addition to the above-mentioned, the JSON request also held information concern-

ing the modules to be generated and the location of the required resource templates. The

relevance of these segments of the payload will be addressed later on.

6.2.3.2 OAP

To adequately investigate how to enable the bidirectional interoperability between the

builder and Service Studio, not only should be considered the Experience Builder model

but also the OutSystems model, instantiated in the form of OutSystems Application

(Package) (OAP). That being said, the depicted JSON request, as previously mentioned,

would be responsible for triggering a new app generation process taking place in the

OutSystems AWS instances. To produce the new application, the builder has to locate

and therefore load the resources specified in the payload. However, currently, part of

the assets necessary to fully instantiate any application is stored in S3 Buckets in the

form of OutSystems modules in OMLs format. Most of these resources correspond to

modules gathering sets of UI flows, grouped by similar use-cases. For instance, a module

may include Banking related flows, while another one can be associated with Healthcare
applications.

However, due to troubles concerning access permissions to this cloud infrastructure,

it was deemed more viable to download the needed resources and locally run a version

of the Experience Builder which was not dependent on the AWS S3 buckets. This version

of the code made possible the generation of the TinyApp now in OAP format.

As expected, the app was composed of the three flows specified in the JSON payload,

with all the provided information, as well as a built-in UI flow - the Common Flow -

constant to any application created with the builder, comprising several screens linked

with typical scenarios of use such as the OfflineScreen or the ErrorScreen, along with

common building blocks such as the BottomBar, the placeholder for the application’s

menu.

Figure 6.6: Service Studio - Application (Flows)

46

6.2. IMPLEMENTATION

{ "screens": [

{

"name": "AnimatedOnboardingOption1",

"description": "Adding an onboarding is a great way to

communicate",↪→

"flowType": 3,

"screenKey": "qUWoGIVL80+8g_T3mCpujQ",

"flowName": "AnimatedOnboardingOption1",

"flowKey": "fb9cc0cc-4e4f-4d3b-bc49-b5a40f98a5a8",

"sourceModuleKey": "63W0ewvlEEuH5jvx0qSjcQ",

"hasMenu": false,

"orderInFlow": 1

},

{

"name": "SimpleLogin",

"description": "Simple login screen.",

"flowType": 1,

"screenKey": "sPQ2_NuZpUeemrTDykS2qw",

"flowName": "SimpleLogin",

"flowKey": "2321090f-5b16-4b71-8cd9-d327ed7f6ca7",

"sourceModuleKey": "63W0ewvlEEuH5jvx0qSjcQ",

"hasMenu": false,

"orderInFlow": 1

},

{

"name": "BankingDashboard",

"description": "Transfer money to an account, identified by a

payee.",↪→

"flowType": 5,

"screenKey": "ELqk0A1CHk2QIcTQ9aahcA",

"flowName": "BankingDashboard",

"flowKey": "8cb7b67a-083f-461c-8f2c-c57b9333f698",

"sourceModuleKey": "paYD5xm6q0KzdPLVwEXr8Q",

"hasMenu": true,

"orderInFlow": 1

}

]

}

Listing 7: JSON Payload - Model (Screens)

47

CHAPTER 6. DESIGN AND IMPLEMENTATION

{ "connections": [

{

"linkKey": "3GwQ0lxED0CxkAR1XLZ3Ag",

"linkType": 4,

"originScreenKey": "qUWoGIVL80+8g_T3mCpujQ",

"destinationScreenKey": "sPQ2_NuZpUeemrTDykS2qw"

},

{

"linkKey": "iX3VD_sozkOtr12j26mTlA",

"linkType": 2,

"originScreenKey": "sPQ2_NuZpUeemrTDykS2qw",

"destinationScreenKey": "ELqk0A1CHk2QIcTQ9aahcA"

}

]

}

Listing 8: JSON Payload - Model (Connections)

{ "menu": {

"typeId": "1",

"items": [

{

"ssMenuItemId": 1,

"caption": "Dashboard",

"iconName": "star",

"targetScreenName": "",

"order": 0,

"targetScreenKey": "ELqk0A1CHk2QIcTQ9aahcA"

}

]

}

}

Listing 9: JSON Payload - Model (Menu)

48

6.2. IMPLEMENTATION

Figure 6.7: Service Studio - Ap-
plication (AnimatedOnboardingOp-
tion1 Screen)

Figure 6.8: Service Studio - Appli-
cation (BankingDashboard Screen)

Figure 6.9: Service Studio - Appli-
cation (SimpleLogin) Screen

Figure 6.10: Service Studio - Appli-
cation (Bottom Bar Menu)

49

CHAPTER 6. DESIGN AND IMPLEMENTATION

Listing 10: Implementation - Experience Builder Model

6.2.3.3 Roadmap

The development of the prototype was divided into several steps that were addressed

sequentially. The completion of each phase laid the foundations of the next one. The

following list describes the multiple planned stages of the prototype development:

• Backward Transformation:

– Serialization/Deserialization of the builder (JSON) models: To compare

and identify changes in the builder models, the prototype had to not only

initialize the model objects in memory by loading the JSON, but it also had to

be able to save the model state into JSON format.

– Delta Computation: In order to track the changes made to an existing builder

model, a comparison process had to be implemented.

– Operation "Translations": The backward transformation was only completed

when the change operations, made to the builder model, had been propagated

to the OutSystems model. Hence, the high-level builder operations had to be

converted into sequences of lower-level operations that could be applied to the

OutSystems model.

• Forward Transformation:

– Metadata injection: In order to restore the builder model, it was mandatory

to assess what builder data was missing in the OutSystems model. After iden-

tifying such data, it was necessary to add the missing elements in the model.

– Projection: With all the needed data, the projection only required the mapping

of OutSystems model elements to Experience Builder model elements.

6.3 Backward Transformation

6.3.1 Serialization/Deserialization of the builder model

Firstly it was necessary to define the shape of the builder model object when the dese-

rialization process occurred. As previously mentioned the prototype would extend the

currently offered functionality by focusing on the core elements of the Experience Builder,

those being the menus, flows, screens, and connections. Naturally, this meant the model

object, when initialized, had to be composed of those same data structures. Figure 10

depicts the mentioned structures of the Experience Builder model class.

The actual deserialization process i.e. the loading of a builder model was relatively

simple to implement. The chosen strategy was to use the Newtonsoft library [1] that

50

6.3. BACKWARD TRANSFORMATION

1 private ExperienceBuilderModel LoadModel(string filePathSource) {

2 using StreamReader file = File.OpenText(filePathSource);

3 JsonSerializer serializer = new JsonSerializer();

4

5 var model = (ExperienceBuilderModel)serializer.

6 Deserialize(file, typeof(ExperienceBuilderModel));

7

8 JObject modelJSON =

JObject.Parse(File.ReadAllText(filePathSource));↪→

9 model.InitializeModelObjects(modelJSON);

10

11 return model;

12 }

Listing 11: Implementation - LoadModel

provided a serializer capable of serializing and deserializing objects into and from the

JSON format. As expected, the serializer object needed the type of object to be deserial-

ized. When successfully implemented, the prototype was then able to load into memory

and initialize a builder model by consuming its JSON representation. Figure 11 shows a

snippet of the LoadModel method responsible for the deserialization.

When it comes to the serialization i.e. the saving of the builder model object back to

JSON format, the process resembled the deserialization described previously to a great

degree. The expected difference had to do with the employment of the serialize method

presented by the JSON serializer, responsible for saving the in-memory model object to

the provided file destination according to the defined formatting options. This can be

seen in the figure 12.

6.3.2 Delta Computation

The backward transformation process relied on the ability to propagate all the changes

made to an application using the Experience Builder without overlooking or damaging

any modification made to the app in Service Studio. Hence, the first step to be taken

had to do with the identification of the changes made by the builder user. The solution

had to be able to analyze and compare two distinct builder models: the original one,

corresponding to the current state of the application, obtained through the projection

phase; and the changed model, resulting from modifications applied to the original model,

employing the provided Experience Builder functionalities.

In order to pinpoint any change made to a builder model, it was mandatory to firstly

define what set of the modifications made possible in the Experience Builder would be

51

CHAPTER 6. DESIGN AND IMPLEMENTATION

1 public object SaveModel(string filePathDestination, object model) {

2 using StreamWriter file = File.CreateText(filePathDestination);

3 var serializerSettings = new JsonSerializerSettings

4 {

5 ContractResolver = SerializerContract.Instance,

6 Formatting = Formatting.Indented

7 };

8 JsonSerializer serializer =

JsonSerializer.Create(serializerSettings);↪→

9 serializer.Serialize(file, model);

10 return model;

11 }

Listing 12: Implementation - SaveModel

captured by the prototype in the delta computation process. The established strategy

was to focus on the major functionalities provided by the builder, those being the creation,

update, and deletion of flows, connections, and menu items. Hence, minor operations

were disregarded, such as the instantiation of blank screens or the possibility of changing

the application menu type (from a bottom bar to a side menu, or vice-versa). Thereby,

the following list describes the types of operations that were captured, as well as the

attributed notation, which will be of greater interest further on:

• Element Creation:

– NewFlow: new added flow;

– NewConn: new added connection;

– NewMenuItem: new added menu item;

• Element Update:

– UpdFlow: updated flow name;

– UpdScr: updated screen name;

– UpdMenuItemCaption: updated menu item caption;

– UpdMenuItemIcon: updated menu item icon;

– UpdMenuItemOrder: updated menu item order;

– UpdMenuItemTargetFlow: updated menu item target flow;

• Element Deletion:

– DelFlow: deleted flow (respective screens and connections);

52

6.3. BACKWARD TRANSFORMATION

Algorithm 1 Delta Computation Phase
input

originalEBModel . Experience Builder Model
changedEBModel . Updated Experience Builder Model

output
osModel . Updated OutSystems Model

1: function BackwardTranformation(originalEBModel,
2: changedEBModel,osModel)
3: curModelFlows←GetFlows(originalEBModel)
4: newModelFlows←GetFlows(changedEBModel)

