
A DevOps approach to infrastructure on
demand

CÉSAR JOSÉ COSTA PINHEIRO
Junho de 2022

A DevOps approach to infrastructure
on demand

César Pinheiro

A dissertation submitted in partial fulfillment of
the requirements for the degree of Master of Science,

Specialisation Area of Software Engineering

Supervisor: Dr. Nuno Bettencourt

Porto, June 30, 2022

iii

Dedicatory

I dedicate this work to everyone that has helped me throughout my academic journey,
especially to my mother for her continuous support since the very beginning, to my girlfriend
and her continuous offers of help to lessen my burdens and all my friends for making this
journey so much more pleasant.

v

Abstract

As DevOps grows in importance in companies, there is an increasing interest in automating
the process of building and deploying infrastructure, having as an objective reduce the com-
plexity for non DevOps engineers and making it so that infrastructure is less error prone,
which is not the case when doing it manually.

This work aims to explore how to build a solution that allows to manage infrastructure on
demand while supporting specific services that are relevant for git profiles analysis, such as
Sonarqube and Jenkins.

Firstly, this work starts by introducing its context, the problem that the solution is trying to
solve and the the methodology used to develop the solution.

On the State of the Art various topics are presented in order to give all the information needed
to understand the implementation of the solution, including concepts such as DevOps and
Automation, while going over specific technologies such as GraphQL, Docker, Terraform
and Ansible.

A value analysis was also done to explore what are the main concerns for stakeholders when
managing their infrastructure and to define the value of the solution being developed.

Lastly, the solution was implemented making use of various technologies and with scalability
in mind that would allow it to grow in the amount of services supported with minimum
changes.

The work is interesting for someone that is interested in DevOps, Infrastructure-as-Code
and automation in general.

Keywords: DevOps, Infrastructure-as-Code, Automation, GraphQL, Terraform, Ansible

vii

Resumo

Com o crescimento da importância de DevOps em empresas existe um interesse acrescido em
automatizar o processo de construir e de dar deploy de infra-estrutura, tendo como objectivo
reduzir a complexidade para engenheiros menos proficientes em DevOps, e construir infra-
estrutura que é menos propensas a erros, o que não acontece quando feito manualmente.

Este trabalho visa implementar uma solução capaz de gerir infra-estrutura a pedido e ao
mesmo tempo suportar serviços específicos relevantes para a análise de perfis git, como por
exemplo Sonarqube e Jenkins.

Em primeiro lugar, este trabalho começa por introduzir o seu contexto, o problema que a
solução está a tentar resolver e a metodologia utilizada para desenvolver a solução.

No estado da arte são apresentados vários tópicos com a finalidade de fornecer toda a
informação necessária para compreender a implementação da solução, incluindo conceitos
como DevOps e automação, são também exploradas tecnologias específicas como GraphQL,
Docker, Terraform e Ansible.

Foi também feita uma análise de valor para explorar quais são as principais preocupações das
partes interessadas na gestão das infra-estruturas das suas empresas e para definir o valor
da solução que está a ser desenvolvida.

Finalmente, a solução foi implementada, recorrendo a várias tecnologias e tendo em mente
a escalabilidade da solução que permitiria crescer na quantidade de serviços suportados
requerendo alterações mínimas.

O trabalho é interessante para alguém que esteja interessado em DevOps, Infraestrutura
como código e automatização em geral.

Keywords: DevOps, Infrastructure-as-Code, Automation, GraphQL, Terraform, Ansible

ix

Contents

List of Figures xiii

List of Tables xv

List of Source Code xvii

List of Acronyms xix

1 Introduction 1
1.1 Problem . 1
1.2 Objectives . 2
1.3 Hypotheses . 2
1.4 Work Plan and Methodology . 2
1.5 Thesis Structure . 3

2 State of the Art 5
2.1 DevOps Methodology . 5

2.1.1 Pipelines . 6
2.1.2 Infrastructure as Code . 7
2.1.3 Automation . 9

2.2 Virtualization of Applications . 9
2.2.1 What is Docker . 11

2.3 Software Design . 12
2.3.1 REST and GraphQL . 12
2.3.2 Design Principles . 14

2.4 Value Analysis . 17
2.4.1 New Concept Development Model 17
2.4.2 Analytic Hierarchy Process . 18

2.5 Existing Solutions . 19
2.5.1 Bamboo Server . 19
2.5.2 Buddy . 20
2.5.3 Harness . 20
2.5.4 Octopus Deploy . 20
2.5.5 Vagrant . 21
2.5.6 Cycloid . 21

2.6 Summary . 22

3 Analysis 23
3.1 Requirement Analysis . 23
3.2 Value Analysis and Proposition . 24

3.2.1 New Concept Deployment . 24

x

3.2.2 Perceived Value . 25
3.2.3 Value Proposition . 26
3.2.4 Analytic Hierarchy Process . 26

3.3 Summary . 29

4 Design 31
4.1 Domain . 31
4.2 Architecture . 32
4.3 Internal components . 33
4.4 Requirements . 33

4.4.1 Configuration Management . 33
4.4.2 Deployment Management . 36
4.4.3 Deployment Observation . 38

4.5 Summary . 39

5 Implementation 41
5.1 The Structure . 41
5.2 The Querier . 43

5.2.1 Models . 44
5.2.2 Queries . 44

5.3 The Server . 45
5.3.1 Start Command . 45
5.3.2 GraphQL API . 47
5.3.3 Configuration Management . 48
5.3.4 Deployment Management . 50

5.4 The Observer . 51
5.4.1 Start command . 52
5.4.2 The Worker . 52

5.5 Template files . 54
5.6 Encapsulating the Services . 55
5.7 Automation . 57
5.8 Summary . 58

6 Evaluation 59
6.1 Process . 59
6.2 Ease of use . 59
6.3 Deployment time . 61
6.4 Deletion time . 61
6.5 Summary . 61

7 Conclusion 63
7.1 Summary . 63
7.2 Achieved . 63
7.3 Limitations and Future Work . 63
7.4 Contributions . 64
7.5 Final remarks . 64

Bibliography 65

Appendixes 66

xi

A AHP Analysis . 67
B Deployment creation . 69
C Sonarqube template files . 71
D Jenkins template files . 75

xiii

List of Figures

2.1 Example of a CI/CD pipeline, extracted from CI/CD Pipeline (2021) . . . 6
2.2 How Docker uses containers, extracted from What is a Container? (2019) 11
2.3 The Innovation Process (Koen et al. 2002) 17
2.4 The NCD Model (Koen et al. 2002) . 18

3.1 Value Proposition Canvas . 26
3.2 Hierarchical Decision Tree - Determining Priorities. 27

4.1 Domain Model . 32
4.2 Architecture Diagram . 32
4.3 Internal components diagram . 33
4.4 Read global configuration . 34
4.5 Read use case configuration . 34
4.6 Add use case configuration . 34
4.7 Update use case configuration . 35
4.8 Delete use case configuration . 35
4.9 Read service configuration . 35
4.10 Add service configuration . 36
4.11 Update service configuration . 36
4.12 Delete service configuration . 36
4.13 Read all deployments . 37
4.14 Read one deployment . 37
4.15 Create a new deployment . 38
4.16 Delete an existing deployment . 38
4.17 Observe deployments . 39

5.1 GraphQL Playground . 47

6.1 GraphQL API add use case mutation . 60
6.2 GraphQL API create deployment mutation 60
6.3 Logging statements in the terminal . 61
6.4 Logging statements in the terminal . 61

xv

List of Tables

3.1 Non-Functional Requirements . 24
3.2 Functional Requirements . 24
3.3 Tool’s benefits and sacrifices per stakeholder 26
3.4 Scale of importance . 28
3.5 Criteria pairwise comparison . 28
3.6 Priority Vector . 28
3.7 Alternatives’ composite priority . 29

xvii

List of Source Code

5.1 Root command . 41
5.2 Querier interface . 43
5.3 Querier New function . 44
5.4 Deployment Model . 44
5.5 Preloading helper function . 45
5.6 Deployment retrieval method . 45
5.7 Server command . 46
5.8 Terraform installation function . 46
5.9 gqlgen configuration file . 47
5.10 Create Deployment Resolver . 48
5.11 Read Configuration . 49
5.12 Add Use Case to Configuration . 49
5.13 Update Use Case Configuration . 49
5.14 Delete Use Case Configuration . 50
5.15 Read all deployments . 50
5.16 Delete deployment . 51
5.17 Observer command . 52
5.18 Observer worker Start method . 52
5.19 Observer failure handler . 53
5.20 Observer success handler . 53
5.21 Observer worker method to update the instance 54
5.22 Server Dockerfile . 55
5.23 Server start script . 56
5.24 Database Dockerfile . 56
5.25 docker-compose file . 56
5.26 Makefile . 57
7.1 Create deployment . 69
7.2 main.tf . 71
7.3 ansible.yaml . 73
7.4 inventory . 75
7.5 main.tf . 75
7.6 ansible.yaml . 77
7.7 settings.yaml . 78
7.8 plugins.yaml . 79
7.9 inventory . 79

xix

List of Acronyms

AHP Analytic Hierarchy Process.
AI Artificial Intelligence.
API Application Programming Interface.
AWS Amazon Web Services.
CD Continuous Deployment.
CFM Continuous Feedback & Monitoring.
CI/CD Continuous Integration & Continuous Delivery.
CI Continuous Integration.
CLI Command Line Interface.
CP Continuous Planning.
CRUD Create Read Update Delete.
CR Consistency Ratio.
CT Continuous Testing.
DIP Dependency Inversion Principle.
DTO Data Transfer Object.
EC2 Elastic Compute Cloud.
FFE Fuzzy Front End.
HCL HashiCorp Configuration Language.
HTTP Hypertext Transfer Protocol.
IDE Integrated Development Environments.
IP Internet Protocol.
ISP Interface Segregation Principle.
IT Information and Technology.
IaC Infrastructure as Code.
LSP Liskov Substitution Principle.
NCD New Concept Development.
NPD New Product Development.
OCP Open-Closed Principle.
OOP Object-Oriented Programming.
ORM Object-Relational Mapping.
OS Operating System.
QFD Quality Function Deployment.
REST Representational State Transfer.
SDK Software Development Kit.
SD Sequence Diagram.
SQL Structured Query Language.
SRP Single Responsibility Principle.
SSH Secure Shell.
SaaS Software as a Service.
UML Unified Modeling Language.
URI Uniform Resource Identifier.

xx

URL Uniform Resource Locator.
VM Virtual Machine.

1

Chapter 1

Introduction

In a demanding and competitive market, where each year there are more solutions and more
professionals in the Information and Technology (IT) area, it is important to find the best
talent that can boost your product to the next level.

To accomplish this, companies have developed multiple strategies in order to determine
whether a professional is or not a good fit technically for their company, some create algo-
rithmic problems that require discipline and practice to solve, others require the candidate
to create a small project in order to see how they actually do code development. What both
methods have in common is that both require manual validation and are prone to inherent
biases.

One thing is certain, in order to determine whether a profile matches the opportunity, there
is a need to make sure that their technical skills match a certain criteria, and that the criteria
does not change based on the interviewer. One way to do this would be the automation of
the technical skill evaluation, where it is possible to determine a profile’s technical skills (to
a certain level) based on their repositories and contributions to projects. This would allow
the retrieval of metrics that could prove to be crucial information on how that profile works
and how their technical skills have evolved in a certain time-frame.

The capacity of a system to evaluate profiles based on repository analysis is something that
would require a complex system which would need to behave differently depending on the
load and number of repositories being analysed. This research focuses on how to make sure
that such system has the right infrastructure that allows it to serve its users without losing
any availability when the loads are bigger while not wasting resources when the loads are
smaller. It is also important to determine how such a system should communicate with each
of its internal services in order to make it perform well.

This chapter serves the purpose of providing context of what is being researched, the problem
that is being solved, the objectives of the research being done as well as the hypotheses and
the approach taken to accomplish the objectives that were established.

1.1 Problem

The internet is growing each passing day, having grown from in both users and websites in an
astronomical level. In 2010 there were approximately 200 million live websites and 2 billion
users, while in January of 2022 there are approximately 1.9 billion websites and 5.1 billion
users (Internet Live Stats 2022). This growth brings opportunities but also new problems
that need to be solved by software engineers.

2 Chapter 1. Introduction

One of the problems that this growth brings is bringing value to a large user base, especially
when the value that is being provided requires a high processing power as is the case of
repository analysis. A website tries to bring value to its users, and this value must be
available to the users at all times.

With the usage of cloud solutions such as Amazon Web Services (AWS), Google Cloud
and Azure it is possible to solve the availability issues, but these services require extensive
configuration in order to have a service up and running with the expected behaviour. So
is it possible to have repository analysis tools available on demand? Taking into consider-
ation this question a DevOps approach to managing infrastructure is to be researched and
implemented.

1.2 Objectives

With this project it is intended the conception of a solution to managing a product’s infras-
tructure. To accomplish this, a service is to be built that should be capable of:

• Orchestrating repository analysis tools

• Deploying repository analysis tools to the cloud

• Encapsulating repository analysis tools

1.3 Hypotheses

In order to determine whether the project was successfully completed it is required that
hypothesis are set on the work. So with that in mind, the hypothesis are presented:

• Is the solution capable of deploying individual services (triggering deployments to the
cloud as needed)?

• Is the solution capable of orchestrating individual services (serving instances of the
services as needed)?

• Is the solution capable of encapsulating individual services (using existing solutions is
the service capable of encapsulating the services in order to work with them)?

1.4 Work Plan and Methodology

A work plan and work methodology is important to a project’s management, given that it
describes the different phases of the project that allow the accomplishment of the different
tasks. The current phases of the work plan and the methodology to accomplish it are the
following:

• Conception - this phase includes tasks related to the problem, its contextualization
and the state of the art.

– Research and contextualize the problem - try to understand the relevance of the
problem (Chapter 1).

– Research about the DevOps methodology, automation and similar work that was
done previously - study the current state of the art of these different fields (Chap-
ter 2).

1.5. Thesis Structure 3

• Analysis - at this phase a study is done on how to approach the problem and both
functional and non-functional requirements are defined and an analysis on the value of
the solution being developed (Chapter 3).

• Design - this phase consists of defining the architecture of the solution and it includes
the research and preparation of an approach to apply in the practical context 4.

• Development - the solution is developed based on the previous phase, along with its
experimentation (Chapter 5).

• Evaluation - the solution is evaluated based on the expected results, meaning that if
ways to improve the solution are found they should be registered as well as conclusions
about the solution 6.

• Documentation - this phase includes the completion of the thesis as a way to share
the knowledge gained throughout the development of the solution.

1.5 Thesis Structure

The thesis follows a set structure, and each chapter has a given purpose. This chapter, as
mentioned previously, tries to provide context on what the problem being solved is and the
objectives of the research being done and solution being implemented.

On Chapter 2, the state of the art is described, where the crucial concepts to the research
are explored and presented. In this chapter the objective is to provide as much information
as needed about the technical concepts that are necessary in order to fully understand the
chapters that come next. Existing approaches to the problem are also presented.

On Chapter 3 consists of the analysis of the problem, where a value analysis is done as well
as the requirements analysis (both functional and non-functional).

Chapter 4 goes over the design of the solution to the problem, making sure that each
decision that is being done has a reason to be that way and document it. In this chapter
there will also be diagrams in order to more easily visualize how to solution will look like at
the end of its implementation.

On Chapter 5 the whole development process is documented in order to provide information
on how the final solution was constructed. Images of the different stages of development
and the state of the product will also be present in order for the progress to be apparent
and easily seen.

Finally, for Chapter 6, the objective is to evaluate the implemented solution and validate
whether it accomplishes all the established objectives. It will also document the experience
of developing the solution, where it went well, where it went wrong, while also evaluating
whether it fits the expected results that were documented on this chapter.

5

Chapter 2

State of the Art

This chapter provides a state of the art about the DevOps framework, Infrastructure-as-
Code, the topic of software design is also briefly explored, as well as virtualization of software
applications and automation.

Additionally, this chapter provides some insight on existing solutions, namely products for
workflow automation and management like Bamboo Server and Vagrant, and full-on Soft-
ware as a Service (SaaS) products such as Cycloid.

2.1 DevOps Methodology

In order to possess an advantage in cloud platforms, there is a need to design applications so
that they are decoupled from physical resources. When considering decoupled architectures
especially in cloud design for a platform as a service and infrastructure as a service, there
is a need to perceive the efficiency of deployments, the deployment stages involved for an
application, and the correct utilization of the underlying cloud resources, this way of thinking
and optimization of cloud computing resources saves money to companies (Agrawal and
Rawat 2019).

DevOps is a system of thinking with a primary concern for developing, deploying and oper-
ating high-quality software. If development, deployment and operation can be considered as
a pipeline for code to go through, then DevOps tries to look at that pipeline from a holistic
perspective. DevOps is a compound of development (Dev) and operations (Ops), resulting
in a union of people, processes, and technologies to continually provide value to customers.
A DevOps culture along with its practices and tools provides the ability for teams to better
respond to customer needs, increase confidence in the applications that are built and makes
business goals achievable faster.

