
DEPARTMENT OF
COMPUTER SCIENCE

JOANA BAPTISTA PARREIRA

BSc in Science and Computer Engineering

FROM AN ONTOLOGY FOR PROGRAMMING
TO A TYPE-SAFE TEMPLATE LANGUAGE

MASTER IN COMPUTER SCIENCE

NOVA University Lisbon
July, 2022

DEPARTMENT OF
COMPUTER SCIENCE

FROM AN ONTOLOGY FOR PROGRAMMING
TO A TYPE-SAFE TEMPLATE LANGUAGE

JOANA BAPTISTA PARREIRA

BSc in Science and Computer Engineering

Adviser: João Costa Seco
Associate Professor, NOVA University Lisbon

Co-adviser: Carla Ferreira
Associate Professor, NOVA University Lisbon

Examination Committee

Chair: Vasco Amaral
Associate Professor, NOVA University Lisbon

Rapporteur: Francisco Martins
Associate Professor, University of the Azores

Member: João Costa Seco
Associate Professor, NOVA University Lisbon

MASTER IN COMPUTER SCIENCE

NOVA University Lisbon
July, 2022

From an Ontology for Programming to a Type-Safe Template Language

Copyright © Joana Baptista Parreira, NOVA School of Science and Technology, NOVA

University Lisbon.

The NOVA School of Science and Technology and the NOVA University Lisbon have the

right, perpetual and without geographical boundaries, to file and publish this dissertation

through printed copies reproduced on paper or on digital form, or by any other means

known or that may be invented, and to disseminate through scientific repositories and

admit its copying and distribution for non-commercial, educational or research purposes,

as long as credit is given to the author and editor.

This document was created with the (pdf/Xe/Lua)LATEX processor and the NOVAthesis template (v6.9.6) [34].

https://github.com/joaomlourenco/novathesis

To my beloved mother.

Acknowledgements

I would first like to thank my thesis advisors, João Costa Seco and Carla Ferreira, for all

the guidance and support. I want to thank João for constantly pushing me to be my best

self and for all the incredible opportunities he provided me. And I would like to thank

Carla for being so genuinely kind and compassionate and for seeing her students as the

vulnerable human beings that we are. I also want to express my gratitude to Bernardo Ton-

inho for always being available to answer any questions and provide feedback throughout

this work; and to all the other teachers that impacted me and that helped and encouraged

me throughout these years.

I want to thank the GOLEM project for providing me with a grant, allowing me to

work full-time on this thesis, and for the opportunity to work on such an incredible

project with such talented persons. I would also like to acknowledge everyone involved

in the GOLEM project for all the advice and input.

I want to thank my friends for always being there for me during my victories but also

in my bad moments. I thank my study buddies, gym buddies, church buddies, dog-walk

buddies, archery buddies, confidants and long-distance friends. You know who you are!

I must express my very profound gratitude to my family, especially to my mother, my

warrior, who provided me with unfailing support and taught me firsthand to never give

up. Without her, I could not have achieved all of this. I also thank my boyfriend for his

encouragement and continuous help throughout this dissertation and for being a true

teammate and partner. This man was always there to cheer me up on hard days. I cannot

forget to mention all the pets in my life and my dog, Estrela, for keeping me company

during this pandemic and for all the affection and joy she provides me.

Words are not enough to express my gratitude to all of you!

Last but foremost, I am grateful to God for everything He has done, for He is my

strength and my shield.

iv

“And whatever you do, do it heartily, as to the
Lord and not to men ” (Colossians 3:23)

Abstract

The demand to develop more applications in a faster way has been increasing over the

years. Even non-experienced developers are jumping into the market thanks to low-code

platforms such as OutSystems.

The main goal of the GOLEM project is the development of the next generation of low-

code software development, aiming to automate programming and make the OutSystems

platform easier to use. This work is integrated into the GOLEM project and focuses

1) on designing an ontology that will be used to capture concepts from a user dialogue;

2) on formalizing a template language; and 3) producing a reference implementation for

OSTRICH.

The ontology concepts must be representative enough to allow the generation of an ap-

plication. A domain-specific language (DSL) produced in the scope of the GOLEM project

will analyse the captured concepts, generating a set of operations that incrementally build

and modify the target application.

Because some of those application components are common patterns, they can be pre-

assembled into templates to be later re-used. OSTRICH, a type-safe template language

for the OutSystems platform, allows for the definition and instantiation of type-safe tem-

plates while ensuring a clear separation between compile-time and runtime computations.

We formalize this two-stage language, defining its syntax, type system and operational

semantics. We also produce a reference implementation and introduce new features:

parametric polymorphism and a simplified form of type dependency. Such features en-

able instantiating the top ten most-commonly used OutSystems templates, which are

more than half of all template instantiations in the platform. These templates ease and

fasten the development process, reducing the knowledge required to build OutSystems’

applications.

Keywords: Metaprogramming, Ontology, Low-Code, Template Language, Type-Safety,

Staged Computation, Parametric Polymorphism, Dependencies Between

Types

vi

Resumo

A necessidade de desenvolver aplicações a um ritmo cada vez mais acelerado tem aumen-

tado ao longo dos anos. Mesmo programadores sem experiência têm vindo a integrar o

mercado de trabalho nesta área, graças a plataformas low-code como a OutSystems.

O projeto GOLEM tem como objetivo o desenvolvimento da próxima geração de low-
code, visando automatizar a programação e facilitar o uso da plataforma OutSystems.

O objetivo desta dissertação, parte do projeto GOLEM, é 1) desenvolver uma ontologia

para captar conceitos de um diálogo com o utilizador; 2) formalizar uma linguagem de

templates; e 3) desenvolver uma implementação referência para o OSTRICH.

Os conceitos da ontologia devem ser suficientemente representativos de forma a per-

mitir a criação de uma aplicação. Uma linguagem de domínio específico (DSL) criada

no escopo do projeto GOLEM irá analisar os conceitos captados e gera um conjunto de

operações que constroem e modificam a aplicação-alvo incrementalmente.

Visto alguns desses componentes da aplicação corresponderem a padrões comuns,

estes podem ser previamente agregados num template para que possam ser reutilizados

posteriormente. OSTRICH, uma linguagem de templates com segurança de tipos da pla-

taforma OutSystems, permite definir e instanciar templates que respeitam as restrições

de tipos, garantindo uma separação clara entre computações que ocorram em tempo de

compilação e de execução.

Nós formalizamos esta linguagem de duas etapas, definindo a sua sintaxe, sistema

de tipos, e semântica operacional. Também desenvolvemos uma implementação de refe-

rência e introduzimos novas funcionalidades: polimorfismo paramétrico, e uma forma

simplificada de dependência entre tipos. Estas funcionalidades permitem instanciar os

dez templates OutSystems mais usados, correspondendo a mais do que metade das ins-

tanciações de templates na plataforma. Estes templates facilitam e aceleram o processo de

desenvolvimento, reduzindo o conhecimento necessário exigido ao programador para a

construção de aplicações Outsystems.

Palavras-chave: Metaprogramação, Ontologia, Low-Code, Linguagem de Templates, Se-

gurança de Tipos, Computação por Etapas, Polimorfismo Paramétrico,

Dependências entre Tipos

vii

Contents

List of Figures xi

List of Listings xiii

1 Introduction 1

1.1 Problem Statement . 2

1.2 Contributions . 3

1.3 Document Structure . 4

2 Background 5

2.1 Description Logics . 5

2.1.1 Definition . 5

2.1.2 From UML Class Diagrams to Description Logics 8

2.1.3 Reasoning . 11

2.1.4 OWL2 and the Protégé Framework 13

3 Related Work 16

3.1 Application Development Using Concepts 16

3.1.1 Origin of Concepts . 16

3.1.2 Choosing Concepts . 17

3.1.3 Other Advantages . 17

3.1.4 Application Example . 18

3.2 Ontology-Based Development . 19

3.3 Model-driven Engineering and Low-code 20

3.4 Metaprogramming . 20

3.5 Staged Computation . 21

3.5.1 Phase Distinctions . 21

3.5.2 Template Haskell . 22

3.5.3 MetaML . 23

3.5.4 Logic-Based Type Systems . 25

viii

3.5.5 Remarks . 27

4 The GOLEM Project 28

4.1 The OutSystems Platform . 28

4.2 Goal of the GOLEM Project . 28

4.3 Abstraction Layers and Research Threads 30

4.4 The OSTRICH Language . 31

5 An Ontology For Programming 36

5.1 Overview . 36

5.2 Ontologies . 37

5.2.1 First Ontology . 37

5.2.2 Second Ontology . 39

5.2.3 Final Ontology . 42

6 Template Language 43

6.1 Motivation . 43

6.2 Language Features . 43

6.2.1 Staged Computation . 44

6.2.2 Nested Templates and Parametric Polymorphism 46

6.2.3 Dependencies Between Types . 47

6.3 Syntax . 48

6.4 Type System . 55

6.4.1 Syntax of Types . 55

6.4.2 Typechecking . 56

6.5 Operational Semantics . 63

6.5.1 Compile-time Semantics . 63

6.5.2 Runtime Semantics . 69

6.6 Implementation . 71

7 Evaluation 73

7.1 Template Definition . 74

7.2 Template Typechecking . 77

7.3 Template Execution . 80

7.3.1 Compile Time Execution . 80

7.3.2 Runtime Execution . 81

8 Conclusion 82

Bibliography 84

Webography 88

ix

Contributed Papers 89

Annexes

I Annex I - Ontology 90

I.1 Ontology Description . 90

I.2 UML Class Diagram . 91

I.3 Description Logics - First Ontology . 96

I.3.1 Classes . 96

I.3.2 Object Properties . 98

I.3.3 Data Properties . 100

I.3.4 Queries . 102

I.4 Description Logics - Second Ontology . 103

I.4.1 Classes . 103

I.4.2 Object Properties . 104

I.4.3 Data Properties . 104

I.4.4 General Class Axioms . 105

II Annex II - Template Language Formalization 106

II.1 Syntax . 106

II.2 Type System . 111

II.3 Operational Semantics . 115

III Annex III - OSTRICH Benchmark 119

III.1 Attribute Template . 119

III.2 Labelled Attribute Template . 120

III.3 Filter Template . 121

III.4 Listing Template . 121

III.5 Chart Template . 123

III.6 Pagination Template . 124

III.7 Table Template . 124

III.8 Detail Template . 126

III.9 List Template . 128

III.10List with Chart Template . 130

III.11Dashboard Template . 132

III.12Account Dashboard Template . 133

III.13Master Detail Template . 136

III.14Four-Column Gallery Template . 138

III.15Admin Dashboard Template . 139

III.16List with Filters Template . 141

III.17Bulk Actions with Filters Template . 142

x

List of Figures

2.1 Example of TBox and ABox assertions [4]. 8

2.2 Class from a UML class diagram [3]. 9

2.3 ISA relationship from a UML class diagram (adapted [3]). 9

2.4 Binary association from a UML class diagram [3]. 10

2.5 Binary association with association class from a UML class diagram [3]. . . 10

3.1 Dependence graph example - Partial concept graph for a word processor (in [15]). 18

4.1 OutSystems platform interface, when creating an application from scratch. 29

4.2 OutSystems pre-built options for screens with lists. 29

4.3 Architecture of the GOLEM project. 31

4.4 OSTRICH’s template metamodel (adapted from [20, 41]). 32

4.5 Application model of a list of products. 33

4.6 List template model (adapted from [20, 41]). 34

5.1 Part of the ontology and its four layers. 37

5.2 Part of the small example ontology with restricted domain. 38

5.3 Architecture of the GOLEM project. 40

6.1 Model example of a template definition and its expressions. 44

6.2 Model example of a template definition instantiating another template. . . 47

6.3 Node categories. 49

6.4 Properties. 49

6.5 Syntax of the template language. 53

6.6 Syntax of compile-time values (runtime terms). 54

6.7 Syntax of types. 55

6.8 Syntax of contexts. 56

7.1 Screen templates and their inner templates (in [44]). 74

7.2 Schematic diagram of the definition of the template T3 - Template Detail. 75

7.3 Schematic diagram of the definition of the template T1 - Template Attribute. 76

xi

7.4 Schematic diagram of the definition of the template T2 - Template Labelled

Attribute. 76

7.5 Schematic diagram of the typechecking of the template T1. 77

7.6 Typechecking of the template T1’s signature, expanded. 78

7.7 Schematic diagram of the typechecking of the template T2. 79

7.8 Schematic diagram of the typechecking of the template T3. 79

7.9 Schematic diagram of the template T3’s compile-time execution. In this exam-

ple, the template is instantiated with 1) an entity Product, 2) a list containing

two of its attributes: Name and IsInStock, and 3) a list containing another of

its attributes: Quantity. 80

7.10 Corresponding resulting screen of the OutSystems’ application after runtime

execution of the template. 81

I.1 UML class diagram with three of the main classes (high-level) of our meta-

model. 91

I.2 UML class diagram showing the subclasses of the Entity class. 92

I.3 UML class diagram showing the subclasses of the Attribute class. 93

I.4 UML class diagram showing the associations between some of the Entities. 94

I.5 UML class diagram showing the relationships between some Entities and At-

tributes. 95

II.1 Node categories. 106

II.2 Properties. 107

II.3 Syntax of the template language. 108

II.4 Syntax of compile time values (runtime terms). 109

II.5 Syntax of types. 109

II.6 Syntax of contexts. 110

II.7 Type system rules. 111

II.8 Type system rules (part 2). 112

II.9 Type system rules (part 3). 113

II.10 Type system rules (part 4). 114

II.11 Evaluation rules. 115

II.12 Evaluation rules (part 2). 116

II.13 Evaluation rules (part 3). 117

II.14 Evaluation rules (part 3). 118

xii

List of Listings

6.1 Part of the implementation of the typechecking algorithm. 72

xiii

1

Introduction

Our world is becoming more and more digital. In our day-to-day lives, we rely on tech-

nology more than we might notice. From searching for the best route for a new restaurant

to booking a seat in the theatres or checking the balance in our bank account, the internet

is present in a variety of our daily tasks. This increases the demand in the application

development market. However, the shortage of software developers is bringing non-

experienced programmers into the market. These circumstances promote the expansion

of meta-programming tools and low-code development platforms, which ease and auto-

mate the development process. However, efforts to simplify the way we program are not

a novelty.

Since the development of the first programming languages, there has been a continu-

ous attempt to evolve toward more intuitive languages. The assembly languages used in

the 1940s, when the first electronic computer was created, were difficult to understand

and lacked any modular programming features, giving rise to the need for higher-level

programming languages with a syntax that is easier to write and comprehend. Fortran

was invented to answer those needs, together with Cobol and other subsequent languages

emerged, always trying to fill the holes left by the previous languages, allowing pro-

grammers to handle more complex tasks, and expanding their use beyond scientific and

numeric computing [39].

This evolution in programming languages led to the appearance of some technologies

in the 1980s and 1990s, such as fourth-generation programming languages (4GL) or

early rapid application development tools (RAD), that intended to aid programmers in

their tasks [40]. These technologies laid the foundations for the appearance of low-code

development and were followed by low-code development platforms and technologies

(such as OutSystems, which was founded in 2001). However, the concept itself was not

born until 2014, when it was used for the first time [35].

Low-code development platforms allow the development of applications with a min-

imum of coding, resorting to visual interfaces like drag-and-drop. These platforms are

on the rise [35, 40, 32] because the growth in customized application demand has far

exceeded the supply of software engineers [32]. The use of low-code platforms allows

1

CHAPTER 1. INTRODUCTION

users to develop applications much faster. Additionally, by enabling non-technical users

to develop applications, they unburden programmers and bring innovation and different

perspectives into projects [35].

This thesis seeks to assist in the advancement of low-code platforms and automated

programming.

1.1 Problem Statement

The OutSystems platform is a low-code development platform that automates the devel-

opment and eases the deployment process. This platform resorts to a visual interface

with drag-and-drop mechanisms. It also contains pre-built screens that can be reused

in different applications. However, the developer must manually adjust them to their

own data. This task may be cumbersome and require some programming skills and an

understanding of the system architecture.

In its resolution to further simplify the development of applications, OutSystems

launched the GOLEM project. The GOLEM project is a large-scale research project from

the Carnegie Mellon Portugal program and led by OutSystems. Its main goal is the de-

velopment of the next generation of low-code, aiming to revolutionize the application

development experience, automate programming, and make OutSystems’ low-code tech-

nology easier to use. This project aims to determine the most natural way for a user with

no development experience to create applications without writing any code and how to

implement such a system.

The GOLEM project contains four research threads related to language-based ap-

proaches. Information flows between the threads’ components, forming a pipeline. First,

a component for natural-language processing analyses the user requests written in nat-

ural language. This component gathers key concepts and maps them in an ontology (a

formal representation of a domain). A second component, a domain-specific language

(DSL), translates the previously obtained ontology into a set of operations. These oper-

ations may create, update or replace OutSystems’ elements, incrementally building an

application according to the developer’s requests. Other DSL operations target a data-

manipulation component. This component creates and modifies the application’s data

layer accordingly. Some DSL operations might target the generation of template screens.

A templating language component, the OSTRICH language, provides a way of reusing

pre-built screens and applying them to different data by supporting the definition of tem-

plates with input parameters. OSTRICH ensures the automatic adjustment of templates

to the desired data, turning this hour-long process into an immediate event. However,

in [20], it still has some limitations regarding the type of restrictions between template

parameters.

This dissertation describes our work within the project, travelling through a portion of

the GOLEM’s pipeline process. We start with the design of an ontology that better bridges

the gap between the user dialogue and the DSL. The concepts present in the ontology

2

1.2. CONTRIBUTIONS

must be carefully chosen. Mapping from a natural language discourse to such concepts

should be easy. Additionally, they should carry enough information for the generation

of DSL operations that shape the intended OutSystems’ application. Then, we continue

with the formalization and extension of the template language, OSTRICH. We formalize

it as a two-stage computation language, separating its compile and runtime computations.

We add parametric polymorphism to template definitions, and dependencies between its

parameters’ types, allowing us to further restrict template instantiations.

1.2 Contributions

Our contributions include:

• the design of an ontology [45, 46] whose concepts represent the core components of

an application. The user dialogue must be mapped to concepts in the ontology, and

the result should be expressive enough to be able to translate it to a set of operations

that build the intended application;

• the formalization of the OSTRICH language with staged computation, and the defin-

tion of its syntax, type system, and operational semantics; and

• a reference implementation of the OSTRICH language, and an extension with para-

metric polymorphism and dependencies between template parameters [41–44].

The work developed in the context of this thesis also gave place to six papers:

• a published paper to the 13th International Conference on Knowledge Engineering

and Ontology Development (KEOD/IC3K), entitled: An Ontology based Task Ori-
ented Dialogue [45], which won a Best Paper Award, and whose main author is João

Silva. We contributed by helping with the ontology development;

• a subsequent paper submission to the SN Computer Science journal, entitled: An
Ontology based Task Oriented Dialogue to Create OutSystems Applications [46], which

is still waiting for feedback, and whose main author is João Silva. We contributed

with an extension to the previous paper by explaining the application building

process after receiving information from the ontology;

• an accepted (under revision) paper to the International Journal on Software and

Systems Modeling (SoSyM), entitled: OSTRICH - A Rich Template Language for Low-
code Development (Extended version) [41], whose main author is Hugo Lourenço. We

contributed with a typechecker extension for expressions with dependencies, and

evaluation;

• a published paper as single author, presented at the PhD Symposium at the 17th

International Conference on integrated Formal Methods (PhD-iFM’22), later pub-

lished to the Lecture Notes in Computer Science, entitled: Simple Dependent Types

3

CHAPTER 1. INTRODUCTION

for OSTRICH [43]. We presented features of our implementation, namely staged

computation and dependencies between parameters;

• an accepted paper to the 25th Internation Conference on Model Driven Engineer-

ing Languages and Systems (MODELS), entitled: Nested OSTRICH - Hatching Com-
positions of Low-code Templates [44], whose main author is João Costa Seco. We

contributed with the typing algorithm, and the reference implementation1 and

evaluation;

• an accepted paper to the INForum 2022 - Simpósio de Informática, entitled Type-
Safe Customization of Low-code Templates [42], whose main author is Constança

Manteigas. Our work served as basis for the extension presented in that paper, a

template customization mechanism.

1.3 Document Structure

The structure of this document is the following:

In Chapter 2, we explain some basic background concepts that are crucial to under-

standing our work, focusing on ontologies and description logics.

In Chapter 3, we go over some related work about using concepts for application de-

velopment, ontology-based development, model-driven development, metaprogramming

and staged computation.

In Chapter 4, we introduce and describe the GOLEM project, its goals and components.

We also introduce the OSTRICH language.

We then describe the first part of our approach, in Chapter 5, where we present the

ontologies we developed.

In Chapter 6, we present the formalization of the template language (syntax, type

system and operational semantics), and some of the features we extend it with.

In Chapter 7, we present the evaluation of our contribution, and a representative

case study of our reference implementation with a template definition, its typing and

compile-time and runtime execution.

Finally, in Chapter 8, we express the concluding remarks.

1Please refer to the link https://github.com/jbp182/OSTRICH-OCaml

4

https://github.com/jbp182/OSTRICH-OCaml

2

Background

In this chapter, we present some contextual information and essential definitions to un-

derstand our thesis. We explain what description logics are, their characteristics, and

how they can be helpful for the representation of our domain.

2.1 Description Logics

An ontology is a set of concepts and relationships between those concepts and is used to

formally represent knowledge within a domain of interest [14]. Since the interface of this

work encloses ontology-like representations, we adopt ontologies to represent features of

OutSystems applications. We resort to Description Logics and Web Ontology Language

(OWL2) because of their expressiveness and decidability.

2.1.1 Definition

Description Logics (DL) are a family of formal knowledge representation languages [23].

They describe classes of objects and their relationships under a specific domain. DLs are

a type of first-order logic (FOL) [12], meaning that any DL expression can be translated

into FOL formulas without losing its meaning. However, translating FOL formulas to DL

expressions is not possible in the general case without losing information, as certain FOL

constructs (such as variables) cannot be encoded in DL. The motivation for the absence

of certain FOL constructs in DL is to allow DL solvers to be decidable and more efficient,

while trying to preserve as much expressiveness from FOLs as possible [12]. Comparing

the two, constants in FOL are known as individuals in DL, unary predicates as concepts,

and binary predicates are known as roles.

ALC (Attributive Concept Language with Complements) logic is one of the main

description logics, and its central feature is the ability to describe complex classes [12],

with the help of some concept constructors:

– Bottom (⊥)

– Top (>)

5

CHAPTER 2. BACKGROUND

– Atomic concept (A)

– Atomic negation (¬A)

– Conjunction (AuB)

– Disjunction (AtB)

– Existential restriction of a concept A by a role R (∃R.A)

– Universal restriction of a concept A by a role R (∀R.A)

For instance, using a more illustrative example of existential restriction, we can say

that at least one Post (concept) is created (role) by writing ∃creates.Post. An example

of universal restriction would be ∀creates.Post, which means that only Posts are created

(assuming that one could also create forms or other components).

There are extensions to ALC logic that add some additional constructors [4, 12], some

of which we describe here:

• F: functional roles, allow us to state that an object can only be related through a

specific role to exactly one other object. E.g., for all functional roles P , if (a,b) : P

and (a,c) : P , then b and c are the same individual.

• H : role hierarchy, allows nesting of roles, i.e., roles can have sub roles.

• R: role inclusion axioms; reflexivity and irreflexivity; role disjointness.

• S: transitive roles, e.g., knowing that (a,b) : P and (b,c) : P , if P is transitive, then

(a,c) : P .

• I : inverse roles. If there is a role R, we can define its inverse role R−. Hence, if R

connects the individuals a and b, written as (a,b) : R, we can specify its inverse role,

(b,a) : R−.

• N : number restrictions of cardinal roles. We can define the minimum and maximum

cardinality k of a certain role R, e.g. (≥ kR) and (≤ kR), respectively. A more

illustrative example is (≥ 2hasChild), which means having two or more children.

• Q: qualified number restrictions of cardinal roles, defining cardinality limits k of a

certain role R, that is connected to a specific concept C. E.g. (≥ kR.C) or (≤ kR.C).

A more illustrative example is (≥ 2hasChild.Doctor), meaning that there are two or

more children that are doctors.

• O: nominals. It allows us to define concepts (classes) as an enumerate of individuals.

E.g. ∀hasColor.{red,green,blue}.

• (D): use of datatypes for concrete domains. E.g., hasAge.(≥ 21).

• C: full negation. E.g. ¬(DoctortLawyer).

6

2.1. DESCRIPTION LOGICS

Different DLs, with different extensions, are chosen according to their purposes. For

example, OWL Lite is based on SHIF(D), OWL-DL on SHOIN(D), OWL1 on SHOIQ and

OWL2, the one we will use to describe our ontology, is based on SROIQ(D) [12].

ALC has logical formulas known as axioms. A Description Logics ontology is a pair

O =< T ,A >, where T is a TBox and A is an ABox [12]. A TBox (terminological box) speci-

fies knowledge about concepts and roles, describing the domain concepts (equivalent to

a class hierarchy), hence a TBox is composed by axioms that specify relations of the type

"class-subclass"(A ⊂ B). An ABox (assertional box) is a set of facts and specifies properties

of objects. An ABox contains axioms of the type "class individual", describing when an

object a belongs to a class C (a : C); and of the type "relationship individual", describing

a relationship P between two objects ((a,b) : P).

To clarify these concepts, Figure 2.1 depicts a small ontology written in DL, discrim-

inating T Box and ABox assertions [4]. The use of “≡” means that the conditions on the

right-hand side of the assertion are necessary and sufficient to describe the concept on the

left-hand side. Necessary conditions mean that if an individual is classified as belonging

to a concept (class), then it necessarily fulfils these conditions. But we cannot assert that

every individual that fulfils these conditions automatically belongs to that class just by

using necessary conditions. For that, we need sufficient conditions. The use of “v” means

that the conditions are necessary to describe the concept, but not sufficient.

In the TBox from the example, we can see that a father is a male human that has chil-

dren (expression 2.1). This assertion resorts to the use of “≡”, therefore, every individual

classified as a father is a male human with at least one child, and also every individual

that is known to be a male human with at least one child is also a father. An individual

that is a happy father (expression 2.2), necessarily needs to to be a father that only has

children that are either doctors, lawyers or happy people. A happy ancestor only has

descendants that are happy fathers (expression 2.3). And a teacher is neither a doctor

nor a lawyer (expression 2.4). In expression 2.5 we can see that hasChild is a sub role

of the descendant role. And in expression 2.6 we can see that hasFather is a sub role of

the inverse of hasChild, meaning that when some individual A connects to individual B

through hasChild (B is child of A), then B can connect to A through hasFather. It is a sub

role if we remember that not everyone that has a child is the father, because they can be

the mother. In expression 2.7 there is additional information about the properties of the

roles. The role hasFather is functional because, in the domain of the example, one can

only have one father. The role descendant is transitive, therefore if A is descendant of B,

and B of C, then A is also descendant of C. In other words, this can mean that not only

children are descendant of their parents, but also that grandchildren are descendant of

their grandparents, and so on.

In the ABox from the example, the membership axioms specify when an individual

belongs to a class (expression 2.8 and expression 2.10), or when there is a role between

two individuals (expression 2.9).

7

CHAPTER 2. BACKGROUND

TBox

Inclusion assertions on concepts:

Father ≡HumanuMaleu∃hasChild (2.1)

HappyFather v Fatheru∀hasChild.(DoctortLawyertHappyPerson) (2.2)

HappyAnc v ∀descendant.HappyFather (2.3)

Teacher v ¬Doctoru¬Lawyer (2.4)

Inclusion assertions on roles:

hasChild v descendant (2.5)

hasFather v hasChild− (2.6)

Property assertions on roles:

(transitive descendant), (functional hasFather) (2.7)

ABox

Membership assertions:

mary : Teacher (2.8)

(mary, john) : hasFather (2.9)

john : HappyAnc (2.10)

Figure 2.1: Example of TBox and ABox assertions [4].

2.1.2 From UML Class Diagrams to Description Logics

It is possible to define an ontology in DL from UML class diagrams (or even from entity-

relationship diagrams [10]). UML class diagrams may more easily express our initial

domain and we can translate it to DL afterwards, since UML class diagrams are in tight

correspondence with ontology languages, and can even be viewed as an ontology language

outright [4].

Starting with the basics of the translation from UML class diagrams to DL, each class

in UML is represented by an atomic concept in DL, each attribute is represented by a role,

and each binary association between classes is also represented by a role in DL. Things

get a little more complicated when there are non-binary associations, since roles in DL

can only connect two concepts. The solution is to reify each non-binary association, i.e.,

to represent it as a concept and connect it by roles to the other concepts that are present

in that association. The same process (reification) must be applied whenever there is

a binary association with an association class. We will now go through each of these

transformations in more detail using illustrative examples [2, 3].

Starting with a simple class and its attributes, we have an example of a class from

a UML diagram in Figure 2.2. We will not consider the encoding of operations because

that will not be needed for the understanding of the ontology developed in this work. As

8

2.1. DESCRIPTION LOGICS

Figure 2.2: Class from a UML class diagram [3].

Figure 2.3: ISA relationship from a UML class diagram (adapted [3]).

explained before, since Phone is a class, the concept Phone is introduced, and each of its

attributes is a role. For the encoding of its attributes, we need to define their domain and

range. The domain of both number and brand is the concept Phone, and their range is

the concept String, and it can be represented as:

∃numberP v Phone ∃brandP v Phone

∃number−P v String ∃brand−P v String

This means that, whenever an individual has the role numberP , that individual is of

type Phone, and that role connects a Phone to a String. Same goes for the attribute brandP .

We also need to define their multiplicity, by saying that every Phone needs to have these

attributes, and it can have several numbers, but only one brand:

Phone v ∃numberP Phone v ∃brandP u (≤ 1brandP)

For the encoding of ISA relationships and generalizations such as complete and dis-

joint, we can look at the UML example in Figure 2.3. Whenever a class is a subclass of

another, we use the concept inclusion assertion:

C1 v C C2 v C ... Ck v C

When there is a disjoint generalization, we specify for each pair of concepts that one

of the concepts is included in the negation of the other:

Ci v ¬Cj (1 ≤ i < j ≤ k)

When the generalization is complete, we say that every individual of the superclass

(C in the example), is a subclass of a disjunction of all the possible concepts, meaning it

cannot be anything besides what is specified in the axiom:

C v C1 tC2 t ...tCk

9

CHAPTER 2. BACKGROUND

Figure 2.4: Binary association from a UML class diagram [3].

