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Abstract: Within the scope of precision agriculture, many applications have been developed to
support decision making and yield enhancement. Fruit detection has attracted considerable attention
from researchers, and it can be used offline. In contrast, some applications, such as robot vision in
orchards, require computer vision models to run on edge devices while performing inferences at
high speed. In this area, most modern applications use an integrated graphics processing unit (GPU).
In this work, we propose the use of a tensor processing unit (TPU) accelerator with a Raspberry Pi
target device and the state-of-the-art, lightweight, and hardware-aware MobileDet detector model.
Our contribution is the extension of the possibilities of using accelerators (the TPU) for edge devices
in precision agriculture. The proposed method was evaluated using a novel dataset of peaches with
three cultivars, which will be made available for further studies. The model achieved an average
precision (AP) of 88.2% and a performance of 19.84 frames per second (FPS) at an image size of
640 × 480. The results obtained show that the TPU accelerator can be an excellent alternative for
processing on the edge in precision agriculture.

Keywords: deep learning; edge device; object detection; precision agriculture; TPU accelerator

1. Introduction

Precision agriculture can be used to increase yields and provide information for
decision making. The application of precision agriculture in fruit detection has attracted
considerable attention from researchers. Examples of benefits of fruit detection include
yield estimation and mapping [1] and disease control [2]. The increase in the world’s
population and the resulting higher demand for food are accompanied by a change in
dietary habits toward healthier foods such as fruits and vegetables, increasing the specific
demand for this type of produce and the impact of climate change on agricultural activities;
the migration of people to cities leads to a reduction in the labor force available in rural
areas, which requires an improvement in the efficiency and effectiveness of agricultural
practices. Technological evolution allows the automation and robotization of some of
these practices, as well as the development of decision support systems that help in the
management of these agricultural practices [3].

The detection of fruits—and, particularly, peaches—through automatic systems can
contribute to the improvement of the efficiency of agricultural cultivation processes,
whether that be through the adequate and sufficient supply of water [4–6], the fertil-
izer supply, evaluation of the vigor and state of health [7], ripening state, and diseases [2],
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or even the improvement of weed control [8]. The management of agricultural practices
supported by artificial intelligence systems for decision making helps in yield estimation,
resource management, and circular economy [9,10]. These approaches can contribute to
an increase in production and rentability through improved supply contracts and the
reduction of fixed costs. Additionally, these results are part of an improvement in a crop’s
environmental sustainability through the reduction of fertilizers and are a contribution to
the reduction of food loss.

Computer vision for fruit detection can be developed such that it cannot be used in real
time. That is, images or videos are first captured and stored for later use (processing) [11].
This type of computer vision model was developed to run on a cloud or desktop computer,
which typically requires large amounts of computing resources and memory. However, in
certain applications, computer vision models must run on an edge device while performing
inferences at high speed. This is the case with robot vision applications [12]. In general,
edge devices are limited in terms of processing, memory, and power consumption [13,14]. To
adapt an image processing application to these constraints, models such as MobileNets [15–17],
ShuffleNet [18], Squeezenet [19], and DenseNet [20] have been developed. Because these
models are optimized to run on a CPU, they are only suitable for “light applications”
(e.g., processing only approximately one frame per second (FPS)). This is because these
models have a high latency. However, after training, these models can be optimized to run
on a graphics processing unit (GPU) with much better inference time performance [21–23].

Tian et al. [24] proposed a modified version of the YOLOv3 detector model to detect
apples at different growth rate stages in orchards. The authors used an NVIDIA Tesla
V100 server GPU for the training and testing. Using 3000 × 3000 resolution images, they
achieved an F1 score of 0.817 and an inference time of 0.304 s. It is important to emphasize
that the approach used in this study was not portable. Fu et al. [25] developed a vision
system based on RGB and Kinect sensors for detecting apples in outdoor orchards. They
used the faster R-CNN model and a desktop PC equipped with a GPU NVIDIA TITAN
XP card. For original RGB images at a resolution of 1920 × 1080, they reported a detection
performance of 0.79 AP and an inference time of 0.125 s. The approach used in this study
was not portable. Liu et al. [26] proposed a modified version of YOLOv3 for detecting
tomatoes. The detection used circles instead of boxes to locate the tomatoes. The model
received 416 × 416 pixel images as inputs and achieved a detection accuracy of 96.4% AP
and an inference time of 54 ms in a PC target device. Because the target device was a PC,
this approach does not fall into the portable category.