A suitable methodology to implement DevOps is through the usage of Continuous Plan-
ning (CP), Continuous Integration (CI), Continuous Testing (CT), Continuous Deployment
(CD), and Continuous Feedback & Monitoring (CFM). Each of these phases are not sepa-
rated by boundaries, nor are limited in terms of only being able to start a given phase when
another ends (Agrawal and Rawat 2019).

Continuous Planning consists of establishing a vision over what is the ultimate work goal of a
project, defining a set of functionalities giving each iteration value, the criteria to be fulfilled
and the end. Its continuous given that it should address changes and evolutions according
to a continuous improvement process, based on Continuous Feedback & Monitoring.

6 Chapter 2. State of the Art

Continuous Integration is the automation of processes such as review, validation, testing and
alerting of the value that is built along the iterations of a project. This means that for each
iteration of value delivered, in this case software, it should be automatically tested in order
to ensure that it works well and then published in a service that integrates the value with the
rest of the project, this phase also touches the Continuous Testing phase in which the value
is being tested continuously based on different approaches such as unit tests, integration
tests, functional tests, acceptance tests, quality analysis of the code, and regression tests
(Arachchi and Perera 2018).

The deployment of software is a process that consists of multiple steps and the more steps
there are in this process the more it is prone to human error. Promoting its automation
through tools and scripts is the goal of Continuous Deployment, where the whole process is
automated which looks to lessen the failure due to manual tasks executed by humans.

Continuous Feedback & Monitoring is a phase which should be permanent and be applied
throughout the entire cycle of DevOps. This phase consists of monitoring, analysing and
measuring all that displays the current status overview of the application and its infrastruc-
ture, including all its dependencies. This process should evolve according to the results,
where over each iteration of feedback the project is adjusted accordingly (Arachchi and
Perera 2018).

2.1.1 Pipelines

A DevOps pipeline is one of the most crucial parts of the DevOps process. This term is used
to discuss the tools, processes, and automation frameworks used to build software artifacts,
it can be thought as a sequence of events or jobs that can be executed to accomplish a
given task. Jenkins is an example of an open-source automation software which allows its
users to build their own pipelines (Arachchi and Perera 2018).

Figure 2.1: Example of a CI/CD pipeline, extracted from CI/CD Pipeline
(2021)

Pipelines can be split into two different concepts, Stages and Steps. A pipeline is formed of
multiple stages which in turn contain a series of steps. These stages are used to visualize
the pipeline process, while each step inside a given stage represent a task that should be
executed by the pipeline. An example of such a pipeline can be seen on Figure 2.2 (Arachchi
and Perera 2018).

2.1. DevOps Methodology 7

2.1.2 Infrastructure as Code

Infrastructure design can be defined as the software life-cycle phase which defines and con-
figures the software infrastructure that is required for a given software. Infrastructure design
typically entails a tiring manual process of installation and configuration scripts needed to,
among others:

• Instantiate and link the required machines for the software to run;

• Install and configure the required software and middleware for a Virtual Machine (VM);

• Instantiate and run the needed services for the software to be operated.

Virtualization, cloud, containers, and server automation should simplify IT operations work.
There should be less time and effort spent provisioning, configuring, updating and main-
taining services. Problems need to be quickly detected and resolved, and systems should
be consistently configured and up to date. DevOps promotes the use of a typical soft-
ware development notion, it promotes the usage of source code for infrastructure design
and management as well. This means that the entire set of scripts, automation and con-
figuration code can be expressed using the same standard language, this practice is called
infrastructure-as-code. The purpose of Infrastructure as Code (IaC) is to re-use successful
and common software development practices to speed up software operations (Artac et al.
2017; Morris 2016).

Through the usage of Infrastructure as Code teams expect to achieve the following (Morris
2016):

• Infrastructure supports and enables change, rather than being an obstacle;

• Changes to the systems are routine;

• IT staff spends their time on valuable tasks instead of repetitive ones;

• Teams are able to recover form failures quickly and easily;

• Improvements are made continuously;

• Solutions to problems are proven through implementation and experimentation.

Terraform

Terraform is an open source IaC tool created by HashiCorp and written in the Go program-
ming language to provision infrastructure. This tool can be used to deploy infrastructure
from a laptop, a server or any computer at all. Terraform enables developers to use a high-
level configuration language called HashiCorp Configuration Language (HCL) to describe
the desired end state of the cloud for running an application. Because Terraform uses a sim-
ple syntax, it can provision infrastructure across multiple cloud and on-premise data centers,
and can efficiently re-provision infrastructure in response to configuration changes (Brikman
2019).

Under the hood, Terraform makes Application Programming Interface (API) calls on the
behalf of the user to one or more providers such as AWS, Azure, Google Cloud, DigitalOcean,
etc. That means that Terraform gets to leverage the infrastructure those providers are
already running for their API servers, as well as the authentication mechanisms that were
already being used with those providers by the user, such as API keys (Brikman 2019).

8 Chapter 2. State of the Art

Terraform uses a declarative approach to provisioning servers, meaning since its configuration
declares the wanted end state, Terraform figures out how to get that end state, Terraform
will also be aware of any state it created in the past. Therefore, if the configuration previously
deployed 10 servers and the requirements changed and the end state should be 15 servers,
this can be changed in the configuration and Terraform will figure out it only needs to deploy
5 more servers (Brikman 2019).

Terraform has a few core concepts, namely:

• Variables: key-value pairs used by Terraform modules to allow customization.

• Module: a folder with Terraform templates where the configurations are defined.

• Provider: a plugin used to interact with APIs of services and access their related
resources.

• Resources: refers to a block of one or more infrastructure objects (e.g. compute
instances, virtual networks, etc.) which are used in configuring and managing the
infrastructure.

• State: consists of cached information about the infrastructure managed by Terraform
and its related configurations

• Data Source: is implemented by providers to return information on external objects
to Terraform.

• Output Values: are return values of a Terraform module that can be used by other
configurations.

• Plan: it is one of the stages where Terraform determines what needs to be created,
updated or destroyed to move from the current state to the end state.

• Apply: it is one of the stages where Terraform applies the changes in the current
state of the infrastructure in order to move to the desired end state.

• Destroy: it is one of the stages where Terraform destroys all remote objects managed
by a particular Terraform configuration.

Ansible

Ansible is an open source automation tool that enables the automation of provisioning, con-
figuration management, application deployment and orchestration processes. Unlike more
simplistic management tools, Ansible can be used to automate the installation of software,
daily tasks, provisioning of infrastructure, patching of systems and enable the sharing of
automation across organizations (Hochstein and Moser 2017).

Ansible works by connecting to what is to be automated and pushing programs that execute
instructions that would have to be done manually. These programs utilize Ansible modules
which are executed over Secure Shell (SSH) by default, and once complete are removed.

Ansible has a few core concepts, namely:

• Control node: the machine from which the ansible Command Line Interface (CLI)
tools (ansible-playbook, ansible, ansible-vault) are run.

• Managed nodes: also referred to as the "hosts", these are the target devices that
will be managed by Ansible.

2.2. Virtualization of Applications 9

• Inventory: a list of managed nodes provided by one or more "inventory sources". The
inventory can specify information specific to each node, like Internet Protocol (IP)
addresses. It is also used for assigning groups, that allow for bulk variable assignment.

• Playbooks: contain Plays, which are the basic unit of Ansible execution and are written
in YAML.

• Plays: this object maps hosts to tasks. The Play contains variables, roles and an
ordered list of tasks and can be run repeatedly.

• Roles: they are a limited distribution of reusable ansible content such as tasks, han-
dlers, variables, plugins, templates and files.

• Tasks: the definition of "actions" to be applied to the managed host.

• Handlers: a special variation of a Task that can only execute when notified by a
previous task which resulted in a "changed" status.

• Modules: the code or binaries that Ansible copies and executes on each managed
node to accomplish the action defined in each task.

• Plugins: there are pieces of code that expand Ansible’s core capabilities.

2.1.3 Automation

Automation is used as a term to describe technological applications where the human input is
minimized as much as possible. These applications include business process automation, IT
automation, personal applications such as home automation and more. The usage of sets of
processes that are repeated increase the productivity and efficiency in software engineering
while also reducing human errors (What is automation? | IBM 2021).

The usage of automation allows developers, operators, testers and other stakeholder in De-
vOps to automate the tasks performed in the creation and deployment of software. Activities
such as integration, testing, building and delivering software can be automated in order to
reduce delays and risks given that such tasks are time-consuming ad error-prone if done
manually.

Delivering new releases can be complicated work for many applications, it could mean set-
ting up and configuring web servers, or fixing errors so that a given release ca run properly.
Such activities are hard to accomplish manually and can lead to errors given the manual
aspect of that process leading to delays and additional expenses. These problems primarily
affect the operations team, possibly creating an increasing tension between operations and
development teams. For these reasons, DevOps relies on automation heavily. One of the
core concepts in DevOps automation are deployment pipelines, which represent the process
of getting software under development from version control to the production environment.
DevOps optimizes this process by automating every step of it, avoiding delays during the
development process and achieving continuous practices, such as Continuous Delivery, Con-
tinuous Integration, and Continuous Monitoring (Mohammad 2018).

2.2 Virtualization of Applications

Everything starts and ends with hardware, in order to run an application, there is the need for
some real hardware. This hardware includes actual physical machines, with certain computing

10 Chapter 2. State of the Art

capabilities, memory, and local persistent storage. In addition to hardware there is the
need for some shared persistent storage and to hook up all the machines by setting up the
networking in order for them to find and talk with each other.

The virtualization of applications is a process that deceived the application into believing
that it interfaces directly with an operating system’s capacities, when it does not. To
achieve this it is required for a virtualization layer to be inserted between the application and
the Operating System (OS). This layer, or framework, must run the application’s subsets
virtually and without impacting the subjacent OS. This virtualization layer replaces a portion
of the run-time environment typically supplied by the OS, diverting files and registry log
changes to a single executable file. By diverting the processes into one file instead of many,
the application easily operates on a different device, and incompatible applications can now
run adjacently (Portnoy 2012).

Desktop virtualization is also used in conjunction with application virtualization, it consists
of the abstraction of the physical desktop environment and its related software from the
end-user device that accesses it.

There are two main ways to virtualize applications: through the usage of Virtual Machines,
and through the usage of Containers.

A VM is software that replicates the functions of a computer. It can be seen as a computer
created by another computer. VMs can execute applications and programs without the need
to use physical hardware, they are isolated from the rest of the machines that hosts it and
behaves as if it is the only operating system on it (Portnoy 2012).

A container is a lightweight virtualization architecture that allows the deployment of indi-
vidual applications inside portable and isolated environments. By isolating the application
from the external host environment, containers enable frictionless application deployment.
A single container might be used to run anything from a small micro-service or process to
a larger application. Inside a container all the necessary executables, binary code, libraries,
and configuration files are stored, these are stored in common ways so that they can be run
anywhere, whether it be on a desktop or the cloud (Portnoy 2012).

Compared to the server or virtual machine approaches, containers do not contain operating
system images. This makes them more lightweight and portable, with significantly less
overhead. In larger application deployments, multiple containers may be deployed as one or
more container clusters. Such clusters might be managed by a container orchestrator.

Examples of such container orchestration tools are:

• Kubernetes by Google;

• Fleet by CoreOS;

• Apache Mesos by The Apache Software Foundation;

• Helios by Spotify;

• Centurion by New Relic.

2.2. Virtualization of Applications 11

2.2.1 What is Docker

Docker is a project created by a team at Docker, Inc (formerly dotCloud Inc). This project
resulted in the development of an open-source engine that automated the deployment of
applications into containers.

Figure 2.2: How Docker uses containers, extracted from What is a Con-
tainer? (2019)

Docker makes use of virtualized container execution environments by adding an application
deployment engine on top of it (Figure 2.2). It was designed to provide a lightweight and fast
environment in which anyone is able to run their code as well as an efficient workflow to get
the code from any computer to a test environment and then into a production environment
(Turnbull 2014).

Docker proposes the following:

• An easy and lightweight way to model reality;

• A logical segregation of duties - developers care about making their applications run
in the containers and operations cares about managing the containers;

• Fast and efficient development life cycle;

• Encourages service orientated architecture.

Docker is composed of the following components:

• Engine - a client-server application where the client talks with the Docker daemon
which does all the work;

12 Chapter 2. State of the Art

• Images - Images are the ”build” part of Docker’s life cycle and can be considered as the
”source code” of the containers, they are highly portable and can be shared, stored,
and updated;

• Registries - There are two types of registries: public and private; Docker, Inc. operates
the public registry for images, called the Docker Hub, which contains images that other
people have built and shared

• Containers - containers allow the packaging of applications and services, they are
launched from images and can contain one or more running processes.

2.3 Software Design

By software design it is possible to understand the process, as well as all the documents
resulting from the process, of turning requirements into executable code.

Software architecture design can be understood as the development process of going from
existing requirements and possibly some already designed components to the software ar-
chitecture — producing all appropriate architecture documentation.

For assessing user requirements, a document with all requirements is created whereas for
coding and implementation, there is a need of more specific and detailed requirements in
software terms. The output of this process can directly be used into implementation in
programming languages. Software design is the first step in the software design life cycle,
which moves the concentration from problem domain to solution domain. It tries to specify
how to fulfill the requirements that were registered in the requirements document (R. Martin
2018).

Software design yields three levels of results:

• Architectural Design - The architectural design is the highest abstract version of the
system. It identifies the software as a system with many components interacting with
each other. At this level, the designers get the idea of proposed solution domain;

• High-level Design - The high-level design breaks the ‘single entity-multiple component’
concept of architectural design into less-abstracted view of sub-systems and modules
and depicts their interaction with each other. High-level design focuses on how the
system along with all of its components can be implemented in forms of modules.
It recognizes modular structure of each sub-system and their relation and interaction
among each other;

• Detailed Design - Detailed design deals with the implementation part of what is seen
as a system and its sub-systems in the previous two designs. It is more detailed towards
modules and their implementations. It defines logical structure of each module and
their interfaces to communicate with other modules.

2.3.1 REST and GraphQL

Both Representational State Transfer (REST) and GraphQL are strategies that aim to
agilize the process of data exchange through the network. Data exchange can be understood
as the process of taking data structured under a source schema and transforming it into
a target schema, so that the target data is an accurate representation of the source data,
allowing this data to be shared between different systems.

2.3. Software Design 13

Web services are purpose-built web servers that support the needs of a given site or appli-
cation. Clients make use of APIs to communicate with web services. Both strategies can
be used to facilitate and define patterns for this communication.

REST

REST is an acronym for Representational State Transfer. It is an architectural style devised
with the premise that developers use the standard Hypertext Transfer Protocol (HTTP)
methods (GET, POST, PUT and DELETE) to query and mutate resources represented by
a Uniform Resource Identifier (URI) on the Internet.

A resource can be thought as a big dataset that describes a collection of entities of a given
type. REST is agnostic in terms of the format used to structure the response data from a
resource. JSON is the most popular data format, even though there is the possibility to use
other data formats such as XML and CSV (Masse 2011).

Web Services which APIs are designed based on the REST architectural style are referred
to as REST glsAPIs. REST APIs, to be considered RESTful, must comply with a set of
constraints, those being:

• Must have a client-server architecture.

• Must have a uniform interface.

• Must be stateless, meaning that no session information is retained by the receiver.

• Must have cacheability, meaning that responses must define themselves as either
cacheable or non-cacheable.

• Must be a layered system, meaning that the client can’t tell whether it is connected
directly to the end server or an intermediary.

REST APIs provide the following advantages:

• Is easy to understand and learn, due to its simplicity and broad use.

• Eases the organization of complicated applications.

• High loads can be managed with the help of HTTP proxies and cache.

• Usage of standard HTTP verbs to retrieve data and make requests.

• Brings flexibility by not being bound by a given data format.

Although there are benefits there are also draw-backs to the usage of the REST architectural
style to design APIs:

• Requires more effort to implement as the number of parameters increases.

• Lack of state, since most applications require stateful mechanisms it burdens the client
with maintaining the state.

• Lack of security, since REST does not impose security.

GraphQL

GraphQL is a technology that originated from Facebook (more recently known as Meta)
and that is now open-source. GraphQL is a query language for APIs, it is also a runtime for

14 Chapter 2. State of the Art

fulfilling queries. Given that GraphQL is a specification, it is inherently language agnostic,
resulting in implementation of this specification in various languages.

The underlying mechanism for executing queries and mutations is the POST HTTP verb.
This means that GraphQL clients written in different languages can communicate between
each other. As the name implies, GraphQL is intended to represent data in a graph. A
graph is defined according to a schema language that is particular to GraphQL, developers
use the schema language to define the types as well as the query and mutation operations
that will be published by a GraphQL API (Porcello and Banks 2018).

Although there are no constraints when building a GraphQL API, there are some princi-
ples/guidelines that should be taken in consideration when building its services, those being:

• Should be hierarchical.

• Should be product centric.

• Should have strong typing.

• Should provide client-specified queries.

GraphQL APIs provide the following advantages:

• Clients are able to dictate exactly what they need from the server.

• Requires less effort to implement API queries.

• Clients are able to retrieve multiple resources in a single request.

• It is strongly typed, which allows clients to know exactly what data is available and in
what form it exists.

There are also draw-back to the usage of GraphQL APIs, those being:

• Queries always return an HTTP status code of 200, regardless of its success or failure.