Figure 2.5: Binary association with association class from a UML class diagram [3].

For the encoding of binary associations without association class, consider the UML

example in Figure 2.4. Role A connects C1 to C2, i.e., role A has domain C1 and range C2:

∃A v C1 ∃A− v C2

Each individual from C1 is connected to at least min1 and at most max1 C2 individuals,

and each individual from C2 is connected through role A− to at least min2 and at most

max2 C1 individuals:

C1 v (≥min1A)u (≤max1A)

C2 v (≥min2A
−)u (≤max2A

−)

Figure 2.5 shows an example of a binary association with an association class. Similar

to the previous example, here C1 is connected to C2, but there is an association class A.

This association class is represented as concept A. Next, instead of encoding only one role,

we need to encode two roles, connected from concept A to each of the other concepts (A1

connects to C1 and A2 to C2):

∃A1 v A A2 v A

∃A−1 v C1 A−2 v C2

About the multiplicity of the roles, since A is unique to each relation, then each A can

only be connected to exactly one individual of each concept:

A v ∃A1 u (≤ 1A1)u∃A2 u (≤ 1A2)

And since each UML instance from C1 is connected to at least min1 and at most max1

C2 instances, then in DL that is the multiplicity of the role that connects C1 to A (role A−1).

Same goes for C2 and role A−2 , with the corresponding changes:

C1 v (≥min1A
−
1)u (≤max1A

−
1)

C2 v (≥min2A
−
2)u (≤max2A

−
2)

There are other examples on how to translate UML class diagrams to DL [2, 3], how-

ever we will not go through them since it concerns more complex examples that are not

necessary to understand this work.

10

2.1. DESCRIPTION LOGICS

2.1.3 Reasoning

A reasoner offers services that allow reasoning over an ontology in order to infer new

knowledge and check for consistency. One of the main services offered by a reasoner is

subsumption testing, which consists in checking if a concept is a subset of another concept,

e.g. A v B [14, 16, 23]. In other words, it checks if all possible instances belonging to A

always belong to B, which would mean that B (the subsumer) is considered more general

than A (the subsumee) [23]. Another service is consistency checking which checks whether

the ontology is satisfiable (consistent), and is also applicable to concepts and roles. An

ontology O is consistent/satisfiable if there exists at least one model of O, which would

prove that it has no contradictions [16]. Consistency checking is similar for concepts,

checking if it is possible for the concepts to have any instances [14], and it is a special

case of subsumption in which the subsumer is the empty concept [23].

These are only some of the main services offered by a reasoner, but the fundamental

reasoning service from which all the others can be derived is logical implication [4], or

entailment [16]:

An ontology O logically implies an assertion α, i.e. O |= α,

if α is satisfied by all models of O.

In other words:

An assertion α is entailed by an ontology O, i.e. O |= α,

if it happens for all models I of O, i.e., if I |= α.

From the previously mentioned fundamental service, we can enumerate in more detail

other services present in TBox reasoning [4] (some of which we already talked about):

• TBox Satisfiability: TBox T is satisfiable if it admits at least one model.

• Concept Satisfiability: C is satisfiable wrt. T , i.e., T 6|= C ≡ ⊥, if there is a model I

such that CI is not empty.

• Subsumption: C1 is subsumed by C2 wrt. T if the same happens for every model I

of T , i.e., T |= C1 v C2 if CI1 ⊆ C
I
2.

• Equivalence: C1 and C2 are equivalent wrt. T if the same happens for every model

I of T , i.e., T |= C1 ≡ C2 if CI1 = CI2.

• Disjointness: C1 and C2 are disjoint wrt. T if the same happens for every model I

of T , i.e., T |= C1 uC2 ≡ ⊥ if CI1 ∩C
I
2 = ∅.

• Functionality implication: A functionality assertion is entailed by T , i.e., T |=
(funct R) if, for every model I of T , we have that (o,o1) ∈ RI and (o,o2) ∈ RI implies

o1 = o2.

11

CHAPTER 2. BACKGROUND

Definitions such as satisfiability, subsumption, equivalence and disjointness also hold

for roles.

Ultimately, reasoning over an ontology is not only about checking its satisfiability and

inferences through the services mentioned above, but also about instance checking, for

both concept and role instances (ABox). If an individual c, or a pair of individuals (c1, c2),

is an instance of a concept C, or an instance of a role R (respectively), in every model of

O, then it is consistent [4].

There is a tradeoff between the expressiveness of a representation language and its

reasoning complexity [23]. Regarding time complexity, reasoning over DL ontologies is

ExpTime-Hard, even for simpler DLs. However, it still has a lot of expressiveness, with

all the constructors mentioned in this section, that allow DL to stay within the ExpTime

upper bound [4].

2.1.3.1 Closed World Assumption vs. Open World Assumption

Closed World Assumption (CWA) is the assumption that if something is not known to be

true then it is false. When there is a knowledge base (set of facts) it is assumed that only

the facts that are stated there are true and if something is not there nor can be inferred

from it, then it is false. An example of a common system with CWA is a train timetable,

where we can see the times at which every train arrives at a certain train station. If

someone wants to know if there is a train at, for example, 6 p.m. and that is not on the

table, then it is known that there is no train at that time (assuming that everything is

working perfectly fine and there are no delays). Another example of CWA is the list of

students that belong to a certain course. The knowledge base is known to be complete,

hence only the students in that list are part of the course, and students that are not in the

list are known to not belong to that course.

On the other hand, Open World Assumption (OWA) does not discard anything from

being true or false if it is not stated, the system is considered to have incomplete informa-

tion. So, if something is not in the knowledge base, it can either be true or false and we

cannot assert that it is true neither that it is false, we can only say that it is unknown with

the currently known information. For instance, if someone says that they like tea, we

cannot assume that that is the only thing they like, for instance, we do not know if they

like coffee or not, it is completely unknown to us and we cannot make any assumptions

about it.

Description Logics work with the OWA, because we want to represent knowledge, e.g.,

ontologies, and want to discover new information. Its knowledge base is not assumed to

be complete nor to be possible to infer everything that is true from its incomplete infor-

mation. In the next section we can see how reasoning in DL works and the implications

of OWA.

12

2.1. DESCRIPTION LOGICS

2.1.3.2 Open World Reasoning

Reasoning in Description Logics is based on the Open World Assumption, and therefore

referred to as Open World Reasoning (OWR) [14]. Hence, if there is some missing infor-

mation, we cannot assume it to be true nor false, it is unknown. Thus, the reasoner can

only conclude that something is true in a certain ontology O if it happens in all models

of O.

Borrowing an example from the pizza ontology in [14], there is a VegetarianPizza

concept, and its complement concept, NonVegetarianPizza. The concept VegetarianPizza

refers to Pizzas that can only have toppings that are CheeseTopping or VegetableTopping.

The concept NonVegetarianPizza refers to the Pizzas that are not VegetarianPizzas. If we

define a RandomPizza as a Pizza that has some CheeseTopping, by using an existential

restriction, since we are working under OWA, this pizza might have additional toppings

of any kind, including MeatToppings. RandomPizza can contain individuals that are

indeed VegetarianPizzas (e.g., an individual with just CheeseToppings), and others that

are not (e.g., an individual that, besides CheeseTopping, also has a MeatTopping). Saying

that RandomPizza is a subset of VegetarianPizza would mean that every individual of the

former is also an individual of the latter, which we just showed that it does not necessarily

happen. This means that the reasoner does not know if RandomPizza is a VegetarianPizza

or not, hence it will not classify it as a subset of VegetarianPizza. For the same reason, it

will not classify it as NonVegetarianPizza. This explains why reasoners use entailment,

they can only assert something is true when it is true for all the models.

2.1.4 OWL2 and the Protégé Framework

The Protégé framework is an open-source ontology editor that fully supports the OWL2

language (Web Ontology Language) [37]. We used this framework to reason over our

ontology to check for its consistency. This tool allows us to define an ontology and has

features beyond the basics we saw in the previous sections. In this section, we will not

explain how to use this tool. Instead, we will go through the previous information with

more detail, explaining some of the possibilities that this framework brings.

The nomenclature used in OWL is slightly different from DL. Concepts are known as

classes in OWL, roles are properties, and individuals (instances of classes) are also known

as individuals.

2.1.4.1 Datatype Properties and Object Properties

Properties in OWL can refer to datatype properties or object properties.

Datatype properties connect individuals from a class to data literals. They correspond

to the attributes of a class in a UML diagram. As an example, individuals from the class

Pizza can have a price data property, that associates individuals from that class to float

13

CHAPTER 2. BACKGROUND

numbers, e.g.:

pepperoni_pizza : Pizza (pepperoni_pizza,12.0) : price

Object properties connect individuals from one class to individuals from another

class. They correspond to the relations between two classes in a UML diagram. As an

example, individuals from the class Pizza can be connected to individuals from the class

PizzaTopping through the hasTopping object property, e.g.:

pepperoni_pizza : Pizza

pepperoni : PizzaTopping (pepperoni_pizza,pepperoni) : hasTopping

All properties have a domain and a range, i.e., they connect individuals from the

domain to individuals from the range. Object properties have classes as both domain and

range, and data properties have classes as domain, but data literals as range. From the

examples above, the price property has the Pizza class as domain, and float numbers as

range, and the hasTopping property has the Pizza class as domain and the PizzaTopping

class as range. If multiple classes are defined as range of a property, the range becomes

the intersection of those classes. Once again, since OWL works with OWA, domains and

ranges do not work as restrictions or constraints, but as axioms in reasoning [14]. E.g., if

the hasTopping property has Pizza as domain, and we apply it to the IceCream class, it

just infers that IceCream is a subclass of Pizza, not giving any error [14].

Object properties can be enriched using object property characteristics [14, 38], some

of which are:

• Functional: asserts that the individual that has this property can be connected to

at most one other individual through it. E.g., an individual can only have one age

- (functional hasAge). If an object property is defined as being functional but is

connecting an individual A to two other individuals, B and C, then B and C are

inferred to be the same object, because of OWA.

• Transitive: if a property connects an individual A to another, B, and it also connects

B to another individual C, then it also connects A to C. A good example of this is

relationships between siblings, if A is sibling of B, and B is sibling of C, then A is

also sibling of C - (transitive isSiblingOf).

• Symmetric: asserts that if a property connects A to B, then it also connects B to A.

The previous sibling example can be applied here too. If A is sibling of B, obviously

B is also sibling of A - (symmetric isSiblingOf).

• Reflexive: asserts that, if a property is reflexive, then every individual is related to

itself via that property. E.g., anyone can know different people, but they always

know themselves. A can know B and C, but A also knows A, B knows B, and C

knows C - (reflexive knows).

14

2.1. DESCRIPTION LOGICS

OWL also allows us to add numerical, existential, and universal restrictions to proper-

ties, just as in the example previously given, where we discussed defining a RandomPizza

class as a subset of Pizza class that has some CheeseTopping, by using an existential

restriction. As mentioned, due to the Open World Assumption, a RandomPizza can have

more toppings besides CheeseTopping, which results in the RandomPizza class not being

classified as VegetarianPizza nor as NonVegetarianPizza. But, if we want to ensure that

pizzas from this class can only have CheeseToppings, we need to add a universal restric-

tion, which is known as closure axiom [14]. Using just the existential restriction, we could

only infer that RandomPizza has cheese. With both the existential and universal restric-

tions, RandomPizzas have at least one CheeseTopping, and cannot have more toppings

apart from the CheeseTopping type, hence they can be classified as VegetarianPizza. If

one were to only add the closure axiom, it would mean that RandomPizzas are pizzas

with only CheeseToppings, or with no toppings at all [14].

2.1.4.2 Classes

The hierarchy of classes can also be named as a taxonomy, and it should be constructed as

a tree in which each node (class) only has one parent (superclass), keeping the ontology

in a maintainable and modular state. Computing and maintaining multiple inheritance

should be left as a task for the reasoner only [14]. In Protégé, OWL classes are assumed to

overlap, because it works under OWA, hence it is necessary to specify which classes are

disjoint from each other [14].

Classes are described by their conditions, which include subclass-superclass relations

and restrictions over object and data properties, like RandomPizza being a subclass of

Pizza and having some CheeseTopping. These conditions say what is necessary for the

individual to have if it belongs to that class. If an individual belongs to the RandomPizza

class, it is necessarily a Pizza, and it is necessary to have at least one CheeseTopping. A

class that only has necessary conditions is known as a primitive class [14].

If these conditions are necessary and sufficient, it means that not only those conditions

are necessary to belong to that class (every individual from that class needs to satisfy

them), but also that they are sufficient to infer membership (having those characteristics

is enough for an individual to be a member of that class) [14]. A class that is described

with both necessary and sufficient conditions is known as a defined class [14]. This is

used by reasoners to infer a hierarchy, but they can only automatically classify under

defined classes [14].

15

3

Related Work

Since our work combines knowledge from different areas, we will cover different topics,

from conceptual design of applications to ontology-based development to phase distinc-

tion and staged computation, and summarise the literature related to these topics.

Section 3.1 describes how to correctly choose concepts of a software system, and gives

an example of the development of an application that applied concepts in a distinct

way from ours. Section 3.2 mentions some works where ontologies were used as part of

application or language development. In Section 3.3 we compare between model-driven

engineering and low-code development platforms. We introduce metaprogramming in

Section 3.4. Finally, in Section 3.5 we present some multi-stage programming languages

and phase distinction techniques.

3.1 Application Development Using Concepts

Jackson [15] addresses the origin of concepts embodied in software systems and shares

some guidelines on how to choose them. In this section, we summarise his research.

3.1.1 Origin of Concepts

According to Jackson, a concept is the building block of a system and to correctly use it

one needs to understand its meaning. Choosing the correct concepts facilitates not only

the programmer’s work but also the use of the application by the user. Most concepts were

defined somewhere in time, and in software systems we often use preexisting concepts,

embracing their current meaning and sometimes even adding new connotations to them.

For example, when deleting files on a computer, we often send them to the computer

trash, which works similarly to a trashcan. Then we can recover some files we put in there,

or we can empty it, as we do with our trash, and permanently get rid of unimportant files.

However, software features are often abstract, allowing users to perform actions in

an abstract world, which can or cannot have visible consequences. This happens because

software systems are not tangible, their features are not evident, i.e., it is difficult to un-

derstand the effects of a certain action, like shaking a phone, unless it is explained. Also,

16

3.1. APPLICATION DEVELOPMENT USING CONCEPTS

many of the actions performed in software systems have no immediate tangible effect.

That can happen as a consequence of delay or failure of services. But mostly it is due to

the fact that many actions only produce internal state changes that are not immediately

visible to the user, e.g., saving a webpage as favorite has no visible change until we later

open the favorites list so that we can select and revisit that webpage. Hence, creating this

parallel with day-to-day objects and concepts by adopting well-known concepts allows

users to better understand what the effects of their use will be. This makes it easier and

more natural to understand its underlying functionality (its purpose and the immediate

consequences of its actions).

3.1.2 Choosing Concepts

It is important to evaluate the choice of concepts. In addition to formal and informal

analysis, one can also use some general criteria suggested by Jackson, and adopted by

others [9]. There are four criteria: motivation, no redundancy, no overloading, and

uniformity.

Motivation. Each concept should have a purpose, a reason for its existence. Moti-

vation of a concept should be expressible in a short sentence. It should complement

something needed, something that it would be at fault without it.

No redundancy. Two different concepts must have two different purposes. Hence, a

concept should only be added if what it represents is not possible to obtain from other

concepts, either from a single one or a combination of them. This criterion prevents an

unnecessary increase in complexity.

No overloading. A concept should not have more than one purpose, maintaining

modularity. This prevents conflicts and is not difficult to accomplish since software

systems are abstract and easier to decouple as we deem appropriate.

Uniformity. Variants of the same abstract concept should have similar functionalities,

avoiding misuse of concepts because of unexpected behaviour.

3.1.3 Other Advantages

Concepts can be used as more than just means to an end. Their use is also advantageous

to guide a new software design [15].

First, by helping to keep the focus on what is important at each step of development,

preventing an unnecessary increase in complexity. Secondly, by naturally simplifying a

large problem into a smaller one. This can be explained by the fact that using carefully

chosen concepts drives development by purpose, leading to sound increments. If instead,

one were to add functionalities as needed, it could cause fragmentation and poor modu-

larity between components. It could even originate an overly specific design that would

only work for a concrete application (the one used as model) and would not generalise to

other applications.

17

CHAPTER 3. RELATED WORK

Figure 3.1: Dependence graph example - Partial concept graph for a word processor
(in [15]).

Finally, when the goal is to produce an initial minimum version of a product, with

just enough features, the use of concept dependence graphs can be useful. This graph

allows us to see if the concepts of a domain need to be simplified. A dependence graph

is a directed graph which has concepts as vertices, and dependencies between them are

represented by edges. An edge going from a concept (C1) to another (C2) means that the

existence of the first concept makes no sense without the other, i.e., ’C1 depends on C2’.

Sometimes two concepts can be variants of the same abstract concept. In this case, the

abstract concept is represented in a vertex too, but with its name in italics. The variant

concepts are vertices that have dashed arrows connecting them to the abstract one. If

another concept depends on the abstract concept it means that at least one of the variant

concepts must be present. In Figure 3.1 we can see an example of a dependence graph.

One of the dependencies we can see is that the paragraph style concept would make no

sense without a paragraph, neither the paragraph without a text. Both paragraph style

and character style are variants of the abstract style concept.

3.1.4 Application Example

An approach to web application development using a catalog of concepts is described

in [9]. The catalog they used has concepts like Authentication, Property, Event, Follow and

Rating. However, our goal is not to gather a set of concepts but instead see how the user

intent can be categorised in different ways by using concepts.

Given the fact that many applications have a lot of implementation similarities, in

order to avoid repeating code, Rosso et al. [9] decided to join similar functionalities inside

a concept. Each concept is a self-contained reusable increment of functionality, and allows

slightly different implementations (for example, ratings of different entities such as a post

or a user), merely corresponding to instantiations of the same generic concept. Different

concepts can also be combined in many different ways to generate new functionalities.

18

3.2. ONTOLOGY-BASED DEVELOPMENT

Their approach is implemented in the Déjà Vu platform [9] that features a catalog of

full-stack functionality modules (concepts), which can be glued together by declarative

bindings. This binding allows concepts to synchronise their actions and exchange data

between them. To assess the viability of this approach, they built a variety of non-trivial

applications using Déjà Vu platform and checked for deviations from their expected

behaviour. From that assessment, they concluded that it was possible to replicate most of

the desired functionalities by just combining generic concepts from that catalogue. The

functionalities that deviated more from the norm could be implemented by creating a

new concept module.

This evaluation phase showed them that some concepts lacked some functionalities

and that they were even missing some concepts that would be helpful in different situa-

tions. Despite using a different approach, we can benefit from making a similar evaluation

phase to our ontology to check if we can satisfactorily describe applications with it.

In our work, the choice of concepts is crucial to the creation of an ontology that

incorporates them and allows their translation into application modifier operations. Next,

we present works whose development was supported by ontologies.

3.2 Ontology-Based Development

There are several works where ontologies were used to help during the development of

languages [1, 11, 31, 33] or the development of applications [19, 24].

Some works tried to incorporate domain analysis into the DSL design phase. Bačíková

et al. [1] introduce the DEAL (Domain Extraction ALgorithm) method for extracting

domain information from GUIs (Graphical User Interfaces) and derive DSL grammars

from it. Although they do not use ontologies, it is similar because it extracts information

about a specific domain. Walter et al. [31] report an approach where they use ontologies

to define DSLs, with the OntoDSL framework. This framework allows checking the

consistency of the domain model. There are two other works where the authors developed

tools that transform an ontology into DSL grammars, the Ontology2DSL framework [33],

and the Onto2Gra [11]. Both tools use an ontology describing a knowledge domain and

automatically create a DSL for the same domain.

There are other works that try to use ontologies during application development. The

ODESeW framework [19] allows the development of ontology-based Web applications.

In [24], O’Connor et al. developed mapping tools to integrate information contained in

a variety of formats, among which are ontologies, and then used these tools to develop a

prototype Web-based application.

19

CHAPTER 3. RELATED WORK

3.3 Model-driven Engineering and Low-code

Both model-driven engineering (MDE) and low-code development platforms (LCDP)

share the goal of reducing the efforts required for developing and maintaining appli-

cations, as well as enabling people with limited programming skills to participate in

software development [13, 27]. Besides their common goal, both approaches share some

similarities. One, for instance, is the reliance on domain-specific languages (DSLs). MDE

uses specially tailored DSLs to define models clearly, avoiding unnecessary information

that increases entropy. LCDPs, on the other hand, make use of DSLs to make some com-

mon programming concepts more intuitive, simplifying the development task. Despite

their common points, these approaches have some key differences. For instance, MDE

does not necessarily entails code generation and not always leads to less code. LCDPs of-

ten make use of specialized techniques such as natural language programming, program-

ming by example, programming by demonstration, and visual programming languages,

which may not make much sense when coupled with MDE.

3.4 Metaprogramming

Metaprogramming languages, as defined in [18], are programming languages that treat

programs as data, allowing for their manipulation and generation at runtime, thus, of-

fering some advantages like increased performance, code reusability, and easier code

analysis and inspection.

Work on metaprogramming exists on many fronts. There is, for instance, aspect-

oriented programming, multi-stage programming, and generative programming [18].

Multi-stage programming is quite useful in the context of low code development plat-

forms and especially in our work. This technique allows for the division of program

evaluation in multiple, distinct, non-interfering phases. For instance, let us consider a

C++ compiler. The compiler’s execution involves two stages. The first is where it per-

forms template instantiation, i.e., for each type used in a template, the compiler writes

a matching class, and posteriorly it performs the rest of the compilation using the gener-

ated classes. Multi-stage programming, and metaprogramming in general, comes in quite

handy in the context of low code development platforms, where it is often necessary for

code manipulation and generation in a multistaged fashion to compile and execute the

desired program.

In the context of our work, we employ two-staged programming; the first stage, the

compile stage, ensures the correctness of the template definition and performs compile-

time operations such as expression simplifications and the execution of compile-time

expressions whose value is required at runtime. The second stage, the evaluation stage,

executes the program generated in the previous stage.

20

3.5. STAGED COMPUTATION

3.5 Staged Computation

Our work includes the design of a type-safe template language that enables metapro-

gramming. Metaprogramming is a technique in which programs are able to manipulate

other programs or themselves. The language we develop manipulates code fragments

and must ensure the well-formedness of the generated program. Staging computation is

a popular optimization technique used in high-level program generation [8, 22]. Multi-

stage programming is highly effective as it avoids runtime interpretive overheads [30].

Hence, it is pertinent to mention some approaches that support the semantic separation

of computation stages.

We mention some multi-stage programming languages and phase distinction tech-

niques that ensure the well-formedness of the generated runtime computations (code).

3.5.1 Phase Distinctions

A type system can have values, types of those values, and sometimes kinds (a kind is a

type of a type, or of a type operator). We can describe the execution of a program as a

two-phase process, containing the typechecking phase (which occurs at compile-time)

and the execution phase (occurring at runtime). We can distinguish between phases by

representing runtime values as just values and compile-time values as types. However,

kind-free type systems that allow using Type : Type may hinder phase distinction and be

classified as phase-free systems. Also, whenever we come across dependent types1, phase

distinction is lost.

A small example of a kind and phase-free system is a program that has A : Type and

B : A. If A = Int and B = 3, then B is a runtime value. However, if A = Type (using

Type : Type) and B = Int, then B is a compile-time computation [5].

Cardelli [5] presents the modification process from a phase-free type system based

on dependent types into a phased type system. He tries to enforce the following phase

distinction requirement: “If A is a compile-time term and B is a subterm of A, then B

must also be a compile-time term.”. However, dependent types do not abide by this

requirement. Cardelli introduces kinds to the system to meet this requirement and

rejects Type : Type, resulting in a three-level hierarchy of values, types and kinds. Hence,

the main judgement (Γ ` a : A) turns into three:

Γ ` K kind

Γ ` A : : K

Γ ` a : A

This means that all kind-free operators are replaced by several kinded operators. So,

for instance, the following conversion rule:
1A dependent type is a type whose definition depends on a value (not just the type), e.g., the type of a

list where the length is part of the type.

21

CHAPTER 3. RELATED WORK

Γ ` a : A Γ ` B : Type A =βηµ B

Γ ` a : B
JConversionK

states that if a has the type A, B is a type, and A is equal to B, then one can say that a has

type B. The judgement Γ ` B : Type can either mean that B can be a type, e.g. Int, or a

kind. Hence, the conversion rule now turns into two rules, one at the value level (with B

as a type, B : : K) and another at the type level (with B as a kind, K kind):

Γ ` a : A Γ ` B : : K A =βηµ B

Γ ` a : B
JConversion-TK

Γ ` A : : L Γ ` K kind L =βηµ K

Γ ` A : : K
JConversion-KK

Similarly, rules for functions will turn into four rules, one that goes from types to

types, another from types to kinds, from kinds to types, and from kinds to kinds. This way,

the author associates values with runtime computations, and everything else (types and

kinds) with compile-time computations, i.e., judgements of the form Γ ` a : A represent

runtime terms, while judgements of the form Γ ` A : : K or Γ ` K kind represent

compile-time terms. Next, kinded operators where phase mixing occurs (e.g., when a

type - compile-time term - depends on a value - runtime term) are excluded since they

do not respect the phase distinction requirement.

In summary, in [5], Cardelli explains how to obtain a system with phase distinction

by using kinds to layer the language and rejecting operators that cause phase mixing.

3.5.2 Template Haskell

Template Haskell is an extension to the Haskell language and supports compile-time

metaprogramming. A template language (high-level language) is easier to maintain and

reason about because the compiler abstracts low-level details [28]. Additionally, more

knowledgeable users can manipulate their programs, interlacing them with the compiler’s

manipulations.

With Template Haskell, functions are written in the same language, regardless of their

execution stage (compile-time or runtime). Therefore, explicit annotations that specify

when each code should execute are necessary [36, 28]:

1. Quotations: quotations delimit code and allow its inspection by taking an expres-

sion at compile-time and building an abstract syntax tree that represents it. Quota-

tions for expressions are represented as [e|. . .|], or simply [|. . .|]. Quotations for

declarations, types and patterns have the same notation, replacing e with d, t or p,

respectively;

22

3.5. STAGED COMPUTATION

2. Quasi-quotations: allows one to extend the language with more quotations;

3. Splices: $expr is a splice. The body (expr) of the splice is evaluated at compile-time.

Template Haskell has cross-stage persistence, allowing the usage of compile-time

variables inside generated code.

3.5.3 MetaML

MetaML is a multi-stage functional programming language that allows programmers to

express staging naturally and concisely using explicit program annotations [22]. The

program annotations are the four programming constructs of the language [22, 30]:

1. Brackets <_> : surrounding an expression e with brackets, <e>, defers the computa-

tion of e, converting any syntactic expression into a piece of code;

2. Escape ∼_ : escape can only be applied to bracketed expressions, e.g., ∼<e>, and

must be enclosed by brackets. It inserts e into the surrounding bracketed expression.

For instance, <a - ∼<e>> becomes <a - e>;

3. Run run _ : run is applied to deferred expressions, forcing their computation. For

instance, run <4 + 1> evaluates as 5.

4. Lift lift _ : lift evaluates the expression to which it is applied (such expression

must not contain variables nor functions) and converts it into code. For example,

lift 2+3 evaluates to lift 5 and finally to <5>.

To understand the use of these constructs, we analyse a small example:

<3 + ∼(lift 5-4)>

First, we evaluate the expression inside lift, 5-4, and get

<3 + ∼(lift 1)>

Next, the lift constructor converts the result of that computation into code resulting in

<3 + ∼<1>>

Escape removes the brackets from <1>, splicing it into the surrounding code expression:

<3 + 1>

This is the final expression, since it is bracketed and cannot be further evaluated. To

execute this code, we can use

run <3+1>

23

CHAPTER 3. RELATED WORK

which computes the expression 3+1, resulting in 4.

Notice that both the brackets and the lift constructors build code from an expression,

but only the latter evaluates the expression beforehand.

An example of the usage of MetaML to generate code is the following [22, 30]:

-| fun mult x n = if n=0

then <1>

else < ∼x * ∼(mult x (n-1)) >;

val mult = fn : <int> -> int -> <int>

-| val cube = <fn y => ∼(mult <y> 3)>;

val cube = <fn a => a * (a * (a * 1))> : <int -> int>

-| fun exponent n = <fn y => ∼(mult <y> n)>;

val exponent = fn : int -> <int -> int>

Function mult receives an integer as code x and returns code corresponding to the

multiplication of x, n times. This function is then used to generate code of the cube

function, or of a broader exponentiation function given an exponent n.

These annotations can be used to create more than two stages (or levels). The level of

an expression is determined by the number of surrounding Brackets, minus the number

of surrounding escapes. However, caution is necessary when using variables at different

levels. For the correct usage of this language, one must consider two principles: cross-

stage persistence and cross-stage safety [30].

Cross-Stage Persistence. Cross-stage persistence allows the user to stage expressions

with free variables (non-closed expressions). However, bracketed expressions with free

variables must resolve their free occurrences in the static environment where the expres-

sion occurs, which results in the variable being bound to a constant that was resolved in

a previous stage. This principle can also be described as a variable i bound in stage n is

available in all future stages, n+1. Take as example the expression:

let val a=1+4 in <72 + a> end

The free variable a is bound, in the first stage, to the constant 5. Even if this piece of code

is used inside another context with another value bound to a, it will still return 5, as it is

bound in the value’s local environment.

Cross-Stage Safety. Conversely, if an input is first available at stage m, it cannot be used

at stage n, if m > n, i.e., m occurs at a later stage. An incorrectly staged example is:

fn a => <fn b => ∼(a+b)>

Because of the escape constructor, the computation of a+b should occur in the first stage.

However, b is only available in the second stage.

24

3.5. STAGED COMPUTATION

3.5.4 Logic-Based Type Systems

Type systems that support staged computation can also be motivated logically. For in-

stance, Davies and Pfenning, in [8], present a type system that allows specifying and

analysing computation stages based on intuitionistic modal logic S4.

In classical logic, each proposition P is either true or false. Modal logic extends clas-

sical logic by allowing other truth values, such as “P is known” or “P is necessarily true”.

