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Resumo

Redes de sensores sem fio (Wireless Sensor Networks - WSNs) são uma tecnologia que se tornou
popular nas duas últimas décadas em setores como agricultura, indústria de processo e de manu-
fatura, hospitais, etc. As WSN tornaram-se uma ferramenta importante para recolher informações
relacionadas com grandes infraestruturas, edifícios, utilizadores, vida selvagem, objetos em geral,
etc. Com os avanços de hardware e software, as WSNs ganharam uma melhor capacidade de
detetar, processar e comunicar, mesmo operando de forma autónoma com baterias. Este desen-
volvimento veio permitir a execução de várias aplicações concorrentes nas WSN. Nestes casos, em
vez de apenas recolherem uma única propriedade física num intervalo fixo de tempo e /ou local,
as WSNs podem processar múltiplas informações recolhidas por vários dispositivos, conforme os
requisitos do utilizador.

A pesquisa feita no contexto desta tese analisou sistemas implantados em cenários complexos,
especialmente onde os requisitos do utilizador podem mudar com o tempo. Essas alterações po-
dem ocorrer com as informações fornecidas pelos nodos que compõe as WSNs, após o proces-
samento dos dados coletados. As alterações também podem ocorrer devido a intervenção do uti-
lizador ou devido a mudanças no ambiente. Esses sistemas têm domínios de aplicação comuns,
como edifícios inteligentes, fabricação e hospitais, onde os utilizadores interagem com vários ob-
jetos ou com o ambiente. A pesquisa e o estudo preliminar do estado da arte revelaram a necessi-
dade de fornecer ferramentas confiáveis, que minimizem o esforço e automatizam a programação
das WSN adaptativas. Este trabalho baseia-se em ferramentas existentes na comunidade e visa
fornecer um melhor aproveitamento de WSNs.

A ênfase deste trabalho é nas WSNs heterogéneas uma vez que observámos um aumento no
uso de sensores com recursos avançados junto com nodos de baixo custo e com baixo consumo
de energia. A comunidade científica tem trabalhado para melhorar todos os aspetos desses sis-
temas com vista a melhorar o hardware, as comunicações e a cooperação entre os nodos. Com
tudo isto, as WSNs tornaram-se parte integrante de sistemas avançados, como os Sistemas Ciber-
Físicos (CPS) e a Internet das Coisas (IoT). Estas melhorias podem permitir que as WSNs detetem
alterações e se adaptem adequadamente para fornecer um serviço mais eficiente.

A nossa pesquisa concentrou-se em fornecer melhor suporte para automação e adaptação de
WSNs, e.g., para dar suporte a nodos sensores móveis que se podem localizar de forma eficiente,
e depois alterar o aplicativo com base na localização atual. A construção destas WSNs exigiu
trabalho no design do software do sistema, em particular para suportar aplicações que oferecem
uma ampla gama de configurações para diferentes utilizadores e diferentes ambientes.

A nossa tese afirma que recorrendo aos conceitos de mobilidade, modularidade e abstração,
juntamente com gestores de recursos e de contextos, é possivel construir um middleware com
capacidade para adapação automática das aplicações a contextos de operação variáveis, recorrendo
a uma programação intuitiva, adequada a utilizadores sem conhecimentos de progrmaação. Este
tese foi validada com o middleware CAP - Context-Aware Programming, que constitui um passo
importante para a construção de CASE - Context-Aware SEnsor networks. No todo, os trabalhos
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para demonstrar a referida tese levaram à geração das seguintes contribuições para o estado da arte
em WSN:

• CAP - Context-Aware Programming, um middleware que permite construir CASE - Con-
textAware SEnsor networks com programação com ferramentas de alto nivel de abstração,
adequadas a utilizadores sem experiência de programação.

• AdaptC, um conjunto de politicas de adaptação elementares que os utilizadores podem uti-
lizar para desenvolver applicações sensíveis a contextos.

• mT-Res, uma prova da exequibilidade da adaptação a contextos em WSN que consiste em
adicionar os elementos arquiteturais necessários a uma solução existente de macroprogra-
mação, nomeadamente T-Res.

• NHS - Network-Harmonized Scheduling aplicado a CAP. Trata-se de uma técnica de escalon-
amento desenvolvida em colaboração com outro trabalho, que gere as comunicações de
múltiplas aplicações em execução numa WSN de fora eficiênca e pontual.



Abstract

Wireless Sensor Networks (WSNs) became a popular technology in the last couple of decades.
Wireless sensor nodes are used in multiple industries from agriculture to process control and man-
ufacturing industry, health systems, and many more. WSN are a major tool to collect information
related to infrastructures, buildings, humans, wildlife, diverse objects, etc. With advances in hard-
ware and software, WSN have gained a better ability to sense, process, and communicate, without
negative impact in their battery-powered character. Thus, WSN started to move from application-
specific to multi-application capable. Instead of just collecting a single physical property at a fixed
interval of time and/or location, WSNs can collect and process multiple information and deliver it
to multiple devices according to user requirements.