• Lack of built-in caching support.

• Unnecessary complexity for projects where the data is relatively consistent over time.

2.3.2 Design Principles

Design principles are widely applicable laws, guidelines, biases and design considerations
which are applied with discretion and result from the accumulated knowledge and experience
from various professionals. Design principles in software are the result of the accumulated
knowledge of established engineers in the field and help making the software being designed
more maintainable and scalable.

In the world of Object-Oriented Programming (OOP), there are many design guidelines,
patterns or principles. Five of these principles are usually grouped together and are known
as SOLID. While each of these five principles describes something specific, they overlap as
well. In general, SOLID helps manage code complexity. It leads to more maintainable and
extensible code (R. C. Martin 2002).

The design principles that will be described try to make it so that software does not become
hard to maintain. Some of the symptoms of rotting design are:

2.3. Software Design 15

• Rigidity: implementing a small change is difficult since it is likely to translate into a
cascade of changes.

• Fragility: any change tends to break the software in many places, even in areas not
conceptually related to the change.

• Immobility: it is not possible to reuse modules from other projects or within the same
project since these modules contain too many dependencies.

• Viscosity: when changes are needed, developers will prefer the easier route even if it
breaks existing design.

Single Responsibility Principle

The Single Responsibility Principle (SRP) states that a class should have one and only
one reason to change, meaning that a class should have only one job. This can also be
understood as cohesion and is crucial for a scalable software solution.

It is important to separate responsibilities since each responsibility is an axis of change.
When the requirements change, that change will manifest through a change in responsibility
amongst classes. If a class assumes more than one responsibility, then there will be more
than one reason for it to change, creating coupling. This can impair or inhibit the ability
of the class to meet all responsibilities. This kind of coupling leads to fragile designs that
break in unexpected ways when changed (R. C. Martin 2002).

In the context of the SRP, a responsibility is "a reason for change", if more than one motive
for changing a class arises, then that class has more than one responsibility.

Open-Closed Principle

The Open-Closed Principle (OCP) states that objects or entities should be open for exten-
sion but closed for modification, meaning a class should be extensible without modifying the
class itself.

Following the OCP means that the behaviour of the modules can be extended as the require-
ments of the application change to satisfy those changes and the extension of its behaviours
does not result in changes to the source of the module itself, meaning it remains untouched.
This can be done through the usage of abstraction, by abstracting the implementation de-
tails from a class it is possible to make it open for extension since it won’t be concerned with
the implementation details but with the behaviour it expects from the abstraction (R. C.
Martin 2002).

Conformance to this principle is what yields the greatest benefits claimed for object oriented
technology. Although it is not a good idea to apply rampant abstraction to every part of
the application. Rather, it requires dedication from the developers to apply abstraction only
to the parts of the program that exhibit frequent change.

Liskov Substitution Principle

The Liskov Substitution Principle (LSP) states that subtypes must be substitutable for their
base types, meaning that every class or derived class should be substitutable for either their
base or parent class.

16 Chapter 2. State of the Art

The importance of this principle is obvious when considering the consequences of violating
it. In the presence of a function f that takes, as its argument, reference to some base class
B, if there is a derevative D of B which, when passed to f causes f to misbehave, then D
violates the LSP. Then D is Fragile in the presence of f. If changes are done to f in order
to accommodate D then f now violates the OCP because it is not closed to all the various
derivatives of B (R. C. Martin 2002).

When OCP is in effect, applications are more maintainable, reusable and robust. The LSP
is one of the prime enablers of the OCP, it is what allows a module, expressed in terms of a
base type, to be extensible without modification. That substitutability must be something
that developers can depend on implicitly. The contract of the base type has to be well
understood if not explicitly enforced by the code.

Interface Segregation Principle

The Interface Segregation Principle (ISP) states that a client should never be forced to
implement an interface that it does not use, or client should not be forced to depend on
methods that they do not use.

This principle aims to deal with the disadvantages of complex interfaces. Classes that have
complex interfaces are classes whose interfaces are not cohesive. Meaning the interfaces can
be broken up into groups of methods where each group serves a different set of clients. The
ISP acknowledges the existence of objects that require non cohesive interfaces, however it
suggests that clients should not know about them as a single class, only being aware of the
base classes that have cohesive interfaces (R. C. Martin 2002).

Complex classes cause bizarre and harmful couplings between clients. When on client forces
a change on a complex class, all other clients are affected. Thus, clients should only have
to depend on method that they actually call. This can be achieved by splitting a complex
interface into many client-specific interfaces.

Dependency Inversion Principle

The Dependency Inversion Principle (DIP) states that entities must depend on abstractions,
not on concretions. Also stating that the high level module must not depend on the low level
module, but they should depend on abstractions. This principle is an enabler of decoupling.

There are implications when high-level modules depend on the lower level modules, changes
to those lower level modules can have direct effect on the higher level modules and can force
them to change. It should be the other way around, meaning that the high-level modules
should be the ones influencing the low-level modules. The modules that contain the high-
level business rules should take precedence over, and be independent of, the modules that
contain the implementation details (R. C. Martin 2002).

The high level modules are the ones that should be reusable, meaning that these should
depend on abstractions instead of concrete implementations of these low-level modules,
since by depending on the low-level modules it becomes very difficult to reuse those high-
level modules. The DIP makes it so that the dependency structure is inverted such that
both details and policies (high-level modules) depend on abstractions.

2.4. Value Analysis 17

2.4 Value Analysis

Value analysis is a systematic application of established techniques to identify the functions
of a product or component and to provide the desired functions at the lowest total cost. It
is a creative approach to eliminate unnecessary costs which add neither to quality no to the
appearance of a given product.

2.4.1 New Concept Development Model

The innovation process (figure 2.3) is the process of coming up with an idea and develop,
test, and commercialize it.

Figure 2.3: The Innovation Process (Koen et al. 2002)

The "Fuzzy Front End" is the first stage of the innovation process, and is the part where
the opportunities are identifier, analyzed, and validated, and the concept is developed, prior
to entering the product development phase.

The New Concept Development (NCD) Model, defined by Peter Koen (Koen et al. 2002),
is a model defined with common language and terminology which aims to help optimize
activities in the Fuzzy Front End (FFE), resulting in a higher number of profitable concepts
entering the New Product Development (NPD).

The NCD model is a nonlinear process and consist of three parts which are represented in
figure 2.4:

• the uncontrollable influencing factors.

• the controllable engine that drives the activities in the FFE.

• the five activity elements of the NCD.

The NCD model is represented as a circular shape because the ideas are expected to flow,
circulate, and iterate between and among all the five activity elements.

18 Chapter 2. State of the Art

Figure 2.4: The NCD Model (Koen et al. 2002)

The influencing factors are the factors that affect the entire innovation process and influence
the concept and its viability, namely the organization capabilities, the outside world and the
enabling sciences and technologies.

The engine represents the factors that drive the five key elements that are controllable by the
corporation, for example the leadership, culture, and business strategy of the organization.

Lastly, there is the inner spoke area which defines the five key elements that are controllable
by the organization, namely opportunity identification, opportunity analysis, idea generation
and enrichment, idea selection and concept definition.

2.4.2 Analytic Hierarchy Process

The Analytic Hierarchy Process (AHP) is a multi-criteria decision method, developed by
Thoma L. Saaty in 1980. AHP represents an accurate approach to quantifying the weights
of decision criteria, and can be used with qualitative, as well as quantitative criteria. AHP
aims to divide the problem in hierarchic decision levels, facilitating its comprehension.

The first step of the AHP method is to build the hierarchic decision three, with three levels
representing the problem, the criteria, and the alternatives, respectively.

The second step is the establishment of priorities between the elements of each hierarchy
level, using a comparison matrix, using a given scale that should be defined.

The next step consists of obtaining the relative priority of each criteria. This is done by
normalizing the comparison matrix, and then the priority vector should be obtained by cal-
culating the arithmetical average of the values in each line of the normalized matrix.

With the results obtained in the previous step it is necessary to evaluate the consistency
of the relative priorities, which is done by calculating the consistency ratio. This is done
with the aim of measuring how consistent the judgments are in relation to large samples of
completely random judgements. These judgements are based on the assumption that the
decision maker is rational, so that if A is preferred to B, and B is preferred to C, then A is
preferred to C.

2.5. Existing Solutions 19

After creating a consistent criteria comparison matrix the same process must be done on a
comparison table for each criteria, considering the selected alternatives. This is done until
all the criteria’s comparison matrix are consistent.

The last step of the Analytical Hierarchy Process is to obtain the alternatives’ priority com-
posite. This can be done by multiplying the priority vector of each criteria comparison matrix
with the criteria’s relative priority. The alternative with the highest relative priority represents
the AHP’s final result.

2.5 Existing Solutions

The automation of the whole DevOps workflow to the end-user, making it as simple as
possible to build, test and deploy a given software product is something important for smaller
organizations that cannot have access to DevOps engineers.

There are currently multiple software solutions that permit the automation of these work-
flows. The different stages of the DevOps workflow were mentioned previously and they are
the following:

• Continuous development

• Continuous integration

• Continuous testing

• Continuous monitoring and feedback

• Continuous delivery

• Continuous deployment

2.5.1 Bamboo Server

Bamboo Server helps DevOps and Continuous Integration & Continuous Delivery (CI/CD)
teams streamline software development and delivery using the power of automation, inte-
grations, and workflow management. It is part of the Atlassian ecosystem of products and
can be used in conjunction with code pipelines in Bitbucket. It also has a wide range of
automated tasks for build, test, and deployment use cases (Bamboo Server 2021).

It includes features such as:

• Can be installed in local servers but can require some set-up effort;

• Integration with all Atlassian products natively and third-party apps such as AWS,
Docker and CodeDeploy at various DevOps stages;

• Work with all major coding languages and building platforms, being available on Mac,
Windows, as tarball files and as a ZIP archive;

• Provide free support for the first 12 months while also benefiting from a community
of more than 3 million global Atlassian users;

• Being suitable for large deployments up to 1000 remote agents and unlimited local
agents.

20 Chapter 2. State of the Art

2.5.2 Buddy

Buddy is a DevOps automation tool primarily meant for CI/CD workflows. Buddy has a
library of more than 150 automated tasks and actions ready for use, and combines user
experience with performance into one solution for teams that want to introduce CI/CD and
accelerate the development lifecycle of the software being developed (Buddy 2021).

It includes features such as:

• Can be deployed on a SaaS model with free set-up for up to 5 projects and 120 pipeline
runs per month;

• Offer a library of integrations covering all major cloud providers, developer tools, and
collaboration platforms;

• Support deployments for most programming languages. It can also be used for appli-
cation development on AWS, Google, Azure, Kubernetes, and others;

• A growing community of users along with robust learning materials;

• Sufficient scalability to support deployments of every size.

2.5.3 Harness

Harness is an end-to-end software delivery platform that enables automation at key stages
of the DevOps lifecycle. Not only does it aid in the continuous integration and continuous
delivery processes, but it also manages cloud costs and helps automate feature delivery,
making use of Artificial Intelligence (AI) to simplify these processes (Harness 2021).

It includes features such as:

• The possibility to benefit from use-case-specific deployment, with on-premise and SaaS
options as needed;

• Integration with all major development environments, with support for infrastructure
provisioning scripts;

• Communities for Harness made available on Slack and online;

• Feature Flags, which uses machine learning and automation to speed up feature
pipelines, enable standardization, and reduce the risk for each feature release;

• Adaptation to enterprise needs and use cases such as frequent releases, CI/CD, and
cloud cost management.

2.5.4 Octopus Deploy

Octopus Deploy applies automated workflows to streamline even the most complex software
deployments. It uses automated deployment tools for developers and releases managers and
automated runbooks to reduce efforts for operations teams (Octopus Deploy 2021).

It offers features such as:

• Can be quickly deployed as a service for up to 5000 deployment targets, and it supports
unlimited deployments on local servers;

2.5. Existing Solutions 21

• Native connection with major CI servers, operations tools, container platforms, etc.,
and it is possible to integrate custom applications through APIs;

• Support for all major development environments like Java, .NET, Node.js, Python,
and others;

• Slack communities and discussion forums with active participation from users;

• A dedicated offering called Octopus Deploy for Enterprise which connects multiple
teams, platforms, and software releases across the organization;

• Ease of use and automation prowess, it is possible to quickly get tutorial guidelines for
all major languages, build servers, and package repositories.

2.5.5 Vagrant

Vagrant by HashiCorp helps the deployment of standardized workflows irrespective of dev,
ops, design, or any other role. It makes production processes more consistent by driving
reusability for packages and configurations. Vagrant addresses a singular use case, which it
solves very effectively. It is possible to automate production workflows across environments
to reduce inconsistency as well as scripting efforts (Vagrant 2021).

It includes features such as:

• A quickstart installation for all major operating systems and VMware virtual machines;

• Integration with configuration management systems such as Ansible, Chef, Docker,
Puppet, and Salt to enable consistency across production pipelines;

• Availability on macOS, Windows, Linux, Debian, Centos, and ArchLinux, along with
popular code editors, Integrated Development Environments (IDE), and browsers;

• A large user community, thanks to the HashiCorp forum. There are user groups, event
organizers, and the dedicated HashiCorp discuss the platform;

• Being ready for deployment at scale.

2.5.6 Cycloid

Cycloid is an open DevOps and hybrid cloud collaboration platform. It’s an enterprise-
grade tool that helps teams upskill and work together, regardless of skill set, expertise, or
technology. It attempts to bring all necessary tools together, providing end-to-end project
frameworks that will help guide and facilitate a DevOps revolution in an organization (Hybrid
Cloud DevOps | Cycloid 2021).

It includes features such as:

• Can be deployed on a SaaS model;

• Integration with all major cloud providers such as AWS, Google, Azure, and others;

• A CLI and an API for developers to use across the organization to interact with the
service and integrate in their own tools;

• Tools to visualize the product’s infrastructure and its cost management;

• A growing library of documentation and material to get started with the service.

22 Chapter 2. State of the Art

2.6 Summary

On this chapter an overview of different theoretical topics was synthesized which will prove
to be important to the understanding of the following chapters.

The DevOps methodology was studied, along with concepts such as Pipelines, Infrastructure
as Code and Automation. This section also goes over specific technologies used in the
practice of Infrastructure as Code such as Terraform and Ansible, providing some information
on how these work.

A section dedicated to the Virtualization of Applications is also present, providing information
about the concept of virtualization through different methods such as virtual machines and
containers. In this section an overview of what is Docker is also done along with its benefits
and core concepts.

On the Software Design section, it is provided a summary of what consists software design,
strategies used to agilize data exchange and some design principles that should be taken in
consideration when building solutions. The strategies mentioned in this section are REST
and GraphQL, and each one of these is described along with their constraints, advantages
and disadvantages. The design principles mentioned are the ones under the SOLID acronym,
which provide value in building maintainable and clean solutions.

The Value Analysis section provides information regarding the NCD model and the AHP
which are used to determine the value of the solution being developed and the priority when
developing the solution.

Finally, there is the section containing existing solutions, where an overview of the different
solutions that achieve something similar is done. On this section solutions such as Harness
and Vagrant are covered, containing information on what these solutions are capable of.

23

Chapter 3

Analysis

The development of an infrastructure on demand deployment tool is an attempt at providing
a way for people to easily deploy repository analysis to the Cloud with minimum configuration.
The current reality is that DevOps is a complex area which requires attention on different
topics such as availability, performance and reliability. These topics are affected by how
the services are deployed, where they are deployed, if they are scaling based on the load of
requests or not, etc.

Tasks like processing of large quantities of data can affect these services, which means that
strategies should be developed to address difficulties that arise. The tool developed attempts
to solve by default these kinds of problems while allowing its users to customize which tool
to deploy and what functionalities to include depending on their use case.

This section is split into two smaller sections, one focused on the analysis of requirements
for the solution being developed, and one for the analysis of the value that is envisioned
for the solution. The requirements analysis section tries to identify all the functional and
non-functional requirements that the solution developed must satisfy. The value analysis
section makes use of the New Concept Development Model (NCD) to identify and analyze
the opportunity in the market, with this information the perceived value of the solution is
documented. This section also includes a value proposition of the solution as well as a value
analysis using the Quality Function Deployment (QFD) method.

3.1 Requirement Analysis

Both functional and non-functional requirements were collected in order to better under-
stand the expectations about the final desired service. The expectations in terms of non-
functional requirements for the infrastructure on demand deployment tool being developed
are presented in the table 3.1 while the functional requirements are presented in the table
3.2.

24 Chapter 3. Analysis

Identification Non-Functional Requirement

NFR1 Reliability (Availability): the tool developed must work in a stable
way regardless of the conditions that may affect it

NFR2 Supportability (Flexibility): the tool should be flexible , meaning
it should support different environments as much as possible

NFR4 Performance (Speed): the tool should provide fast deployments,
meaning it should not take more than 20 minutes to take a
deployment request and have it up and running

NFR5 Usability: the tool developed should be easy to interact with,
meaning it shouldn’t have any complications, and should have a
simple and friendly user interface to make the interaction easier

NFR6 Portability: the tool should be accessible from any machine or
system

NFR7 Security: the tool should be secure against attacks

Table 3.1: Non-Functional Requirements

Identification Functional Requirement

FR1 Configuration: the tool should allow the management its global
configuration

FR2 Deployment: the tool should allow users to create deployments

FR3 Observing: the tool should observe the deployments done and
notify the end user

Table 3.2: Functional Requirements

3.2 Value Analysis and Proposition

In this section there is a focus on the value that is envisioned for the solution that will be
developed, using the NCD Model, the opportunity will be identified and analyzed. Once
the opportunity is identified and analyzed, the perceived value, the value proposition and its
analyzation will be defined using the Analytic Hierarchy Process (AHP) method.