Additionally, the truth value of a proposition can diverge under different circumstances,

e.g., the proposition “it is autumn” can have different values at different times or places.

Such variations are modalities and indicate the mode in which the statement is said to be

true [21].

There are several varieties of modal logic, but we will not dive into them. Instead, we

will briefly explain two modal operators introduced by modal logic: box and diamond

(� and ♦, respectively). The � operator represents necessity, and ♦ represents possibility.

Hence, �P means that P is necessarily true, i.e., P is true in all possible worlds2 [21]. ♦P

means that P is possible, i.e., P is true somewhere.

The definition of necessity is related to the definition of validity [25], which states

that whenever A is true, no matter what hypothesis we consider (A is true in all worlds),

then A is valid. Therefore, if A is valid, then it must be true under some hypothesis (A is

true in some world). This can be written as:

1. If · ` A true then A valid.

2. If A valid then Γ ` A true.

Here, “·” indicates an empty set of hypotheses.

To allow hypothesis of the form A valid, one can separate hypothesis about truth and

validity and consider the following judgement [8, 25]:

B1 valid, . . . ,Bm valid;A1 true, . . . ,An true ` A true

One can represent the set of validity assumptions as ∆, and the set of truth proposi-

tions as Γ , resulting in a judgement of the form ∆;Γ ` A.

Another way to write that A is valid, is the proposition �A. The introduction rule for

the � operator goes from the validity of A to the truth of �A, according to the definition

of validity [25]:

∆; · ` A true

∆;Γ ` �A true
J�IK

The elimination rule for the box operator cannot be the inverse of the introduction.

The rule

∆;Γ ` �A true

∆; · ` A true
J�EK

2In this context, world means anything that can be said to believe a proposition, e.g., people, ideologies.)

25

CHAPTER 3. RELATED WORK

is unsound because we drop the assumptions in Γ . This means that the elimination rules

are too strong and allow us to derive more information than we should [8, 25].

To solve this, one could try to use the rule

∆;Γ ` �A true

∆;Γ ` A true
J�EK

This rule is sound but not locally complete. This means that the elimination rule is

too weak and does not allow us to conclude everything we should be able to because we

do not have sufficient information to reconstitute the operator by an introduction rule [8,

25].

Instead, we can use the substitution principle for validity:

If ∆; · ` B true and ∆,B valid;Γ ` J then ∆;Γ ` J

as an inspiration for a locally sound and locally complete elimination rule [25]:

∆;Γ ` �A true ∆,A valid;Γ ` C true

∆;Γ ` C true
J�EK

It can be read as: if �A is true under some hypothesis, then any judgment we make

under the additional hypothesis that A is valid, must in fact be evident [8]. Notice that

validity is only used in assumptions, and never in conclusions.

Davies and Pfenning [8] show that extending the Curry-Howard isomorphism be-

tween proofs and programs to the intuitionistic modal logic S4 results in a logical expla-

nation of computation stages. Each world in modal logic corresponds to a different stage,

and terms like �A correspond to code to be executed in a future stage.

Based on the operators and principles we presented here, modal λ-calculus, λ→�e ,

appears. The syntax [8] is similar to that of the λ-calculus, extended with modal contexts

∆, modal variables u, and the modal constructor (box) and destructor (let box):

Types A ::= a | A1→ A2 | �A
Terms E ::= x | λx : A.E | E1E2 |

u | box E | let box u = E1 in E2
Ordinary Contexts Γ ::= · | Γ ,x : A
Modal Contexts ∆ ::= · | ∆,u : A

The modal constructor box is the same as the modal operator with its name, �. Hence,

the introduction and elimination rules are similar to those of the modal logic, and are

defined as follows [8]:

26

3.5. STAGED COMPUTATION

u : A in ∆

∆;Γ ` u : A
Jmodal-varK

∆; · ` E : A

∆;Γ ` box E : �A
J�IK

∆;Γ ` E1 : �A (∆,u : A);Γ ` E2 : B

∆;Γ ` let box u = E1 in E2 : B
J�EK

This forms the basis for extending other languages, enabling to express and check the

staging of computation [8].

3.5.5 Remarks

The first approach [5] mentioned in this section explains how to distinguish between

compile-time values and runtime values by defining a system containing values, types

and kinds. This approach is useful for systems with dependent types. Since we do not

have dependent types, we are able to keep it simple and avoid introducing kinds to our

solution.

The next three approaches (Template Haskell [36, 28], MetaML [22, 30], and Logic-

Based Systems [8, 25]) have some similarities between them. All of them use explicit

annotations to delimit runtime computations (code). Template Haskell uses quotations,

MetaML uses brackets, and modal languages use the box constructor. They also include

other annotations to compute code, and others. Additionally, all of them have cross-stage

persistence, i.e., stage-m computations may contain free variables defined in a previous

stage n; and cross-stage safety, which prevents the opposite from happening.

These approaches, specifically modal languages, inspired our solution. Akin to them,

our solution also features cross-stage persistence and cross-stage safety.

Furthermore, there are other multi-staged approaches. For example, MetaDepth [17]

is a framework that enables the development of multi-level (multi-staged) programs,

encompassing a code generation procedure at each stage of the process. Following this

approach, entities (such as classes) are associated with a potency, a natural number that

signals how many stages are left for the entity to be irreducible. In our approach, since we

only have two stages, it is as if our entities implicitly have a potency of one, unless they

are boxed, in which case they have the potency of zero. The major difference between

MetaDepth and our approach lies in model conformance verification. In MetaDepth, this

verification occurs after parameter substitution, while we rely on a static type system to

perform correctness verifications at compile time.

27

4

The GOLEM Project

In this chapter, we present the GOLEM project, led by OutSystems. We start by briefly

explaining what is the OutSystems platform in Section 4.1. In Section 4.2, we present

the goal of the GOLEM project, and its research threads in Section 4.3. In Section 4.4,

we present the OSTRICH language, which is part of one of the research threads we are

working on.

4.1 The OutSystems Platform

The OutSystems platform is a low-code development platform that allows non-expert

developers to build applications. This platform contains an intuitive visual interface that

eases the development of applications and automates deployment. One can assemble sim-

ple applications by dragging widgets into screens and define the application behaviour

by composing intuitive visual diagrams. Figure 4.1 reveals the platform interface: a pre-

view of the application being built appears in the centre, the visual elements (widgets)

that one can add are on the left, and the application elements are on the right. Widgets

include containers, tables, forms, and buttons, among others. Application elements are

represented as trees of the objects that constitute the application. Element trees describe

the application user interface, the database composition, logic behaviour, or processes.

The OutSystems platform also contains pre-built screens that are common patterns

in application development. Figure 4.2 shows part of a set of pre-built screens, namely

lists, available in the OutSystems platform.

4.2 Goal of the GOLEM Project

Despite the visual interface and the drag-and-drop mechanism, having a solid grasp

of software architecture and programming is still necessary for creating applications.

OutSystems wishes to ease the development of such digital systems by automating their

creation. This led OutSystems to partner with leading research institutions with expertise

in automated programming, namely program synthesis, programming languages and

28

4.2. GOAL OF THE GOLEM PROJECT

Figure 4.1: OutSystems platform interface, when creating an application from scratch.

Figure 4.2: OutSystems pre-built options for screens with lists.

models, and human-computer interaction through natural language processing: INESC-

ID, NOVA-LINCS, and Carnegie Mellon University (CMU).

From this partnership emerges the GOLEM Project, a large-scale research project

whose central goal is the development of the next generation of low-code. It aims to revo-

lutionize the application development experience and automate programming, making

OutSystems’ low-code technology easier to use. This project aims to determine the most

natural way for a user with no development experience to create applications without

29

CHAPTER 4. THE GOLEM PROJECT

writing any code and how to implement such a system.

The easiest way for someone to express themselves is through natural language, but its

translation to accurate determinist systems bears some challenges. In GOLEM, we explore

how to derive meaning from the user dialogue through the selection of some concepts to

incrementally build applications that work according to the user’s intent. OutSystems

made an initial study to determine the needs and expectations of their platform’s target

users. They identified that most of the problems are related to page design changes, which

allowed to reduce the project’s scope.

4.3 Abstraction Layers and Research Threads

There are currently four research threads related to language-based approaches, scattered

in three levels of abstraction, as depicted in Figure 4.3, where research threads are delim-

ited within vertical lanes. The information flows from high-level components, starting

with the user dialogue in natural language, to lower-level components, culminating in

the intended OutSystems application.

There is a natural language processing component that analyses the user dialogue [45,

46]. This component recognizes verbs and nouns in the user dialogue, mapping them

to the concepts and relationships of a predefined ontology1. The chosen ontology must

represent applications and their components, i.e., its concepts need to capture the main

ingredients that allow application development with OutSystems. We further describe

our work and contributions to this thread in Chapter 5.

Next, an intermediate layer contains a domain-specific language (DSL) of system

changing operations [46]. By comparing the latest user requests with the current state of

the application, this layer generates a sequence of operations that represent the delta, i.e.,

the changes that need to occur in the application development process. Such a sequence of

operations may include the creation of new elements and also the update and substitution

of existing ones. The application of that sequence must ensure the preservation of the

underlying system’s soundness.

Finally, there is a layer in a lower level of abstraction that directly manipulates the Out-

Systems’ applications according to the information received from previous layers. This

layer contains an application programming interface for the OutSystems model (model

API) with operations that manipulate the OutSystems applications. Two other research

threads complement this API: a thread on data manipulation and another on template

definition and instantiation. The data manipulation component receives information

from other high-level components, creating and modifying the application’s data layer

according to that information. The template thread consists of a rich type-safe template

language for OutSystems, the OSTRICH language [20]. In the OutSystems development

1An ontology is a formal representation of a set of concepts within a domain and the relationships
between those concepts [14].

30

4.4. THE OSTRICH LANGUAGE

User

NLP

User

Requests

DSL

Ontology
Instances

Script

Sequence
of

Operations

Data
Manipulation
Component

OSTRICH Model API

Application

Data

Manipulation

Operations

Template
Operations

Other

Operations

NLP Layer

Intermediate
Layer

OutSystems'
Layer

Figure 4.3: Architecture of the GOLEM project.

platform, there are pre-built screens, as shown in Figure 4.2. Such screens require error-

prone, time-consuming, manual adjustments to apply the screen to the correct data of the

current application. This language supports the definition and instantiation of templates

in the OutSystems’ applications, automating such adjustments, easing and hastening the

development process while ensuring the resulting screen is valid. We formalize and pro-

pose extensions to the OSTRICH language [41, 43, 44], and present our contribution to

this thread in Chapter 6. We introduce OSTRICH in Section 4.4.

4.4 The OSTRICH Language

Less-experienced developers can use low-code development platforms to develop ap-

plications through an intuitive visual interface. An example of such platforms is the

OutSystems platform, which automatically manages several details about deployment,

streamlining the development process. This platform contains pre-built screens, such as

lists and dashboards, that aid and speed up the development of an application. So, for in-

stance, if one were to build an application that lists elements on a screen, one could select

a pre-built screen containing a list. However, such pre-built screens pose a problem: they

contain temporary dummy data, meaning that developers must manually adjust them to

their data to ensure that their application works as expected. Often, such adjustments

require the developer to have a good understanding of programming basics. Furthermore,

31

CHAPTER 4. THE GOLEM PROJECT

Abstract Object

Name: ID
IsRoot: Bool

Entity

Template Annotation

Property Value

 PropertyName: ID
 Value: TemplateExpression<BasicType>

Conditional

Cond: TemplateExpression<bool>

Iteration

Cursor: ID
List: TemplateExpression<List<T>>

Action

Template Parameter

Name: ID
Type: TemplateType

Screen

App

Attribute

Name: ID
DisplayName: String
Type: Expression<BasicType>

Abstract Widget

Column

Title: String

Value

Value: Expression<BasicType>

Icon

Visible: Expression<bool>

Table

Source: Expression<List<T>>

ToggleVisibility

Widget: Abstract Widget

Widget

Figure 4.4: OSTRICH’s template metamodel (adapted from [20, 41]).

these adjustments may prompt errors that polute the gracefulness of the low-code envi-

ronment. This contributes to an onerous learning curve, hindering the use and adoption

of the platform.

That is the motivation behind the development of the OSTRICH language. OSTRICH

is a rich type-safe template language for OutSystems [20]. This language supports the

definition and instantiation of templates with input parameters. Templates, in this setting,

are analogous to the previously mentioned pre-built screens, but their input parameters

are the data to which the template is applied. This language eases the developer’s work

by automatically adapting the template to the received arguments, thus avoiding time-

consuming error-prone manual adjustments. The automated adjustments are defined by

annotation nodes present in the language. These nodes contain expressions built during

instantiation according to the template input parameters.

The OSTRICH’s underlying metamodel [20, 41] incorporates additional elements

into the metamodel of OutSystems applications, maintaining the backward compatibility

with previous versions. These new elements support the definition of templates and their

components. Figure 4.4 depicts a simplified version of this metamodel, where yellow

nodes represent elements introduced by OSTRICH.

This metamodel shows that OutSystems applications comprise components to define

data, user interface (UI), and behaviour. User interface components are what the appli-

cation’s end-user sees and with which they interact. Data definition components include

entities and their attributes. Entities correspond to database tables in a traditional data

32

4.4. THE OSTRICH LANGUAGE

p : App

s : Screen

Name = ListProduct
IsRoot = true

t : Table

Source = Product.List

e : Entity

Name = Product

a1 : Attribute

Name = Name
DisplayName = "Name"
Type = String

c3 : Column

Title = "Is in stock?"

i : Icon

Visible = Product.List.Current.IsInStock

w3 : ToggleVisibility

Widget = c3

a2 : Attribute

Name = Price
DisplayName = "Price"
Type = Currency

a3 : Attribute

Name = IsInStock
DisplayName = "Is in stock?"
Type = Bool

c1 : Column

Title = "Name"

v1 : Value

Value = Product.List.Current.Name

w1 : ToggleVisibility

Widget = c1

c2 : Column

Title = "Price"

v2 : Value

Value = Product.List.Current.Price

w2 : ToggleVisibility

Widget = c2

Figure 4.5: Application model of a list of products.

layer. And attributes are their fields or columns. Therefore, one entity may have several

attributes, as a database table has several columns. The top-level UI components com-

prise screens and widgets, as depicted in the diagram. Widgets can be UI tables that

display data, with columns that contain other widgets, such as simple values or icons.

Columns have a title in the table header, and value and icon widgets have expressions

that evaluate the information that must emerge in those widgets. Tables have a source

expression that matches a record list with the data to be displayed.

Annotation elements introduce the declaration of template parameters, declaration

of property values, and iteration and conditional instructions. Model annotations allow

the verification of the validity of template expressions when applied to such parameters.

Hence, OSTRICH guarantees that all template instantiations result in a valid program

with valid runtime expressions [20, 41].

To better understand the use of these model annotations, take as an example the

application model depicted in Figure 4.5. This model describes a screen with a table that

lists products and their attribute’s information. The table contains as many columns as

the number of attributes of the Product entity. Additionally, a table cell is a Value widget,

unless the attribute value is a boolean, in which case the widget in use is the Icon.

This application can be abstracted as a generic model that produces similar screens

for different entities. Its corresponding template can be defined as in Figure 4.6, adapted

33

CHAPTER 4. THE GOLEM PROJECT

t4 : Iteration

Cursor = attr
List = e.Attributes

p : App

s : Screen

Name = List
IsRoot = true

t : Table

Source = Sample.List

e : Entity

Name = Sample

a : Attribute

Name = First
DisplayName = "First"
Type = String

c : Column

Title = "Sample Column"

t1 : Template Parameter

Type = Entity
Name = e

t2 : Property Value

PropertyName = Name
Value = "List" + {{e.Name}}

t3 : Property Value

PropertyName = Source"
value = {{e.Name}}.List

t5 : Property Value

PropertyName = Title
Value = attr.DisplayName

t6 : Conditional

Cond = attr.Type == Bool

t8 : Conditional

Cond = attr.Type != Bool

t9: Property Value

PropertyName = Value
Value = {{e.Name}}.List.Current.{{attr.Name}}

i : Icon

Visible = true

t7 : Property Value

PropertyName = Visible
Value = {{e.Name}}.List.Current.{{attr.Name}}

v : Value

Value = Sample.List.Current.First

w : ToggleVisibility

Widget = c

Figure 4.6: List template model (adapted from [20, 41]).

from [20]. First, the Template Parameter annotation specifies the template input param-

eters. In this example, the parameter is the entity that we wish to display, the entity

Product. Since each column displays values of an attribute and is named according to it,

columns are defined with an Iteration annotation. This annotation iterates a compile-

time list and repeats a model element and its children for each list item. The cursor

name allows future annotations to reference the list item being iterated. Next, the choice

between a Value or an Icon widget is accomplished through the Conditional annotation.

During compile time, this annotation includes, or disregards, an element when its condi-

tion value is true, or false, respectively. Finally, the Property Value annotation provides

expressions that set the element property’s value, which are customized according to the

template parameters.

The OSTRICH language still has some limitations that currently prevent the imple-

mentation of some of the OutSystems templates. In [20], it is not yet possible to account

for template customization, i.e., a user cannot reapply an instantiated template that suf-

fered customization changes to another argument. It is also not possible to specify richer

34

4.4. THE OSTRICH LANGUAGE

constraints such as dependencies between parameters. Besides formalizing the OSTRICH

language, we provide a reference implementation that addresses the latter limitation [44].

Our approach is described in Chapter 6 and Chapter 7.

35

5

An Ontology For Programming

5.1 Overview

The pipeline developed in the GOLEM project must collect the user intent and carry it

through its pipeline elements, culminating in an OutSystems application. Part of the

project requires the existence of a domain-specific language that receives information

about the user intent in the form of ontology concepts. These concepts work as a specifi-

cation to generate and combine OutSystems-like components that satisfy the user intent.

These components are then used to build the application described by the user.

This domain-specific language captures the intent of web application developers

through concepts and relationships. Hence, our first step is to decide which concepts

are necessary and sufficient to build a broad and complete model that captures most

applications’ design and behaviour. We started by writing a descriptive text about a spe-

cific web application as an example and then deduced some general concepts. We chose

concepts that apply not only to the described application but to other applications in

general.

Because we want to describe concepts and relations within a specific domain (appli-

cation development) and then reason over them, we use description logics to represent

our model. Description logics are a family of formal knowledge representation languages

designed to represent and reason on structured knowledge [4]. Because OWL2 is com-

patible with the description logic SROIQ, it proved to be appropriate in the construction

of the ontology and the verification of its consistency. We use the Protégé platform, an

open-source ontology editor and knowledge-base framework that supports OWL2. This

framework is also suitable for building queries and testing their results on the developed

ontology. Such queries allow us to filter between the existing individuals (instances)

based on their characteristics and relationships.

In this chapter, we present the developed ontologies and iterate over them while

explaining the reasons for their creation.

36

5.2. ONTOLOGIES

5.2 Ontologies

We present a total of three ontologies that served as inspiration for the final ontology,

presented in João et al. [45, 46]. We use the notation of DLs, presented in Chapter 2, to

describe the ontologies.

5.2.1 First Ontology

Our ontology needs to comply with the OutSystems concept structure, which contains

higher-level concepts common to every application regardless of its domain. Therefore,

we designed part of a base ontology containing typical OutSystems concepts. This base

ontology is a portion of the minimal ontology that is required such that other ontologies,

with user-defined concepts, can be mapped into it. This ontology has generic concepts

that can be combined in different ways according to the desired functionalities of the

application. Each user may want to further specify their application by extending the

base ontology with new concepts and roles. For example, the base ontology can have

concepts like Post and PostItem and users may want to specify new concepts that they

understand as being PostItems, such as MapLocation or Picture.

The overall ontology is theoretically split into four layers, going from more generic to

more specific concepts. In Figure 5.1 we can see an example of part of the ontology we

are pursuing.

OUTSYSTEMS LAYER DEFAULT PATTERNS LAYER GOLEM LIBRARY LAYER

Entity v Thing User v Entity Editor v Thing

Attributes v Thing LoginAction v Action List v Thing

Aggregate v Thing Menu v Entity PostTemplate v Template

Application v Thing MenuItem v Entity Post v Entity

Template v Thing PostItem v Entity

Action v Thing PostEditor v Editor

SaveAction v Action PostList v List

DeleteAction v Action

GOLEM USER-DEFINED LAYER

Announcement v Post Picture v PostItem

AdoptionOffer v Announcement Species v PostItem

LostAnnounc v Announcement Breed v PostItem

FoundAnnounc v Announcement MapLocation v PostItem

37

CHAPTER 5. AN ONTOLOGY FOR PROGRAMMING

Figure 5.1: Part of the ontology and its four layers.

OUTSYSTEMS LAYER

∃hasAttr v Entity

∃hasAttr− v Attribute

Entity v ∃hasAttr

Attribute v ∃hasAttr− u (≤ 1hasAttr−)

∃label v Attribute

∃default_value v Attribute

∃values v Attribute

GOLEM LIBRARY LAYER

PostAttribute v Attribute

PostStatus v PostAttribute

PostDescription v PostAttribute

∃creates vUser

∃creates− v Post

Post v ∃creates− u (≤ 1creates−)

Post v ∃hasAttr.PostStatusu (≤ 1hasAttr.PostStatus)

Post v ∃hasAttr.PostDescriptionu (≤ 1hasAttr.PostDescription)

PostStatus v ∃label.{”postStatus”} u (≤ 1label.{”postStatus”})

PostStatus v ∃values.{”censored”,”open”,”solved”}

u (≤ 1values.{”censored”,”open”,”solved”})

PostStatus v ∃default_value.{”open”} u (≤ 1default_value.{”open”})

PostDescription v ∃label.{”postDescription”} u (≤ 1label.{”postDescription”})

PostDescription v ∃values.{string[pattern”.{1,100}”]}

u (≤ 1values.{string[pattern”.{1,100}”]})

Figure 5.2: Part of the small example ontology with restricted domain.

The first layer is the aforementioned OutSystems built-in concepts layer. It is the

higher-level layer and it contains high-level concepts common to most applications, like

Entity, Attribute of an entity, Template, or Action. Next, we have the default patterns layer

which contains other entities that are important and common to most applications, such

as the concepts of login, user and page menu, and respective menu item. Next comes the

38

5.2. ONTOLOGIES

Golem library layer which contains concepts that are still common to most applications

but not mandatory. The concepts of this layer intend to help build any application and

can be combined in different ways to achieve the desired functionality. Some examples

of concepts from this layer are posts, comments, and the ranking present in the commonly

known ’likes’ system and others. Finally, we have the Golem user-defined layer. This last

layer contains concepts corresponding to instances of concepts from higher layers, like

an announcement being a post, and a picture being a post item. The user defines concepts

that reflect the intended purpose of its target application.

This base ontology enables building in more detail a small example ontology with a

restricted domain. Figure 5.2 depicts part of this ontology, which is an extension of the

ontology shown in Figure 5.1. In this excerpt, we defined that Users can create Posts, and

each Post needs to be created by one and only one User. We added the attributes Post-
Description and PostStatus as subclasses of PostAttributes and defined their labels, default
values, and the domains of their values. The full example ontology is available in Annex I.

The ontology concepts (classes) represent a model of the application the user intends

to build. And the instances (individuals) of these classes represent the actual data once the

application is up and running. For instance, an application containing Posts as its building

block will have a Post class, and the instances of that class are concrete posts written by

the end-users of that application. To test the consistency of this ontology, we create

individuals of these concepts and assign values to their data properties. Additionally,

such individuals allow testing queries to obtain a subset of these classes according to

their characteristics.

Unfortunately, this first ontology has some limitations. Since both the pre-defined

and the user-defined concepts are ontology classes, there is no way to distinguish between

them, i.e., it is hard to specify which of the possible embeddings the user wishes to apply.

Additionally, we are still missing a way to determine which OutSystems components we

need to build.

5.2.2 Second Ontology

Our second trial emerged from a smaller portion of our first ontology. From the OutSys-

tems layer, we kept both Entity and Attribute. As entities, we still have the User and the

Post, and add the Comment. We define a set of attributes for some of these entities, and

this is where this ontology starts to diverge from the previous one: there are additional

attributes named Extendable (see Figure 5.3) that allow the user to customize their own

attributes with different types of data.

Another difference between these first two ontologies is the meaning of classes and

individuals. In the first ontology, both the pre-defined and user-defined layers are classes,

and the individuals are runtime values, i.e., concrete values for each concept correspond-

ing to the data displayed to the end-user. In this second ontology, classes define the

features that can embed the application. OutSystems developers express their intent

39

CHAPTER 5. AN ONTOLOGY FOR PROGRAMMING

Extendable v PostAttribute

ExtendableString v Extendable

ExtendableBlob v Extendable

ExtendableEnumerate v Extendable

ExtendableRef v Extendable

ExtendableInt v Extendable

ExtendableCurrency v Extendable

Figure 5.3: Architecture of the GOLEM project.

through natural language, which, in turn, is translated into a set of ontology individuals.

Such individuals belong to the classes that correspond to the desired features. This way,

both classes and individuals are part of the application design phase. The runtime values

are not part of the ontology since they occur in later stages during execution. Since we

only need the ontology for design purposes, using it solely for that purpose allows us to

make the most of it.

Finally, this ontology also contains some classes representing OutSystems components

that need to be built, namely database entities, a template of a searchable list, and a tem-

plate of a screen with details of an entity and an edit form. We define such classes using

subclass axioms (subsumptions) with class expressions as subclasses. These axioms are

known as general class axioms and state that every instance that meets the requirements

is an instance of that class. For example, if an individual of a class is related to a user

with a read and a search property, i.e., if the user can read and search that individual, the

ontology infers that such an individual is an element of a searchable list template. This

subsumption relation is represented as follows:

∃read−.Useru∃search−.User v ElemSearchableList

This means that if the ontology states, for instance, that a user can read and search

through posts (due to the presence of the read and search relations between a user instance

and a post instance), we know that a post is an element of a searchable list. Hence, we

will need to create a searchable list of posts in the application, resorting to a template.

Another axiom represents the need to create a screen with details of an entity and an

edit form. We define that an entity might be an element of such a form if a user can create

an object of that entity:

∃create−.User v ElemDetail

Finally, we desire to infer which individuals are database tables (database entities)

in the target application. Note that a database entity is not the same as an entity in the

ontology. We define three axioms that state that a) any ontology entity with attributes, or

40

5.2. ONTOLOGIES

b) any ontology entity that can be created by a user, or c) any attribute with various value

options (enumerate), is a database entity:

Entityu∃hasAttr.Attribute v ElemEntityDB

Entityu∃create−.User v ElemEntityDB

Attributeu∃values.{string[pattern”\\[.∗(, .)∗\\]”]} v ElemEntityDB

Using this ontology to describe different applications reveals an adequate level of

abstraction and allows to test the inferences about OutSystems components. We define

three different applications using the same ontology but different individuals. We remind

the reader that the ontology classes represent the possible features of an application, and

the set of individuals represents the application and the features to implement.

The entire base ontology is available in Annex I.

Application #1 - Newspaper. We populate the ontology in a way that describes an appli-

cation for a newspaper. There are three types of users: basic, premium, and administrator.

Only an administrator can create and publish news. By creating three individuals of the

class User, we were able to declare the three desired types of users. Since our ontology

is still a prototype, some user permissions, are not yet implemented. We also define

news as an individual of the Post class, and define its attributes text and media. Text is

an individual of the already existing Description class, and media is an ExtendableBlob. A

relation create connects the administrator user to the news. This relation helps infer that

we need a detail-screen OutSystems component for the administrator to create and edit

the news. Additionally, the reasoner infers that news are database entities because they

contain attributes. We are missing some inferences that should occur on the pre-defined

OutSystems components. However, we were not exhaustive in defining the axioms in the

prototype stage.

Application #2 - Inventory. In this example, we have two types of users: a simple user

and a manager, both declared similarly to the previous example. Here, the Post is a

product entry in the inventory, with several attributes like name, quantity, goal quantity,

and cost. The relations read and search connect the simple user to the product entry,

stating that a simple user can read and search through a catalogue of products. These

relations allow inferring we need a searchable list whose element is a product entry. There

is also a create relation between the manager and the product entry, i.e., managers can

introduce new products into the catalogue. Thus, the reasoner infers that we need a

detail-screen to create and edit product entries.

Application #3 - Pet Adoptions. We now describe a blog where users can create posts

for animal adoptions. Thus we need several post statuses that describe the status of the

41

CHAPTER 5. AN ONTOLOGY FOR PROGRAMMING

announcement. The status open means it is still looking for a family, closed means it is

solved and censored means it is inappropriate for the blog. An administrator user can

also create ordinary informational posts. Similarly to the previous examples, we declare

more than one type of user: regular user and administrator. Additionally, we declare two

different types of posts, announcement posts and informational posts, by creating two

individuals of the class Post. Regular users can read and search both types of posts but

can only create announcements, and administrators can only create informational posts.

We declare this through relations connecting the different users with the different posts.

Such relations allow inferring that both posts are database entities and elements of detail

screens and searchable lists. The announcement post has some attributes, including

extendable enumerates to define the different possible species and the statuses (open,

closed, censored). Since one of the subsumption axioms states that all lists (enumerates)

are database entities, then we know post status and post species attributes are, in fact,

database entities in the OutSystems application.

Despite being a good representation of general applications, this ontology still bears

some limitations. Because the information extracted from natural language must be

directly applied to populate the ontology1, there is a need to close the gap between

natural language and the produced ontology. This need was addressed by the natural

language processing component of the GOLEM project, resulting in the final ontology,

which we present next. Additionally, the axioms that allow for inferring the need for

some OutSystems components are not expressive enough. Let us imagine there are two

classes with the same axioms, but one of them has an extra axiom that defines additional

conditions. If an individual complies with all the axioms, including the extra, then it will

infer that the individual is an instance of both classes. For example, if those two classes

represent an element of a list of values and an element of a searchable list, we do not

wish to create two similar lists. Instead, we want the one that gives us more information,

the searchable list. This kind of selection is not possible with description logics. Hence,

we decided to delegate this type of reasoning to the domain-specific language that will

receive information from the ontology and create and update the OutSystems application.

5.2.3 Final Ontology

The final ontology results from combined efforts between our work with the previous

trials here described and the natural language team’s work. The choice of concepts in our

first two ontologies is in accordance with the type of information needed for the domain-

specific language. However, a gap between the user utterances and these ontologies was

still present, leading to the development of a final ontology [45]. Such ontology is outside

of the scope of our thesis work.

