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Abstract

Within an Industry 4.0 context, Human-Robot Collaboration (HRC) is an emerging research field
that seeks to develop methods to allow human operators to work alongside robots in a close man-
ner. Although this idea sounds appealing, there are still a lot of technical constraints that need to
be solved. In particular, existing safety solutions lack standards and solutions developed specif-
ically for industrial applications. Additionally, industry applications require accurate estimation
and classification of the human motion so that efficiency and safety of HRC can be guaranteed and
human-robot coexistence can be fluent [38].

Existing systems require expensive equipment and high computational resources to fulfill this
requirement, which is not economically viable for the companies. Another common problem with
these solutions is that they are not developed robustly, ensuring that the system’s accuracy remains
the same regardless of the operator’s size, pose and distance to the camera. Combined, these
factors make developing a low-budget and lightweight but robust system for industrial applications
beneficial.

This dissertation presents the development phases for an intelligent integrated framework for
movement prediction and early recognition. This framework yields synergies from their mutual
benefits by using feedback between the two models. The Recurrent Neural Networks used for
prediction and early recognition were trained with 3D skeleton data from datasets and tested with
real-time data to assure good performance in uncontrolled environments (with particular atten-
tion to bad lighting conditions frequently found in factory floors) and robustness regarding the
operator’s size and pose.

Additionally, the impact of using the output of the prediction model in early recognition and
vice-versa is studied, demonstrating that the integrated framework presents more benefits when
compared to the isolated methods that only focus on movement recognition or prediction.

Keywords: Robotics, Human-Robot Collaboration, Early Recognition, Movement Prediction,
Computer Vision, Machine Learning, Deep Learning
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Chapter 1

Introduction

This chapter presents an overview of the context in which the project is inserted. It places it in the

intersection of Computer Vision (CV) with Human-Robot Collaboration (HRC), its motivation, the

definition of the problem, and the objectives. Additionally, it also presents the overall document

structure.

1.1 Context

If machines could automatically interpret and predict the activities people perform in everyday

life, many tasks would be revolutionized. Recognizing and predicting human tasks has been a

significant subject in Machine Learning (ML), with applications in numerous fields. The ultimate

goal of this research area is to create an automatic and intelligent system that can accurately

perceive what type of activity is being performed by a person and use that information to predict his

next movements and react in a natural way. Despite of human motion being inherently complex,

we are able to decompose it into multiple atomic gestures arranged in a temporal order like "grab",

"move" or "release".

In these problems of motion prediction and recognition, input data is typically collected as

RGB images or 3D skeleton data using a vision system or device.

Looking particularly at the context of Industry 4.0, manufacturing systems are shifting to an

intelligent level and HRC is emerging as an important research field that seeks to develop methods

to allow human operators to work alongside robots in a close manner. These methods are essential

to leverage the strengths of both elements and increase adaptability and productivity.

Although the idea of these two agents working together sounds appealing, there are still a lot

of technical constraints that need to be solved. In particular, existing safety solutions might be

reliable and trusted in laboratories but have low acceptance in manufacturing environments due to

a lack of standards and solutions developed specifically for industrial applications. To overcome

1
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this problem, these collaborative robots must adapt to the unpredictability of human behavior

while following strict safety standards.

One of the first steps to do this is to discover the operator’s location reliably, the task he is

executing, and what his next move is going to be. To do that, we must have methods to classify

and predict human motion and use that to determine what tasks the robot can do to help the human

operator.

Initially, most of the solutions in this area was solved with traditional ML models. However,

most recently, Deep Learning (DL) started to be applied and have increased significantly in ac-

curacy by overcoming a lot of the constraints faced when using traditional ML methods. These

methods are able to improve performance and scalability for more complex problems since they

are a better approach to learn differentiating features.

1.2 Motivation

As previously mentioned, action recognition and prediction are currently a hot topic in Computer

Vision. The recent introduction of Deep Learning methods and the increasing easiness in access-

ing the computational resources required to train these algorithms has allowed increasing their

accuracies in a significant way and has motivated a lot of researchers to invest in it due to the

enormous amount of applications it can have like Automatic Surveillance, Autonomous Driving

or Human-Robot Interaction.

Inside this later field, both industrial setups and domestic environments can be optimized by

giving a robot the perception of what the human is doing. The focus of the present dissertation

is then the optimization and automation of manufacturing processes in industrial contexts. The

concept of safe HRC for industrial setups is one of the hottest topics inside Robotics due to industry

4.0 that conceptualizes rapid change to technology.

Therefore, a system that can accurately perform early task recognition and short- and long-

term movement prediction simultaneously and in real-time is an essential contribution to the field

since it is crucial to ensure HRC safety and smoothness.

1.3 Problem Definition

The difficulty with this automatic activity estimation comes mainly from the dependency of hu-

man operator motion on many factors, resulting in a large diversity of ways to perform the same

activity. Furthermore, environmental settings like lighting conditions, camera settings, and fixed

or dynamic camera positions have a direct impact on the system’s performance.

There are already several algorithms able to cover a limited set of movement types in some

very confined environmental settings (fixed cameras and controlled lightning conditions), making

their usage very use-case restricted. Also, most systems only focus on recognition, or prediction,

existing very few solutions that allow having both outputs. Not only that, but most of the present

systems focus mainly on simple movements like walking, waving, or sitting, presenting a gap
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in the recognition and prediction of more complex and detailed human tasks. This gap is more

noticeable in industrial settings, where the movements are very detailed and involve interaction

with other elements like objects or robots.

Given this, a system that automatically detects and predicts complex human tasks, analyzing

human motion from information acquired from chosen robust sensors in real-time, would greatly

impact the computer vision area, when in an industrial HRC setting.

1.4 Research Questions

The present dissertation aims at testing the following hypothesis: "It is possible to develop a robust,

real-time and integrated framework for industrial applications, using machine learning methods,

for simultaneous human motion prediction and early recognition".

This hypothesis is decomposed in the following research questions:

• Research Question 1 - Can the developed system be robust enough to generalize character-

istics like the operator’s height, pose and distance to the camera?

• Research Question 2 - What is the level of impact in the performance of a model of pre-

diction or classification whilst having retro-feedback from the other one?

• Research Question 3 - Should the solution consist of a single model that outputs motion

classification and prediction simultaneously or of an integrated pipeline of two different

models that work symbiotically?

• Research Question 4 - Can the system be optimized in such a way that it is able to process

input data in real-time in a machine with low computational resources?

1.5 Objectives

The main goal of the present dissertation is to explore and develop an intelligent integrated frame-

work for movement prediction and early recognition, yielding synergy from their mutual benefits,

for human tasks in industrial collaborative robotics scenarios based on camera information, in

real-time.

The described framework must be able to fulfill the following requirements:

• The system must be able to operate in real-time, that is, it must be able to complete its

time-critical processes with acceptable timeliness.

• Accurate prediction of a human’s movement at a given time.

• Accurate early recognition of a human’s task at a given time.

• Be able to use movement prediction to improve the movement classification accuracy.
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• Be able to use movement recognition labels to improve short- and long-term movement

prediction accuracy.

• Be able to simultaneously use vectors of recognition label probabilities in movement pre-

diction and the predicted sequence of movements for the next t milliseconds to refine the

early recognition results.

• Usage of lightweight models that do not require computational resources that are not typi-

cally available in this type of industry.

1.6 Thesis Structure

The remainder of this dissertation is divided into four more chapters.

Chapter 2 presents the background of the datasets (Section 2.3) methodologies, and algorithms

being considered for the project and existing technologies and approaches to the same or related

problems in Computer Vision (Section 2.1) and Human Robot Collaboration (Section 2.2).

Chapter 3 includes an overview of the proposed solution, including its architecture, more tech-

nical details, the several components of the final solutions and a description of a dataset produced

for live classification and prediction.

Chapter 4 presents several experiments conducted with each chosen dataset, either for each

separate component or the integrated framework with both outputs. The chapter is divided into

four main sections: Section 4.1 that describes the data preparation for each dataset, Section 4.2

that describes the experiments conducted for early recognition, Section 4.3 that describes the ex-

periments conducted for movement prediction and Section 4.4 that describes the experiments con-

ducted with the two types of networks combined. Each of these is divided into three subsections,

one for each dataset.

Lastly, Chapter 5 presents the final remarks of this work, its limitations, and the problems

found. It also presents suggestions for future work that would help mitigate said limitations.



Chapter 2

Early Recognition and Movement
Prediction approaches and techniques

This chapter presents an overview of the state-of-the-art solutions and common challenges faced

in the field. The chapter is divided into three sections. First, a summary of solutions in computer

vision used for early recognition and movement prediction, both in a separate and integrated way.

Then, analysis on existing solutions with application in Human-Robot Collaboration. Lastly, there

is a section dedicated to existing datasets of skeleton data.

2.1 Computer Vision

Computer Vision began more seriously in universities during the decade of the 1960s. It was

meant to reproduce the human vision system as a first step to develop intelligent behavior for

robots. At the time, some predicted that a machine as intelligent as a human would be created

within a generation. In the 1970s, the early steps for many of the algorithms used nowadays were

established. This includes edge extraction, line labeling, optical flows, and motion estimation [29].

In 1980, Fukushima proposed the ’neocognitron’, which is a hierarchical, multilayered artifi-

cial neural network proposed used for pattern recognition tasks, and served as the inspiration for

convolutional neural networks[8].

In 2001, two researchers at MIT introduced the Viola-Jones framework, the first face detection

system that works in real-time. Between 2010 and 2011, image recognition algorithms use was

intensified, as seen in Goggles, a Google image recognition app for searches based on pictures

taken by mobile devices, and the tag photos system at Facebook.

In 2012, the field of artificial intelligence had its breakthrough at the ImageNet Large Scale

Visual Recognition Challenge with the introduction of a deep neural network called AlexNet that

was a game-changer. This network was the first to adopt an architecture with consecutive con-

volutional layers. The final fully connected layer in the network contains a softmax activation

5
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function that provides a vector that represents a probability distribution over 1000 classes. Deep

neural networks like this were improved in the following years, making them the standard for

image recognition tasks.

2.1.1 Early Recognition

Early recognition is a field of Computer Vision that aims to recognize an action as soon as pos-

sible, using partial action sequences. There have been developed many models for human action

recognition in CV.

Wang et al. [40] focused on recognizing human actions in a real video where irrelevant factors

dominated human activities. They used the ActionThread dataset to train their framework, labeled

shot by shot. In this approach, the authors studied the benefits of removing non-action video

segments, i.e., segments with no human action. They learned a non-action classifier that was

used to down-weight irrelevant video segments. This non-action classifier can be used to identify

high-precision non-action shots and subsequently improve the performance of action recognition

systems. For recognition, the authors used Least-Squares Support Vector Machines (LSSVM).