This research work has looked at systems deployed in complex scenarios, especially where
user requirements can change over time. These changes can occur triggered by the information
provided by WSN nodes after processing the collected data. Changes can also occur due to exter-
nal factors from the user or environment. Such systems have popular application domains, such as
process control, manufacturing or hospitals, where users interact with multiple objects. A prelim-
inary research and study of the state-of-the-art revealed that there was a need to provide reliable
and automated tools to program effortlessly such WSN systems. Our work builds on the existing
tools in the community and provides a better generation of WSNs, namely CASE - Context-Aware
SEnsor networks.

The emphasis of this work has been on heterogeneous WSNs. We have observed a rise in the
use of sensors with advanced capabilities alongside low cost and energy-efficient sensor nodes.
The research community has worked towards improving every aspect of such a system. Better
hardware, efficient communication and cooperation among the nodes have been key efforts in
recent years. With that, WSN have become an integral part of advanced systems such as Cyber-
Physical Systems (CPS) and the Internet of Things (IoT). With such improvements, there is an
opportunity to provide users with more application-centered systems. These improvements can
allow WSNs to detect changes in the operational context and adapt accordingly to provide more
efficient service.

This research focuses on providing better support for autonomous adaptation in WSNs. For
example, support sensor nodes that can perform efficient localization and then change the appli-
cation based on current user location. Building such WSNs required work towards the software
design of the system, namely a middleware that supports applications that can target a wide range
of solutions for different users and execution environments.

It is our thesis that supporting the design features of mobility, modularity and abstraction,
together with managing resources and contexts, it is possible to build a middleware that allows au-
tomatic adaptation of WSN applications to varying execution contexts, which can be programmed
intuitively by non-experts. This thesis was validated with the CAP middleware (Context-Aware
Programming) representing an important step towards the construction of CASE - Context-Aware
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SEnsor networks. Overall, the work towards validating the thesis led to the following list of con-
tributions to the state-of-the-art in WSN:

• CAP - Context-Aware Programming, a middleware that allows building CASE - Context-
Aware SEnsor networks with high-level programming tools suitable for non-experts.

• AdaptC, a set of basic adaptation policies that programmers can use to write context-aware
applications.

• mT-Res, a proof of feasibility of context-awareness in WSN that consisted in adding features
to an existing macroprogramming approach, namely T-Res.

• NHS - Network-Harmonized Scheduling applied to CAP, a scheduling technique, developed
in collaboration within another work, that manages the communications of multiple appli-
cations in a WSN efficiently and timely.
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Chapter 1

Introduction

Sensors and Actuators have been around for a long time. It is assumed that the first thermostat

was invented in the early 1600s. Measuring physical quantities such as Temperature, Pressure,

Light Intensity, etc, has always proved useful for various purposes. With continuous research and

technological advancements there has been an increase in the number of sensors around, as well

as in their capabilities. In particular, the last decades of the 20th century saw the advent of the so-

called smart sensors that added a range of functionality to the core sensing function, from digital

conversion to filtering, encoding and communication. A room in a smart home, nowadays, easily

counts with 10 or more sensors to track light, temperature, pressure, sound, humidity, etc. Reading

from all these sensors motivated their integration in a network, making use of their digital commu-

nication capabilities. Networked sensors simplify the execution and coordination of applications.

Moreover, sensing devices can be aware of each other and exploit each other’s data to perform

more efficiently.

1.1 Wireless Sensor Networks

Building sensor networks requires considering which communication medium to use. Wired net-

works have been used since the 1980s to connect both sensors and actuators, e.g., the fieldbuses

developed for industrial applications. However, despite the enhancements achieved by fieldbuses

when comparing to the previous solution based on point-to-point connections from each sensor/ac-

tuator to the associated controller, wired networks still present intrinsic undesirable limitations

arising from the use of wires, namely their rigid physical layout and their cost.

These limitations can be circumvented resorting to wireless communications, however, these

became a viable option recently, only. Further research and technological advancements were

needed to develop wireless low cost interfaces with high bandwidth, sufficient reliability and ade-

quate security, particularly using Radio-Frequency (RF).

Nowadays, connecting sensors in a wireless network is the most efficient way to broaden the

range of environment-aware applications. With an increase in mobility-based innovations it can

be realized that information flow is growing quite rapidly. Hence, connecting sensor nodes with

1
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wireless technologies has been promoted in all possible aspects. Technologies such as WiFi, Zig-

bee, Bluetooth, etc. are used to connect nodes in various network topologies suitable to different

applications. In a generic scenario, all nodes are connected via a coordinator or gateway node,

which relays the required information to a user/controller as shown in Figure 1.1.

Figure 1.1: Wireless Sensor Network

Wireless Sensor Network (WSN) nodes, as shown in Figure 1.2, can be typically analyzed

according to hardware and software aspects, as we explain the following sections.

Figure 1.2: A typical sensor node hardware

1.1.1 Hardware

The hardware of a sensor node is typically comprised of four main blocks, namely Radio, Micro-

controller, Sensor and Power (Figure 1.3).