1Populating an ontology is the process of creating individuals (instances) for that ontology.

42

6

Template Language

6.1 Motivation

The ontology allows the natural language processing component to gather information

from the user utterances, as presented in Chapter 4 and Chapter 5, and delivers it to a

DSL developed under the scope of the GOLEM project. The DSL produces a sequence

of operations that reshapes the final application according to the user’s intent. Since

some requests are popular patterns, we can benefit from the use of pre-built screens and

widgets. These pre-built application’s fragments can be reused and allow for the assembly

of a safe and nicely designed application.

Currently, OutSystems contains pre-built screens that contain temporary dummy data.

This means that the developer must adjust them according to the user’s change requests

to ensure the application works as expected. These changes proved to be time-consuming,

error-prone and esthetically challenging.

The instantiation of such pre-built screens with arguments would fasten this process.

This is where OSTRICH comes into the picture. OSTRICH is a strongly-typed rich tem-

plating language for the OutSystems platform that allows the correct instantiation of

templates [20]. In this chapter, we present a formalization of the OSTRICH language,

and include some extensions to it. First, we describe some features of the language

(Section 6.2). Next, we define its syntax (Section 6.3), type system (Section 6.4) and op-

erational semantics (Section 6.5). The complete syntax, type system and semantics are

present in Annex II.

The formalization presented here echoes our prototype implementation.

6.2 Language Features

We implement a two-stage language that derives from the λ-calculus, and extends the

OSTRICH language, presented in [20], with: 1) terms that represent nodes and expres-

sions, instead of a metamodel; 2) parametric polymorphism; 3) dependencies between

parameters; 4) template declaration; 5) template instantiation inside another template

43

CHAPTER 6. TEMPLATE LANGUAGE

declaration.

Next, we explain how we guarantee each of these features, resorting to the example

depicted in Figure 6.1.

Template T1<N,R,B>

e : EntityT(N, R)

attr : AttributeT(B)

Column

Title = {{attr . DisplayName}}

Expression

Value = {{NameOf e}} . List . Current . {{LabelOf attr}}
N

^ ^ ^

Figure 6.1: Model example of a template definition and its expressions.

6.2.1 Staged Computation

We implement a language that represents a template extension for the OutSystems lan-

guage. Therefore, it is necessary to represent and separate the corresponding compile-

time and runtime stages.

Compile time comprises the typechecking of template definitions, followed by tem-

plate instantiations. In the OutSystems platform, compile-time computations occur at the

design phase, and correspond to the information we can visualize in the platform. The

design phase comprises the construction of the application with widgets and expressions

and the instantiation of pre-built screens, now templates. In this phase, some informa-

tion is available, such as the name of entities and their attributes’ properties. We may

visualize the general database composition and see the presence of, for example, an entity

named Product and its attribute IsInStock. This attribute’s property values are available

at runtime, such as the way its name should appear in the application, the DisplayName:

“Is in stock?”.

Runtime computations occur during the execution of the OutSystems application.

The concrete instances of entities and attributes, the rows of the database tables, are only

available during this stage. All expressions whose result depends on such instances must

be runtime expressions.

During template instantiation, node property’s values can be compile-time expres-

sions, like the title of a column that depends on the name of an attribute (available at

compile time), or runtime expressions, like an attribute’s value displayed in a table cell

(only available at runtime). Figure 6.1 depicts an example of a template definition con-

taining various nodes and both compile-time and runtime expressions. The syntax used

in Figure 6.1, adapted from [20], represents compile-time computations surrounded by

double curly braces.

The language we implement guarantees that all template instantiations are valid and

produce valid runtime expressions by ensuring phase distinction through staged compu-

tation [5, 8]. That means it is a multi-stage language with a typechecking algorithm that

reports both type and phase errors, thus ensuring that compile-time and runtime expres-

sions are well-formed even before execution. The algorithm detects phase errors using

44

6.2. LANGUAGE FEATURES

a supplementary environment, ∆, mapping runtime variables to their types. We restrict

the typing of runtime expressions so that they only enclose other runtime expressions

and variables from ∆. We can delve into Figure 6.1, specifically the runtime expression:

{{NameOf e}} �̂List �̂Current �̂ {{LabelOf attr}} (6.1)

Notice that the variables e and attr are variables that map to an entity and an attribute,

respectively, which are available at compile time. This means that e and attr are compile-

time variables. Both NameOf and LabelOf are compile-time built-in operations, because

of the surrounding double curly braces. However, the overall expression is a runtime

expression.

In our implementation, the distinction between compile time and runtime is achieved

through a specialized constructor, Box. Therefore, expression 6.1 is written as follows:

letbox uname = NameOf e in

letbox ulabel = LabelOf attr in

Box(uname �̂List �̂Current �̂ulabel) (6.2)

The expression inside the construct Box is a runtime expression that can only contain

runtime variables, as mentioned. Hence, we need the letbox sentence to insert runtime

expressions inside the box. This means that both NameOf and LabelOf are compile-time

built-in operations that receive compile-time arguments (e and attr) and evaluate as run-

time expressions, thus securing the well-formedness of the overall expression, which is a

runtime expression. These two functions are declared with the following type signatures:

NameOf e : EntityT(N,τ)→ BoxT({List : {Current : RecordAttrN }})

LabelOf attr : AttributeT(B)N → BoxT(LabelAttr(B)N)

When the template in Figure 6.1 is instantiated (during compile time) with an entity

Product and its attribute Description, for example, the expression 6.2 evaluates during

compile time as:

letbox uname = NameOf e in

letbox ulabel = LabelOf attr in

Box(uname �̂List �̂Current �̂ulabel)

↪→ Box(Product.List.Current.Description)

The result is a runtime expression that may be later evaluated.

We delimit the end of compile-time stage and the beginning of runtime with the

letbox sentence. In a sentence with the form letbox u = Box(M1) in M2, M1 replaces

all occurrences of u in M2. When M2 is not a runtime term (boxed term), M2 is then

evaluated. Since M2 contains M1, which is a runtime expression, M1 is also evaluated.

45

CHAPTER 6. TEMPLATE LANGUAGE

This marks the beginning of the runtime stage. If we take the previous example’s compile-

time result, and want to proceed to its runtime computation, we can write and evaluate

it as:

letbox u = Box(Product �̂List �̂Current �̂ Description) in u

↪−→
R
Product �̂List �̂Current �̂ Description

↪−→
R
{List = {Current = {

Description = “Time turner”;

IsInStock = false}}

} �̂List �̂Current �̂ Description

↪−→
R
{Current = {

Description = “Time turner”;

IsInStock = false}

} �̂Current �̂ Description

↪−→
R
{Description = “Time turner”;

IsInStock = false

} �̂ Description

↪−→
R
“Time turner”

Note that the name Product is an identifier to the records of the entity Product, which

contain its attributes. There may be other instances of Product. However, the label

Current works as a runtime iterator, displaying only the current one, as depicted here.

Because our approach was inspired by Davies and Pfenning [8], presented in Chap-

ter 3, and mimics its type rules related to multi-stage terms (concerning the Box and

letbox constructors), we expect it to have cross-stage persistence and cross-stage safety

and guarantee local soundness and local completeness. Local soundness guarantees that

the elimination rules are not too strong. It ensures that we do not gain additional infor-

mation after introducing a new connective and then eliminating it. The same information

should be available without taking this detour. Local completeness guarantees that the

elimination rules are not too weak. It ensures that we can recover all information after

applying the elimination rule followed by the introduction rule.

6.2.2 Nested Templates and Parametric Polymorphism

One of the extensions brought by our implementation is the ability to instantiate tem-

plates inside the definition of another template (under submission [44]). For example, we

can have a template for a screen containing some widgets, including a table that displays

information about an entity and its attributes. The columns of the table can be defined

using another template, such as the one in Figure 6.1. This means that our typechecking

46

6.2. LANGUAGE FEATURES

Template T2<N',R'>

e : EntityT(N', R')

Table

Source = {{NameOf e}} . List

forNode

attr : T = {{AttributesOf e}}^

Template Instantiation

T1<N', R', T> (e, attr)

Figure 6.2: Model example of a template definition instantiating another template.

algorithm must also check for the validity of these instantiations. On one side, it needs

to check the compatibility of the arguments used on the instantiation against the corre-

sponding interface. On the other side, it needs to check the inner template definition

against the specification of each parameter, i.e., verify each node and expression inside

the template according to its parameters.

The example in Figure 6.2 shows a template T2 that instantiates a template T1 inside

its definition. To verify the compatibility of the arguments, it needs to check that e and

attr have the types EntityT(N,R) and AttributeT(B)N , respectively, as the inner template

expects, in Figure 6.1. N represents a generic name identifier of an entity, R a generic

record of an entity, and B a generic type of an attribute. We can see in Figure 6.2 that e
has type EntityT(N ′ ,R′), as defined by the Template T2 node. Additionally, we know that

attr is an element of a list of attributes from entity e. Since typechecking occurs during

compile time and before instantiation, we are typing an entity that is not yet instantiated,

meaning that we do not know the concrete types of its attributes. Therefore, attr will

have type AttributeT(>)N ′ . This means that it is an attribute of some entity N ′, and its

values have type >. The top type, >, behaves as a wildcard, representing any arbitrary

type. This approach is sound due to the immutability of the attributes’ list.

To verify if the types of the arguments and the parameters match, we use paramet-

ric polymorphism. By delivering N ′, R′ and T (T = >) during the instantiation of T1,

T1〈N ′ ,R′ ,T 〉(e,attr), we state that it must receive an argument of type EntityT(N ′ ,R′) and

an argument of type AttributeT(>)N ′ . Hence, the expected types match the ones we

instantiate T1 with.

We implement parametric polymorphism for name, type and rows (records) variables.

6.2.3 Dependencies Between Types

Often, some templates require the verification of dependencies between types of param-

eters to ensure some relation between values, as in Figure 6.1, namely in the aforemen-

tioned runtime expression 6.1. Within an entity, we can only access its attributes, and

therefore attr must be an attribute of entity e for the whole expression to be well-typed.

We ensure it through the entity and attribute types, which contain a common name N ,

the selection operation type represented as “�”, and the resulting types of the functions

NameOf and LabelOf.

The function NameOf e returns a name that maps to the entity’s record. Here, we sim-

plify and merely display that record. Such a record encloses other records that ultimately

culminate in another containing the entity’s attributes. The result of this function will

47

CHAPTER 6. TEMPLATE LANGUAGE

have type {List : {Current : RecordAttrN }}, where N is the name of the entity to which the

attributes belong.

The function LabelOf attr represents the label of an attribute, thus conveying infor-

mation about the type of the attribute’s values, B, and the entity N ′ to which it belongs,

LabelAttr(B)N ′ .

We can use the same example as before, and instantiate e with the entity Product, and

attr with its attribute Description. The intermediate selection operations, which have

left associativity, when applied over the result of NameOf e:

Product : {List : {Current : RecordAttrProduct}}

will type as follows:

Product �̂List : {Current : RecordAttrProduct}

Product �̂List �̂Current : RecordAttrProduct

The typing of the selection over the resulting record of attributes is done by comparing

the two entities’ names.

Selecting an attribute from a record of attributes with type RecordAttrN , recurring to

a label with type LabelAttr(N ′)B, expresses the selection of an attribute that belongs to

entity N ′ and whose values have type B, from a record of attributes from the entity N . If

the names of the entities, N and N ′, match, the selection of the attribute is valid and safe.

Thus, we prevent the selection of attributes that do not belong to that particular entity.

The result of this operation is a value of the attribute, whose type is B.

In our example, the LabelOf function is applied to the attribute Description, from the

entity Product. Therefore, this function’s result has type LabelAttr(Product)String. Hence,

the final selection is typed as:

Product �̂List �̂Current �̂ Description : String

These dependencies between types of parameters allow for the definition of more

diverse templates, by introducing some restrictions to their usage and guaranteeing their

appropriate instantiation and the consequent production of valid templates.

6.3 Syntax

Figure 6.5, on page 53, depicts the syntax of terms. In Figure 6.3 and Figure 6.4, we

describe the categories of a node and the properties used inside some terms. Figure 6.6,

on page 54, shows a subset of the terms of the language. Those terms are compile-time

values and runtime terms. We obtain those values after compile-time evaluation, and

their further evaluation proceeds at runtime. See Section 6.5 for more information on

term evaluation. We present the syntax of types and the corresponding typing rules

in Section 6.4.

48

6.3. SYNTAX

α ::= (node categories)
ε (empty)

| Top (top)
| Screen (screen)
| Table (table)
| Column (column)
| Icon (icon)
| Expression (expression)
| Input (input)
| CheckBox (check box)
| Calendar (calendar)
| Container (container)
| List (list)
| ListItem (list item)
| Search (search)
| Chart (chart)
| Counter (counter)
| Pagination (pagination)

Figure 6.3: Node categories.

p ::= (properties)
Name (name property)

| Title (title property)
| Description (description property)
| Type (type property)
| DisplayName (display name property)
| Source (source property)
| Visible (visible property)
| Value (value property)
| InputType (input type property)
| Variable (variable property)
| Attributes (attributes field)
| FilterBy (filter property)
| AttrGroup (attribute to group by property)

Figure 6.4: Properties.

Records, Lists and Projections. Records of the form {Li = M i∈1..p
i } represent a collec-

tion of pairs containing a label Li and a termMi . To project any term from a record, given

a label L, we use the overloaded selection operation M1 �M2, where M1 represents the

record, and M2 represents the label. The notation [M i∈1..p
i] represents list collections of

terms Mi . To refer to a specific element of the list, we use the indexing operation M[num],

where num is the index of the element we want to retrieve from list M.

49

CHAPTER 6. TEMPLATE LANGUAGE

Selection Operation. We define the selection operation, written asM1 �M2, to represent

projections of elements from a recordM1. However, the termM1 can also represent nodes

or attributes, which contain a record in their representations. The runtime selection

operation is represented asM1 �̂M2 and can also be applied to records, nodes or attributes.

Model Elements. Model elements include entities and attributes (database tables and

rows, respectively). We define attributes with: the name of the entity N they belong to;

a label L specific to the attribute; a type B which corresponds to the type of its values;

and a record that maps properties to their expressions. Entities have a name identifier N ,

a record mapping labels L to their corresponding attributes, and a record mapping the

same labels to a list of values of those attributes. For example, if we have an entity with

name Product, which has attributes Description and IsInStock, we can represent it as:

Entity〈 Product,

{ Description =

Attribute〈Product,Description,String, {DisplayName = “Description′′}〉;

IsInStock =

Attribute〈Product,IsInStock,Bool, {DisplayName = “Is In Stock?′′}〉 }

{ Description = [“Chocolate frog”; “Bertie Bott’s Every Flavour Beans”];

IsInStock = [true ; false] }

〉

Model Nodes. Template nodes are the building blocks of the template model. They

have a category α that defines what node they represent (e.g., screen, table, or expression).

They also contain a record that maps their properties and respective expressions. Finally,

they have a list of their children nodes. For example, a column node whose title is the

display name of an attribute attr can be represented as:

Node〈Column, {Title = attr � DisplayName}, [. . .]〉

We use ellipsis to simplify the example. Here, it omits nodes that are children of the

column node, which may include Expression or Icon nodes, for instance. A Node is an

element that is evaluated at compile time. A runtime node contains the same elements

(category, record of properties, and children nodes), but is represented as a NodeValue:

NodeValue〈α, {pi = v1
i∈1..p
i }, [v2

j∈1..m
j]〉.

Node Categories and Element Properties. In Figure 6.3 we define the possible cate-

gories of a node, which corresponds to the template model node category. In Figure 6.4

we present the set of properties that may belong to model elements and model nodes. We

integrate them in the syntax of a node as: Node〈α, {pi =M1
i∈1..p
i }, [M2

j∈1..m
j]〉.

50

6.3. SYNTAX

Built-in Operations. We define built-in operations to retrieve specific information

from model elements and template nodes, namely NameOfM, LabelOfM, AttributesOfM,

and M isOfType τ . Each receive a term M as argument, appart from the last one, that

also receives a type τ .

Template Definitions, Template Instantiations and Let Binders. The template defini-

tion expression is represented as Template〈x, τ, M〉, where x is a typed parameter with

type τ , and M is the body of the template. Standing for template instantiation we have

M1(M2) where M1 is the template and M2 is the argument. Without loss of generality,

we only have one parameter in templates. For multiple parameters, we can define one

template after another, one for each parameter. Let binders follow the usual construct

of let x = M1 inM2 where M1 denoted by x may appear in M2. The definition and

instantiation of a simple template that receives two arguments, can be represented as:

let t = Template〈x1, Num,

Template〈x2, Num,

Node〈Expression, {Value = x1}, []〉 〉〉

in (t(3))(5)

Conditionals and Loops. We represent conditional statements for handling decisions

between nodes with the construct ifNode(M, MT , MF), where M is a boolean expression,

and MT and MF are its then and else branches, respectively. To define loops, we have

the forNode(x : τ = M1 inM2) construct. Each element of the list M1 denoted by x with

type τ , may appear in the body M2. Iterating over a collection of attributes will have the

form forNode(x : AttributeT(t)n = M1 inM2). Each attribute of the list is denoted by x,

and may appear in the body of M2. The values of each attribute will have type t, and n is

the name of the entity they belong to. A usage example of these constructs is the creation

of a node Icon or node Expression (depending on the attribute’s type) for each attribute

of an entity e:

forNode(attr : AttributeT(t)n = AttributesOf e in

ifNode(attr isOfType Bool ,

Node〈Icon, {}, []〉 ,

Node〈Expression, {}, []〉))

Compile-time and Runtime Computation Stages. We represent runtime terms and

expressions with the constructor Box(M), with M being the term. The destructor for run-

time terms has the form letbox u =M1 in M2, where M1 is the runtime term to unbox,

which is denoted by u that may appear in M2. Compile-time terms and expressions have

no special notation. Hence, all terms that are not inside a Box are compile-time terms.

51

CHAPTER 6. TEMPLATE LANGUAGE

Polymorphic Abstraction and Application. To abstract over types, names and rows

used in the language terms, we provide a polymorphic abstraction for each of the poly-

morphic variables (name, type and rows). For instance, we represent an abstraction on a

name variable n on term M as Λnn.M. We define a way to replace each of the abstracted

polymorphic variables. For instance, M ′[N]n defines the name application, where the

name N replaces the bound variable n in the abstraction term M ′.

52

6.3. SYNTAX

vl ::= (value literals)
num (number literal)

| string (string literal)
| bool (boolean literal)

N ::= N1 |N2 | . . . (name identifiers)

V ::= (model elements)

Entity〈N, {Li = V i∈1..p
i }, {Li = [vl j∈1..m

j]
i∈1..p

i
}〉 (entity element)

| Attribute〈N,L,B, {pi =M i∈1..p
i }〉 (attribute element)

M ::= (template terms)
vl (value literal)

| x (compile-time variable)
| u (runtime variable)
| L (label)
| V (model element)

| {Li =M i∈1..p
i } (record)

| [M i∈1..p
i] (list)

| M1 �M2 (selection operation)
| M1 �̂M2 (runtime selection operation)
| NameOfM (name property)
| LabelOfM (label property)
| AttributesOfM (attributes)
| M isOfType τ (type verification)
| let x =M1 inM2 (let expression)
| Template〈x, τ, M〉 (template declaration)
| M1(M2) (template instantiation)

| Node〈α, {pi =M1
i∈1..p
i }, [M2

j∈1..m
j]〉 (node element)

| NodeValue〈α, {pi = v1
i∈1..p
i }, [v2

j∈1..m
j]〉 (runtime node)

| forNode(x : t =M1 inM2) (loop instruction node)
| forNode(x : AttributeT(t)n =M1 inM2) (loop for attributes node)
| ifNode(M, MT , MF) (conditional branching node)
| Box(M) (runtime term constructor)
| letbox u =M1 in M2 (runtime term destructor)
| M1[M2] (indexing)
| Λnn.M (name abstraction)
| Λtt.M (type abstraction)
| Λrr.M (row abstraction)
| M[name]n (name application)
| M[type]t (type application)
| M[row]r (row application)

Figure 6.5: Syntax of the template language.

53

CHAPTER 6. TEMPLATE LANGUAGE

v ::= (values)
vl

| Entity〈N, {Li = v i∈1..p
i }, {Li = [vl j∈1..m

j]
i∈1..p

i
}〉

| Attribute〈N,L,B, {pi = v i∈1..p
i }〉

| L

| {Li = v i∈1..p
i }

| [v i∈1..p
i]

| v1 �̂ v2
| let x = v1 in v2

| NodeValue〈α, {pi = v1
i∈1..p
i }, [v2

j∈1..m
j]〉

| Box(M)

Figure 6.6: Syntax of compile-time values (runtime terms).

54

6.4. TYPE SYSTEM

6.4 Type System

6.4.1 Syntax of Types

B ::= (basic types)
Num (number)

| String (string)
| Bool (bool)

τ ::= (types)
B (basic types)

| Name(N) (name)
| Label(L) (label)
| LabelAttr(B)n (attribute label)

| {Li : τ
i∈1..p

i } (record)
| RecordAttrn (record of entity’s attributes)
| [τ] (list)
| ListAttrn (list of entity’s attributes)

| EntityT(n, {Li : τ
i∈1..p

i }) (entity)
| AttributeT(τ)n (attribute)

| NodeT([α i∈1..p
i], {pj : τ j∈1..m

j }) (node)
| BoxT(τ) (delayed type)
| TemplateT(τ1→ τ2) (template)
| n (name variable)
| t (type variable)
| r (row variable)
| ∀nn.τ (forall name)
| ∀tt.τ (forall type)
| ∀rr.τ (forall rows)
| > (top)

Figure 6.7: Syntax of types.

In Figure 6.7, we define the grammar for the syntax of types.

Basic Types, Names, Labels and Collections. The basic types comprise Num, String,

and Bool. A name identifier N has type Name(N). A label L can either have type Label(L)

or LabelAttr(B)N . In the first one, L is the description of the label. The latter represents a

label of a generic attribute with type B from entityN . A record {Li : τ
i∈1..p

i } is a collection

of pairs containing a label Li and a type τi . We represent a generic record of attributes

from entity N by RecordAttrN . A list [τ] represents a collection of elements of type τ .

Finally, we use Top as a supertype that can represent any possible type.

Model Elements, Template Nodes and Template Definition. We represent the type of

an entity as EntityT(N, {Li : τ
i∈1..p

i }), with a name N , and a record that maps labels to the

55

CHAPTER 6. TEMPLATE LANGUAGE

Γ ::= (compile-time contexts)
∅ (empty context)

| Γ ,x : τ (term variable binding)

∆ ::= (runtime contexts)
∅ (empty context)

| ∆,u : τ (term variable binding)

Ω ::= (name variable contexts)
∅ (empty context)

| Ω,n (name variable binding)

Φ ::= (rows variable contexts)
∅ (empty context)

| Φ , r (rows variable binding)

Υ ::= (type variable contexts)
∅ (empty context)

| Υ , t (type variable binding)

Figure 6.8: Syntax of contexts.

type of the entity’s attributes. Attributes are represented as AttributeT(B)N , with B being

the type of its values, and N the name of the entity it belongs to. Template nodes have

type NodeT([α i∈1..p
i], {pi : τ

i∈1..p
i }), where the list of α’s represents the possible categories

of the node, and the record contains the type τ of its properties p. Template definition

type works as a function from τ1 to τ2, and has the form TemplateT(τ1→ τ2).

Runtime Type (Delayed Type). We represent the type of a runtime term as BoxT(τ),

where τ is its type during the runtime stage.

Parametric Polymorphism. We define three different generic types, one for each of the

polymorphic variables (n, t and r). These variables are bound by universal quantifiers.

For instance, ∀nn.M binds the name-type polymorphic variable n in term M.

6.4.2 Typechecking

We define typing rules for assigning types to terms. Judgments, which are part of such

rules, have the form Γ ;∆;Ω;Φ ;Υ ` M : τ , where the term M has type τ in the contexts,

or environments, defined to the left of the judgment. Environments, or contexts, are a set

of assumptions about the types of the free variables in M. We define five environments,

where Γ is the ordinary context that stores the types of the compile-time variables, ∆ is the

modal context or runtime context and stores the types of the runtime variables, and Ω, Υ

and Φ is where we store the polymorphic variables name, type and rows, respectively. A

56

6.4. TYPE SYSTEM

context is defined solely by its greek letter, e.g. Γ , or extended with an additional mapping

of a variable to a type, (Γ ,x : τ), or by an empty context instead, denoted by ∅ .

Note that Figure 6.7 defines the syntax of types, and Figure 6.8 defines the syntax of

contexts.

Literals. Literal values, name identifiers and labels have their own type:

Γ ;∆;Ω;Φ ;Υ ` num : Num
JT-NumK

Γ ;∆;Ω;Φ ;Υ ` string : String
JT-StrK

Γ ;∆;Ω;Φ ;Υ ` bool : Bool
JT-BoolK

Γ ;∆;Ω;Φ ;Υ ` N : Name(N)
JT-NameK

Γ ;∆;Ω;Φ ;Υ ` L : Label(L)
JT-LabK

Collections. Records and lists are typed according to the type of each of their elements.

For example, the record {Description = “Time-turner”; IsInStock = true; Quantity = 3},
has type {Description: String; IsInStock: Bool; Quantity : Num}. Lists are uniform and

all their elements have the same type. Hence, the list type contains a single type. The

typing rules for records and lists are as follows:

for each i Γ ;∆;Ω;Φ ;Υ ` Mi : τi

Γ ;∆;Ω;Φ ;Υ ` {Li =M i∈1..p
i } : {Li : τ

i∈1..p
i }

JT-RecK

for each i Γ ;∆;Ω;Φ ;Υ ` Mi : τ

Γ ;∆;Ω;Φ ;Υ ` [M i∈1..p
i] : [τ]

JT-ListK

The next typing rule (T-Idx) defines the type of an element of a list. If M1 has the

type list with all of its elements having a type τ , and if M2 is a number, then M1[M2] has

the type corresponding to its elements’ types, which is τ :

Γ ;∆;Ω;Φ ;Υ ` M1 : [τ] Γ ;∆;Ω;Φ ;Υ ` M2 : Num

Γ ;∆;Ω;Φ ;Υ ` M1[M2] : τ
JT-IdxK

The projection, or selection, of an element from a record has several typing rules. The

compile-time selection term is represented as M1 �M2 (there is a runtime variant of this

operation). For this term to be well-typed, M1 must have the type record, or the type of

something containing a record (namely, node or attribute), andM2 the type label. Because

this operation occurs and is evaluated only at compile time, and its result will be part of

57

CHAPTER 6. TEMPLATE LANGUAGE

a runtime element, then its type is always a boxed type. If the record M1 is a collection

of pairs (a record), and one of its pairs contains the label from M2, then its resulting type

is the boxed type of the type paired with that label:

Γ ;∆;Ω;Φ ;Υ ` M1 : {Li : τ
i∈1..p

i }
Γ ;∆;Ω;Φ ;Υ ` M2 : Label(Lj) j ∈ 1..p

Γ ;∆;Ω;Φ ;Υ ` M1 �M2 : BoxT(τj)
JT-Sel1K

Using the same example as presented above, ifM1 is a record of type {Description: String;

IsInStock: Bool; Quantity : Num}, the term M1 �Description will have a box of the type

that pairs with that label, i.e., BoxT(String).

The second rule is similar to the first one. But instead of M1 being a record, it is an

element that contains a record, namely a node:

Γ ;∆;Ω;Φ ;Υ ` M1 : NodeT([α i∈1..p
i], {pj : τ j∈1..m

j })
Γ ;∆;Ω;Φ ;Υ ` M2 : Label(Lk) k ∈ 1..m

Γ ;∆;Ω;Φ ;Υ ` M1 �M2 : BoxT(τk)
JT-Sel2K

The last typing rule defines the type of selecting a property from an attribute. All at-

tributes have the same pre-defined properties in the OutSystems environment. Therefore,

the type of each property is pre-defined and does not change. Here, we define the rule for

typing only one of its properties (DisplayName) as an example, which is the one we need

for our evaluation:

Γ ;∆;Ω;Φ ;Υ ` M1 : AttributeT(B)N
Γ ;∆;Ω;Φ ;Υ ` M2 : Label(DisplayName)

Γ ;∆;Ω;Φ ;Υ ` M1 �M2 : BoxT(String)
JT-Sel3K

Additionally, there is a selection operation, represented as M1 �̂M2, that always occurs

within a box. Hence, this operation only evaluates at runtime, and its typing is similar to

the previous operation but does not result in a boxed type. There is a typing rule in case

M1 is a record (T-SelRT1), and another in case M1 is a node (T-SelRT2).

Γ ;∆;Ω;Φ ;Υ ` M1 : {Li : τ
i∈1..p

i }
Γ ;∆;Ω;Φ ;Υ ` M2 : Label(Lj) j ∈ 1..p

Γ ;∆;Ω;Φ ;Υ ` M1 �̂M2 : τj
JT-SelRT1K

Γ ;∆;Ω;Φ ;Υ ` M1 : NodeT([α i∈1..p
i], {pj : τ j∈1..m

j })
Γ ;∆;Ω;Φ ;Υ ` M2 : Label(Lk) k ∈ 1..m

Γ ;∆;Ω;Φ ;Υ ` M1 �̂M2 : τk
JT-SelRT2K

Since the values of an attribute’s properties are available at compile time, the selection of

an attribute’s property (previously presented in T-Sel3) does not occur with this runtime

selection operation. Hence, a corresponding rule does not exist.