5: changeOperations←CalculcateDifferences(curModelFlows,
6: newModelFlows)
7: for all operation in changeOperations do
8: RunOp(operation,osModel)
9: return osModel

output
changeOperations . Operations necessary to resinstate consistency

10: function CalculateDifferences(curModelFlows,newModelFlows)
11: addedFlows← Exclusion(newModelFlows,curModelFlows,
12: flowsSameKeyNameScrNames)

13: for all flow in addedFlows do
14: changeOperations←NewFlowOp(flow)
15: remFlows←Exclusion(curModelFlows,newModelFlows,
16: flowsSameKeyNameScrNames)
17: for all flow in remFlows do
18: changeOperations←DelFlowOp(flow)
19: updFlows←Intersection(addedFlows,remFlows, flowsSameKey)

20: for all flow in updFlows do

flowsUpdatedName←Intersection(flow,curModelFlows,
21: flowsSameKeyDiffName)
22: changeOperations←UpdFlowOp(flowsUpdatedName)
23: for all screen in GetFlowScreens(flow) do
24: screenUpdName←Intersection(screen,screensCurrModel,
25: screensSameKeyDiffName)
26: changeOperations←UpdScrOp(screenUpdName)
27: return changeOperations

– DelConn: deleted connection;

– DelMenuItem: deleted menu item;

In this subsection, we portray in pseudo-code the developed algorithm thus illus-

trating in greater detail how the model transformation operations are obtained and sub-

sequently applied. For the sake of brevity, the displayed pseudo-code focuses on the

Experience Builder flows, despite the algorithm, in reality, addressing the connections

and menu items elements as well.

Both Intersection and Exclusion are auxiliary functions responsible for execut-

ing set operations upon the model object collections. As the names suggest, one function

will return the common elements between the collections, while the other shall obtain

53

CHAPTER 6. DESIGN AND IMPLEMENTATION

the elements present in the first argument collection and not in the second one. Both

selection processes will depend on the result of the comparator predicate.

CalculateDifferences function starts by obtaining the flows added to the new

model iteration. This is easily obtained using the Exclusion function, as it leaves us

with the flows with the same key, existing in the new model version and not in the cur-

rent model version. The used comparator flowsSameKeyNameScrNames tests the equality

regarding other fields, which is unnecessary at this moment but shall be crucial further

on. The resulting flows are subsequently used to generate NewFlowOp operations.

A similar process occurs regarding the removed flows, with the expected difference of

applying Exclusion function in a “reverse” manner as in this case, we are interested in

getting the flows existing in the current model version and not in the new model version.

The process to obtain the updated flows is slightly more intricate. An update oper-

ation considers a screen or flow name change hence, an unchanged flow must present

naturally the same flow key, equal name, equal screen names. The variable updFlows

holds every performed update however, it is necessary to distinguish between changes in

flow and, or screen names.

The Intersection function call in line 20, will search for flows with updated names.

While the Intersection function call in line 23 will determine if the screen(s) of the

current flow, obtained through the GetFlowScreens function, have been updated.

6.3.3 Operation “Translations”

The delta computation phase is responsible for creating operation objects that refer to

changes made to the Experience Builder model. This process produced a changelog,

containing all the change operations that must be applied to the OutSystems model to

restore application consistency among models and their respective tool environments.

In the developed solution, this log (in the pseudo-code defined as changeOperations)

corresponded to a data structure collecting the multiple change operation objects. For

debugging purposes, this log could be printed out, in JSON format. Figure 13 illustrates

an example of a changelog comprised of two Update operations: UpdFlow and UpdScr.

As we can see, each operation object is formed by its type and information relevant to

correctly map the element to be changed in the OutSystems model. All of this will be

analyzed at greater lengths further on.

Each change captured in the delta computation generated a new operation object

containing a Run method, comprising a particular sequence of ModelAPI operations that

when applied to the OutSystems model would successfully propagate the modifications

made with the builder.

Having mentioned that, when it comes to the implementation of the operations, the

strategy was to create an abstract Operation class with a virtual method (Run), imple-

mented differently according to the operation at issue, as seen in listing 14.

54

6.3. BACKWARD TRANSFORMATION

[

{

"operationObject": {

"flowKey": "fb9cc0cc-4e4f-4d3b-bc49-b5a40f98a5a8",

"name": "NewFlowName"

},

"operationType": "UPDATE"

},

{

"operationObject": {

"flowKey": "2321090f-5b16-4b71-8cd9-d327ed7f6ca7",

"screenKey": "sPQ2_NuZpUeemrTDykS2qw",

"name": "NewScreenName"

},

"operationType": "UPDATE"

}

]

Listing 13: Change Log

1 public abstract class Operation

2 {

3

4 public string OperationType {get; set;}

5 public virtual IApplication Run(IApplication application,

IModelServices modelServices) { return null; }↪→

6 }

Listing 14: Abstract Operation Class

55

CHAPTER 6. DESIGN AND IMPLEMENTATION

1 public override IApplication Run(IApplication application,

2 IModelServices modelServices)

3 {

4 ESpace = GetFrontModule(application);

5 ModelServices = modelServices;

6 UpdateFlow();

7 return application;

8 }

Listing 15: Run method - UpdateFlow

It should be noted that most of the logic of the Run operations regarding any element

creation (flows, connections, or menu items) was supported on the existing Experience

Builder code, as the builder, currently addresses creation operations only. As pointed

out before, this is due to the current “start from scratch” approach, where every use-

case addressed by the builder corresponds to the creation of new elements: if the user

performs any deletion or update to an existing Experience Builder application, the tool

will consider this new state as a completely different app and will regenerate everything

once again. Therefore, the current Experience Builder code doesn’t accommodate any

delete or update operations thereby, the new functionalities had to be built from the

ground up.

To provide a practical example of the implementation regarding the Run method,

let’s consider a changelog comprised of two change operations: a UpdFlow operation

concerning the name change of a flow, in addition to a NewConn operation, as the name

suggests the creation of a connection between two flows.

6.3.3.1 UpdateFlow Operation

The Run method (listing 15) starts by locating the FrontOfficeModule, the main

eSpace of the application, responsible for providing functionalities and app resources

with direct relation to the users (line 4). After loading the ModelAPI services (line 5), we

start the concrete flow update.

In listing 16 the operation had to consider an object coupled with the key of the flow

to be updated (line 3) (in the figure depicted as FlowWithUpdatedName). Subsequently, it

was only necessary to iterate over the several MobileFlows of the eSpace, searching for a

flow object with the correct key. Upon finding it, the update was complete with the flow’s

name changed.

6.3.3.2 NewConn Operation

Let’s analyze the NewConn operation responsible for linking two flows together.

56

6.3. BACKWARD TRANSFORMATION

1 private void UpdateFlow()

2 {

3 IKey flowKey = ModelServices.ParseKey(FlowWithUpdatedName.FlowKey);

4 IMobileFlow flow = ESpace.MobileFlows.Single(f =>

f.ObjectKey.Equals(flowKey));↪→

5 flow.Name = FlowWithUpdatedName.Name;

6 }

Listing 16: UpdateFlow method

1 public override IApplication Run(IApplication application,

IModelServices modelServices)↪→

2 {

3 ESpace = GetFrontModule(application);

4 ModelServices = modelServices;

5 ConnectScreens();

6 return application;

7 }

Listing 17: Create connection - Run method

The Run method, once again starts by locating the FrontOfficeModule. After loading

the ModelAPI services, everything was set to start instantiating the new connection.

The main method ConnectScreens 18 commences by considering the Connection

object, the new connection to be instantiated. Two variables are initialized with the

corresponding keys of the origin and destination screens composing this connection in

lines 3 and 4. The Connection object stores these values in string format however, the

keys of the OutSystems Model objects subsist as implementations of the IKey interface

thereby, parsing had to be made. Fortunately, the ModelServices provides ParseKey,

an appropriate method to do so. Afterward, it is necessary to locate the correct mobile

screens in the ESpace, using their respective keys (lines 6 and 7). It is important to

remember that the OutSystems Model assumes a tree structure hence, certain elements

contain collections of “descendants”. This is the case for ESpaces, which among others,

assemble a set of mobile screens.

Subsequently, it was necessary to instantiate the actual connection between the con-

cerning screens. The NewConn method using as arguments the concrete NewConn ob-

jects is responsible for gathering all the exit points of the origin screen and organizing

them in links, buttons, or redirection nodes. This was achieved through the methods

depicted in lines 3, 4, and 5 of listing 19. Once again, is important to mention, that

57

CHAPTER 6. DESIGN AND IMPLEMENTATION

1 public void ConnectScreens()

2 {

3 IKey originScreenKey =

ModelServices.ParseKey(Connection.OriginScreenKey);↪→

4 IKey destinationScreenKey =

ModelServices.ParseKey(Connection.DestinationScreenKey);↪→

5

6 IMobileScreen originScreen =

ESpace.GetAllDescendantsOfType<IMobileScreen>().Single(s =>

s.ObjectKey.Equals(originScreenKey));

↪→

↪→

7 IMobileScreen destinationScreen =

ESpace.GetAllDescendantsOfType<IMobileScreen>().Single(s =>

s.ObjectKey.Equals(destinationScreenKey));

↪→

↪→

8

9 Connect(originScreen, destinationScreen, ModelServices, ESpace);

10 }

Listing 18: Create connection - ConnectScreens method

the IButton, ILink, and IDestinationNode stand as descendants of screen objects, simi-

larly as described before with the relation between an ESpace and its screens. Therefore,

the above-mentioned methods, retrieve all the exit points of a screen by iterating over

the screen object descendants. The linkKey attribute present in the Connection object

uniquely identifies the exit point associated with the connection to be established there-

fore, as seen in line 7, the challenge came from the location of the link key in the gathered

exit points of the origin screen.

