
Henrique Gabriel Henriques

Bachelor in Computer Science

Domain Specific Language Evaluation:
OutSystems’ Business Process Technology

Dissertation submitted in partial fulfillment
of the requirements for the degree of

Master of Science in
Computer Science and Engineering

Adviser: Vasco Miguel Moreira do Amaral,
Assistant Professor, Faculdade de Ciências e
Tecnologia da Universidade Nova de Lisboa

Co-advisers: Miguel Carlos Pacheco Afonso Goulão,
Assistant Professor, Faculdade de Ciências e
Tecnologia da Universidade Nova de Lisboa
Hugo Miguel Ramos Lourenço,
Software Engineer, OutSystems

Examination Committee

Chairperson: Prof. Pedro Medeiros
Raporteurs: Prof. Fernando Brito e Abreu

Member: Prof. Vasco Amaral

November, 2016

Domain Specific Language Evaluation:
OutSystems’ Business Process Technology

Copyright © Henrique Gabriel Henriques, Faculty of Sciences and Technology, NOVA

University of Lisbon.

The Faculty of Sciences and Technology and the NOVA University of Lisbon have the

right, perpetual and without geographical boundaries, to file and publish this dissertation

through printed copies reproduced on paper or on digital form, or by any other means

known or that may be invented, and to disseminate through scientific repositories and

admit its copying and distribution for non-commercial, educational or research purposes,

as long as credit is given to the author and editor.

This document was created unsing the (pdf)LATEX processor, based in the “unlthesis” template[1], developed at the Dep.
Informática of FCT-NOVA [2]. [1] https://github.com/joaomlourenco/unlthesis [2] http://www.di.fct.unl.pt

https://github.com/joaomlourenco/unlthesis
http://www.di.fct.unl.pt

Acknowledgements

“Programming today is a race between software engineers striving to build
bigger and better idiot-proof programs, and the universe trying to produce
bigger and better idiots. So far, the universe is winning.” - Rick Cook

I would like to thank the Faculty of Sciences and Technology from the NOVA Univer-

sity of Lisbon for providing amazing courses that allowed me to grow as a professional. I

also thank the Informatics Department and all its staff for caring about the students and

for providing a solid education. Thank you also to OutSystems for funding a scholarship

for this dissertation.

Thank you to my advisers: Vasco Amaral, Miguel Goulão and Hugo Lourenço. They

were available whenever I needed them, they steered me in the right direction and their

suggestions were invaluable to the quality of this document. A special thank you to Hugo

Lourenço for closely following my process, helping with whatever issue I had and for

being an amazing initial bridge between myself and the rest of OutSystems.
I also thank everyone at OutSystems’ R&D for making me feel welcome and for always

being available to help. A special thank you goes to António Pereira for always being

able to find more people for testing. I want to also thank all my colleagues in FCT for

making these last five years fun and interesting. A special thank you goes to Luis Afonso

Carvalho and Pedro Maroco, we worked on a lot of projects together and your outstanding

skills at git, good management of time and artistic pyrotechnics ensured everything went

smoothly.

Finally, I want to thank my parents: José Gabriel Henriques and Janet Henriques.

Without them I could not be where I am now. I also want to thank my old friend José

Fábio Jesus for our gaming sessions and for being an expert in lore. Last but not least a

very special thank you goes to Ana Rita Dias. For her daily dosage of love and support,

for the constructive criticism about my writing and for cooking amazing meals, ensuring

that I remained well nourished during the development of this dissertation.

vii

Abstract

Domain Specific Languages (DSL) are created with the intent of making problem

solving easier via abstractions and notations that are closer to the domain users’ way

of thinking. However, in order to fulfil this intent the language must be considered

usable by its target audience, which requires using a principled approach, contrary to

an ad-hoc philosophy. Unfortunately, language engineers are not always concerned by

usability. Usability techniques developed by Human Computer Interaction (HCI) experts

are generally focused solely on application interfaces that were not designed to be directly

applied to languages. However, previous studies have shown that languages are in essence

interfaces between users and the computational system, so applying HCI techniques is not

incorrect. However, to the best of our knowledge, there is no simple evaluation process

that allows developers to validate their languages, both syntactically and semantically.

The OutSystems Platform is a development environment composed of several domain

specific languages. It is used to quickly build and validate web and mobile applications.

The languages allow users to build interfaces and data models, define custom business

logic and construct process models. Howbeit, the DSL for process modelling (Business

Process Technology (BPT)), does not have the desired adoption rate and is often used

for solving problems out of the intended domain it was originally designed for. This is

problematic, given that the language has an associated maintenance cost.

The purpose of this dissertation is twofold: create a succinct and easy process for

evaluating visual programming languages, and apply the proposed process to BPT in

order to identify any usability issues that may be present in the BPT language. The process

we developed includes adapted HCI evaluation techniques (such as the Systems Usability

Score, Task Load Index and others). After identifying the main problems with the BPT

language, the language was updated with a new syntax. We performed a comparison

analyses between the original and new syntaxes, which showed that the new version is

more transparent and has a significantly higher usability rating.

Keywords: Domain specific language, language evaluation, language usability, process

modelling, OutSystems Platform

ix

x

Resumo

Domain Specific Languages (DSL) são criadas com a intenção de tornar mais fácil a reso-

lução de problemas através de abstrações e notações que são mais próximas da maneira

de pensar dos utilizadores do domínio. Isso, no entanto, só é verdade se a linguagem

for considerada utilizável pelo seu público-alvo, que requer o uso de uma abordagem

baseada em princípios, ao contrário de uma filosofia ad-hoc. Infelizmente, a usabilidade

não é um dos aspetos técnicos com que os engenheiros de linguagens mais se preocupam.

Técnicas de usabilidade desenvolvidas por especialistas em Human Computer Interaction
(HCI) são geralmente focadas exclusivamente em interfaces de aplicações e não foram

desenvolvidas para serem diretamente aplicadas a linguagens de programação. No en-

tanto, estudos prévios mostraram que as linguagens de programação são, na sua essência,

interfaces entre os utilizadores e o sistema computacional, assim sendo a aplicação de

técnicas HCI não é considerada incorreta. No entanto, no decorrer da nossa pesquisa,

não foi encontrado nenhum processo de avaliação simples que permita aos engenheiros

validar as suas linguagens tanto sintatica como semanticamente.

A OutSystems Platform é um ambiente de desenvolvimento composto por várias DSL.

Este é usado para construir rapidamente aplicações web e móveis. As linguagens permi-

tem aos utilizadores construir interfaces e modelos de dados, definir lógica de negócios

personalizada, e construir modelos de processos. Todavia, a DSL para modelar processos

(Business Process Technology (BPT)), não tem a taxa de adoção desejada e é utilizada em

problemas fora do domínio pretendido. Isto é devido ao custo de manutenção associado.

Esta tese tem dois objetivos: criar um processo sucinto e fácil para avaliar linguagens

de programação, e usar esse mesmo processo para identificar quaisquer problemas que

possam estar presentes na linguagem BPT. Para conseguir isto, foi desenvolvido um pro-

cesso simples de acompanhar que inclui técnicas HCI. Uma vez identificados os principais

problemas com o BPT, foram feitas alterações à linguagem. Finalmente, foi realizada uma

comparação entre a sintaxe original e a nova. Estas mostraram que a nova versão é mais

transparente e tem uma classificação de usabilidade significativamente maior.

Palavras-chave: Linguagens de domínio específicos, avaliação de linguagens, usabilidade

de linguagens, modelação de processos, OutSystems Platform

xi

xii

Contents

List of Figures xvii

List of Tables xix

Acronyms xxi

1 Introduction 1

1.1 Context and Description . 1

1.2 Motivation . 2

1.3 Objectives . 2

1.4 Key Contributions . 3

1.5 Structure . 3

2 Background 5

2.1 OutSystems . 5

2.1.1 OutSystems Platform . 5

2.2 Process languages . 6

2.2.1 Business Process Technology . 7

2.2.2 Business Process Model and Notation 9

2.2.3 Dynamic Condition Response . 10

2.2.4 Petri Nets . 12

2.2.5 UML - Activity Diagram . 14

2.3 Human-computer interaction techniques 15

2.3.1 System Usability Scale . 15

2.3.2 Cognitive Dimensions . 17

2.3.3 The Physics of Notations . 19

2.3.4 NASA Task Load Index . 24

3 Related work 27

3.1 Using Physics of Notations to evaluate BPMN 2.0 27

3.1.1 Semiotic Clarity . 27

3.1.2 Perceptual Discriminability . 28

3.1.3 Semantics transparency . 28

xiii

CONTENTS

3.1.4 Complexity Management . 29

3.1.5 Cognitive Integration . 29

3.1.6 Visual Expressiveness . 29

3.1.7 Dual Coding . 30

3.1.8 Graphic Economy . 30

3.1.9 Cognitive Fit . 31

3.2 Using Visual Notation Design to improve i* 31

3.2.1 The i* standard and Physics of Notations 31

3.2.2 Stereotyping . 32

3.2.3 Prototyping . 32

3.2.4 Choosing the best symbol set . 33

3.3 Eye-tracking in language evaluation . 33

3.3.1 Technology . 34

3.3.2 Limitations . 34

3.3.3 Data analysis . 35

3.4 The OutSystems method . 35

3.4.1 The method . 35

4 Evaluation process 37

4.1 The process . 37

4.1.1 Perform interviews . 37

4.1.2 Collect and analyse usage data . 38

4.1.3 Physics of Notations . 38

4.1.4 Usability experiments . 38

4.1.5 Designing a new notation . 39

4.1.6 Analyse the new notation . 39

4.2 Usability Tool . 39

4.2.1 Languages . 39

4.2.2 Usability Sessions . 39

4.2.3 Sign Production . 40

5 Analysing Business Process Technology (BPT) 43

5.1 Interviews . 43

5.1.1 Interview questions . 43

5.1.2 Insight analysis . 44

5.2 Data Collection . 44

5.3 Physics of Notations . 45

5.3.1 Semiotic Clarity . 45

5.3.2 Perceptual Discriminability . 46

5.3.3 Semantic Transparency . 46

5.3.4 Complexity Management . 47

xiv

CONTENTS

5.3.5 Cognitive Integration . 47

5.3.6 Visual Expressiveness . 47

5.3.7 Dual Coding . 47

5.3.8 Graphic Economy . 48

5.3.9 Cognitive Fit . 48

5.4 Usability experiments . 48

5.4.1 Experiment protocol . 48

5.4.2 Experiment analysis . 49

6 New version of BPT 51

6.1 Sign Production . 51

6.1.1 Symbolisation experiment . 52

6.1.2 Stereotyping analysis . 53

6.1.3 Prototyping experiment . 54

6.1.4 Original BPT . 54

6.1.5 Proposed symbol set . 55

6.1.6 Semantic transparency experiment 56

6.2 Modifying BPT . 57

6.2.1 Adding new elements, updating symbols and syntactic rules . . . 57

6.2.2 Symbol groups . 58

6.2.3 Using Actions in BPT . 59

7 Results 61

7.1 Usability experiment . 61

7.2 SUS and TLX . 63

7.2.1 Descriptive statistics . 63

7.2.2 Hypotheses testing . 63

7.3 Discussion of results and implications . 64

7.4 Threats to validity . 64

8 Conclusions and future work 67

8.1 Contributions . 68

8.2 Future work . 68

Bibliography 69

A Sign Production Technique questionnaire 75

B Prototype symbol set questionnaire 87

xv

List of Figures

2.1 OutSystems Platform architecture [24]. 6

2.2 BPT development environment. 7

2.3 Launching a process. 8

2.4 Example of a Business Process Model and Notation (BPMN) process. 9

2.5 DCR development environment. 11

2.6 DCR simulation. 11

2.7 DCR Canvas Elements . 12

2.8 Petri Net example . 13

2.9 Activity Diagram example. 14

2.10 SUS answer format . 16

2.11 Visual Variables [18] . 19

2.12 Understanding Semiotic Clarity [17] . 20

2.13 Example of a complex diagram [54]. 21

2.14 Visual expressiveness. [44]. 22

2.15 Example of dual coding. [44]. 23

2.16 NASA-TLX answer format . 25

3.1 Example of good dual coding usage. 30

3.2 Example of bad dual coding usage. 30

3.3 Standard i* notation [10][15]. 31

3.4 Proposed notation by Moody et al. [10][45]. 32

3.5 Stereotype symbol set [10]. 32

3.6 Prototype symbol set [10]. 32

3.7 Result of the blind interpretation study. [10]. 33

3.8 Tool used to manage usability tests. 36

4.1 Evaluation process activity diagram. 37

4.2 Example of a language page. 40

4.3 Example of a Usability Sessions page. 40

4.4 Example of surveys supported by UsabilityTool 41

5.1 Example of dual coding in BPT. 48

5.2 Example of Usability Experiment screen. 49

xvii

List of Figures

6.1 Research steps. 51

6.2 Set of stereotype symbols. 53

6.3 Set of prototype symbols. 54

6.4 BPT’s original set of symbols. 55

6.5 Set of proposed symbols. 55

6.6 Semantic transparency results. 57

6.7 Updated toolbar. 58

6.8 Example of the Wait symbol group. 58

6.9 Comparison of original Automatic Activity with new Actions. 59

7.1 Graph of answer distribution . 61

7.2 Box plot of distribution . 64

xviii

List of Tables

3.1 Result of Semiotic Clarity BPMN 2.0 evaluation [18]. 28

3.2 Example of a symbol’s visual variable analysis [18]. 28

5.1 Important collected metrics . 45

5.2 Example of a symbol’s visual variable analysis. 46

7.1 Results of usability tests . 62

7.2 Descriptive statistics . 63

7.3 Welch’s t-test scores . 63

xix

Acronyms

BPEL Business Process Execution Language.

BPMI Business Process Management Initiative.

BPML Business Process Modelling Language.

BPMN Business Process Model and Notation.

BPT Business Process Technology.

DCR Dynamic Condition Response.

DSL Domain Specific Languages.

HCI Human-Computer Interaction.

IDE Integrated Development Environment.

SUS System Usability Scale.

TLX Task Load Index.

UML Unified Modeling Language.

XML eXtensible Markup Language.

xxi

C
h
a
p
t
e
r

1
Introduction

Domain Specific Languages (DSL) are developed to answer the needs of a specific domain

with the goal of reducing development time, improving product quality and bridging the

gap between domain users and software developers. However, to achieve said goals the

language has to satisfy a set of requirements in order to be sufficiently usable. Otherwise

it can have negative effects on development and eventually be abandoned. Unfortunately,

usability is many times ignored (or undervalued) by Software Engineers and Notation

Designers [44]. And when usability is a concern, there is very little to no documentation

explaining the thought process behind the chosen syntax notation [29].

Programming languages in general exist to enable the efficient development of soft-

ware but that efficiency is dependant on the language’s usability. Yet, even so, one of

the most neglected areas in programming languages research is the bridge between pro-

gramming languages and Human-Computer Interaction (HCI) [47]. This dissertation

includes several HCI techniques that can be used in evaluating the usability of languages.

These techniques are then used to evaluate a commercial language called Business Process

Technology.

1.1 Context and Description

Usability engineering is a field that focuses on human-computer interaction and is most

commonly used to achieve elegant and efficient user interface design [48]. A DSL’s goal

is to bridge the gap between a domain expert and computational systems and can be seen

as a user interface [4]. As such, it is only natural to apply usability techniques when

evaluating languages, even more so taking into account that said techniques are well

documented and studied.