58

6.4. TYPE SYSTEM

If the record has the type of a more generic record of attributes from an entity N ,

and the label of the attribute to select belongs to the same entity N , then the selection

operation results in the type B of the selected attribute’s values. This selection intends to

retrieve the value of an entity’s attributes, which is only available at runtime. Therefore,

this rule only applies to this runtime operation:

Γ ;∆;Ω;Φ ;Υ ` M1 : RecordAttrN
Γ ;∆;Ω;Φ ;Υ ` M2 : LabelAttr(B)N

Γ ;∆;Ω;Φ ;Υ ` M1 �̂M2 : B
JT-SelRT3K

Variables. We define two typing rules for variables, one for compile-time variables (T-

CVar), and another for runtime variables (T-RVar). The premise x : τ ∈ Γ reads as “The

type assumed for x in Γ is τ .”. Hence, a variable has any type we are currently assuming

it to have.

x : τ ∈ Γ

Γ ;∆;Ω;Φ ;Υ ` x : τ
JT-CVarK

u : τ ∈ ∆

Γ ;∆;Ω;Φ ;Υ ` u : τ
JT-RVarK

Model Elements. An entity type is defined according to its name N , and the type of

each of its attributes. The entity is well-formed if both of its records are related, i.e., the

first record contains pairs of labels Li and attributes, and the second pairs the same labels

to lists of values of the corresponding attributes. The typing rule for entities is as follows:

Γ ;∆;Ω;Φ ;Υ ` N : Name(N)

for each i Γ ;∆;Ω;Φ ;Υ ` Mi : AttributeT(Bi)N
for each i, j Γ ;∆;Ω;Φ ;Υ ` vji : Bi

Γ ;∆;Ω;Φ ;Υ ` Entity〈N, {Li =M i∈1..p
i }, {Li = [v j∈1..m

j]
i∈1..p

i
}〉 :

EntityT(N, {Li : AttributeT(Bi)
i∈1..p
N })

JT-EntK

An attribute type is defined according to its basic type B and the name N of its entity.

For an attribute to be well-formed, its properties’ values must be well-formed as well.

The typing rule for attributes is:

Γ ;∆;Ω;Φ ;Υ ` N : Name(N)

for each i Γ ;∆;Ω;Φ ;Υ ` Mi : τi

Γ ;∆;Ω;Φ ;Υ ` Attribute〈N,L,B, {pi =M i∈1..p
i }〉 : AttributeT(B)N

JT-AttrK

Built-in Operations. For the term NameOfM to be well-formed, its argument M must

be of type entity. The resulting type of the term is a boxed type (delayed / runtime type)

of nested records that ultimately culminate in a record of attributes of that entity:

Γ ;∆;Ω;Φ ;Υ ` M : EntityT(N, {Li : AttributeT(Bi)
i∈1..p
N })

Γ ;∆;Ω;Φ ;Υ ` NameOfM : BoxT({List : {Current : RecordAttrN}})
JT-NOfK

59

CHAPTER 6. TEMPLATE LANGUAGE

The term LabelOfM is well-formed if M has the type attribute. The resulting type

is a boxed type of a label of that attribute that contains its values’ type B and its entity

name N :

Γ ;∆;Ω;Φ ;Υ ` M : AttributeT(B)N

Γ ;∆;Ω;Φ ;Υ ` LabelOfM : BoxT(LabelAttr(B)N)
JT-LOfK

The term AttributesOfM has the type list if M is an entity. Because we are typing

the definition of templates, M is not a concrete entity yet. Therefore, the resulting list

cannot have the types of each of its elements, but instead will have the generic type of a

list of attributes of an entity N , ListAttrN :

Γ ;∆;Ω;Φ ;Υ ` M : EntityT(N,R)

Γ ;∆;Ω;Φ ;Υ ` AttributesOfM : ListAttrN
JT-AOfK

For the type verification term M isOfType τ , which has type Bool, to be well-typed, M

must also be well-typed:

Γ ;∆;Ω;Φ ;Υ ` M : τ ′

Γ ;∆;Ω;Φ ;Υ ` M isOfType τ : Bool
JT-OfTyK

Let Sentences and Templates. The rule for typing let sentences tells us that if M1 eval-

uates to a result in τ1, and ifM2 has type τ2 under the assumption that x has type τ1, then

the evaluation result of the let sentence will have the type τ2:

Γ ;∆;Ω;Φ ;Υ ` M1 : τ1 (Γ ,x : τ1);∆;Ω;Φ ;Υ ` M2 : τ2

Γ ;∆;Ω;Φ ;Υ ` let x =M1 inM2 : τ2

JT-LetK

Template definition is typed similarly to abstractions in λ-calculus. In the template

definition term, x is already typed as τ1. The premise states that M evaluates to a result

in τ2 when x is assumed to be of type τ1. Hence, the template definition type maps τ1

arguments to τ2 results:

(Γ ,x : τ1);∆;Ω;Φ ;Υ ` M : τ2

Γ ;∆;Ω;Φ ;Υ ` Template〈x, τ1, M〉 : TemplateT(τ1→ τ2)
JT-TempK

The typing rule for template instantiation, M1(M2), is similar to that of function

applications. If M1 evaluates to a template mapping arguments in τ1 to results in τ2, and

if M2 evaluates to a result in τ1, then the result of applying M1 to M2 is a value of type τ2:

Γ ;∆;Ω;Φ ;Υ ` M1 : TemplateT(τ1→ τ2)

Γ ;∆;Ω;Φ ;Υ ` M2 : τ1

Γ ;∆;Ω;Φ ;Υ ` M1(M2) : τ2

JT-InstK

60

6.4. TYPE SYSTEM

Nodes. Nodes are well-typed if the terms Mi of their properties’ values are well-typed,

BoxT(τi), and if the list of terms Mj ’s they contain are well-typed runtime nodes (boxed

nodes). The type of a node is a boxed type represented by a list with its single α category,

and a record mapping its properties to their respective runtime types τi :

for each i Γ ;∆;Ω;Φ ;Υ ` Mi : BoxT(τi)

for each j Γ ;∆;Ω;Φ ;Υ ` Mj : BoxT(NodeT([α h∈1..f
h], {pk : τ k∈1..l

k })j)

Γ ;∆;Ω;Φ ;Υ ` Node〈α, {pi =M i∈1..p
i }, [M j∈1..m

j]〉 :
BoxT(NodeT([α], {pi : τ

i∈1..p
i }))

JT-NodeK

Loops. There are two terms that define loop instructions. When the loop has the form

forNode(x : t =M1 inM2) (T-For), M1 must be a list of elements with type τ . Under the

assumption of x being the element with type τ , and t having x’s corresponding type, M2

must have the type of a runtime node (boxed node). The resulting type of the loop node

must be the same as the type of M2 under such assumptions:

Γ ;∆;Ω;Φ ;Υ ` M1 : [τ1]

(Γ ,x : t);∆;Ω;Φ ; (Υ , t = τ1) ` M2 : BoxT(τ2)

τ2 = NodeT([α j∈1..m
j], {pk : τ k∈1..l

k })

Γ ;∆;Ω;Φ ;Υ ` forNode(x : t =M1 inM2) : BoxT(τ2)
JT-ForK

Because we are typing template definitions, some elements were not instantiated yet.

Therefore, M1 might be a generic collection (T-For3). If M1 is a generic list of attributes

from some entity N . And if M2 types to a value with the type of a runtime node, under

the assumption of x being a generic attribute from entity n with type t, and t = > and

n = N . Then, the loop will have the type of a runtime node obtained from the typing of

M2.

Γ ;∆;Ω;Φ ;Υ ` M1 : ListAttrN
(Γ ,x : AttributeT(t)n);∆; (Ω,n =N);Φ ; (Υ , t =>) ` M2 : BoxT(τ2)

τ2 = NodeT([α i∈1..p
i], {pj : τ j∈1..m

j })

Γ ;∆;Ω;Φ ;Υ ` forNode(x : AttributeT(t)n =M1 inM2) : BoxT(τ2)
JT-ForAttrK

Conditionals. The conditional node is well-typed if its first term has type Bool, and the

terms MT and MF have the type of a boxed node. The result of the if-node is a value with

the type of a boxed node. This node type is defined by the union of the node categories

of both branches and the intersection of their property record types.

Γ ;∆;Ω;Φ ;Υ ` M : Bool

Γ ;∆;Ω;Φ ;Υ ` MT : BoxT(NodeT([α i∈1..p
i], {pj : τ j∈1..m

j }))
Γ ;∆;Ω;Φ ;Υ ` MF : BoxT(NodeT([α h∈1..f

h], {pk : τ k∈1..l
k }))

Γ ;∆;Ω;Φ ;Υ ` ifNode(M, MT , MF) :

BoxT(NodeT([α i∈1..p
i]∪ [α h∈1..f

h], {pj : τ j∈1..m
j } ∩ {pk : τ k∈1..l

k }))

JT-IfK

61

CHAPTER 6. TEMPLATE LANGUAGE

To understand the reason behind the type of the if-node, we present a small example,

where attr is an attribute:

ifNode(attr isOfType Bool

Node〈Icon, {Value = 3; Visible = true}, []〉

Node〈Expression, {Value = 10}, []〉)

The type of this term is: BoxT(NodeT([Icon; Expression], {Value : Num})). Note that this

type shows the possible nodes we can obtain from this term, which correspond to the

union of the α categories, Icon and Expression. It also shows the properties that are

guaranteed to occur, obtained through their intersection. In this case, only the Value

property is guaranteed to be present. This allows us to know we can only safely apply

operations over that property.

Runtime Type (Delayed Type). We draw the reader’s attention to the next rule (T-Box).

If the termM has type τ , then the term Box(M) has type BoxT(τ). Notice, however, that the

premise enforces that τ is valid by requiring the ordinary context to be empty. This means

that only runtime variables from ∆ can occur free in M (apart from type polymorphic

variables).

∅;∆;Ω;Φ ;Υ ` M : τ

Γ ;∆;Ω;Φ ;Υ ` Box(M) : BoxT(τ)
JT-BoxK

The next typing rule defines the corresponding elimination rule. If M1 has type

BoxT(τ1), and if M2 has type τ2 under the assumption that u has type τ1, then the result

of evaluating the letbox sentence, i.e., the result of M2 after unboxing M1, is of type τ2.

Γ ;∆;Ω;Φ ;Υ ` M1 : BoxT(τ1) Γ ; (∆,u : τ1);Ω;Φ ;Υ ` M2 : τ2

Γ ;∆;Ω;Φ ;Υ ` letbox u =M1 in M2 : τ2

JT-LetBK

Parametric Polymorphism. Finally, after adding the type polymorphic variable n to the

corresponding environment Ω, if the term M has type τ , then the name abstraction term,

Λnn.M, has type ∀nn.τ (T-FAN). We have similar rules for each of the other polymorphic

variables, but we add those type variables to their corresponding environments (Ω for

name variables, Υ for type variables, and Φ for record or rows variables):

Γ ;∆; (Ω,n);Φ ;Υ ` M : τ

Γ ;∆;Ω;Φ ;Υ ` Λnn.M : ∀nn.τ
JT-FANK

Γ ;∆;Ω;Φ ; (Υ , t) ` M : τ

Γ ;∆;Ω;Φ ;Υ ` Λtt.M : ∀tt.τ
JT-FATK

Γ ;∆;Ω; (Φ , r);Υ ` M : τ

Γ ;∆;Ω;Φ ;Υ ` Λrr.M : ∀rr.τ
JT-FARK

We define rules for polymorphic type applications for each variable, presented in

T-NApp, T-TApp and T-RApp. By performing the corresponding type application to

62

6.5. OPERATIONAL SEMANTICS

the abstraction termM, the resulting type is τ , where the name N , the rows R, or the type

T replaces the bound variable in that term:

Γ ;∆;Ω;Φ ;Υ ` M : ∀nn.τ

Γ ;∆;Ω;Φ ;Υ ` M[N]n : [N / n]τ
JT-NAppK

Γ ;∆;Ω;Φ ;Υ ` M : ∀tt.τ

Γ ;∆;Ω;Φ ;Υ ` M[T]t : [T / t]τ
JT-TAppK

Γ ;∆;Ω;Φ ;Υ ` M : ∀rr.τ

Γ ;∆;Ω;Φ ;Υ ` M[R]r : [R/ r]τ
JT-RAppK

6.5 Operational Semantics

In this section, we define the semantics of the language, i.e., how terms are evaluated.

The evaluation of this language comprises both the compile-time and the runtime com-

putations. Terms are evaluated into other terms, since the result of their compile-time

execution must represent an OutSystems’ template model, represented with a fragment

of the same syntax.

Next, we show the small-step operational semantics for this language. The evaluation

relation on terms has the format M1 ↪→M2, which reads as “M1 evaluates to M2 in one

step”.

We distinguish the evaluation that occurs at compile time and runtime.

6.5.1 Compile-time Semantics

Built-in Operations. For the built-in operations NameOfM, LabelOfM, AttributesOfM

and M isOfType τ , we first evaluate their subterm M. Once their subterm is evaluated,

the operation is applied.

The NameOf operation, when applied to an entity, evaluates to its name, which points

to a box with nested records that contains runtime values for each of its attributes, as

presented in E-NOfV. These records include the built-in labels List and Current, used

to access the list of records of an entity and the current record of a list being iterated,

respectively. In the rule, we select an arbitrary runtime value, vlx, as an example of the

cursor of the entity. This structure results directly from the structure of iterators in the

63

CHAPTER 6. TEMPLATE LANGUAGE

OutSystems language.

M ↪→M ′

NameOfM ↪→ NameOfM ′
JE-NOfK

NameOf (Entity〈n, {Li = V i∈1..p
i }, {Li = [vl j∈1..m

j]
i∈1..p

i
}〉)

↪→ Box({List = {Current = {Li = vlx
i∈1..p
i }}})

JE-NOfVK

The LabelOf operation, when applied to an attribute, evaluates to a runtime (boxed)

label of that attribute (E-LOfV).

M ↪→M ′

LabelOfM ↪→ LabelOfM ′
JE-LOfK

LabelOf (Attribute〈N,L,B, {pi =M i∈1..p
i }〉) ↪→ Box(L)

JE-LOfVK

We remind the reader that boxed terms correspond to terms that appear in compile time

but whose content must only be executed at runtime. We can see it as code that will

execute at runtime.

The AttributesOf operation is applied to an entity and, as the name implies, evaluates

to a list containing its attributes.

M ↪→M ′

AttributesOfM ↪→ AttributesOfM ′
JE-AOfK

AttributesOf (Entity〈n, {Li = V i∈1..p
i }, {Li = [vl j∈1..m

j]
i∈1..p

i
}〉)

↪→ [V i∈1..p
i]

JE-AOfVK

The term with the form M isOfType τ , when applied to an attribute term, evaluates

to a boolean that is the direct comparison between τ and the type B of the attribute (E-

OfTyV). We use LB = τM to represent the standard interpretation of comparing both

types.

M ↪→M ′

M isOfType τ ↪→M ′ isOfType τ
JE-OfTyK

(Attribute〈n,L,B, {pi : M
i∈1..p

i }〉) isOfType τ ↪→ LB = τM
JE-OfTyAK

64

6.5. OPERATIONAL SEMANTICS

Let Sentence. In the let sentence, we first evaluate its first term M1 (E-Let). Once

this first evaluation finishes and we obtain its final term, represented as v1 in E-LetV

(which should not be mistaken for the representation of a literal value), then the sentence

evaluates to M2 under an environment where x maps to term v1.

M1 ↪→M ′1

let x =M1 inM2 ↪→ let x =M ′1 inM2

JE-LetK

let x = v1 inM2 ↪→ [x 7→ v1]M2

JE-LetVK

Template Instantiation. We define four rules for template instantiation. Starting with

the term M1(M2), we first evaluate M1 (E-Inst1). Once we obtain a template definition

from that evaluation, we evaluate M2 (E-Inst2). Once that evaluation reaches an end

(v2, which again should not be mistaken for a literal value), the evaluation of applying

the template to that argument results in the term M3, under an environment where x

maps to v2 (E-Inst3). Note that we can define a template with more than one argument

by nesting templates.

M1 ↪→M ′1

M1(M2) ↪→M ′1(M2)
JE-Inst1K

M2 ↪→M ′2

(Template〈x, τ, M3〉)(M2) ↪→ (Template〈x, τ, M3〉)(M ′2)
JE-Inst2K

(Template〈x, τ, M3〉)(v2) ↪→ [x 7→ v2]M3

JE-Inst3K

Nodes. The evaluation of nodes occurs by evaluating their property records (E-Node1)

and their children nodes (E-Node2). After the evaluation of all its subcomponents,

the node comprises boxed terms as property values and boxed nodes as children. This

means that its compile-time evaluation came to an end, and it must now be turned into a

runtime computation. The third rule (E-Node3) shows how such a node is evaluated to

a NodeValue (corresponding runtime node). To avoid nested boxed terms and maintain

two-stage computation, the boxes of its subcomponents are removed, and the whole

nodevalue is wrapped inside an outer box. This works similarly to the letbox destructor:

a node is a runtime value (boxed value), and we are introducing other runtime values

65

CHAPTER 6. TEMPLATE LANGUAGE

inside it (its properties’ values).

M1 ↪→M ′1

Node〈α,M1,M2〉 ↪→ Node〈α,M ′1,M2〉
JE-Node1K

M2 ↪→M ′2

Node〈α,v1,M2〉 ↪→ Node〈α,v1,M
′
2〉

JE-Node2K

Node〈α, {pi : Box(v1i)
i∈1..p}, [Box(v2j)

j∈1..m]〉
↪→ Box(NodeValue〈α, {pi : v1

i∈1..p
i }, [v2

j∈1..m
j]〉)

JE-Node3K

Take as example the following node, obtained after applying the first two rules:

Node〈 Column,

{Title = Box(“Price”)},

[Box(Node〈Icon, {}, []〉)] 〉

According to the rule E-Node3, it evaluates to:

Box(NodeValue〈 Column,

{Title = “Price”},

[Node〈Icon, {}, []〉] 〉)

Collections. We define the evaluation of records and lists in the following rules. When

one of their elements can be reduced to another, the collection evaluates to a similar

record or list replacing that element with its reduced form. This reduction occurs from

left to right.

Mj ↪→M ′j

{Li = v i∈1..j−1
i ,Lj =Mj ,Lk =M k∈j+1..n

k }
↪→ {Li = v i∈1..j−1

i ,Lj =M ′j ,Lk =M k∈j+1..n
k }

JE-RecK

Mj ↪→M ′j

[v i∈1..j−1
i ,Mj ,M

k∈j+1..n
k] ↪→ [v i∈1..j−1

i ,M ′j ,M
k∈j+1..n

k]
JE-ListK

The operation of indexing first evaluates the collection M from which we want to

retrieve the element. Then, it retrieves the element located at index num.

M ↪→M ′

M[num] ↪→M ′[num]
JE-IdxK

[v i∈1..p
i][num] ↪→ vnum

JE-IdxVK

To select a labelM2 from a termM1, we writeM1�M2. M1 either is or contains a record.

First, we evaluate both its terms M1 and M2 (E-Sel1, E-Sel2). Then we evaluate the

66

6.5. OPERATIONAL SEMANTICS

selection by retrieving the term that pairs with the label M2. Remember that nodes are

evaluated at compile time and turned into runtime nodes to be later evaluated. Similarly,

the selection is a compile-time operation whose evaluation result will be part of runtime

elements, such as nodes. Therefore, its result is a runtime value, i.e., a boxed value.

M1 ↪→M ′1

M1 �M2 ↪→M ′1 �M2

JE-Sel1K

M2 ↪→M ′2

v1 �M2 ↪→ v1 �M
′
2

JE-Sel2K

{Li = v i∈1..p
i } �Lj ↪→ Box(vj)

JE-SelRecK

Attribute〈N,L,B, {Li = v i∈1..p
i }〉 �Lj ↪→ Box(vj)

JE-SelAttrK

Node〈α, {Li = v1
i∈1..p
i }, [v2

j∈1..m
j]〉 �Lk ↪→ Box(v1k)

JE-SelNodeK

Conditionals. The evaluation of a conditional node, represented as ifNode(M, MT , MF),

starts with the evaluation of its guardM (E-If). When the guard is the boolean literal true,

or false, then only the first branch MT , or the second branch MF , remains after evaluation,

respectively (E-IfT, E-IfF). Notice that the evaluation of each branch can only occur

after evaluating the guard.

M ↪→M ′

ifNode(M, MT , MF) ↪→ ifNode(M ′ , MT , MF)
JE-IfK

ifNode(true, MT , MF) ↪→MT

JE-IfTK

ifNode(false, MT , MF) ↪→MF

JE-IfFK

Loops. To evaluate forNodes, with the form forNode(x : t =M1 inM2), we first evaluate

their first term M1 (E-For). Once we have a loop whose first term M1 is a list of terms,

we evaluate the term M2 under the environment where x maps to the first element of the

list. Then, we append that result to the beginning of a list obtained from evaluating the

67

CHAPTER 6. TEMPLATE LANGUAGE

forNode with the remaining terms of the list (E-ForL).

M1 ↪→M ′1

forNode(x : τ =M1 inM2) ↪→ forNode(x : τ =M ′1 inM2)
JE-ForK

forNode(x : τ = [v i∈j..k
i] inM2)

↪→ ([x 7→ vj]M2) :: (forNode(x : τ = [v i∈j+1..k
i] inM2))

JE-ForVK

with:

v0 :: [u1, . . . ,un] , [v0,u1, . . . ,un]

The forNode for attributes will have similar rules:

M1 ↪→M ′1

forNode(x : AttributeT(t)n =M1 inM2)

↪→ forNode(x : AttributeT(t)n =M ′1 inM2)

JE-ForAK

forNode(x : AttributeT(t)n = [v i∈j..k
i] inM2)

↪→ ([x 7→ vj]M2) :: (forNode(x : AttributeT(t)n = [v i∈j+1..k
i] inM2))

JE-ForVAK

Runtime Computation (Delayed Computation). A boxed term, Box(M), is a runtime

term present at compile time. Therefore, during compile time, it remains the same (E-

Box).

Box(M) ↪→ Box(M)
JE-BoxK

The letbox destructor performs the unboxing of these terms. We first evaluate its first term

M1 (E-LetB), that is ultimately reduced to a boxed term, Box(M). The letbox sentence

is then removed and only the second term, M2, remains, under an environment where u

maps to the term M that was inside the Box (E-LetBV).

M1 ↪→M ′1

letbox u =M1 in M2 ↪→ letbox u =M ′1 in M2

JE-LetBK

letbox u = Box(M) in M2 ↪→ [u 7→M]M2

JE-LetBVK

We now present some simple examples of how this destructor works. M1 is a boxed term,

Box(M), containing a runtime computation. The letbox sentence allows us to promote

68

6.5. OPERATIONAL SEMANTICS

such computation to a previous stage, i.e., compile time, and maps u to it. All appearances

of u in M2 are replaced by the term M. In case M2 is a boxed term, its evaluation ends

there. In that case, the destructor allowed us to insert a runtime term inside another

runtime term, avoiding nested boxes, thus maintaining a two-stage computation:

letbox u = Box({Value = 3, Price = 10} �̂ Value) in Box(u)

↪→ Box({Value = 3, Price = 10} �̂ Value)

In case M2 is not a boxed term, the letbox is promoting the runtime computation to the

current moment. After replacing all occurrences of u in M2 with M, M2 can be evaluated

according to the corresponding rule. When the letbox is used this way, it delimits the

beginning of the runtime stage:

letbox u = Box({Value = 3, Price = 10} �̂ Value) in u

↪→ {Value = 3, Price = 10} �̂ Value

↪→ 3

Polymorphism. We evaluate the application of a type variable by first evaluating their

term M (E-NApp, E-TApp, E-RApp). From evaluating M, we obtain an abstraction

term and evaluate its application to a variable by retrieving the abstract term (E-NAppV,

E-TAppV, E-RAppV). We do not add these variables to the environment since these are

type variables and are only important to the typechecking phase.

M ↪→M ′

M[name]n ↪→M ′[name]n
JE-NAppK

(Λnn.M)[name]n ↪→ [name / n]M
JE-NAppVK

M ↪→M ′

M[type]t ↪→M ′[type]t
JE-TAppK

(Λtt.M)[type]t ↪→ [type / t]M
JE-TAppVK

M ↪→M ′

M[row]r ↪→M ′[row]r
JE-RAppK

(Λrr.M)[row]r ↪→ [row / r]M
JE-RAppVK

6.5.2 Runtime Semantics

Let Sentence. The let sentence can occur both in compile time and runtime. The rules

for its evaluation are the same and are defined above, in Section 6.5.1.

69

CHAPTER 6. TEMPLATE LANGUAGE

Nodes. All the nodevalue’s subcomponents (properties v1 and children nodes v2) are

evaluated at runtime:

v1 ↪−→
R
v′1

NodeValue〈α,v1,v2〉 ↪−→
R
NodeValue〈α,v′1,v2〉

JE-NodeV1K

v2 ↪−→
R
v′2

NodeValue〈α,v1,v2〉 ↪−→
R
NodeValue〈α,v1,v

′
2〉

JE-NodeV2K

Collections. Records and lists can occur in both compile time and runtime. Their eval-

uation rules (E-Rec and E-List) were already defined in Section 6.5.1, and are the same

in runtime. Similarly, the evaluation rules for the indexing of a list (E-Idx and E-IdxV)

are the same in both computation stages.

The selection operation presented in the compile-time stage only occurs at compile

time. However, selection can also happen in runtime. Hence, there is a similar operation,

the runtime selection. The rules for this operation are similar to the ones in compile

time. However, since this operation is only evaluated at runtime, its results are not boxed

values:

v1 ↪−→
R
v′1

v1 �̂ v2 ↪−→
R
v′1 �̂ v2

JE-SelRT1K

v2 ↪−→
R
v′2

v1 �̂ v2 ↪−→
R
v1 �̂ v

′
2

JE-SelRT2K

{Li = v i∈1..p
i } �̂Lj ↪−→

R
vj

JE-SelRecRTK

Attribute〈N,L,B, {Li = v i∈1..p
i }〉 �̂Lj ↪−→

R
vj

JE-SelAttrRTK

NodeValue〈α, {Li = v1
i∈1..p
i }, [v2

j∈1..m
j]〉 �̂Lk ↪−→

R
v1k

JE-SelNodeRTK

70

6.6. IMPLEMENTATION

6.6 Implementation

The core language presented in this chapter, which we call Core-OSTRICH, was im-

plemented in OCaml. Both its implementation and evaluation are available on https:

//github.com/jbp182/OSTRICH-OCaml.

To help the reader better understand the connection between the rules introduced in

this chapter and the implementation, we present a portion of its typechecking algorithm

implementation (Listing 6.1). It is a recursive function with six parameters:

• e: is the expression to be typed;

• env: is the compile-time typing environment, which maps compile-time variables

to their types;

• mod_env: is the runtime typing environment, which maps compile-time variables to

their types;

• tenv: is an environment, a set, that stores type variables;

• nenv: is an environment, a set, that stores name variables;

• renv: is an environment, a set, that stores record variables.

This algorithm matches the expression e with one of the patterns specified and returns

its type. For example, if the expression e is some String s, then it has type StringT. This

corresponds to the T-Str rule:

Γ ;∆;Ω;Φ ;Υ ` string : String
JT-StrK

When presented with a let sentence with the form let x = e1 in e2, the algorithm

adds the type of the expression e1 to the compile-time environment, then typing the

expression e2. This final result will be the resulting type of the let sentence, as stated in

the T-Let rule:

Γ ;∆;Ω;Φ ;Υ ` M1 : τ1 (Γ ,x : τ1);∆;Ω;Φ ;Υ ` M2 : τ2

Γ ;∆;Ω;Φ ;Υ ` let x =M1 inM2 : τ2

JT-LetK

The selection operation is a binary operation between two expressions, which can be

written asM1 �M2. By matching the expressions’ types with three options, we get different

types accordingly, which correspond to the rules T-Sel1, T-Sel2 and T-Sel3:

Γ ;∆;Ω;Φ ;Υ ` M1 : {Li : τ
i∈1..p

i }
Γ ;∆;Ω;Φ ;Υ ` M2 : Label(Lj) j ∈ 1..p

Γ ;∆;Ω;Φ ;Υ ` M1 �M2 : BoxT(τj)
JT-Sel1K

71

https://github.com/jbp182/OSTRICH-OCaml
https://github.com/jbp182/OSTRICH-OCaml

CHAPTER 6. TEMPLATE LANGUAGE

Γ ;∆;Ω;Φ ;Υ ` M1 : NodeT([α i∈1..p
i], {pj : τ j∈1..m

j })
Γ ;∆;Ω;Φ ;Υ ` M2 : Label(Lk) k ∈ 1..m

Γ ;∆;Ω;Φ ;Υ ` M1 �M2 : BoxT(τk)
JT-Sel2K

Γ ;∆;Ω;Φ ;Υ ` M1 : AttributeT(B)N
Γ ;∆;Ω;Φ ;Υ ` M2 : Label(DisplayName)

Γ ;∆;Ω;Φ ;Υ ` M1 �M2 : BoxT(String)
JT-Sel3K

Listing 6.1: Part of the implementation of the typechecking algorithm.

let rec typecheck e env mod_env tenv nenv renv =

match e with

| String s -> StringT

| Let(x,e1,e2) ->

let t1 = typecheck e1 env mod_env tenv nenv renv in

let env' = define x t1 env in

let t2 = typecheck e2 env' mod_env tenv nenv renv in

t2

| Select(e1, e2) ->

let t1 = typecheck e1 env mod_env tenv nenv renv in

let t2 = typecheck e2 env mod_env tenv nenv renv in

begin

match t1, t2 with

| RecordT r , LabelT l -> BoxT(find l r)

| NodeT (al, RecordT pr) , LabelT l -> BoxT(find l pr)

| AttributeT(n, t) , LabelT "DisplayName" -> BoxT(StringT)

| _ -> error (BadSelectOp(t1, t2))

end

| (...)

We also implement an algorithm for semantic evaluation, which follows the rules

presented in Section 6.5. That algorithm is implemented by means of a recursive function.

But this time, it only receives two parameters: the expression e and an environment env,

and returns a simplified expression. The correspondence between the evaluation rules

and their implementation is similar to the one presented with the typechecking algorithm.

Therefore, for simplicity, we opted not to list its implementation here.

72

7

Evaluation

Currently, the OutSystems platform contains 70 pre-built screens. The OSTRICH lan-

guage allows for the definition, verification and instantiation OutSystems’ templates,

having chosen to implement their top 10 [20]. Such templates correspond to more than

half of the screen template instantiations happening on the platform. By extending the

OSTRICH language with nested templates, i.e. the instantiation of a template inside the

definition of another, we can create additional templates that embody common patterns

to the original 10 templates. Seven shared patterns were identified, spawning seven

additional templates [44], as shown in Figure 7.1.

We offer a reference implementation of the OSTRICH language, which aims to help

in the implementation of its extensions. To prove our solution’s ability to represent

OSTRICH’s behaviour, we verify if it covers all cases covered by OSTRICH, i.e., the

10+7 templates. These templates require a way of defining dependencies between the

parameters’ types. For example, if a template receives an entity and an attribute, we

might want to further restrict those parameters and ensure that the attribute belongs to

the specified entity. Additionally, all the main templates contain inner templates, and we

need to ensure that their instantiation is safe. The code for all the 10+7 templates used

in the evaluation of our solution is presented in Annex III.