Zhang et al. [22] proposed a lightweight fruit detection algorithm designed specifically
for edge devices. The algorithm was based on a light-CSPNet network and YOLOv3. The
model was deployed in the NVIDIA Jetson family (Jetson Xavier, Jetson TX2, and Jetson
NANO). The detection accuracies for the orange, tomato, and apple datasets were 93, 88,
and 85% AP, respectively. The detection speeds of the Jetson Xavier reached 46.9, 40.3,
and 45.0 ms (orange, tomato, and apple, respectively) for image resolutions of different
sizes. This approach fell into the portable category. Huang et al. [23] proposed a modified
version of the YOLOv5 detector by adding an attention mechanism and an adaptive fusion
method to the citrus detection model. The target device was an NVIDIA Jetson Nano
integrated graphics processor. Using images with a resolution of 608 × 608, they achieved a
detection accuracy of 93.32% AP and an edge-computing processing speed of 180 ms. Based
on the model used and the target device, this approach falls into the portable category.
Tsironis et al. [27] adapted the single-shot object detector (SSD) to the underlying object
size distribution of the target detection area. They evaluated their proposed adapted model
in tomato fruit detection and classification for three maturity stages of each tomato fruit.
With the image resolution of 515× 512, by using a PC with a standard GPU (not portable),
the model performed inferences at a speed of 200 FPS. In addition, the model was not
optimized in terms of the edge device approach. In another work, Tsironis et al. [28] created
a specialized tomato dataset with more than 250 images and a total of 2400 annotations. In
this work, the dataset was evaluated for six object detection models.
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Recently, a state-of-the-art TPU accelerator [29] and the MobileDet detector were
developed for general image detection tasks [30]. In this work, we proposed the use of
these two technologies with a Raspberry Pi target device for a real-time peach fruit detection
application. The main contributions of this paper include the following:

• We propose the use of a lightweight and hardware-aware MobileDet detector model
for a real-time peach fruit detection application while embedded in a Raspberry Pi
target device along with a Coral edge TPU accelerator.

• We present a novel dataset of three peach cultivars with annotations and have made it
available for further study (to our knowledge, this is the first work of its kind).

The remainder of this paper is organized as follows. Section 2 presents the equipment
used for inference, the image dataset, the object detection model, and the mathematical
formulation for the model evaluation. To confirm the performance of the proposed method,
the results and discussions are presented in Section 3. Finally, Section 4 concludes the paper
and provides guidelines for future work.

2. Materials and Methods
2.1. Dataset Description

An image dataset of the following three fruit peach cultivars was created: Sweet Dream,
Royal Time, and Catherine. The images were taken in peach orchards in the Beira Interior
region, the main peach-growing area in Portugal [31]. Table 1 shows the characteristics of
each peach cultivar and describes the predominant fruit density for each cultivar.

Table 1. Examples of peach tree cultivars with their predominant fruit densities.

Cultivar Sample Image Fruit Density Color

Royal Time Low Red

Sweet Dream Medium Dark Red

Catherine High Yellow

The images were taken with a Sony DSC-RX100M2 red–green–blue (RGB) camera.
The images were then resized to a resolution of 640 × 480 pixels. Subsequently, the images
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were manually labeled using the LabelImg annotation tool [32], which generated an XML
file for each image. The information for the dataset is presented in Table 2. The dataset
can be downloaded from the link provided in the Data Availability section at the end of
this article.

Table 2. Statistics of the dataset.