Radio The radio of the node combines both transmitter and receiver, thus being a transceiver.

Most frequently, communication is RF-based. The free band allocated to Industrial, Scien-

tific and Medical (ISM) equipment is used more often, hence the common frequencies 868

MHz, 903 MHz and 2.4 GHz. RF communication is kept as simple as possible in WSNs.

Hence, the digital signal processing needed for modulation and filtering, as well as medium

access techniques are kept the simplest that the needed performance requires. There are

four states of a radio, which are transmit, receive, idle, and sleep. Both transmit and receive

modes, the so-called active modes, impose comparatively large energy consumption. The
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Figure 1.3: Main blocks of a sensor node hardware

sleep mode requires the least energy but switching from sleep to the active modes consumes

a significant amount of energy. The idle mode consumes more energy than sleep mode but

the switching to the active modes is faster and less costly, energy-wise. Hence, if an appli-

cation may require transmission or reception very often, then its radio is kept in idle mode.

If the application presents relatively long periods without communication then the radio can

be kept in sleep mode.

Microcontroller Every sensor node has a brain of its own. Usually this is a microcontroller that

performs all the processing tasks, from collecting data to analyzing it and then taking sub-

sequent action defined by the user via the software. The microcontroller is connected to the

sensor circuit in some way so that it can collect data accordingly. While a microcontroller

is the most common choice, there can be other options such as Digital Signal Processors

(DSP) and Field-Programmable Gate Arrays (FPGA), but the microcontroller low cost, low

energy consumption and easiness of programming make it a hard to beat option.

Sensor This is the most specific part of the node, including the sensing transducer and the elec-

tronic circuits for signal conditioning and interfacing to the microcontroller that allow it to

read the corresponding physical entity such as temperature, pressure or light intensity. Most

frequently, the signal coming from the sensor transducer is analog and it is converted to

digital by the microcontroller. Alternatively, some sensors already produce data in a form

that can be read using digital inputs of the microncontroller, e.g., pulses of variable width

or even using digital inter-component communications such as I2C or 1-Wire.

Power Source Most WSNs require that the sensor nodes are small in size, cheap in cost and

consume the least energy possible. However, these requirements may differ from application

to application. In some cases, it may be possible that WSN nodes are physically deployed

in a place with access to an unbounded energy source. In other more common cases, nodes

are either mobile or deployed in an isolated area needing a small and light energy source or

some form of energy scavenging.
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1.1.2 Software

The software behind a wireless sensor network determines the communication protocols above the

radio level, the algorithms for processing the data collected by the sensor nodes, the configurations

of the nodes and even the programming language used. The options available in these aspects are

typically constrained by the operating system in place. Figure 1.4 shows two of the major operating

systems used in WSN, namely TinyOS and Contiki. Both use C as the programming language, but

with different versions.

Figure 1.4: The two most popular Operating Systems for WSN

1.2 Application Domains

WSN can be deployed and operated in many different configurations according to different appli-

cation domains. We can roughly identify three main domains:

Industrial WSN are widely applied in industry, frequently called Wireless Sensor and Actuator

Networks (WSAN) because of the presence of actuator nodes and the corresponding inverse

flows of information when compared to the typical flows from sensors. Note that sensors are

information sources whereas actuators are sinks. Examples range from tracking of goods in

transportation or warehouses, tracking of materials in production lines or continuous process

plants, to monitoring of machines and devices status. All benefit from the support of sensor

nodes. In the particular case of the transportation industry, various sensors can be used to

acquire information about not only the goods but also the status of parts of each vehicle or

even of the surroundings of the vehicle. In construction, sensor nodes can be used to monitor

the structural health of buildings, bridges, dams, etc. In agriculture, sensors distributed in the

field may allow the construction of maps of humidity, pH and other environmental variables

to control irrigation, fertilization and even pests (Ivanov et al., 2015).

Personal Some of the research boosts observed in WSN addressed building applications for per-

sonal use. The most popular and common application is Smart Home(s) or Office(s). WSN

are becoming the very next technological evolution in these domains (Samuel, 2016), not

only providing ease of access to the users but also contributing toward features such as

energy conservation, safety & security and health monitoring.



1.2 Application Domains 5

Public The applications in this domain are the ones that benefit a larger number of people instead

of just a few persons or one organization. These applications include traffic monitoring in

cities, natural disaster detection, water quality monitoring, patient monitoring in hospitals

or even health monitoring of specific population groups (Hu et al., 2017), etc. They provide

early detection of issues enabling prompt mitigation, not only automatically but also by

engaging public authorities.

These domains can be further divided into different sectors. For example, the Industrial do-

main includes the aviation sector, the industrial automation sector, etc. The Personal domain

includes sectors such as smart-homes or smart-offices. The Public domain includes sectors such

as the forest, smart cities, buildings, civil engineering structures, etc. In all we can find WSN

being used in an increasing manner.

1.2.1 Cyber-Physical System

We referred before that, particularly in the industrial domain, WSN frequently include actuators,

thus forming WSAN. Hence, a full control loop can be defined encompassing a WSAN and ade-

quate controllers.