Next, we present an example of one of these templates. Since some templates have

similar features, we chose one that allows for clearer examples and still covers all the

features. We start with the syntax of its definition (Section 7.1), followed by the result of

typechecking it (Section 7.2). Then, we present its expected compile-time and runtime

results (Section 7.3). We do not go into much detail in this chapter, since all the typing

rules and evaluation rules were already presented in Chapter 6.

Since we cover all the important features with this example, it is easy to understand

that our reference implementation already implements, verifies and executes all of the

templates. Since our implementation is only a prototype, some runtime behaviour might

not be implemented (such as filtering list entries according to the user’s input), as we

directed our focus to the template structure and the dependencies between parameters.

We believe these behaviours are easy to add and are mainly a matter of increasing the

73

CHAPTER 7. EVALUATION

Listing

Attribute
Pie chart

Labelled attribute

Filter

Pagination

List with chart

Admin dashboard

Detail

Dashboard

List

List with filters

Bulk actions

Four column gallery

Account dashboard

Master detail

Table

Figure 7.1: Screen templates and their inner templates (in [44]).

syntax for these instances.

We use diagrams to better illustrate the typing of each element. However, we must

warn the reader that our diagram notation has no metamodel and is based on the lan-

guage’s syntax defined in Chapter 6. We are merely trying to present the abstract syntax

tree neatly.

7.1 Template Definition

We illustrate the typechecking and execution of a template, the Detail template, that

displays detailed information about an entity’s instance. For example, consider a screen

that lists products sold by some store. If the application user selects one of the rows of

that list, a product named chocolate frog, for instance, then another screen shows up.

The new screen displays detailed information about that specific instance, such as stock

quantity or description - such a screen is the Detail screen.

We define a template with two columns. One of the columns emphasizes the main

information of the selected instance, the primary attributes. The other one displays

less-important information, the secondary attributes. We present the definition of this

template in Figure 7.2. The developer of the application must define both the primary and

secondary attributes. Therefore, the template receives the entity of the selected instance

and two lists of attributes. In each column, the template iterates through one of the lists.

Then, for each element iterated, it displays a label with the name of the attribute it is

presenting and the value of that attribute.

This template contains shared patterns with other templates. Hence, we defined two

other inner templates that can be reused and are used and defined here.

We present the first inner template, T1, in Figure 7.3. Its parameters are an entity and

an attribute of that entity. It defines the type of widget to be displayed according to the

74

7.1. TEMPLATE DEFINITION

in

Template
T3<N,R>

e : EntityT(N,R)

primAttrs : ListAttr

secAttrs : ListAttrN

Node(Screen)

Node(Column)

ForNode

a1 : AttributeT(a1T) = primAttrs

N

Node(Column)

ForNode

a2 : AttributeT(a2T) = secAttrs

LetBox

lab_attr = T2<N,R,a1T>(e, a1)

LetBox

lab_attr = T2<N,R,a2T>(e, a2)

in

Box

Box(lab_attr)

Box

Box(lab_attr)

inin

n n

Figure 7.2: Schematic diagram of the definition of the template T3 - Template Detail.

attribute’s type. If an attribute has boolean values, then it should appear as a CheckBox,

which is ticked when its value is true. Otherwise, we employ an Expression widget that

displays the actual value of the attribute.

We depict the definition of the second template, T2, in Figure 7.4. It receives an entity

and an attribute of that entity as parameters. Then, it instantiates the template T1 to

display the attribute’s value and adds a label with the attribute’s name.

75

CHAPTER 7. EVALUATION

Template
T1<N,R,T>

e : EntityT(N,R)

attr : AttributeT(T)N

LetBox

name = NameOf e

LetBox

label = LabelOf attr

IfNode

attr isOfType Bool

Node(CheckBox)

Visible = Box(name . List . Current . label)

Node(Expression)

Value = Box(name . List . Current . label)

in

in

true false

^ ^ ^ ^ ^ ^

Figure 7.3: Schematic diagram of the definition of the template T1 - Template Attribute.

Template
T2<N,R,T>

e : EntityT(N,R)

attr : AttributeT(T)N

Node(Container)

Node(Expression)

Value = attr.DisplayName

LetBox

inner = T1<N,R,T>(e, attr)

in

Box

Box(inner)

Figure 7.4: Schematic diagram of the definition of the template T2 - Template Labelled
Attribute.

76

7.2. TEMPLATE TYPECHECKING

7.2 Template Typechecking

Template
T1<N,R,T>

e : EntityT(N,R)

attr : AttributeT(T)N

LetBox

name = NameOf e

LetBox

label = LabelOf attr

IfNode

attr isOfType Bool

Node(CheckBox)

Visible = Box(name . List . Current . label)

Node(Expression)

Value = Box(name . List . Current . label)

in

in

true false

∀ N. ∀ R. ∀ T.

TemplateT(EntityT(N,R) →

TemplateT(AttributeT(T) →
BoxT(NodeT([CheckBox; Expression], {}))))

n r t

BoxT(NodeT([CheckBox; Expression], {}))

BoxT(NodeT([CheckBox; Expression], {}))

BoxT(NodeT([CheckBox; Expression], {}))

BoxT(NodeT([CheckBox], {Visible : T})) BoxT(NodeT([Expression], {Value : T}))

BoxT({List : {Current : RecordAttr }})

Bool

BoxT(T)

N

LabelAttr N

N

^ ^ ^ ^ ^ ^

Figure 7.5: Schematic diagram of the typechecking of the template T1.

The template language is a two-stage language. During compile time, the typecheck-

ing algorithm executes, assigning types to the template’s elements. We represent the type

of each element inside a blue box, and the type of expressions inside dashed boxes.

In Figure 7.5, we present the result of typing the first inner template. The boxed

expressions will have type Box(T), with T being the type of the attribute’s values, as

defined in the first node by the statement attr : AttributeT(T)N . This comes from rules

T-SelRT1 and T-SelRT3. The CheckBox node will have the boxed type of a node with a list

containing its category, and a record with the types of its properties. Since the resulting

node is a runtime node, any inner boxed types are disposed of their boxes, and the whole

node is surrounded with an outer box (T-Node). The same happens with the Expression

node. The type of the IfNode will depend on the type of its children nodes (T-If). Its type

is a boxed node, containing the categories of its children, CheckBox and Expression, and a

record with common properties’ types, which in this case do not exist. Letbox expressions

will have the type of their body (T-LetB), which is the boxed node type.

The definition of the quantifiers and parameters of each template is condensed into

a single element, the first one. In Figure 7.6, we expand the condensed element in T1

and present the types of each original term. For simplicity, we preserve the condensed

77

CHAPTER 7. EVALUATION

Template
T1<N,R,T>

e : EntityT(N,R)

attr : AttributeT(T)N

ForAllName<N>

ForAllRows<R>

ForAllType<T>

Template

e : EntityT(N,R)

Template

attr : AttributeT(T)N

∀ N. ∀ R. ∀ T.

TemplateT(EntityT(N,R) →

TemplateT(AttributeT(T) →
BoxT(NodeT([CheckBox; Expression], {}))))

n r t

N

∀ R. ∀ T.

TemplateT(EntityT(N,R) →

TemplateT(AttributeT(T) →
BoxT(NodeT([CheckBox; Expression], {}))))

r t

N

∀ T.

TemplateT(EntityT(N,R) →

TemplateT(AttributeT(T) →
BoxT(NodeT([CheckBox; Expression], {}))))

t

N

TemplateT(EntityT(N,R) →
TemplateT(AttributeT(T) →

BoxT(NodeT([CheckBox; Expression], {}))))
N

TemplateT(AttributeT(T) →
BoxT(NodeT([CheckBox; Expression], {})))

N

Figure 7.6: Typechecking of the template T1’s signature, expanded.

format in the next templates. Since our implementation only accepts one parameter at a

time, we need to define successive templates to allow multiple parameters. Each template

definition will have type TemplateT(τ1 → τ2), where τ1 is the parameter’s type, and τ2

is the type of the template’s body (T-Temp). In this case, the last node in Figure 7.6 will

have the type of a template, with τ1 being the type of attr, and τ2 the boxed node type

explained above. The next parameter definition will have τ1 as the type of e, which is an

entity, and τ2 as the type of the term below. Type variable definitions work similarly. The

definition of a variable for types has the type ∀tT .τ , where T is the chosen variable, and

τ is the type of its body (T-FAT).

In Figure 7.7, we present the types of the second template’s elements. The compile-

time expression in the Expression node has type BoxT(String) (T-Sel3). The letbox expres-

sion assigns to inner the result of instantiating T1. The instantiation with all type vari-

ables and arguments will have the type BoxT(NodeT([CheckBox;Expression], {})) (T-Inst).

Finally, in Figure 7.8, we present the types of the outer template’s elements. The

instantiation of T2 will have the type BoxT(NodeT(Container, {})) (T-Inst). The type of the

ForNode will be the type of its body (T-For3).

78

7.2. TEMPLATE TYPECHECKING

Template
T2<N,R,T>

e : EntityT(N,R)

attr : AttributeT(T)N

Node(Container)

Node(Expression)

Value = attr.DisplayName

LetBox

inner = T1<N,R,T>(e, attr)

in

Box

Box(inner)

BoxT(NodeT([Container], {}))

BoxT(NodeT([Expression], {Value : String}))

BoxT(NodeT([CheckBox; Expression], {}))

BoxT(NodeT([CheckBox; Expression], {}))

∀ N. ∀ R. ∀ T.

TemplateT(EntityT(N,R) →

TemplateT(AttributeT(T) →
BoxT(NodeT([Container], {}))))

n r t

N

BoxT(String)

BoxT(NodeT([CheckBox;Expression], {}))

Figure 7.7: Schematic diagram of the typechecking of the template T2.

in

Template
T3<N,R>

e : EntityT(N,R)

primAttrs : ListAttr

secAttrs : ListAttrN

Node(Screen)

Node(Column)

ForNode

a1 : AttributeT(a1T) = primAttrs

N

Node(Column)

ForNode

a2 : AttributeT(a2T) = secAttrs

LetBox

lab_attr = T2<N,R,a1T>(e, a1)

LetBox

lab_attr = T2<N,R,a2T>(e, a2)

in

Box

Box(lab_attr)

Box

Box(lab_attr)

inin

∀ N. ∀ R.

TemplateT(EntityT(N,R) →

TemplateT(ListAttr →
TemplateT(ListAttr →

BoxT(NodeT([Screen], {})))))

n r

N
N

BoxT(NodeT([Screen], {}))

BoxT(NodeT([Column], {}))

BoxT(NodeT([Container], {}))

BoxT(NodeT([Container], {}))

BoxT(NodeT([Container], {}))

BoxT(NodeT([Container], {}))

n n

Figure 7.8: Schematic diagram of the typechecking of the template T3.

79

CHAPTER 7. EVALUATION

7.3 Template Execution

7.3.1 Compile Time Execution

During compile time and after typechecking, the template is instantiated with the argu-

ments provided by the developer of the application. Some compile-time computation

occurs, replacing expressions for their instantiated executable versions, and creating

nodes according to the conditions inside ifNodes and the iteration of forNodes.

We present the result of instantiating template T3 in Figure 7.9, with an entity Product.

To simplify our example and the corresponding diagram, we instantiate it with a list with

two primary attributes: Name and IsInStock, and a list with a single secondary attribute:

Price. The result of the instantiation starts with a Box due to being ready to execute once

the runtime computations start. Loops and conditionals are evaluated and replaced by

their corresponding nodes. Inner templates are instantiated. As seen in Figure 7.9, the

result is a screen with two columns. One displays information about two main attributes,

and the other displays just one. The expressions that fetch the actual value to be displayed

remain unevaluated. However, such expressions now refer to the arguments applied in

instantiation.

Screen

ColumnColumn

Container

Expression

Value = "Name"

Expression

Visible = Product.List.Current.Name

Container

Expression

Value = "Is in stock?"

CheckBox

Value = Product.List.Current.IsInStock

Container

Expression

Value = "Price"

Expression

Value = Product.List.Current.Price

Box

Figure 7.9: Schematic diagram of the template T3’s compile-time execution. In this
example, the template is instantiated with 1) an entity Product, 2) a list containing two
of its attributes: Name and IsInStock, and 3) a list containing another of its attributes:
Quantity.

80

7.3. TEMPLATE EXECUTION

7.3.2 Runtime Execution

The result presented in Figure 7.9 is now executed during runtime, and its expressions are

evaluated to their actual values. The resulting application in OutSystems would appear

as presented in Figure 7.10. The displayed attributes’ values were arbitrarily chosen.

Figure 7.10: Corresponding resulting screen of the OutSystems’ application after runtime
execution of the template.

81

8

Conclusion

Through the course of this thesis, we worked in several stages of the GOLEM Project. This

dissertation presents several contributions to the project.

First, we designed an ontology [45, 46] to help the natural-language processing-

component capture concepts that can be later translated into application elements. The

choice of appropriate concepts was a crucial step because such concepts need to resemble

the ones usually adopted by non-expert developers to facilitate mapping. Additionally,

the concepts need to be representative enough so we can understand them and generate

an application based on the intent expressed by the user.

Since some user requests are common patterns, using reusable pre-assembled tem-

plates would be beneficial and result in a cleaner and more appealing user interface. Un-

fortunately, the OutSystems templates use pre-defined data, which the user must adapt

to his own data source. To address this issue, we enriched the templates’ behaviour [41,

43, 44] to ease the development process. For this, we rely on the OSTRICH language, a

type-safe template language for the OutSystems platform that allows the definition and

instantiation of templates that can be applied and reused by the DSL developed under

the scope of the GOLEM project. We formalized this multi-stage language, OSTRICH,

paired with some extensions, such as name and type abstractions and dependencies be-

tween type declarations. These extensions help create more OutSystems templates with

increasing variety and possibilities, easing the application development process in this

low-code platform. We also produced a reference implementation of OSTRICH, which

captures all of the main features present in the instances covered by OSTRICH. This

makes it a viable option to study possible extensions for OSTRICH.

There is still plenty of room for improvement in future work by extending the re-

strictions and dependencies between parameters to allow for the instantiation of more

complex templates. Additionally, the developer might want to customise a screen after

instantiating its template. However, if the original template suffers an update, reapplying

the new one might cause some conflicts to emerge. Keeping a log of the customisation

progress allows instantiating the newly updated template and reapplying such customi-

sations on the new instantiation, unless they do not produce type-safe results [42].

82

This broad work allowed us to interact and learn with great professionals, from MSc

to PhD students to seniors of natural language processing and programming languages.

83

Bibliography

[1] M. Bačíková, J. Porubän, and D. Lakatos. “Defining Domain Language of Graphical

User Interfaces”. In: OpenAccess Series in Informatics 29 (2013-01), pp. 187–202.

doi: 10.4230/OASIcs.SLATE.2013.187 (cit. on p. 19).

[2] D. Berardi, D. Calvanese, and G. De Giacomo. “Reasoning on UML class diagrams”.

In: Artificial Intelligence 168.1 (2005), pp. 70–118. issn: 0004-3702. doi: https:

//doi.org/10.1016/j.artint.2005.05.003. url: https://www.sciencedirect.

com/science/article/pii/S0004370205000792 (cit. on pp. 8, 10).

[3] D. Calvanese. Description Logics for Conceptual Modeling. 2012. url: http://

www.epcl- study.eu/content/downloads/slides/calvanese- DLs- conceptual-

modeling.pdf (cit. on pp. 8–10).

[4] D. Calvanese. Ontology and Database Systems: Knowledge Representation and On-
tologies. Part 2: Description Logics. 2017. url: https://www.inf.unibz.it/

~calvanese/teaching/17-18-odbs/lecture-notes/KRO-2-dls.pdf (cit. on pp. 6–8,

11, 12, 36).

[5] L. Cardelli. “Phase Distinctions in Type Theory”. https://www.microsoft.com/en-

us/research/publication/phase-distinctions-in-type-theory/. 1988 (cit. on

pp. 21, 22, 27, 44).

[6] L. Cardelli. “Type Systems”. In: ACM Comput. Surv. 28.1 (1996), 263–264. issn:

0360-0300. doi: 10.1145/234313.234418. url: https://doi.org/10.1145/234313

.234418.

[7] L. Cardelli and P. Wegner. “On Understanding Types, Data Abstraction, and Poly-

morphism”. In: ACM Comput. Surv. 17.4 (1985), 471–523. issn: 0360-0300. doi:

10.1145/6041.6042. url: https://doi.org/10.1145/6041.6042.

[8] R. Davies and F. Pfenning. “A Modal Analysis of Staged Computation”. In: J.
ACM 48.3 (2001-05), pp. 555–604. doi: 10.1145/382780.382785. url: https:

//doi.org/10.1145/382780.382785 (cit. on pp. 21, 25–27, 44, 46).

84

https://doi.org/10.4230/OASIcs.SLATE.2013.187
https://doi.org/https://doi.org/10.1016/j.artint.2005.05.003
https://doi.org/https://doi.org/10.1016/j.artint.2005.05.003
https://www.sciencedirect.com/science/article/pii/S0004370205000792
https://www.sciencedirect.com/science/article/pii/S0004370205000792
http://www.epcl-study.eu/content/downloads/slides/calvanese-DLs-conceptual-modeling.pdf
http://www.epcl-study.eu/content/downloads/slides/calvanese-DLs-conceptual-modeling.pdf
http://www.epcl-study.eu/content/downloads/slides/calvanese-DLs-conceptual-modeling.pdf
https://www.inf.unibz.it/~calvanese/teaching/17-18-odbs/lecture-notes/KRO-2-dls.pdf
https://www.inf.unibz.it/~calvanese/teaching/17-18-odbs/lecture-notes/KRO-2-dls.pdf
https://www.microsoft.com/en-us/research/publication/phase-distinctions-in-type-theory/
https://www.microsoft.com/en-us/research/publication/phase-distinctions-in-type-theory/
https://doi.org/10.1145/234313.234418
https://doi.org/10.1145/234313.234418
https://doi.org/10.1145/234313.234418
https://doi.org/10.1145/6041.6042
https://doi.org/10.1145/6041.6042
https://doi.org/10.1145/382780.382785
https://doi.org/10.1145/382780.382785
https://doi.org/10.1145/382780.382785

BIBLIOGRAPHY

[9] S. P. De Rosso, D. Jackson, M. Archie, C. Lao, and B. A. McNamara. “Declarative

assembly of web applications from predefined concepts”. In: Onward! 2019 -
Proceedings of the 2019 ACM SIGPLAN International Symposium on New Ideas, New
Paradigms, and Reflections on Programming and Software, co-located with SPLASH
2019 (2019), pp. 79–93. doi: 10.1145/3359591.3359728 (cit. on pp. 17–19).

[10] M. Fahad. “ER2OWL: Generating OWL ontology from ER diagram”. In: IFIP In-
ternational Federation for Information Processing 288 (2008), pp. 28–37. issn: 1571-

5736. doi: 10.1007/978-0-387-87685-6_6 (cit. on p. 8).

[11] J. Fonseca, M. Pereira, and P. Rangel Henriques. “Converting Ontologies into DSLs”.

In: OpenAccess Series in Informatics 38 (2014-01), pp. 85–92. doi: 10.4230/OASIcs.

SLATE.2014.85 (cit. on p. 19).

[12] L. Globa, R. Novogrudska, A. Koval, and V. Senchenko. “Ontology for Application

Development”. In: Ontology in Information Science. 2018-03. isbn: 978-953-51-

3887-7. doi: 10.5772/intechopen.74042 (cit. on pp. 5–7).

[13] M. Hirzel. Low-Code Programming Models. 2022-05 (cit. on p. 20).

[14] M. Horridge, H. Knublauch, A. Rector, R. Stevens, and C. Wroe. A Practical Guide
To Building OWL Ontologies Using Protégé 4 and CO-ODE Tools Edition 1.3. 2011-03

(cit. on pp. 5, 11, 13–15, 30).

[15] D. Jackson. “Towards a Theory of Conceptual Design for Software”. In: On-
ward! 2015 - Proceedings of the 2015 ACM International Symposium on New Ideas,
New Paradigms, and Reflections on Programming and Software, Part of SPLASH 2015
(2015), pp. 282–296. doi: 10.1145/2814228.2814248 (cit. on pp. 16–18).

[16] R. Kontchakov and M. Zakharyaschev. “An Introduction to Description Logics

and Query Rewriting”. In: Reasoning Web. Reasoning on the Web in the Big Data
Era. Springer, Cham, 2014-09, pp. 195–244. doi: 10.1007/978-3-319-10587-1_5

(cit. on p. 11).

[17] J. de Lara and E. Guerra. “From Types to Type Requirements: Genericity for Model-

Driven Engineering”. In: Softw. Syst. Model. 12.3 (2013-07), pp. 453–474. doi: 1

0.1007/s10270-011-0221-0. url: https://doi.org/10.1007/s10270-011-0221-0

(cit. on p. 27).

[18] Y. Lilis and A. Savidis. “A Survey of Metaprogramming Languages”. In: ACM
Comput. Surv. 52.6 (2019). issn: 0360-0300. doi: 10.1145/3354584. url: https:

//doi.org/10.1145/3354584 (cit. on p. 20).

[19] A. López-Cima, Ó. Corcho, and A. Gómez-Pérez. “Rapid Ontology-based Web

Application Development with JSTL”. In: Proceedings of the ESWC’07 Workshop
on Scripting for the Semantic Web, SFSW 2007, Innsbruck, Austria, May 30, 2007.

Ed. by S. Auer, C. Bizer, T. Heath, and G. A. Grimnes. Vol. 248. CEUR Workshop

85

https://doi.org/10.1145/3359591.3359728
https://doi.org/10.1007/978-0-387-87685-6_6
https://doi.org/10.4230/OASIcs.SLATE.2014.85
https://doi.org/10.4230/OASIcs.SLATE.2014.85
https://doi.org/10.5772/intechopen.74042
https://doi.org/10.1145/2814228.2814248
https://doi.org/10.1007/978-3-319-10587-1_5
https://doi.org/10.1007/s10270-011-0221-0
https://doi.org/10.1007/s10270-011-0221-0
https://doi.org/10.1007/s10270-011-0221-0
https://doi.org/10.1145/3354584
https://doi.org/10.1145/3354584
https://doi.org/10.1145/3354584

BIBLIOGRAPHY

Proceedings. CEUR-WS.org, 2007. url: http://ceur-ws.org/Vol-248/paper5.pdf

(cit. on p. 19).

[20] H. Lourenço, C. Ferreira, and J. C. Seco. “OSTRICH - A Type-Safe Template Lan-

guage for Low-Code Development”. In: 2021 ACM/IEEE 24th International Confer-
ence on Model Driven Engineering Languages and Systems (MODELS). 2021, pp. 216–

226. doi: 10.1109/MODELS50736.2021.00030 (cit. on pp. 2, 30, 32–34, 43, 44, 73).

[21] J. A. McCance. “A Brief Introduction to Modal Logic”. In: 2008 (cit. on p. 25).

[22] E. Moggi, W. Taha, Z. E. Benaissa, and T. Sheard. An Idealized MetaML: Simpler, and
More Expressive (Includes Proofs). Tech. rep. 1998 (cit. on pp. 21, 23, 24, 27).

[23] D. Nardi and R. J. Brachman. “An Introduction to Description Logics”. In: The De-
scription Logic Handbook: Theory, Implementation, and Applications. Ed. by F. Baader,

D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider. Cambridge

University Press, 2003, pp. 1–40 (cit. on pp. 5, 11, 12).

[24] M. J. O’Connor, R. D. Shankar, C. Nyulas, S. W. Tu, and A. K. Das. “Developing

a Web-Based Application using OWL and SWRL”. In: AI Meets Business Rules and
Process Management, Papers from the 2008 AAAI Spring Symposium, Technical Report
SS-08-01, Stanford, California, USA, March 26-28, 2008. AAAI, 2008, pp. 93–98.

url: http://www.aaai.org/Library/Symposia/Spring/2008/ss08-01-012.php

(cit. on p. 19).

[25] F. Pfenning and R. Davies. “A Judgmental Reconstruction of Modal Logic”. In:

Mathematical Structures in Computer Science 11.4 (2001), pp. 511–540. doi: 10.101

7/S0960129501003322. url: https://doi.org/10.1017/S0960129501003322 (cit. on

pp. 25–27).

[26] B. C. Pierce. Types and Programming Languages. 1st. The MIT Press, 2002. isbn:

0262162091.

[27] D. D. Ruscio, D. S. Kolovos, J. de Lara, A. Pierantonio, M. Tisi, and M. Wimmer.

“Low-code development and model-driven engineering: Two sides of the same

coin?” In: Softw. Syst. Model. 21.2 (2022), pp. 437–446. doi: 10.1007/s10270-021-

00970-2 (cit. on p. 20).

[28] T. Sheard and S. P. Jones. “Template Meta-Programming for Haskell”. In: Proceed-
ings of the 2002 ACM SIGPLAN Workshop on Haskell. Haskell ’02. Pittsburgh, Penn-

sylvania: Association for Computing Machinery, 2002, 1–16. isbn: 1581136056.

doi: 10.1145/581690.581691. url: https://doi.org/10.1145/581690.581691

(cit. on pp. 22, 27).

[29] W. Taha and T. Sheard. “Multi-Stage Programming with Explicit Annotations”. In:

SIGPLAN Not. 32.12 (1997), 203–217. issn: 0362-1340. doi: 10.1145/258994.259

019. url: https://doi.org/10.1145/258994.259019.

86

http://ceur-ws.org/Vol-248/paper5.pdf
https://doi.org/10.1109/MODELS50736.2021.00030
http://www.aaai.org/Library/Symposia/Spring/2008/ss08-01-012.php
https://doi.org/10.1017/S0960129501003322
https://doi.org/10.1017/S0960129501003322
https://doi.org/10.1017/S0960129501003322
https://doi.org/10.1007/s10270-021-00970-2
https://doi.org/10.1007/s10270-021-00970-2
https://doi.org/10.1145/581690.581691
https://doi.org/10.1145/581690.581691
https://doi.org/10.1145/258994.259019
https://doi.org/10.1145/258994.259019
https://doi.org/10.1145/258994.259019

BIBLIOGRAPHY

[30] W. Taha and T. Sheard. MetaML and Multi-Stage Programming with Explicit Annota-
tions. Tech. rep. 1999 (cit. on pp. 21, 23, 24, 27).

[31] T. Walter, F. S. Parreiras, and S. Staab. “OntoDSL: An Ontology-Based Framework

for Domain-Specific Languages”. In: Model Driven Engineering Languages and Sys-
tems, 12th International Conference, MODELS 2009, Denver, CO, USA, October 4-9,
2009. Proceedings. Ed. by A. Schürr and B. Selic. Vol. 5795. Lecture Notes in Com-

puter Science. Springer, 2009, pp. 408–422. doi: 10.1007/978-3-642-04425-0_32.

url: https://doi.org/10.1007/978-3-642-04425-0_32 (cit. on p. 19).

[32] M. Woo. “The Rise of No/Low Code Software Development—No Experience Needed?”

In: Engineering 6 (2020-07). doi: 10.1016/j.eng.2020.07.007 (cit. on p. 1).

[33] I. Čeh, M. Črepinšek, T. Kosar, and M. Mernik. “Ontology Driven Development

of Domain-Specific Languages”. In: Computer Science and Information Systems 8

(2011-05), pp. 317–342. doi: 10.2298/CSIS101231019C (cit. on p. 19).

87

https://doi.org/10.1007/978-3-642-04425-0_32
https://doi.org/10.1007/978-3-642-04425-0_32
https://doi.org/10.1016/j.eng.2020.07.007
https://doi.org/10.2298/CSIS101231019C

Webography

[34] J. M. Lourenço. The NOVAthesis LATEX Template User’s Manual. NOVA University

Lisbon. 2021. url: https://github.com/joaomlourenco/novathesis/raw/master/

template.pdf (cit. on p. ii).

[35] D. Midura. The Rise of Low Code: 2020 and Beyond. 2019-12-02. url: https:

//www.techadv.com/blog/rise-low-code-2020-and-beyond (cit. on pp. 1, 2).

[36] H. T. L. de Paula. A Brief Introduction to Template Haskell. 2021-07-06. url: https:

//serokell.io/blog/introduction-to-template-haskell (cit. on pp. 22, 27).

[37] Protégé. url: https://protege.stanford.edu (cit. on p. 13).

[38] Protégé 5 Documentation. url: http://protegeproject.github.io/protege/ (cit.

on p. 14).

[39] The History of Low-Code Platforms: How Development Changed Forever. 2018-05-02.

url: https://kissflow.com/rad/low-code/history-of-low-code-development-

platforms/ (cit. on p. 1).

[40] D. Wilfrid. A Brief History of Low-Code Development Platforms. 2020-02-10. url:

https://www.quickbase.com/blog/a-brief-history-of-low-code-development-

platforms (cit. on p. 1).

88

https://github.com/joaomlourenco/novathesis/raw/master/template.pdf
https://github.com/joaomlourenco/novathesis/raw/master/template.pdf
https://www.techadv.com/blog/rise-low-code-2020-and-beyond
https://www.techadv.com/blog/rise-low-code-2020-and-beyond
https://serokell.io/blog/introduction-to-template-haskell
https://serokell.io/blog/introduction-to-template-haskell
https://protege.stanford.edu
http://protegeproject.github.io/protege/
https://kissflow.com/rad/low-code/history-of-low-code-development-platforms/
https://kissflow.com/rad/low-code/history-of-low-code-development-platforms/
https://www.quickbase.com/blog/a-brief-history-of-low-code-development-platforms
https://www.quickbase.com/blog/a-brief-history-of-low-code-development-platforms

Contributed Papers

[41] H. Lourenço, C. Ferreira, J. C. Seco, and J. Parreira. “OSTRICH - A Rich Template

Language for Low-Code Development (Extended version)”. In: Software and Sys-
tems Modeling (SoSyM) (2022). (accepted, under revision) (cit. on pp. 3, 31–34,

82).

[42] C. Manteigas, J. Parreira, J. C. Seco, and C. Ferreira. “Type-Safe Customization

of Low-code Templates”. In: INForum 2022 - Simpósio de Informática. 2022. (to

appear) (cit. on pp. 3, 4, 82).