They proved that pruning non-action video segments improved the results on the Average Precision

metric, on average, by 13,7% reaching up to 34,1% in some of the tested datasets. Despite that,

this solution is focused on improving the accuracy of offline processing rather than the timeliness

of the decision-making.

In Hoai et al. [10], it is proposed Max-Margin Early Event Detectors (MMED), a formulation

for training event detectors that recognize partial events. The method is based on an extension

of Structured Output SVM that accommodates sequential data. This was the first paper in com-

puter vision that proposed a learning formulation for early event detection. The authors used the

area under the ROC curve for accuracy comparison, Normalized Time to Detection (NTtoD) for

benchmarking the timeliness of detection, and F1-score for evaluating localization quality. At

a 10% false positive rate, MMED can detect the expression with an observational ratio of only

0.47. Other methods needed between 0.55 and 0.71 ratios for the same false-positive rate. The

framework is tested using the Auslan dataset, an Australian sign language one, the Extended Cohn-

Kanade dataset, a facial expression one, and the Weizmann dataset, a human action one.

Pavlovic et al. [24] focused on learning models of human dynamics by using switching linear

dynamic system models. The results show that these models are a promising tool for figure motion

analysis and could play a key role in gesture recognition and summarize approximate inference

techniques. Additionally, they introduce a variational inference algorithm that shows the benefit of

interpreting classical statistical models as (mixed-state) graphical models. This method was used

for segmentation and offline recognition and presented limitations when considered for a task of

early recognition.

Aliakbarian et al. [1] proposed a new action anticipation method that presented high prediction

accuracy even with a minimal observational ratio of the video sequence. The authors developed

a multi-stage LSTM architecture that leverages context-aware and action-aware features. Further-

more, they implemented a novel loss function that encourages the model to predict the correct
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class as early as possible. This method outperformed the state-of-the-art action anticipation meth-

ods for early prediction with a relative increase in accuracy of 22.0% on JHMDB-21, 14.0% on

UT-Interaction, and 49.9% on UCF-101.

Wang et al. [41] presents a system that is LSTM-free by being based on 2D ConvNet that

does not require the accumulation of video frames for 3D ConvNet filtering. The Weighted Multi-

Region ConvNet is designed to capture multiple spatial and short-term temporal cues simultane-

ously using primary and secondary regions, i.e., the foreground and background. The authors

obtained a 76.2% accuracy for the u channel and a 77.4% for the v channel, a 75,9% accuracy

when comparing with fusion methods using RGB data of UCF101 split-1, and a 78,8% accuracy

when comparing with the Dynamic Network using only RGB for a fair comparison. This ap-

proach achieves state-of-the-art performance among other low-latency algorithms on the UCF101

and HMDB51 datasets. Additionally, it outperforms the 3D ConvNet based C3D algorithm that

requires video frame accumulation.

Ma et al. [22] presents an alternative to the conventional training of LSTM models where the

training loss only considers classification error. This paper proposes that the detection score of the

correct activity category, or the detection score margin between the correct and incorrect classes,

should be monotonically non-decreasing as the model observes more of the activity. The authors

use ranking losses that penalize the model when it violates these monotonicities. This is used

alongside the classification loss while training the LSTMs. The performance is evaluated on the

ActivityNet and shows significant benefits in both activity detection and early detection tasks. For

LSTM-s, the improvements are between 4.1 5.9% at all IOU thresholds. The relative improvement

of LSTM-m and LSTM-s over LSTM increases with higher IOU thresholds.

Furnari et al. [7] proposes Rolling-Unrolling LSTM. This learning architecture is based on

encoder-decoder sequence to sequence models for text processing and aims to anticipate actions

from egocentric videos, i.e., first-person videos. The method has three components: two LSTMs

to model the sub-tasks of summarizing the past and predicting the future, a Sequence Comple-

tion Pre-Training technique that encourages the LSTMs to focus on the different sub-tasks, and a

Modality ATTention (MATT) mechanism to efficiently fuse multi-modal predictions performed by

processing RGB frames, optical flow fields and object-based features. This approach reaches the

second-best performance on ActivityNet - a third-person video dataset - compared to methods not

based on unsupervised pre-training and can be generalized to the task of early action recognition.

Tran et al. [32] proposes a framework based on knowledge distillation, where the network

for early recognition is viewed as a student model. This student is trained using knowledge dis-

tilled from a more knowledgeable teacher model that peeks into the future and incorporates other

observations about the action in consideration. This approach has the advantage of allowing the

usage of semi-supervised learning settings, utilizing both the labeled and unlabeled training data.

Evaluating the NTU RGB-D dataset results, this approach obtains an AUC percentage of the ROC

metric of 62,8%, which is better than the compared approaches of LSTMs and RNNs.

Similarly, Tran et al. [33] presents a knowledge distillation framework that uses an action

recognition network to supervise the training of an action anticipation network, guiding the latter
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to attend to the relevant information needed for correctly anticipating the future actions. They

introduce a loss function that accounts for positional shifts of semantic concepts in a dynamic

video. This is a form of self-supervised learning and thus takes advantage of unlabeled data.

Replacing the loss function, the performance increased to 75.8%. Using symmetric bidirectional

attention loss, they achieved a performance of 76.6%, obtaining the new state-of-the-art result on

the JHMDB dataset, using both RGB and Optical Flow.

Wang et al. [35] proved the importance of identifying the action starting point. For this, they

proposed a method based on a bidirectional RNN that computes the probability of a particular

frame to be the starting point by comparing the dynamics of the actions before and after the frame.

Bidirectional LSTM can keep two separate information flows: forward and backward. Using the

Montalbano Gesture dataset, they showed that this proposal performs better than others in any situ-

ation where the starting point is unknown by presenting an AUC of 61,2%. It also outperforms the

previously mentioned MMED proposal in [10] when comparing the AMOC curves. Additionally,

it exceeds the work of Ma et al. in [22] presenting an AUC of 56,14% against their 49,64%.

Alvee et al. [2] compares the performance of various ML algorithms in the domain of human

activity recognition. The authors present the most accurate algorithm to be SVM at 99,68% and the

lowest scoring algorithm the Naive Bayes classifier with 77%, using the common dataset. LSTM

is presented with an accuracy of 90,70%, and MLP is the second-highest scorer with 98,57%.

These methods focused on studying the benefits of different feature encodings and classifiers

for early recognition without considering the benefits of movement prediction to improve the ac-

curacy.

2.1.2 Short- and Long-Term Movement Prediction

As technology develops, the ability to predict how an environment is changing and what will be

the behavior of the objects is becoming more crucial. Movement prediction can be divided into

video, action, trajectory, and human motion. In this review, the focus is mainly on approaches

in this latter field but also in the video prediction category. Video prediction aims to forecast

future frames based on previous frames, relying on labeled data to do it. Human motion prediction

seeks to predict future human poses given on past motion and focus on predicting changes in the

dynamics of the observed agents.

Ye et al. [43] applies concepts from point cloud learning by using dynamic temporal learning

to capture spatial and temporal information by splitting trajectory prediction into these two dimen-

sions. The agents are viewed as an unordered point set in the spatial dimension, making it easy to

apply point cloud learning techniques to model their locations. The authors add dynamic temporal

learning to model agents’ motion over time. Spatial learning consists of pointwise feature learn-

ing, point-voxel feature propagation, voxelwise feature learning, voxel-point feature propagation,

and dual representation fusion. Dynamic Temporal Learning consists of Multi-interval Learning

and Instance Pooling. Analyzing its results on the Argoverse test set, the approach outperforms

the existing ones in minADE1, minFDE1, and MR1 without any complex postprocessing and is



2.1 Computer Vision 9

the first method to achieve minADE1 less than 1.7m, minFDE1 less than 3.7m, and MR1 less than

0.59.

Liu et al. [18] presented a DNN-based framework that predicts and compresses video se-

quences in the latent vector space. The compression of individual frames is obtained by a deep

autoencoder trained with a generative adversarial network (GAN), and the temporal correlation

within the video frame sequence is exploited by using a convolutional LSTM network to predict

the latent vector representation of the future frame. This GAN-based autoencoder architecture

works together with trainable quantization and entropy coding. The convolutional LSTM network

only stores the differences between the predicted and actual representation in low dimensional

latent space, resulting in entropy reduction of the residuals. Finally, they investigate the effective-

ness of the algorithm while performing perceptual tasks in latent space, showcased in anomaly

detection. This experiment was unsupervised and presented results that outperformed the state-

of-the-art. Using the ROC curve metric, they obtained 90,9%, 93,6%, 88,2%, 94,5%, and 85.4%

on the UCSD Ped1, UCSD Ped2, Subway Entrance, Subway Exit, and CUHK Avenue datasets,

respectively.

Jain et al. [12] proposed an approach that combines the power of high-level Spatio-temporal

graphs and sequence learning success of RNNs.The method developed is scalable and aims at

casting an arbitrary Spatio-temporal graph as a feed-forward RNN mixture that is jointly trainable.

This is a generic method that can transform any Spatio-temporal graph by employing a particular

set of well-defined steps. In the human motion application, the motion was represented over st-

graphs and learned to model them with S-RNN.According to the st-graph, the spine interacts with

all the body parts, and the arms and legs interact with each other. This S-RNN outperforms both

LSTM-3LR and ERD on short-term motion forecasting on all activities. The authors consider

short-term as up until 500ms. This approach can generate human-like motion even though it

diverges from the ground truth label in the long term.

Tonchev et al. [30] proposes the prediction of human motion using a Gated Recurrent Unit

(GRU) network, a variant of RNNs. The forecast is based on the human skeleton model and joints

position change throughout time. This network was optimized by substituting the weighting of

inputs and recurrent outputs with convolution utilizing the graph structure of the human skeleton.

This proposal is outperformed in earlier stages, presenting better results between the 320ms and

the 1000ms but by a small margin. This architecture presents an intuitive approach to calculate the

graph by introducing a weight matrix that captures the joint displacement on a frame-to-frame ba-

sis and modifies the GRU learning parameters to address the spatial and Spatio-temporal structure

of the human motion.