In the past, the design of such distributed control systems used to be done separately con-

sidering the physical laws of the control plant and the discrete laws of the communication and

computation system. However, it was realized that each of these two parts influenced each other,

thus an efficient design required a unified approach. By the end of the first decade of the 21st

century, this unified approach became generally known as Cyber-Physical Systems (CPS).

Hence, CPS bridge the gap between the cyber-world of computation and communication with

the physics that govern the evolution of the system state. These systems are a combination of

physical sensors and actuators and the associated software, including real-time operating systems,

protocol stacks, and control algorithms, that can monitor, control, and execute certain tasks on

behalf of the user. Figure 1.5 shows the typical composition of a CPS highlighting the presence of

the WSAN.

When applied to the industrial domain, it is common to find more focused expressions to

refer to a CPS, such as Cyber-Physical Production Systems (CPPS) or Industrial Cyber-Physical

Systems (ICPS). A few examples of CPS closer to the target of this thesis are:

• Robotic production cells

• Manufacturing Execution Systems (MES)

• Smart homes and offices

• Smart buildings

The evolution of CPS technologies enables new opportunities and poses new research chal-

lenges. CPS can be composed of multiple groups of devices connected through a combination of
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Figure 1.5: Generic components that make up a CPS

both wired and wireless networks, and driven by new applications and demands coming out of

various application domains. One such case that is particularly relevant to this thesis is that of

evolving systems, which reconfigure themselves during the system operation according to specific

events. Reconfigurations include the addition of new nodes, new services or new applications, or

their removal or adaptation.

In general, CPS bring the promise of a strong impact on modern societies, either in economic

terms but also in environmental aspects and also comfort for users. CPS in smart houses can reduce

energy spent for lighting, heating and cooling. CPS can help users reach Net Zero Energy status

managing user requirements together with generation of energy from local renewable sources,

such as solar and wind. CPS in smart houses can also monitor patients or elderly users and provide

assistance when needed. These applications demonstrate the benefits of CPS, which can lead to

wider adoption.

With such expansion, it is clear that CPS will interact with many non-technical users who

wish to utilize the system capabilities efficiently or whose input is critical for some applications.

This raises the demand for easy to use tools to write applications for such systems, but also to

deploy them and control their execution. To do so, in this thesis we advocate using model-based

development for CPS. As referred in (Rajkumar et al., 2010), we also believe that a framework

providing high-level abstractions that can cover the entire CPS design space will also provide a

better interface for users.
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1.2.2 Internet of Things

Another concept highly related to WSN and CPS is that of the Internet of Things (IoT) (Atzori

et al., 2010). Despite being more than two decades old, it became a widely disseminated research

topic soon after the CPS concept became widely accepted.

The IoT is realized embedding each and every physical object with intelligence, i.e., a micro-

controller, and communication capabilities. IoT devices are frequently described as WSN nodes,

with limited RF-communication, computing and energy resources, with the capability of collecting

data. However, the IoT assumes a denser network of more heterogeneous devices. Ultimately, the

IoT vision of anytime, anywhere, anything implies ambitious new challenges in communications

and applications execution and control.

IoT devices are currently being developed by all consumer industries, with a strong push to-

wards adoption. Soon, the IoT will be fully integrated with the Internet at large, including all

its devices. This will be particularly noticeable in applications such as smart homes and offices,

location-based services, smart transportation, etc.

A key part IoT relies on is the density of devices. It is expected to reach 50 billion IoT devices

around the globe in a few years. This will lead to much more data collection than ever, which

provides an opportunity to new applications, services and processes. Hence, providing a better

interface between the IoT user and all these densely networked IoT devices is mandatory for the

success of the IoT but also a significant research challenge.

Figure 1.6 shows an example of an IoT system in the smart homes sector. This system con-

nects devices with very different capabilities using different networking protocols to provide users

with greater access to complete usual tasks in a house. This coverage of devices and protocols

enables the IoT to become pervasive and able to incorporate an increasing number of functional-

ities, particularly based on environmental conditions, including location, activity, availability of

resources or time.

Figure 1.6: Generic example of the IoT in smart homes
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Many of the IoT functionalities can be implemented with in-network processing of simple

rules (e.g. detection of presence, changes in temperature and light) at local nodes. However, heav-

ier processing may require more powerful nodes. This can be provided locally following an edge

computing approach, e.g., the smart hub shown in figure 1.6, or remotely in the cloud. Ultimately,

functionalities should be able to migrate without user intervention, and execute seamlessly in the

sensor nodes, in the edge nodes or in the cloud according to availability of resources and user-

defined performance requirements. The user can not be expected to anticipate these cases and

hardcode them in the applications.

The user should write applications based on functionalities while being essentially agnostic to

the details about the available devices in the network. Significant research efforts are being being

carried out recently to provide programming solutions that enable that feature.