Split Cultivar Images Fruits (Labels)

Train

Sweet Dream 270 2015

Royal Time 248 1066

Catherine 305 4564

Test

Sweet Dream 66 453

Royal Time 63 270

Catherine 76 1480

Total of training 823 7645

Total of testing 205 2203

2.2. Hardware for Inference

The hardware platform (edge device) used to perform inferences consists of the
following parts, as shown in Figure 1: (1) A microcontroller development kit—Raspberry
Pi 4 [33]; (2) a Coral TPU accelerator [29]; (3) a Raspberry Pi Camera Module 2 [34]; (4) a
DC-to-DC converter [35]; (5) three Li-ion batteries [36]. Note: The battery in Figure 1 is
only an illustration for the application, as the capacity of the battery used depends on
the application. The Raspberry had a quad-core Cortex A72 processor and 8 GB of RAM,
and it used the Linux operating system with a Python interpreter and the TensorFlow Lite
library. The Coral TPU accelerator, which was connected to the Raspberry Pi via USB, was
an integrated edge TPU coprocessor designed to perform machine learning operations in
an optimized manner (e.g., four Tera operations per second).

Figure 1. Hardware platform (edge device) for performing inferences.

2.3. SSD: Single Shot Detector

A single-shot detector (SSD) [37] is n state-of-the-art object detection model that
outperforms its competitors, “you only look once” (YOLO) [38] and faster R-CNN [39],
in terms of accuracy and inference time [37]. Therefore, the SSD model was used as a
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detector in this study. Similarly to any model for computer vision tasks that is based on
deep learning, the first step of SSD is feature extraction. This block is a convolutional
neural network (CNN) and is usually referred to as the backbone of the model. The output
of the backbone is a feature map containing the relevant information required to solve
computer vision tasks. It is important to emphasize that the variations in the SSD model
are on the backbone when selecting the CNN and performing optimizations (as described
in Section 2.4). The remainder of the SSD model is constructed by adding additional layers
of functionality at the end of the backbone. The SSD model partitions specific feature maps
into standard boxes and generates scores for the presence of objects in each box. Additional
technical details of the SSD model can be found in [37].

As mentioned previously, SSD variations were performed on the backbones. In this
study, experiments were conducted using a MobileNet CNN as the backbone for the SSD
model to investigate the trade-off between the detection accuracy and inference time. The
backbones used were MobileNetV1, MobileNetV2, MobileNet EdgeTPU, and MobileDet.

2.3.1. MobileNetV1

MobileNetV1 is a lightweight model designed for use in mobile devices that typically
has limited computing resources and memory. The main idea for achieving this goal is the
implementation of a depthwise separable convolution. Depthwise separable convolution
factorizes a conventional convolution into depthwise and pointwise convolutions (i.e., a
1 × 1 convolution). MobileNetV1 uses 3 × 3 depthwise separable convolutions, which
require eight to nine times less computation than standard convolutions, with only slightly
lower accuracy [15].

2.3.2. MobileNetV2

MobileNetV2 is a second-generation MobileNet. It was developed based on Mo-
bileNetV1. In MobileNetV2, linear bottlenecks between layers and connections between
bottlenecks (residual connections) were included in the convolutional structure. Mo-
bileNetV2 also uses depthwise separable convolution, but adds the concepts of inverted
residuals and linear bottlenecks to the building block. The concept of an inverted residual
comes from an earlier idea of creating a connection (shortcut) between the layers. However,
in MobilenetV2, this process is performed in a manner opposite to the original concept [40],
allowing for faster training and better accuracy. In summary, linear bottlenecks are related
to the last activation function of the block, which is replaced by a nonlinear function with a
linear function. This approach avoids information degradation [16].

2.3.3. MobileNet Edge TPU

MobileNetV1 and MobileNetV2 were designed manually, entirely by hand. In contrast,
the MobileNet edge TPU was developed using the accelerator-aware auto-machine learning
(AutoML) [41] approach, which significantly reduces the manual process of designing and
optimizing neural networks for hardware accelerators [42]. MobileNet Edge TPU is a
version of MobileNet that has been adapted to run optimally on edge TPU devices (and
take advantage of their features). In this study, this model was expected to perform
significantly better in terms of accuracy and latency than MobileNetV1 and MobileNetV2
when running on a TPU device.

2.3.4. MobileDet

MobileDet is the latest version of the SSD model based on the MobileNet family.
Again, the AutoML approach was used to create the model. The backbone has a hybrid
convolution that includes depthwise and conventional convolution [30].