Phillips et al. [25] investigated the issues that arise in state-of-the-art autonomy stacks under

localization error and designed a system that jointly performs perception, prediction, and local-

ization. The architecture can reuse computation between the three tasks, making the correction of

localization errors efficient. This approach used multi-task learning to jointly localize against an

HD map while also performing object detection and motion forecasting and showed that localiza-

tion errors could be successfully detected and corrected in less than 2 ms of GPU time.
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Zhang et al. [44] says that 3D joints can be seen as sparse point clouds, transforming this

problem into a problem of point cloud prediction. The authors propose to predict a sparse set of

locations on the body surface that correspond to motion capture markers. Given such markers,

they fit a parametric body model to recover the 3D body of the person. These sparse surface

markers also carry detailed information about the human movement that is not present in the joints,

increasing the naturalness of the predicted motions. To mitigate the accumulated errors over time

in motion prediction that result in joints or markers that diverge from actual human bodies, they

fit the SMPL-X body model to the projections at each step, projecting the solution back onto

the space of valid bodies before propagating the new markers in time. This approach produces

state-of-the-art results and realistic 3D body animations. This work presents an alternative way of

representing 3D bodies that do not use joints but markers on the body surfaces. It offers a margin

of improvement given that the recursive projection scheme slows down the inference process, and

the motion realism is still not comparable with the ground truth.

2.1.3 Integrated Approaches

After this more comprehensive view regarding early recognition and movement prediction, it is

essential to focus on the possible benefits of combining these two fields of computer vision to ob-

tain better results. In Table 2.1 all the state-of-the-art methods explored are summed up regarding

their capabilities of prediction, recognition and retro-feedback.

In Wang et al.[36] this combined approach was considered for the first time. The authors pro-

posed a framework that allows these two problems to be addressed jointly. The method proposed

is based on a Recurrent Neural Network (RNN) but in an extended way that allows for the in-

tegration of multiple systems. The framework contains two Long Short-Term Memory (LSTM)

RNNs, one for movement prediction and another for early recognition. The former is designed to

accommodate the output of the recognition system. At the same time, the latter uses the predicted

sequence of body movements produced by the movement prediction LSTM to output the vector of

class probabilities. This work presents as main novelties the justification and empirical evidence

showing that movement prediction is beneficial for early recognition and vice-versa. The compu-

tation of the probability of an event starts with utilizing the prediction LSTM to generate samples

of plausible future observation sequences and subsequently compute the marginalized probability

over the sample set. The main benefit that comes from the usage of this LSTM is the preservation

of information. The authors were able to outperform several state-of-the-art methods for early

recognition and individual systems, obtaining an accuracy of 80% with only 0.4 of observational

ratio. Regardless, it presents a few limitations in the movement prediction network. In this LSTM,

the results have a margin for improvement given that even with ground truth labels, the average

prediction error for the joints on the arms is around 7cm when predicting 200ms into the future

of the action sequence. This is the only successful approach found in Computer Vision that com-

bines these two components, revealing an enormous potential to develop a solution that improves

the results obtained with this approach and addresses its limitations.
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Table 2.1: Approaches and algorithms comparison in CV

Method Recognition Prediction Retro-
feedback

[36] Yes Yes Yes
[43] No Yes No
[18] No Yes No
[1] Yes No No
[41] Yes No No
[10] Yes No No
[40] Yes No No
[24] Yes No No
[12] No Yes No
[22] Yes No No
[7] Yes No No
[37] Yes No No
[32] Yes No No
[33] Yes No No
[35] Yes No No
[30] No Yes No
[25] No Yes No
[44] No Yes No
[2] No Yes No

2.2 Movement Prediction and Recognition in Human-Robot Collab-
oration

This is a research field with a wide range of applications, future scenarios, and potentially a high

economic impact. HRC is a research area that comprises classical robotics, cognitive sciences, and

psychology [3]. There are four main methods to provide safety in human-robot scenarios: control,

motion planning, prediction, and consideration of psychological factors. [15] The proposed work

is focused on the motion prediction component of HRC. The early recognition component is used

to improve the results obtained in the joint movement prediction to ensure smoothness and safety

in the interactions.

“Efficient collaboration requires a common plan for all involved partners. To gain a joint

intention, they need to know the intentions of the other team members and what they are doing.

Based on that knowledge, a robot can plan its actions that will eventually lead to fulfil the joint

intention and reach a common goal”

Bauer et al. [3]
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In Table 2.2, all the approaches for human movement prediction and early recognition in the

context of HRC are summed up.

2.2.1 Early Recognition

Xia et al. [42] proposes an overall model of vision-based hand gesture recognition for HRC

and reviews its technical components: sensor technologies, hand gesture detection, segmentation,

and hand gesture classification. Looking at the classification component, the authors talk about

template matching as the first action recognition approach where there is a match between an

input image and a template. Inside ML, they talk about SVMs - who have a person-independent

performance and are reliable with different sizes and complex backgrounds - and Deep Learning,

namely CNNs and RNNs. Afterward, they talk about geometric features used for static gesture

recognition. The Hidden Markov Model, which is very suitable for describing sequence models,

is also mentioned for context-sensitive occasions. Lastly, they talk about Dynamic Time Warping,

a pattern-matching technology of nonlinear time normalization. It has small training costs and has

advantages in eliminating the time difference between different Spatio-temporal patterns but has

poor recognition effect and stability. After this analysis, Deep Learning is presented as the best

option considering dynamic scenarios and large amounts of data.

A similar work made by Liu et al. [20] focus K-Nearest Neighbours, Hidden Markov Model,

SVMs, Ensemble Method, Dynamic Time Warping, Artificial Neural Networks, and Deep Learn-

ing as gesture classification techniques. This paper also shows that Deep Learning is the rising

field for gesture classification, alongside Artificial Neural Networks that have a black box nature.

Li et al. [16] proposes a transfer learning-enabled action recognition approach to facilitate re-

active robot control in HRC assembly. A transfer learning-based ST-GCN architecture is proposed

to learn human actions from these data. Our proposed deep transfer learning network includes an

ST-GCN feature extractor, an action classifier, and one domain adaptation module. The feature

extractor consists of nine layers of ST-GCN, which achieved by spatial-temporal graph convolu-

tion and pooling operations. Subsequent action classifier is completed by concatenating a fully

connected layer(FC1) and one output layer. This network presents an improvement on the mean

average precision (mAP) when compared with the ST-GCN, obtaining a 95,56% against 86,67%.

Wang et al. [37] presents an approach that takes advantage of multiple cameras while sat-

isfying the constraints due to limited communication bandwidth and processing power. At each

time step, the method decides the best camera to use so that a confident recognition decision can

be reached as soon as possible. The camera selection problem is seen as a sequential decision

process, and the view selection policy is learned using reinforcement learning. They also devel-

oped an RNN architecture to account for the unobserved video frames and the irregular intervals

between the observed frames. This presents an essential tool when considering the proposed solu-

tion’s industrial setup. The experiments conducted demonstrated the approach’s effectiveness for

early recognition of human actions.
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2.2.2 Movement Prediction

Liu et al. [21] proposes a framework that combines RNN and Inverse Kinematics to predict human

arm motion. A modified Kalman filter (MKF) is applied to adapt the model online. The authors

use LSTM and RNN to denote the transition of a single LSTM cell and the N-to-1 prediction,

respectively. This method improves the prediction accuracy by approximately 14% compared to

the state-of-art on seen situations. Additionally, it stably adapts to unseen situations by keeping

the maximum prediction error under 4cm, which is 70% lower than other methods. Furthermore,

it is robust to partial occlusions obtaining the same wrist predictions and 20% less variation in the

elbow prediction.

Liu et al. [39] uses an LSTM to extract temporal patterns of human motion, automatically

outputting the prediction result before motion takes place. This avoids feature extraction due to

its end-to-end characteristic. The experiment achieved 83% accuracy of motion prediction when

the data length of manipulation motion is 60%. The proposal uses as base the VGG16 CNN and

implements the LSTM on top of it. This architecture outperforms DCNNs and RNNs with an

accuracy between 95% and 99%, depending on the number of frames extracted from the video.

Zhou et al. [46] presents the implementation of an early turn-taking prediction algorithm

using an LSTM. This algorithm is significantly superior to its algorithmic counterparts and is

more accurate than the human baseline when little partial input is given (less than 30% of full

action). After observing more information, the algorithm can achieve comparable performances

as humans with an F1 score of 0.90.

Liu et al. [19] presents a way to model product assembly tasks as a sequence of human

motions. The Hidden Markov model is used in the motion sequence to generate a motion transition

probability matrix making motion prediction possible. Even though the industrial robot needs to

respond in a continuous-time domain, the system models an HRC task as a discrete HMM model.

Therefore, only one observation is generated during each motion, making the time between two

movements ignored. The validation of this system is based on the success of a conducted case

study of an aircraft assembly. There are no concrete relevant metrics presented in the paper.

Tortora et al. [31] proposes an interface capable of anticipating user intention while performing

reaching movements on a working bench. The system integrates motion intention and direction

prediction. The motion intention is implemented using a 2-class Hidden Markov Model, while

the direction prediction uses a Gaussian Mixture Model. The dynamic stopping criteria proposed

allows adjusting the trade-off between early anticipation and accuracy. This method outperforms

the others by achieving a real-time classification accuracy of 94,3±2,9% after 160.0ms ± 80.0ms.

Zhao et al. [45] presents a modified minimum jerk model (MMJM), containing three input

parameters: motion duration, motion destination, and early-stage fingertip trajectory. These un-

known parameters are defined by determining the optimal starting time of motion prediction and

employing Gaussian process regression models (GPRs). The experimental results show that the

MAEs of motion destination prediction is less than 20 mm. The MAE of motion duration predic-

tion is less than 0.05 sec, which is more effective than others in early-stage motion prediction.
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Table 2.2: Approaches and algorithms comparison in HRC

Method Recognition Prediction Retro-
feedback

[39] No Yes No
[21] No Yes No
[46] No Yes No
[42] Yes No No
[20] Yes No No
[16] Yes No No
[19] No Yes No
[31] No Yes No
[45] No Yes No
Proposed Approach Yes Yes Yes

´

2.3 Human Motion Datasets

Nowadays, numerous public datasets present excellent characteristics for this type of application.

Most of these datasets have labels and other annotations, and some of them provide data for both

2D and 3D approaches. In Table 2.3 some of the most relevant datasets in this context, their

content and 3D/2D data availability are presented.

The first dataset that is important to highlight is JHMDB [13]. It consists of 960 video se-

quences belonging to 21 actions. It contains video and annotation for puppet flow per frame

(approximated optimal flow on the person), puppet mask per frame, joint positions per frame, ac-

tion label per clip, and meta label per clip (camera motion, visible body parts, camera viewpoint,

number of people, video quality) [4]. The joint positions available are in 2D, making this dataset

an option only for 2D approaches.

Lonescu et al. [11] introduced the Human3.6M dataset. The dataset presents 3.6 million

accurate 3D Human poses, acquired by recording five female and six male subjects under four

different viewpoints. They use the camera parameters to project the 3D joint positions and obtain

accurate 2D pose information. This makes this dataset suitable for both 2D and 3D approaches

and an excellent tool to train the framework to become robust to the operator’s size and pose.