One of the purposes of this dissertation is to evaluate a DSL called BPT developed by

1

CHAPTER 1. INTRODUCTION

the software company OutSystems. The BPT language allows developers to specify and

implement business processes in the context of an OutSystems application. All this is

done using the Integrated Development Environment (IDE) created by OutSystems called

Service Studio (more on OutSystems and Service Studio in section 2.1).

1.2 Motivation

One of the key characteristics of the industrial era was the introduction of processes, the

notion that production output would increase if labour is divided, people have different

roles and specific tasks within a overall process. One of the first process descriptions

was Adam Smith’s pin factory in 1776 [58]. He described the process of creating a pin as

follows:

“One man draws out the wire, another straights it, a third cuts it, a fourth points
it, a fifth grinds it at the top for receiving the head: to make the head requires
two or three distinct operations: to put it on is a particular business, to whiten
the pins is another ... ”

From the excerpt it is easy to get confused about who does what and when, and so

visual notations were created in order to make process definitions easier to understand.

However, studies indicate that usability still is not a high concern when it comes to

process modelling languages [16] and this trend is true with other DSLs in general [47].

For a DSL to be successful it needs to be usable by the developers using the language,

but when it comes to Business Processes, there is the added complexity of ensuring

the readability by a business manager. The BPT language by OutSystems is used by

developers with programming and process modelling knowledge, but it is also used as a

communication medium for business managers.

Through interviews with members of OutSystems and data collected from recent

projects developed using Service Studio, we identified that the BPT language was not

having the expected adoption rate or was being used for purposes other than process

modelling. Since maintaining the language has an associated cost, it is important to

identify possible flaws in the language and make any necessary changes.

1.3 Objectives

This dissertation has two main objectives: creating a systematic process for evaluating

visual programming languages and then applying that process to the BPT language from

OutSystems.

The evaluation process is abstract enough that it can be applied to any visual pro-

gramming language. It includes usability tests for the language’s concrete syntax [44]

and several techniques from the HCI area. The evaluation process is then applied to

BPT, not only in order to improve the language, but also as a way to demonstrate the

2

1.4. KEY CONTRIBUTIONS

evaluation process’s viability. Based on the results from the evaluation, this dissertation

also proposes (and implements) changes to the language in order to improve its usability

and increase its commercial value.

1.4 Key Contributions

This dissertation’s main contributions are the definition of a systematic evaluation process

for visual programming languages, a companion application to help manage the evalua-

tion data, a detailed usability report (using the aforementioned process) on OutSystems’

BPT and necessary changes to make the language more usable.

1.5 Structure

This document is organised, excluding the current chapter, in the following way:

• Chapter 2 - Background: includes an overview of the OutSystems Platform and its

architecture. Also, offers a brief description of process and event languages, and

describes different established techniques for usability evaluation;

• Chapter 3 - Related Work: a brief overview of other language evaluations;

• Chapter 4 - Evaluation Process: a proposed process for evaluating languages and

an overview of the created companion application;

• Chapter 5 - Analysing BPT: an analysis of OutSystems’ BPT following the proposed

process;

• Chapter 6 - New version of BPT: construction of BPT’s new syntax following meth-

ods in the proposed process and semantic transparency analysis;

• Chapter 7 - Results: an analysis of the results obtained through usability experi-

ments of the original and new notation and possible threats to their validity;

• Chapter 8 - Conclusions and future work: an overview of what the dissertation

achieved and suggestions for future work.

3

C
h
a
p
t
e
r

2
Background

2.1 OutSystems

OutSystems is a software company which developed the OutSystems Platform. Said plat-

form is used to create web and mobile applications resorting to a set of integrated DSLs.

The OutSystems’ visual language allows users to develop at a higher abstraction level,

thus not having to worry about low level details related to creating and publishing appli-

cations. This results in significantly faster development times and a higher quality result

when compared to general purpose languages [52].

The OutSystems Platform provides a visual development environment called Service
Studio which allows applications to be developed (and then reused by other applications)

in modules called eSpaces. These modules that contain process definitions, user interfaces,

business logic, and the data model for applications.

2.1.1 OutSystems Platform

The OutSystems Platform architecture [36], which is represented in Figure 2.1, is divided

into three main components: Service Studio, Platform Studio and Application Server.

2.1.1.1 Service Studio

Service Studio is the development environment for all the DSLs supported by OutSystems.

When the developer publishes an application, Service Studio saves a document with the

application model and sends it to the Platform Server.

The IDE is divided into four main views, one for process modelling, one for interface

flows, one where you can define custom logic and access APIs and another for database

modelling.

5

CHAPTER 2. BACKGROUND

Figure 2.1: OutSystems Platform architecture [24].

2.1.1.2 Platform Server

The Platform Server uses the model to generate code that depends on the particular stack

being used. E.g., for a Windows Server [42] using SQL Server [41] this will be ASP.Net [39]

and SQL code. Once this process is completed the compiled application is then deployed

to the Application Server.

The Platform Server also includes the Scheduler Service. This service manages the

execution of steps within process models developed using BPT and also of scheduled jobs

resulting from Timers.

2.1.1.3 Application Server

The Application Server runs on top of Oracle WebLogic [49], JBOSS [28] or IIS [40]. The

server then stores and runs the developed application which is connected to a relational

database management system, which can be SQL Server, Oracle [51] or MySQL [50]. Note

that the SQL code generated by the Platform Server is specific to the selected database

management system.

2.2 Process languages

Presented here are several visual languages that are used for modeling processes. Each of

the presented languages includes an example process which all have the same semantic

behaviour (with the exception of Petri-nets, as it would result in an unnecessary complex

example). This allows for an easier interpretation. The process manages expenses: when

an expense is submitted, it must be approved by a Manager and the Finance department;

if either do not approve, then the expense submitter must update the expense so it can

6

2.2. PROCESS LANGUAGES

be evaluated once again; if it is approved, then payment is made; and once the payment

has been processed, an email is sent to the submitter.

2.2.1 Business Process Technology

The OutSystems Platform includes a DSL for modelling processes called BPT. This DSL

enables users to design, execute and manage processes which are fully integrated with

the applications built with the OutSystems Platform. An eSpace can contain several dif-

ferent processes and a process can invoke another process. This allows for a modular

development methodology which results in cleaner diagrams and enables reuse.

Figure 2.2: BPT development environment.

Figure 2.2 contains an example of the expenses process build with BPT. The figure

also contains BPT’s development environment within ServiceStudio.

2.2.1.1 Launching a Process

There are three ways to launch a process in BPT: it may be explicitly launched in an

action flow 2.3(a), automatically launched when an entity is created 2.3(b), or launched

within another process 2.3(c).

Note that even though the explicit and nested alternatives look similar (and even have

the same syntax for Start and End), these occur in very different contexts. The explicit call

is done in a user-defined action which is where all the application logic is implemented,

such as data-base manipulation, API calls and others. A nested call always occurs in the

context of a process flow.

7

CHAPTER 2. BACKGROUND

(a) Explicit (b) Automatic (c) Nested

Figure 2.3: Launching a process.

2.2.1.2 Concrete Language Syntax

The OutSystems BPT is a visual language. As such, its syntax contains a set of symbols.

Below is a short description of each element of the syntax.

Start. The Start icon start the process flow, each process has to have a Start and

there can only one.

Conditional Start. The Conditional Start is used to start a new parallel flow in the

process. It has an attribute called Launch On where the user defines what condition

triggers the flow, said condition can be a data-base event or a API call.

End. The End icon has two uses depending on a flag Terminate defined in the

attributes. If the flag is set to No then it terminates the particular flow it is connected

to, otherwise it terminates the whole process.

Process. Calls another process.

Human Activity. Human Activity is linked to a pre-developed Web Screen1 and

pauses the flow waiting for the user to trigger an action on said screen.

Automatic Activity. Contains a action flow which is defined in a separate window.

The action flow can include custom logic, event broadcasts via the database or API

calls.

Wait. Wait pauses the process flow. The flow can then be resumed by a specific API

call, a database event or an associated timeout.

Send Email. Send Email is associated to a pre-developed email screen (which can

contain dynamic data values), when the flow reaches this node it sends the email to

the emails addresses entered in the node’s attribute.

Decision. The Decision node has n outgoing flows and the chosen flow is decided

based on custom logic defined in a separate window.

1Interface designed using Service Studio

8

2.2. PROCESS LANGUAGES

Comment. The Comment allows users to write text in a small frame, this frame is

ignored by the compiler.

2.2.2 Business Process Model and Notation

Development of BPMN started in 2001. At the time Business Process Management Initia-

tive (BPMI) were working on Business Process Modelling Language (BPML)L, a eXtensi-

ble Markup Language (XML) process execution language, but they quickly realised they

needed a visual representation [62]. And so, BPMN was created in 2004 to answer the

need of a standard notation for business processes [18].

Figure 2.4: Example of a BPMN process.

BPMN has two main objectives: Standardise business process notations (this allows

for consistent training since end-users would only need to know a single, agreed upon

notation), and provide mechanisms to generate executable processes [62]. The process ex-

ecution was originally done by BPML, being later replaced by Business Process Execution

Language (BPEL) [1].

Figure 2.4 contains the expenses process example build with BPMN.

2.2.2.1 BPMN Syntax

BPMN’s syntax evolved and grew throughout a series of iterations. Below is a sample of

the syntax which contains all the elements supported by OutSystems’ BPT:

9

CHAPTER 2. BACKGROUND

Start. Initiates the process;

End. Finishes the process flow. The process may continue in

other flows;

Terminate. Ends all the process flows;

Start with condition. Initiates the process based on a specific

event;

Intermediate event with catching trigger. Pauses the flow and

waits for a trigger.

Intermediate event with a throwing trigger. Used to broadcast

an event.

Decision. The flow continues based on logic.

Task. Can be several things, such as: sending requests and

emails, and waiting for a manual action or service;

Fork & Join. Used to split and merge the process flow;

Subprocess. Direct the flow to a reusable process. The parent

process resumes when the subprocess finishes;

Sequence Flow. Defines the order of tasks and events

2.2.3 Dynamic Condition Response

Dynamic Condition Response (DCR) was developed in a collaboration between the IT

University of Denmark and Exformatics A/S to answer the needs of the Danish mortgage

credit institutes. These institutes were using a small subset of BPMN but were unhappy

with it [13], and so, DCR was created which is described as a formal Adaptive Case

Management Workflow notation [61].

DCR has a web based IDE (Figure 2.5). The language is composed by Processes which

contain Activities, each Activity has a set of assigned Roles and are interconnected by

Connectors.

Figure 2.5 contains the expenses example build with DCR.

10

2.2. PROCESS LANGUAGES

Figure 2.5: DCR development environment.

2.2.3.1 Simulation

One of the DCR’s major features is its ability to simulate a process, assigning one or

more roles to a user. When running a simulation, the interface of the IDE presents the

simulation users with information about what activities were executed by whom and

swim lanes demonstrating the process flow.

Figure 2.6: DCR simulation.

Figure 2.6 demonstrates DCR’s process simulation feature.

2.2.3.2 Concrete Language Syntax

DCR’s syntax can be divided into two groups: Canvas elements (Figure 2.7) and Connec-

tors. Canvas elements include Activities and Processes, where Activities are nested in

Processes and each Activity can have one or more Roles associated to it.

11

CHAPTER 2. BACKGROUND

(a) Process (b) Activity

Figure 2.7: DCR Canvas Elements

The Connectors are used to connect two Activities and these control the flow of the

process based on the type of connector used. Figure 2.7 demonstrates DCR’s canvas ele-

ments and below is a description of the available connector types and respective visual

syntax.

Condition. Creates a relation between an activity A and B such that B

can only occur if A has occurred first.

Response. Creates a relation between an activity A and B such that if

A occurs then, at some point, B has to occur.

Include. Creates a relation between an activity A and B such that the

occurrence of A makes the occurrence of B possible.

Exclude. Creates a relation between an activity A and B such that B

cannot occur if A has occurred.

Milestone. Creates a relation between an activity A and B such that B

can occur initially, but if A’s status becomes pending while waiting for

a response connection by an activity C, then B cannot occur until A has

finished.

Spawn. Creates a relation between an activity A and a sub-activity B,

when A occurs a new instance of B is created.

2.2.4 Petri Nets

The execution semantics of many process modelling languages are defined by enabling

and firing elements based on a token-game [25]. Petri Nets have that same behaviour. As

such, even if Petri Nets are not considered a Process Language, understanding Petri Nets

gives a general idea of the process modelling languages’ semantics.

12

2.2. PROCESS LANGUAGES

A Petri Net is a mathematical modelling language used to aid in designing and

analysing concurrent systems. It has application in several different areas in Computer

Science. These include Software Engineering, communication protocols, socio-technical

systems and others [7]. Petri Nets have several characteristics that sets them apart from

other languages. One such characteristic is its the ability to represent systems at different

levels of abstraction without having to change the description language, which has a high

usability impact [55].

2.2.4.1 Language Description

Petri Nets can be seen as a particular kind of directed graphs and consist of two types of

nodes: places and transitions [46]. The net has an initial marking (M0) which consists of

having k tokens in p places, this is represented by the pth component of M. Places and

Transitions are connected by arcs, these arcs are labelled with their weights (W). The

places from which an arc runs to a transition are called input arcs and similarly places

from which an arc runs from a transition are that transitions output places. A transition

may fire if there are sufficient tokens in all of that transitions input places. When it fires

W tokens are consumed from the input places and the same W tokens are created in the

output places. Figure 2.8 contains a small example of a Petri-net where two tokens are

consumed from P0, one is consumed from P1 and two are created in P2.

Figure 2.8: Petri Net example

2.2.4.2 Abstract Syntax

Petri nets are a 5-tuple, PN = (P ,T ,F,W ,M0) [46] where:

P = {p1,p2, · · · ,pm} is a finite set of places,

T = {t1, t2, · · · , tn} is a finite set of transitions,

F ⊆ (P × T)∪ (T × P) is a set of arcs,

W : F→ {1,2,3, · · · } is weight function,

M0 : P → {0,1,2,3, · · · } is the initial marking,

P ∩ T = ∅ and P ∪ T , ∅.
There are other definitions of the language that are simplifications of the above syntax,

for example a Petri Net without a specific initial marking is denoted by N, where N =

(P ,T ,F,W).

13

CHAPTER 2. BACKGROUND

2.2.4.3 Concrete Syntax

A Petri Net can be used mathematically but is most commonly used with a graphical

representation. These are the elements of its syntax:

Place. Contains Tokens and has Arcs outgoing to Transitions and incom-

ing from Transitions. Two places cannot be directly connected with an

Arc.

Token. These are contained in Places. Tokens are consumed and created

based on the weight on the arc.

Arc. Connect Places to Transitions. Arcs are labelled with weights.

Transition. Connected with Arcs from and to Places. When a Transition

is fired the tokens in the incoming places are consumed and then created

in the outgoing Place, based on the Arc’s weight.

2.2.5 UML - Activity Diagram

Activity Diagram is similar to a flowchart that represent the flow from a system operation

to another. These operations are called activities. However, unlike flowcharts, Activity

Diagrams can be used to show parallel, branched and concurrent flows [2].