1 public void SetDestination(IMobileScreen destinationScreen,

IObjectSignature item, ScreenParameterEditor parameterEditor)↪→

2 {

3 if (item is ILink link)

4 {

5 if (link.OnClick.Destination is IExternalSite)

6 ScreenParameterEditor.

ClearAllArguments(link.OnClick.Arguments);↪→

7

8 link.OnClick.Destination = destinationScreen;

9

10 parameterEditor.

FillMandatoryInputArguments(link.OnClick.Arguments);↪→

58

6.3. BACKWARD TRANSFORMATION

1 private void Connect(IMobileScreen originScreen, IMobileScreen

destinationScreen, IModelServices modelServices, IESpace eSpace)↪→

2 {

3 var links = OperationUtils.IdentifyExitPointLinks(originScreen);

4 var buttons =

OperationUtils.IdentifyExitPointButtons(originScreen);↪→

5 var redirectionNodes =

OperationUtils.IdentifyExitPointNodes(originScreen);↪→

6

7 IObjectSignature objSig = OperationUtils.

FindLink(modelServices.ParseKey(Connection.LinkKey),links,

buttons, redirectionNodes);

↪→

↪→

8

9 ScreenParameterEditor parameterEditor = new

ScreenParameterEditor(new ExperienceBuilderLib.

Domain.Services.OSModel.OSDataTypes(eSpace));

↪→

↪→

10

11 SetDestination(destinationScreen, objSig, parameterEditor);

12 }

Listing 19: Create connection - Connect method

11

12 ProjectionUtils.CreateMetadata(link,

Consts.Operations.LinkType,Connection.LinkType.ToString());↪→

13 ProjectionUtils.CreateMetadata(link,

Consts.Operations.LinkOrder,Connection.Order.ToString());↪→

14 ProjectionUtils.CreateMetadata(link,

Consts.Operations.LinkLabel, Connection.Label);↪→

15 }

16 else if (item is IButton button)

17 {

18 if (button.OnClick.Destination is IExternalSite)

19 ScreenParameterEditor.

ClearAllArguments(button.OnClick.Arguments);↪→

20

21 button.OnClick.Destination = destinationScreen;

22 parameterEditor.

FillMandatoryInputArguments(button.OnClick.Arguments);↪→

23

59

CHAPTER 6. DESIGN AND IMPLEMENTATION

24 ProjectionUtils.

CreateMetadata(button,Consts.Operations.LinkType,

Connection.LinkType.ToString());

↪→

↪→

25 ProjectionUtils.

CreateMetadata(button,Consts.Operations.LinkOrder,

Connection.Order.ToString());

↪→

↪→

26 ProjectionUtils.

CreateMetadata(button,Consts.Operations.LinkLabel,

Connection.Label);

↪→

↪→

27 }

28 else

29 { var node = (IDestinationNode)item;

30

31 if (node.Destination is IExternalSite)

32 ScreenParameterEditor.ClearAllArguments(node.Arguments);

33

34 node.Destination = destinationScreen;

35 parameterEditor.FillMandatoryInputArguments(node.Arguments);

36

37 ProjectionUtils.CreateMetadata(node,

Consts.Operations.LinkType,

Connection.LinkType.ToString());

↪→

↪→

38 ProjectionUtils.CreateMetadata(node,

Consts.Operations.LinkOrder, Connection.Order.ToString());↪→

39 ProjectionUtils.CreateMetadata(node,

Consts.Operations.LinkLabel, Connection.Label);↪→

40 }

41 }

Listing 20: Create connection - SetDestination method

The SetDestinationmethod (listing 20) uses the found link object (IObjectSignature)

as well as the destination screen. The method starts by testing if the object is of type ILink,

IButton, or IDestinationNode. Upon discovery, the process is very similar regardless

of the actual object type. In the first moment, it is important to examine if the default

destination of the link, button or node, is an external site, that being a URL to a location

outside the application. In that case, it is necessary to clear the default arguments of the

OnClick events. This was achieved through the provided methods of a class specialized

in the editing of the screen parameters. This class was also responsible for filling the

mandatory input arguments of the OnClick events. Some screen links are associated

60

6.4. FORWARD TRANSFORMATION

with flags specifying a parameter is mandatory, and a boolean, text-based, or numeric-

based for instance. Thus, in these cases, those parameters must be filled with default

values such as "false", empty strings, or 0 respectively. All this is a responsibility of the

FillMandatoryInputArguments method of line 10.

When it comes to the concrete connection definition, for links or buttons, it is neces-

sary to initialize the OnClick event destination in order to direct the users to the desired

destination screen, as seen in lines 8 and 21, respectively. The destination node does

not provide a clickable interface thus, the destination setting occurs directly on the node

object (line 35).

Finally, the creation operation, as mentioned before, is tied to the injection of meta-

data, as one can see in the listing with the CreateMetadata method of the ProjectionU-

tils class. Nonetheless, this relates to the Forward Transformation process and therefore

will be discussed in the following section.

6.3.3.3 Change Propagation: Experience Builder - Service Studio

All the process depicted in the previous sections is triggered by the BackwardTransfor-

mation method and will culminate in the desired builder-Service Studio change propaga-

tion. This method, as we can see in listing 21, the method takes as parameters the original

Experience Builder model (originalEBModel), the changed version ((changedEBModel),

and the path of the OutSystems application (OAPPath) to which the computed deltas

shall be propagated. Firstly, the original builder model is initialized, and the delta com-

putation occurs following what was described in the previous sections. Subsequently,

one can observe the initialization of the ModelServices variable with an instance of the

IModelServices interface, the Model API’s entry point empowering its users with the

capacity of creating and manipulating applications and ESpaces. In the following line,

the interface is used to load the OutSystems application to memory.

To accomplish the desired transformation, as previously stated, all the Run methods of

the captured change operations have to be executed. Finally, with the made modifications

correctly propagated, the new state of the OutSystems application is saved.

6.4 Forward Transformation

Despite a large part of the Experience Builder model containing meaningful information

regarding the interaction of the user with the UI and to the generation process of an OAP,

this data does not transition to the OutSystems model dealt in the Service Studio, nor

should it be visible to the IDE users since it addresses internal behavior and is irrelevant

to the Service Studio context. Thus, for the sake of enabling the reverse transformation,

i.e. Service Studio-Experience Builder is important to note that some additional data

had to be stored and consequently retrieved, to allow the reconstruction of the builder’s

model.

61

CHAPTER 6. DESIGN AND IMPLEMENTATION

1 public void BackwardTransformation(string originalEBModel, string

2 changedEBModel, string OAPPath)

3 {

4 InitializeModel(originalEBModel);

5 DeltaComputation(changedEBModel);

6

7 IModelServices modelServices =

8 OutSystems.ModelAPILoader.Loader.ModelServicesInstance;

9 IApplication application =

10 modelServices.LoadApplication(OAPPath);

11

12 foreach (Operation changeOp in ChangeOperations)

13 changeOp.Run(application, modelServices);

14

15 application.Save(OAPPath);

16 }

Listing 21: BackwardTransformation method

6.4.1 Metadata Injection

In order to retrieve the prototype-generated elements, the chosen strategy was to piggy-

back all the necessary builder model data in the created elements upon the moment of

their creation. Therefore, each prototype-created flow, connection, or menu item carried

in metadata format the data required to fully regenerate the builder model.

In this regard, the following sections describe the implementation of the metadata

injection mechanism, along with the reasoning behind the selection of the builder data

fields that were injected.

6.4.1.1 AddFlow operation

In terms of the AddFlow operation, it was crucial to add to the created flow object data

addressing the SourceModuleKey and the FlowType, as these fields are used and disre-

garded in the app generation process, but prevail relevant to the builder environment.

The SourceModuleKey subsists as string responsible for identifying the OutSystems mod-

ule template encompassing the flow, while the FlowType is used by the builder to organize

the flows in categories addressing typical use-cases such as Login or Onboarding, for in-

stance. Listing 22 depicts the method in control of adding the flow metadata to each

created flow (in the listing referred as the flowsToMerge).

Furthermore, each created flow is composed of one or more screens also requiring

added metadata. In this case, every screen object was linked with data referring to the

62

6.4. FORWARD TRANSFORMATION

1 private void AddFlowMetadata(IEnumerable<IMobileFlow> flowsToMerge,

IModelServices modelServices)↪→

2 {

3 foreach(IMobileFlow flow in flowsToMerge)

4 {

5 ProjectionUtils.CreateMetadata(flow,

Consts.Operations.SourceModuleMetadata,

Flow.SourceModuleKey);

↪→

↪→

6 ProjectionUtils.CreateMetadata(flow,

Consts.Operations.FlowTypeMetadata,

Flow.FlowType.ToString());

↪→

↪→

7 AddScreenMetadata(flow.Nodes.OfType<IMobileScreen>(),

modelServices);↪→

8 }

9 }

Listing 22: Metadata Injection - AddFlowMetadata method snippet

1 private void AddScreenMetadata(IEnumerable<IMobileScreen> screens,

IModelServices modelServices)↪→

2 {

3 foreach (IMobileScreen scr in screens)

4 {

5 var screen = Flow.Screens.Single(s =>

scr.ObjectKey.Equals(modelServices.ParseKey(s.ScreenKey)));↪→

6

7 ProjectionUtils.CreateMetadata(scr,

Consts.Operations.HasMenuMetadata,

screen.HasMenu.ToString());

↪→

↪→

8 ProjectionUtils.CreateMetadata(scr,

Consts.Operations.OrderInFlowMetadata,

screen.OrderInFlow.ToString());

↪→

↪→

9

10 }

11 }

Listing 23: Metadata Injection - AddScreenMetadata method snippet

63

CHAPTER 6. DESIGN AND IMPLEMENTATION

1 public void SetDestination(IMobileScreen destinationScreen,

IObjectSignature item) {↪→

2 ...

3

4 ProjectionUtils.CreateMetadata(link, Consts.Operations.LinkType,

Connection.LinkType.ToString());↪→

5 ProjectionUtils.CreateMetadata(link, Consts.Operations.LinkOrder,

Connection.Order.ToString());↪→

6 ProjectionUtils.CreateMetadata(link, Consts.Operations.LinkLabel,

Connection.Label);↪→

7

8 ...