Kay et al. [14] presented the Kinetics dataset that contains 400 human action classes, with at

least 400 video clips for each action. Each clip lasts around 10s, is taken from a different YouTube

video, and is human annotated with a single action class. This dataset is limited to 2D applications.

Finn et al. [6] introduced the Robotic Pushing Dataset for video prediction for real-world in-

teractive agents, which consists of 59,000 robot interactions involving pushing motions, including

a test set with novel objects. It is divided into one training set and two test sets of previously seen

and unseen objects. This dataset aims only at Unsupervised Learning approaches.
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Heilbron et al. [9] introduced, in 2015, the ActivityNet dataset that provides samples from 203

activity classes with an average of 137 untrimmed videos per class and 1.41 activity instances per

video, for a total of 849 video hours. It has both first-person and third-person videos and has only

2D data available.

Shahroudy et al. [27] introduced the NTU RGB+D dataset. It involves 56,880 samples of

60 action classes collected from 40 subjects. These actions took place under 17 different scene

conditions and were captured using three cameras with different horizontal imaging viewpoints.

This dataset has depth maps, 3D skeleton joint position, RGB frames, and infrared sequences. This

makes the dataset suitable for 2D and 3D approaches and an excellent way to make the framework

robust to different viewpoints and operator sizes.

Soomro et al. [28] presented the UCF101 dataset that consists of 101 action classes, over

13000 clips, and 27 hours of video data. These videos are only labeled with action classification

and are usable for 2D applications.

Li et al. [17] presents the MSR Action 3D dataset, an action dataset of depth sequences

captured by a depth camera. This dataset contains twenty different actions and is only suited for

3D approaches.

Escalera et al. [5] introduced the Montalbano Gesture Dataset, an improved version of the

ChaLearn 2013 multi-modal gesture recognition challenge with more ground-truth annotations. It

consists of 20 Italian gestures performed by 27 different people with 13858 labeled sequences. It

has RGB, Depth Maps, Skeleton, and User mask data available, making it suitable for 2D and 3D

applications.

Maurice et al. [23] introduced an Industry-Oriented Dataset for Collaborative Robotics that

consists of 13 participants performing six different tasks, with 15 trials per participant. The dataset

has three types of labels: general posture, detailed posture, and goal-oriented action. There is 3D

data available from the 43 sensors placed in the participants’ bodies.

Voulodimos et al. [34] presented a workflow recognition dataset that consists of workers

executing industrial workflows. It is divided into two datasets: one with one day of work (5 hours

and 10 minutes) where the work cycle is executed 20 times and another with two days of work (15

hours and 30 minutes). It has RGB from the videos and a representation using sixth-order Zernike

moments.

Rude et al. [26] presented a benchmark dataset for Depth Sensor based recognition. The

data is collected during a work cycle on the factory floor and has eleven different labels. Using a

Kinect, 10 points from the upper body were collected, so there is 3D data available.
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Table 2.3: Dataset annotation and availability comparison

Dataset Annotations and Available Data 2D Data
Processing

3D Data
Availability

[13] Action and meta labels per clip, 2D joint po-
sitions

Yes No

[11] Action labels; Time of flight data, 2D pose
information and 3D joint positions

Yes Yes

[14] Action labels; RGB images from video se-
quences

Yes No

[6] No labels; RGB images from video se-
quences

Yes No

[9] Action labels; RGB images from video se-
quences

Yes No

[27] Action labels; RGB, Depth map, 3D skele-
ton data (25 joints), and Infrared

Yes Yes

[28] Action labels; RGB images from video se-
quences

Yes No

[17] Action label;Depth maps No Yes
[5] Limb and Gesture Action Annotations;

RGB, Depth, User mask, and skeleton avail-
able

Yes Yes

[23] Posture and Goal-Oriented Action Annota-
tions; RGB and skeleton available

No Yes

[34] Action Annotations; RGB and Zernike mo-
ments representation available

Yes No

[26] Action Annotations; RGB and skeleton
available

Yes Yes



Chapter 3

Integrated Framework for HRC

This chapter describes the proposed solution and methodological approaches to face critical re-

search challenges. In essence, this chapter explains what is planed to implement to tackle the

defined research problem and fulfill all previously defined functional requirements.

3.1 Proposed Solution

To solve the problem identified in Section 1.3, it is proposed to implement an integrated framework

where knowledge is shared between the early recognition and the movement prediction networks,

increasing their performance.

This framework has two main components: early recognition and movement prediction net-

works. These two components should directly impact the performance of each other. In the

proposed architecture, the input data is provided to both networks for processing at a given time

T. The class probabilities vector output of the early recognition network will then be used to feed

the movement prediction, and hopefully improve it by being used as an optional input for that

network.

In the movement prediction network, the output data must be delivered in the same format as

the input data of these networks. This way, it is possible to feed the recognition network with an

input that consists of the concatenation of the past frames with the predicted frames. Using this

data as input data to the early recognition network will refine the accuracy of this network.

Regarding the final solution, other considerations had to be made and included in this architec-

ture. Firstly, considering the real-time requirements of this system and the limited computational

resources, the CRISP methodology’s application to the data being received had to be optimized so

that, especially in the feature engineering stage, it can be processed quickly enough.

Additionally, considering the defined robustness requirement, it was essential to train these

models with diversified data from various datasets and refine their performance using data acquired

17
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by low-budget cameras and uncontrolled lighting conditions that present operators of different

sizes and with different positioning relative to the camera.

Figure 3.1: General proposed architecture for the integrated framework

In Fig. 3.1, it is possible to see a general architecture of the developed solution. At a certain

time T, the system receives an input with a certain number of frames that goes through the early

recognition model that provides a class probability vector which, concatenated with the original

input, is fed to the movement prediction model. In turn, this model outputs the prediction for the

following frames, which are used to increase the amount of relevant data received by the early

recognition model.

3.2 Methodology

In order to develop the previously described framework, it was decided to base the work on two

different datasets: [5] and [23]. The former has a broader state of the art, allowing for a better

comparison of the overall performance of the models. At the same time, the latter was specifically

developed for work in collaborative robotics for industries and focused on a single operator at a

time, which is this dissertation’s use case.

3.2.1 Dataset

Considering the real-time and low-budget requirements of the system, a new dataset was gener-

ated. The dataset has available the data and file formats described in Table 3.1, including a total

of 132 video sequences from 22 different subjects with 15310 total frames.
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Table 3.1: File formats and data available

Data Format
Videos svo
Skeleton and Hand Keypoints 2D csv
Skeleton and Hand Keypoints 3D csv
Annotations csv

3.2.1.1 Participants

Twenty-two adults participated in the data collection, 13 were males, and 9 were females. Their

average age was 26.7 years, the youngest participant was 20, and the oldest was 64. Their average

stature was 172.9 cm, varying between 160 cm and 198 cm.

Participants were mainly students and researchers with no particular industrial work experi-

ence. Participants were assigned a numerical ID (random number between 1 and 22) to anonymize

the data.

3.2.1.2 Experimental Setup

The produced dataset targets actions that are commonly observed in industrial settings. Partici-

pants performed three different industry-oriented tasks:

• Grab: Take a screwdriver from the table and return to the position

• Screw: Take the screwdriver to the object and screw

• Drop: Place the screwdriver back into the initial position on the table

Although the items used in the activities were positioned in a way that encouraged the adoption

of specific positions, participants were not given instructions on how to perform a given task, i.e.,

they were never constrained to do any specific movement.

The data was collected from two different angles in each environment and two different en-

vironments: sixteen participants in one of them (training scenario) and six in another (validation

scenario) to test and improve the model’s robustness in these different scenarios.

3.2.1.3 Equipment

A Stereolabs ZED2 in the 1080p mode at 30fps with a resolution of 3840x1080 was used to capture

the data. The camera has a depth range of 20cm to 20m, a field of view (FOV) of 110º horizontal,

70º vertical, and 120º diagonal, and neural stereo depth-sensing technology. Additionally, it has

two motion sensors (accelerometer and gyroscope) @ 400 Hz and two position sensors (barometer

and magnetometer) @ 50 Hz, presenting a 6-DoF visual-inertial stereo simultaneous location and

mapping (SLAM) with advanced sensor fusion and thermal compensation. The image sensors

have a resolution of dual 4M pixel sensors with 2-micron pixels and a size of 1/3" BSI (backside

illumination) sensor with high low-light sensitivity.
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3.2.1.4 Annotations

After the data collection, one human annotator manually labeled the motions in all trials, using a

taxonomy of actions and postures that were defined beforehand 3.2.

Table 3.2: Taxonomy of actions for the produced dataset

Action Description
Grab Moving an arm towards a target, no object

in hand, picking it up and bringing arm back
after grabbing.

Screw Rotational screwing movement of the hand.
Drop Placing an object, similar to Grab, but with

an object in hand, bringing arm back after
releasing.

3.2.1.5 Skeleton Extraction

After capturing the videos, they were processed to extract relevant information about the partic-

ipants’ poses and motions. In order to achieve this, each video was processed, frame by frame,

using the OpenPose and ZED SDK capabilities. With OpenPose, it was possible to extract body

and hand keypoints (eighteen points across the body using the COCO Model and twenty-one

points in each hand, according to Fig. 3.2).

Figure 3.2: Keypoints extracted when using OpenPose

In Fig. 3.3, it is possible to see the extracted keypoints mapped on a frame of the sequences of

two different participants. The points obtained with this processing are 2D, corresponding to the

location in the RGB image. The entire point cloud was extracted using the ZED SDK to obtain

3D points, and then, for each of the 2D points, the corresponding Z coordinate was obtained.
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Figure 3.3: Keypoints extracted mapped into the respective frame with two different participants

3.2.2 Recognition and Prediction Framework for Human Action Sequences

All experimental and final models tested were built from scratch, i.e., without resorting to tech-

niques like transfer learning or already developed solutions. This decision was made because this

work intends to develop a framework effective for a particular set of conditions that are not focused

on in that work: real-time and low-quality data, using OpenPose to detect relevant keypoints. For

this reason, a custom solution was implemented, and the usage of datasets commonly referenced

in state-of-the-art is only to have a way of comparison with them.

The models were built using Python, with Keras, a deep learning API running on top of Tensor-

Flow’s machine learning platform. The isolated models for recognition and prediction were built

using the Sequential API, while the final integrated frameworks were built using the Functional

API.

The final proposed solution for the integrated framework is based on the results obtained with

the Montalbano Gesture Dataset due to some limitations with the others that are detailed in Chapter

4. The system was developed to deal with this dataset’s features accurately This network has four

LSTM layers: three dedicated to recognition with 1318, 1197, and 988 units, respectively, and

one dedicated to the prediction with 988 units. Additionally, there are two dense layers: one after

the third recognition LSTM layer with 20 outputs and another after the prediction LSTM with 60

outputs. These dense layers correspond to the class probability vector and one frame’s prediction,

respectively.