3.2.1 New Concept Deployment

The innovation process is the process of coming up with an idea and develop, test, and
commercialize it. The New Concept Development Model aims to help optimize activities in
the Fuzzy Front End, hopefully resulting in a higher number of profitable concepts entering
the New Product Development.

3.2. Value Analysis and Proposition 25

Opportunity Identification

Since infrastructure is something that is becoming increasingly important, it makes sense
to make its management easier, faster and more efficient, as well as less error and bug
prone. One solution would be the use of a management tool that would handle all of it with
minimum configuration, such as the tool being developed.

By creating a solution for infrastructure management there would be several benefits that
could be achieved, for instance:

• Reducing the need for as many DevOps engineers in a company.

• Easier process to create and manage deployments.

• Flexibility to migrate infrastructure from one Cloud Provider to another with minimum
effort.

• Developers can focus on development instead of on infrastructure.

Opportunity Analysis

Although an infrastructure management tool may be the possible solution to making infras-
tructure management easier and more efficient, it is necessary to further analyze and define
the opportunity.

The major issues that are commonly associated with Infrastructure as a Service in cloud
systems are virtualization and multi-tenancy, resource management, network infrastructure
management, data management, APIs, interoperability etc (Manvi and Shyam 2014). All
these problems can be minimized by introducing some kind of abstraction in the form of a
management tool that provides an interface for the users to interact with these services and
configure them.

3.2.2 Perceived Value

To realize the value of using an infrastructure management tool, it is necessary to identify
the stakeholders, how can they benefit from the solution and what sacrifices they need to
go through to use it. This can be seen on the table 3.3.

26 Chapter 3. Analysis

Stakeholders Benefits Sacrifices
Developers The solution makes it so that

developers don’t require as
much DevOps knowledge in or-
der to set up deployments.

The solution creates a complex-
ity abstraction regarding deploy-
ments to cloud providers facili-
tating the process.

The solution requires developers
to learn a new syntax to config-
ure the deployments in it.

Companies The solution makes it so that
companies don’t need as many
highly specialized DevOps engi-
neers to set up repository anal-
ysis tools.

The solution agilizes the process
of creating workflows and man-
aging projects.

Requires the onboarding of new
developers to a tool not broadly
used.

Table 3.3: Tool’s benefits and sacrifices per stakeholder

3.2.3 Value Proposition

To define the value proposition its necessary to identify the product, gain creators, pain
relievers, gains, pains, and customer jobs, thus developing a value proposition canvas (figure
3.1).

The following value proposition represents the value to be delivered by using a solution to
create infrastructure on demand.

Figure 3.1: Value Proposition Canvas

3.2.4 Analytic Hierarchy Process

The Analytic Hierarchy Process (AHP) represents an accurate approach to quantifying
weights of decision criteria. It aims at dividing the problem in hierarchy decision levels,
facilitating its comprehension. In this case the AHP method aims to determine what is the
highest priority when managing infrastructure.

3.2. Value Analysis and Proposition 27

The first step to determine this is to build an hierarchical decision tree, which can be seen
on figure 3.2, with three levels representing the problem, the criteria, and the alternatives,
respectively.

Figure 3.2: Hierarchical Decision Tree - Determining Priorities.

On the hierarchical decision tree, the first level represents the problem, which in this case is
"What is the highest priority when managing projects’ infrastructure?".

The second level represents the criteria that will be used in order to judge the priorities, in
this case the Stakeholders that will use the product will be used as criteria in order to make
this judgement, those being:

• Software Engineers - The developers that code the projects and interact with the tool
to manage its infrastructure.

• Companies - The companies that make use of the solution.

• DevOps Engineers - The engineers with the DevOps knowledge that can use the
solution to facilitate their work.

• Cybersecurity Engineers - The engineers that handle security in the company and make
sure that their software is secure.

The third level represents the alternatives, in this case these are the priorities that should
be taken in consideration, namely:

• Performance

• Scalability

• Security

• Customization

• Cost Efficiency

28 Chapter 3. Analysis

The second step is the establishment of a priority between each hierarchic level. The scale
used to establish it can be seen on table 3.4.

Importance Level Definition
1 Equal Importance
3 Weak Importance
5 Important
7 Very Important
9 Crucial

Table 3.4: Scale of importance

The pairwise comparison of the defined criteria can be seen in table 3.5.

Soft. Eng. Companies DevOps Eng. Cyb. Eng.
Soft. Eng. 1 1/3 1 3
Companies 3 1 3 5
DevOps Eng. 1 1/3 1 3
Cyb. Eng. 1/3 1/5 1/3 1
Sum 5 1/3 1 7/8 5 1/3 12

Table 3.5: Criteria pairwise comparison

After defining the pairwise comparison of the criteria it is necessary to obtain the relative
priority of each criteria, this is done by normalizing the comparison matrix, and then obtaining
the priority vector by calculating the arithmetical average of the values. This can be seen
on table 3.6.

Software Engineers 0.2009
Companies 0.5193
DevOps Engineers 0.2009
Cybersecurity Engineers 0.0789

Table 3.6: Priority Vector

Once the priority vector is defined, the evaluation of the consistency of the relative priorities
is done through the calculation of the Consistency Ratio (CR). If the CR’s value is superior
to 0.1 then the judgements are not trustworthy. In this case the obtained CR was of
0.0161422, assuring the consistency of the comparison matrix.

Finally, to obtain the alternatives’ priority composite, the priority vectors of each criteria’s
comparison matrix is multiplied with the crtieria’s relative priority. This can be seen on table
3.7.

3.3. Summary 29

S.E. Comp. D.E. C.E. Vector Priority
Performance 0.2539 0.1298 0.1952 0.0631 0.2009 0.162594
Scalability 0.5230 0.1298 0.1952 0.1650 0.5193 0.224698
Security 0.0827 0.3424 0.0737 0.4418 0.2009 0.244048
Customization 0.0702 0.0557 0.4624 0.1650 0.0789 0.148931
Cost Eff. 0.0702 0.3424 0.0737 0.1650 - 0.219727

Table 3.7: Alternatives’ composite priority

In this case the alternative with the highest relative priority is Security, meaning that it should
be the highest priority when designing the tool given the stakeholders that will be using it.

3.3 Summary

Throughout this chapter it was possible to identify the functional and non-functional re-
quirements for the solution, namely the concerns regarding the performance of the solution,
its security and its ease of use.

The solution’s value and value proposition were properly detailed to synthesize its merit
and lay out the means through which the user can capitalize from it. This proved that
the solution is viable and important for the current market where DevOps is growing in
importance and is increasingly expensive to hire good DevOps engineers.

It was necessary to evaluate the concerns regarding a tool capable of managing a company’s
infrastructure, to do that the various stakeholders and their concerns were used inputs for
a multi-criteria decision model in order to determine which concern is the priority when
building the solution. The resulting conclusion was that security is the highest priority when
choosing a solution to manage the infrastructure and the full AHP analysis can be seen on
the appendix A.

31

Chapter 4

Design

This section explains the design of the proposed solution. It is expected that all future
approaches follow the design developed and documented here, however as the code evolves,
there can be some discrepancies, but whenever possible the design must be followed, or
as similar as possible. The section starts by going over the domain of the solution being
developed in order to grasp the context of the solution being developed. Afterwards the
solution’s high level architecture is designed based on the domain previously defined, the
sub-domains identified and based on the requirements analyzed on chapter 3. Once the
architecture is defined an overview of what each service will look like internally is documented,
where each component of a given service and their responsibility is explained. Finally, based
on the sub-domains identified, an overview of each use case is given with a description and
a diagram representing the flow that is to be expected of the services in order to achieve
the use case.

4.1 Domain

The domain can be analysed on the Figure 4.1 and is composed of the following classes:

• Deployment - represents a deployment request of a set number of machines for a
given service based on the global configuration

• Instance - represents a machine that is being deployed

• Credential - represents a credential that will be used to access the different services

• Configuration - represents the global configuration of the tool

• Use Case Configuration - represents the configuration of a given use case

• Service Configuration - represents the configuration of a given service for a specific
use case

• Plugin Information - represents the information of a given service plugin

The Domain Model was built based on the Unified Modeling Language (UML) notation and
Craig Larman’s guidelines.

32 Chapter 4. Design

Figure 4.1: Domain Model

4.2 Architecture

The solution will be developed based on a monolithic architecture. In order to make it
scalable the domain will be split in several sub-domains, where each sub-domain corresponds
to a different part of the business.

Based on this approach the following sub-domains were identified and isolated:

• Configuration management

• Deployments Management

Each of these sub-domains will be isolated from each other in the code, although the archi-
tecture will be the one seen on Figure 4.2.

Figure 4.2: Architecture Diagram

4.3. Internal components 33

4.3 Internal components

Figure 4.3: Internal components diagram

It can be observed on figure 4.3 that the service will follow an internal structure, where the
service will expose a GraphQL API, and will be composed of 4 smaller components, namely
"Resolvers", "Models", "Services" and "Querier":

• Resolvers - The resolvers are responsible for resolving the GraphQL requests and
calling the adequate service in order to do the actual business logic;

• Models - Models represent the domain, and map the entities of this domain to actual
objects that will be used across the different components;

• Services - Services are responsible for implementing the business logic and make use
of the querier to manage the models;

• Querier - The querier is responsible for creating the isolation between persistence layer
and business logic layer, serving as an interface for the services to interact with the
persistence layer.

4.4 Requirements

This section presents the design of the functional requirements’ process, using Sequence
Diagram (SD).

4.4.1 Configuration Management

For this requirement it is necessary that the tool provides the users the means to manage the
configuration. In order to do this it is necessary that the users are able to create, update,
delete and retrieve the configuration. This includes the configuration for each use case and
for each service. The respective diagram for the global configuration can be seen in the
figure 4.4. For the configuration of a specific use case we can see the figures 4.5, 4.6, 4.7
and 4.8, and for the configuration of a specific service we have the figures 4.9, 4.10, 4.11
and 4.12.

The reading of the global configuration (figure 4.4) consists of reading all the use case
configurations in the database as well as the corresponding service configurations associated.

34 Chapter 4. Design

Figure 4.4: Read global configuration

The reading of a use case configuration (figure 4.5) retrieves a specific use case configuration
from the database along with all its associated service configurations.

Figure 4.5: Read use case configuration

The process of adding a use case configuration (figure 4.6) will add the specific use case
configuration along with all the service configurations associated to the global configuration,
providing a way for users to add use cases to the configuration.

Figure 4.6: Add use case configuration

Updating a given use case configuration (figure 4.7) will update all of the services of the
given use case configuration, meaning that all its services will be replaced by the new ones,
providing a way for users to update all services of a given use case.

4.4. Requirements 35

Figure 4.7: Update use case configuration

The deletion of a use case configuration (figure 4.8) consists of the removal of the use case
from the global configuration, along with all its service configurations.

Figure 4.8: Delete use case configuration

The reading of a service configuration (figure 4.9) retrieves a specific service configuration
from a given use case from the database along with all its associated information.

Figure 4.9: Read service configuration

Adding a service configuration (figure 4.10) consists of the insertion of a service configuration
on a given use case, so that the use case can be used to make deployments of the given
service.

36 Chapter 4. Design

Figure 4.10: Add service configuration

Updating a service configuration (figure 4.11) will update an existing entry in the database,
where the user can change which version to use and which plugins to include.

Figure 4.11: Update service configuration

The deletion of a service configuration (figure 4.12) consists of the removal of the config-
uration of a specific service from a given use case.

Figure 4.12: Delete service configuration

4.4.2 Deployment Management

The deployments represent an actual deployment done to the Cloud. The tool provides a
way for users to read all deployments, read a specific deployment, create a new deployment

4.4. Requirements 37

and delete an existing deployment. The diagrams representing these interactions can be
found on figures 4.13, 4.14, 4.15 and 4.16.

The reading of all deployments (figure 4.13) retrieves all deployments that are stored in the
database and returns them to the requesting user.

Figure 4.13: Read all deployments

Reading an existing deployment (figure 4.14) retrieves a given deployment based on his
canonical name, returning it to the user.

Figure 4.14: Read one deployment

The creation of a new deployment (figure 4.15) will first verify that the configuration that
the user requested to be used actually exists, once that verification is done it will retrieve
the template files for the requested service then for each service it load all the necessary
data for the deployment. Once that is done it will start an asynchronous process for each
deployment that will be responsible for building the directory where the files for that specific
deployment will live, it will also do the interpolation of the template files so that they can be
written on the folder of the specific deployment, once the files are written it will make use
of Terraform to do the deployment using the newly generated files, once the deployment
is done it will retrieve the public IP addresses of the instances created and persist those
instances in the database so that they can be accessed by the observer.

38 Chapter 4. Design

Figure 4.15: Create a new deployment

The deletion of an existing deployment (figure 4.16) will make use of Terraform to destroy
the deployment in the Cloud, then it will delete the directory of that deployment and finally
it will delete it from the database.

Figure 4.16: Delete an existing deployment

4.4.3 Deployment Observation

In order for the users to be notified when a given service is available to be connected to
there needs to be some kind of observability implemented so that when these services are
up we send the relevant data to the user. The diagram representing this flow can be seen
on figure 4.17.

The observation of the deployments (figure 4.17) consists of a process that every minute
will fetch all deployments that are still pending from the database and verify the connection
to the different instances, in case the connection cannot be established it will verify whether
the service has been pending for longer than a certain amount of time, if it is the deployment
is deleted so that it does not consume any more resources, otherwise a user is created on
the instance and the information is sent to the end user so that he can connect to that
same instance.

4.5. Summary 39

Figure 4.17: Observe deployments

4.5 Summary

Throughout this chapter the domain of the solution was documented, referencing the dif-
ferent domain entities that made sense to have in the solution to accomplish the functional
requirements established on the previous chapter, a domain model containing all these do-
main entities and their respective attributes was also created in order to more easily visualize
the associations between each entity.

In this chapter the solution’s architecture was also mentioned, having been made the decision
to go forward with a monolithic architecture that would have two main components, the
server and the observer, which would interact with a database. The monolith’s internal
architecture was also documented, having four main components, the resolvers, the models,
the services and the querier.

Finally it was also documented each functional requirement’s use case along with a diagram
describing the process of how the different components of the solution would interact to
achieve the use case.

41

Chapter 5

Implementation

This section presents the development process of the proposed solution. This includes the
process of developing the services, the process of encapsulating the solution and the process
through which the service is able to do dynamic deployments.

Note that the development of the solution was done using the following technologies:

• Go as the programming language.

• Cobra as the framework for the CLI.

• gqlgen as the tool to serve the GraphQL API.

• GORM as the Object-Relational Mapping (ORM) to interact with the database.

• PostgreSQL as the Database System used.

• Docker in order to encapsulate the solution.

• Terraform so that the Infrastructure could be deployed to the Cloud.

• Ansible as the tool to configure the instances in the Cloud.

5.1 The Structure

The solution was built as a CLI since it would allow to start different services using different
commands from the same monolithic solution. This solution exposes three commands:

• server - command that starts the GraphQL API that handles configuration manage-
ment and deployment management.

• observer - command that starts the Observer responsible for doing the last steps of
the instance configuration and notifying the user once it is ready.

• fetch - command used to fetch all necessary static information including app versions
and plugins.

It is also worth mentioning that the root command, code listing 5.1, is the one responsible
for registering any common flags across commands and registering the sub-commands so
that these can be called from the root.

1 // RootCmd is the root command of the application to
2 // which all the other subcommands belong to
3 var RootCmd = &cobra.Command{
4 Use: "lift",
5 Short: "Lift’s CLI",

42 Chapter 5. Implementation

6 Long: "Lift’s full featured Command Line Interface",
7 }
8

9 func init() {
10 // Debug flag
11 RootCmd.PersistentFlags ().Bool("debug", false , "Run the service in debug mode")
12 viper.BindPFlag("debug", RootCmd.PersistentFlags ().Lookup("debug"))
13

14 // Terraform flags
15 RootCmd.PersistentFlags ().String("terraform_exec_path", "", "Path to the terraform

executable")
16 viper.BindPFlag("terraform_exec_path", RootCmd.PersistentFlags ().Lookup("

terraform_exec_path"))
17

18 // Database configuration flags
19 RootCmd.PersistentFlags ().String("db_host", "localhost", "The host where the

database lives")
20 viper.BindPFlag("db_host", RootCmd.PersistentFlags ().Lookup("db_host"))
21 RootCmd.PersistentFlags ().String("db_user", "user", "The database user to connect

with to the database")
22 viper.BindPFlag("db_user", RootCmd.PersistentFlags ().Lookup("db_user"))
23 RootCmd.PersistentFlags ().String("db_password", "password", "The database user’s

password")
24 viper.BindPFlag("db_password", RootCmd.PersistentFlags ().Lookup("db_password"))
25 RootCmd.PersistentFlags ().String("db_name", "lift", "The database name")
26 viper.BindPFlag("db_name", RootCmd.PersistentFlags ().Lookup("db_name"))
27 RootCmd.PersistentFlags ().Int("db_port", 5432, "The port in which the database is

listening on")
28 viper.BindPFlag("db_port", RootCmd.PersistentFlags ().Lookup("db_port"))
29

30 RootCmd.AddCommand(
31 serverCmd ,
32 observerCmd ,
33 fetchCmd ,
34)
35 }

Listing 5.1: Root command

The directory containing almost all of the logic is the internal directory, this directory is the
"internal" logic directory and contains several directories that will each contain logic that
contributes to the whole functionality of the solution, namely:

• config - has the model that represents the configuration of the solution.