1.3 Context-Aware Sensor Networks

WSN are intrinsically embedded in the environment in which they operate. Thus, they are particu-

larly subject to changes in that environment and in their own operating conditions. These changes

may require the suspension of some applications and the launching of other ones, or the adaptation

of running applications. This capacity to control applications based on environmental or operating

conditions is commonly referred as context-awareness.

Context-aware software adapts according to the location of use, the specific user(s), the num-

ber of nearby people, the hosting device, other accessible devices in the network, energy level,

noise level, network connectivity, communication costs, communication bandwidth, etc. All these

aspects form the notion of context.

1.3.1 Context-Aware Computing

The roots of Context-Aware Computing go back to the early 1990s with the development of

PARCTAB (Schilit et al., 1994). This was a small handheld device, a tablet, that used an infrared-

based cellular network for communication. The tablet acts as a graphics terminal and most appli-

cations run on remote hosts. Based on the location of the tablet in an office, meeting room, or a

lab, it can display different applications.

Examples of context-awareness can be found in diverse application sectors from healthcare,

to manufacturing, smart homes, etc. In healthcare, a body sensor network can detect changes

in the context of a patient and adapt different applications accordingly. For example, generally

patient’s health data is collected from different sensing devices to smart devices that are in range,

which pre-process the data and send it to medical staff. On-body sensing devices would lack

the processing power and energy to carry out such data pre-processing and transmission. If an

emergency situation is detected the smart device can generate an alarm, instruct the sensing devices

to adapt the sensing, e.g., increasing rate, and automatically set up a phone call with the appropriate

medical staff, which can lead to life-saving scenarios.
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1.3.2 Context-Awareness in WSN

The current capabilities of modern WSN nodes already allow using context to drive actions in the

WSN. Not only nodes can sense and collect data from the operational environment, but they can

also generate a context from it and adapt the running applications accordingly.

For WSN we can define three possible aspects of context: user, system, and environment.

The context for users would be based on location, identity, schedule, etc. For system purposes, a

context can be derived from the energy level of the node, neighboring nodes, communication cost,

etc. From the environment, the context would refer to the physical location of the node, actual

sensed data, etc.

A benefit for the user arising from the context-awareness of WSN is that the network can

typically detect changes in context faster than a user can perceive them. In this way, WSN can

anticipate user needs. This is achieved with two actions: first the WSN must be aware of the

current context and the respective applications; second the WSN must detect the activation of a

new context, typically by means of associated sensing variables, and enforce the corresponding

changes in the set of running applications, possibly deploying new ones, triggering idle ones, or

even migrating or removing running ones. If a WSN can carry out both of these actions, we name

it Context-Aware Sensor Network (CASE).

An example of a CASE is shown in Figure 1.7 concerning a smart office. The CASE collects

temperature and location data as well as inputs from fire detectors. A normal habitat context, when

fire detectors are idle, a temperature control application is executed, maintaining a desired value

in different parts of the building where users are present, actuating heating/cooling equipment.

Figure 1.7: Example of Context-Aware Sensor Network

A fire alarm context is triggered whenever a fire detector is activated in the building, launching

an evacuation application that leads users to exit the building through an adequate path. A fire-

men context is activated when firemen arrive onsite, launching a firemen support application that

informs them of the presence of users in high-temperature zones.
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A context can also be defined with simple types corresponding to the types of the data collected

by the WSN, as shown in Figure 1.8. These are situations in which the data directly represents

contextual information. Context changes can be triggered by applying simple rules on the collected

data.

Figure 1.8: Contexts defined by corresponding data types

More powerful devices can process the acquired data and generate more complex contextual

information, for example, based on structures, leading to more elaborate contexts, as shown in

Figure 1.9.

Figure 1.9: Contexts based on complex data structures

Finally, note that in both cases each context relates to a particular human concern. This can

help the CASE to consider the user needs. It is also possible to attach priorities to contexts and cor-

responding applications based on the human concern it satisfies. For example, in certain scenarios

safety will take precedence over convenience.

1.4 Programming Wireless Sensor Networks

The implementation of context-awareness in WSN requires a robust and efficient programming

platform not only to develop and deploy the CASE operating structures but also the respective

applications.
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Programming WSN has been a key research area for more than a decade. Despite the signif-

icant advances that led to the hardware available today, an efficient implementation of WSN can

only be realized if proper tools are available for the user to write applications.

Currently, most WSN deployment programming is done very close to operating systems such

as Contiki-OS or TinyOS, relying extensively on OS-specific calls. The code displayed in List-

ing 1.1 showcases an application to make an LED blink in Contiki1. Even a simple piece of code

as in this example requires the use of several OS-related functions, such as process and timer. De-

spite the hardware abstraction granted by the OS, this kind of OS-based programming still requires

knowledge of low-level details that is at the reach of expert programmers, only.