Activity Diagrams have several features that make them stand out when compared

to other work flow modelling languages. They support signal sending and receiving at a

conceptual level and support waiting and processing states [14].

Figure 2.9 contains the expenses process example build with Activity Diagrams.

Figure 2.9: Activity Diagram example.

2.2.5.1 Concrete Syntax

Activity Diagram’s syntax is a visual notation, as expected considering it is used for flow

management. An Activity is a network of nodes connected by edges [2]:

14

2.3. HUMAN-COMPUTER INTERACTION TECHNIQUES

Initial node. Indicates the start of the activities’ flow;

Final node. Terminates an activity;

Action node. Represents a single atomic step with the activity. The name

of the action is a verb or noun with some explanation. As an example:

"Review expense";

Decision. The chosen outgoing edge is chosen based on a guard condition;

Fork & Join. Splits and synchronises multiple concurrent flows;

Wait. Interrupts the activity and waits for a certain amount of time. The

time it waits is based on a label;

Edge. Used to control the flow of the activity.

The above notation is a sample of the Activity Diagram syntax and using it allows the

creating of low complexity diagrams.

2.3 Human-computer interaction techniques

This section goes over several HCI techniques. Even though these techniques were not

originally meant for language evaluation they can be adapted to do so. Note that this

section describes the original techniques without any alterations.

2.3.1 System Usability Scale

System Usability Scale (SUS) was developed in 1986 by John Brooke. It was created as a

"quick and dirty" scale for measuring usability and consists of ten questions [8].

The questions are given to the respondent (i.e. user) after the he/she completes a

test but before any debriefing or discussion. It is also best if the respondent gives an

immediate response to each item, rather than thinking about it for too long.

If the respondent can not answer to one of the questions then the centre point on the

scale should be marked, as this will result in a neutral value when calculating the final

score.

2.3.1.1 The questionnaire

SUS questionnaire contains ten items:

1. I think that I would like to use this system frequently.

2. I found the system unnecessarily complex.

3. I thought the system was easy to use.

4. I think that I would need the support of a technical person to be able to use this

system.

15

CHAPTER 2. BACKGROUND

5. I found the various functions in this system were well integrated.

6. I thought there was too much inconsistency in this system.

7. I would imagine that most people would learn to use this system very quickly.

8. I found the system very cumbersome to use.

9. I felt very confident using the system.

10. I needed to learn a lot of things before I could get going with this system.

The item order is important since it alternates between positive and negative. This

forces the respondent to pay attention to each statement and prevents a response bias [8].

The answer box is shown in Figure 2.10.

The original questions were meant for systems but these can be easily adapted for

other studies.

Figure 2.10: SUS answer format

2.3.1.2 Calculating the SUS score

The result of the SUS is a single number which represents a measure of the system’s

usability.

To calculate the final score first look at the score of the uneven items and subtract 1

from it and then look at the even ones and subtract the score from 5. Following that, sum

the result of the previous step and multiply that by 2,5. This grants the final score which

will always range between 0 and 100.

2.3.1.3 Interpreting the SUS score

Even though the SUS score is a value between 0 and 100, it should not be interpreted as a

percentage. As an example, assume a system gets a SUS score of 60, it would be correct

to say that it represents 60% of the maximum possible score. This suggests that the score

is at the 60th percentile, which can be interpreted as above average. However, in 2,324

surveys the mean SUS score was of 70,14 [3], meaning the example system is actually

below average.

In order to avoid miss-interpretations it is best to normalise the score to produce a

percentile ranking. So taking into consideration the 70,14 average score, normalising a

16

2.3. HUMAN-COMPUTER INTERACTION TECHNIQUES

systems with a score of 60 means its usability percentage is 42,8%. Meaning it is a below

average system.

2.3.2 Cognitive Dimensions

Cognitive Dimensions is a framework developed to help non-HCI specialists. It is mostly

used to evaluate programming language usability (even though it can be applied to a wide

range of interactive systems) [21]. Considering it is aimed at non-specialists, the frame-

work does not require a lengthy detailed analysis, but rather, uses a checklist approach

that ensures serious problems are not overlooked [22].

2.3.2.1 The dimensions

Most HCI techniques are designed to concentrate on the physical, low-level details of

interaction between a user and a device. Cognitive Dimensions does not provide a final

usability score but rather its fourteen "dimensions" (questions) aim to spark discussions

that will help identify usability issues [20]. The dimensions are:

Abstraction gradient. What are the minimum and maximum levels of abstraction

exposed by the notation? Can details be encapsulated?

Closeness of mapping. How closely does the notation correspond to the problem

world?

Consistency. After part of the notation has been learnt, how much of the rest can

be successfully guessed?

Diffuseness / terseness. How many symbols or how much space does the notation

require to produce a certain result or express a meaning?

Error-proneness. To what extent does the notation influence the likelihood of the

user making a mistake?

Hard mental operations. How much hard mental processing lies at the notational

level, rather than at the semantic level? Are there places where the user needs to

resort to fingers or pencilled annotation to keep track of what’s happening?

Hidden dependencies. Are dependencies between entities in the notation visible

or hidden? Is every dependency indicated in both directions? Does a change in one

area of the notation lead to unexpected consequences?

Juxtaposability. Can different parts of the notation be compared side-by-side at

the same time?

Premature commitment. Are there strong constraints on the order with which

tasks must be accomplished? Are there decisions that must be made before all the

17

CHAPTER 2. BACKGROUND

necessary information is available? Can those decisions be reversed or corrected

later?

Progressive evaluation. How easy is it to evaluate and obtain feedback on an in-

complete solution?

Role-expressiveness. How obvious is the role of each component of the notation in

the solution as a whole?

Secondary notation and escape from formalism. Can the notation carry extra

information by means not related to syntax, such as layout, colour, or other cues?

Viscosity. Are there in the notation any inherent barriers to change? How much

effort is required to make a change to a program expressed in the notation? This

dimension can be further classified into the following types:

– Knock-on viscosity: a change in the code violates internal constraints in the

program, whose resolution may violate further internal constraints;

– Repetition viscosity: a single action within the user’s conceptual model re-

quires many, repetitive device actions;

– Scope viscosity: a change in the size of the input data set requires changes to

the program structure itself.

Visibility. How readily can required parts of the notation be identified, accessed

and made visible?

2.3.2.2 Expanded dimensions

Even though the framework contains quite a few dimensions, its creators still consider it

incomplete [20]. As such, there are numerous dimensions that have been created by the

community [6]. Of note, given the context of this dissertation:

Detail in context. Is it possible to see how elements relate to others within the same

notational layer?

2.3.2.3 Issues with Cognitive Dimensions

Even though Cognitive Dimensions is widely used in Visual Programming Language

usability, there is evidence showing that it is not the best technique to use when it comes

to specifying visual notations [43].

Some of theoretical and practical limitations of Cognitive Dimensions include: its

exclusion of issues related to visual representations (since it is based solely on structural

properties), the dimensions are not design guidelines and it lacks evaluation procedures

or metrics (making it very subjective) [44]. The aforementioned limitations mean it does

not provide a scientific basis for evaluating and designing visual notations.

18

2.3. HUMAN-COMPUTER INTERACTION TECHNIQUES

2.3.3 The Physics of Notations

The Physics of Notations provides a framework for evaluating visual notations and does

not have the limitations present in Cognitive Dimensions. The framework is a set of

nine principles (called Prescriptive Theory). These were synthesised from theory and

empirical evidence about cognitive effectiveness of visual representations [44].

2.3.3.1 Visual Variables

In order to analyse visual notations, the prescriptive theory breaks down the symbols

to their atomic characteristics. Bertin [5] divided the symbols into eight characteristics

(Figure 2.11): horizontal position, vertical position, shape, brightness, size, orientation,

colour and texture.

Figure 2.11: Visual Variables [18]

2.3.3.2 Prescriptive Theory

A good visual notation should follow these nine principles:

Semiotic Clarity. There should be a one-to-one correspondence between semantic

constructs and graphical symbols.

This is required in order to be considered a notational system [19]. If there is not a

one-to-one correspondence then one of the following can occur (Figure 2.12 helps

in understanding these concepts):

– Symbol deficit: there is not a symbol that represents a specific construct;

– Symbol redundancy: there are several symbols that all represent one construct;

– Symbol overload: more than one construct is represented by a single symbol;

– Symbol excess: a symbol that does not have a corresponding construct.

In order to achieve semiotic clarity, a notation can not have any symbols that fit in

the above categories [17].

19

CHAPTER 2. BACKGROUND

Figure 2.12: Understanding Semiotic Clarity [17]

Perceptual Discriminability: Symbols should be clearly distinguishable.

It is very important that symbols are easy to distinguish. Large visual distance

between symbols allows for faster and more accurate interpretations of diagrams.

When the difference is subtle there is a higher chance of error. This is especially

true for novice users [44].

Semantic Transparency: Use symbols whose appearance is evocative.

Symbols should provide cues to their meaning [44]. When analysing notations,

symbols can be divided into four levels of transparency:

– Semantically immediate: a novice can infer its meaning without help;

– Semantically translucent: a symbol between semantic immediacy and opacity,

it provides a cue for the meaning but the novice can not infer it without some

help.

– Semantically opaque: there is no relation between the appearance and its

meaning (e.g., roundtangles in BPMN);

– Semantically perverse: makes a novice infer a different (or opposite) meaning

from the symbol’s appearance;

Complexity Management: Include mechanisms for handling complexity.

One of the largest problems in Software Engineering is that visual representations

do not scale well [44]. Complexity Management is a way to mitigate that problem.

However, there are several languages that do not take complexity into account (such

as Entity Relationship diagrams). This results in diagrams with a very high level of

complexity that are really hard to understand, even more so by novices. An example

of this is shown on Figure 2.13.

A common solution for reducing complexity of large systems is to divide them

into smaller subsystems. These subsystems are called modules which can then be

20

2.3. HUMAN-COMPUTER INTERACTION TECHNIQUES

Figure 2.13: Example of a complex diagram [54].

reused. Subsystems can have their own subsystems. This creates modularisation

with several levels which are called hierarchies. Hierarchies are the most effective

way of organising complexity [44], allowing the system to be interpreted top-down

(refinement) or bottom-up (abstraction).

Cognitive Integration: Include explicit mechanisms to support integration of in-

formation from different diagrams.

Having multiple diagrams describe a system (e.g. modularisation) requires the

reader to have a mental image of the system while trying to interpret the diagram.

This causes additional cognitive load [44]. There are mechanisms that can help

with combating the extra load. These are Conceptual integration and Perceptual

integration.

– Conceptual integration helps the reader interpret the different diagrams in or-

der to better understand the system as a whole. This can be achieved by giving

the readers a summary diagram, as this provides the readers with an overview

of the system, or resorting to contextualisation, which adds to diagram context

information (like adding all related elements from other diagrams) [44].

– Perceptual integration provides perceptual cues that help with navigation

and transitioning between diagrams. To do this the language uses a design

technique (that originated from architecture [38]) called wayfinding [44].

Wayfiding is used to help users find what they want, this is done with four

stages [35]:

21

CHAPTER 2. BACKGROUND

* Orientation. Giving the user a current relative position to nearby objects

and the final destination;

* Route Decision. Provide different ways for the user to get to the final

destination and help the user choose the best path;

* Route Monitoring. Give feedback about the current path the user is on,

such as path destination and current progress within the path;

* Destination Recognition. Make sure the destination is clear and easy to

recognise. This can be achieved by placing the destination in a dead-end,

preventing the user from progressing.

Placing labels on diagrams supports orientation and destination recognition.

Level numbering shows users where they are in the system of diagrams and

as such supports orientation. Adding navigational cues supports route choice

and a navigational map that shows all the diagrams and paths between them

supports orientation, route monitoring and route choice [44].

Visual Expressiveness: Use the full range and capacities of visual variables.

Visual Expressiveness measures visual variation across the entire visual vocabulary

[18]. It looks at how much design space and how many visual variables (see 2.3.3.1)

are used in the language.

Figure 2.14: Visual expressiveness. [44].

Visual variables are divided into Information carrying variables (these are variables

that are used by the language) and free variables (which are variables that are not

used by the language). The number of used variables is called expressiveness and the

number of free variables is called degrees of visual freedom [44] (Figure 2.11).

Notations with zero expressiveness are called nonvisual, or textual (e.g. Unified

Modeling Language (UML)). Notations with eight expressiveness (or zero visual

freedom) are called visually saturated. The higher a languages expressiveness is,

the more perceptually enriched it is. This can dramatically improve the language’s

usability [44]. A visual representation of this is found on Figure 2.14.

Dual Coding: Enrich diagrams with textual descriptions.

Using text and graphics together is more effective than using either one of them on

22

2.3. HUMAN-COMPUTER INTERACTION TECHNIQUES

their own. With this said, text should never be used as the sole basis for distinguish-

ing between symbols, rather it should complement the graphics [44].

Figure 2.15: Example of dual coding. [44].

Adding text to symbols does not increase its visual distance, however it helps with

interpretation by providing textual cues which increases its transparency. Figure

2.15 contains an example of dual coding.

Graphic Economy: Keep the number of different graphical symbols cognitively

manageable.

Not to be confused with Complexity Management, that deals with sentence level

complexity. Graphic Economy is concerned with the complexity of the language,

which means it looks at the number of graphical symbols [44]. Having too many

symbols in the language can become a big problem, especially for novices, since

humans have a hard time working with more than six different categories of symbols

(UML Class Diagrams have over forty).

There are three main ways to deal with graphic complexity:

– Reduce semantic complexity. The most obvious way to reduce complexity

is to simplify the language’s semantics. This happens because normally each

construct is represented by a symbol.

– Introduce symbol deficit. Complexity can also be dealt with by directly re-

duced (without touching the semantics) by not showing some constructs graph-

ically (though this goes against Visual Expressiveness). It is important to find

a balance between graphical, textual and off-diagram encoding.

– Increase visual expressiveness. The six-symbol limit only applies to a single

visual variable, so an easy solution is to simply increase human discrimination

by using more visual variables.

Cognitive Fit: Use different visual dialects when required.

The Cognitive Fit theory (from Information Systems) states that there should dif-

ferent representations for different types of users [59]. Most Software Engineering

notations do not follow this theory and have only one notation that is meant to be a

"one size fits all". This can cause issues which can be broken down into:

23

CHAPTER 2. BACKGROUND

– Difference in user skill. Developing a notation that is easy to understand by

a novice but also complex enough to answer the needs of experts is nearly an

impossible task. This happens because novices have difficulty in discriminat-

ing between symbols, are more effected by complexity and need to consciously

remember what symbols mean. A solution for this is to have "user modes",

where the novice mode has a subset of the notation (to about complexity) and

more cues to help with semantic transparency [44].

– Difference in task. Using a notation in a software environment built for that

notation is very different to using it on paper in a meeting. This happens

because on paper the user has limited access to visual variables (such as colour)

and symbols that are not simple (due to semantic transparency) can be hard

to hand draw. To solve this there should be a secondary notation which is

simplified for sketching [44].

2.3.4 NASA Task Load Index

NASA Task Load Index (NASA-Task Load Index (TLX)) is a subjective assessment tool

for rating perceived workload. Its original application was aviation but is now used in a

variety of different domains [56]. The term workload represents the cost of completing a

task and there are many psychological definitions on how to measure it [37]. NASA-TLX

measures workload by dividing it into six subclasses, known as scales: Mental, Physical,

and Temporal Demands, Frustration, Effort and Performance [26]. The rating is a numeric

value between 5 and 100. A low rating means a low workload and a high rating meaning

a high workload.