9

10 }

Listing 24: Metadata Injection - CreateConnection method snippet

HasMenu boolean flag denoting if the screen is associated with a menu item and the Or-

derInFlow integer depicting the order of the screen in the flow. Similarly to the previous

listing, listing 22 depicts the method in control of adding the metadata to each screen

associated with the created flow.

6.4.1.2 AddConnection operation

Let’s consider the implementation regarding the creation of a new connection. As

seen previously, in listing 20 after setting the destination, several connection attributes

are passed in the form of metadata, with the call of the CreateMetadata method. These

attributes are consumed in the application generation process by the Experience Builder

infrastructure and do not travel to the OutSystems Model. To overcome this hurdle, the

implemented method makes direct use of the functionality provided by the ModelAPI of

associating metadata with new or existing model elements. As evidenced by listing 24,

depicting a portion of the SetDestination method, it was possible to associate the link

object with metadata referring to the LinkType responsible for indicating to the Experi-

ence Builder if the exit point of the link is associated with a login, or a back button, for

instance, and the LinkLabel reffering to a comment associated with the connection. All

the injected attributes being distinguished by their pre-defined name, and the “Editor-

Prototype” tag (represented by the constant Consts.Operations.MetadataManager), as

seen in listing 25, expanding the CreateMetadata method.

6.4.1.3 AddMenuItem operation

64

6.4. FORWARD TRANSFORMATION

1 public static ITextMetadata CreateMetadata(IObjectSignature obj, string

metadataName, string metadataValue)↪→

2 {

3 ...

4

5 if (obj.GetType().Name.Equals(Consts.Operations.TypeOfElementLink))

6 metadata = ((ILink)obj).CreateMetadata<ITextMetadata>(name:

metadataName, managedBy:

Consts.Operations.MetadataManager);

↪→

↪→

7

8 ...

9 metadata.Value = metadataValue;

10 metadata.Hidden = false;

11 return metadata;

12 }

Listing 25: Metadata Injection - CreateMetadata method snippet

1 public void AddItemToMenuBottomMenu()

2 {

3 ...

4 ProjectionUtils.CreateMetadata(bottomBarItem,

Consts.Operations.SSMenuItemId, MenuItem.SSMenuItemId);↪→

5 ProjectionUtils.CreateMetadata(bottomBarItem,

Consts.Operations.MenuItemOrderMetadata,

container.Widgets.Count().ToString());

↪→

↪→

6 ...

7 }

Listing 26: Metadata Injection - CreateMenuItem method snippet

65

CHAPTER 6. DESIGN AND IMPLEMENTATION

In regards to the creation of a new menu item, the injected metadata referred to the

SSMenuItemId, the data field responsible for unequivocally identifying a menu item in

the builder environment, and the Order, pertaining to the order of the considered item in

the menu itself. Listing 26 illustrates a code snippet belonging to the AddItemToMenuBot-

tomMenu method involved in the builder data injection.

As seen in line 5 in listing 26, the Order field had to be initialized in run time, taking

into account the number of existing application menu items (in the OutSystems model

environment corresponding to widgets). This was necessary due to the possibility of the

prototype handling an outdated view of the application menu. I.e., the builder model

used by the prototype is obtained by a projection that exclusively contemplates prototype-

generated elements therefore, the application menu might contain items absent in the

projection model hence, to adequately define the order of the menu item being added,

the program must assess the correct number of widgets in run time.

6.4.2 Projection

The concrete Projection occurs with the retrieval of all the necessary information now

existing in the OutSystems model back to the Experience Builder model. This is initiated

in the GetProjection method (listing 27) which takes as arguments the main ESpace of

the application, and an instance of the ModelAPI services.

A new builder model object is instantiated with the purpose of storing the extracted

elements. Then, the method takes care of the flows (and screens) and the connections.

For consistency purposes, let’s consider the implementation of the Projection process

concerning the connections. As illustrated in line 10, as the program iterates over the

Mobile Flows of the application, additional processing is done over the connections asso-

ciated with these flows. It is relevant to mention that, since the developed solution only

minds Experience Builder elements, created in the builder itself, and these, as seen in the

previous section carry added metadata, it was relatively easy to identify the OutSystems

model elements that needed to be retrieved (line 12). This testing process occurs in the

GetConnectionsFromLinks method for instance, a method belonging to the chain of calls

initiated in the GetEBConnectionsFromSSMobileScreens and depicted in listing 28.

Considering that when creating a connection, metadata is injected in the ILink ob-

ject of the destination screen, it is not surprising the program starts by testing if the

screen links have metadata. This testing process is encompassed in HasEditorMetadata

(line 9) and works in a complementary manner with the previously seen CreateMetadata

method. When the condition is true, the connection was created in the builder therefore,

the program can start retrieving the necessary attribute values. This is done through the

GetMetadata method, which is responsible for returning the metadata value associated

with a given tag. In the case of a connection, the LinkType, Label, Order and the Des-

tinationScreenKey are restored using the metadata process (lines 11, 12, 13 and 14)

while all the other attributes are obtained by accessing available object properties (such

66

6.4. FORWARD TRANSFORMATION

1 private ExperienceBuilderModel GetProjection(IESpace eSpace,

IModelServices modelServices)↪→

2 {

3 ExperienceBuilderModel model = new ExperienceBuilderModel();

4

5 IEnumerable<IMobileFlow> mobileFlows = eSpace.MobileFlows;

6

7 List<Connection> connections = new List<Connection>();

8

9 foreach (IMobileFlow flow in mobileFlows)

10 {

11 if (ProjectionUtils.HasEditorMetadata(flow,

Consts.Operations.MetadataManager))↪→

12

13 model.AddFlowAndScreens(ProjectionUtils.

SSFlowToEBFlow(flow));↪→

14

15 connections.AddRange(ProjectionUtils.

16 GetEBConnectionsFromSSMobileScreens(flow.Nodes.OfType

17 <IMobileScreen>()));

18 }

19

20 model.AddConnections(connections);

21

22 IMobileBlock menuBlock = OperationUtils.GetBottomMenuBlock(eSpace,

modelServices);↪→

23 IEnumerable<IMobileBlockInstanceWidget> menuItemsInit =

menuBlock.GetAllDescendantsOfType<IMobileBlockInstanceWidget>();↪→

24 model.SetMenuType(Consts.Operations.BottomBarTypeId);

25

26 foreach (var menuItem in menuItemsInit.ToList())

27 if (ProjectionUtils.HasEditorMetadata(menuItem,

Consts.Operations.MetadataManager))↪→

28 model.AddMenuItem(

29 ProjectionUtils.SSMenuItemToEBMenuItem(menuItem));

30

31 return model;

32 }

Listing 27: Projection - Projection method

67

CHAPTER 6. DESIGN AND IMPLEMENTATION

1 private static List<Connection> GetConnectionsFromLinks(IMobileScreen

screen)↪→

2 {

3 var links =

Operations.OperationUtils.IdentifyExitPointLinks(screen);↪→

4

5 var result = new List<Connection>();

6

7 foreach (ILink link in links)

8 {

9 if (HasEditorMetadata(link, Consts.Operations.MetadataManager))

10 {

11 var linkType = int.Parse(GetMetadata(link,

Consts.Operations.LinkType,

Consts.Operations.MetadataManager).Value);

↪→

↪→

12 var label = GetMetadata(link, Consts.Operations.LinkLabel,

Consts.Operations.MetadataManager).Value;↪→

13 var order = int.Parse(GetMetadata(link,

Consts.Operations.LinkOrder,

Consts.Operations.MetadataManager).Value);

↪→

↪→

14 string destinationScreenKey =

link.OnClick.Destination.ObjectKey.ToString();↪→

15

16 result.Add(new Connection

17 {

18 LinkKey = link.ObjectKey.ToString(),

19 LinkType = linkType,

20 Label = label,

21 OriginScreenKey = screen.ObjectKey.ToString(),

22 OriginScreen = SSScreenToEBScreen(screen),

23 Order = order,

24 DestinationScreenKey = destinationScreenKey,

25 }); ;

26

27 }

28 }

29 return result;

30 }

Listing 28: Projection - GetConnectionsFromLinks method

68

6.4. FORWARD TRANSFORMATION

1 public ExperienceBuilderModel ForwardTransformation(string OAPPath,

string EBModelPath)↪→

2 {

3 IModelServices modelServices =

OutSystems.ModelAPILoader.Loader.ModelServicesInstance;↪→

4

5 IApplication application = modelServices.LoadApplication(OAPPath);

6

7 var eSpace = (IESpace)application.Modules.First(m =>

m.Key.Equals(application.FrontOfficeEspaceKey)).Load();↪→

8

9 ExperienceBuilderModel projection = GetProjection(eSpace,

modelServices);↪→

10

11 SaveModel(EBModelPath, projection);

12

13 return projection;

14 }

Listing 29: Projection - ForwardTransformation method

as the LinkKey contained in the Link object or the OriginScreenKey, included in the

IMobileScreen).

6.4.2.1 Change Propagation: Service Studio - Experience Builder

All the process depicted in the previous sections is triggered by the ForwardTransformation
method and will culminate in the desired Service Studio to builder change propagation.

This method is analogous to the previously discussed BackwardTransformation method,

and, as we can see in listing 29, it starts by considering the path of the OutSystems appli-

cation (OAPPath) and the path to Experience Builder model (EBModelPath) representing

the current stage of the application. Once again, the program starts by initializing the

ModelServices necessary to load the OutSystems application to memory. Thereafter,

only with the main ESpace of the app located, the program is capable of proceeding with

the described GetProjection method, which will return a complete and updated Experi-

ence Builder model. Subsequently, the model is serialized to the desired location and the

obtained projection is returned.