Chapter 4

Experiments and Results

This chapter presents an overview of all experiments conducted on the three selected datasets,

from data extraction and preparation to the different implementations of early recognition and

movement prediction networks and, finally, the several techniques for integrating these two types

of networks. In each section, there is an explanation of difficulties and limitations found during

the process and how they were overcome.

4.1 Data Preparation

4.1.1 Montalbano Gesture Dataset

For each participant’s action sequence, this dataset has videos with the RGB data, Depth data, and

user segmentation mask. Additionally, it has three CSV files: one with the number of frames, fps

rate, and a maximum depth value, one with the labels where for each action there is the label,

initial and final frame, and another with the skeleton information for each frame.

Skeletons are encoded as a sequence of 20 joints: HipCenter, Spine, ShoulderCenter, Head,

ShoulderLeft, ElbowLeft, WristLeft, HandLeft, ShoulderRight, ElbowRight, WristRight, Han-

dRight, HipLeft, KneeLeft, AnkleLeft, FootLeft, HipRight, KneeRight, AnkleRight, and FootRight.

Each of these joints has nine values corresponding to World Coordinates (in 3D), Rotation values,

and pixel coordinates. A script was developed to extract and organize this information.

Each video sequence might have only one or multiple tasks being performed, so, for this solu-

tion, the sequences were divided by action, making it a multiclass problem instead of a multilabel

one. The world coordinates of all 20 joints were used to represent each frame. As seen in Table

4.1, the dataset was well balanced, so no further data processing was performed.

22
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Table 4.1: Montalbano gesture dataset label distribution

Label Samples Label Samples
1 330 11 340
2 342 12 328
3 336 13 336
4 342 14 345
5 335 15 331
6 398 16 350
7 335 17 348
8 367 18 333
9 353 19 322
10 344 20 335

4.1.2 Industry-Oriented Dataset

This dataset has available, for each participant’s action sequence, among other data, videos with

the RGB data and three CSV files: one with participant’s features, one with the annotations for

each action, and another with the markers information for each frame. There are 43 markers

distributed across the participant’s head, torso, right arm, left arm, right leg, and left leg. Each

of these markers has available 3D world coordinates. Regarding annotations, there were three

different types of annotation available: general posture, detailed posture, and goal-oriented action.

Considering the type of tasks defined in each one, the annotations for the goal-oriented actions

were chosen. Additionally, there were annotations available from three independent people, but

considering the reliability analysis in [23], a simplification was made, and only annotator number

one was considered. Similar to the previous dataset, a script was developed to extract and organize

this information.

After the first experiments, it was noticeable that there were performance issues, specifically

with the learning process for some labels, as can be seen in Fig. 4.6. Taking a closer look at

the dataset distribution (Table 4.2), it was possible to understand that the dataset was imbalanced.

SMOTE, an oversampling technique, was applied to overcome this issue using the imbalanced-

learn python library. This technique takes an under-sampled class sample, plots lines between

them, and randomly choose a point in the line to be that class’s new synthetically generated sample.

Given the results shown in Fig. 4.7, it was possible to understand that the technique did not

significantly impact the performance.

Table 4.2: Industry Dataset label distribution for training

Label Samples Label Samples
Reach 978 Pick 786
Place 799 Release 921
Carry 748 Fine Manipulation 1128
Screw 446 Idle 782



Experiments and Results 24

Considering the sample distribution and similarity between some of the labels in the dataset, it

was decided to remove some unnecessary classes to simplify the problem. The Idle, Screw, Carry,

and Reach labels were removed. The Idle label was removed because it had a low impact consid-

ering this framework’s goal. The Screw label was removed due to the low number of samples and

because it was a particular case of Fine Manipulation, leading to less label reliability. The Reach

label was removed due to its similarity to the Release label, given that there are no markers in the

fingers to help determine if the hand is closed or not and clarify the difference between the labels.

Finally, the Carry label was removed because it happens in-between two other labels, and there

was a high disagreement rate in the transition of tasks between the annotators. Additionally, con-

sidering the tasks being evaluated, the markers for the right and left legs were also removed from

the used dataset. The results after these changes can be seen in Fig. 4.9, representing a significant

increase in performance. After this, no other processing of the data was performed.

4.1.3 Live Dataset

For the live framework, instead of using extracted data stored in CSV files as in the previous

datasets, the actual video files (in SVO format) were processed to simulate the real-time con-

straints. Initially, the process used was precisely the one described in Section 3.2.1.5 . Afterward,

some body keypoints, considered irrelevant for the tasks being performed, were removed to re-

duce processing and prediction times. Thus, the models were trained using 21 points from each

hand plus 10 points from the body (torso and arms). As also mentioned in Section 3.2.1, this

dataset is perfectly balanced, so no further processing was required. In order to evaluate if the

system was optimized enough to be able to process frames in real-time in a machine with low

computational resources, the processing and prediction time was measured running everything

using CPU only. The average time was 0,0823 seconds, meaning that the system can make predic-

tions at approximately 12 frames per second. If a higher rate is desired, it is possible to sacrifice

some performance and extract only body keypoints (changing to a more complex body model with

25 keypoints), which takes only an average of 0,0163 seconds, allowing a rate of 60 frames per

second.

4.2 Early Recognition

4.2.1 Montalbano Gesture Dataset

The first model developed was a simple LSTM architecture that aimed to understand the initial

behavior of the data and how to improve the network. In this version, there was only one LSTM

layer with 60 units and one Dense Layer as the output layer with only one unit.

As expected for a network this simple, its performance was below the desired values, as can

be seen in Fig. 4.1 and Fig. 4.2, achieving an accuracy of only 5,69% .

In order to optimize this network, it was used the Keras Tuner library that performs hyperpa-

rameter tuning, i.e., selects the right set of hyperparameters for a particular ML application. The
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Figure 4.1: Accuracy and loss function of the Montalbano Gesture Dataset first Recognition Model

Figure 4.2: Confusion Matrix of the Montalbano Gesture Dataset first Recognition Model

search was conducted using Bayesian optimization, an informed search method. It learns from

previous iterations through a probabilistic model, mapping hyperparameters to their correspond-

ing score probability. The hyperparameters and respective possible intervals were chosen in this

search according to Table 4.3.

Additionally, label data was restructured by changing the integer representing the class to a



Experiments and Results 26

Table 4.3: Hyperparameters for Bayesian Optimization Search in the Gesture Dataset and Early
Recognition Model

Hyperparameter Description Values
Number of Layers Number of LSTM layers Integer between 1 and 4
Learning Rate Learning rate for the Adam Optimizer Choice between 0.1, 0.01,

0.001 and 0.0001
Units Layer I Number of neurons for LSTM layer I Integer between
Dropout Dropout rate Float between 0.0 and 0.5

categorical variable, i.e., a vector with the size of the number of existing labels where if that

index corresponds to the label, it is set to 1, and, otherwise, it is set to 0. The loss function was

also changed to a Categorical Cross Entropy function, frequently used in multiclass classification

problems like this one.

With these changes and the output generated by the hyperparameter tuning, the model evolved

into 3 LSTM layers with 469, 936, and 1127 units, respectively, and a Dense layer with a number

of units equal to the number of existing labels, i.e., 21. The model was trained for 423 epochs

until the validation loss stabilized and the training was stopped. The training and validation loss

evolution can be seen in Fig. 4.3 . This model achieved a 78,47% accuracy using the first 16

frames of a given sequence.

Figure 4.3: Training and validation loss for the recognition model in the Gesture Dataset

4.2.2 Industry Dataset

When training the network obtained for the Gesture Dataset with the data extracted in this dataset,

we found that the training loss would converge to zero. However, the validation loss would in-

crease during the training, as can be seen in Fig. 4.4.

Looking at this behavior, it was apparent that there was an overfitting problem, i.e., the model

was too closely aligned to the training data and could not generalize to new data. Using, once

again, the Keras Tuner library, it was attempted to find a suitable way to solve this problem by

testing two different standard solutions: adding dropout layers and increasing the depth of the

network.
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Figure 4.4: Training and validation loss for the recognition model in the Industry Dataset with
overfitting problem

Initially, 40 trials with different hyperparameter combinations of values were run, according

to the information in Table 4.4.

Table 4.4: Hyperparameters for Bayesian Optimization Search in the Industry Dataset and Early
Recognition Model

Hyperparameter Description Values
Number of Layers Number of LSTM layers Integer between 1 and 4
Learning Rate Learning rate for the Adam Optimizer Choice between 0.001 and

0.0001
Units Layer I Number of neurons for LSTM layer I Integer between 129 and

3000
Dropout I Dropout rate for Dropout layer I Float between 0.0 and 0.5
Dropout Dropout rate for Dropout layer after

last LSTM
Float between 0.0 and 0.8

The results of this search suggested a new model with 3 LSTM layers with 3000, 3000, and

129 units, respectively. Additionally, it added a Dropout layer with a rate of 0.5 between the

second and third layers.

Training this new network with the data for 62 epochs was capable of achieving only 25,52%

accuracy on the validation data and had the loss behavior that is observable in Fig. 4.5.

Figure 4.5: Training and validation loss for the recognition model in the Industry Dataset after
hyperparameter tuning
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Figure 4.6: Confusion Matrix of the Industry Dataset Recognition Model

Looking at the confusion matrix in Fig. 4.6, it was clear that this dataset had a problem with

the Screw action. As described in Section 4.1.2, an oversampling technique was applied, obtaining

a new dataset with 1128 samples for each label. This technique led to a slight improvement in the

model’s performance, achieving an accuracy of 29,03%. The loss and accuracy evolution for this

train can be seen in Fig. 4.7 and the confusion matrix in Fig. 4.8 .

Figure 4.7: Training and validation accuracy and loss for the recognition model in the Industry
Dataset after oversampling with SMOTE

As explained in Section 4.1.2, the next step was to remove some labels and body markers.

With the same architecture as in previous steps, this model achieved an accuracy of 52,27% which
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Figure 4.8: Confusion Matrix of the Industry Dataset Recognition Model after oversampling with
SMOTE

is an improvement of 104,82% in performance. The accuracy and loss evolution can be seen in

Fig. 4.9 and the confusion matrix in 4.10. The F1-score, precision and recall can be found in Table

4.5.