2.4. Model Optimizations

As mentioned in the introduction, edge devices have limited resources for compu-
tation and memory. To address this problem, efficient native models were created by
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considering the model size and computational power. This is the case with several models,
such as MobileNet and SqueezeNet. Another approach to increasing the performance of
an edge device (faster inference and memory access) is the application of quantization
techniques, where the model becomes simpler by reducing the precision of the weights and
activation functions of the model (e.g., from 32-bit floating-point representations to 8-bit
representations) [13]. Quantization approaches can broadly be divided into two categories.
The first category is post-training quantization (PTQ), which quantizes the floating-point
models. This technique reduces the size of the models by a factor of four and reduces
inference time [13]. However, PTQ leads to degradation in model performance during
inference. One reason for this is the smaller number of bits allocated [43].

The second category, quantization-aware training (QAT), attempts to mitigate the error
caused by quantization by simulating the effects of quantization on weights and activation
functions during the training process. This means that the model compensates for the loss
due to the application of quantization. For this reason, QAT provides higher accuracy than
PTQ [13]. We used QAT in all of the implementations of the detection models used in
the experiments.

2.5. Network Training

Training was performed on a desktop PC with an Intel(R) Core(TM) i7-4790 CPU at
3.60 GHz, 16 GB of RAM, and an NVIDIA RTX 2080 graphics card with 8 GB of memory.
The software tools included Linux OS with Python 3.6 and the TensorFlow Model Garden
framework. The fine-tuning strategy was performed using models that were pre-trained on
the COCO dataset. The learning rate was set to 0.02 for the MobileNetV1 and MobileNetV2
models and to 0.0455 for the MobileNet Edge TPU and MobileDet models. The number of
training steps was 30,000 for the MobileNetV1 and MobileNetV2 models and 35,000 for the
MobileNet Edge TPU and MobileDet models.

2.6. Model Assessment

The average precision (AP) metric was used to evaluate the model performance. The
AP is defined as the area over the curve of precision (P) and recall (R). P was calculated
using Equation (1), and R was calculated using Equation (2).

P =
TP

TP + FP
, (1)

R =
TP

TP + FN
, (2)

where TP, FP, and FN represent true-positive, false-negative, and false-positive results,
respectively. The AP is calculated using Equation (3).

AP =
∫ 1

0
P(R) dR, (3)

3. Results and Discussions
3.1. Ablation Studies

Figures 2–4 show the detection samples for each peach cultivar (from different orchards).
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Figure 2. Detection sample for the Royal Time peach cultivar.

Figure 3. Detection sample for the Sweet Dream peach cultivar.

Figure 4. Detection sample for the Catherine peach cultivar.

Table 3 lists the performances of the models and their degradation when converted
into inference models (they were optimized to run on the target TPU device). The results
showed that SSD MobileDet outperformed the other models and achieved an AP of 88.2%
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on the target TPU device. The model with the least degradation (performance drop) was
SSD MobileNet Edge TPU with a drop of 0.5%, and the most affected model was SSD
MobileNetV2 with a drop of 1.5%. The results, which are shown in Table 3, indicate thatthe
models designed (native) to run on a TPU device (SSD MobileDet and SSD EdgeTPU) were
approximately 4% better than the models that were not designed (native) to run on a TPU,
and that the converting models to run on a TPU accelerator only slightly affected the model
detection accuracy. However, the advantage of conversion in terms of inference time was
enormous, as described in Section 3.2.

See the Sample Availability section at the end of this article for a video demonstration
of the detection.

Table 3. Target hardware comparison.

AP (%)
Model Baseline EdgeTPU Drop from Baseline to TPU

SSDLite MobileDet 89 88.2 0.8

MobileNet EdgeTPU 88 87.5 0.5

SSD MobileNetV2 86 84.5 1.5

SSD MobileNetV1 85 83.8 1.2

3.2. Inference Time

Table 4 lists the inference times of the models for the target CPU and TPU devices.
The model with the lowest latency was SSD MobileNetV1 at 47.6 ms (average). The
SSD MobileNet EdgeTPU model exhibited the highest latency (50.5 ms). The maximum
difference between the models was 2.9 ms. An important finding was that the inference
speed was 20 times faster on average when the model was running on the TPU device
and the models designed (native) to run on the CPU (MobileNetV1 and MobileNetV2);
however, it was optimized to run on the TPU, and it performed inferences slightly faster
than the models designed to run on TPU devices.