69

7

Results and Evaluation

The goal of this dissertation was, first and foremost, to investigate the possibility of a bidi-

rectional flow of interaction between the builders and Service Studio. Our investigation

culminated in a prototype based on the Experience Builder with added functionality and

modifications targeting pre-existing features.

This chapter details more extensively all the features of the developed prototype

and compares them with the current behavior of the Experience Builder. In addition,

this chapter also elaborates on the performed evaluation procedures and the prototype’s

limitations.

7.1 Results

The final prototype resulted in an augmented version of the Experience Builder capable of

supporting continuous collaborative development of an application together with Service

Studio. Through the analysis of the end result, it is clear there was an extension to the

currently offered builder’s functionality, with each prototype operation modifying the

OutSystems model in a precise and isolated manner, as opposed to fully regenerating a

new application and disregarding any change made in Service Studio. In addition, the

developed algorithm implemented in the prototype proves with a high degree of certainty,

the Experience Builder can be effectively modified to be used as an editor.

Nonetheless, when comparing the attained functionality of the prototype with the

Experience Builder’s, it is relevant to keep in mind every prototype’s implemented op-

eration considers a bidirectional application development scenario, while the same can

not be said in regards to the builder. The builder is associated with the Service Studio in

a unidirectional manner therefore, an application is created in the Experience Builder,

it is published, and if the developer chooses to, he can furtherly customize it using the

IDE. If the builder is used again in this scenario, its user will have no update view of the

state of the application, and if he publishes the app once again, any Service Studio will

be disregarded. However, any application change made employing the builder’s function-

alities effectively results in an OutSystems model with those exact changes, despite being

71

CHAPTER 7. RESULTS AND EVALUATION

detrimental to the previous state of the app. Whereas, the prototype despite targeting a

specific scenario (where an application has been published using the builder) guarantees

full interoperability with Service Studio.

On a more detailed level, all the operations enabled by the prototype differ from

the corresponding operations in the builder. Due to the Single-Shot mode of operation,

the Experience Builder does only implement creation operations hence, any element

deletion or update is inconceivable. Whereas in the prototype environment, any deletion

or update successfully targeted the concerned element(s) hence achieving the desired

change propagation.

Regarding the creation operations, much of the prototype code was based on the

Experience Builder with the added difference of, in this case, providing contingencies for

future projections with the injection of metadata, as detailed in the following sections.

7.1.1 Add Flow operation

7.1.1.1 Experience Builder

Using the builder, the developer can easily add a new flow by clicking on the “Add Flows”

button highlighted in red in Figure 7.1. This will open a dialogue window displaying

all the available flows, organized in typical application development use-cases such as

“Authentication” or “Banking” (Figure 7.24).

Figure 7.1: Experience Builder Interface - Add Flows button

7.1.1.2 Prototype

The final prototype ran locally and did not provide a GUI hence multiple changes had to

be made to the common behavior of the Experience Builder, in order to accommodate this

operation in the console application interface. One of those modifications was to load to

memory all the possible flows the developers could add to their applications.

72

7.1. RESULTS

Therefore, to add a new flow to the application the prototype user had to consult the

possible flows through the avai_flows command, and enter the flow’s name, as depicted

in Figure 7.2:

Figure 7.2: Prototype Console - Add Flow use-case

In terms of the metadata injection regarding this operation, the process was deemed

successful since each created flow object effectively carried data addressing the “Source-

ModuleKey” pertaining to the flow template, along with the “FlowType” used by the

builder to organize the flows in categories. Figure 7.3 shows in Service Studio an exam-

ple of a created flow with the additional metadata fields, visible only for demonstration

purposes. Furthermore, each screen object of the added flow was also successfully linked

with metadata such as the “HasMenu” boolean flag denoting if the current screen is asso-

ciated with a menu item, and the“OrderInFlow’ integer depicting the order of the screen

in the encompassing flow. This metadata is illustrated in Figure 7.4 and once again is

only visible to the user for demonstration purposes.

Figure 7.3: Service Studio - Added Flow Metadata

73

CHAPTER 7. RESULTS AND EVALUATION

Figure 7.4: Service Studio - Added Screen Metadata

7.1.2 Add Connection operation

7.1.2.1 Experience Builder

Using the builder, the developer can easily create a new connection, linking two screens

to each other. This is possible by using a screen’s exit point marked in the user interface

by a blue circle hovering a button or a link, for instance. The developer can click or drag

a connecting line from a screen to another flow, as seen in Figure 7.5.

Figure 7.5: Experience Builder Interface - Add Connection

74

7.1. RESULTS

7.1.2.2 Prototype

Since the builder’s user experience cannot be replicated in the console prototype, every

screen’s possible exit point had to be previously loaded to memory for the sake of enabling

the creation of new connections. Thereby, in the interest of setting a new link between

screen X and Y, the prototype user had to consult the available exit points of screen

X through the avai_screen_exit_points command, and enter the screen Y’s name in the

add_flow command, as denoted in the following example:

Figure 7.6: Prototype Console - Add Connection

The necessary builder model data transitioned successfully to the OutSystems model

through the metadata injection process. The added data regarded “LinkType”, an integer

which identifies the link as a back button or a login button, for instance, and the “Lin-

kLabel”, a comment associated with the connection. Figure 7.7 shows in Service Studio

an example of a created connection, linking an existing screen with the “AccountDetails”

screen, with the added metadata, visible only for demonstration purposes.

Figure 7.7: Service Studio - Added Connection Metadata

7.1.3 Add Menu Item operation

7.1.3.1 Experience Builder

The Experience Builder developer can seamlessly add a new item to the existing menu.

This is possible through the “Menu” tab, where the click on the plus button depicted

75

CHAPTER 7. RESULTS AND EVALUATION

in the Figure 7.8. Developers can then select from a wide array of icons with associated

names as seen in Figure 7.9.

Figure 7.8: Experience Builder Interface - Add Menu Item dialogue window

Figure 7.9: Experience Builder Interface - Add Menu Item

7.1.3.2 Prototype

The prototype provided the avai_icons command printed the icon names and respective

caption of all the available menu items. The user could then add the chosen item by

providing its name to the add_menu_item, along with the screen name where the user will

be directed to if he uses the button. This process is represented in Figure 7.10.

76

7.1. RESULTS

Figure 7.10: Prototype Console - Add Menu Item

The metadata was successfully injected into each created menu item object. The

added data regarded the menu item identifier “SSMenuItemId”, as well as a unique

key based on that same identifier and noted as “MenuItemKeyMetadata”, and “MenuIte-

mOrder” depicting the order of the item in the menu. Figure 7.11 depicts the Service

Studio view of an added menu item with the injected metadata visible for demonstration

purposes.

Figure 7.11: Service Studio - Added Menu Item Metadata

7.1.4 Backward and Forward Transformations

Along with the described operations, the final prototype also provided its users with the

capability of manually triggering the change propagation both in the Experience Builder-

Service Studio direction (with the backward transformation) and in Service Studio-Experience

Builder direction (with the forward transformation), as discussed in the following sec-

tions.

77

CHAPTER 7. RESULTS AND EVALUATION

7.1.5 Backward Transformation operation

7.1.5.1 Experience Builder

If we consider the backward transformation operation as the conversion of the Experi-

ence Builder model to the OutSystems model, the builder natively supports this func-

tionality through the “Publish” button (Figure 7.12). However, as described, the current

model transformation displays shortcomings that damage the continuous collaboration

in the OutSystems Platform.

Figure 7.12: Experience Builder Interface - Publish button

7.1.5.2 Prototype

The final prototype enabled users with the possibility of publishing any builder model

change in a controlled, sound, and isolated manner. The back_transf command triggered

the transformation and required users to input several arguments: the path to the original

builder model, the path to the altered model, and the path to the OutSystems Application

to which the deltas would be propagated. The following figure illustrates a scenario

where after saving the changes made to the “TinyApp” builder model, the backward

transformation is evoked, with the command considering the original builder model

(“TinyApp.json”), the new version with the user’s modifications (“NewTinyApp.json”)

and the OutSystems Application (“TinyApp.oap”).

Figure 7.13: Prototype Console - Backward Tranformation

The delta computation phase was implemented successfully, with the program cor-

rectly analyzing, comparing two builder models, and finally yielding a changelog con-

taining all the change operations that had to be propagated to the OutSystems model

to restore application consistency among the builder and the OutSystems models. The

following listing denotes an example of a changelog, in this case, comprised of a single

flow creation operation.

78

7.1. RESULTS

[

{

"operationObject": {

"flowName": "AccountDetails",

"flowKey": "40649b12-a3aa-4e6d-90ff-b656cd7a6626",

"flowType": 0,

"sourceModuleKey": "paYD5xm6q0KzdPLVwEXr8Q",

"screens": [

{

"name": "AccountDetails",

"description": "Detailed personal, account and security

information.",↪→

"comment": "",

"screenKey": "SpIzWrAjcUGp3wmfk16H6Q",

"orderInFlow": 1,

"hasMenu": true,

"imageURL": ""

}

]

},

"operationType": "CREATE"

}

]

Listing 30: Change Log Example

All the chosen app customizations enabled by the Experience Builder were success-

fully mapped to operation objects, whose execution led to the desired change propagation

to the OutSystems Model. In addition, it was possible to verify the propagation occurred

without disregarding any pre-existing application element present in the OutSystems

model.

7.1.6 Forward Transformation operation

7.1.6.1 Experience Builder

Due to the current mode of operation employed by the builder, it is impossible to continue

to develop an application after its customization in Service Studio. This is the result of the

unidirectionality of application development regarding the use of the Experience Builder

together with the platform’s IDE. Hence, the forward transformation, which concisely

represents the capacity of retrieving the builder model from the OutSystems model is not

79

CHAPTER 7. RESULTS AND EVALUATION

available in the Experience Builder.

7.1.6.2 Prototype

To remedy this shortcoming, the final prototype empowered its users with the forw_transf
command, responsible for providing an updated view of the application in the builder en-

vironment. The command required users to input the path to the OutSystems application

from which the builder model will be extracted and the path to the file involved in storing

the extracted model. Figure 7.14 illustrates a scenario where the forward transformation

is considering “TinyApp.oap” application and storing the resulting builder model into

the “ProjectedTinyApp.json” file.