[43] J. Parreira. “Simple Dependent Types for OSTRICH”. In: Integrated Formal Methods,
PhD Symposium at the 17th International Conference on integrated Formal Methods
(PhD-iFM’22). Vol. 13274. Lecture Notes in Computer Science. Lugano, Switzer-

land: Springer, 2022 (cit. on pp. 3, 4, 31, 82).

[44] J. C. Seco, H. Lourenço, J. Parreira, and C. Ferreira. “Nested OSTRICH - Hatching

Compositions of Low-code Templates”. In: ACM/IEEE 25th International Conference
on Model Driven Engineering Languages and Systems (MODELS). 2022. (to appear)

(cit. on pp. 3, 4, 31, 35, 46, 73, 74, 82).

[45] J. Silva, D. Melo, I. Rodrigues, J. Seco, C. Ferreira, and J. Parreira. “An Ontology

based Task Oriented Dialogue”. In: Proceedings of the 13th International Joint Con-
ference on Knowledge Discovery, Knowledge Engineering and Knowledge Management
- KEOD, INSTICC. SciTePress, 2021, pp. 96–107. isbn: 978-989-758-533-3. doi:

10.5220/0010711900003064 (cit. on pp. 3, 30, 37, 42, 82).

[46] J. Silva, D. Melo, I. Rodrigues, J. Seco, C. Ferreira, and J. Parreira. “An Ontol-

ogy based Task Oriented Dialogue to Create OutSystems Applications”. In: SN
Computer Science (2022). (under submission) (cit. on pp. 3, 30, 37, 82).

89

https://doi.org/10.5220/0010711900003064

I

Annex I - Ontology

I.1 Ontology Description

This ontology, written in description logic SROIQ(D), represents part of a website with

lost, found, and adoption announcements for pets. It has a page menu and information

about menu location on the page. It also has menu items which are not specified in this

example. Each menu item will have a name, like for example Home, Account, Lost, among

others. And each menu item will have a position attribute corresponding to its relative

position on the menu. It also has users, posts, post items, comments, and reports.
In Section I.2 we show portions of the UML class diagram used to build the first on-

tology. Section I.3 describes the first ontology with Description Logics (SROIQ(D)). In

Section I.3.1 we can see all classes and their subclasses. In Section I.3.2 we can see the

object properties (relations or roles) between those classes and corresponding cardinal-

ities. Data properties (attributes) and information about their domains are specified in

Section I.3.3. Section I.3.4 contains some examples of queries in order to retrieve spe-

cific individuals (instances) according to what is specified on said query. We present the

second ontology in Section I.4.

Because we describe the ontology in SROIQ(D), we assumed that atoms of type string

and datatype, and patterns exist.

90

I .2. UML CLASS DIAGRAM

I.2 UML Class Diagram

In this Section we will be presenting several UML class diagrams. All of them form a

larger diagram, which was not possible to present in just one figure. These UML class

diagrams represent a portion of our metamodel (the ontology), and the ontology written

in Description Logics was based on it.

First, we present the high-level classes, Entity, Attribute, and Aggregate, in Figure I.1.

Figure I.1: UML class diagram with three of the main classes (high-level) of our meta-
model.

91

ANNEX I. ANNEX I - ONTOLOGY

Figure I.2 shows all the subclasses of the Entity class.

Figure I.2: UML class diagram showing the subclasses of the Entity class.

92

I .2. UML CLASS DIAGRAM

Figure I.3 shows the attributes of the class Attribute (characteristics, such as label,
name, default_value, and values), and all its subclasses.

Figure I.3: UML class diagram showing the subclasses of the Attribute class.

93

ANNEX I. ANNEX I - ONTOLOGY

Figure I.4 shows some of the associations between subclasses of Entity. Two of these

associations, comments and reports, have an association class, hence reification was applied

while translating them into Description Logics.

Figure I.4: UML class diagram showing the associations between some of the Entities.

94

I .2. UML CLASS DIAGRAM

Figure I.5 shows some of the associations between Entities and their corresponding

Attributes.

Figure I.5: UML class diagram showing the relationships between some Entities and
Attributes.

95

ANNEX I. ANNEX I - ONTOLOGY

I.3 Description Logics - First Ontology

I.3.1 Classes

Entity v T hing User v Entity

Attribute v T hing UserAttribute v Attribute

Aggregate v T hing Username vUserAttribute

UserEmail vUserAttribute

Menu v Entity UserBirthday vUserAttribute

MenuAttribute v Attribute UserP assword vUserAttribute

MenuLocation vMenuAttribute

MenuOrder vMenuAttribute

MenuOrientation vMenuAttribute P ost v Entity

P ostAttribute v Attribute

MenuItem v Entity P ostDate v P ostAttribute

MenuItemAttribute v Attribute P ostStatus v P ostAttribute

MIName vMenuItemAttribute P ostP rivacy v P ostAttribute

MIP osition vMenuItemAttribute P ostDescription v P ostAttribute

P ostItem v Entity Comment v Entity

Breed v P ostItem CommentAttribute v Attribute

P icture v P ostItem CommentDate v CommentAttribute

Species v P ostItem CommentT ext v CommentAttribute

MapLocation v P ostItem

P ostItemAttribute v Attribute Report v Entity

P IDescription v P ostItemAttribute ReportAttribute v Attribute

P IContent v P ostItemAttribute ReportJustif ication v ReportAttribute

96

I .3. DESCRIPTION LOGICS - FIRST ONTOLOGY

Entity v ¬Attribute

MenuAttribute v ¬MenuItemAttributeu¬UserAttributeu¬P ostAttribute

u¬P ostItemAttributeu¬CommentAttributeu¬ReportAttribute

MenuItemAttribute v ¬UserAttributeu¬P ostAttributeu¬P ostItemAttribute

u¬CommentAttributeu¬ReportAttribute

UserAttribute v ¬P ostAttributeu¬P ostItemAttributeu¬CommentAttribute

u¬ReportAttribute

P ostAttribute v ¬P ostItemAttributeu¬CommentAttributeu¬ReportAttribute

P ostItemAttribute v ¬CommentAttributeu¬ReportAttribute

CommentAttribute v ¬ReportAttribute

CommentDate v ¬CommentT ext

MenuLocation v ¬MenuOrder u¬MenuOrientation

MenuOrder v ¬MenuOrientation

P ostDate v ¬P ostDescriptionu¬P ostP rivacy u¬P ostStatus

P ostDescription v ¬P ostP rivacy u¬P ostStatus

P ostP rivacy v ¬P ostStatus

P IContent v ¬P IDescription

P IContent v ¬P IDescription

UserBirthday v ¬UserEmail u¬Usernameu¬UserP assword

UserEmail v ¬Usernameu¬UserP assword

Username v ¬UserP assword

Breed v ¬MapLocationu¬P ictureu¬Species

MapLocation v ¬P ictureu¬Species

P icture v ¬Species

97

ANNEX I. ANNEX I - ONTOLOGY

I.3.2 Object Properties

∃hasMenuItem vMenu ∃commentAbout v Comment

∃hasMenuItem− vMenuItem ∃commentAbout− v P ost

Menu v ∃hasMenuItem Comment v ∃commentAbout

MenuItem v ∃hasMenuItem− u (≤ 1commentAbout)

u (≤ 1hasMenuItem−) ∃commentBy v Comment

∃commentBy− vUser

∃hasP I v P ost Comment v ∃commentBy

∃hasP I− v P ostItem u (≤ 1commentBy)

P ostItem v ∃hasP I− u (≤ 1hasP I−)

∃reportedAbout v Report

∃creates vUser ∃reportedAbout− v P ost

∃creates− v P ost Report v ∃reportedAbout

P ost v ∃creates− u (≤ 1creates−) u (≤ 1reportedAbout)

∃f avorite vUser ∃reportedBy v Report

∃f avorite− v P ost ∃reportedBy− vUser

∃f eed vUser Report v ∃reportedBy

∃f eed− v P ost u (≤ 1reportedBy)

98

I .3. DESCRIPTION LOGICS - FIRST ONTOLOGY

∃hasAttr v Entity

∃hasAttr− v Attribute

Entity v ∃hasAttr

Attribute v ∃hasAttr−

Menu v ∃hasAttr.MenuLocationu (≤ 1hasAttr.MenuLocation)

Menu v ∃hasAttr.MenuOrder u (≤ 1hasAttr.MenuOrder)

Menu v ∃hasAttr.MenuOrientationu (≤ 1hasAttr.MenuOrientation)

MenuItem v ∃hasAttr.MINameu (≤ 1hasAttr.MIName)

MenuItem v ∃hasAttr.MIP ositionu (≤ 1hasAttr.MIP osition)

User v ∃hasAttr.UserBirthday u (≤ 1hasAttr.UserBirthday)

User v ∃hasAttr.UserEmail u (≤ 1hasAttr.UserEmail)

User v ∃hasAttr.UserP assword u (≤ 1hasAttr.UserP assword)

User v ∃hasAttr.Usernameu (≤ 1hasAttr.Username)

Comment v ∃hasAttr.CommentDateu (≤ 1hasAttr.CommentDate)

Comment v ∃hasAttr.CommentT ext u (≤ 1hasAttr.CommentT ext)

P ost v ∃hasAttr.P ostDateu (≤ 1hasAttr.P ostDate)

P ost v ∃hasAttr.P ostDescriptionu (≤ 1hasAttr.P ostDescription)

P ost v ∃hasAttr.P ostP rivacy u (≤ 1hasAttr.P ostP rivacy)

P ost v ∃hasAttr.P ostStatusu (≤ 1hasAttr.P ostStatus)

P ostItem v ∃hasAttr.P IContent u (≤ 1hasAttr.P IContent)

P ostItem v ∃hasAttr.P IDescriptionu (≤ 1hasAttr.P IDescription)

Report v ∃hasAttr.ReportJustif icationu (≤ 1hasAttr.ReportJustif ication)

99

ANNEX I. ANNEX I - ONTOLOGY

I.3.3 Data Properties

∃label v Attribute

∃name v Attribute

∃def ault_value v Attribute

∃values v Attribute

UserBirthday v ∃label.{”birthday”} u (≤ 1label.{”birthday”})

UserBirthday v ∃name.{”birthday”} u (≤ 1name.{”birthday”})

UserBirthday v ∃values.{dateT ime[≥ ”1990− 01− 01T 00 : 00 : 00”]}

u (≤ 1values.{dateT ime[≥ ”1990− 01− 01T 00 : 00 : 00”]})

UserEmail v ∃label.{”email”} u (≤ 1label.{”email”})

UserEmail v ∃name.{”email”} u (≤ 1name.{”email”})

UserEmail v ∃values.{string[minLength10,maxLength50,

pattern”([a− zA−Z0− 9] + ([.− _]?[a− zA−Z0− 9]+)∗)

@[a− zA−Z0− 9] + ([.−]?[a− zA−Z0− 9]+) ∗ .([a− zA−Z]2,5)”]}

u (≤ 1values.{string[minLength10,maxLength50,

pattern”([a− zA−Z0− 9] + ([.− _]?[a− zA−Z0− 9]+)∗)

@[a− zA−Z0− 9] + ([.−]?[a− zA−Z0− 9]+) ∗ .([a− zA−Z]2,5)”]}

Username v ∃label.{”username”} u (≤ 1label.{”username”})

Username v ∃name.{”username”} u (≤ 1name.{”username”})

Username v ∃values.{string[pattern”[a− zA−Z0− 9.− _]4,20”]}

u (≤ 1values.{string[pattern”[a− zA−Z0− 9.− _]4,20”]})

UserP assword v ∃label.{”password”} u (≤ 1label.{”password”})

UserP assword v ∃name.{”password”} u (≤ 1name.{”password”})

UserP assword v ∃values.{string[pattern”.6,50”]}

u (≤ 1values.{string[pattern”.6,50”]})

100

I .3. DESCRIPTION LOGICS - FIRST ONTOLOGY

P ostDate v ∃label.{”postDate”} u (≤ 1label.{”postDate”})

P ostDate v ∃name.{”postDate”} u (≤ 1name.{”postDate”})

P ostDate v ∃values.{dateT ime[≥ ”1990− 01− 01T 00 : 00 : 00”]}

u (≤ 1values.{dateT ime[≥ ”1990− 01− 01T 00 : 00 : 00”]})

P ostDescription v ∃label.{”postDescription”} u (≤ 1label.{”postDescription”})

P ostDescription v ∃name.{”postDescription”} u (≤ 1name.{”postDescription”})

P ostDescription v ∃values.{string[pattern”.1,100”]}

u (≤ 1values.{string[pattern”.1,100”]})

P ostP rivacy v ∃label.{”postP rivacy”} u (≤ 1label.{”postP rivacy”})

P ostP rivacy v ∃name.{”postP rivacy”} u (≤ 1name.{”postP rivacy”})

P ostP rivacy v ∃values.{”f riends”,”private”,”public”}

u (≤ 1values.{”f riends”,”private”,”public”})

P ostP rivacy v ∃def ault_value.{”f riends”} u (≤ 1def ault_value.{”f riends”})

P ostStatus v ∃label.{”postStatus”} u (≤ 1label.{”postStatus”})

P ostStatus v ∃name.{”postStatus”} u (≤ 1name.{”postStatus”})

P ostStatus v ∃values.{”censored”,”open”,”solved”}

u (≤ 1values.{”censored”,”open”,”solved”})

P ostStatus v ∃def ault_value.{”open”} u (≤ 1def ault_value.{”open”})

CommentDate v ∃label.{”commentDate”} u (≤ 1label.{”commentDate”})

CommentDate v ∃name.{”commentDate”} u (≤ 1name.{”commentDate”})

CommentDate v ∃values.{dateT ime[>= ”1990− 01− 01T 00 : 00 : 00”]}

u (≤ 1values.{dateT ime[>= ”1990− 01− 01T 00 : 00 : 00”]})

CommentT ext v ∃label.{”commentT ext”} u (≤ 1label.{”commentT ext”})

CommentT ext v ∃name.{”commentT ext”} u (≤ 1name.{”commentT ext”})

CommentT ext v ∃values.{string[minLength1,maxLength300]}

u (≤ 1values.{string[minLength1,maxLength300]})

101

ANNEX I. ANNEX I - ONTOLOGY

I.3.4 Queries

This query returns all posts with the status "solved".

P ostsSolved v Aggregate

P ostsSolved ≡ P ost u∃hasAttr.P ostStatus.values.{”solved”}

This query returns all users that created at least one post on the specified date.

UserCommentedDay v Aggregate

UserCommentedDay ≡User u∃commentBy−.

Comment.hasAttr.CommentDate.{dateT ime[”2021− 01− 19T 00 : 00 : 00”]}

This query returns all users that have at least 3 posts that were created this year and that got censored.

UsersReportedP osts v Aggregate

UsersReportedP osts ≡User u (≥ 3creates.P ostu

(hasAttr.P ostDate.values{dateT ime[≥ ”2021− 01− 01T 00 : 00 : 00”]}

u hasAttr.P ostStatus.values{”censored”}))

102

I .4. DESCRIPTION LOGICS - SECOND ONTOLOGY

I.4 Description Logics - Second Ontology

I.4.1 Classes

Entity v T hing CommentAttribute v Attribute

Attribute v T hing CommentDate v CommentAttribute

OutSystems v T hing CommentDescription v CommentAttribute

User v Entity ElementOf Component vOutSystems

P ost v Entity ElemDetail v ElementOf Component

Comment v Entity ElemEntityDB v ElementOf Component

P ost v Entity ElemSearchableList v ElementOf Component

P ostAttribute v Attribute

P ostDate v P ostAttribute

P ostStatus v P ostAttribute Extendable v P ostAttribute

P ostAttribute v Attribute ExtendableString v Extendable

Date v P ostAttribute ExtendableBlob v Extendable

Description v P ostAttribute ExtendableEnumerate v Extendable

P rivacy v P ostAttribute ExtendableInt v Extendable

T itle v P ostAttribute ExtendableRef v Extendable

Status v P ostAttribute

StatusDef ault v Status

Entity v ¬Attribute

User v ¬P ost

Date v ¬Descriptionu¬P rivacy u¬Statusu¬T itle

Description v ¬P rivacy u¬Statusu¬T itle

P rivacy v ¬Statusu¬T itle

Status v ¬T itle

103

ANNEX I. ANNEX I - ONTOLOGY

I.4.2 Object Properties

∃create vUser

∃hasAttribute v Entity

∃hasAttribute− v Attribute

∃read vUser

∃search vUser

T hing v ∃create− u (≤ 1creates−)

Comment v ∃create−.User

CommentAttribute v ∀hasAttr−.Comment

P ost v ∃create−.User

P ost v ∃hasAttr.Dateu∃hasAttr.Descriptionu∃hasAttr.P rivacy

u∃hasAttr.Statusu∃hasAttr.T itle

I.4.3 Data Properties

StatusDef ault w ∃values.“active′′ ,“censored′′ ,“archived′′

u (≤ values.“active′′ ,“censored′′ ,“archived′′)

∃def ault_value v Attribute

∃f ormat v Attribute

∃listColumns v ElemSearchableList

∃listFilter v ElemSearchableList

∃listSort v ElemSearchableList

∃mandatory v Attribute

∃restriction v T hing

∃values v Attribute

104

I .4. DESCRIPTION LOGICS - SECOND ONTOLOGY

I.4.4 General Class Axioms

Entityu∃hasAttr.Attribute v ElemEntityDB

Entityu∃create−.User v ElemEntityDB

Attributeu∃values.{string[pattern”\\[.∗(, .)∗\\]”]} v ElemEntityDB

∃create−.User v ElemDetail

∃read−.Useru∃search−.User v ElemSearchableList

105

II

Annex II - Template Language

Formalization

II.1 Syntax

α ::= (node categories)
ε (empty)

| Top (top)
| Screen (screen)
| Table (table)
| Column (column)
| Icon (icon)
| Expression (expression)
| Input (input)
| CheckBox (check box)
| Calendar (calendar)
| Container (container)
| List (list)
| ListItem (list item)
| Search (search)
| Chart (chart)
| Counter (counter)
| Pagination (pagination)

Figure II.1: Node categories.

106

II .1. SYNTAX

p ::= (properties)
Name (name property)

| Title (title property)
| Description (description property)
| Type (type property)
| DisplayName (display name property)
| Source (source property)
| Visible (visible property)
| Value (value property)
| InputType (input type property)
| Variable (variable property)
| Attributes (attributes field)
| FilterBy (filter property)
| AttrGroup (attribute to group by property)

Figure II.2: Properties.

107

ANNEX II. ANNEX II - TEMPLATE LANGUAGE FORMALIZATION

vl ::= (value literals)
num (number literal)

| string (string literal)
| bool (boolean literal)

N ::= N1 |N2 | . . . (name identifiers)

V ::= (model elements)

Entity〈N, {Li = V i∈1..p
i }, {Li = [vl j∈1..m

j]
i∈1..p

i
}〉 (entity element)

| Attribute〈N,L,B, {pi =M i∈1..p
i }〉 (attribute element)

M ::= (template terms)
vl (value literal)

| x (compile-time variable)
| u (runtime variable)
| L (label)
| V (model element)

| {Li =M i∈1..p
i } (record)

| [M i∈1..p
i] (list)

| M1 �M2 (selection operation)
| M1 �̂M2 (runtime selection operation)
| NameOfM (name property)
| LabelOfM (label property)
| AttributesOfM (attributes)
| M isOfType τ (type verification)
| let x =M1 inM2 (let expression)
| Template〈x, τ, M〉 (template declaration)
| M1(M2) (template instantiation)

| Node〈α, {pi =M1
i∈1..p
i }, [M2

j∈1..m
j]〉 (node element)

| NodeValue〈α, {pi = v1
i∈1..p
i }, [v2

j∈1..m
j]〉 (runtime node)

| forNode(x : t =M1 inM2) (loop instruction node)
| forNode(x : AttributeT(t)n =M1 inM2) (loop for attributes node)
| ifNode(M, MT , MF) (conditional branching node)
| Box(M) (runtime term constructor)
| letbox u =M1 in M2 (runtime term destructor)
| M1[M2] (indexing)
| Λnn.M (name abstraction)
| Λtt.M (type abstraction)
| Λrr.M (row abstraction)
| M[name]n (name application)
| M[type]t (type application)
| M[row]r (row application)

Figure II.3: Syntax of the template language.

108

II .1. SYNTAX

v ::= (values)
vl

| Entity〈N, {Li = v i∈1..p
i }, {Li = [vl j∈1..m

j]
i∈1..p

i
}〉

| Attribute〈N,L,B, {pi = v i∈1..p
i }〉

| L

| {Li = v i∈1..p
i }

| [v i∈1..p
i]

| v1 �̂ v2

| NodeValue〈α, {pi = v1
i∈1..p
i }, [v2

j∈1..m
j]〉

| Box(M)

Figure II.4: Syntax of compile time values (runtime terms).

B ::= (basic types)
Num (number)

| String (string)
| Bool (bool)

τ ::= (types)
B (basic types)

| Name(N) (name)
| Label(L) (label)
| LabelAttr(B)n (attribute label)

| {Li : τ
i∈1..p

i } (record)
| RecordAttrn (record of entity’s attributes)
| [τ] (list)
| ListAttrn (list of entity’s attributes)

| EntityT(n, {Li : τ
i∈1..p

i }) (entity)
| AttributeT(τ)n (attribute)

| NodeT([α i∈1..p
i], {pj : τ j∈1..m

j }) (node)
| BoxT(τ) (delayed type)
| TemplateT(τ1→ τ2) (template)
| n (name variable)
| t (type variable)
| r (row variable)
| ∀nn.τ (forall name)
| ∀tt.τ (forall type)
| ∀rr.τ (forall rows)
| > (top)

Figure II.5: Syntax of types.

109

ANNEX II. ANNEX II - TEMPLATE LANGUAGE FORMALIZATION

Γ ::= (compile-time contexts)
∅ (empty context)

| Γ ,x : τ (term variable binding)

∆ ::= (runtime contexts)
∅ (empty context)

| ∆,u : τ (term variable binding)

Ω ::= (name variable contexts)
∅ (empty context)

| Ω,n (name variable binding)

Φ ::= (rows variable contexts)
∅ (empty context)

| Φ , r (rows variable binding)

Υ ::= (type variable contexts)
∅ (empty context)

| Υ , t (type variable binding)

Figure II.6: Syntax of contexts.

110

II .2. TYPE SYSTEM

II.2 Type System

Γ ;∆;Ω;Φ ;Υ ` num : Num
JT-NumK

Γ ;∆;Ω;Φ ;Υ ` string : String
JT-StrK

Γ ;∆;Ω;Φ ;Υ ` bool : Bool
JT-BoolK

Γ ;∆;Ω;Φ ;Υ ` N : Name(N)
JT-NameK

Γ ;∆;Ω;Φ ;Υ ` L : Label(L)
JT-LabK

for each i Γ ;∆;Ω;Φ ;Υ ` Mi : τi

Γ ;∆;Ω;Φ ;Υ ` {Li =M i∈1..p
i } : {Li : τ

i∈1..p
i }

JT-RecK

for each i Γ ;∆;Ω;Φ ;Υ ` Mi : τ

Γ ;∆;Ω;Φ ;Υ ` [M i∈1..p
i] : [τ]

JT-ListK

x : τ ∈ Γ
Γ ;∆;Ω;Φ ;Υ ` x : τ

JT-CVarK
u : τ ∈ ∆

Γ ;∆;Ω;Φ ;Υ ` u : τ
JT-RVarK

Γ ;∆;Ω;Φ ;Υ ` N : Name(N)
for each i Γ ;∆;Ω;Φ ;Υ ` Mi : AttributeT(Bi)N

for each i, j Γ ;∆;Ω;Φ ;Υ ` vji : Bi

Γ ;∆;Ω;Φ ;Υ ` Entity〈N, {Li =M i∈1..p
i }, {Li = [v j∈1..m

j]
i∈1..p

i
}〉 :

EntityT(N, {Li : AttributeT(Bi)
i∈1..p
N })

JT-EntK

Γ ;∆;Ω;Φ ;Υ ` N : Name(N)
for each i Γ ;∆;Ω;Φ ;Υ ` Mi : τi

Γ ;∆;Ω;Φ ;Υ ` Attribute〈N,L,B, {pi =M i∈1..p
i }〉 : AttributeT(B)N

JT-AttrK

Γ ;∆;Ω;Φ ;Υ ` M : EntityT(N, {Li : AttributeT(Bi)
i∈1..p
N })

Γ ;∆;Ω;Φ ;Υ ` NameOfM : BoxT({List : {Current : RecordAttrN}})
JT-NOfK

Γ ;∆;Ω;Φ ;Υ ` M : AttributeT(B)N
Γ ;∆;Ω;Φ ;Υ ` LabelOfM : BoxT(LabelAttr(B)N)

JT-LOfK

Figure II.7: Type system rules.

111

ANNEX II. ANNEX II - TEMPLATE LANGUAGE FORMALIZATION

Γ ;∆;Ω;Φ ;Υ ` M : EntityT(N,R)

Γ ;∆;Ω;Φ ;Υ ` AttributesOfM : ListAttrN
JT-AOfK

Γ ;∆;Ω;Φ ;Υ ` M : τ ′

Γ ;∆;Ω;Φ ;Υ ` M isOfType τ : Bool
JT-OfTyK

Γ ;∆;Ω;Φ ;Υ ` M1 : τ1 (Γ ,x : τ1);∆;Ω;Φ ;Υ ` M2 : τ2

Γ ;∆;Ω;Φ ;Υ ` let x =M1 inM2 : τ2
JT-LetK

for each i Γ ;∆;Ω;Φ ;Υ ` Mi : BoxT(τi)

for each j Γ ;∆;Ω;Φ ;Υ ` Mj : BoxT(NodeT([α h∈1..f
h], {pk : τ k∈1..l

k })j)

Γ ;∆;Ω;Φ ;Υ ` Node〈α, {pi =M i∈1..p
i }, [M j∈1..m

j]〉 :
BoxT(NodeT([α], {pi : τ

i∈1..p
i }))

JT-NodeK

Γ ;∆;Ω;Φ ;Υ ` M1 : [τ1]
(Γ ,x : t);∆;Ω;Φ ; (Υ , t = τ1) ` M2 : BoxT(τ2)

τ2 = NodeT([α j∈1..m
j], {pk : τ k∈1..l

k })

Γ ;∆;Ω;Φ ;Υ ` forNode(x : t =M1 inM2) : BoxT(τ2)
JT-ForK

Γ ;∆;Ω;Φ ;Υ ` M1 : ListAttrN
(Γ ,x : AttributeT(t)n);∆; (Ω,n =N);Φ ; (Υ , t =>) ` M2 : BoxT(τ2)

τ2 = NodeT([α i∈1..p
i], {pj : τ j∈1..m

j })

Γ ;∆;Ω;Φ ;Υ ` forNode(x : AttributeT(t)n =M1 inM2) : BoxT(τ2)
JT-ForAttrK

with:

realType(τ) ,match τ with

| AttributeT(B)n→ B

| _→ τ

Figure II.8: Type system rules (part 2).

112

II .2. TYPE SYSTEM

Γ ;∆;Ω;Φ ;Υ ` M : Bool
Γ ;∆;Ω;Φ ;Υ ` MT : BoxT(NodeT([α i∈1..p

i], {pj : τ j∈1..m
j }))

Γ ;∆;Ω;Φ ;Υ ` MF : BoxT(NodeT([α h∈1..f
h], {pk : τ k∈1..l

k }))
Γ ;∆;Ω;Φ ;Υ ` ifNode(M, MT , MF) :

BoxT(NodeT([α i∈1..p
i]∪ [α h∈1..f

h], {pj : τ j∈1..m
j } ∩ {pk : τ k∈1..l

k }))

JT-IfK

(Γ ,x : τ1);∆;Ω;Φ ;Υ ` M : τ2

Γ ;∆;Ω;Φ ;Υ ` Template〈x, τ1, M〉 : TemplateT(τ1→ τ2)
JT-TempK

Γ ;∆;Ω;Φ ;Υ ` M1 : TemplateT(τ1→ τ2)
Γ ;∆;Ω;Φ ;Υ ` M2 : τ1

Γ ;∆;Ω;Φ ;Υ ` M1(M2) : τ2
JT-InstK

∅;∆;Ω;Φ ;Υ ` M : τ

Γ ;∆;Ω;Φ ;Υ ` Box(M) : BoxT(τ)
JT-BoxK

Γ ;∆;Ω;Φ ;Υ ` M1 : BoxT(τ1) Γ ; (∆,u : τ1);Ω;Φ ;Υ ` M2 : τ2

Γ ;∆;Ω;Φ ;Υ ` letbox u =M1 in M2 : τ2
JT-LetBK

Γ ;∆;Ω;Φ ;Υ ` M1 : [τ] Γ ;∆;Ω;Φ ;Υ ` M2 : Num

Γ ;∆;Ω;Φ ;Υ ` M1[M2] : τ
JT-IdxK

Γ ;∆; (Ω,n);Φ ;Υ ` M : τ

Γ ;∆;Ω;Φ ;Υ ` Λnn.M : ∀nn.τ
JT-FANK

Γ ;∆;Ω;Φ ; (Υ , t) ` M : τ

Γ ;∆;Ω;Φ ;Υ ` Λtt.M : ∀tt.τ
JT-FATK

Γ ;∆;Ω; (Φ , r);Υ ` M : τ

Γ ;∆;Ω;Φ ;Υ ` Λrr.M : ∀rr.τ
JT-FARK

Γ ;∆;Ω;Φ ;Υ ` M : ∀nn.τ
Γ ;∆;Ω;Φ ;Υ ` M[N]n : [N / n]τ

JT-NAppK

Γ ;∆;Ω;Φ ;Υ ` M : ∀tt.τ
Γ ;∆;Ω;Φ ;Υ ` M[T]t : [T / t]τ

JT-TAppK

Γ ;∆;Ω;Φ ;Υ ` M : ∀rr.τ
Γ ;∆;Ω;Φ ;Υ ` M[R]r : [R/ r]τ

JT-RAppK

Figure II.9: Type system rules (part 3).