Figure 4.9: Training and validation accuracy and loss for the recognition model in the Industry
Dataset after reducing labels and markers
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Figure 4.10: Confusion Matrix of the Industry Dataset Recognition Model after reducing labels
and markers

Table 4.5: Metrics for the Recognition Model in Industry Dataset

Label Precision Recall F1-Score Support
Pi 0.55 0.88 0.67 226
Pl 0.68 0.22 0.33 232
Rl 0.52 0.68 0.59 272
Fm 0.45 0.37 0.40 326

Accuracy 0.52 1056
Macro Avg. 0.55 0.54 0.50 1056
Weighted Avg. 0.54 0.52 0.49 1056

4.2.3 Live Dataset

As previously mentioned, initially, the model was trained using all available data. The model had

three stacked LSTM layers of 180, 180, and 379 units and a Dense output layer using a softmax

activation function with three units (number of distinct labels). This model achieved an accuracy

of 66,67% and had a loss evolution that can be seen in Fig. 4.11.

After some body keypoints were removed, as mentioned in Section 4.1.3, this same model was

trained with the new input shape achieving similar performance, i.e., the accuracy of 61,11%. The

confusion matrix of this model can be seen in Fig. 4.12 and loss evolution in Fig. 4.13.
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Figure 4.11: Training and validation loss for the recognition model in the Live Dataset with all
keypoints available

Figure 4.12: Confusion Matrix of the Live Dataset Recognition Model

Figure 4.13: Training and validation loss for the recognition model in the Live Dataset with only
torso and hand keypoints available
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After this, an hyperparameter tuning session was conducted in order to optimize the model

parameterization and achieve the best configuration. This session, similarly to the one conducted

for the industry dataset, varied the parameters according to Table 4.4. In total, 40 distinct trials

were run in this first search. The best result was an accuracy on the validation data of 63,89% with

a model composed of one Dense Layer and three stacked LSTM layers with 1193, 1539, and 874

units, respectively. The loss evolution for the training of this model can be seen in Fig. 4.14, its

confusion matrix in Fig. 4.15 and the F1 score, recall and precision in Table 4.6

Figure 4.14: Training and validation loss for the recognition model in the Live Dataset after hy-
perparameter optimization

Figure 4.15: Confusion Matrix of the Live Dataset Recognition Model after hyperparameter tuning
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Table 4.6: Metrics for the Recognition Model with the Live Dataset

Label Precision Recall F1-Score
Grab 0.38 0.25 0.30
Screw 0.80 0.67 0.73
Drop 0.61 0.92 0.73

Accuracy 0.61
Macro Average 0.60 0.61 0.59
Weighted Average 0.60 0.61 0.59

4.3 Movement Prediction

4.3.1 Montalbano Gesture Dataset

The first version of the movement prediction network was already the output of the Keras Tuner,

with the hyperparameter’s intervals as described in Table 4.7.

Using its output, a model was built with one LSTM layer with 920 units and one Dense layer

with the number of outputs equal to a frame’s shape, 60 in this case.

Table 4.7: Hyperparameters for Bayesian Optimization Search in the Montalbano Gesture Dataset
for the Movement Prediction Model

Hyperparameter Description Values
Number of Layers Number of LSTM layers Integer between 1 and 6
Units Layer I Number of neurons for LSTM layer I Integer between 60 and 3000

Dropout I Dropout rate for Dropout layer I (after
each LSTM)

Float between 0.0 and 0.8

The optimizer chosen was RMSprop, a gradient-based optimization technique developed as

a stochastic technique for mini-batch learning. It uses a moving average of squared gradients to

normalize the gradient, decreasing the step for large gradients to avoid exploding and increasing

the step for small gradients to avoid vanishing. This means that the learning rate changes over

time.

As a loss function, a root mean squared error function was implemented, which evaluates how

far predictions fall from ground truth using euclidean distance. This is a very commonly used loss

function for numerical predictions.

With this architecture, the model could predict the next frame with a base of 15 frames with

the accuracy of 57,59% and the behavior seen in Fig. 4.16.
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Figure 4.16: Training and validation accuracy, loss, MSE and MAE for the prediction model in
the Gesture Dataset

4.3.2 Industry-Oriented Dataset

Considering the results obtained using only one LSTM layer for prediction shown in the previ-

ous section, that same architecture was tested with this dataset. For this configuration with one

LSTM layer with 920 units and one Dense Layer with 81 outputs, the final accuracy of 8,14% was

obtained.

Another test was made with 1127 units instead of 920, obtaining the same results. This last

configuration’s loss and accuracy evolution can be seen in Fig. 4.17.

Figure 4.17: Training and validation accuracy and loss for the prediction model in the Industry
Dataset

After this, it was attempted to train a more complex network. This network has 4 LSTM

layers with 152, 320, 1500, and 920 units, respectively. Additionally, a Dropout layer with a 0.7

rate between layers 3 and 4 and another with a 0.2 rate between layer 4 and the Dense layer was

added.

As seen in Fig. 4.18, the accuracy remained very similar throughout most of the training and

ended up dropping to 1,04%, an even worse performance than the previous network.

This dataset was frequently considered very challenging to process and obtain good results

from work analyzed during research. To improve the results for this type of data, other archi-

tectures based on CNNs instead of LSTMs, for example, should be considered. Considering the

primary purpose of this dissertation, it was chosen to proceed with the current results instead of
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Figure 4.18: Training and validation accuracy and loss for a second prediction model in the Indus-
try Dataset

dedicating a significant amount of effort to developing a solution designed specifically for a type

of data that was not the one intended for the final solution.

4.3.3 Live Dataset

The prediction network for the live dataset brought an unusual problem. Four different architec-

tures were trained using this data but presented similar loss behavior and the same final accuracy

of 22,22%.

The first architecture had only one LSTM layer with 920 units and one Dense layer with lin-

ear activation. The optimizer was RMSProp, and the loss function was the root mean squared

error.

Figure 4.19: Training and validation accuracy and loss for the first prediction model in the Live
Dataset

The second one had four LSTM layers with 120, 120, 120, and 3000 units, respectively. Addi-

tionally, there was a Dropout layer between layers 1 and 2, 3 and 4, and after 4 with 0.5, 0.5, and

0.8 rates. In the end, there was a Dense Layer with linear activation. The optimizer was Adam,

with a learning rate of 0.0001, and MSE was the loss function.
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Figure 4.20: Training and validation accuracy and loss for the second prediction model in the Live
Dataset

The third had a similar structure but with 4000 units instead of 3000. The learning rate for the

Adam optimizer changed to 0.001, and the loss function changed to root mean squared error.

Figure 4.21: Training and validation accuracy and loss for the third prediction model in the Live
Dataset

The fourth and last one also had four LSTM layers but with 920, 3000, 2500, and 920 units.

The dropout layers remained the same, as well as the changes to the optimizer and loss function

from the third network.

Figure 4.22: Training and validation accuracy and loss for the fourth prediction model in the Live
Dataset

In an attempt to solve this issue, different approaches were tested. One of the most common
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recommendations for these cases is to reduce the learning rate and remove early stopping tech-

niques. Each approach was tested individually and simultaneously, without changing the results.

Another recommendation followed without any improvement in the results was to use a callback

called ReduceLROnPlateau that reduces the learning rate when some metric stops improving. Fi-

nally, the last recommendation found was regarding dataset size and quality.

Given that increasing the dataset was not possible, it was decided to experiment with different

shuffles between training and validation data, given the two different environments in which data

acquisition occurred. This approach was, once again, not capable of solving the problem found. It

was then decided to proceed with this network to the following steps, despite not being ideal.

4.4 Combined Model

When combining the two networks, a framework with one input and two outputs was created as

explained in Fig. 3.1. Multiple different approaches were tested to understand which one had

more impact on the final results of the framework:

1. Approach A: Feeding the final hidden and cell states of the recognition network as the

initial state to the prediction network.

2. Approach B: Feeding the final hidden and cell states of the prediction network as the initial

state to the recognition network.

3. Approach C: Feeding the recognition network with an input that concatenates past frames

with the prediction network’s predictions.

4. Approach D: Feeding the prediction network with two distinct inputs concatenated: the

frame sequence and the predicted label

In order to be able to extract the final states from one network and feed them to the other, it

was necessary to transition from Keras Sequential API to their Functional API. Considering this,

the network’s performance might present slight variations from the previously presented in the

following sections.

4.4.1 Approach A

4.4.1.1 Montalbano Gesture Dataset

The first version of the integrated framework for this dataset was obtained by combining the final

networks described in Section 4.2.1 and Section 4.3.1. It achieved an accuracy of 53,84% on the

recognition network and of 58,47% on the prediction network.

These first results were unexpected for the recognition component, given that they represent

a significant drop in performance. Despite that, the slight increase in the prediction results was

already a sign of positive influence. The loss evolution on these two output layers can be seen in
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Fig. 4.23, and the evaluation metrics and confusion matrix for the recognition component can be

found in Table 4.8 and Fig. 4.24, respectively.

Figure 4.23: Training and validation loss on the integrated framework in the Gesture Dataset

Figure 4.24: Confusion Matrix for recognition results on the integrated framework in the Gesture
Dataset

After running a Bayesian Optimization Search for the recognition component of the integrated

model, a new configuration was tested using 1318, 1197 and 988 units for the three LSTM layers



4.4 Combined Model 39

Table 4.8: Metrics for the Recognition Results of the Integrated Framework in Gesture Dataset

Label Precision Recall F1-Score Support
1 0.42 0.43 0.42 63
2 0.42 0.41 0.41 73
3 0.31 0.30 0.30 71
4 0.22 0.24 0.23 71
5 0.91 0.92 0.91 64
6 0.91 0.84 0.88 83
7 0.80 0.79 0.80 72
8 0.38 0.50 0.43 66
9 0.75 0.88 0.81 73
10 0.29 0.28 0.28 69
11 0.37 0.48 0.42 63
12 0.45 0.24 0.31 63
13 0.94 0.79 0.86 58
14 0.71 0.67 0.69 69
15 0.43 0.55 0.49 65
16 0.82 0.91 0.86 78
17 0.72 0.92 0.81 65
18 0.12 0.12 0.12 77
19 0.71 0.47 0.56 73
20 0.60 0.39 0.47 54

Accuracy 0.56 1370
Macro Avg. 0.56 0.56 0.55 1370
Weighted Avg. 0.56 0.56 0.56 1370

for recognition and 988 units for the LSTM layer responsible for prediction. With this architecture,

the model had an accuracy of 74,96% in recognition and an 80,51% accuracy in prediction, with

an evolution as can be seen in Fig. 4.25. The loss and MAE evolution can be seen in Fig. 4.26.