2.3.4.1 The scales

Each scale should always be presented with a description and the participant should read

each description with attention before rating it.

Mental Demand. How much mental and perceptual activity was required (e.g.

thinking, deciding, calculating, remembering, looking, searching, etc)? Was the

task easy or demanding, simple or complex, exacting or forgiving?

Physical Demand. How much physical activity was required (e.g. pushing, pulling,

turning, controlling, activating, etc)? Was the task easy or demanding, slow or brisk,

slack or strenuous, restful or laborious?

Temporal Demand. How much time pressure did you feel due to the rate of pace

at which the tasks or task elements occurred? Was the pace slow and leisurely or

rapid and frantic?

24

2.3. HUMAN-COMPUTER INTERACTION TECHNIQUES

Performance. How successful do you think you were in accomplishing the goals of

the task set by the experimenter (or yourself)? How satisfied were you with your

performance in accomplishing these goals?

Effort. How hard did you have to work (mentally and physically) to accomplish

your level of performance?

Frustration. How insecure, discouraged, irritated, stressed and annoyed versus

secure, gratified, content, relaxed and complacent did you feel during the task?

2.3.4.2 The questionnaire

The NASA-TLX questionnaire is given to the participant after he/she completes a task. It

is divided into two phases.

In the first phase participant is presented with the six scales (with an accompanying

description) and is asked to rate each scale within a 100-point range with a 5-point step

[27]. An example is shown in Figure 2.16.

Figure 2.16: NASA-TLX answer format

The second phase asks the participant to weigh each scale’s importance. With the

six scales there are 15 possible pairwise comparisons, each of these are presented to the

participant who chooses which scale he/she considers to be more relevant for the task.

With this each scale has a weight that ranges from 0 (not at all relevant) to 5 (more relevant

that any other scale) [23].

To then calculate the final score, for each scale multiply its rating with its weight,

divide that value by 15 and finally sum all the scales. The score will always be a value

between 0 and 100 [23].

2.3.4.3 Raw-TLX

There is a version of NASA-TLX called Raw-TLX which removes the weighing process

and the ratings are simply averaged. When using Raw-TLX, scales can be removed if they

are considering irrelevant to the task.

There are studies defending that Raw-TLX is better than the original [9], others defend

that the original is better and others saying they are the same. With this, the choice comes

down to personal preference [26].

25

C
h
a
p
t
e
r

3
Related work

3.1 Using Physics of Notations to evaluate BPMN 2.0

In 2011 Genon et al. used the Physics of Notations to study BPMN 2.0’s visual notation

[18]. In that study they go through the nine principles from the Physics of Notations and

for each they analyse BPMN 2.0 according to said principle. This section contains how

the analysis was done and the result for each principle.

3.1.1 Semiotic Clarity

This principle states that there should be a one to one correspondence between semantic

constructs and graphical symbols. To check this, a set of metaclasses was selected from

the BPMN 2.0 metamodel. This set was then mapped with the set of BPMN symbols.

A mapping function more complex than a simple semantic construct↔ symbol was

used. This function made four considerations:

• only concrete metaclasses that are not enumerations were considered;

• expanded/collapsed representations were only considered as a single symbol;

• metaclasses with attributes that cause variation in the symbol are considered dis-

tinct semantic constructs;

• if the multiplicity of a role modifies the representation of the metaclass, then it is

considered a different semantic construct.

The result of the mapping can be found on table 3.1.

27

CHAPTER 3. RELATED WORK

Defect Occurrences

Symbol Excess 1
Symbol Deficit 57
Symbol Redundancy 1
Symbol Overload 13

Table 3.1: Result of Semiotic Clarity BPMN 2.0 evaluation [18].

3.1.2 Perceptual Discriminability

The principle covers the need for visual distance, symbols should be easy to distinguish

which in turn increases the language’s expressiveness.

In order to analyse BPMN 2.0’s perceptual discriminability each symbol was broken

down to its visual variable values and for each value it was identified if that value was a

semantic carrier.

Metaclass Symbol Visual variable value Semantics carrier

Event

(x,y): variable
shape:circle
colour: black/white
brightness: N.A.
size: variable
orientation: N.A.
texture: thin border line

no
yes
no
no
no
no
yes

Table 3.2: Example of a symbol’s visual variable analysis [18].

The result of the analysis indicates that no symbol has a visual distance greater

than two visual variables. The language does not support redundant coding, percep-

tual popout or textual differentiation.

Table 3.2 contains an example of a symbol’s visual variable analysis.

3.1.3 Semantics transparency

A visual notation should be transparent, symbols should be evocative and help with the

interpretation of their meaning.

The only way to analyse transparency is to go through all the symbols and for each one

decide on its transparency. The study covers the symbol’s marker and shape, it classifies

them on their transparency and provides a justification for the given classification.

The results indicate that the majority of the symbols are not at all transparent, with a

few semantic perverse cases.

28

3.1. USING PHYSICS OF NOTATIONS TO EVALUATE BPMN 2.0

3.1.4 Complexity Management

The two solutions within BPMN for managing complexity are modularisation and hier-

archies. The analysis of complexity management was done by reviewing what semantic

constructs exist that help with complexity, these are: subProcess, linkEvent and callAc-

tivity.

• SubProcess can be used to decompose large diagrams into a set of sub-diagrams

and can also represent different levels of detail. As such, subProcess contributes to

the diagram’s hierarchy and modularisation.

• LinkEvent is a construct that allows navigation through diagrams by indicating go-

to points. It can be used to connect two sections of a Process and also as a off-page

connector for printing across multiple pages. This improves modularisation.

• CallActivity is a wrapper for the invocation of a global task. As such, it helps with

modularisation.

The results indicate that BPMN 2.0 has some mechanics to improve complexity man-

agement, though these could be improved (such as allowing subProcesses to reference

another process, rather than having the subProcess depicted inside the parent).

3.1.5 Cognitive Integration

A language should have mechanisms to help users interpret diagrams. The study analyses

this by trying to identify mechanisms within BPMN 2.0’s notation that answer the need

for perceptual and conceptual integration.

• Perceptual integration. BPMN 2.0 does not have most techniques that help with

wayfinding. It does not have a dedicated artefact for displaying the diagram’s name.

Considering hierarchies are embedded in the parent level, numbering is not re-

quired. There is only one navigational cue (Link Event) but it requires the use of a

TextNotation to specify what diagram is being referenced. There is not a navigation

map.

• Conceptual integration. This can be achieved by providing the user with a sum-

mary diagram or with contextualisation. BPMN 2.0 does not support either of these

mechanics.

3.1.6 Visual Expressiveness

The notation’s visual expressiveness is measured by the number of visual variables used.

After analysing BPMN 2.0’s notation the study concludes that BPMN 2.0’s visual expres-

siveness is 4 ((x,y), shape, colour and texture).

29

CHAPTER 3. RELATED WORK

3.1.7 Dual Coding

The principle states that text can be used to complement graphics in order to help in-

terpretation. BPMN 2.0 achieves this by using the construct Text Annotation which can

allows the user to attach text to any other symbol (Figure 3.1).

Figure 3.1: Example of good dual coding usage.

However, there are cases where textual descriptions are mandatory and symbols do

not make sense without them. This goes against the Dual Coding principle. As an exam-

ple, a process starting with an event has to have a an accompanying message, otherwise

it does not make sense (Figure 3.2).

Figure 3.2: Example of bad dual coding usage.

3.1.8 Graphic Economy

The principle states that humans have a hard time working with more than six different

categories of symbol. The size of BPMN 2.0’s visual vocabulary is one hundred and

seventy one. The size of the vocabulary is due to the large amount of markers which can

then be combined with the different shapes. Taking only into account the shapes, then

there are six elements in the vocabulary, but without the markers the language does not

have enough expressiveness to be usable.

The Physics of Notations proposes three strategies to reduce graphic complexity:

• Reduce semantic complexity. This is very hard to achieve. Reducing the language

semantics would also reduce its expressiveness and would prove too simple for its

requirements;

30

3.2. USING VISUAL NOTATION DESIGN TO IMPROVE I*

• Introduce symbol deficit. This could work but the information that would be

removed by the deficit would have to be added somewhere off-diagram. A link to

that information would then need to be placed in the diagram;

• Increase visual expressiveness. The language still have four free visual variables,

making this an appropriate strategy.

3.1.9 Cognitive Fit

The principle supports that there should be more than one notation, depending on user

skill and task. BPMN 2.0 has only one notation. The notation can be very hard for novices

as some symbols are not easy to discriminate due to double line borders and contain

markers. Also, the visual vocabulary is very large, making it hard to remember.

The notation is easy to sketch since it does not include the colour visual variable. That

said, it can be complicated for novices because drawing double lines and thick borders

takes time to be well sketched.

3.2 Using Visual Notation Design to improve i*

It has already been established that notations play a critical part in language usability

[44]. As such, its important to understand what is the best way to design a notation.

Moody et al. published in 2010 a paper that evaluates the i* notation using Physics of

Notations and proposes a new symbol set [45]. Caire et al. in 2013 published a paper that

proposes some new design methods and applies them to i*. The study then compares

them to the notation’s standard, the notation proposed by Moody et al. and the result of

the new methods [10].

3.2.1 The i* standard and Physics of Notations

The i* language [15] is considered one of requirements engineering most influential nota-

tions [10]. The standard i* notation is shown in Figure 3.3.

Figure 3.3: Standard i* notation [10][15].

In 2010 Moody et al. published a paper evaluating the i* using the principles from the

Physics of Notations, the study concluded that the i* notation was semantically opaque

(there is no connection between the symbol and its meaning) [45]. The study also pro-

poses changes to the current notation (Figure 3.4). These changes follow the Physics of

31

CHAPTER 3. RELATED WORK

Notations principles and are made by experts in the field.

Figure 3.4: Proposed notation by Moody et al. [10][45].

3.2.2 Stereotyping

Caire et al. [10] proposes that perhaps the best way to develop a visual notation is to

ask the end users for help. This was done applying the Sign Production Technique [30].

The technique asks members of the target audience to generate symbols that represent

concepts in the language. The researchers asked 104 naive participants to draw a symbol

for each of the nine i* constructs.

From the result of the Sign Production Technique, a judge’s ranking method [32] was

used to create a population stereotype (an average for each construct). The resulting nine

symbols can be seen in Figure 3.5.

Figure 3.5: Stereotype symbol set [10].

3.2.3 Prototyping

Another method used was prototyping. This was done by asking 30 naive users to go

through the symbols resulting from the Sign Production Technique and choose the symbol

that best represents the construct. The resulting set of symbols can bee seen in Figure 3.6.

Figure 3.6: Prototype symbol set [10].

32

3.3. EYE-TRACKING IN LANGUAGE EVALUATION

This resulted in only a third of the symbols matching the stereotype counterparts.

The other symbols won with a high level of consensus.

3.2.4 Choosing the best symbol set

An experiment was done to determine which of the following notations was the most

comprehensible:

• Standard i*. developed by experts using intuition;

• Physics of Notations i*. Created by experts following the Physics of Notations

principles;

• Stereotype i*. The most common symbols created by novices;

• Prototype i*. The symbols with the most votes, judged by novices.

The experiment was a blind interpretation study. It is a common method for evaluat-

ing comprehensibility of graphics symbols and is used for testing ISO standard symbols

prior to release.

Figure 3.7: Result of the blind interpretation study. [10].

The results can be seen in Figure 3.7. In green are values that are over ISO’s compress-

ibility threshold and the best values for each construct are underlined.

The results indicate that novice generated symbols are more semantically transparent

than symbols generated by experts. Only the stereotypical notation was able to achieve

an average higher ISO’s minimum threshold of 67%, with the standard i* notation being

the worst of the four.

3.3 Eye-tracking in language evaluation

In the 1800s cognitive psychology researchers first used eye-tracking in order to better

answer questions regarding reading. That research led to the conclusion that eyes do

33

CHAPTER 3. RELATED WORK

not traverse text in a smooth matter [31]. Rather, the movement of the eyes can be

broken down to a series short stops (called fixations) and of saccades (quick, simultaneous

movements of both eyes between fixations) [11].

The first time eye-tracking was used for language usability was in 1990, it was used

to study code comprehension. In 2015 Sharafi et al. publishing a Systematic Literature

Review (SLR) about the usage of eye-tracking in software engineering [57]. That paper

concluded that eye-tracking was not commonly used, having found only 36 relevant

software engineering studies.

3.3.1 Technology

There are several different ways for eye-trackers to measure the rotation of the eyes. The

SLR by Sharafi divides the techniques into two relevant categories: intrusive and non

intrusive eye-trackers.

Intrusive eye-trackers typically contain three miniature cameras. These are mounted

on a padded headband which is worn by the participants during the usability test. Two

of the cameras capture eye-movements using infrared lights and the third (optional) is

used to track head movement. Given that the tracker is intrusive it may worry the the

participants and thus influence the results.

Non-intrusive eye-trackers are divided into two generations. Both have cameras

mounted near the computer screen. The older generation has one camera which beams

light to the participant’s eyes. The light is then reflected and captured by the camera

on the way back. The newer generation requires two cameras which track the partici-

pants head using eye-brows, noses and lips. In order to distinguish between head and

eye-movement, the cameras use infrared corneal reflection and pupil centring.

3.3.2 Limitations

Sharafi’s SLR discusses some limitations to using eye-tracking.

The accuracy reported by eye-tracking manufactures are the result of tests conducted

in ideal conditions. The test subjects do not wear anything that can effect the accuracy

(such as glasses or lenses) and they never move their head. This scenario is not realistic

as participants of usability studies will not always have the same iris size, can require

seeing glasses and tend to move their head while conducting the test. To combat these

limitations researchers can increase the size of the models and text to compensate for the

lack of precision. Researchers should also calibrate the eye-trackers regularly during the

test.

Results indicate that there is a gradual decrease in accuracy as time progresses. This

is called drift. This is caused by physiological changes to the eyes (like wetness) and can

be mitigated by ensuring that light conditions remain stable. The duration of the tests

should take drift into account, shorter tests are recommended and calibrations should be

repeated regularly.

34

3.4. THE OUTSYSTEMS METHOD

The last limitation discussed by Sharafi is called the Hawthorn effect. Throughout the

duration of the study the researcher is responsible for guiding the participants, calibrat-

ing the eye-tracker and monitoring the recording to ensure that the tracker is tracking

correctly. The presence of the researcher can cause a bias, given that the participants feel

that they are being watched. Some studies combat this limitation by sitting researchers

away from the participants. This ensures that there is not any interaction between the

participants and researchers. Studies also indicate that at the start of the session the re-

searcher must explain that the eye-tracker only records records eye-movement, no video

is being recorded and that all data is anonymous.

3.3.3 Data analysis

Eye-tracking studies produce a large amount of data. Manually processing that data

would be unwise since it is prone to error and would require a lot of time. There are

several automated tools for analysing eye-tracking data. The choice of what software

to use depends on what kind of data the study wants analysed. The different metrics

can be divided into five categories: Number of fixations, duration of fixations, saccades,

scan-paths and gaze.