Figure 7.14: Prototype Console - Forward Tranformation

This achievement was made possible through the metadata injection process, which

successively added all the necessary builder model data in the OutSystems model. The

execution of the projection process naturally also weighed greatly in the success of the

forward transformation.

The desired outcome was reached, with the projection yielding the current state of

the application, restoring a complete builder’s model composed of all the necessary data

regarding flows, screens, connections, and menu items.

7.2 Evaluation

7.2.1 Validation

The working prototype was not yet integrated into the Experience Builder development

pipeline, since the main purpose of the development and implementation stages was to

assess the viability of a bidirectional and continuous development flow. Therefore, it

was not feasible to use the prototype for user testing. However, it was already possible

to predict with a high degree of certainty that the achieved augmented interoperability

will not impact user experience. Contrary to current behavior, the builder’s homepage

will display all applications present in the user’s environment, with their state reflecting

eventual changes made with Service Studio.

The success of our approach relies on machine injected information that is added to

the OutSystems model in order to allow future restorations of the Experience Builder

model hence, even though this dissertation does not provide a formal proof of sound-

ness, a correct implementation of the change operations does, in principle, guarantee a

80

7.2. EVALUATION

closed model evolution. This can be assured in practice by testing a number of represen-

tative scenarios in the platform.

Regarding usability tests, the prototype development was anchored in a well-defined

and complete set of simulated use-cases that not only comprehend the entire universe of

conceivable interactions between the tools but also lay the foundation for the real scenario

test cases to take place in future stages. The simulated scenarios test the interoperability

between Experience Builder and Service Studio during the development of an application.

These scenarios were divided into three categories validating the solution’s behavior in

development workflows where an application is created in the builder, subsequently

altered in the IDE, and it is later changed in the builder again.

7.2.1.1 Category 1 - Changes that do not impact Experience Builder-related

elements

The developed solution assures that any creation, modification, or deletion of an element

not represented in the Experience Builder model (which is e.g. the case of Entities) is

preserved throughout the application development.

This is a direct consequence of the partiality property associated with the projection

function, as well as due to the isolation of the consistency restoring operations. The

projection is only sensitive to objects created in Experience Builder hence, it will only

retrieve the data necessary to reconstruct flows, screens, connections and menu item data

present in the builder’s model while ignoring elements such as Entities. When it comes

to the operations, these were deliberately designed to exclusively capture changes made

to the Experience Builder model elements and their execution only impacts those same

elements in the Service Studio side.

As an example of the behavior of the developed prototype in the use-cases encom-

passed in this category, one can consider the following:

Ann loads the TinyApp model in the prototype and publishes it, hence producing

a fully-functional OutSystems application. In the matter of the builder’s core model

elements, the produced app, as seen before is composed of three flows, two connections

and its menu contains one single item (see TinyApp subsection). Since all these elements

are created using the prototype, adequate metadata is injected to enable a restoration of

the updated application model on the builder side.

In the Service Studio, Bob opens the produced application and starts customizing

the data layer. More specifically, he adds a new entity (Users) to the existing database,

addressing the future users of the application (figure 7.15).

Ann unhappy with the name given to the onboarding flow, uses the prototype to

change it, nevertheless, Bob has changed the application in the IDE which requires a

forward transformation producing a model noted as ProjectedTinyApp. However, Bob’s

changes did not affect a flow, a screen, a connection, or a menu item hereby the projected

builder model will be the same as the original TinyApp model used by Ann, who won’t

81

CHAPTER 7. RESULTS AND EVALUATION

Figure 7.15: Added Users entity

Figure 7.16: Category 1 - Ann’s prototype commands

Figure 7.17: Service Studio - Backward Transformation Result

and shouldn’t detect any change made to the application. She will proceed with the de-

sired customization of the app, by changing the name of the onboarding flow from “Ani-

matedOnboardingOption1” to “Onboarding”. This is achieved using the chg_flow_name
command. In addition, Ann adds a new “AccountDetails” flow through the add_flow
command (as seen in figure 7.16).

The backward transformation occurs: the new builder model is compared with the

82

7.2. EVALUATION

Figure 7.18: Service Studio - Bob’s added text widget

previous one in the delta computation process leading to the production of the concern-

ing changelog; The deltas are translated and applied to the OutSystems model, propagat-

ing Ann’s changes. Since the change propagation exclusively impacts the elements that

were actually changed when Bob opens the application in the IDE, his new entity will

still be preserved.

7.2.1.2 Category 2: Changes that impact Experience Builder-related elements,

despite these not being displayed by the builder

This category comprises all the modifications to flows, screens, connections and menu

items, at a level of detail not available in Experience Builder. In the Experience Builder

context, the screens that compose a flow are predetermined in terms of appearance, order,

number. Thus, internal alterations to these elements, such as new widgets in a screen, are

not visible in the builder’s UI. However, this does not come as a problem to the developed

solution since it adopts an “out of sight, out of mind” strategy: the projection retrieves

only the builder’s related objects with no extra data other than the one addressed in the

builder’s meta-model, and the change operations only affect precise components of the

application, such as the name of a screen, hence preserving alterations made to any other

part of the elements.

As an example consider that Ann once again publishes the TinyApp without any

added change. Bob, using the Service Studio, opens the “LoginAndPasscode” flow and

starts editing its screen. He adds a new text widget as seen in figure 7.21 highlighted in

red.

83

CHAPTER 7. RESULTS AND EVALUATION

Figure 7.19: Category 2 - Ann’s prototype commands

Figure 7.20: Service Studio - Bob’s added text widget (after Ann’s changes)

Ann using the builder wants to add a new flow and connect it to the “LoginAndPass-

code” screen therefore, the forward transformation occurs, and as expected the retrieved

builder model is no different from the original TinyApp since Bob’s modification is not

captured in the developed prototype, due to the described projection behavior.

Nevertheless, Ann can subsequently customize the application by adding the desired

flow with the add_flow command and connecting the “LoginAndPasscode” screen to it (via

the existing login button’s link key “iX3VD_sozkOtr12j26mTlA”) with the add_connection.

As mentioned, these operations execute in an isolated manner, affecting only the involved

elements thus, the previously created widget is preserved.

84

7.2. EVALUATION

Figure 7.21: Category 3 - Ann’s prototype commands

7.2.1.3 Category 3: Changes that impact Experience Builder-related elements that

are displayed by the builder

This category comprises all the modifications possible in both the builder and in Service

Studio, and corresponds to the more relevant category since it is directly correlated with

the envisioned continuous collaboration between the Experience Builder and the Service

Studio. As described, this subset of use-cases was directly tackled by using a sound

projection function and controlled propagation of changes. As a representative example

of the solution’s good behavior in this category of operations lets consider the following

scenario:

Ann publishes the TinyApp without further changing it. Bob, using Service Studio,

opens the produced application and removes the connection linking the “LoginAndPass-

code” flow to the “BankingDashboard”.

Ann equipped with the Experience Builder wants to add a new flow to the application

hence, a forward transformation occurs, and as expected the retrieved builder model

depicts a missing connection between the login screen and the previous dashboard. With

these new changes in mind, Ann deletes the “BankingDashboard”, adds the “Manage-

Cards” flow, and connects the “CardsDashboard” screen of the added flow to the existing

login screen.

The changes are applied to the OutSystems model through the backward transforma-

tion, guaranteeing Bob will have an updated view of the working application in future

editions with the Service Studio, as seen in figure 7.22 depicting the updated flows of the

application.

In summary, and using Figure 7.23 as a guide, we can validate the developed algorithm

by considering OutSysB, an OutSystems model resulting from a change c1 in Service

Studio, model ExpBB = proj(OutSysB), the result of projecting that model, and a change

c2 in Experience Builder that results ExpBC . This change is propagated to the OutSystems

85

CHAPTER 7. RESULTS AND EVALUATION

Figure 7.22: Service Studio - Application flows after Ann’s changes

Figure 7.23: Solution’s behavior

model by applying c2 to the previous model, i.e.

OutSysC = runOp(OutSysB,dif (ExpBC ,ExpBB))

This ensures that the effects of c1 are preserved. Note also thatExpBC = proj(OutSysC),

which corresponds to the grey arrow in Figure 7.23.

7.3 Unattained scenarios

It is important to note that two of the Experience Builder functionalities were not ad-

dressed by the prototype. The first one has to do with the “Empty Screen” flow. The

developer can choose to add an ‘Empty Screen” flow (Figure 7.24), to which he can later

add a comment for reference and an image serving as a preview for the screen.

86

7.3. UNATTAINED SCENARIOS

Figure 7.24: Experience Builder Interface - Add Flows dialogue window with Empty
Screen selected

This functionality addresses scenarios where users want to integrate pre-developed

screens with the application they are working in the builder. Due to its very particular use

in addition to not pertaining to the main scope of the dissertation subject, the prototype

did not implement this functionality.

Moreover, the builder supports applications with a side menu (Figure 7.25) or with a

bottom menu. However, considering this dissertation’s main objective fell into a proof-of-

concept regarding the bidirectionality of model transformations among the builder and

the Service Studio, it was deemed sufficient to extend the current functionality addressing

only the bottom menus.

Figure 7.25: Experience Builder Interface - Side Menu

87

CHAPTER 7. RESULTS AND EVALUATION

7.3.1 Limitations

Currently, our solution exists in the shape of a working prototype from which we iden-

tified a few limitations. The interoperability across the discussed development tools

demands scenarios where multiple interconnected models are changed simultaneously.

However, this has yet to be addressed in our solution. For instance, while the projec-

tion function is being calculated, a Service Studio developer might change a flow name,

causing the projection to generate an outdated Experience Builder model. This parallel

process prompts the necessity of implementing consistency-maintenance mechanisms

capable of supporting concurrent updates, which require further user testing for better

assessment. However, it is worth noting that Service Studio has native merge mechanisms

that can be used in the resolution of this type of problem.