Listing 1.1: Code to blink an LED in Contiki

# i n c l u d e " c o n t i k i . h "
# i n c l u d e " l e d . h "
p r o c e s s _ s t a r t ( b l i n k _ l e d )
{

l e d s _ o f f ( ) ;
t i m e r _ s e t (10 s ) ;
Wait ( t i m e r ) ;
l e d s _ o n ( ) ;

}

Currently, low-level programming is still the dominant WSN programming paradigm. For

example, one of the most widely used WSN platforms in Europe, the IoT-LAB2, still relies on low-

level programming. The main problems with low-level programming are that it requires significant

technical background and the level of details involved may drive the focus of users that design

applications away from the application logic. If the user is not well versed in the low-level details,

the application can be error-prone and the development and deployment process may become more

time-consuming than desired. This can lead to frustrating user experience.

Facilitating applications design is paramount to support the wide adoption of WSN, CPS, IoT

and CASE because many applications will be written by non-technical users. With the aim of

providing high-level programming platforms, several programming models and approaches were

proposed in the past decade, each with different characteristics. For example, Macroprogramming,

one of such approaches, provides the user with both network and node level abstractions. However,

after listing and comparing the most popular proposals for high-level WSN programming support

we concluded that no solution exists, yet, that provides context-awareness. Hence, in this thesis we

will show how to build on top of a convenient existing programming platform to provide support

for context-awareness and build CASE.

1This is a simplified version of the actual code for demonstration purposes, only.
2https://www.iot-lab.info
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1.5 Thesis Statement

As we discussed along the previous sections, the original WSN concept evolved and became inter-

twined with on-going relevant trends, particularly WSAN, CPS and IoT. As a consequence of this

evolution, WSN became a highly distributed computing platform that can run applications with

multiple purposes, with the specificity of being deeply connected to its operational environment.

This specific WSN feature allows detecting changes in such environment and adapt applications

automatically to suit user needs. This adaptation is named context-awareness and we referred to

the WSN that support it as context-aware sensor networks or CASE. However, developing CASE

for wide adoption requires a suitable middleware that hides as much low-level platform details as

possible to allow non-expert users to define and manage contexts and applications. Such middle-

ware is still an open challenge to realize the full potential of CASE while minimizing any impacts

on system performance in terms of storage and energy. Hence, we state our thesis as follows:

By PROVIDING

i) programming models with mobility, modularity, and abstraction features,

ii) a resource manager that tracks computing resources available and their capabilities, and

iii) a context manager that tracks collected data to activate/deactivate contexts,

THEN

a WSN middleware can automatically adapt the execution of applications to changes in

contexts while enabling high-level applications programming with efficient operation. This

middleware is a cornerstone for the wide adoption of context-aware sensor networks (CASE).

Figure 1.10 shows a draft of the architectural plan for the envisaged middleware that is implied

in the thesis. The figure highlights the fundamental middleware components (represented in grey),

namely the context manager, the resource manager and the high-level programming module to

write applications.

1.6 Methodology

To realize the proposed middleware, we defined and followed the methodology that we describe

next, consisting of a set of tasks that addressed different aspects of the development and validation

process.

• Requirements A deep understanding of programming models is required to determine the

essential features of the proposed middleware. We do this with a detailed literature survey

of all available macroprogramming models for WSN. We also survey programming support

available for context-aware systems in general. Special attention is given to service-oriented
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Figure 1.10: Proposed Middleware for Context-Aware Sensor Network

architectures to understand the abstraction of low-level details from the application logic.

Finally, we also survey all the frameworks for multi-application support in WSN.

• Extending the State-of-the-Art Using the literature survey carried out in the previous task,

we identify the related state-of-the-art and from it we select a work suitable for exten-

sion towards the proposed middleware. Building on the state-of-the-art facilitates scien-

tific progress while providing support for existing applications. It also allows incorporating

existing features into the proposed middleware.

• Feature Design Having identified an existing work to be extended, we design the required

additional features. We evaluate these using metrics available in the literature and select the

most important features. This helps us finalizing an architectural plan of the middleware to

support the implementation.

• Implementation With the design features and the architecture, we implement the middle-

ware with a user-friendly interface. We write the support documentation for the implemen-

tation and also provide an API to be used by external tools. Also, we implement a web-based

interface for users to provide input and monitor the middleware.

• Experiments Towards the end, we conduct various experiments to validate the implemen-

tation. Particularly, we run the applications written using the middleware in both simulation

and real deployments, and particularly using a large scale test-bed available for experimen-

tation.

1.7 Contributions and Publications

The work developed in this thesis generated two main contributions to the state-of-the-art in pro-

gramming and operating WSN (bullets 1 and 2 in the list below). In addition, we also present two
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other contributions of our work (bullets 3 and 4), though of smaller conceptual strength. These

contributions are listed next, together with the publications in which they were shared with the

community.

1. The target middleware of the thesis, which allows building CASE - context-aware sen-

sor networks, with high-level programmed applications that can be written by non-experts.

The middleware relies on multiple tools and technologies, particularly CoAP instructions in

Python scripts. It was presented and explained in the following publication:

• Shashank Gaur, Luis Almeida, Eduardo Tovar and Radha Reddy. CAP: Context-Aware

Programming for Cyber-Physical Systems. ETFA 2019 - 24th Conference on Emerging

Technologies and Factory Automation, Zaragoza, Spain. 10-13 September of 2019.