3.4 The OutSystems method

This section goes over the methodology used at OutSystems for usability evaluation. The

method is an adapted version from the method described by Krug in Rocket surgery made
easy [34].

3.4.1 The method

The method has a one month cycle and is broken down in the following items:

• There is a priority queue with features that need to be tested, as features are devel-

oped they go into queue. The position of the feature in the queue is based on its

perceived importance;

• A set of features are chosen from the queue to be tested. The number of features

chosen is based on how long it takes for a participant to test them. Tests are planned

to take no more than one hour and a half;

• Tests are mostly made to novices. This happens because experts have a bias for the

old version, though some specific features are also tested with experts to evaluate

acceptance;

• Screen and voice is captured and participants are asked to think out loud;

• At the end of test, the participant is asked to fill in a SUS questionnaire;

35

CHAPTER 3. RELATED WORK

• At the end of month there is a meeting with key members from different teams

to discuss the encountered issues. A list of common issues is created. The video

recording is used to understand what was happening and possible solutions are

discussed;

• A feature is flagged for change if it is considered critical and few users have trouble

with it, or if it is not critical but a lot of users have trouble with it;

• A report is written and there is a meeting with the leader of the team responsible

for the feature in order to discuss possible changes.

Figure 3.8: Tool used to manage usability tests.

The usability tests are done with a single participant at a time and there is always a

member of OutSystems present. It follows these steps:

1. There is a short briefing about the goal of the test and some basic notions of how

the usability test works;

2. A set of questions are made to define the user’s profile;

3. The participant watches a small video introduction to the OutSystems platform.

The length is approximately seven minutes;

4. Participant is asked to execute some predefined tasks;

5. Product feedback questions are asked, such as "What did you like?", "What would you
change?" and "Where did you struggle?";

6. The participant is asked to fill in a SUS questionnaire.

36

C
h
a
p
t
e
r

4
Evaluation process

4.1 The process

The process for evaluating languages is divided into two main parts: identifying issues

with the language and developing improvements for said language. Some of the steps in

the process require interaction with people experienced with the language being evalu-

ated, while others require conducting tests with people who have never interacted with

the language. A visual representation of the process can be found in Figure 4.1.

Figure 4.1: Evaluation process activity diagram.

4.1.1 Perform interviews

Conduct interviews with people who currently use the language. The interviews should

follow the Design Thinking philosophy of empathy interviews [53]. This kind of interview

allows the interviewee to tell a story. A lot more insights can be collected from those

stories than with direct questions. The interviews should cover the following topics:

37

CHAPTER 4. EVALUATION PROCESS

• In what context is the language being used in. Even if the language is a DSL it

is possible that the language is being used out of its domain. Usability issues can

occur when a language is used in a domain that it was not designed for;

• Why was the language chosen. This brings up the strengths of the language. Possi-

ble features that the expert likes and may start a conversation about things that can

be further improved in said features;

• What features are less used and why. Features that are not getting much use may

need to be changed, removed or better explained with training, documentation, etc.

It is possible that the users do not use a certain because they do not know enough

about it or its potential usefulness;

• What features are missing. With the daily usage of the language does the expert

feel like there is something missing? Are there use-cases within the language’s

domain that can not be answered?

4.1.2 Collect and analyse usage data

If possible collect everyday data while the users are using the language to develop solu-

tions. This can then be used to extract usage metrics, such as: how long do users take to

perform a certain task; how complex are the projects developed using the language; do

users get "lost" while using a certain language feature; and how frequently are features

used.

4.1.3 Physics of Notations

Analyse the language following the Physics of Notations principles. Check if the language

is complying with each of the nine principles and when making changes to the language

ensure that the changes solve any issues discovered in this analysis.

4.1.4 Usability experiments

Conduct usability tests where the tester is given an example of a solution developed using

the language being evaluated and is asked a series of questions related to the example. The

example should use all language constructs and the questions should not be subjective

(e.g.: "What do you think of X?"). An example of a good question is: "What elements of

the language interact with the a database?". The answer to that will be objective and will

either be correct or not;

These experiments should record the screen and capture the voice of the tester (if

permission is given). The tester should be asked to think out loud so that it is easier to

analyse at a later date. Eye-tracking can also be used as a supplement. This makes the

tester’s line of thought while trying to answer the questions easier to follow at a later

date.

38

4.2. USABILITY TOOL

At the end of the experiment the tester should be asked to answer a System Usability

Scale and Task Load Index questionnaire.

4.1.5 Designing a new notation

The new notation should be created following Caire et al.’s Visual Notation Design. This

requires a large number of novices but has shown to produce the best results. That said,

the results of the Physics of Notations analysis should not be ignored and other factors

(such as consistency) also need to be considered.

4.1.6 Analyse the new notation

This should be done by conducting a semantic transparency study. However, even if

the language has a high transparency rating it is important to conduct more usability

experiments (following the same method as in 4.1.4). This happens because semantic

transparency evaluates symbols individually, which does not ensure a high language

usability rating.

4.2 Usability Tool

We developed an application to help with the evaluation of languages. The goal is to

speed up the evaluations, keep the information centralised and automate the process as

much as possible.

The application allows users to manage different languages, their usability tests and

process Sign Production results. The application was built using the OutSystems Plat-

form.

4.2.1 Languages

Each user can have a set of languages. Each language has its own page, where the user

adds the language’s semantic constructs and visual notation (Figure 4.2). This is then

used for the analysis of the Sign Production results.

4.2.2 Usability Sessions

This section of the application manages usability tests with study participants. Each

study saves data about the tester’s profile, URL to the survey used for the test, possible

URL to a recording of the session and surveys completed by the tester (Figure 4.3).

4.2.2.1 Surveys

UsabilityTool supports SUS and TLX surveys. A link to each of the surveys is placed on

the table which contains the evaluations. If they tester did not complete the survey then

it contains a link to an empty survey, otherwise it shows the tester’s score which links

39

CHAPTER 4. EVALUATION PROCESS

Figure 4.2: Example of a language page.

Figure 4.3: Example of a Usability Sessions page.

to the filled in survey. The two surveys were created to be as close as possible as their

original versions (Figure 4.4).

4.2.3 Sign Production

This is a feature created to help users with the technique presented in 3.2. Here the users

can upload and analyse the results from the paper questionnaire.

4.2.3.1 Uploading results

The results can be uploaded manually one by one or in a batch. To upload the question-

naires manually the user creates a new study and then uploads the results of each of the

40

4.2. USABILITY TOOL

(a) SUS (b) Raw TLX

Figure 4.4: Example of surveys supported by UsabilityTool

language constructs. A console application called "Sign Production Cutter" was created

in C# and has two features: cut and organise the questionnaire answers and upload the

answers to UsabilityTool.

To cut and organise the questionnaires, Sign Production Cutter receives as input the

scanned pages from the questionnaire (all of them, not only the answer pages). It then cuts

boxes where the answers are and saves them in the local directory. The file organisation

is done in two ways: one where a folder is created for each questionnaire and all the

answers are saved in that folder with a final image containing the tester’s profile; and

another where a folder is created for each construct and all the answers relating to that

construct are saved. The questionnaire folders were created to make it easier to upload

the answers to the UsabilityTool. The construct folders make it easier to analyse the

results without uploading them to UsabilityTool. This means Sign Production Cutter is

useful regardless if UsabilityTool is being used or not.

If the user chooses to, the application uploads the answers by calling API functions

created in UsabilityTool. However, the user must fill in a text file with the tester’s profile

before uploading. Since the profile contains open answers it would be very hard to

automate this process.

4.2.3.2 Analysing results

The analysis of the questionnaires can be done in the local directory after using Sign

Production Cutter to process the answers or on UsabilityTool after uploading the answers.

UsabilityTool organises the answers the same way that Sign Production Cutter does: by

questionnaire and by constructs. The page of a questionnaire contains all the answers of

that questionnaire and the profile information of the tester. The construct page contains

all the answers for that specific construct, making it easier to compare the results.

41

C
h
a
p
t
e
r

5
Analysing BPT

The first step in analysing BPT was identifying that there was indeed a problem with

the language. By analysing data from projects developed using OutSystems Platform we

concluded that BPT has a low adoption rate. The next step was identifying what was

the problem. This was done by using Physics of Notations to ensure that the language is

considered usable according to the principles presented in 2.3.3 and conduct evaluations

with testers to understand where users were having trouble with the language.

5.1 Interviews

A series of interviews were made to developers within OutSystems who use the language

to create solutions for clients. This was done in order to better understand why OutSys-

tems’ BPT does not have the desired adoption rate.

5.1.1 Interview questions

The interviews did not follow a predetermined script, rather the interview followed the

Design Thinking philosophy of empathy interviews [53]. The goal was to find the root of

the problem by getting the expert to tell a story and applying the five whys [12] technique.

The five whys is an iterative interrogative technique used to explore the cause-and-effect

relationships underlying a particular problem. This is done by asking why at least five

times to each answer. That said the main topics were:

• "In what scenarios do you use BPT to develop solutions?";

• "Do clients request the use of BPT?";

• "Do you like using BPT?";

43

CHAPTER 5. ANALYSING

• "What would you change in BPT?";

• "What would you add to BPT?".

Even though some of the topics are binary questions (which goes against the Design

Thinking philosophy) by using the five whys we were able to expand the topic and collect

insights about it.

5.1.2 Insight analysis

The following insights about BPT were extracted from the interviews:

• Development teams like using BPT but are scared to do so due to low level nuances,

as such they fallback to what they are used to (Timers);

• Parallelism is hard to model and so is identifying synchronisation bugs;

• New team members can not start working with BPT without specialised training;

• Some clients explicitly request the use of BPT;

• Maintaining a project developed with BPT is difficult and costly; there are perfor-

mance issues.

Another insight was that BPT is often used outside of its domain. While BPT was de-

signed to be a process modelling language it is also being used for event handling. These

event handlers are very small processes (normally around three or four nodes), they start

automatically in response to an event (like an API call), perform a small automatic ac-

tion and then end. The problem is that the language runtime was not designed for this

behaviour and as such does not perform well.

5.2 Data Collection

OutSystems has a repository of projects developed with the OutSystems Platform that

contains 5145 eSpaces. OutSystems’ R&D group has developed an internal application

called QueryGrabber that allows data to be gathered from eSpaces. QueryGrabber receives

as inputs the path with the eSpaces and a C# class file with a function (processor) that is

called for each eSpace. In essence, QueryGrabber can be seen as a foreach that iterates the

eSpaces and for each eSpace it calls the provided processor function.

We developed a processor function that collects the following information about each

eSpace:

• Number of processes built with BPT;

• Total number of BPT nodes;

• Number of flows within the process;

44

5.3. PHYSICS OF NOTATIONS

• Number of interfaces, total number of actions;

• Total number of widgets with in the interfaces;

• Number of occurrences of each construct provided by BPT;

• Number of process calls;

• Information pertaining to complexity (like number of arrows pointing to nodes and

number of arrows exiting nodes);

• Existence of infinite cycles within a process.

Table 5.1 contains the most informative metrics collected. The values show us that

only about 3% of the eSpaces use BPT. This is a very small number. The eSpaces that

use BPT have in average two processes each and are quite complex with an average of

18.7 nodes per process. This shows that BPT is being used in complex systems. However,

34% of the processes uses its metadata, which is saved in system entities. This means it

manually queries the database and uses information like process scheduling in its logic.

This is a bad practice as it makes the process much slower.

Table 5.1: Important collected metrics

Metric Value

Total eSpaces 5145
Total eSpaces using BPT 179
Total BPTs 353
Average Nodes per BPT 18.7
Number of BPT that use process metadata 120

5.3 Physics of Notations

A Physics of Notations study was performed on BPT. We went through the nine principles

from the Physics of Notations and for each we analysed BPT according to said principle.

5.3.1 Semiotic Clarity

We verified if there is a one-to-one relationship between semantic constructs and concrete

syntax. This was done by mapping each of the constructs with a language symbol and

we found cases of symbol deficit and overload. This happens when there is no symbol

that matches a specific construct (deficit) and if a symbol has more than one construct

pointing to it (overload).

• Deficit: The language semantically supports Forks and Joins for modelling paral-

lelism. However, there are no symbols for these two constructs. This explains why

45

CHAPTER 5. ANALYSING

on the interviews users were complaining about the difficulty to identify synchroni-

sation bugs and model parallelism.

• Overload: There are several cases of symbol overload: The Timeout symbol which is

used for three types of waits (which all have different behaviours); The End symbol

is used for the End construct but also for the Terminate; and there are several ways

of triggering a process, but the Start symbol does not reflect that.

5.3.2 Perceptual Discriminability

Symbols with high visual distance are easier to distinguish. We broke down each of BPT’s

symbols into their base visual variables and defined whether they were semantic carriers

or not. An example of how this was done can be seen in Table 5.2.

Table 5.2: Example of a symbol’s visual variable analysis.

Metaclass Symbol Visual variable value Semantics carrier

Automatic Activity

(x,y): variable
shape:rectangle
colour: orange
brightness: N.A.
size: static
orientation: N.A.
border grain: N.A.

yes
yes
yes
no
no
no
no

The results showed us that no symbol has a visual distance greater than three visual

variables. Colour and shape were the prevalent variables being present in all the symbols.

The language uses textual differentiation, each symbol has a label defined by the user

with the exception of the End symbol. In this case the label is defined on the symbol’s

behaviour (End versus Terminate). The language does not have any mechanisms for

reduntant coding.

5.3.3 Semantic Transparency

There are two ways of defining a language’s transparency: ask a set of novices to match a

symbol to its semantic construct or by iterating each of the constructs and decide on its

transparency. The first method is used in 6.1.6 as part of the production of a new set of

symbols. However, by simply analysing the symbol we can also reach some conclusions.

Below are the symbols that we consider not to be transparent:

Conditional Start. The lighting symbol is often used to represent events, which

fits the conditional element. However, the symbol is in no way related to "starting".

This is mitigated by sharing a colour visual variable with the Start symbol but can

still be considered semantically opaque;

46

5.3. PHYSICS OF NOTATIONS

Call Subprocess. This shape is in no way related to the notion of "Process".

Automatic Activity. This shape is in no way related to the notion of "Automatic

Activity".

5.3.4 Complexity Management

BPT has two mechanics for dealing with complexity: the "Call subprocess" construct and

the "Automatic Activity". The subprocess construct calls a another process and then only

proceeds after all flows of the subprocess finish. The automatic activity encapsulates logic

but does not allow it to be reused.

The Subprocess construct is a good mechanic for managing complexity, since it pro-

motes reusable code and allows for several hierarchical levels. The Automatic Activity

can be improved by allowing re-usability.

5.3.5 Cognitive Integration

A language should have mechanisms to help users interpret diagrams. There are two

ways to achieve this:

• Perceptual integration. All BPT processes require a name which helps the interpre-

tation of the diagram. Subprocess nodes have a label with the process being called

and to view the process the user simply opens the subprocess node. Since BPT is

always contained within ServiceStudio, there is no need for page numbers;

• Conceptual integration. Can be achieved by providing the user a summary or some

context. This to remove the need to try to interpret the diagram to understand its

use. BPT does not have any mechanism that help with conceptual integration.

5.3.6 Visual Expressiveness

Visual expressiveness is related to the number of visual variables the language uses. An

analysis of BPT’s syntax we conclude that BPT’s visual expressiveness is 3 ((x,y), colour

and shape). This value may seem low but it is enough, colour is a very strong visual

variable and considering the language is always used within the Service Studio IDE there

is no need to consider use cases where colour is removed due to printing in black and

white.