Apart from concurrency issues, the projection function is also unable to recognize

Experience Builder-related elements that were created in Service Studio. As described,

our solution addresses continuous development scenarios, all starting from an app gener-

ation via the Experience Builder. Here, as new elements are created, metadata is added to

facilitate future projections. When it comes to flows, screens, or connections generated in

the IDE, the necessary metadata is not available, thereby a viable alternative is currently

being studied.

Lastly, it should be mentioned the lack of versatility regarding both the computation of

deltas, as well as the change operations, as these, currently stand intrinsically associated

with the Experience Builder model. This comes off as an issue since the end objective

of this work is to enable bidirectional model transformations between each OutSystems’

builder and the Service Studio. A solution to this problem could include the adoption of

a standard meta meta-model across all builders in what is called a Single-Unified-Model.
Through the employment of a shared meta meta-model, the model differencing procedure

and consequent generation of the change operations could be automated.

7.4 Running example

Referring back to the example of subsection 3.2.4, the developed prototype enables a new

flow of interaction between the developers Ann and Bob.

As previously, Ann, the builder user, starts from a baseline OutSysempty consisting of

an empty OutSystems model. The corresponding Experience Builder model obtained by

the projection function is therefore also an empty model, ExpBempty . Ann starts her work

and produces a new model ExpBA with two new flows as well as a connection relating

them both. The delta computation process dif , yields a changelog with the set of all the

operations that lead to ExpBA:

dif (ExpBA,ExpBempty) = {NewFlow[Flow1],NewFlow[Flow2],NewConn[Conn1]}

88

7.5. FINAL REMARKS

By applying these operations to OutSysempty the program produces an updated version

of the OutSystems model, OutSysB:

OutSysB = runOp(OutSysempty , {NewFlow[Flow1],NewFlow[Flow2],NewConn[Conn1])}

This model is changed by Bob using Service Studio, resulting in OutSysC . Ann now

wants to proceed to make additional changes. The projection function is used to get an

updated builder model, ExpBC . Thus, instead of starting from scratch Ann can now see

that Bob changed the SetFaceID screen’s name to ActivateFaceRecognition.

ExpBC = proj(OutSysC)

Ann adds the GoogleLogin screen, connecting it to LoginAndPasscodeFlow and changing

the AnimatedBoardingOption1 flow name, from which we get a new model, ExpBD . The

program computes the delta between the two models:

dif (ExpBD ,ExpBC) = {NewFlow[Flow3],NewFlow[Flow4],UpdFlow[Flow1]

This delta is then applied to OutSysC in order to get the final OutSystems model

OutSysD :

OutSysD = runOp(OutSysC , {NewFlow[Flow3],NewFlow[Flow4],UpdFlow[Flow1]})

Ann and Bob were thus able to collaboratively work on the same app using their own

preferred tools.

7.5 Final Remarks

The developed solution proved the designed strategy was indeed viable and effective

in the goal of upgrading the builders (particularly, the Experience Builder) to application

editors and consequently enhancing the interoperability across the OutSystems Platform

tools. Furthermore, the achieved prototype circumvented the typical challenges associ-

ated with view-model bidirectional transformations scenarios where a UI/UX element

can usually be converted with low effort to its respective code, whereas the reverse process

holds significantly higher complexity and technical effort.

In this case, despite the Experience Builder (as well as the other builder tools) being

tailored to the experience level of their users by abstracting unnecessary complexity,

the tool model elements are derived from the OutSystems model, employing similar

structures, attributes, and behavior. This promoted a consistent treatment of elements

across models, which was beneficial to our goal of implementing bidirectionality over the

different tools.

89

8

Conclusion and Future Work

OutSystems provides a model-driven low-code development environment and delivery

platform that allows developers to create enterprise-grade web and mobile applications.

OutSystems developers interact with Service Studio, the platform’s IDE, using domain-

specific visual languages to shape the fine-grained application model.

In recent years, OutSystems introduced the “Application Builders”, a set of tools

that lower the learning curve even more and provide an inclusive entrance to non-IT

developers. The builders focus on specific application development scopes such as User

Experience or the definition of Business Processes. Each application domain requires a

specific and appropriate meta-model abstracting selected parts of the underlying Out-

Systems model. Ultimately, they represent OutSystems concepts in a higher degree of

abstraction, just like views of the base model.

OutSystems builders define a unidirectional model transformation strategy. This

limitation hinders the interoperability between the different development tools in the

OutSystems ecosystem. An application developed with one particular builder is unread-

able in other builders and can only be further customized in Service Studio. However,

changes made in the IDE are irreversible and unreadable by the original builder. This

comes off as a direct consequence of the current problem of OutSystems builders defining

unidirectional model transformations.

In this disertation, it is presented a bidirectional model transformation algorithm

aiming to improve the interoperability between the Outsystems Builders and Service

Studio. The instantiated and evaluated implementation focuses on one particular builder

of OutSystems, the “Experience Builder”.

The implemented strategy consists of a synchronization algorithm divided into two

major parts. On the one hand, a projection function is responsible for locating and ex-

tracting the Experience Builder elements existing in the OutSystems model to reconstruct

the builder model. On the other hand, a delta computation process gathers the alterations

carried out by the developer during his interaction with the builder and produces the cor-

responding change operations necessary to propagate those changes to the OutSystems

model.

91

CHAPTER 8. CONCLUSION AND FUTURE WORK

The approach was validaded by classifying into a set of comprehensive categories

all the possible evolution scenarios of app development occurring from the combined

use of the Experience Builder with Service Studio. Thus, it was possible to conclude the

algorithm performs in a sound and predictable manner extending the currently offered

interoperability.

As future work, we recognize the need to address the limitations referred to in subsec-

tion 7.3.1. One of the major points to be improved shortly has to do with the broadening

of the projection’s scope, in order to have it acknowledge Experience Builder elements

that were created in the IDE.

On the subject of enforcing a possible Single-Unified-Model, it is safe to assume this

would come as a significant challenge, that despite improving the algorithm’s perfor-

mance would not only prompt profound refactorings to the builder’s code, as well as

substantial architectural changes.

Regarding the modification of a model in a concurrent environment, Takeshi et al.[29]

propose a synchronization algorithm capable of supporting concurrent updates which

will be considered in future development stages. However, the overall performance of the

prototype in the User Testing phase will ultimately dictate the concrete course of action.

Even though the work was conducted in a specific scenario, namely the OutSystems set

of tools, it is believed our approach is general enough to be applicable in other scenarios.

Finally, it should be important to mention that the developed solution does not pre-

vent a future evolution of Experience Builder to become a real-time editor of OutSystems

models, instead of the current approach of applying changes in batch. This could be

achieved by directly mapping interactions in Experience Builder to the suggested change

operations and running those change operations immediately. As a consequence, this

would make the computation of deltas unnecessary since it exists as a way of gathering

all the change operations.

92

Bibliography

[1] "Json.NET". url: https://www.newtonsoft.com/json (cit. on p. 50).

[2] P. Boström et al. “Formal Transformation of Platform Independent Models into

Platform Specific Models in MDA”. In: vol. 4355. Dec. 2006, pp. 186–200. isbn:

978-3-540-68760-3. doi: 10.1007/11955757_16 (cit. on pp. 9, 10).

[3] K. Czarnecki et al. “Bidirectional Transformations: A Cross-Discipline Perspective”.

In: vol. 5563. June 2009, pp. 260–283. isbn: 978-3-642-02407-8. doi: 10.1007/9

78-3-642-02408-5_19 (cit. on p. 10).

[4] Z. Diskin et al. “From State- to Delta-Based Bidirectional Model Transformations:

The Symmetric Case”. In: vol. 6981. Oct. 2011, pp. 304–318. isbn: 978-3-642-

24484-1. doi: 10.1007/978-3-642-24485-8_22 (cit. on pp. 33–35).

[5] N. Foster et al. “Combinators for bidirectional tree transformations: A linguistic

approach to the view-update problem”. In: ACM Transactions on Programming
Languages and Systems 29 (May 2007). doi: 10.1145/1232420.1232424 (cit. on

p. 11).

[6] ISO. ISO/IEC 19501:2005 Information technology - Open Distributed Processing -
Unified Modeling Language (UML) Version 1.4.2. 2004. url: https://www.iso.

org/standard/32620.html (cit. on p. 5).

[7] H. Lourenço and R. Eugénio. “TrueChange (TM) Under the Hood: How We Check

the Consistency of Large Models (Almost) Instantly”. In: 2019 ACM/IEEE 22nd
International Conference on Model Driven Engineering Languages and Systems Com-
panion (MODELS-C). 2019, pp. 362–369. doi: 10.1109/MODELS-C.2019.00056

(cit. on pp. 21, 22, 24).

[8] H. Lourenço, J. Seco, and L. Carvalho. "The View Update Problem in the OutSystems
Aggregate Language". 2016. url: https://nova-lincs.di.fct.unl.pt/system/

publication_files/files/000/000/647/original/INForum_2016_paper_52-2

.pdf?1469187572 (cit. on p. 10).

93

https://www.newtonsoft.com/json
https://doi.org/10.1007/11955757_16
https://doi.org/10.1007/978-3-642-02408-5_19
https://doi.org/10.1007/978-3-642-02408-5_19
https://doi.org/10.1007/978-3-642-24485-8_22
https://doi.org/10.1145/1232420.1232424
https://www.iso.org/standard/32620.html
https://www.iso.org/standard/32620.html
https://doi.org/10.1109/MODELS-C.2019.00056
https://nova-lincs.di.fct.unl.pt/system/publication_files/files/000/000/647/original/INForum_2016_paper_52-2.pdf?1469187572
https://nova-lincs.di.fct.unl.pt/system/publication_files/files/000/000/647/original/INForum_2016_paper_52-2.pdf?1469187572
https://nova-lincs.di.fct.unl.pt/system/publication_files/files/000/000/647/original/INForum_2016_paper_52-2.pdf?1469187572

BIBLIOGRAPHY

[9] H. Lourenço et al. “LUV is not the answer: continuous delivery of a model driven

development platform”. In: MODELS ’20: ACM/IEEE 23rd International Conference
on Model Driven Engineering Languages and Systems, Virtual Event, Canada, 18-23
October, 2020, Companion Proceedings. Ed. by E. Guerra and L. Iovino. ACM, 2020,

52:1–52:10. doi: 10.1145/3417990.3419502. url: https://doi.org/10.1145/3

417990.3419502 (cit. on pp. 21, 22, 24).