• db - has all the logic related to interacting with the database, and includes all the
database models and querying logic.

• fetcher - contains the logic around fetching version and plugin information from the
internet related to the different services that can be deployed.

• graph - holds the logic around the GraphQL API, which includes schemas, query and
mutation resolvers, models generated and the GraphQL handler for the server.

• models - contains the domain objects used across the business logic as well as the
Data Transfer Object (DTO).

• observer - has the logic of the Observer worker, which is responsible for listening for
working instances in order to configure them and notify the user.

• sdk - holds custom Software Development Kit (SDK) created in order to more easily
interact with the different types of services APIs.

5.2. The Querier 43

• services - contains the business logic of the solution, meaning that all the logic around
deployments and configuration lives here.

• terraform - has the Terraform worker logic created in order to perform the application
and teardown of deployments.

• utils - has a multitude of utility functions that are used across the solution.

The project was structured with scalibility in mind, so that the support of new services can
easily be done by creating a few directories and constants across the project. To achieve
support of a new service it is required the creation of a template folder with the name of
the service, a fetcher for the service that queries for the service’s application and plugin
versions (if needed), and to add the service as a constant on the GraphQL schema and
domain models. This way the code can be extended without a need for a lot of modification
in an attempt to fulfil the Open-Closed Principle.

5.2 The Querier

The Querier is responsible for the interaction with the Database, meaning it abstracts the
interaction with the Database from the service. It supports a multitude of operations on the
different models that are used to make changes to the Database.

The Querier shown on the code listing 5.2 is the interface used to abstract the implemen-
tation details from the service layer, so that any structure that satisfies the interface can
be used as a Querier for the Service, this is done in an attempt to fulfil the Dependency
Inversion Principle, making it so that a different Querier implementation can be used in the
future.

1 type Querier interface {
2 // Configuration CRUD operations
3 GetConfiguration(ctx context.Context) (*Configuration , error)
4 GetUseCaseConfiguration(ctx context.Context , uc string) (*UseCaseConfiguration ,

error)
5 GetServiceConfiguration(ctx context.Context , uc string , service uint) (*

ServiceConfiguration , error)
6 CreateUseCaseConfiguration(ctx context.Context , newUC UseCaseConfiguration) (*

UseCaseConfiguration , error)
7 CreateServiceConfiguration(ctx context.Context , newS ServiceConfiguration) (*

ServiceConfiguration , error)
8 UpdateConfiguration(ctx context.Context , updatedC Configuration) error
9 UpdateUseCaseConfiguration(ctx context.Context , updatedUC UseCaseConfiguration)

error
10 UpdateServiceConfiguration(ctx context.Context , updatedS ServiceConfiguration)

error
11 DeleteUseCaseConfiguration(ctx context.Context , uc string) error
12 DeleteServiceConfiguration(ctx context.Context , uc string , service uint) error
13

14 // Deployment operations
15 GetAllDeployments(ctx context.Context) ([]*Deployment , error)
16 GetDeploymentByCanonical(ctx context.Context , can string) (*Deployment , error)
17 CreateDeployment(ctx context.Context , newD Deployment) (*Deployment , error)
18 UpdateDeployment(ctx context.Context , updatedD Deployment) error
19 DeleteDeployment(ctx context.Context , can string) error
20

21 // Instances operations
22 BatchCreateInstances(ctx context.Context , instances [] Instance) error
23 UpdateInstance(ctx context.Context , updatedI Instance) error
24 }

Listing 5.2: Querier interface

44 Chapter 5. Implementation

The creation of the Querier is done through the New function (code listing 5.3) that accepts
a configuration. Based on that configuration it will generate the connection string used to
connect to the PostgreSQL Database. Using GORM, the ORM used in the project, it
will open the connection to the database, with the connection open we call the method
AutoMigrate with the different models that we want to support in the database, this will
make sure all the models are correctly structured. Once the migration is complete we return
the querier structure with the connection which will be used to interact with the database.

1 type querier struct {
2 db *gorm.DB
3 }
4

5 func New(cfg *config.Config) Querier {
6 conn := fmt.Sprintf("host=%s port=%d user=%s password =%s dbname =%s sslmode=disable

", cfg.DBHost , cfg.DBPort , cfg.DBUser , cfg.DBPassword , cfg.DBName)
7 db , err := gorm.Open(postgres.Open(conn), &gorm.Config {})
8 if err != nil {
9 log.Fatal(err)

10 }
11

12 db.AutoMigrate(
13 &Deployment {}, &Instance{}, &Credential {},
14 &UseCaseConfiguration {}, &ServiceConfiguration {}, &PluginInformation {},
15)
16

17 return &querier{db}
18 }

Listing 5.3: Querier New function

5.2.1 Models

The models (code listings 5.4 and ??) make use of one of the features of Go, struct embed-
ding which allows the embedding of the attributes of a struct into another struct, to embed
the gorm.Model struct, this is required so that GORM can use the model as a database
model.

There is also the usage of field tags which allows the communication to the GORM ORM
of relationships between tables and specifics about a field such as if it is an index, unique,
etc. The code listing 5.4 shows one such case where tags are used to delcare a one-to-many
relationship between "Deployment" and "Instance", and the "Canonical" field has the tag
which tells GORM that it is going to be an unique index.

1 type Deployment struct {
2 gorm.Model
3

4 Canonical string ‘gorm:" uniqueIndex"‘
5 Type uint
6 Instances [] Instance ‘gorm:" foreignKey:DeploymentCanonical;references:Canonical"

‘
7 CallbackURL string
8 }

Listing 5.4: Deployment Model

5.2.2 Queries

The queries were implemented making use of the GORM functionalities. On the code listing
5.5, it is possible to see a helper function that makes use of the Preload method to eager

5.3. The Server 45

load the foreign keys of a Deployment into the Deployment model itself. This makes it so
that instead of having to implement complex queries it is possible to simply call the helper
method which will allow the retrieval of the sub-fields of the Deployment with no complexity.

1 func preloadDeployment(db *gorm.DB) *gorm.DB {
2 return db.Preload("Instances.AdminCredential").Preload("Instances.UserCredential")
3 }

Listing 5.5: Preloading helper function

On the code listing 5.6 it is possible to see the usage of the preloadDeployment helper
function which is prepended to the First method, which is GORM’s way of retrieving the
first occurrence of a given entity that satisfies a given query, in this case that has the
canonical passed as the last argument.

1 func (q *querier) GetDeploymentByCanonical(ctx context.Context , can string) (*
Deployment , error) {

2 db := q.db.WithContext(ctx)
3

4 var deployment Deployment
5 res := preloadDeployment(db).First(& deployment , "canonical = ?", can)
6 if res.Error != nil {
7 return nil , fmt.Errorf("deployment not found: %w", res.Error)
8 }
9 return &deployment , nil

10 }

Listing 5.6: Deployment retrieval method

GORM contains a multitude of methods that provide ways to query, create, update and
delete entities in the database, its usage was crucial to the implementation of the different
methods of the Querier interface, making it so that the development speed was improved
by a lot.

It is worth mentioning that although ORMs are helpful by making the development process
faster for smaller projects and projects that are starting out they normally do not scale for
more complex projects that require more complex queries, sometimes resulting in perfor-
mance issues when handling a lot of data since these queries might not be optimized for the
problem that is being solved.

5.3 The Server

The server is responsible for the handling of configuration and deployment management,
meaning it supports all the Create Read Update Delete (CRUD) operations around Use
Case Configurations and Service Configurations, while also supporting operations such as
reading, creating and deleting deployments.

This section will go over the implementation of the server command, the GraphQL API and
these two different components, along with their difficulties and the end solution.

5.3.1 Start Command

Since the solution was built as a CLI, the entry-point for the server is a command called
"server", this command (code listing 5.7) will start the server and run the GraphQL API on
port 8080 by default, resulting in a graphical playground that can be used to interact with

46 Chapter 5. Implementation

the server and make the wanted queries and mutations. This graphical playground is the
result of the "gqlgen" library which provides a handler for this playground, making it so that
serving it is easy.

1 var serverCmd = &cobra.Command{
2 Use: "server",
3 Short: "Starts the server",
4 Long: "Starts the GraphQL server API with the given configuration",
5 RunE: func(cmd *cobra.Command , args [] string) error {
6 // Load the environment variables
7 err := env.Load(".env")
8 if err != nil {
9 log.Println("no .env file found: %w", err)

10 }
11

12 cfg := config.New(viper.GetViper ())
13 utils.InstallTerraform(cfg)
14 repo := db.New(cfg)
15 s := services.New(repo , cfg)
16

17 router := mux.NewRouter ()
18

19 router.Handle("/", graph.NewPlaygroundHandler("/query"))
20 router.Handle("/query", graph.NewHandler(s))
21

22 log.Printf("connect to http :// localhost :%d/ for GraphQL playground", cfg.Port)
23 return http.ListenAndServe(fmt.Sprintf(":%d", cfg.Port), router)
24 },
25 }
26

27 func init() {
28 // Server flags
29 serverCmd.PersistentFlags ().Int("port", 8080, "The port for the server to listen

on")
30 viper.BindPFlag("port", serverCmd.PersistentFlags ().Lookup("port"))
31 }

Listing 5.7: Server command

Note that one of the difficulties of the implementation of the server was concerning the
guarantee that the machine that is running the server has Terraform installed, since it is a
dependency when doing the actual deployments. To do this an utility function was created
(code listing 5.8) that will make sure to install a temporary version of Terraform on the host
machine and registering it on the configuration of the server so that it can be used in the
future to do deployments.

1 // in case no terraform executable path was provided we will install it
2 // and pass the new executable path to the config
3 func InstallTerraform(cfg *config.Config) {
4 if cfg.TerraformExecPath == "" {
5 // we will install version 1.2.1 of Terraform
6 installer := &releases.ExactVersion{
7 Product: product.Terraform ,
8 Version: version.Must(version.NewVersion("1.2.1")),
9 }

10

11 execPath , err := installer.Install(context.Background ())
12 if err != nil {
13 log.Fatal("error installing Terraform: %w", err)
14 }
15 cfg.TerraformExecPath = execPath
16 }
17 }

Listing 5.8: Terraform installation function

5.3. The Server 47

5.3.2 GraphQL API

The GraphQL API was built using the gqlgen library, this library is based on a Schema first
approach, meaning the GraphQL schema is defined first and then the Go code is generated
that can be used to start the actual server and resolve the queries and mutations. This
library can also be configured in terms of where the code is generated and where the schema
is defined, this can be seen on the code listing 5.9 which contains the YAML configuration
used for the generation of the Go code.

1 # Where are all the schema files located? globs are supported eg src/**/*.graphqls
2 schema:
3 - internal/graph/schema/*.gql
4

5 # Where should the generated server code go?
6 exec:
7 filename: internal/graph/generated.go
8 package: graph
9

10 # Uncomment to enable federation
11 # federation:
12 # filename: graph/generated/federation.go
13 # package: generated
14

15 # Where should any generated models go?
16 model:
17 filename: internal/graph/models_gen.go
18 package: graph
19

20 # Where should the resolver implementations go?
21 resolver:
22 layout: follow -schema
23 dir: internal/graph
24 package: graph
25 filename_template: "{name}. resolvers.go"
26

27 # Optional: turn on use ‘ + "‘" + ‘gqlgen :" fieldName"‘ + "‘" + ‘ tags in your models
28 # struct_tag: json
29

30 # Optional: turn on to use [] Thing instead of []*Thing
31 omit_slice_element_pointers: true

Listing 5.9: gqlgen configuration file

As mentioned before, the use of the "gqlgen" library is responsible for serving a playground
graphical user interface to use the GraphQL API, this graphical user interface can be seen
on figure 5.1.

Figure 5.1: GraphQL Playground

48 Chapter 5. Implementation

The Schema is defined on the internal/graph/schema folder, and contains all of the Schema
definitions needed for the user to interact with the services, this includes type definitions for
data, inputs and also queries and mutations. The definition of the schema makes it so that
the Go code generated contains all the necessary type definitions and makes it so that it is
only required to implement the resolvers for each query and mutation defined in the schema.

The resolvers are responsible for resolving the queries and mutations requested by the user.
This allows so that the responsibilities are split, and the resolvers are only concerned about
receiving the user requests and resolving them, meaning executing the actual logic. On the
code listing 5.10 the resolver converts the input into a DTO that the service can comprehend,
once it receives the response back from the service the resolver resolves the model that it
got from the service into a valid GraphQL model generated based on the Schema defined
previously.

1 func (r *mutationResolver) CreateDeployments(ctx context.Context , input
NewDeployments) ([] Deployment , error) {

2 deployments , _, errors := r.s.CreateDeployment(ctx , input.toDTO())
3 if len(errors) > 0 {
4 fullErr := fmt.Errorf("failed to create the deployment: ")
5 for _, err := range errors {
6 fullErr = fmt.Errorf("%s\n%w", fullErr , err)
7 }
8 return nil , fullErr
9 }

10

11 nds := make ([] Deployment , len(deployments))
12 for i, deployment := range deployments {
13 nd := Deployment{
14 Canonical: deployment.Canonical ,
15 Instances: make ([] Instance , len(deployment.Instances)),
16 Type: deployment.Type ,
17 }
18

19 for j, instance := range deployment.Instances {
20 nd.Instances[j] = Instance{
21 State: DeploymentState(instance.State),
22 }
23 }
24 nds[i] = nd
25 }
26 return nds , nil
27 }

Listing 5.10: Create Deployment Resolver

5.3.3 Configuration Management

The server is also responsible for the configuration management, meaning it handles all the
CRUD operations around the configuration’s use cases and service configuration. Since the
configuration itself does not require too much logic, all operations for both configuration of
use cases and services is fairly straightforward only needing to use the querier to interact
with the database and make the changes or query for data. Examples are provided in order
to showcase the flow for each one of the CRUD operations.

Retrieving the global configuration (code listing 5.11) is achieved by calling the GetConfig-
uration method of the querier, resulting in the object that should be returned to the user.

5.3. The Server 49

1 // ReadConfiguration reads the whole configuration
2 func (s *Service) ReadConfiguration(ctx context.Context) *models.Configuration {
3 cfg := &models.Configuration {}
4 dbConfig , err := s.repo.GetConfiguration(ctx)
5 if err != nil {
6 return cfg
7 }
8 cfg.FromDB(dbConfig)
9 return cfg

10 }

Listing 5.11: Read Configuration

The creation of a use case configuration (code listing 5.12) consists of simply persisting the
model in the database and then querying the newly changed configuration so that it can be
returned to the user.

1 // AddConfigurationUseCase adds a new usecase to the configuration
2 func (s *Service) AddConfigurationUseCase(ctx context.Context , ucconfig *dtos.

NewUseCaseConfiguration) (*models.Configuration , error) {
3 _, err := s.repo.CreateUseCaseConfiguration(ctx , *ucconfig.ToDB())
4 if err != nil {
5 return nil , fmt.Errorf("failed to add the use case %s to the configuration: %w",

ucconfig.Name , err)
6 }
7

8 // fetch updated global configuration
9 dbgc , err := s.repo.GetConfiguration(ctx)

10 if err != nil {
11 return nil , fmt.Errorf("failed to retrieve the global configuration: %w", err)
12 }
13 gconfig := &models.Configuration {}
14 gconfig.FromDB(dbgc)
15 return gconfig , nil
16 }

Listing 5.12: Add Use Case to Configuration

Updating a use case configuration (code listing 5.13) can be done by simply calling the
querier with the updated entry. Once that is done the global configuration is retrieved so
that the updated configuration is returned to the user.

1 // UpdateConfigurationUseCase updates a specific usecase in the configuration
2 func (s *Service) UpdateConfigurationUsecase(ctx context.Context , usecase string ,

ucconfig *models.UseCaseConfiguration) (*models.Configuration , error) {
3 ucconfig.Name = usecase
4 err := s.repo.UpdateUseCaseConfiguration(ctx , *ucconfig.ToDB())
5 if err != nil {
6 return nil , fmt.Errorf("failed to update the usecase %s in the configuration: %w

", usecase , err)
7 }
8

9 // fetch updated global configuration
10 dbgc , err := s.repo.GetConfiguration(ctx)
11 if err != nil {
12 return nil , fmt.Errorf("failed to retrieve the global configuration: %w", err)
13 }
14 gconfig := &models.Configuration {}
15 gconfig.FromDB(dbgc)
16 return gconfig , nil
17 }

Listing 5.13: Update Use Case Configuration

50 Chapter 5. Implementation

The deletion of a use case configuration (code listing 5.14) is done by making the request
to the querier which will make the changes on the database and then querying again for the
newly updated global configuration.