2. A set of basic adaptation policies that programmers can use to write context-aware appli-

cations. These policies are part of the context manager and allow activating/deactivating

contexts previously defined by the users and are then applied by the middleware on the set

of running applications. This contribution was presented and explained in the following

publication:

• Shashank Gaur, Luís Almeida, Eduardo Tovar. AdaptC: Programming Adaptation

Policies for WSN Applications. SAC 2019 - 34th ACM/SIGAPP Symposium On Ap-

plied Computing. Limassol, Cyprus. 8-12 April of 2019,

3. A proof of usability of context-awareness, that consisted in adding features to an exist-

ing macroprogramming approach, namely T-Res. This work validated the possibility of

providing context-awareness by extending an existing WSN programming approach. This

contribution was described in the following publication:

• Shashank Gaur, Raghuraman Rangarajan, Eduardo Tovar. Extending T-Res with mo-

bility for context-aware IoT. IoTDI 2016 - 1st IEEE International Conference on Internet-

of-Things Design and Implementation. Berlin, Germany. 4-8 April of 2016.

4. A scheduling technique, developed in collaboration within another work, to manage the

execution of multiple applications in a WSN by scheduling the associated traffic in a way

that reduces communication latency. Our contribution is essentially the discussion on the

application of this technique to support the middleware proposed in 1 above. The scheduling

technique was presented in the following publication:

• Vikram Gupta, Nuno Pereira, Shashank Gaur, Eduardo Tovar, Raj Rajkumar. Network-

Harmonized Scheduling for Multi-Application Sensor Networks. RTCSA 2014 - 20th

IEEE International Conference on Embedded and Real-Time Computing Systems and

Applications. Chongqing, China. 20-22 August of 2014.

The work in this thesis was also shared with the community in the following communications

in poster sessions and PhD Fora:



1.8 Thesis Structure 15

• – Shashank Gaur, Luis Almeida, Eduardo Tovar. PhD Forum: Automatic Allocation of

Tasks in T-Res for WSN. DCE 2019 - 3rd Doctoral Congress in Engineering. Porto,

Portugal. 27-28 June of 2019.

– Shashank Gaur, Raghuraman Rangarajan, Eduardo Tovar. POSTER: Bringing Context-

awareness to wireless sensor networks. CPS Student Forum Portugal, within the CPS

Week 2018. Porto, Portugal. 10-13 April of 2018.

– Shashank Gaur, Raghuraman Rangarajan, Eduardo Tovar. Demonstration Abstract:

Automated Resource Allocation for T-Res. IPSN 2016 - 15th ACM/IEEE International

Conference on Information Processing in Sensor Networks. Vienna, Austria. 11-14

April of 2016.

– Shashank Gaur. PhD Forum: Bringing context awareness to IoT-based wireless sen-

sor networks. PerCom Workshops 2015 - IEEE International Conference on Pervasive

Computing and Communication Workshops. St. Louis, USA. 23-27 March of 2015.

– Shashank Gaur, Nuno Pereira, Vikram Gupta, Eduardo Tovar. POSTER: A Modular

Programming Approach for IoT-Based Wireless Sensor Networks. EWSN 2015 - 12th

European Wireless Sensor Networks Conference . Porto, Portugal. 9-11 February of

2015.

1.8 Thesis Structure

The remainder of this dissertation is structured as follows: Chapter 2 discusses different pro-

gramming approaches available for WSN, followed by the popular programming platforms for

context-aware systems. Chapter 3 discusses the work done on extending the existing state of the

art towards the proposed middleware. Chapter 3 also provides a working demonstration of some

of the new additions to existing work. We propose a new middleware in Chapter 4 with design

features and its architecture. Chapter 4 also includes details on the implementation of this middle-

ware. Chapter 5 describes some new adaptation policies for writing applications in the proposed

middleware. Chapter 6 presents a scheduling technique to support multiple application running

in a WSN in a timely fashion and it also discusses how this can be used to support the proposed

middleware. Finally, in Chapter 7, we conclude this thesis by providing a summary of the present

research contributions and the future work.
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Chapter 2

From WSN to Context-Aware SEnsor
networks

Wireless sensor networks are currently being deployed in many application domains to satisfy

various user needs, frequently within the trendy frameworks of CPS and IoT. This has been enabled

by significant research work done in the past two to three decades in several fundamental topics,

such as localization, networking, WSN programming, considering energy management and

resource allocation, and finally dynamic adaptation and context-awareness.

These developments fostered new deployments that, in turn, motivated new research and new

developments, in a positive cycle. In this chapter we discuss these fundamental topics, giving an

overview of WSN development towards context-awareness and current status.