5.3.7 Dual Coding

According to this principle text can be used to complement graphics to help interpretation.

However, there are several symbols in BPT that do not make sense without text.

In Figure 5.1 it is clear that without the text it would be impossible to know what

Automatic Activity, Human Activity, Email or Decision are doing. After analysing BPT’s

47

CHAPTER 5. ANALYSING

Figure 5.1: Example of dual coding in BPT.

symbols we concluded that only the End symbol does not require text to be easily inter-

preted.

BPT also has a text annotation construct. This allows users to add non-mandatory

text to the process.

5.3.8 Graphic Economy

Physics of Notations recommends only having six different categories and BPT has nine

different symbols. However, this is not an issue since the language is always used within

ServiceStudio which has a sidebar with all symbols present. This removes the need for

users to memorise the symbols.

5.3.9 Cognitive Fit

BPT’s notation is small and simple to understand. Having separate notations for experts

and novices does not make much sense. The notation is not easy to sketch since the

language was designed to be used within ServiceStudio.

5.4 Usability experiments

One-on-one experiments were performed with inexperienced users. These were done

with the help of an eye-tacker, the software Ogama [60] and the developed UsabilityTool.

The objective was to determine not only syntax issues but also semantic ones.

5.4.1 Experiment protocol

The experiment was set up on a single screen computer with the eye tracker under the

screen. Open on the screen was ServiceStudio with the process that was being tested open

and on the side a set of questions related to that specific process (Figure 5.2). The testers

were all from the Computer Science area and experienced with the OutSystems Platform

but not with BPT.

The first step of the usability experiment was calibrating the eye-tracker using Ogama.

Once that was done the user started answering the questions. Three processes were used

48

5.4. USABILITY EXPERIMENTS

Figure 5.2: Example of Usability Experiment screen.

with varying levels of complexity and covered all the language constructs. After the

completion of the questions relating to the three process, the user answered a SUS and

TLX questionnaire on the UsabilityTool.

At the end of the experiment, there was a small discussion where the user would talk

about the issues they had with the language and also gave ideas for possible solutions.

5.4.2 Experiment analysis

The results of the analysis was mostly a manual process. For each of the experiments the

answers were checked and if a user answered incorrectly then the eye-tracking recording

was used to understand where the user was looking and what caused the error.

A list of issues was compiled and for each a possible solution. Most of the issues were

related to confusion created by the syntax. Most notably were:

• Parallelism. None of the users was able to understand if a node with more than

one incoming flow would wait for all flows and then merge, or would just continue

as a parallel flow;

• End and Terminate. A common issue encountered was either not noticing that

the End and Terminate were not the same, or not understanding the behavioural

difference between the two;

• Decision. A minority of the users did not notice that the Decision node could be

expanded and as such did not understand its semantic behaviour and thought it

was a simple If node;

49

CHAPTER 5. ANALYSING

• Automatic Activity. Most the users expressed confusion about the existence of this

node and defended that it should be an Action. This happens because Automatic

Activity behaves the same way, but without the benefit of being reusable;

• Start. All the users checked the Start node properties for information relating to

what causes the process to start. However, that information is present in the process

properties and not in the Start properties;

• Call subprocess. Approximately half the users defended that the process would be

much easier to interpret if the subprocess node had information about the process

being called. Some recommend a preview of the process being called when moving

the mouse over the node;

• Human Activity. All the users expressed confusion when trying to identify who

were the actors (end-users) that interacted with process. Most defend that there

should be a way to identify the target of a Human Activity simply by looking at the

process and not having to search the properties.

50

C
h
a
p
t
e
r

6
New version of BPT

The first step in creating a new version of BPT was to define its new concrete syntax. The

next step was the implementation of the new syntax which was followed by usability tests

to check if the changes were indeed an improvement over the original syntax.

6.1 Sign Production

During the analysis of the current version of BPT it was concluded that one of the areas

that could be improved was its concrete syntax. The goal was to create a new set of

symbols that had a one to one relation between the concrete and semantic constructs and

with a high level of semantic transparency. This was done by applying a modified method

adapted from the work by Caire et al. [10].

The performed research consists of five interrelated studies (three of which are exper-

iments involving novices). Figure 6.1 summarises the research steps and shows how the

different experiments are related.

Figure 6.1: Research steps.

51

CHAPTER 6. NEW VERSION OF BPT

1. Symbolisation experiment: novices are asked to draw a set of symbols that they

think best represents the language constructs;

2. Stereotyping analysis: a set of symbols is built based on the most common symbols

drawn by the novices;

3. Prototyping experiment: a new group of novices are asked to identify the best

symbol for each construct;

4. Proposed symbol set: a set of symbols is built taking into account the results from

the stereotyping and prototyping experiment, the interviews with users and the

eye-tracking usability tests;

5. Semantic transparency experiment: novices are asked to infer the meaning of each

symbol. This is done for original BPT symbols and all the previous sets generated

from this experiment.

The participants used in each of the experiments are exclusive to that experiment.

This removed the possibility unintentional bias.

6.1.1 Symbolisation experiment

Semantic transparency is achieved when users can infer the meaning of a symbol, so it is

acceptable to conclude that the best way to achieve an acceptable level of transparency is

to have members of the target audience generate a set of symbols for the language. This

was done applying the sign production technique [30] where novices were asked to draw

symbols that best represents each of BPT’s semantic construct.

The questionnaire was printed out and participants were asked to answer them, taking

in average 30 to 40 minutes. The participants were all from Computer Science and aged

between 18 and 32 without prior experience with BPT. The sign production questionnaire

contains (the full questionnaire can be found at Appendix A):

• a cover page which includes information about the study, a disclaimer and an out

of context example to exemplify the expected answer format;

• fifteen questions (one for each of semantic construct) and respective answer box;

• a final page with a series of screening and demographic questions.

To process the questionnaires an application was developed that receives as an input

the questionnaire in digital format, cuts the answers into separate images and saves

them. To make processing even easier, the images are saved in two different directories:

one where the images grouped in folders based on the questionnaire they belong to and

another where they are grouped by semantic construct. Like this, it is possible to view all

52

6.1. SIGN PRODUCTION

the answers of a specific questionnaire or view all the answers for one specific construct.

The application also allows the user to upload the answers to the Usability Application.

The decision to do the questionnaire in paper was based on previous studies and

because it required the least amount of upfront work. However, given the difficulty to find

participants (due to the required time investment) and the extra work to process the data

we concluded that it would beneficial to be able to send the participant a digital version

of the questionnaire and have them draw the answers using a stylus. This conclusion was

reached while processing the data and therefore was not used in this study, but for future

studies it would be best if both paper and digital options were available.

6.1.2 Stereotyping analysis

The analysis of the drawings generated by the sign production technique was done using

the judges’ ranking method [32]. The symbols were first classified into categories based

on their conceptual similarity. Then, the chosen symbol was the one that was most

representative of the category with the most symbols.

As an example, the symbols for the semantic construct "Start process" were divided

into five categories: media play button, a text, a power button, a traffic light and an on switch.

Of the total symbols, 11 were placed in the media play button category, 6 in text, 2 in power
button, 1 in traffic light and 2 in on switch. The rest were not categorised because they

did not make sense or were unreadable. So, for the "Start process" construct the chosen

symbol was the symbol that best represented media play button.

This process was done for each semantic construct, resulting in a set of 15 symbols,

one for each construct (which can be found in Figure 6.2).

Figure 6.2: Set of stereotype symbols.

None of the symbols won with an absolute majority. The large variety of symbols,

and in some cases the lack of answer, demonstrates the difficulty in creating a concrete

representation for the constructs.

53

CHAPTER 6. NEW VERSION OF BPT

6.1.3 Prototyping experiment

To create a prototype set of symbols, a new questionnaire were created. This one still

contains a question for each construct. Each question has a description of the semantic

construct and a set of possible symbols for that construct. The possible answers are a

symbol from each category previously defined in 6.1.2. Participants are asked to choose

what they think is the best symbol to represent the description of the semantic construct.

Two version of the questionnaire was created, one in paper (the full questionnaire can be

found at Appendix B) and another using a digital third party platform for usability tests

called UsabilityHub1.

Processing the questionnaires was simplified due to the usage of a digital platform

and most the answers were done digitally. UsabilityHub allows the data to exported to a

spreadsheet. The latter was then completed with the answers from the paper version.

Figure 6.3: Set of prototype symbols.

The set of winning symbols can be seen in Figure 6.3. None of the symbols won with

absolute majority and there are a few symbols that match the Stereotyping analysis and

others that are radically different. Of note is the Subprocess construct, since this symbol

has a dynamic effect as it is a real-time representation of the process being called which

expands when the user mouses over it.

6.1.4 Original BPT

From a Physics of Notations point of view, the original set of symbols has several problems.

Some of the symbols are semantically perverse, and there is more than one case of symbol

overload and symbol deficit.

1http://usabilityhub.com

54

http://usabilityhub.com

6.1. SIGN PRODUCTION

Figure 6.4: BPT’s original set of symbols.

There are also some issues with platform consistency. The "Custom logic" and "Broad-

cast DB or API event" symbols do not match the rest of the platform. The same semantic

constructs are represented by an orange ball. The full set of original symbols can be found

in Figure 6.4.

6.1.5 Proposed symbol set

One of the issues with the stereotyping and prototyping experiments is that each symbol

is generated independently, this means it does not consider the development environment

or the need for consistency with the rest of the OutSystems platform. With this mind, a

new set of symbols was created (Figure 6.5), this one takes into account consistency while

trying to remain as close as possible to the set of prototype symbols.

Figure 6.5: Set of proposed symbols.

The "End" and "Terminate" remain green (even though that could be considered se-

mantically perverse), this was done because "End" is green on the rest of the platform.

55

CHAPTER 6. NEW VERSION OF BPT

Changing it on the rest of the platform would have a large impact on established users so

it was decided that it would be best to keep the green.

The bigger changes when compared to the prototype symbol set were to the database

symbol, the timeout and API waits, the fork, the join and the alternative flow:

• The database symbol: In both the stereotype and prototype set of symbols a set of

three cylinders is used to represent any activity that related to database. This makes

sense since it is the most common representation for databases. However, Service

Studio uses a different representation (a blue table). As such, all representations

related to data were changed to maintain consistency;

• Waits: These were switched because waiting for an API call is unconditional pause.

A timeout is a condition so in order to be consistent with the database wait (which is

also conditional), it was decided it would be best have an overlay on the conditions;

• Fork and Join: Arrows in Service Studio are only used to specify flows and have no

semantic definition. As such, the fork and join in the stereotype symbol would be a

drastic change to the common behaviour of the arrows. The "bar" from the prototype

symbol set was not used because semantically it is important to differentiate forks

from joins. The symbol proposed came in second on the prototyping experiment;

• Alternative flow: the symbol in both stereotype and prototype were too similar to

the "Start" symbol. As such, it was decided that it would be best to maintain the

current symbol but add an overlay depending on what triggers the alternative flow.

6.1.6 Semantic transparency experiment

Comprehension tests [64] are commonly used to measure the symbol’s transparency and

is used for testing ISO standard symbols [10]. The comprehensibility survey has a ques-

tion for each of the symbols in the set. Each question has one of the language’s concrete

symbols on top and then a list with all the language’s semantic constructs. The tester

then selects one or more constructs that, in their opinion, best matches the symbol. Com-

prehensibility is then measured by the symbol’s hit rate. The testers were all Computer

Science MSc students.

A survey was created for each of the different sets of symbols (a tester can only answer

one of the surveys to prevent bias). The surveys were created in digital form, this allows

the maximum number of novice participants to answer the survey. A web application was

created that asks the tester to input their academic email, the email is checked and it is

saved in the database if it has not been used yet. Then, the application randomly directs

the tester to one of the four surveys. This ensures that a tester does no answer more than

one survey.

The results shown in Figure 6.6 show that the Prototype set is the most semantically

transparent set of symbols. This is the same conclusion Caire et al. [10] reached, however

56

6.2. MODIFYING BPT

Figure 6.6: Semantic transparency results.

in this case there is not such a large discrepancy between the Stereotype and the Prototype

sets.

Only the Prototype and Proposed meet the ISO threshold for symbol acceptance (67%

[10]). The original set of symbols being much lower than the rest, this demonstrates the

importance of involving the end-users in the construction of a language’s concrete syntax.

Also, there were several constructs with 0% transparency. These were the ones with

problems related to symbol overload or deficit, reinforcing the need to have a one-to-one

relationship between the semantic constructs and the concrete syntax.

The slight alterations in order to maintain consistency with the platform resulted in a

minor decrease in transparency. But, it is still above the ISO threshold.

6.2 Modifying BPT

Some changes were direct (simply changing the icon) but others required changes to how

the flows work. This section goes over each of the changes made to BPT and how they

were implemented. Note that all these changes are a prototype and were made only to

test the proposed syntax. As such, all changes are all client side and can not be compiled.

6.2.1 Adding new elements, updating symbols and syntactic rules

The original BPT set of symbols was comprised of nine symbols while the new one has a

total of fifteen different symbols. So, in order not to increase the language’s complexity

by adding six new symbols to the toolbar, certain symbols were placed in groups and

57

CHAPTER 6. NEW VERSION OF BPT

the symbol changes based on attribute values. As such, only two new symbols had to be

added to toolbar: Fork and Join.

The BPT language is defined by a meta-model which contains all the syntactical rules

and constraints. This is then consumed by a compiler which then generates a series

of partial classes which can then be completed with the language’s semantics. To add

the new elements, nodes were created in the meta-model but their semantics were not

touched given that the changes are just to prototype the syntax.

In order to view what causes a process to start you need to view the properties of the

process. During the usability tests 100% of the participants first looked at the properties

of the Start button for this information. As such, the property was replicated to the Start

button and any change made on button is updated in the process’s property. This ensures

there will not be any conflicts even though there is redundancy.

Some symbols have the same behaviour as the original ones, in these cases the only

change made was the replacement of the original icon with the new one. This was the

case for the Decision and Wait nodes. The symbols present in the new toolbar can be seen

in Figure 6.7.

Figure 6.7: Updated toolbar.

Given that the language now has explicit symbols for parallelism, the syntactical

rules for outgoing arrows had to be updated. Originally any node could have N outgoing

and incoming arrows, changes were made to ensure that only the Decision (number of

outgoing arrows is based on the condition) and Fork can have N outgoing arrows.

6.2.2 Symbol groups

Certain symbols were grouped together in order to reduce complexity. For each of these

groups a symbol was chosen to represent the group and then it is updated with an overlay

based on properties (Figure 6.8).

(a) API Call (b) DB Event (c) Timeout

Figure 6.8: Example of the Wait symbol group.

58

6.2. MODIFYING BPT

The following groups were created:

• Waits. The groups includes the Wait for API call, Wait for DB event and the Wait for
timeout constructs. The symbol used to represent it is the Wait for API call symbols

since it is the most generic of the three;

• End and Terminate. This group contains the End and Terminate symbols. They

both have similar functionality but the End is most commonly used, as such it was

chosen to represent the group;

• Start. The launch of a process can be done in different ways. The default symbol for

Start is the one presented in 6.5, however if the process is launched via a DB event

then the symbol is updated with a small overlay;

• Conditional start. The proposed symbol for the Conditional Start has an overlay

representative of a DB event. However, the conditional start can also be triggered

by an API call. As such, the default symbol used does not have an overlay but if the

user chooses a DB event as a trigger then the overlay is applied.