1 // DeleteConfigurationUseCase deletes a specific usecase from the configuration
2 func (s *Service) DeleteConfigurationUseCase(ctx context.Context , usecase string) (*

models.Configuration , error) {
3 err := s.repo.DeleteUseCaseConfiguration(ctx , usecase)
4 if err != nil {
5 return nil , fmt.Errorf("failed to delete usecase %s from the configuration: %w",

usecase , err)
6 }
7

8 // fetch updated global configuration
9 dbgc , err := s.repo.GetConfiguration(ctx)

10 if err != nil {
11 return nil , fmt.Errorf("failed to retrieve the global configuration: %w", err)
12 }
13 gconfig := &models.Configuration {}
14 gconfig.FromDB(dbgc)
15 return gconfig , nil
16 }

Listing 5.14: Delete Use Case Configuration

5.3.4 Deployment Management

The server also takes care of the management of the deployments, this includes fetching the
currently active deployments, the retrieval of a specific deployment based on its canonical
(unique identifier), the creation of a new deployment and the deletion on an existing one.
The implementation of the deployment management required resolving more concerns since
the deployments needed to execute code that would deploy one or more instances to a given
cloud provider, in this case AWS.

The retrieval of deployments (code listing 5.15), similarly to the retrieval of the global
configuration, simply calls the querier in order to fetch the data and returns it to the user
and takes care of the conversion from database models to domain models that can be
returned.

1 // ReadAll retrieves all deployments
2 func (s *Service) ReadAllDeployments(ctx context.Context) []*models.Deployment {
3 dbds , err := s.repo.GetAllDeployments(ctx)
4 if err != nil {
5 return nil
6 }
7 deployments := make ([]*models.Deployment , len(dbds))
8 for i, dbd := range dbds {
9 deployment := &models.Deployment {}

10 deployment.FromDB(dbd)
11 deployments[i] = deployment
12 }
13 return deployments
14 }

Listing 5.15: Read all deployments

One of the main concerns when developing the logic around creating a deployment was how
to make it dynamic and how to make it fast. The first one is achieved by making use of
template files which live in a specific path that is accessed based on the service that is being
created, this allows so that new services can be added to the solution without requiring many

5.4. The Observer 51

changes to the code. The last one is achieved by making use of Go’s concurrency model,
creating goroutines that will perform the heavy lifting in parallel, making it so that multiple
deployments can be done at the same time without affecting the time it takes to deploy all
instances, only taking as long as the slowest deployment.

The process of creating a deployment itself (appendix B) starts by validating the configura-
tion that the user wants to use, if the configuration exists it is cached in order to access it
when doing the actual deployment. Once complete the paths to the template files that will
be used to generate the deployment files are retrieved and the deployment is persisted with
no instances, since the deployment hasn’t yet happened. The interpolator is then loaded,
the interpolator is responsible for replacing the data in the template files for actual data
specific for each deployment such as the version of the service to use, the plugins and the
amount of instances that should be deployed. With the interpolator available the goroutines
are created which will start the heavy lifting of building all the specific deployment files,
using the interpolator, in their correct location, running the Terraform code that will do the
deployment, retrieve the public IP addresses of the instances created and persist the newly
deployed instances. When all the asynchronous processes are over the errors are logged.

The deletion of a given deployment (code listing 5.16) will delete a given deployment from
the path where the deployment files for that deployment are stored, making use of Terraform
it will teardown the deployment’s resources making it so that no resources are wasted.

1 // Delete deletes a deployment with the given canonical
2 func (s *Service) DeleteDeployment(ctx context.Context , dcan string) ([]*models.

Deployment , error) {
3 // create the Terraform worker which will delete the deployments
4 tfw := terraform.NewWorker(s.config.TerraformExecPath)
5

6 deploymentDir , err := utils.BuildDeploymentFolderPath(dcan)
7 if err != nil {
8 return nil , fmt.Errorf("could not build path to deployment %s: %w", dcan , err)
9 }

10

11 err = tfw.Teardown(deploymentDir)
12 if err != nil {
13 return nil , fmt.Errorf("could not teardown deployment %s: %w", dcan , err)
14 }
15

16 err = os.RemoveAll(deploymentDir)
17 if err != nil {
18 return nil , fmt.Errorf("could not delete deployment files folder: %w", err)
19 }
20

21 err = s.repo.DeleteDeployment(ctx , dcan)
22 if err != nil {
23 return nil , fmt.Errorf("failed to delete deployment %s: %w", dcan , err)
24 }
25

26 deployments := s.ReadAllDeployments(ctx)
27 return deployments , nil
28 }

Listing 5.16: Delete deployment

5.4 The Observer

The observer is responsible for observing the deployments that are still pending on a set
interval, making sure they are either up and running so that it can configure them, or taking

52 Chapter 5. Implementation

too long to be available and tearing them down.

This section will go over the implementation of the worker behind the observer.

5.4.1 Start command

Similarly to the server the entry-point for the observer worker is the "observer" command
which is responsible for creating the worker that will do the job of listening for changes in
the deployments, configuring them and notifying the user (code listing 5.17).

1 var observerCmd = &cobra.Command{
2 Use: "observer",
3 Short: "Starts the observer worker",
4 Long: "Starts the observer worker responsible for notifying the user when

instances are up",
5 RunE: func(cmd *cobra.Command , args [] string) error {
6 // Load the environment variables
7 err := env.Load(".env")
8 if err != nil {
9 log.Println("no .env file found: %w", err)

10 }
11

12 cfg := config.New(viper.GetViper ())
13 utils.InstallTerraform(cfg)
14 repo := db.New(cfg)
15 s := services.New(repo , cfg)
16 ow := observer.NewWorker(s, cfg)
17

18 log.Printf("observer worker started")
19 return ow.Start ()
20 },
21 }

Listing 5.17: Observer command

5.4.2 The Worker

The worker’s Start method (code listing 5.18) is the main loop that will periodically iterate
over the existing deployments in the database. It will loop on 1 minute intervals, which can
be easily configured by changing the constants present in the code. This main loop will,
for each deployment’s instance that is still pending, check its connection by communicating
with the instance’s public IP address and handle the instance differently depending on the
result.

1 func (w *Worker) Start() error {
2 tfw := terraform.NewWorker(w.cfg.TerraformExecPath)
3

4 for {
5 log.Println("Started iterating over deployments ...")
6 ctx := context.Background ()
7 deployments := w.s.ReadAllDeployments(ctx)
8 now := time.Now()
9 for _, d := range deployments {

10 // check whether we already exceeded the time limit
11 exceededLimit := now.Sub(d.CreatedAt) > limit
12

13 for _, i := range d.Instances {
14 if i.State != models.Pending {
15 continue
16 }
17

18 ok := w.checkConnection(i, d.Type)

5.4. The Observer 53

19 if !ok {
20 err := w.handleFailedConnection(d.Canonical , exceededLimit , tfw)
21 if err != nil {
22 log.Println(err)
23 }
24 continue
25 }
26

27 err := w.handleSuccessfulConnection(i, *d)
28 if err != nil {
29 log.Println(err)
30 }
31 }
32 }
33 time.Sleep(delay)
34 }
35 }

Listing 5.18: Observer worker Start method

If the instance is not currently available to connect and it exceeded the limit set for time
that it can take to be up (configured to 15 minutes) then the whole deployment is deleted
(code listing 5.19).

1 func (w *Worker) handleFailedConnection(canonical string , exceededLimit bool , tfw *
terraform.Worker) error {

2 log.Println("Handling failed connection")
3 if !exceededLimit {
4 return nil
5 }
6

7 go func() {
8 _, err := w.s.DeleteDeployment(context.Background (), canonical)
9 if err != nil {

10 log.Println(err)
11 }
12 }()
13 return nil
14 }

Listing 5.19: Observer failure handler

In the case that the connection goes through then the instance needs to be configured (code
listing 5.20), meaning the instance needs to be set up depending on the service type, this
can include the creation of a user for Sonarqube or the creation of a job for Jenkins. This is
achieved by making use of the custom SDKs created to abstract the implementation details
of each service’s API and consist of making HTTP calls to the API of the instance that
was started.

1 func (w *Worker) handleSuccessfulConnection(i models.Instance , d models.Deployment)
error {

2 log.Println("Handling successful connection")
3

4 // set the instance ’s admin credentials
5 adminUsername , adminPassword := utils.GetAdminCredentials(d.Type , i.URL)
6

7 i.AdminCredential = models.Credential{
8 Username: adminUsername ,
9 Password: adminPassword ,

10 }
11

12 userCreds , err := w.setup(i, d)
13 if err != nil {

54 Chapter 5. Implementation

14 return fmt.Errorf("could not set up instance: %w", err)
15 }
16

17 // update the instance to hold credentials and new state
18 i, err = w.updateInstance(i, d.Canonical , userCreds)
19 if err != nil {
20 return fmt.Errorf("could not update instance: %w", err)
21 }
22

23 // obfuscate the admin credentials
24 i.AdminCredential = models.Credential {}
25

26 // notify the user that the service requested is available
27 data , err := json.Marshal(i)
28 if err != nil {
29 return fmt.Errorf("could not parse data into json: %w", err)
30 }
31

32 r := strings.NewReader(string(data))
33 _, err = http.Post(fmt.Sprintf("%s/%s", d.CallbackURL , d.Canonical), "application/

json", r)
34 if err != nil {
35 return fmt.Errorf("could not call user’s service: %w", err)
36 }
37 return nil
38 }

Listing 5.20: Observer success handler

Once the instance is set up it is required that the instance itself is updated in the database
so that in the future the worker is aware that the instance is already up and running and
has been configured correctly. To do this the updateInstance method is called which will
set the instance’s user credentials, change the instance’s status to running and persist that
information (code listing 5.21).

1 func (w *Worker) updateInstance(i models.Instance , dcan string , userCreds *models.
Credential) (models.Instance , error) {

2 i.UserCredential = *userCreds
3 i.State = models.Running
4

5 err := w.s.UpdateInstance(context.Background (), dcan , &i)
6 if err != nil {
7 return i, fmt.Errorf("could not persist user credential: %w", err)
8 }
9 return i, nil

10 }

Listing 5.21: Observer worker method to update the instance

Once everything has been correctly persisted and configured, then the user is notified that
the instance can be connected to and sends the instance’s information so that the user can
persist any data he needs about the instance’s location and credentials.

5.5 Template files

The template files are one of the core features of the solution, they are what allows the
solution to make the deployments in a dynamic way that provides a way for the code to not
be concerned about the implementation details of the deployment itself.

The variables in the template files can be identified by the use of parenthesis and the dollar
sign, one example of such variable is "($ version $)".

5.6. Encapsulating the Services 55

There are currently three restrictions when creating new template files for a new service:

• The folder containing the template files should have the name of the service and should
be within the "templates" folder.

• The entry-point of the deployment should be a Terraform file called "main.tf".

• The Terraform file should provide the public IP addresses of the deployed instances
as output.

The core template files used to deploy the Sonarqube and Jenkins instances can be seen
on appendixes C and D respectively. The main idea behind their implementation is the
creation of resources on AWS to configure the instance and the instance itself, there is also
a different kind of resource, a "null resource" which is responsible for running the Ansible
code in the instance that was deployed based on the ansible files present in the template
files.

The resources responsible for configuring the instance in this case are AWS key pairs and
AWS security groups, the later normally is configured to expose two ports in the instance,
port 22 for SSH connections and the port specific to the service, for Sonarqube it is port
9000 and for Jenkins it is port 8080.

The instance itself consists of an Elastic Compute Cloud (EC2) instance of different size
depending on the service that is being deployed and its requirements. Lastly the "null
resource" copies files from the host machine into the instance that is being deployed, these
files include utility and Ansible files, and will run a script that will update the instance, install
Ansible and run the Ansible playbook on the instance on AWS.

As part of the requirements previously mentioned the Terraform file will also output the
instances public IP addresses.

5.6 Encapsulating the Services

So that the solution can be started in a quick fashion, independently of the machine that
will be running it, the encapsulation of the solution was done. This was achieved by making
use of Docker and docker-compose, which allow the setup of containers that will run the
solution without worrying about the host machine.

The server’s Dockerfile (code listing 5.22) will do the following:

1. build the binary of the solution.

2. copy the binary into the "lift" directory in the container.

3. copy the necessary files from the host machine into the container, including the start
script, the ".env" file, the template files and the public and private SSH keys.

4. run the start script (code listing 5.23) with the database username, password and host
which will be used to connect to the database.

1 FROM golang:alpine as builder
2 RUN mkdir /build
3 ADD . /build/
4 WORKDIR /build
5 RUN go build -o main .
6

7 FROM alpine

56 Chapter 5. Implementation

8

9 RUN mkdir /lift
10 COPY --from=builder /build/main /lift/
11 COPY ./. env /lift/
12 COPY ./ templates/ /lift/templates/
13 COPY ./ static/keys/lift.pub /lift/.ssh/id_rsa.pub
14 COPY ./ static/keys/lift /lift/.ssh/id_rsa
15 COPY ./ static/ /lift/static/
16 COPY ./ scripts/start.sh /lift/
17 RUN chmod +x /lift/start.sh
18

19 WORKDIR /lift
20

21 ARG db_user
22 ARG db_password
23 ARG db_host
24

25 ENV DB_USER=${db_user}
26 ENV DB_PASSWORD=${db_password}
27 ENV DB_HOST=${db_host}
28

29 CMD ./ start.sh --db_user ${DB_USER} --db_password ${DB_PASSWORD} --db_host ${DB_HOST
}

Listing 5.22: Server Dockerfile

1 #!/bin/sh
2

3 /lift/main server "$@" &
4 /lift/main observer "$@" &
5 wait

Listing 5.23: Server start script

The database’s Dockerfile (code listing 5.24) will just move an Structured Query Language
(SQL) script into the "/docker-entrypoint-initdb.d" container location, this will make it so
that the SQL commands in that script are run on start up of the database, allowing the
bootstrap of the database from the script. In this case there’s only a line which will grant
the privileges to the database user.

1 FROM postgres :14.3- alpine
2

3 ADD ./init.sql /docker -entrypoint -initdb.d

Listing 5.24: Database Dockerfile

With the Dockerfiles complete docker-compose is used to set up the services on the host
machine (code listing 5.25). It describes two services, the "server" service and the "psql_db"
service. The "server" service takes build arguments for the Dockerfile, and those are the
database username, the database password and the database host which will be used on the
"start.sh" script. It is also possible to see that this service depends on the "psql_db" service,
which represents the database used by the solution, and the same database username and
password will be used as environment variables for the container to create the non-root user.

1 version: ’3.8’
2

3 services:
4 server:
5 container_name: lift_server
6 restart: always
7 network_mode: "host"
8 build:

5.7. Automation 57

9 context: .
10 args:
11 - db_user=$DB_USER
12 - db_password=$DB_PASSWORD
13 - db_host =127.0.0.1
14 dockerfile: Dockerfile
15 depends_on:
16 - psql_db
17

18 psql_db:
19 container_name: lift_db
20 build:
21 context: db
22 dockerfile: Dockerfile
23 restart: always
24 environment:
25 POSTGRES_USER: $DB_USER
26 POSTGRES_PASSWORD: $DB_PASSWORD
27 POSTGRES_DB: $DB_NAME
28 ports:
29 - ’5432:5432 ’
30 volumes:
31 - db -data:/data/db
32

33 volumes:
34 db-data:

Listing 5.25: docker-compose file

5.7 Automation

In order to make the development and testing process easier there was the use of a Makefile
(code listing 5.26), which provides various targets that are used.

1 include .env
2

3 build -sql -init:
4 @./db/setup.sh ${DB_USER} ${DB_NAME}
5

6 gqlgen:
7 @go run github.com /99 designs/gqlgen generate
8

9 generate -all: gqlgen
10 @go generate ./...
11

12 teardown:
13 @docker -compose down
14 @-./ scripts/teardown.sh lift
15

16 start: teardown generate -all build -sql -init
17 @docker -compose --env -file ./.env build --no -cache
18 @docker -compose --env -file ./.env up
19

20 db -cli:
21 @docker exec -it lift_db psql -d ${DB_NAME} -U ${DB_USER} -h localhost -p 5432

Listing 5.26: Makefile

The "build-sql-init" target will run a script that will take as input the database username and
the database name and generate the SQL init script for the database based on a template
script.

58 Chapter 5. Implementation

The "gqlgen" target will generate the GraphQL API’s related code, so that when there are
changes in the schema these can be easily converted into code. The "generate-all" target
will regenerate all the code in the solution, meaning that if new constants are introduced or
the GraphQL schema is changed then the "generate-all" target can be called to regenerate
all the previously generated files.

The "teardown" target will take down the services started by docker-compose and make
sure that there are no left-over resources being consumed by calling the "teardown.sh"
script which deletes docker images related to the solution.

The "start" target will first call the "teardown" target, regenerate all the code and build
the SQL init script, then it will build the Docker images based on the docker-compose file
created, and once that is done it will run the images as containers.