113

ANNEX II. ANNEX II - TEMPLATE LANGUAGE FORMALIZATION

Γ ;∆;Ω;Φ ;Υ ` M1 : {Li : τ
i∈1..p

i }
Γ ;∆;Ω;Φ ;Υ ` M2 : Label(Lj) j ∈ 1..p

Γ ;∆;Ω;Φ ;Υ ` M1 �M2 : BoxT(τj)
JT-Sel1K

Γ ;∆;Ω;Φ ;Υ ` M1 : NodeT([α i∈1..p
i], {pj : τ j∈1..m

j })
Γ ;∆;Ω;Φ ;Υ ` M2 : Label(Lk) k ∈ 1..m

Γ ;∆;Ω;Φ ;Υ ` M1 �M2 : BoxT(τk)
JT-Sel2K

Γ ;∆;Ω;Φ ;Υ ` M1 : AttributeT(B)N
Γ ;∆;Ω;Φ ;Υ ` M2 : Label(DisplayName)

Γ ;∆;Ω;Φ ;Υ ` M1 �M2 : BoxT(String)
JT-Sel3K

Γ ;∆;Ω;Φ ;Υ ` M1 : {Li : τ
i∈1..p

i }
Γ ;∆;Ω;Φ ;Υ ` M2 : Label(Lj) j ∈ 1..p

Γ ;∆;Ω;Φ ;Υ ` M1 �̂M2 : τj
JT-SelRT1K

Γ ;∆;Ω;Φ ;Υ ` M1 : NodeT([α i∈1..p
i], {pj : τ j∈1..m

j })
Γ ;∆;Ω;Φ ;Υ ` M2 : Label(Lk) k ∈ 1..m

Γ ;∆;Ω;Φ ;Υ ` M1 �̂M2 : τk
JT-SelRT2K

Γ ;∆;Ω;Φ ;Υ ` M1 : RecordAttrN
Γ ;∆;Ω;Φ ;Υ ` M2 : LabelAttr(B)N

Γ ;∆;Ω;Φ ;Υ ` M1 �̂M2 : B
JT-SelRT3K

Figure II.10: Type system rules (part 4).

114

II .3. OPERATIONAL SEMANTICS

II.3 Operational Semantics

M ↪→M ′

NameOfM ↪→ NameOfM ′
JE-NOfK

NameOf (Entity〈n, {Li = V i∈1..p
i }, {Li = [vl j∈1..m

j]
i∈1..p

i
}〉)

↪→ Box({List = {Current = {Li = vlx
i∈1..p
i }}})

JE-NOfVK

M ↪→M ′

LabelOfM ↪→ LabelOfM ′
JE-LOfK

LabelOf (Attribute〈N,L,B, {pi =M i∈1..p
i }〉) ↪→ Box(L)

JE-LOfVK

M ↪→M ′

AttributesOfM ↪→ AttributesOfM ′
JE-AOfK

AttributesOf (Entity〈n, {Li = V i∈1..p
i }, {Li = [vl j∈1..m

j]
i∈1..p

i
}〉) ↪→ [V i∈1..p

i]
JE-AOfVK

M ↪→M ′

M isOfType τ ↪→M ′ isOfType τ
JE-OfTyK

(Attribute〈n,L,B, {pi : M
i∈1..p

i }〉) isOfType τ ↪→ LB = τM
JE-OfTyVK

M1 ↪→M ′1
let x =M1 inM2 ↪→ let x =M ′1 inM2

JE-LetK

let x = v1 inM2 ↪→ [x 7→ v1]M2
JE-LetVK

M1 ↪→M ′1
M1(M2) ↪→M ′1(M2)

JE-Inst1K

Figure II.11: Evaluation rules.

115

ANNEX II. ANNEX II - TEMPLATE LANGUAGE FORMALIZATION

M2 ↪→M ′2
(Template〈x, τ, M3〉)(M2) ↪→ (Template〈x, τ, M3〉)(M ′2)

JE-Inst2K

(Template〈x, τ, M3〉)(v2) ↪→ [x 7→ v2]M3
JE-Inst3K

Mj ↪→M ′j

{Li = v i∈1..j−1
i ,Lj =Mj ,Lk =M k∈j+1..n

k }
↪→ {Li = v i∈1..j−1

i ,Lj =M ′j ,Lk =M k∈j+1..n
k }

JE-RecK

Mj ↪→M ′j

[v i∈1..j−1
i ,Mj ,M

k∈j+1..n
k] ↪→ [v i∈1..j−1

i ,M ′j ,M
k∈j+1..n

k]
JE-ListK

M1 ↪→M ′1
Node〈α,M1,M2〉 ↪→ Node〈α,M ′1,M2〉

JE-Node1K

M2 ↪→M ′2
Node〈α,v1,M2〉 ↪→ Node〈α,v1,M

′
2〉

JE-Node2K

Node〈α, {pi : Box(v1i)
i∈1..p}, [Box(v2j)

j∈1..m]〉
↪→ Box(NodeValue〈α, {pi : v1

i∈1..p
i }, [v2

j∈1..m
j]〉)

JE-Node3K

v1 ↪−→
R
v′1

NodeValue〈α,v1,v2〉 ↪−→
R
NodeValue〈α,v′1,v2〉

JE-NodeV1K

v2 ↪−→
R
v′2

NodeValue〈α,v1,v2〉 ↪−→
R
NodeValue〈α,v1,v

′
2〉

JE-NodeV2K

M1 ↪→M ′1
forNode(x : τ =M1 inM2) ↪→ forNode(x : τ =M ′1 inM2)

JE-ForK

Figure II.12: Evaluation rules (part 2).

116

II .3. OPERATIONAL SEMANTICS

forNode(x : τ = [v i∈j..k
i] inM2)

↪→ ([x 7→ vj]M2) :: (forNode(x : τ = [v i∈j+1..k
i] inM2))

JE-ForVK

with:

v0 :: [u1, . . . ,un] , [v0,u1, . . . ,un]

M1 ↪→M ′1
forNode(x : AttributeT(t)n =M1 inM2)

↪→ forNode(x : AttributeT(t)n =M ′1 inM2)

JE-ForAK

forNode(x : AttributeT(t)n = [v i∈j..k
i] inM2)

↪→ ([x 7→ vj]M2) :: (forNode(x : AttributeT(t)n = [v i∈j+1..k
i] inM2))

JE-ForVAK

M ↪→M ′

ifNode(M, MT , MF) ↪→ ifNode(M ′ , MT , MF)
JE-IfK

ifNode(true, MT , MF) ↪→MT
JE-IfTK

ifNode(false, MT , MF) ↪→MF
JE-IfFK

Box(M) ↪→ Box(M)
JE-BoxK

M1 ↪→M ′1
letbox u =M1 in M2 ↪→ letbox u =M ′1 in M2

JE-LetBK

letbox u = Box(M) in M2 ↪→ [u 7→M]M2
JE-LetBVK

M ↪→M ′

M[num] ↪→M ′[num]
JE-IdxK

[v i∈1..p
i][num] ↪→ vnum

JE-IdxVK

M ↪→M ′

M[name]n ↪→M ′[name]n
JE-NAppK

(Λnn.M)[name]n ↪→ [name / n]M
JE-NAppVK

Figure II.13: Evaluation rules (part 3).

117

ANNEX II. ANNEX II - TEMPLATE LANGUAGE FORMALIZATION

M ↪→M ′

M[type]t ↪→M ′[type]t
JE-TAppK

(Λtt.M)[type]t ↪→ [type / t]M
JE-TAppVK

M ↪→M ′

M[row]r ↪→M ′[row]r
JE-RAppK

(Λrr.M)[row]r ↪→ [row / r]M
JE-RAppVK

M1 ↪→M ′1
M1 �M2 ↪→M ′1 �M2

JE-Sel1K

M2 ↪→M ′2
v1 �M2 ↪→ v1 �M

′
2

JE-Sel2K

{Li = v i∈1..p
i } �Lj ↪→ Box(vj)

JE-SelRecK

Attribute〈N,L,B, {Li = v i∈1..p
i }〉 �Lj ↪→ Box(vj)

JE-SelAttrK

Node〈α, {Li = v1
i∈1..p
i }, [v2

j∈1..m
j]〉 �Lk ↪→ Box(v1k)

JE-SelNodeK

v1 ↪−→
R
v′1

v1 �̂ v2 ↪−→
R
v′1 �̂ v2

JE-SelRT1K

v2 ↪−→
R
v′2

v1 �̂ v2 ↪−→
R
v1 �̂ v

′
2

JE-SelRT2K

{Li = v i∈1..p
i } �̂Lj ↪−→

R
vj

JE-SelRecRTK

Attribute〈N,L,B, {Li = v i∈1..p
i }〉 �̂Lj ↪−→

R
vj

JE-SelAttrRTK

NodeValue〈α, {Li = v1
i∈1..p
i }, [v2

j∈1..m
j]〉 �̂Lk ↪−→

R
v1k

JE-SelNodeRTK

Figure II.14: Evaluation rules (part 3).

118

III

Annex III - OSTRICH Benchmark

In this annexe, we introduce all the 10+7 templates used in the evaluation of Core-

OSTRICH. These templates belong to the OSTRICH benchmark used to evaluate said

language. Each template is stored in a local variable so that each template can be reused

inside other templates.

Note that we present the definitions used in our evaluation, which mainly focus on

template structure, and some runtime behaviour is abstracted or even absent.

III.1 Attribute Template

let attribute =

ForAllName(

"N",

ForAllRows(

"R",

ForAllType(

"T",

Template(

"e",

EntityT(VarNT "N", VarR "R"),

Template(

"attr",

AttributeT(VarNT "N", VarT "T"),

LetBox("name",

NameOf (Var "e"),

LetBox("label",

LabelOf (Var "attr"),

IfNode(

IsOfType(Var "attr", BoolT),

119

ANNEX III . ANNEX III - OSTRICH BENCHMARK

Node(CheckBox,

Record [("Visible", Box(mk_select_list

[VarRT "name"; Label "list";

Label "current"; VarRT "label"]))

],

List []

),

Node(Expression,

Record [("Value", Box(mk_select_list

[VarRT "name"; Label "list";

Label "current"; VarRT "label"]))

],

List []

)

)

)

)

)

)

)

)

)

III.2 Labelled Attribute Template

let labelled_attribute =

Let("attr_templ", attribute,

ForAllName(

"N",

ForAllRows(

"R",

ForAllType(

"T",

Template(

"e",

EntityT(VarNT "N", VarR "R"),

Template(

"attr",

AttributeT(VarNT "N", VarT "T"),

120

III .3. FILTER TEMPLATE

Node(Container,

Record [],

List [

Node(Expression,

Record [("Value", Select (Var "attr", Label "DisplayName"))

],

List[]

);

LetBox(

"inner_templ",

Instantiate(Instantiate(CallType(CallRows(CallName(

Var "attr_templ", VarNT "N"), VarR "R"), VarT "T"),

Var "e"), Var "attr"),

Box(VarRT "inner_templ")

)

]

)

)

)

)

)

)

)

III.3 Filter Template

let filter =

Template(

"attrsInFilter",

ListAttrT(VarNT "N"),

Node(Search, Record [("filterBy", Var "attrsInFilter")],

List [])

)

III.4 Listing Template

let listing =

Let("filter_templ", filter,

121

ANNEX III . ANNEX III - OSTRICH BENCHMARK

Let("attr_templ", attribute,

ForAllName(

"N",

ForAllRows(

"R",

Template(

"ent",

EntityT(VarNT "N", VarR "R"),

Template(

"attrs",

ListAttrT(VarNT "N"),

Template(

"showFilter",

BoolT,

Node(Container,

Record [],

List [

IfNode(

Var "showFilter",

LetBox("inner",

Instantiate(Var "filter_templ", Var "attrs"),

Box(VarRT "inner")

),

Node(Empty, Record [], List [])

);

Node(List,

Record [],

List [

Node(ListItem,

Record [],

List [

ForNode(

"a",

"aT",

Var "attrs",

LetBox("inner",

Instantiate(Instantiate(CallType(

CallRows(CallName(Var "attr_templ",

VarNT "N"), VarR "R"), VarT "aT") ,

Var "ent") , Var "a"),

122

III .5. CHART TEMPLATE

Box(VarRT "inner")

)

)

]

)

]

)

]

)

)

)

)

)

)

)

)

III.5 Chart Template

let chart =

ForAllName(

"N",

ForAllRows(

"R",

ForAllType(

"T",

Template(

"e",

EntityT(VarNT "N", VarR "R"),

Template(

"categoryAttr",

AttributeT(VarNT "N", VarT "T"),

Node(Chart,

Record [("AttrGroup", Var "categoryAttr")],

List []

)

)

)

)

123

ANNEX III . ANNEX III - OSTRICH BENCHMARK

)

)

III.6 Pagination Template

let pagination =

Box(Node(Pagination, Record [], List []))

III.7 Table Template

let table =

Let("filter_templ", filter,

Let("attr_templ", attribute,

ForAllName(

"N",

ForAllRows(

"R",

Template(

"e",

EntityT(VarNT "N", VarR "R"),

Template(

"attrs",

ListAttrT(VarNT "N"),

Template(

"showFilter",

BoolT,

Template(

"attrsInFilter",

ListAttrT(VarNT "N"),

Template(

"showPagination",

BoolT,

Template(

"allowBulk",

BoolT,

Node(Container,

Record [],

List [

IfNode(

124

III .7. TABLE TEMPLATE

Var "showFilter",

LetBox("inner",

Instantiate(Var "filter_templ", Var "attrsInFilter"),

Box(VarRT "inner")

),

Node(Empty, Record [], List [])

);

LetBox("name",

NameOf (Var "e"),

Node(Table,

Record [("Source", Box(Select(VarRT "name", Label "list"

)))],

List [

IfNode(Var "allowBulk",

Node(Column,

Record [("Title", String "Select")],

List [

Node(CheckBox, Record [], List[])

]

),

Node(Empty, Record [], List [])

);

ForNode(

"a",

"aT",

Var "attrs",

Node(Column,

Record [("Title",

Select(Var "a", Label "DisplayName"))],

List [

LetBox("inner",

Instantiate(Instantiate(CallType(

CallRows(CallName(

Var "attr_templ", VarNT "N"),

VarR "R"), VarT "aT"), Var "e"),

Var "a"),

Box(VarRT "inner")

)

]

)

125

ANNEX III . ANNEX III - OSTRICH BENCHMARK

)

]

)

);

IfNode(Var "showPagination",

pagination,

Node(Empty, Record [], List [])

)

]

)

)

)

)

)

)

)

)

)

)

)

III.8 Detail Template

let detail =

Let("f", labelled_attribute,

ForAllName(

"N",

ForAllRows(

"R",

Template(

"e",

EntityT(VarNT "N", VarR "R"),

Template(

"primAttrs",

ListAttrT(VarNT "N"),

Template(

"secAttrs",

ListAttrT(VarNT "N"),

Node(Container,

126

III .8. DETAIL TEMPLATE

Record [],

List [

Node(Column,

Record [],

List [

ForNode(

"a1",

"a1T",

Var "primAttrs",

LetBox("lab_attr",

Instantiate(Instantiate(CallType(CallRows(

CallName(Var "f", VarNT "N") , VarR "R") ,

VarT "a1T") , Var "e") , Var "a1"),

Box(VarRT "lab_attr")

)

)

]

);

Node(Column,

Record [],

List [

ForNode(

"a2",

"a2T",

Var "secAttrs",

LetBox("lab_attr",

Instantiate(Instantiate(CallType(CallRows(

CallName(Var "f", VarNT "N") , VarR "R") ,

VarT "a2T") , Var "e") , Var "a2"),

Box(VarRT "lab_attr")

)

)

]

)

]

)

)

)

)

)

127

ANNEX III . ANNEX III - OSTRICH BENCHMARK

)

)

III.9 List Template

let list =

Let(

"la_templ", labelled_attribute,

Let(

"a_templ", attribute,

Let(

"f_templ", filter,

ForAllName(

"N",

ForAllRows(

"R",

Template(

"e",

EntityT(VarNT "N", VarR "R"),

Template(

"primAttrs",

ListAttrT(VarNT "N"),

Template(

"secAttrs",

ListAttrT(VarNT "N"),

Template(

"showFilter",

BoolT,

Node(Container,

Record [],

List [

IfNode(

Var "showFilter",

LetBox("inner",

Instantiate(Var "f_templ", Var "primAttrs"),

Box(VarRT "inner")

),

Node(Empty, Record [], List [])

);

Node(List,

128

III .9. LIST TEMPLATE

Record [],

List [

Node(ListItem,

Record [],

List [

Node(Container,

Record [],

List [

ForNode(

"a1",

"a1T",

Var "primAttrs",

LetBox("inner",

Instantiate(Instantiate(CallType(

CallRows(CallName(

Var "a_templ", VarNT "N") ,

VarR "R") , VarT "a1T") ,

Var "e") , Var "a1"),

Box(VarRT "inner")

)

)

]

);

Node(Container,

Record [],

List [

ForNode(

"a2",

"a2T",

Var "secAttrs",

LetBox("inner",

Instantiate(Instantiate(CallType(

CallRows(CallName(

Var "la_templ", VarNT "N") ,

VarR "R") , VarT "a2T") ,

Var "e") , Var "a2"),

Box(VarRT "inner")

)

)

]

129

ANNEX III . ANNEX III - OSTRICH BENCHMARK

)

]

)

]

)

]

)

)

)

)

)

)

)

)

)

)

III.10 List with Chart Template

let list_with_chart =

Let("chart_templ", chart,

Let("listing_templ", listing,

ForAllName(

"N",

ForAllRows(

"R",

ForAllType(

"T",

Template(

"e",

EntityT(VarNT "N", VarR "R"),

Template(

"attrs",

ListAttrT(VarNT "N"),

Template(

"categoryAttr",

AttributeT(VarNT "N", VarT "T"),

Template(

"showFilter",

130

III .10. LIST WITH CHART TEMPLATE

BoolT,

Node(Container,

Record [],

List [

Node(Column,

Record [],

List [

LetBox("inner",

Instantiate(Instantiate(CallType(CallRows(

CallName(Var "chart_templ", VarNT "N") ,

VarR "R") , VarT "T") , Var "e") ,

Var "categoryAttr"),

Box(VarRT "inner")

)

]

);

Node(Column,

Record [],

List [

LetBox("inner",

Instantiate (Instantiate(Instantiate(CallRows(

CallName(Var "listing_templ", VarNT "N") ,

VarR "R") , Var "e") , Var "attrs"),

Var "showFilter"),

Box(VarRT "inner")

)

]

)

]

)

)

)

)

)

)

)

)

)

)

131

ANNEX III . ANNEX III - OSTRICH BENCHMARK

III.11 Dashboard Template

let dashboard =

Let("listing_templ", listing,

Let("chart_templ", chart,

ForAllName(

"N",

ForAllRows(

"R",

ForAllType(

"statusT",

ForAllType(

"categT",

Template(

"e",

EntityT(VarNT "N", VarR "R"),

Template(

"attrs",

ListAttrT(VarNT "N"),

Template(

"statusAttr",

AttributeT(VarNT "N", VarT "statusT"),

Template(

"categoryAttr",

AttributeT(VarNT "N", VarT "categT"),

Node(Container,

Record [],

List [

Node(Container,

Record [],

List [

Node(Counter,

Record [("Source", Var "statusAttr")],

List []

)

]

);

Node(Container,

Record [],

List [

Node(Column,

132

III .12. ACCOUNT DASHBOARD TEMPLATE

Record [],

List [

LetBox("inner",

Instantiate(Instantiate(Instantiate(

CallRows(CallName(Var "listing_templ",

VarNT "N") , VarR "R") , Var "e") ,

Var "attrs") , Bool false),

Box(VarRT "inner")

)

]

);

Node(Column,

Record [],

List [

LetBox("inner",

Instantiate(Instantiate(CallType(CallRows(

CallName(Var "chart_templ", VarNT "N") ,

VarR "R") , VarT "categT") , Var "e") ,

Var "categoryAttr"),

Box(VarRT "inner")

)

]

)

]

)

]

)

)

)

)

)

)

)

)

)

)

)

III.12 Account Dashboard Template

133

ANNEX III . ANNEX III - OSTRICH BENCHMARK

let account_dashboard =

Let("la_templ", labelled_attribute,

Let("chart_templ", chart,

Let("listing_templ", listing,

ForAllName(

"masterN",

ForAllName(

"detailN",

ForAllRows(

"masterR",

ForAllRows(

"detailR",

ForAllType(

"categT",

Template(

"masterEnt",

EntityT(VarNT "masterN", VarR "masterR"),

Template(

"masterAttrs",

ListAttrT(VarNT "masterN"),

Template(

"detailEnt",

EntityT(VarNT "detailN", VarR "detailR"),

Template(

"detailAttrs",

ListAttrT(VarNT "detailN"),

Template(

"rollingSumAttr",

AttributeT(VarNT "masterN", NumT),

Template(

"categoryAttr",

AttributeT(VarNT "detailN", VarT "categT"),

Node(Container,

Record [],

List [

Node(Container,

Record [],

List [

ForNode(

"ma",

134

III .12. ACCOUNT DASHBOARD TEMPLATE

"maT",

Var "masterAttrs",

Node(Column,

Record [],

List [

LetBox("inner",

Instantiate(Instantiate(CallType(CallRows

(

CallName(Var "la_templ",

VarNT "masterN"), VarR "masterR"),

VarT "maT"), Var "masterEnt"),

Var "ma"),

Box(VarRT "inner")

)

]

)

)

]

);

Node(Container,

Record [],

List [

Node(Column,

Record [],

List [

LetBox("inner",

Instantiate(Instantiate(Instantiate(CallRows(

CallName(Var "listing_templ",

VarNT "detailN"), VarR "detailR"),

Var "detailEnt"), Var "detailAttrs"),

Bool false),

Box(VarRT "inner")

)

]

);

Node(Column,

Record [("Title",

Select(Var "categoryAttr", Label "DisplayName"))

],

List [

135

ANNEX III . ANNEX III - OSTRICH BENCHMARK

LetBox("inner",

Instantiate(Instantiate(CallType(

CallRows(CallName(Var "chart_templ",

VarNT "detailN"), VarR "detailR"),

VarT "categT"), Var "detailEnt"),

Var "categoryAttr"),

Box(VarRT "inner")

)

]

)

]

)

]

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

III.13 Master Detail Template

let master_detail =

Let("listing", listing,

Let("detail", detail,

ForAllName(

"N",

ForAllRows(

"R",

Template(

"entity",

136

III .13. MASTER DETAIL TEMPLATE

EntityT(VarNT "N", VarR "R"),

Template(

"masterAttrs",

ListAttrT(VarNT "N"),

Template(

"detailAttrs",

ListAttrT(VarNT "N"),

Template(

"showFilter",

BoolT,

Node(Container,

Record [],

List [

Node(Column,

Record [],

List [

LetBox("inner",

Instantiate(Instantiate(Instantiate(CallRows(

CallName(Var "listing", VarNT "N"), VarR "R"),

Var "entity"), Var "masterAttrs"),

Var "showFilter"),

Box (VarRT "inner")

)

]

);

Node(Column,

Record [],

List [

LetBox("inner",

Instantiate(Instantiate(Instantiate(CallRows(

CallName(Var "detail", VarNT "N"), VarR "R"),

Var "entity"), Var "masterAttrs"),

Var "detailAttrs"),

Box (VarRT "inner")

)

]

)

]

)

)

137

ANNEX III . ANNEX III - OSTRICH BENCHMARK

)

)

)

)

)

)

)

III.14 Four-Column Gallery Template

let four_col =

Let("listing", listing,

Let("filter", filter,

ForAllName(

"N",

ForAllRows(

"R",

Template(

"e",

EntityT(VarNT "N", VarR "R"),

Template(

"attrs",

ListAttrT(VarNT "N"),

Template(

"showFilter",

BoolT,

Template(

"attrsInFilter",

ListAttrT(VarNT "N"),

Template(

"showPagination",

BoolT,

Node(Container,

Record [],

List [

Node(Column,

Record [],

List [

LetBox("inner",

Instantiate(Instantiate(Instantiate(CallRows(

138

III .15. ADMIN DASHBOARD TEMPLATE

CallName(Var "listing", VarNT "N"), VarR "R"),

Var "e"), Var "attrs"), Bool false),

Box(VarRT "inner")

);

IfNode(

Var "showPagination",

pagination,

Node(Empty, Record [], List [])

)

]

);

Node(Column,

Record [],

List [

IfNode(

Var "showFilter",

LetBox("inner",

Instantiate(Var "filter", Var "attrsInFilter"),

Box(VarRT "inner")

),

Node(Empty, Record [], List [])

)

]

)

]

)

)

)

)

)

)

)

)

)

)

III.15 Admin Dashboard Template

let admin_dashboard =

Let("table_templ", table,

139

ANNEX III . ANNEX III - OSTRICH BENCHMARK

ForAllName(

"N",

ForAllRows(

"R",

ForAllType(

"T",

Template(

"e",

EntityT(VarNT "N", VarR "R"),

Template(

"attrs",

ListAttrT(VarNT "N"),

Template(

"statusAttr",

AttributeT(VarNT "N", VarT "T"),

Node(Container,

Record [],

List [

Node(Counter,

Record [("Source", Var "statusAttr")],

List []

);

LetBox("inner",

Instantiate(Instantiate(Instantiate(Instantiate(

Instantiate(Instantiate(CallRows(CallName(

Var "table_templ", VarNT "N"), VarR "R"), Var "e"),

Var "attrs"), Bool false), Var "attrs"), Bool false),

Bool false),

Box(VarRT "inner")

)

]

)

)

)

)

)

)

)

)

140

III .16. LIST WITH FILTERS TEMPLATE

III.16 List with Filters Template

let list_with_filters =

Let("table_templ", table,

ForAllName(

"N",

ForAllRows(

"R",

Template(

"e",

EntityT(VarNT "N", VarR "R"),

Template(

"attrs",

ListAttrT(VarNT "N"),

Template(

"showFilter",

BoolT,

Template(

"attrsInFilter",

ListAttrT(VarNT "N"),

Template(

"showPagination",

BoolT,

Node(Container,

Record [],

List [

LetBox("inner",

Instantiate(Instantiate(Instantiate(Instantiate(

Instantiate(Instantiate(CallRows(CallName(

Var "table_templ", VarNT "N"), VarR "R"), Var "e"),

Var "attrs"), Var "showFilter"), Var "attrsInFilter"),

Var "showPagination"), Bool false),

Box(VarRT "inner")

)

]

)

)

)

)

)

)

141

ANNEX III . ANNEX III - OSTRICH BENCHMARK

)

)

)

III.17 Bulk Actions with Filters Template

let bulk_actions =

Let("table_templ", table,

ForAllName(

"N",

ForAllRows(

"R",

Template(

"e",

EntityT(VarNT "N", VarR "R"),

Template(

"attrs",

ListAttrT(VarNT "N"),

Template(

"showFilter",

BoolT,

Template(

"attrsInFilter",

ListAttrT(VarNT "N"),

Template(

"showPagination",

BoolT,

Node(Container,

Record [],

List [

LetBox("inner",

Instantiate(Instantiate(Instantiate(Instantiate(

Instantiate(Instantiate(CallRows(CallName(

Var "table_templ", VarNT "N"), VarR "R"), Var "e"),

Var "attrs"), Var "showFilter"), Var "attrsInFilter"),

Var "showPagination"), Bool true),

Box(VarRT "inner")

)

]

)

142

III .17. BULK ACTIONS WITH FILTERS TEMPLATE

)

)

)

)

)

)

)

)

143

	Front Matter
	Cover
	Front Page
	Copyright
	Dedicatory
	Acknowledgements
	Quote
	Abstract
	Resumo
	Contents
	List of Figures
	List of Listings

	1 Introduction
	1.1 Problem Statement
	1.2 Contributions
	1.3 Document Structure

	2 Background
	2.1 Description Logics
	2.1.1 Definition
	2.1.2 From UML Class Diagrams to Description Logics
	2.1.3 Reasoning
	2.1.4 OWL2 and the Protégé Framework

	3 Related Work
	3.1 Application Development Using Concepts
	3.1.1 Origin of Concepts
	3.1.2 Choosing Concepts
	3.1.3 Other Advantages
	3.1.4 Application Example

	3.2 Ontology-Based Development
	3.3 Model-driven Engineering and Low-code
	3.4 Metaprogramming
	3.5 Staged Computation
	3.5.1 Phase Distinctions
	3.5.2 Template Haskell
	3.5.3 MetaML
	3.5.4 Logic-Based Type Systems
	3.5.5 Remarks

	4 The GOLEM Project
	4.1 The OutSystems Platform
	4.2 Goal of the GOLEM Project
	4.3 Abstraction Layers and Research Threads
	4.4 The OSTRICH Language

	5 An Ontology For Programming
	5.1 Overview
	5.2 Ontologies
	5.2.1 First Ontology
	5.2.2 Second Ontology
	5.2.3 Final Ontology

	6 Template Language
	6.1 Motivation
	6.2 Language Features
	6.2.1 Staged Computation
	6.2.2 Nested Templates and Parametric Polymorphism
	6.2.3 Dependencies Between Types

	6.3 Syntax
	6.4 Type System
	6.4.1 Syntax of Types
	6.4.2 Typechecking

	6.5 Operational Semantics
	6.5.1 Compile-time Semantics
	6.5.2 Runtime Semantics

	6.6 Implementation

	7 Evaluation
	7.1 Template Definition
	7.2 Template Typechecking
	7.3 Template Execution
	7.3.1 Compile Time Execution
	7.3.2 Runtime Execution

	8 Conclusion
	Bibliography
	Webography
	Contributed Papers
	I Annex I - Ontology
	I.1 Ontology Description
	I.2 UML Class Diagram
	I.3 Description Logics - First Ontology
	I.3.1 Classes
	I.3.2 Object Properties
	I.3.3 Data Properties
	I.3.4 Queries

	I.4 Description Logics - Second Ontology
	I.4.1 Classes
	I.4.2 Object Properties
	I.4.3 Data Properties
	I.4.4 General Class Axioms

	II Annex II - Template Language Formalization
	II.1 Syntax
	II.2 Type System
	II.3 Operational Semantics

	III Annex III - OSTRICH Benchmark
	III.1 Attribute Template
	III.2 Labelled Attribute Template
	III.3 Filter Template
	III.4 Listing Template
	III.5 Chart Template
	III.6 Pagination Template
	III.7 Table Template
	III.8 Detail Template
	III.9 List Template
	III.10 List with Chart Template
	III.11 Dashboard Template
	III.12 Account Dashboard Template
	III.13 Master Detail Template
	III.14 Four-Column Gallery Template
	III.15 Admin Dashboard Template
	III.16 List with Filters Template
	III.17 Bulk Actions with Filters Template

	Back Matter
	Back Cover