The confusion matrix in Fig. 4.27 and the Recall, Precision and F1-Score in Table 4.9

Figure 4.25: Training and validation accuracy for the integrated framework in the Gesture Dataset
after hyperparameter tuning
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Figure 4.26: Training and validation loss and MAE for the integrated framework in the Gesture
Dataset after hyperparameter tuning

Figure 4.27: Confusion Matrix for recognition results on the integrated framework in the Gesture
Dataset after hyperparameter tuning
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Table 4.9: Metrics for the Recognition Results of the Integrated Framework in Gesture Dataset
after hyperparameter tuning

Label Precision Recall F1-Score Support
1 0.77 0.65 0.71 63
2 0.70 0.86 0.77 73
3 0.59 0.61 0.60 71
4 0.48 0.52 0.50 71
5 0.93 0.98 0.95 64
6 0.93 0.83 0.88 83
7 0.88 0.89 0.88 72
8 0.60 0.73 0.66 66
9 0.87 0.95 0.91 73
10 0.47 0.49 0.48 69
11 0.75 0.63 0.69 63
12 0.76 0.75 0.75 63
13 0.90 0.90 0.90 58
14 0.84 0.83 0.83 69
15 0.64 0.68 0.66 65
16 0.97 0.91 0.94 78
17 0.89 0.85 0.87 65
18 0.58 0.49 0.53 77
19 0.80 0.73 0.76 73
20 0.74 0.72 0.73 54

Accuracy 0.75 1370
Macro Avg. 0.75 0.75 0.75 1370
Weighted Avg. 0.75 0.75 0.75 1370

4.4.1.2 Industry-oriented Dataset

For this first approach, an architecture with 3 LSTM layers with 1193, 1539, and 988 units for

recognition and one LSTM layer with 988 units for prediction was defined. Additionally, there

were two Dense layers, one for label output and one for frame prediction output.

Before testing with this configuration, a test was run where the 3 LSTM layers had 3000, 3000,

and 129 units, just as described in Section 4.2.2. However, this network took much more time to

train, and, after completion, the final performance was the same as the one proposed here. For this

reason, it was chosen to use a lighter network, optimizing computational times.

This configuration obtained an accuracy of 30,87% for recognition and 8,14% for prediction.

The accuracy evolution for both networks can be seen in Fig. 4.28, the loss and MAE evolution in

Fig. 4.29, the F1-score, precision and recall in Table 4.10, and the confusion matrix in Fig. 4.30.
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Figure 4.28: Training and validation accuracy for the integrated framework in the Industry Dataset

Figure 4.29: Training and validation loss and MAE for the integrated framework in the Industry
Dataset

Table 4.10: Metrics for the Recognition Model with the Industry Dataset

Label Precision Recall F1-Score Support
Pi 0.00 0.00 0.00 226
Pl 0.00 0.00 0.00 232
Rl 0.00 0.00 0.00 272
Fm 0.31 1.00 0.47 326

Accuracy 0.31 1056
Macro Avg. 0.08 0.25 0.12 1056
Weighted Avg. 0.10 0.31 0.15 1056
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Figure 4.30: Confusion Matrix for recognition results on the integrated framework in the Industry
Dataset

4.4.1.3 Live Dataset

For this first approach, an architecture with 3 LSTM layers with 100, 100, and 516 units for

recognition and one LSTM layer with 516 units for prediction was defined. Additionally, there

were two Dense layers, one for label output and one for frame prediction output.

This configuration obtained an accuracy of 52,78% for recognition and 25% for prediction.

The accuracy evolution for both networks can be seen in Fig. 4.31, the loss and MAE evolution in

Fig. 4.32, the F1-score, precision and recall in Table 4.11, and the confusion matrix in Fig. 4.33.

Figure 4.31: Training and validation accuracy for the integrated framework in the Live Dataset
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Figure 4.32: Training and validation loss and MAE for the integrated framework in the Live
Dataset

Figure 4.33: Confusion Matrix for recognition results on the integrated framework in the Live
Dataset
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Table 4.11: Metrics for the Recognition Model with the Live Dataset

Label Precision Recall F1-Score
Grab 0.67 0.50 0.57
Screw 0.46 1.00 0.63
Drop 1.00 0.08 0.15

Accuracy 0.53
Macro Average 0.71 0.53 0.45
Weighted Average 0.71 0.53 0.45

4.4.2 Approach B

4.4.2.1 Montalbano Gesture Dataset

For this approach, the architecture from Section 4.4.1.1 was inverted by starting to train the predic-

tion network and feeding the final states as initial states for the recognition network. The number

of units in the prediction network had to be changed from 988 to 1318 to assure compatibility.

The recognition network, the optimizer, and loss functions remained unchanged. This configura-

tion reached an accuracy of 73,58% in recognition and 75,33% in prediction. The lack of impact

in the recognition performance might be due to the fact that the prediction was only for one frame

and the network has only one layer, so the impact on the states might not be significant. The loss

and MAE evolution can be seen in Fig. 4.34, confusion matrix in Fig. 4.36, accuracy in Fig. 4.35,

and metrics in Table 4.12.

Figure 4.34: Training and validation loss and MAE for the integrated framework in the Gesture
Dataset using prediction final states to initialize recognition network
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Table 4.12: Metrics for the Integrated Framework in Gesture Dataset when using prediction LSTM
states to initialize recognition

Label Precision Recall F1-Score Support
1 0.76 0.71 0.74 63
2 0.71 0.71 0.71 73
3 0.54 0.55 0.55 71
4 0.43 0.39 0.41 71
5 0.91 0.98 0.95 64
6 0.96 0.81 0.88 83
7 0.86 0.89 0.88 72
8 0.58 0.68 0.62 66
9 0.87 0.90 0.89 73
10 0.47 0.54 0.50 69
11 0.64 0.67 0.65 63
12 0.75 0.65 0.69 63
13 0.90 0.90 0.90 58
14 0.80 0.83 0.81 69
15 0.57 0.75 0.65 65
16 0.96 0.94 0.95 78
17 0.86 0.85 0.85 65
18 0.61 0.57 0.59 77
19 0.88 0.73 0.80 73
20 0.75 0.67 0.71 54

Accuracy 0.74 1370
Macro Avg. 0.74 0.74 0.74 1370
Weighted Avg. 0.74 0.74 0.74 1370

Figure 4.35: Training and validation accuracy for the integrated framework in the Gesture Dataset
using prediction final states to initialize recognition network
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Figure 4.36: Confusion Matrix for the integrated framework in the Gesture Dataset using predic-
tion final states to initialize recognition network

4.4.2.2 Industry-oriented Dataset

In this approach, the architecture from Section 4.4.1.2 was inverted having an initial LSTM layer

with 1193 units for prediction. This configuration obtained an accuracy of 30,87% for recognition

and 8,14% for prediction. The accuracy evolution can be seen in Fig. 4.37, the confusion matrix

in Fig. 4.38, the F1-score, precision and recall in Table 4.13, and the loss and MAE in Fig. 4.39.

Figure 4.37: Training and validation accuracy for the integrated framework in the Industry Dataset
using prediction states to initialize recognition



Experiments and Results 48

Figure 4.38: Confusion Matrix for recognition results on the integrated framework in the Industry
Dataset using prediction states to initialize recognition

Figure 4.39: Training and validation loss and MAE for the integrated framework in the Industry
Dataset using prediction states to initialize recognition
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Table 4.13: Metrics for the Recognition Model with the Industry Dataset using prediction states
to initialize recognition

Label Precision Recall F1-Score Support
Pi 0.00 0.00 0.00 226
Pl 0.00 0.00 0.00 232
Rl 0.00 0.00 0.00 272
Fm 0.31 1.00 0.47 326

Accuracy 0.31 1056
Macro Avg. 0.08 0.25 0.12 1056
Weighted Avg. 0.10 0.31 0.15 1056

4.4.2.3 Live Dataset

In this second approach, the architecture from Section 4.4.1.3 was inverted, starting by an LSTM

layer with 100 units for prediction and then the 3 LSTM layers with 100, 100 and 516 units each.

With this configuration, the model achieved an accuracy of 50,00% for recognition and 22,22%

for prediction. The accuracy evolution for both networks can be seen in Fig. 4.41, the loss and

MAE evolution in Fig. 4.40, the F1-score, precision and recall in Table 4.14, and the confusion

matrix in Fig. 4.42.

Figure 4.40: Training and validation loss and MAE for the integrated framework in the Live
Dataset using prediction states to initialize recognition
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Figure 4.41: Training and validation accuracy for the integrated framework in the Live Dataset
using prediction states to initialize recognition

Figure 4.42: Confusion Matrix for recognition results on the integrated framework in the Live
Dataset using prediction states to initialize recognition

Table 4.14: Metrics for the Live Dataset using prediction states to initialize recognition

Label Precision Recall F1-Score
Grab 0.67 0.33 0.44
Screw 0.44 1.00 0.62
Drop 0.67 0.17 0.27

Accuracy 0.50
Macro Average 0.59 0.50 0.44
Weighted Average 0.59 0.50 0.44
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4.4.3 Approach C

4.4.3.1 Montalbano Gesture Dataset

In this approach, the network was maintained exactly as in the previous step but instead of using

hidden and cell states, the predicted frame was concatenated with the initial input and fed to the

recognition network.

Figure 4.43: Confusion Matrix for the integrated framework in the Gesture Dataset when concate-
nating predicted frame to input for recognition

Figure 4.44: Training and validation accuracy for the integrated framework in the Gesture Dataset
when concatenating predicted frame to input for recognition
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In this experiment, the prediction network achieved 65,91% accuracy whilst the recognition

network achieved 72,85%. The metrics can be seen in Table 4.15, loss in Fig. 4.45, confusion

matrix in Fig. 4.43, and accuracy in Fig. 4.44.

Table 4.15: Metrics for the Integrated Framework in Gesture Dataset when concatenating pre-
dicted frame to input for recognition

Label Precision Recall F1-Score Support
1 0.80 0.70 0.75 63
2 0.65 0.75 0.70 73
3 0.58 0.49 0.53 71
4 0.45 0.48 0.47 71
5 0.90 1.00 0.95 64
6 0.97 0.81 0.88 83
7 0.88 0.92 0.90 72
8 0.60 0.67 0.63 66
9 0.91 0.95 0.93 73
10 0.51 0.49 0.50 69
11 0.52 0.67 0.71 63
12 0.75 0.67 0.71 63
13 0.90 0.90 0.90 58
14 0.73 0.86 0.79 69
15 0.54 0.69 0.60 65
16 0.97 0.92 0.95 78
17 0.92 0.85 0.88 65
18 0.54 0.42 0.47 77
19 0.84 0.67 0.75 73
20 0.77 0.76 0.77 54

Accuracy 0.73 1370
Macro Avg. 0.74 0.73 0.73 1370
Weighted Avg. 0.74 0.73 0.73 1370
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Figure 4.45: Training and validation loss and MAE for the integrated framework in the Gesture
Dataset when concatenating predicted frame to input for recognition

4.4.3.2 Industry-oriented Dataset

In this third approach, the architecture from Section 4.4.1.2 was inverted, having an initial LSTM

layer with 1193 units for prediction and then 3 LSTM layers with 1193, 1539, and 988 units for

recognition. This configuration obtained an accuracy of 30,87% for recognition and 8,14% for

prediction.