Finally the "db-cli" target is used as a means to connect to the database directly to inves-
tigate any issues that may arise or confirm data changes while developing.

5.8 Summary

In this chapter an overview of the implementation process was done and some code snippets
of the developed solution are also provided. This chapter provides an overview of the so-
lution’s structure, the querier component, the server component, the observer component,
the template files, the encapsulation process and the automation used on the solution.

The solution’s structure section goes over the commands exposed by the CLI and their
purpose, having also some information regarding the structure of the directory containing
the core business logic.

Afterwards, on the querier’s section, examples are provided of the interactions with the
database through the usage of GORM and how it was crucial to boost the development
speed.

On the server’s section, the server’s logic is analysed, going over the logic behind the de-
ployments and the design decisions that were made in order to achieve better performances
on these, the GraphQL API built is also described along with the technology used to achieve
it.

The observer’s section gives special attention to how the instances that are being deployed
are checked for connection and how they are handled depending on that result.

The section regarding the template files provides information regarding some of the require-
ments needed for each file and some of the similarities found between template files across
different services, being the result of some decisions regarding the cloud provider being used.

Afterwards, an overview of how the solution was encapsulated is also provided, going over
some of the files used to configure that encapsulation and some of the technologies used
such as Docker and docker-compose.

Finally, a small section is dedicated to the automation done in the solution to facilitate
the development process, this automation consists of a Makefile that is used to accomplish
repetitive tasks.

59

Chapter 6

Evaluation

This section goes over the evaluation of the solution developed by making use of the metrics
that were retrieved internally by the solution. These metrics will be used in order to track
the evolution of the solution, its performance, and if it answers the research hypotheses.
The evaluation was done through an empiric approach.

It is expected that the solution is capable of deploying repository analysis tools, orchestrating
them and encapsulate them in an efficient way.

6.1 Process

The evaluation process of the research hypotheses is split into six phases:

• Creation of a use case configuration.

• Creation of a deployment that uses that configuration.

• Track how long the deployment took.

• Request its deletion.

• Track how long it took.

• Verify that it was correctly deleted.

These steps should be done once the first version of the solution is completed, and once
every improvement is done in order to evaluate its progress throughout the development
process.

6.2 Ease of use

The ease of use of the solution was one of the big concerns when developing the solution,
it was important to make sure that the configuration of the deployments was easy to do.
The end result is the GraphQL API which requires a mutation to add a new Use Case which
can hold multiple types of services with a set of plugins that will be added to the instance
deployed (figure 6.1), the process is easy and means that the user only requires to do the
configuration once and after that a various amount of deployments can be done with that
configuration as a base.

60 Chapter 6. Evaluation

Figure 6.1: GraphQL API add use case mutation

Once the configuration is set up, new deployments can be easily done with just a simple
mutation delegating which use case to use, although more use cases are allowed as well, and
which type of service to deploy and how many instances to deploy (figure 6.2). In order to
not have hanging requests the user also defines a callback Uniform Resource Locator (URL)
which will be used to inform of the instance’s that are ready to be connected with, providing
a way for users to automate the process of registering instances.

Figure 6.2: GraphQL API create deployment mutation

6.3. Deployment time 61

6.3 Deployment time

The solution itself has a limit of time that it allows for a deployment to take, being capped
at 15 minutes, if the deployed instance is not reachable in 15 minutes it will be deleted. The
time measuring process consisted of logging the time at the moment of the start of the
deployment process and the time at the moment of the notification to the user.

After creating a deployment with two Sonarqube instances and one Jenkins instance it is
possible to verify through the logs on figure 6.3 that the Sonarqube instances took 4 minutes
and 17 seconds and 4 minutes and 19 seconds respectively and the Jenkins instance took
6 minutes and 23 seconds, proving that the solution can deploy and configure services and
notify the user within the 15 minutes limit.

Figure 6.3: Logging statements in the terminal

6.4 Deletion time

The time a deployment takes to delete is also an important metric since it is not wanted
for a deployment to take too long to be deleted since that translates into resources being
used when they should not. A similar approach to the deployment time was used, where
logging was added before and after the deletion is complete having taken 1 minute and 25
seconds for the Sonarqube deployments and 53 seconds for the Jenkins deployment (figure
6.4), proving to be a quick process.

Figure 6.4: Logging statements in the terminal

6.5 Summary

To properly evaluate the research hypotheses proposed on chapter 1, an empiric approach
was used, where multiple instances of different services were requested for deployment.

The first hypothesis regarded whether the solution was capable of deploying the instances
to the cloud, making them accessible in the Internet.

Upon evaluation, it is possible to conclude that, in regards to the hypothesis mentioned, it
is clear that it was fulfilled. The solution was able to finalize the deployment processes and
notify a user whenever an instance was ready, providing the link to the instance that could
be accessed in order to interact with the instance.

62 Chapter 6. Evaluation

The second hypothesis regarded whether the solution was capable of orchestrating the de-
ployed instances, making it so that these could be removed or configured as needed.

After evaluating in regards to this hypothesis, it is possible to conclude that the solution
partially fulfils this hypothesis. The solution is able to create, configure and remove re-
sources from the cloud, but it does not support the scaling of a specific deployment or the
reconfiguration of a deployment after completed.

Finally, the third hypothesis regarding the encapsulation of the services deployed, can be
considered as partially fulfilled. The solution provides a way to isolate implementation details
about the service being deployed from the code, it makes use of Terraform and Ansible to
encapsulate that logic. Although the solution does not provide a complete encapsulation
regarding the operating system that is being used for the instance, since the template files
are crafted for the specific OS where the service will be deployed.

63

Chapter 7

Conclusion

This chapter provides a summary of the results of the solution developed, depicting the
obtained results, limitations, and future improvements. Finally, this chapter goes over a
reflection of the final result.

7.1 Summary

The solution involved an extensive study of different technologies such as GraphQL, Ter-
raform, Ansible, Bash Scripting, Sonarqube and Jenkins throughout its development.

The solution developed consists of a GraphQL API capable of managing and configuring
instances of Sonarqube and Jenkins on the cloud, more specifically on AWS. The deployment
process was fairly quick taking no more than 10 minutes for either instance to be up and
ready to be connected to by a user.

The solution developed is dynamic and has growth potential in the amount of services that
can be configured and deployed, meaning it can grow to accommodate more services other
than Sonarqube and Jenkins with minimal changes to the code of the solution.

7.2 Achieved

The main goal of this work was to build a solution capable of deploying infrastructure on-
demand, which was achieved having also implemented the removal of such resources used
in the deployments. Mechanisms were also implemented to make the deployment process
asynchronous, making it so that multiple deployments can happen asynchronously in a single
request, achieving better deployment times as a result.

7.3 Limitations and Future Work

The solution developed is limited in terms of technologies, as mentioned before it requires
the entry point of the deployment to be a Terraform file, meaning that if the deployment
should be done with a different technology some extra logic needs to be added, making the
code less maintainable.

Due to time constraints the Jenkins deployment solution is also lacking in security, not
requiring any credentials to interact with it, which can be improved in the future in its
configuration.

64 Chapter 7. Conclusion

For future work it would also be interesting to add more code analysis tools such as Gitin-
spector and more auxiliary services such as ElasticSearch.

7.4 Contributions

All the code produced for the sake of the solution’s development is publicly available at the
Github repository under an MIT license so that it can be used by other people for their own
purposes and to improve the state of infrastructure on demand in the industry.

7.5 Final remarks

This work provided a way for the author to explore some of the concepts that were lectured in
the master’s degree in Software Engineering, namely infrastructure, DevOps and automating
processes.

It provided a challenge to learn new technologies such as Terraform and Ansible in more
depth, which are technologies that will prove useful in a professional environment since both
of these are trending technologies in the DevOps space.

The work also provided an opportunity to study the AWS cloud provider and its services
such as EC2 instances. It allowed the learning in more depth of services such as Sonarqube
and Jenkins, and how to configure them in a new instance from scratch.

65

Bibliography

Agrawal, Prashant and Neelam Rawat (2019). “Devops, A New Approach To Cloud De-
velopment amp; Testing”. In: 2019 International Conference on Issues and Challenges in
Intelligent Computing Techniques (ICICT). Vol. 1, pp. 1–4. doi: 10.1109/ICICT46931.
2019.8977662.

Arachchi, S.A.I.B.S. and Indika Perera (2018). “Continuous Integration and Continuous
Delivery Pipeline Automation for Agile Software Project Management”. In: 2018 Moratuwa
Engineering Research Conference (MERCon), pp. 156–161. doi: 10.1109/MERCon.2018.
8421965.

Artac, Matej et al. (2017). “DevOps: Introducing Infrastructure-as-Code”. In: 2017 IEEE/ACM
39th International Conference on Software Engineering Companion (ICSE-C), pp. 497–
498. doi: 10.1109/ICSE-C.2017.162.

Bamboo Server (2021). url: https://www.atlassian.com/software/bamboo.
Brikman, Y. (2019). Terraform: Up & Running: Writing Infrastructure as Code. O’Reilly Me-

dia. isbn: 9781492046875. url: https://books.google.pt/books?id=57ytDwAAQBAJ.
Buddy (2021). url: https://buddy.works/.
CI/CD Pipeline (2021). url: http://semaphoreci.com/blog/cicd-pipeline.
Harness (2021). url: https://harness.io/.
Hochstein, L. and R. Moser (2017). Ansible: Up and Running: Automating Configuration

Management and Deployment the Easy Way. O’Reilly Media. isbn: 9781491979778. url:
https://books.google.pt/books?id=h5YtDwAAQBAJ.

Hybrid Cloud DevOps | Cycloid (2021). url: https://www.cycloid.io/.
Internet Live Stats (2022). url: https://www.internetlivestats.com/.
Koen, Peter A et al. (2002). “FuzzyFrontEnd: Effective Methods, Tools, and Techniques

LITERATURE REVIEW AND RATIONALE FOR DEVELOPING THE NCD MODEL”.
In.

Manvi, Sunilkumar S. and Gopal Krishna Shyam (2014). “Resource management for Infras-
tructure as a Service (IaaS) in cloud computing: A survey”. In: Journal of Network and
Computer Applications 41 (1), pp. 424–440. issn: 10958592. doi: 10.1016/J.JNCA.
2013.10.004.

Martin, R.C. (2018). Clean Architecture: A Craftsman’s Guide to Software Structure and
Design. Martin, Robert C. Prentice Hall. isbn: 9780134494166. url: https://books.
google.pt/books?id=8ngAkAEACAAJ.

Martin, Robert C. (2002). Agile Software Development, Principles, Patterns, and Practices.
1st. Prentice Hall. isbn: 0135974445; 9780135974445.

Masse, M. (2011). REST API Design Rulebook: Designing Consistent RESTful Web Service
Interfaces. O’Reilly Media. isbn: 9781449319908. url: https://books.google.pt/
books?id=eABpzyTcJNIC.

Mohammad, Sikender Mohsienuddin (2018). “Streamlining DevOps Automation For Cloud
Applications”. In: pp. 955–959.

66 Bibliography

Morris, K. (2016). Infrastructure as Code: Managing Servers in the Cloud. Safari Books
Online. O’Reilly Media. isbn: 9781491924396. url: https://books.google.pt/books?
id=BIhRDAAAQBAJ.

Octopus Deploy (2021). url: https://octopus.com/.
Porcello, E. and A. Banks (2018). Learning GraphQL: Declarative Data Fetching for Modern

Web Apps. O’Reilly Media. isbn: 9781492044864. url: https://books.google.pt/
books?id=q5NoDwAAQBAJ.

Portnoy, M. (2012). Virtualization Essentials. Essentials. Wiley. isbn: 9781118240175. url:
https://books.google.pt/books?id=0kgBf8UUsa8C.

Turnbull, J. (2014). The Docker Book: Containerization Is the New Virtualization. Amazon
Digital Services LLC. isbn: 9780988820203. url: https://books.google.pt/books?
id=4xQKBAAAQBAJ.

Vagrant (2021). url: https://www.vagrantup.com/.
What is a Container? (2019). url: https : / / www . docker . com / resources / what -
container.

What is automation? | IBM (2021). url: https://www.ibm.com/topics/automation.

67

Appendixes

A AHP Analysis

68 Bibliography

B. Deployment creation 69

B Deployment creation
1 // Create creates a deployment with the inputs given
2 func (s *Service) CreateDeployment(ctx context.Context , nds *dtos.NewDeployments) (

deployments []*dtos.CreatedDeployment , warnings , errors []error) {
3 warnings = make ([]error , 0)
4 errors = make ([]error , 0)
5

6 configurations , errors := s.loadAndVerifyConfigurations(ctx , nds)
7 if len(errors) > 0 {
8 return nil , nil , errors
9 }

10

11 templates , errors := s.loadTemplateFiles ()
12 if len(errors) > 0 {
13 return nil , nil , errors
14 }
15

16 tfw := terraform.NewWorker(s.config.TerraformExecPath)
17

18 // For each individual deployment persist its information
19 // and start a goroutine that will do the deployment logic
20 wg := sync.WaitGroup {}
21 deployments = make ([]*dtos.CreatedDeployment , 0)
22 for _, nd := range nds.Deployments {
23 for _, ns := range nd.Services {
24 canonical := utils.BuildDeploymentCanonical(nd.UseCase , ns.Service)
25 // was previously validated
26 st , _ := models.TypeString(ns.Service)
27

28 // We persist the deployment with no instances since we
29 // don’t know their URLs yet
30 d, warning := s.persistDeployment(ctx , canonical , st, nds.CallbackURL)
31 if warning != nil {
32 warnings = append(warnings , warning)
33 continue
34 }
35

36 // We create the DTO with the count number of instances
37 // on a Pending state
38 cd := &dtos.CreatedDeployment{
39 Canonical: canonical ,
40 Type: d.Type.String (),
41 Instances: make ([] dtos.CreatedInstance , ns.Count),
42 CallbackURL: nds.CallbackURL ,
43 }
44

45 for i := 0; i < ns.Count; i++ {
46 cd.Instances[i] = dtos.CreatedInstance{
47 State: models.Pending.String (),
48 }
49 }
50

51 deployments = append(deployments , cd)
52

53 intpl , err := s.loadInterpolator(nd.UseCase , ns.Service , canonical , ns.Count ,
configurations)

54 if err != nil {
55 errors = append(errors , err)
56 continue
57 }
58

59 // we start goroutines that will do the actual deployments
60 // the deployment consists of:
61 // 1. Read the template files
62 // 2. Replace what needs to be replaced in the template file
63 // 3. Persist the resulting file

70 Bibliography

64 // 4. Run the terraform using the terraform worker with the resulting files
65 wg.Add (1)
66 go func(ns dtos.NewService) {
67 defer wg.Done()
68 dctx := context.Background ()
69

70 // we retrieve the path to the deployment folder
71 pathToDir , err := utils.BuildDeploymentFolderPath(cd.Canonical)
72 if err != nil {
73 errors = append(errors , fmt.Errorf("could not build deployments path: %w",

err))
74 return
75 }
76

77 // we create the directories for the deployment files
78 err = os.MkdirAll(pathToDir , 0755)
79 if err != nil {
80 errors = append(errors , fmt.Errorf("error creating directory for

deployment %s: %w", cd.Canonical , err))
81 return
82 }
83

84 // we retrieve all the filepaths for the files that need
85 // interpolation and need to be created on the deployment files folder
86 filepaths , ok := templates[ns.Service]
87 if !ok {
88 errors = append(errors , fmt.Errorf("no template founds for the service %s"

, ns.Service))
89 os.RemoveAll(pathToDir)
90 return
91 }
92

93 err = s.interpolateAndWriteFiles(filepaths , canonical , ns.Service , pathToDir
, *intpl)

94 if err != nil {
95 errors = append(errors , err)
96 os.RemoveAll(pathToDir)
97 return
98 }
99

100 cleanup := func() {
101 log.Printf("cleaning up failed deployment %s\n", cd.Canonical)
102 os.RemoveAll(pathToDir)
103 s.DeleteDeployment(dctx , cd.Canonical)
104 }
105

106 // once all files are interpolated and created we do the
107 // deployment logic using the terraform worker
108 err = tfw.Deploy(pathToDir)
109 if err != nil {
110 errors = append(errors , fmt.Errorf("error executing deployment %s: %w", cd

.Canonical , err))
111 cleanup ()
112 return
113 }
114

115 // with the deployment done we fetch the outputs
116 // which contain the Public IPs of the deployments
117 deploymentURLs , err := tfw.GetIPs(pathToDir)
118 if err != nil {
119 errors = append(errors , fmt.Errorf("error retrieving the public IPs of the

deployment %s: %w", cd.Canonical , err))
120 cleanup ()
121 return
122 }
123

124 // create the instances with their public IP and a Pending state

C. Sonarqube template files 71

125 instances := make ([]db.Instance , len(deploymentURLs))
126 for i, durl := range deploymentURLs {
127 dbi := db.Instance{
128 DeploymentCanonical: d.Canonical ,
129 State: uint(models.Pending),
130 URL: durl ,
131 }
132 instances[i] = dbi
133 }
134

135 // persist the new instances
136 err = s.repo.BatchCreateInstances(dctx , instances)
137 if err != nil {
138 errors = append(errors , fmt.Errorf("error updating deployment %s’s URL: %w