With the aforementioned a stereotype was created. If an event symbol does not have

an overlay then the event is triggered via an API call, otherwise it is triggered based on

the symbol present in the overlay.

6.2.3 Using Actions in BPT

An Action is a piece of reusable code. There are different types of Actions: actions created

by users which can include any type of custom logic, a set of system actions provided by

ServiceStudio, entity actions that are used to manipulate the database, and API actions

which interact with triggers and other APIs.

Originally in BPT all action calls and logic had to be encapsulated in an Automatic
Activity (6.9(a)). These were not reusable and at times created unnecessary complexity.

(a) Automatic Activity (b) Actions

Figure 6.9: Comparison of original Automatic Activity with new Actions.

59

CHAPTER 6. NEW VERSION OF BPT

Changes had to be made to the ServiceStudio syntax to allow Actions to be used in

the BPT flow. With this, Actions have now replaced the Automatic Activity (6.9(b)) since

they provide generalisation and re-usability while not creating unnecessary complexity.

60

C
h
a
p
t
e
r

7
Results

The metrics used in the analysis were gathered using usability experiments presented in

4.1.4. The same set of questions was used for both languages (original and new BPT). The

examples that were analysed by the testers to answer the questions were semantically the

same but the syntax differed based on what version of BPT was being tested.

A total of 25 testers participated in the experiment. The testers were all Computer

Scientists, 84% of them were male and 16% female, they were all aged between 23 and

40 years old, and none of them had any previous experience with BPT.

7.1 Usability experiment

Figure 7.1 contains a graphic overview of the results.

Figure 7.1: Graph of answer distribution

61

CHAPTER 7. RESULTS

Each number present in Figure 7.1 corresponds to a question which can be found on

table 7.1. Said table also includes a more detailed overview of the results and comments

about the New BPT tests.

Table 7.1: Results of usability tests

Correct Answer Rate (%)

Question Original BPT New BPT New BPT Comments

1. What causes
the process to
start.

6.25 100

The participants did not have any
trouble finding the information since it
is now present on the Start button
(which was the first place to be
checked).

2. Which nodes
require human
interaction.

100 100
Same result as the Original BPT test.
This was expected since the symbol
was not changed.

3. What nodes
send e-mails.

100 100
This is the same case as the question
above.

4. Can this
process fail.

62.5 100
Testers had a much easier time
understanding the difference between
End and Terminate.

5. Why can this
process fail.

31.25 66.66

There is still some confusion about the
scope of Terminate. It is not clear if the
Terminate in the sub-process also kills
the parent.

6. What node
finishes a
process flow.

31.25 100
With different symbols for each
construct testers no longer confuse the
two.

7. What node
finishes all
process flows.

31.25 100 Same as the above.

8. Who are the
participants
(actors) in this
process.

0 33.33
No changes were made to this node so
identifying who interacts with the
process is still a problem.

9. Who is
responsible for
each node.

100 100

As with the previous experiment, once
the testers were given information
about the actors it was easy to match
them. This is due to the intuitive labels
on the nodes. If the labels were not
present the results would be much
worse.

62

7.2. SUS AND TLX

7.2 SUS and TLX

To determine the language’s usability we analysed the SUS and TLX scores gathered

from usability experiments. By analysing these two scores we can determine whether the

difference between the original and the new BPT language are significant and relevant.

As a reminder, a higher SUS score is better while a lower TLX score is better.

7.2.1 Descriptive statistics

Table 7.2 contains descriptive statistics for the SUS and TLX data collected while perform-

ing the usability tests. The table is grouped by score type and each type contains statistics

for the original BPT language (BPT) and the new BPT language (New BPT).

Table 7.2: Descriptive statistics

Language N Mean Std. Deviation Skewness Kurtosis Shapiro-Wilk

SUS BPT 16 42.25 11.72 -0.021 -0.67 0.896
New BPT 9 64.78 10.02 0.213 -1.05 0.697

TLX BPT 16 36.5 14.47 0.421 -0.61 0.686
New BPT 9 20.78 8.72 -0.118 -1.81 0.245

7.2.2 Hypotheses testing

Welch’s t-test was used instead of the Student’s t-test for testing the difference in SUS and

TLX scores between the current and the new versions of BPT. This happens because it

has been shown that the Welch’s t-test is better suited for studies with different sample

sizes [33].

Table 7.3 contains: the means for both SUS and TLX; the difference between the

original and new BPT means; the 95% confidence interval of the difference; t, df and

p-values.

Table 7.3: Welch’s t-test scores

BPT
mean

New BPT
mean

Difference
95%

Dif. CI
Lower

95%
Dif. CI
Upper

t df p-value

SUS 42.25 64.78 -22.53 -31.83 -13.22 -5.07 19.01 0.000
TLX 36.50 20.78 15.72 6.12 25.32 3.39 22.80 0.003

We hypothesised that the new version of BPT would have a higher usability rating

when compared to the original version. The SUS and TLX scores differed significantly

according to Welch’s t-test, tSUS(-5.07) = 19.01, pSUS = .000 and tTLX(3.39) = 22.80, pTLX =

.003. On average, users who tested the original version of BPT gave it a SUS score of 42.25

and a TLX score of 36.50, while users who tested the new version of BPT gave it a SUS

63

CHAPTER 7. RESULTS

score of 64.78 and a TLX score of 20.78. The 95% confidence interval of the difference for

the effect of the new BPT on the SUS score is between -31.83 and -13.22 and on the TLX

score it is between 6.12 and 25.32. As such, these results support our hypothesis.

The above is further show in Figure 7.2 which contains a graphical display of the SUS

and TLX scores.

(a) SUS Score (b) TLX

Figure 7.2: Box plot of distribution

7.3 Discussion of results and implications

Looking at the Semantic transparency results (Figure 6.6) it is clear that symbols created

by the users are far more transparent than those created by language engineers. This is

consistent with Caire et al.’s findings [10]. This is further demonstrated in our analysis of

diagrams through usability experiments (Table 7.1).

The results of the usability experiments also illustrates the importance of having a

one-to-one relationship between the concrete and semantic constructs. This corroborates

Moody’s Physics of Notations [44].

When analysing the SUS and TLX scores (Table 7.3 and Figure 7.2) the TLX score de-

creases as the SUS score increases. This seems to suggest that there is a direct relationship

between the language’s usability and the perceived workload.

As seen in subsection 7.2.2 the results support our hypothesis. As such, we conclude

that the dissertations objectives were achieved.

7.4 Threats to validity

Of the threats presented by Wohlin et. al. in [63], the only concerning one was the one

related to the population selection. When selecting testers it is important that they pro-

vide a representative sample of the population. Unfortunately, due to resource constrains,

64

7.4. THREATS TO VALIDITY

all the testers used in the usability experiments were members of OutSystems (not part

of the BPT development team). Ideally there would be representatives of OutSystems

developers and business managers. This would allow us to measure the usability from a

developer’s perspective and also the usability from the perspective of people who simply

interpret the process.

65

C
h
a
p
t
e
r

8
Conclusions and future work

This dissertation had two primary objectives: to create a systematic process for evaluating

language’s usability, and to identify and fix any usability issues with a domain specific

language from OutSystems called Business Process Technology.

We first started with the evaluation process since it would later be used to analyse

BPT. The process begins with evaluators collecting and analysing normal everyday usage

data, performing interviews with language users and performing a Physics of Notations

analysis. Once those steps have been completed, the evaluator should conduct usability

experiments where the testers are asked to interpret a solution developed using the lan-

guage being evaluated and are asked a series of questions related to the example. With

all the collected data the evaluator should then decide whether the language needs to be

improved. If it doesn’t then the process ends. Otherwise, the evaluator should then use

the Sign Production Technique to develop a new syntax. The process should then restart

using the new concrete syntax.

With the process complete, we then applied it to BPT. A few issues were identified

(both with the concrete and semantic constructs) and a new notation was created. Changes

were made to BPT within ServiceStudio (OutSystem’s development environment) and the

process was applied once again to BPT using the new notation. Performing a comparison

analysis between the original and new notation showed a significant increase in usability.

The comparison analysis between and original and new version BPT confirmed that

the process is effective and that the new notation has a higher usability rating. But, other

conclusions were also made: Semantic transparency has a large impact on usability; users

create more semantic transparent symbols than language engineers (which goes in line

with what Caire et al. concluded [10]); and it is extremely important to have a one-to-one

relationship between the concrete syntax and semantic constructs.

67

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

8.1 Contributions

The main contribution of this dissertation was the process for evaluating languages. The

proposed process guides language engineers through the evaluation of the language,

helps them create a new version of the language’s concrete syntax, which is then compared

to the previous version. This process is repeated until the comparison analysis shows an

increase in usability. A companion application was created that can be used to organise

the data, while following the proposed process.

Another contribution was a report of usability issues with BPT and a new syntax

for the language, that has a much higher semantic transparency rating. These were

achieved by applying the proposed process to BPT, which also serves to demonstrate

the effectiveness of the proposed process. The new syntax created for BPT using the

proposed process was implemented on ServiceStudio.

8.2 Future work

This dissertation had two main objectives: the evaluation process and the improvements

to BPT. Even though both objectives were achieved, they can still be improved. The

evaluation process can be expanded with further techniques and modified to also be

applicable to textual languages. BPT still has some issues with its semantic constructs

which should be studied and resolved.

The evaluation process identifies issues with a language’s concrete and semantic con-

structs. However, it only provides methods to improve the language’s concrete syntax.

The process should be further expanded with techniques that help language engineers

design semantic constructs from the ground up that answer the needs of the users, while

having a high usability rating. This could be achieved with the addition of techniques

from Requirements Engineering but further research is required.

The proposed usability evaluation process should also make more use of the eye-

tracking data. The current process only uses the eye-tracker to manually revisit recordings

of the usability tests and to identify possible reasons for wrong answers. However, there

are several metrics that can be extracted from the eye-tracking results that provides

objective information about the tester (states of confusion, being lost in the interface,

etc.). This, added to the SUS score provides a more accurate overview of the language’s

usability.

During the analysis of the comparison between the original BPT notation and the

new one, we noted that there appears to be a direct relation between a languages system

usability score and testers task load index. This should be further researched.

Lastly, more testing should also be done on the proposed process. The process and its

techniques should be applied to other visual languages.

68

Bibliography

[1] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu,

D. Roller, D. Smith, S. Thatte, et al. Business process execution language for web
services. Tech. rep. IBM, 2003. url: http://www-106.ibm.com/developerworks/

library/ws-bpel/.

[2] J. Arlow and I. Neustadt. UML 2 and the unified process: practical object-oriented
analysis and design. Pearson Education, 2005.

[3] A. Bangor, P. T. Kortum, and J. T. Miller. “An empirical evaluation of the system

usability scale”. In: vol. 24. 6. Taylor & Francis, 2008, pp. 574–594.

[4] A. Barišić, V. Amaral, M. Goulão, and B. Barroca. “Evaluating the usability of

domain-specific languages”. In: ed: IGI Global, 2012.

[5] J. Bertin. Semiology of graphics: diagrams, networks, maps. Esri Press, 1983.

[6] A. F. Blackwell. “Dealing with new cognitive dimensions”. In: Workshop on Cogni-
tive Dimensions: Strengthening the Cognitive Dimensions Research Community., Uni-
versity of Hertfordshire. 2000.

[7] W. Brauer, W. Reisig, and G. Rozenberg, eds. Petri Nets: Applications and Rela-
tionships to Other Models of Concurrency. Springer Berlin Heidelberg, 1987. doi:

10.1007/3-540-17906-2. url: http://dx.doi.org/10.1007/3-540-17906-2.

[8] J. Brooke. “SUS-A quick and dirty usability scale”. In: Taylor & Francis, 1996,

pp. 189–194.

[9] E. A. Bustamante and R. D. Spain. “Measurement invariance of the Nasa TLX”. In:

Proceedings of the Human Factors and Ergonomics Society Annual Meeting. Vol. 52.

19. SAGE Publications. 2008, pp. 1522–1526.

[10] P. Caire, N. Genon, P. Heymans, and D. L. Moody. “Visual notation design 2.0: To-

wards user comprehensible requirements engineering notations”. In: Requirements
Engineering Conference (RE), 2013 21st IEEE International. IEEE. 2013, pp. 115–

124.

[11] B. Cassin, S. Solomon, and M. L. Rubin. Dictionary of eye terminology. Triad Pub.

Co., 1984.

[12] R. Dawson. Secrets of power problem solving. Open Road Media, 2012.

69

http://www-106.ibm.com/developerworks/library/ws-bpel/
http://www-106.ibm.com/developerworks/library/ws-bpel/
http://dx.doi.org/10.1007/3-540-17906-2
http://dx.doi.org/10.1007/3-540-17906-2

BIBLIOGRAPHY

[13] S. Debois, T. Hildebrandt, M. Marquard, and T. Slaats. “Hybrid Process Technolo-

gies in the Financial Sector”. In: CEUR, 2015. url: http://ceur-ws.org/Vol-

1439/paper9.pdf.

[14] M. Dumas and A. H. Ter Hofstede. “UML activity diagrams as a workflow spec-

ification language”. In: UML 2001—The Unified Modeling Language. Modeling
Languages, Concepts, and Tools. Springer, 2001, pp. 76–90.

[15] S. Eric. Social modeling for requirements engineering. Mit Press, 2011.

[16] K. Figl, J. Mendling, and M. Strembeck. “Towards a Usability Assessment of Process

Modeling Languages”. In: Proc. of EPK 2009. 2009, pp. 118–136.

[17] N. Genon, P. Heymans, D. L. Moody, and D. Amyot. BPMN 2.0 Process Models:
Analysis according to the “Physics” of Notations Principles. Tech. rep. PReCISE -

University of Namur, 2010. url: http://www.info.fundp.ac.be/~nge/BPMN/

BPMN2_PoN_Analysis.pdf.

[18] N. Genon, P. Heymans, and D. Amyot. “Analysing the cognitive effectiveness of the

BPMN 2.0 visual notation”. In: Springer Berlin Heidelberg, 2011, pp. 377–396.

[19] N. Goodman. Languages of art: An approach to a theory of symbols. Hackett publish-

ing, 1968.

[20] T. R. G. Green and M. Petre. “Usability analysis of visual programming environ-

ments: a ‘cognitive dimensions’ framework”. In: vol. 7. 2. Academic Press, 1996,

pp. 131–174.

[21] T. R. Green. “Instructions and descriptions: some cognitive aspects of program-

ming and similar activities”. In: Proceedings of the working conference on Advanced
visual interfaces. ACM. 2000, pp. 21–28.

[22] T. R. Green and A. Blackwell. “Cognitive dimensions of information artefacts: a

tutorial”. In: BCS HCI Conference. Vol. 98. 1998.

[23] H. P. R. Group. Nasa Task Load Index (TLX) v. 1.0 Manual. NASA Ames Research

Center, 1986.

[24] B. Grácio. “Agregado: Compilar Sistemas NoSQL na Plataforma OutSystems”. MA

thesis. Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2015.

[25] T. Gschwind, F. Paoli, V. Gruhn, and M. Book. Software Composition. Springer,

2012.