The accuracy evolution for both networks can be seen in Fig. 4.48, the loss and MAE evolution

in Fig. 4.46, the F1-score, precision and recall in Table 4.16, and the confusion matrix in Fig. 4.47.

Table 4.16: Metrics for the Recognition Model with the Industry Dataset concatenating predicted
frame with input frames

Label Precision Recall F1-Score Support
Pi 0.00 0.00 0.00 226
Pl 0.47 0.04 0.07 232
Rl 0.00 0.00 0.00 272
Fm 0.30 0.97 0.46 326

Accuracy 0.31 1056
Macro Avg. 0.19 0.25 0.13 1056
Weighted Avg. 0.20 0.31 0.16 1056
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Figure 4.46: Training and validation loss and MAE for the integrated framework in the Industry
Dataset concatenating predicted frame with input frames

Figure 4.47: Confusion Matrix in the Industry Dataset concatenating predicted frame with input

Figure 4.48: Accuracy in the Industry Dataset concatenating predicted frame with input
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4.4.3.3 Live Dataset

The architecture for this approach was exactly the one described in Section 4.4.2.3 but instead of

using hidden and cell states, the actual predicted frame was concatenated with the input frames and

fed to the recognition network. With a prediction accuracy of 22,22% the recognition accuracy

was 41,67%. The accuracy evolution for both networks can be seen in Fig. 4.50, the loss and

MAE evolution in Fig. 4.51, the F1-score, precision and recall in Table 4.17, and the confusion

matrix in Fig. 4.49.

Figure 4.49: Confusion Matrix for recognition results on the integrated framework in the Live
Dataset concatenating predicted frame with input frames

Figure 4.50: Training and validation accuracy for the integrated framework in the Live Dataset
concatenating predicted frame with input frames
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Figure 4.51: Training and validation loss and MAE for the integrated framework in the Live
Dataset concatenating predicted frame with input frames

Table 4.17: Metrics for the Recognition Model with the Live Dataset concatenating predicted
frame with input frames

Label Precision Recall F1-Score
Grab 0.40 0.17 0.24
Screw 0.44 0.92 0.59
Drop 0.33 0.17 0.22

Accuracy 0.42
Macro Average 0.39 0.42 0.35
Weighted Average 0.39 0.42 0.35

4.4.4 Approach D

4.4.4.1 Montalbano Gesture Dataset

For this approach, the architecture from the first one was recovered, but instead of using final states

to initialize the prediction network, we concatenated the label with the frames input. With this

configuration, the recognition network obtained a 72,85% accuracy, and the prediction obtained

an accuracy of 84,23%. The confusion matrix can be seen in Fig. 4.52, and the metrics in Table

4.18.
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Figure 4.52: Confusion Matrix for the integrated framework in the Gesture Dataset concatenating
recognition label to the prediction network input

4.4.4.2 Industry Dataset

In this fourth approach, the initial architecture from Section 4.4.1.2 was reproduced but concate-

nating the label to the input frames instead of using states. This time the recognition network had

an accuracy of 30,87% and the prediction of 8,14%. The accuracy evolution for both networks can

be seen in Fig. 4.53, the loss and MAE evolution in Fig. 4.54, the F1-score, precision and recall

in Table 4.19, and the confusion matrix in Fig. 4.55.

Figure 4.53: Training and validation accuracy for the integrated framework in the Industry Dataset
concatenating predicted label with input frames
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Table 4.18: Metrics for the Integrated Framework in Gesture Dataset when using prediction LSTM
states to initialize recognition

Label Precision Recall F1-Score Support
1 0.78 0.57 0.66 63
2 0.66 0.63 0.64 73
3 0.54 0.37 0.44 71
4 0.39 0.25 0.31 71
5 0.81 1.00 0.90 64
6 0.87 0.83 0.85 83
7 0.90 0.86 0.88 72
8 0.45 0.74 0.56 66
9 0.84 0.90 0.87 73
10 0.46 0.51 0.48 69
11 0.70 0.62 0.66 63
12 0.71 0.70 0.70 63
13 0.91 0.88 0.89 58
14 0.80 0.68 0.73 69
15 0.43 0.51 0.47 65
16 0.96 0.90 0.93 78
17 0.98 0.77 0.86 65
18 0.39 0.56 0.46 77
19 0.82 0.74 0.78 73
20 0.70 0.78 0.74 54

Accuracy 0.69 1370
Macro Avg. 0.70 0.69 0.69 1370
Weighted Avg. 0.70 0.69 0.69 1370

Table 4.19: Metrics for the Recognition Model with the Industry Dataset concatenating predicted
label with input frames

Label Precision Recall F1-Score Support
Pi 0.00 0.00 0.00 226
Pl 0.00 0.00 0.00 232
Rl 0.00 0.00 0.00 272
Fm 0.31 1.00 0.47 326

Accuracy 0.31 1056
Macro Avg. 0.08 0.25 0.12 1056
Weighted Avg. 0.10 0.31 0.15 1056
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Figure 4.54: Training and validation loss and MAE for the integrated framework in the Industry
Dataset concatenating predicted label with input frames

Figure 4.55: Confusion Matrix for recognition results on the integrated framework in the Industry
Dataset concatenating predicted label with input frames
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4.4.4.3 Live Dataset

For this last approach, the architecture from Section 4.4.1.3 was recovered but instead of using

the hidden and cell states, the label predicted was concatenated to the input frames and fed to

the prediction network. This time the recognition network had an accuracy of 44,44% and the

prediction of 25%. The accuracy evolution for both networks can be seen in Fig. 4.56, the loss

and MAE evolution in Fig. 4.57, the F1-score, precision and recall in Table 4.20, and the confusion

matrix in Fig. 4.58.

Figure 4.56: Training and validation accuracy for the integrated framework in the Live Dataset
concatenating predicted label with input frames

Figure 4.57: Training and validation loss and MAE for the integrated framework in the Live
Dataset concatenating predicted label with input frames
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Figure 4.58: Confusion Matrix for recognition results on the integrated framework in the Live
Dataset concatenating predicted label with input frames

Table 4.20: Metrics for the Recognition Model with the Live Dataset concatenating predicted label
with input frames

Label Precision Recall F1-Score
Grab 0.60 0.25 0.35
Screw 0.41 1.00 0.59
Drop 0.50 0.08 0.14

Accuracy 0.44
Macro Average 0.50 0.44 0.36
Weighted Average 0.50 0.44 0.36
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Table 4.21: Integrated Framework approaches performance comparison

Method Early Recognition Movement Prediction
Gesture Industry Live Gesture Industry Live

Early Recognition
72,85% 30,87% 52,78%

- - -

Movement Prediction - - -
75,33% 08,14% 22,22%

Recognition final states
initialize prediction 74,96% 30,87% 52,78% 80,51% 08,14% 25,00%

Prediction final states
initialize recognition 73,58% 30,87% 50,00% 75,33% 08,14% 22,22%

Concatenate predicted
frames with input 72,85% 30,87% 41,67% 65,91% 08,14% 22,22%

Concatenate predicted
label with input 72,85% 30,87% 44,44% 84,23% 08,14% 25,00%

Considering the results seen in Table 4.21, it is possible to understand there is, in fact, a

relevant impact on performance when we integrate these two networks.

Looking at the impact of prediction networks on the performance of early recognition, the

results have to be analyzed with two critical factors in mind. The first one is that the network only

predicts one frame in the conducted experiments, so the amount of information added is small and

might not be relevant enough to have the impact it could have if a higher percentage of frames

were predicted. The second factor to consider is that for the Industry and Live datasets, due to

the problems already explained in Section 4.3.2 and Section 4.3.3, the performance for prediction

is unusually low. This can lead to the impact on recognition performance to be a negative one

instead of a positive, given that we are injecting inaccurate data that might confuse the model

training instead of clarifying it.

In turn, the impact of early recognition networks in prediction is more straightforward and

relevant. It is possible to observe that, although both methods have an impact, concatenating

the predicted label with the input frame sequences has a really important impact on the overall

performance.



Chapter 5

Conclusions and Future Work

5.1 Conclusions

This dissertation approached the problem of developing a real-time framework that simultane-

ously can recognize an activity being performed and predict the operator’s movement for the next

milliseconds. The developed framework relies strongly on OpenPose to extract the necessary in-

formation about the operator to make the predictions. The outcomes for the first models were very

poor, not surpassing the test accuracy of 5,69% in recognition. After much research about LSTMs,

optimization tools, and overfitting and oversampling techniques, the results improved significantly,

reaching a final version that achieved 72,85% in recognition and 84,23% in prediction.

Extensive research is also presented regarding the current state of Computer Vision and HRC

on action recognition and movement prediction, either simultaneously or separately. This research

allowed a better understanding of how this topic is usually approached and some of its applications.

However, most of the work found had no experimental data in live datasets, making it difficult to

compare the results. In work researched that focus on industrial tasks, actions like grab, drop and

screw are usually misrecognized due to the level of detailed data required to understand the action

correctly. Additionally, they are actions with small and precise movements with a low positional

variation.

Considering the four approaches for integrating the two networks, it was possible to conclude

that all of them had some level of impact on system performance, either when the recognition

network was used to provide inputs to the prediction or vice-versa. When the performance of the

initial network is worst, it harms the other component’s performance. However, when it is able

to achieve accuracy above 50%, it is sufficient to help improve the overall structure. Comparing

the approaches of initializing a layer with the final states of the other and feeding the output as

input to the other one, the latter revealed itself to be more impactful. For this reason, this was the

approach chosen for the final solution.

63
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One of the main limitations of this work was the size of the live dataset. Considering that

the other datasets did not have the same type of data (different number of joints and positioned in

different places), the network had to be trained from scratch with this dataset. The data acquisition

originated only 132 action sequences, 44 for each label. This significantly limits how much the

model can extract and learn from the data.

5.2 Future Work

Considering that our most significant limitation was regarding live dataset size, the first thing to

do in future work is to expand the amount of data collected. This can be done by increasing

the number of trials for each participant and the number of participants. With this, we would

have a good base for understanding the actions and making more precise predictions, particularly

regarding the prediction network.

Another relevant approach that should be explored in future work is applying OpenPose to

the videos in the Montalbano Gesture and the Industry-Oriented Datasets. This would allow us to

expand the available data for training as well as work as a tool to understand if OpenPose is, in

fact, a reliable method for keypoint calculation or if other frameworks should be considered.

After this, an important study was whether it was possible to reduce the number of keypoints

extracted after expanding training data, maintaining good performance.

Additionally, it would be interesting to experiment with the implementation of CNN-based

networks and compare them with the developed LSTM-based ones. In the research made, this was

usually reported as an excellent alternative to LSTMs for some cases.
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