", cd.Canonical , err))
139 cleanup ()
140 return
141 }
142 }(ns)
143 }
144 }
145

146 // Wait for all the deployment tasks to be over
147 // and check for errors in order for them to be logged
148 go func() {
149 wg.Wait()
150 for _, err := range errors {
151 log.Println(err)
152 }
153 for _, w := range warnings {
154 log.Println(w)
155 }
156 }()
157 return deployments , warnings , nil
158 }

Listing 7.1: Create deployment

C Sonarqube template files
1 terraform {
2 required_providers {
3 aws = {
4 source = "hashicorp/aws"
5 version = "3.74.0"
6 }
7 }
8 }
9

10 provider "aws" {
11 profile = "default"
12 region = "eu -west -1"
13 }
14

15 resource "aws_key_pair" "($ name $)" {
16 key_name = "($ name $)-key -pair"
17 public_key = file("${var.public_key}")
18 }
19

20 resource "aws_security_group" "($ name $)" {
21 name = "($ name $)-sg"
22

23 ingress {
24 description = "Access Sonarqube"
25 from_port = 9000

72 Bibliography

26 to_port = 9000
27 protocol = "tcp"
28 cidr_blocks = ["0.0.0.0/0"]
29 }
30

31 ingress {
32 description = "SSH from everywhere"
33 from_port = 22
34 to_port = 22
35 protocol = "tcp"
36 cidr_blocks = ["0.0.0.0/0"]
37 }
38

39 egress {
40 from_port = 0
41 to_port = 0
42 protocol = " -1"
43 cidr_blocks = ["0.0.0.0/0"]
44 }
45

46 tags = {
47 Name = "($ name $)-sg"
48 }
49 }
50

51 resource "aws_instance" "($ name $)" {
52 count = "($ count $)"
53 // retrieved from https ://cloud -images.ubuntu.com/locator/ec2/
54 // and it refers to an eu -west -1 Ubuntu 18.04 LTS amd64 machine
55 ami = "ami -0 ce48dd7b483b8402"
56 instance_type = "t3.large"
57 key_name = aws_key_pair .($ name $).key_name
58

59 security_groups = [aws_security_group .($ name $).name]
60

61 tags = {
62 "Name" = "($ name $)-${count.index}"
63 }
64 }
65

66 resource "null_resource" "run_ansible" {
67 count = "($ count $)"
68

69 connection {
70 type = "ssh"
71 user = "ubuntu"
72 host = aws_instance .($ name $)[count.index]. public_ip
73 private_key="${file("${var.private_key}")}"
74 agent = false
75 timeout = "3m"
76 }
77

78 provisioner "file" {
79 source = "./files"
80 destination = "/tmp"
81 }
82

83 provisioner "file" {
84 source = "./ ansible"
85 destination = "/tmp"
86 }
87

88 provisioner "remote -exec" {
89 inline = [
90 "chmod +x /tmp/files/run -ansible.sh",
91 "chmod +x /tmp/files/db-setup.sh",
92 "/tmp/files/run -ansible.sh"

C. Sonarqube template files 73

93]
94 }
95 }
96

97 output "public_ips" {
98 description = "Public IPs of the instances"
99 value = "${aws_instance .($ name $).*.public_ip}"

100 }

Listing 7.2: main.tf

1 ---
2

3 - name: Configure Sonarqube
4 hosts: local
5 connection: local
6 become: true
7 tasks:
8 - name: Update Repository Cache
9 retries: 2

10 delay: 10
11 apt:
12 update_cache: true
13

14 - name: Install PostgreSQL
15 apt:
16 name: "{{ item }}"
17 state: present
18 with_items:
19 - acl
20 - postgresql
21 - postgresql -contrib
22 - libpq -dev
23 - python3 -psycopg2
24

25 - name: Install SonarQube Requirements
26 apt:
27 name: "{{ item }}"
28 state: present
29 with_items:
30 - openjdk -11-jdk
31 - fontconfig -config
32 - libfreetype6
33 - zip
34 - unzip
35

36 - name: Strip carriage returns from scripts to ensure this works from Windows
VMs

37 replace:
38 path: "/tmp/files/db -setup.sh"
39 regexp: "[\r]$"
40 replace: ""
41

42 - name: Create postgres user and DB for SonarQube
43 become: yes
44 become_user: postgres
45 command: "/tmp/files/db -setup.sh {{ sonar_db_pass }}"
46

47 - name: Create the sonar user for running the SonarQube services
48 user:
49 name: sonar
50 comment: System user for running SonarQube
51

52 - name: Download SonarQube
53 get_url:
54 url: "{{ sonar_download_url }}"
55 dest: "/srv/sonarqube -{{ sonar_version }}. zip"

74 Bibliography

56

57 - name: Extract SonarQube
58 unarchive:
59 src: "/srv/sonarqube -{{ sonar_version }}. zip"
60 dest: "/srv"
61 copy: no
62 owner: sonar
63

64 - name: Link this version of sonarqube as the server SonarQube version
65 file:
66 src: "/srv/sonarqube -{{ sonar_version }}"
67 dest: "/srv/sonarqube"
68 state: link
69 owner: sonar
70

71 - name: Configure SonarQube Port
72 lineinfile:
73 path: "/srv/sonarqube/conf/sonar.properties"
74 regexp: "^sonar.web.port="
75 insertafter: "^#sonar.web.port="
76 line: "sonar.web.port =9000"
77

78 - name: Configure SonarQube DB username
79 lineinfile:
80 path: "/srv/sonarqube/conf/sonar.properties"
81 regexp: "^sonar.jdbc.username="
82 insertafter: "^#sonar.jdbc.username="
83 line: "sonar.jdbc.username ={{ sonar_db_user }}"
84

85 - name: Configure SonarQube DB password
86 lineinfile:
87 path: "/srv/sonarqube/conf/sonar.properties"
88 regexp: "^sonar.jdbc.password="
89 insertafter: "^#sonar.jdbc.password="
90 line: "sonar.jdbc.password ={{ sonar_db_pass }}"
91

92 - name: Configure SonarQube DB connection string
93 lineinfile:
94 path: "/srv/sonarqube/conf/sonar.properties"
95 regexp: "sonar.jdbc.url=jdbc:postgresql :// localhost/sonar"
96 insertafter: "^#sonar.jdbc.url=jdbc:postgresql :// localhost/sonar"
97 line: "sonar.jdbc.url=jdbc:postgresql :// localhost/sonar"
98

99 - name: Configure SonarQube to run as the sonar user
100 lineinfile:
101 path: "/srv/sonarqube/bin/linux -x86 -64/ sonar.sh"
102 regexp: "RUN_AS_USER=sonar"
103 insertafter: "#RUN_AS_USER="
104 line: "RUN_AS_USER=sonar"
105

106 - name: Install the sonarqube plugins
107 get_url:
108 url: "{{ item }}"
109 dest: /srv/sonarqube/extensions/plugins
110 with_items:
111 - "{{ groups[’sonar_plugins ’] }}"
112

113 - name: Set ElasticSearch requirements
114 sysctl:
115 name: vm.max_map_count
116 value: 524288
117 state: present
118 reload: yes
119

120 - name: Copy the SonarQube service configuration file
121 copy:
122 src: "/tmp/files/sonarqube.service"

D. Jenkins template files 75

123 dest: "/etc/systemd/system/sonarqube.service"
124

125 - name: Configure OS security limits for the sonar user
126 copy:
127 src: "/tmp/files/sonarqube.limits"
128 dest: "/etc/security/limits.d/99- sonarqube.conf"
129

130 - name: Configure kernel level limits for ElasticSearch
131 copy:
132 src: "/tmp/files/sonarqube.sysctl"
133 dest: "/etc/sysctl.d/99- sonarqube.conf"
134

135 - name: Enable the SonarQube service
136 systemd:
137 state: started
138 enabled: yes
139 daemon_reload: yes
140 name: sonarqube

Listing 7.3: ansible.yaml

1 [local]
2 localhost
3

4 [local:vars]
5 sonar_version =($ version $)
6 sonar_download_url =($ download_url $)
7 sonar_db_name=sonar
8 sonar_db_user=sonar
9 sonar_db_pass =($ db_pass $)

10

11 [sonar_plugins]
12 ($ plugin_urls $)

Listing 7.4: inventory

D Jenkins template files
1 terraform {
2 required_providers {
3 aws = {
4 source = "hashicorp/aws"
5 version = "3.74.0"
6 }
7 }
8 }
9

10 provider "aws" {
11 profile = "default"
12 region = "eu -west -1"
13 }
14

15 resource "aws_key_pair" "($ name $)" {
16 key_name = "($ name $)-key -pair"
17 public_key = file("${var.public_key}")
18 }
19

20 resource "aws_security_group" "($ name $)" {
21 name = "($ name $)-sg"
22

23 ingress {
24 description = "Access Jenkins"
25 from_port = 8080
26 to_port = 8080

76 Bibliography

27 protocol = "tcp"
28 cidr_blocks = ["0.0.0.0/0"]
29 }
30

31 ingress {
32 description = "SSH from everywhere"
33 from_port = 22
34 to_port = 22
35 protocol = "tcp"
36 cidr_blocks = ["0.0.0.0/0"]
37 }
38

39 egress {
40 from_port = 0
41 to_port = 0
42 protocol = " -1"
43 cidr_blocks = ["0.0.0.0/0"]
44 }
45

46 tags = {
47 Name = "($ name $)-sg"
48 }
49 }
50

51 resource "aws_instance" "($ name $)" {
52 count = "($ count $)"
53 // retrieved from https ://cloud -images.ubuntu.com/locator/ec2/
54 // and it refers to an eu -west -1 Ubuntu 18.04 LTS amd64 machine
55 ami = "ami -0 ce48dd7b483b8402"
56 instance_type = "t2.micro"
57 key_name = aws_key_pair .($ name $).key_name
58

59 security_groups = [aws_security_group .($ name $).name]
60

61 tags = {
62 "Name" = "($ name $)-${count.index}"
63 }
64 }
65

66 resource "null_resource" "run_ansible" {
67 count = "($ count $)"
68

69 connection {
70 type = "ssh"
71 user = "ubuntu"
72 host = aws_instance .($ name $)[count.index]. public_ip
73 private_key="${file("${var.private_key}")}"
74 agent = false
75 timeout = "3m"
76 }
77

78 provisioner "file" {
79 source = "./files"
80 destination = "/tmp"
81 }
82

83 provisioner "file" {
84 source = "./ ansible"
85 destination = "/tmp"
86 }
87

88 provisioner "remote -exec" {
89 inline = [
90 "chmod +x /tmp/files/run -ansible.sh",
91 "/tmp/files/run -ansible.sh"
92]
93 }

D. Jenkins template files 77

94 }
95

96 output "public_ips" {
97 description = "Public IPs of the instances"
98 value = "${aws_instance .($ name $).*.public_ip}"
99 }

Listing 7.5: main.tf

1 ---
2

3 - name: Configure Jenkins
4 hosts: local
5 connection: local
6 become: true
7 tasks:
8 - name: Ensure dependencies are installed.
9 apt:

10 name:
11 - curl
12 - apt -transport -https
13 - gnupg
14 - ’fontconfig ’
15 - ’openjdk -11-jre’
16 state: present
17

18 - name: Add Jenkins apt repository key.
19 apt_key:
20 url: "https :// pkg.jenkins.io/debian -stable/jenkins.io.key"
21 state: present
22

23 - name: Add Jenkins apt repository.
24 apt_repository:
25 repo: "deb http :// pkg.jenkins.io/debian -stable binary/"
26 state: present
27 update_cache: true
28

29 - name: Download specific Jenkins version.
30 get_url:
31 url: "https :// mirrors.jenkins.io/debian/jenkins_ {{ jenkins_version }}_all.

deb"
32 dest: "/tmp/jenkins_ {{ jenkins_version }}_all.deb"
33

34 - name: Install our specific version of Jenkins.
35 apt:
36 deb: "/tmp/jenkins_ {{ jenkins_version }}_all.deb"
37 state: present
38

39 - name: Ensure Jenkins is installed.
40 apt:
41 name: jenkins
42 state: present
43

44 # Configure Jenkins init settings.
45 - include_tasks: settings.yaml
46

47 # Make sure Jenkins starts , then configure Jenkins.
48 - name: Ensure Jenkins is started and runs on startup.
49 service: name=jenkins state=started enabled=yes
50

51 - name: Wait for Jenkins to start up before proceeding.
52 uri:
53 url: "http :// localhost :8080/ cli/"
54 method: GET
55 return_content: "yes"
56 timeout: 5
57 body_format: raw

78 Bibliography

58 follow_redirects: "no"
59 status_code: 200 ,403
60 register: result
61 until: (result.status == 403 or result.status == 200) and (result.content.find

("Please wait while") == -1)
62 retries: "5"
63 delay: "60"
64 changed_when: false
65 check_mode: false
66

67 - name: Get the jenkins -cli jarfile from the Jenkins server.
68 get_url:
69 url: "http :// localhost :8080/ jnlpJars/jenkins -cli.jar"
70 dest: "/opt/jenkins -cli.jar"
71 register: jarfile_get
72 until: "’OK’ in jarfile_get.msg or ’304’ in jarfile_get.msg or ’file already

exists ’ in jarfile_get.msg"
73 retries: 5
74 delay: 10
75 check_mode: false
76

77 - name: Remove Jenkins security init scripts after first startup.
78 file:
79 path: "{{ jenkins_home }}/ init.groovy.d/basic -security.groovy"
80 state: absent
81

82 # Update Jenkins and install configured plugins.
83 - include_tasks: plugins.yaml

Listing 7.6: ansible.yaml

1 ---
2 - name: Check if jenkins_init_file exists.
3 stat:
4 path: "{{ jenkins_init_file }}"
5 register: jenkins_init_file_stat
6

7 - name: Ensure jenkins_init_file exists.
8 file:
9 path: "{{ jenkins_init_file }}"

10 state: touch
11 mode: 0644
12 when: not jenkins_init_file_stat.stat.exists
13

14 - name: Modify variables in init file.
15 lineinfile:
16 dest: "{{ jenkins_init_file }}"
17 insertafter: ’^{{ item.option }}=’
18 regexp: ’^{{ item.option }}=\"\${{ item.option }} ’
19 line: ’{{ item.option }}="${{ item.option }} {{ item.value }}"’
20 state: present
21 mode: 0644
22 with_items:
23 - option: JAVA_ARGS
24 value: "{{ jenkins_java_options }}"
25 register: jenkins_init_prefix
26

27 - name: Ensure jenkins_home {{ jenkins_home }} exists.
28 file:
29 path: "{{ jenkins_home }}"
30 state: directory
31 owner: jenkins
32 group: jenkins
33 mode: u+rwx
34 follow: true
35

36 - name: Set the Jenkins home directory.

D. Jenkins template files 79

37 lineinfile:
38 dest: "{{ jenkins_init_file }}"
39 regexp: ’^JENKINS_HOME =.*’
40 line: ’JENKINS_HOME ={{ jenkins_home }}’
41 mode: 0644
42 register: jenkins_home_config
43

44 - name: Immediately restart Jenkins on init config changes.
45 service: name=jenkins state=restarted
46 when: jenkins_init_prefix.changed

Listing 7.7: settings.yaml

1 ---
2 # Update Jenkins so that plugin updates don’t fail.
3 - name: Create Jenkins updates directory.
4 file:
5 path: "{{ jenkins_home }}/ updates"
6 state: directory
7 owner: jenkins
8 group: jenkins
9 mode: 0755

10

11 - name: Download current plugin updates from Jenkins update site.
12 get_url:
13 url: "https :// updates.jenkins.io/update -center.json"
14 dest: "{{ jenkins_home }}/ updates/default.json"
15 owner: jenkins
16 group: jenkins
17 mode: 0440
18 changed_when: false
19 register: get_result
20 until: get_result is success
21 retries: 3
22 delay: 2
23

24 - name: Remove first and last line from json file.
25 replace: # noqa 208
26 path: "{{ jenkins_home }}/ updates/default.json"
27 regexp: "1d;$d"
28

29 - name: Install Jenkins plugins using password.
30 jenkins_plugin:
31 name: "{{ item }}"
32 jenkins_home: "{{ jenkins_home }}"
33 state: "latest"
34 timeout: "30"
35 updates_url: "https :// updates.jenkins.io"
36 url: "http :// localhost :8080"
37 with_dependencies: "true"
38 with_items: "{{ groups[’jenkins_plugins ’] }}"
39 retries: 3
40 delay: 2
41

42 - name: Restart Jenkins
43 service:
44 name: jenkins
45 state: restarted

Listing 7.8: plugins.yaml

1 [local]
2 localhost
3

4 [local:vars]
5 jenkins_version =($ version $)

80 Bibliography

6 jenkins_home =/var/lib/jenkins
7 jenkins_init_file =/etc/default/jenkins
8 jenkins_java_options=-Djenkins.install.runSetupWizard=false -Dhudson.security.csrf.

DefaultCrumbIssuer.EXCLUDE_SESSION_ID=true
9

10 [jenkins_plugins]
11 git
12 bitbucket
13 bitbucket -build -status -notifier
14 build -timeout
15 credentials
16 branch -api
17 ldap
18 credentials -binding

Listing 7.9: inventory