[26] S. G. Hart. “NASA-task load index (NASA-TLX); 20 years later”. In: Proceedings of
the human factors and ergonomics society annual meeting. Vol. 50. 9. Sage Publica-

tions. 2006, pp. 904–908.

[27] S. G. Hart and L. E. Staveland. “Development of NASA-TLX (Task Load Index):

Results of empirical and theoretical research”. In: vol. 52. Elsevier, 1988, pp. 139–

183.

70

http://ceur-ws.org/Vol-1439/paper9.pdf
http://ceur-ws.org/Vol-1439/paper9.pdf
http://www.info.fundp.ac.be/~nge/BPMN/BPMN2_PoN_Analysis.pdf
http://www.info.fundp.ac.be/~nge/BPMN/BPMN2_PoN_Analysis.pdf

BIBLIOGRAPHY

[28] R. Hat. JBoss Developer. 2016. url: http://www.jboss.org/ (visited on Aug. 11,

2016).

[29] S. Hitchman. “The details of conceptual modelling notations are important-a com-

parison of relationship normative language”. In: vol. 9. 1. AIS, 2002, p. 10.

[30] W. C. Howell and A. H. Fuchs. “Population stereotypy in code design”. In: vol. 3.

3. Elsevier, 1968, pp. 310–339.

[31] E. B. Huey. The psychology and pedagogy of reading. The Macmillan Company, 1908.

[32] S. Jones. “Stereotypy in pictograms of abstract concepts”. In: vol. 26. 6. Taylor &

Francis, 1983, pp. 605–611.

[33] B. Kitchenham, L. Madeyski, P. Brereton, S. Charters, S. Gibbs, and A. Pohthong.

“Robust Statistical Methods for Empirical Software Engineering”. In: Springer,

2016. doi: 10.1007/s10664-016-9437-5.

[34] S. Krug. Rocket surgery made easy. Uitgeverij Thema, 2011.

[35] W. Lidwell, K. Holden, and J. Butler. Universal principles of design, revised and
updated: 125 ways to enhance usability, influence perception, increase appeal, make
better design decisions, and teach through design. Rockport Pub, 2010.

[36] A. Lima. OutSystems Platform - Architecture and Infrastructure Overview. Tech.

rep. OutSystems, 2013. url: https://www.outsystems.com/home/document-

download/178/8/0/0.

[37] Y. Liu and C. D. Wickens. “Mental workload and cognitive task automaticity: an

evaluation of subjective and time estimation metrics”. In: vol. 37. 11. Taylor &

Francis Group, 1994, pp. 1843–1854.

[38] K. Lynch. The image of the city. MIT press, 1960.

[39] Microsoft. ASP.NET. 2016. url: http://www.asp.net/ (visited on Aug. 11, 2016).

[40] Microsoft. ISS. 2016. url: https://www.iis.net/ (visited on Aug. 11, 2016).

[41] Microsoft. SQL Server. 2016. url: http://www.microsoft.com/en-us/server-

cloud/products/sql-server-2016/ (visited on Aug. 11, 2016).

[42] Microsoft. Windows Server 2016. 2016. url: http://www.microsoft.com/en-

us/server-cloud/products/windows-server-2016/ (visited on Aug. 11, 2016).

[43] D. Moody. “Theory development in visual language research: Beyond the cognitive

dimensions of notations”. In: Visual Languages and Human-Centric Computing,
2009. VL/HCC 2009. IEEE Symposium on. IEEE. 2009, pp. 151–154.

[44] D. L. Moody. “The “physics” of notations: toward a scientific basis for constructing

visual notations in software engineering”. In: vol. 35. 6. IEEE, 2009, pp. 756–779.

[45] D. L. Moody, P. Heymans, and R. Matulevičius. “Visual syntax does matter: improv-

ing the cognitive effectiveness of the i* visual notation”. In: vol. 15. 2. Springer-

Verlag, 2010, pp. 141–175.

71

http://www.jboss.org/
http://dx.doi.org/10.1007/s10664-016-9437-5
https://www.outsystems.com/home/document-download/178/8/0/0
https://www.outsystems.com/home/document-download/178/8/0/0
http://www.asp.net/
https://www.iis.net/
http://www.microsoft.com/en-us/server-cloud/products/sql-server-2016/
http://www.microsoft.com/en-us/server-cloud/products/sql-server-2016/
http://www.microsoft.com/en-us/server-cloud/products/windows-server-2016/
http://www.microsoft.com/en-us/server-cloud/products/windows-server-2016/

BIBLIOGRAPHY

[46] T. Murata. “Petri nets: Properties, analysis and applications”. In: vol. 77. 4. IEEE,

1989, pp. 541–580.

[47] E. Murphy-Hill, S. Markstrum, and C. Anslow. “Evaluation and usability of pro-

gramming languages and tools (PLATEAU)”. In: Proceedings of the ACM interna-
tional conference companion on Object oriented programming systems languages and
applications companion. ACM. 2010, pp. 265–266.

[48] J. Nielsen. Usability engineering. Elsevier, 1994.

[49] Oracle. Oracle WebLogic Server. 2015. url: http://www.oracle.com/technetwork/

middleware/weblogic/overview/index-085209.html (visited on Aug. 11, 2016).

[50] Oracle. MySQL. 2016. url: https://www.mysql.com/ (visited on Aug. 11, 2016).

[51] Oracle. Oracle. 2016. url: http://www.oracle.com/index.html (visited on

Aug. 11, 2016).

[52] OutSystems. OutByNumbers - Benchmark Overview Report. Tech. rep. OutSystems,

2013. url: http://www.outsystems.com/res/OutbyNumbers-DataSheet.

[53] H. Plattner, C. Meinel, and L. Leifer. Design thinking: Understand–improve–apply.

Springer Science & Business Media, 2010.

[54] F. Puhlmann. BPMN 2.0 Wimmelbild. 2009. url: http://frapu.de/blog/

comments.php?y=09&m=07&entry=entry090701- 211320 (visited on Jan. 19,

2016).

[55] W. Reisig. Petri nets: an introduction. Vol. 4. Springer Science & Business Media,

2012.

[56] S. Rubio, E. Díaz, J. Martín, and J. M. Puente. “Evaluation of subjective mental

workload: A comparison of SWAT, NASA-TLX, and workload profile methods”. In:

vol. 53. 1. Blackwell Publishing Ltd, 2004, pp. 61–86.

[57] Z. Sharafi, Z. Soh, and Y.-G. Guéhéneuc. “A systematic literature review on the

usage of eye-tracking in software engineering”. In: vol. 67. Elsevier, 2015, pp. 79–

107.

[58] A. Smith and A. S. Skinner. The wealth of nations. Vol. 3. World Scientific, 1991.

[59] I. Vessey. “Cognitive fit: A theory-based analysis of the graphs versus tables litera-

ture”. In: vol. 22. 2. Wiley Online Library, 1991, pp. 219–240.

[60] A. Voßkühler. “OGAMA description (for Version 2.5)”. In: 2009.

[61] B. Weber, W. Wild, and R. Breu. “CBRFlow: Enabling adaptive workflow manage-

ment through conversational case-based reasoning”. In: Advances in Case-Based
Reasoning. Springer, 2004, pp. 434–448.

[62] S. A. White. BPMN modeling and reference guide: understanding and using BPMN.

Future Strategies Inc., 2008.

72

http://www.oracle.com/technetwork/middleware/weblogic/overview/index-085209.html
http://www.oracle.com/technetwork/middleware/weblogic/overview/index-085209.html
https://www.mysql.com/
http://www.oracle.com/index.html
http://www.outsystems.com/res/OutbyNumbers-DataSheet
http://frapu.de/blog/comments.php?y=09&m=07&entry=entry090701-211320
http://frapu.de/blog/comments.php?y=09&m=07&entry=entry090701-211320

BIBLIOGRAPHY

[63] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén. Experi-
mentation in software engineering. Springer Science & Business Media, 2012.

[64] H. Zwaga and T Boersema. “Evaluation of a set of graphic symbols”. In: vol. 14. 1.

Elsevier, 1983, pp. 43–54.

73

A
p
p
e
n
d
i
x

A
Sign Production Technique questionnaire

Presented here is the Sign Production Technique questionnaire. The presented version is

meant for novices who have not had any contact with the BPT language.

75

Survey on OutSystems BPT notations
Universidade Nova de Lisboa
Faculdade de Ciências e Tecnologia
Departamento de Informática
NOVA LINCS
Contact for this survey: Henrique Henriques (h.henriques@campus.fct.unl.pt)

Part 1 Visual representations
For each of these concepts, we provide you with space so that you can draw the visual representations
(not necessarily a single icon) for the BPT (Business Process Technology) language in OutSystems.
Please draw a representation which, in your opinion, best fits the description of the concept.

Notes:
● Participation is voluntary and anonymous. Although there is no fixed time limit for completing this questionnaire,

we estimate that, overall, it should not exceed around 30 minutes. Thank you very much for your kind participation.
● There are no right or wrong answers, so you’re invited to use your best judgment to visually represent those concepts,

as best as you can.

Example from an unrelated language: Represent a light bulb switching state (on and off) based on
an event.

Your suggestion:

1. Pauses the flow waiting for a timeout.

Your suggestion:

2. Represent parallelism. The process execution path divides into two parallel paths.

Your suggestion:

3. Runs a subprocess. The parent process only proceeds after all flows of the subprocess finish.

Your suggestion:

4. Initiates the process.

Your suggestion:

5. Sends a specified email message in the process flow.

Your suggestion:

6. Pauses the execution waiting for a DB event

Your suggestion:

7. Finishes a process flow. The process may continue in parallel flows.

Your suggestion:

8. Directs the execution path to a specific activity based on custom logic.

Your suggestion:

9. Performs custom logic in the application or in external systems.

Your suggestion:

10. Initiates an alternative flow and may be triggered by a DB event or an explicit API call.

Your suggestion:

11. Represent a fork and join: The main execution path is divided into two parallel paths and after
each path has finished their task, they merge back into the main execution.

Your suggestion:

12. Terminate all the flows of the a process.

Your suggestion:

13. Waits for a user, or group, to complete the given task.

Your suggestion:

14. Used to broadcast an event (via DB) or call an API to deliver an event to a specific activity or

process.

Your suggestion:

15. Pauses the execution path and resumes when a specific API action is called.

Your suggestion:

Part 2 Background information questionnaire
Please fill in this background questionnaire:

1. Age: ____
2. Gender: Female [] / Male []
3. Nationality:_____________________________
4. Completed academic degrees: BSc [] / MSc [] / PhD []
5. Degree in: Informatics [] / Other area []; which area? ______________________________

6. Are you familiar with other process modeling techniques/languages? Yes [] / No []
7. If you are, which are you familiar with?

[] BPMN
[] OutSystems BPT
[] Others: __

8. Have you ever used any process modeling language? Yes [] / No []
9. If you have, which process modeling languages have you used before?

[] BPMN
[] OutSystems BPT
[] Others: __

10. How often do you use process modeling languages in your professional activities (please choose

the closest match)?
[] Every day
[] once per week
[] once per month
[] once per year
[] occasionally (but less than once per year)
[] never

11. If you have used process modeling languages, please state in which context have you used them

(please choose all that apply):
[] educational
[] industry
[] research
[] entertainment

A
p
p
e
n
d
i
x

B
Prototype symbol set questionnaire

This is the questionnaire used to create the Prototype version of the concrete syntax.

Appended here is the paper version, there is a second version (digital) created using the

usability testing platform called UsabilityHub.

87

Prototype Symbol Set Questionnaire

The following images are possible candidates for a specific semantic construct of a visual
programming language. Please read the definition of the construct and choose the notation that you
think best represents it.

Some of the representations have text in round brackets, this is a note with information to help
understand the representation. Text in curly brackets is part of the representation and that text
changes based on a variable (Out of context example: "{current date}").

When choosing a representation please ignore its quality, these are quick drafts. To answer just
input the number present in the left corner of the visual representations.

1. Pauses the flow waiting for a timeout.

Answer: _______

2. Represent parallelism. The process execution path divides into two parallel paths.

Answer: _______

3. Runs a subprocess. The parent process only proceeds after all flows of the subprocess
finish.

Answer: _______

4. Initiates the process.

Answer: _______

5. Sends a specified email message in the process flow.

Answer: _______

6. Pauses the execution waiting for a DB event.

Answer: _______

7. Finishes a process flow. The process may continue in parallel flows.

Answer: _______

8. Directs the execution path to a specific activity based on custom logic.

Answer: _______

9. Performs custom logic in the application or in external systems.

Answer: _______

10. Initiates an alternative flow and may be triggered by a DB event or an explicit API call.

Answer: _______

11. Represent a fork and join: The main execution path is divided into two parallel paths and
after each path has finished their task , they merge back into the main execution.

Answer: _______

12. Terminate all the flows of the a process.

Answer: _______

13. Waits for a user, or group, to complete the given task.

Answer: _______

14. Used to broadcast an event (via DB) or call an API to deliver an event to a specific
activity or process.

Answer: _______

15. Pauses the execution path and resumes when a specific API action is called.

Answer: _______

	List of Figures
	List of Tables
	Acronyms
	Introduction
	Context and Description
	Motivation
	Objectives
	Key Contributions
	Structure

	Background
	OutSystems
	OutSystems Platform

	Process languages
	Business Process Technology
	Business Process Model and Notation
	Dynamic Condition Response
	Petri Nets
	UML - Activity Diagram

	Human-computer interaction techniques
	System Usability Scale
	Cognitive Dimensions
	The Physics of Notations
	NASA Task Load Index

	Related work
	Using Physics of Notations to evaluate BPMN 2.0
	Semiotic Clarity
	Perceptual Discriminability
	Semantics transparency
	Complexity Management
	Cognitive Integration
	Visual Expressiveness
	Dual Coding
	Graphic Economy
	Cognitive Fit

	Using Visual Notation Design to improve i*
	The i* standard and Physics of Notations
	Stereotyping
	Prototyping
	Choosing the best symbol set

	Eye-tracking in language evaluation
	Technology
	Limitations
	Data analysis

	The OutSystems method
	The method

	Evaluation process
	The process
	Perform interviews
	Collect and analyse usage data
	Physics of Notations
	Usability experiments
	Designing a new notation
	Analyse the new notation

	Usability Tool
	Languages
	Usability Sessions
	Sign Production

	Analysing bpt
	Interviews
	Interview questions
	Insight analysis

	Data Collection
	Physics of Notations
	Semiotic Clarity
	Perceptual Discriminability
	Semantic Transparency
	Complexity Management
	Cognitive Integration
	Visual Expressiveness
	Dual Coding
	Graphic Economy
	Cognitive Fit

	Usability experiments
	Experiment protocol
	Experiment analysis

	New version of BPT
	Sign Production
	Symbolisation experiment
	Stereotyping analysis
	Prototyping experiment
	Original bpt
	Proposed symbol set
	Semantic transparency experiment

	Modifying BPT
	Adding new elements, updating symbols and syntactic rules
	Symbol groups
	Using Actions in BPT

	Results
	Usability experiment
	SUS and TLX
	Descriptive statistics
	Hypotheses testing

	Discussion of results and implications
	Threats to validity

	Conclusions and future work
	Contributions
	Future work

	Bibliography
	Sign Production Technique questionnaire
	Prototype symbol set questionnaire