Table 4. Inference time comparison.

Latency
Model CPU (ms) EdgeTPU (ms) FPS

SSD MobileNetV1 847.9 47.6 21.01

SSDLite MobileDet 1045.9 50.4 19.84

MobileNet EdgeTPU 1232 50.5 19.80

SSD MobileNetV2 773.1 48.4 20.66

3.3. Accuracy and Inference Time Trade-Off

In Sections 3.1 and 3.2, the accuracy (AP) and inference time (ms) of the models for
the target TPU device were presented. The models designed specifically for TPU devices
had a better detection accuracy, and those designed specifically for CPU (but optimized for
TPU) had a better inference time. Thus, there was a trade-off between the accuracy and
latency, as shown in Figure 5. Comparing the fastest model (SSD MobileNetV1) with the
model that had the best detection accuracy (SSD MobileDet), there was a gain in detection
accuracy of 4.4% at the expense of a loss in inference time of 2.8 ms (equivalent to a loss
of 1.17 FPS). At a loss of 1.17, the FPS did not significantly affect the performance in the
practical applications of computer vision. Therefore, it is justifiable to use SSD MobileDet
to improve the recognition accuracy.
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Figure 5. Models’ performance on the edge TPU device.

The performance of the SSD MobileDet model presented in this study was compared
with the results of other studies. The results are shown in Table 5. Given the lack of practical
applications in horticulture for the fruit detection task [22], this comparison provides insight
into model performance, edge devices, and price (cost).

Approach 1 was the cheapest and most accurate; however, the combination of the
model and device led to a very high inference time. Approach 2 was the most expensive—
almost four times the cost of the cheapest—and the least accurate. Nevertheless, they had
the best inference times.

Our approach was inexpensive and had a cost similar to that of Approach 1. The
accuracy was better than that of Approach 2, but worse than that of Approach 1. The
inference time was slightly lower than that of Approach 2, but much better than that of
Approach 1. A direct comparison between the approaches in Table 5 was not possible
because different datasets and image sizes were used. Considering the price, AP, and
latency, our approach of using a TPU accelerator was a good alternative for practical
applications.

Table 5. Comparison of the models. Approach_1: Modified YOLOv5 [23], Approach_2: Modified
YOLOv3 [22], Ours: SSD MobileDet.

Model Device|Accel. Price (€) Input Size Fruit AP (%) Latency

Approach_1 Jetson Nano|GPU 108 608 × 608 Citrus 93.32 180 (ms)

Approach_2 Jetson Xavier|GPU 429 - Apple 85 45 (ms)

Our Raspberry|TPU 141 640 × 480 Peach 88.2 50.4 (ms)

4. Conclusions

In this study, we proposed the use of a lightweight and hardware-aware MobileDet
detector model for real-time peach fruit detection applications in conjunction with an edge
device and TPU accelerator. A novel annotated dataset of three peach cultivars was created
and made available for further studies.

Models designed to run on a TPU device (e.g., SSD MobileDet and SSD EdgeTPU)
(hardware-aware) performed approximately 4% (AP) better than models that were not
designed to run on a TPU (native). An important result is that the inference speed was,
on average, 20 times faster when the model ran on a TPU device than on a CPU. The
MobileNetV1 model running on a TPU device performed at 21.01 FPS, and the MobileDet
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model performed at 19.84 FPS. At a loss of 1.17, the FPS did not significantly affect the
performance for practical computer vision applications. Therefore, it is reasonable to use
SSD MobileDet to improve the detection accuracy. A comparison was made with other ap-
proaches. However, a direct comparison between the approaches was not possible because
different datasets and image sizes were used. Considering the price, AP, and latency, our
approach of using a TPU accelerator is a good alternative for practical applications. Further
research could also be conducted to explore fruit yield estimates based on the approach
presented in this paper.
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