[10] J. M. Lourenço. The NOVAthesis LATEX Template User’s Manual. NOVA University

Lisbon. 2021. url: https://github.com/joaomlourenco/novathesis/raw/

master/template.pdf (cit. on p. ix).

[11] T. Mens and P. Van Gorp. “A Taxonomy of Model Transformation”. In: vol. 152.

Mar. 2006. doi: 10.1016/j.entcs.2005.10.021 (cit. on p. 9).

[12] OMG. INTRODUCTION TO OMG’S UNIFIED MODELING LANGUAGE™(UML®).
2020. url: https://www.uml.org/what-is-uml.htm (cit. on p. 6).

[13] OMG. MDA®- THE ARCHITECTURE OF CHOICE FOR A CHANGING WORLD.

2020. url: https://www.omg.org/mda/ (cit. on p. 5).

[14] OMG. The MetaObject Facility Specification™. 2020. url: https://www.omg.org/

mof/ (cit. on p. 7).

[15] OutSystems. Experience Builder. 2020. url: https://success.outsystems.com/

Documentation/Experience_Builder (cit. on p. 16).

[16] OutSystems. Integration Builder. 2020. url: https://success.outsystems.com/

Documentation/Integration_Builder_EAP/Introduction_to_Integration_

Builder (cit. on p. 18).

[17] OutSystems. Integration Studio. 2020. url: https://success.outsystems.com/

Documentation/11/Reference/Integration_Studio (cit. on p. 14).

[18] OutSystems. No Limits for Citizen Developers. 2020. url: https://www.outsystems.

com/citizen-developers/ (cit. on p. 15).

[19] OutSystems. Platforms’ Services. 2020. url: https://www.outsystems.com/

evaluation-guide/platform-services/#1/ (cit. on pp. 13, 14).

[20] OutSystems. Service Studio. 2020. url: https://success.outsystems.com/

Documentation/11/Getting_started/Service_Studio_Overview (cit. on p. 13).

[21] OutSystems. Workflow Builder. 2020. url: https://success.outsystems.com/

Documentation/Workflow_Builder (cit. on p. 17).

[22] H. Pacheco and A. Cunha. “Generic Point-free Lenses”. In: MPC. 2010 (cit. on

p. 11).

[23] R. Sanchis et al. “Low-Code as Enabler of Digital Transformation in Manufacturing

Industry”. In: Applied Sciences 10 (2019), p. 12 (cit. on pp. 1, 2).

94

https://doi.org/10.1145/3417990.3419502
https://doi.org/10.1145/3417990.3419502
https://doi.org/10.1145/3417990.3419502
https://github.com/joaomlourenco/novathesis/raw/master/template.pdf
https://github.com/joaomlourenco/novathesis/raw/master/template.pdf
https://doi.org/10.1016/j.entcs.2005.10.021
https://www.uml.org/what-is-uml.htm
https://www.omg.org/mda/
https://www.omg.org/mof/
https://www.omg.org/mof/
https://success.outsystems.com/Documentation/Experience_Builder
https://success.outsystems.com/Documentation/Experience_Builder
https://success.outsystems.com/Documentation/Integration_Builder_EAP/Introduction_to_Integration_Builder
https://success.outsystems.com/Documentation/Integration_Builder_EAP/Introduction_to_Integration_Builder
https://success.outsystems.com/Documentation/Integration_Builder_EAP/Introduction_to_Integration_Builder
https://success.outsystems.com/Documentation/11/Reference/Integration_Studio
https://success.outsystems.com/Documentation/11/Reference/Integration_Studio
https://www.outsystems.com/citizen-developers/
https://www.outsystems.com/citizen-developers/
https://www.outsystems.com/evaluation-guide/platform-services/#1/
https://www.outsystems.com/evaluation-guide/platform-services/#1/
https://success.outsystems.com/Documentation/11/Getting_started/Service_Studio_Overview
https://success.outsystems.com/Documentation/11/Getting_started/Service_Studio_Overview
https://success.outsystems.com/Documentation/Workflow_Builder
https://success.outsystems.com/Documentation/Workflow_Builder

BIBLIOGRAPHY

[24] D. Schmidt. “Guest Editor’s Introduction: Model-Driven Engineering”. In: Com-
puter 39 (Mar. 2006), pp. 25–31. doi: 10.1109/MC.2006.58 (cit. on p. 6).

[25] B. Selic. “Selic B.: The pragmatics of model-driven development. IEEE Softw. 20(5),

19-25”. In: Software, IEEE 20 (Oct. 2003), pp. 19–25. doi: 10.1109/MS.2003.1231

146 (cit. on p. 6).

[26] S. Sendall and W. Kozaczynski. “Model Transformation: The Heart and Soul of

Model-Driven Software Development”. In: Software, IEEE 20 (Oct. 2003), pp. 42–

45. doi: 10.1109/MS.2003.1231150 (cit. on p. 1).

[27] M. Sjölund, P. Fritzson, and A. Pop. “Bootstrapping a Compiler for an Equation-

Based Object-Oriented Language”. In: Modeling, Identification and Control (MIC)
35 (Mar. 2014), pp. 1–19. doi: 10.4173/mic.2014.1.1 (cit. on p. 7).

[28] P. Stevens. “Bidirectional Transformations in the Large”. In: 2017 ACM/IEEE
20th International Conference on Model Driven Engineering Languages and Systems
(MODELS). 2017, pp. 1–11. doi: 10.1109/MODELS.2017.8 (cit. on pp. 2, 10).

[29] Y. Xiong et al. “Synchronizing concurrent model updates based on bidirectional

transformation”. In: Software and System Modeling - SOSYM 12 (Feb. 2011), pp. 1–

16. doi: 10.1007/s10270-010-0187-3 (cit. on pp. 35, 37, 92).

This document was created using the (pdf/Xe/Lua)LATEX processor, based on the NOVAthesis template, developed at the Dep. Informática of FCT-NOVA by João M. Lourenço. [1]

[1] J. M. Lourenço. The NOVAthesis LATEX Template User’s Manual. NOVA University Lisbon. 2021. URL: https://github.com/joaomlourenco/novathesis/raw/master/template.pdf (cit. on p. 95).

95

https://doi.org/10.1109/MC.2006.58
https://doi.org/10.1109/MS.2003.1231146
https://doi.org/10.1109/MS.2003.1231146
https://doi.org/10.1109/MS.2003.1231150
https://doi.org/10.4173/mic.2014.1.1
https://doi.org/10.1109/MODELS.2017.8
https://doi.org/10.1007/s10270-010-0187-3
https://github.com/joaomlourenco/novathesis
http://www.di.fct.unl.pt
https://docentes.fct.unl.pt/joao-lourenco
https://github.com/joaomlourenco/novathesis/raw/master/template.pdf

	Front Matter
	Cover
	Front Page
	Copyright
	Dedicatory
	Acknowledgements
	Quote
	Abstract
	Resumo
	Contents
	List of Figures
	List of Listings
	Glossary
	Acronyms

	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Objectives
	1.4 Expected Contributions
	1.5 Outline

	2 Background
	2.1 Model Driven Engineering
	2.1.1 Model
	2.1.2 Metamodel
	2.1.3 Meta-metamodel
	2.1.4 Meta-Object Facility

	2.2 Domain Specific Modeling Languages
	2.3 Model Transformations
	2.3.1 Kinds of Model Transformations
	2.3.2 Lenses

	3 OutSystems Platform
	3.1 Architecture
	3.1.1 Service Studio
	3.1.2 Platform Server
	3.1.3 Integration Studio

	3.2 Builders
	3.2.1 Experience Builder
	3.2.2 Workflow Builder
	3.2.3 Integration Builder
	3.2.4 Example of the current development shortcomings

	4 Model manipulation
	4.1 OutSystems Language
	4.2 OutSystems Meta-model
	4.3 OutSystems Model
	4.4 Builders
	4.5 Builders Meta-model
	4.6 Builders Model
	4.7 Model Flow
	4.8 ModelAPI
	4.9 Builders' Key Management
	4.9.1 Single-Shot Builders
	4.9.2 MultiShot Builders

	5 Related Work
	5.1 Delta-based model transformations
	5.1.1 Benefits from using a two-stage operation

	5.2 Concurrent update propagation
	5.2.1 Requirements for synchronizing concurrent updates
	5.2.2 Algorithm

	5.3 In summary

	6 Design and Implementation
	6.1 Design
	6.1.1 Strategy Overview

	6.2 Implementation
	6.2.1 Prototype Plan
	6.2.2 Console App Functionality
	6.2.3 TinyApp

	6.3 Backward Transformation
	6.3.1 Serialization/Deserialization of the builder model
	6.3.2 Delta Computation
	6.3.3 Operation ``Translations''

	6.4 Forward Transformation
	6.4.1 Metadata Injection
	6.4.2 Projection

	7 Results and Evaluation
	7.1 Results
	7.1.1 Add Flow operation
	7.1.2 Add Connection operation
	7.1.3 Add Menu Item operation
	7.1.4 Backward and Forward Transformations
	7.1.5 Backward Transformation operation
	7.1.6 Forward Transformation operation

	7.2 Evaluation
	7.2.1 Validation

	7.3 Unattained scenarios
	7.3.1 Limitations

	7.4 Running example
	7.5 Final Remarks

	8 Conclusion and Future Work
	Bibliography
	Back Matter
	Back Cover