2.1 Localization

Localization is one of the most relavant WSN challenges. Many applications such as smart home,

targeted advertisement, geo-social networking, patient monitoring and search and rescue opera-

tions, need an accurate localization method to perform efficiently. While the cellular infrastructure

of the telecommunication operators and particularly Global Navigation Satellite Systems (GNSS)

like the Global Positioning System (GPS) can provide support for relatively accurate localization

outdoors, it still remains an issue indoors. Being able to localize mobile nodes in offices, homes,

buildings, warehouses, etc, can strongly impact the way we interact with the surroundings. It can

fundamentally change how applications will adapt their behavior according to location, potentially

enabling a myriad of new services for the user. This adaptation is our main concern in this the-

sis, not the specific localization techniques used. Nevertheless, in this section we provide a brief

overview of several techniques so the reader is aware of their capabilities and limitations.

Indoor localization is typically carried out into three steps, namely coordination or synchro-

nization, measurement or ranging and finally position estimation. Figure 2.1 illustrates these

phases in a particular system. A central node, call it client, wishes to localize itself with re-

spect to an infrastructure of four fixed nodes in the system commonly referred to as anchors (with

17
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known positions). First the client sends an RF broadcast signal to synchronize the anchors and

trigger a timer in each of them (Figure 2.1 left - synchronization). Then the client sends a slow

broadcast signal, e.g., ultrasound, with known speed of propagation. When the anchors receive

this second signal they stop the timer and compute the distance traveled by this signal since it

departed from the client (Figure 2.1 right - ranging). Once each anchor knows its distance to the

client, it can either send it back to the client or to a particular node, e.g., one specific anchor, that

will use a suitable method with all the measured distances and anchors positions to compute the

client localization within the anchors framework (position estimation, not explicitly shown in the

figure).

Figure 2.1: Localization of a node (center) with four anchors

For each of the steps referred above, there is a wealth of techniques, some more adapted to

specific application scenarios and desired precision and accuracy than others. For example, the

coordination or synchronization can be done with a broadcast signal as explained above or with

high-precision clock synchronization.

Concerning the second step, there are techniques based on measuring angles, e.g., Angle-of-

Arrival (AoA), and other ones based on measuring distances (ranging), either by time-stamping the

signal arrival, e.g., Time-of-Arrival (ToA), or by measuring time intervals, e.g., Time-Difference-

of-Arrival (TDoA), both requiring the knowledge of the measurement signal speed, or by measur-

ing the power attenuation of the signal, e.g., by means of its Received Signal Strength Indicator

(RSSI), which requires a model of the attenuation in space (Mao et al., 2007).

In what concerns the third step, the techniques depend on the measurements, naturally. Angu-

lation is used when the measurements are angles. In a flat space, the angles to three non-co-linear

anchors are the minimum needed for an unambiguous localization. This is called triangulation.

If angles to more anchors are available, the technique is called multiangulation and it allows im-

proving the localization precision. When the measurements are distances, the general technique

is called lateration. Again, in a flat space, the distances to at least three non-co-linear anchors

are needed, trilateration, and if distances to more anchors are available better precision can be

achieved, multilateration. Figure 2.2 shows an example of trilateration, in which the anchors B1,

B2 and B3 measured their distances to the node in the center and constrained the node to be on

a circle centered on the respective anchor and with a radius equal to the respective measurement.
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The node position is given by the intersection of all the circles. Finally, other more complex

techniques to estimate the nodes positions include optimization methods, e.g., Multi-Dimensional

Scaling (MDS) (Franco et al., 2017), and probabilistic methods (Xu et al., 2012).

Figure 2.2: Localizing one node by trilateration with three anchors

In practice, there are many variants and combinations of the referred techniques to ensure the

desired localization accuracy (Amundson and Koutsoukos, 2009). Nevertheless, some techniques

are more common than others, frequently due to ease of use. This is the case of RSSI-based

ranging, which is referred as the most common method. This is curious since, despite the easiness

of use, RSSI-based localization is affected by noise, limiting the achievable accuracy to values

that are frequently worse than required by many real use cases. Common problems affecting

the accuracy of distance estimates based on RSSI measurements include path loss, fading and

shadowing (Heurtefeux and Valois, 2012).

In the last decades there has been a significant amount of work in the localization problem.

In the particular scope of wireless sensor networks, one work that stands out for its impact in

the scientific community is the Cricket location-support system (Priyantha et al., 2000) for in-

building, mobile, location-dependent applications. Cricket uses the method explained above in

Figure 2.1, using both RF and ultrasound communication to measure distances and estimate nodes

location. According to the authors, Cricket provides accuracy of 2cm and works in the range of

10m. However, the reliability of the system can degrade in case the communication is affected by

multi path effects. Another work that also uses RF and ultrasound communications is the Dolphin

system (Fukuju et al., 2003), also claiming an accuracy of 2cm, but inside a normal room with

minimal manual configuration.

Differently from Cricket and Dolphin, Ecolocation (Yedavalli et al., 2005) uses RF commu-

nications, only. A node with unknown position sends an RF beacon that is received by a set of

anchors. The system gathers and examines the ordered sequence of message receptions and the

respective RSSI values, and then applies a constraint-based approach to estimate the position of

the node. The authors claim a position estimation with less than 10% of error.
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Another RSSI-based system, but aiming at simplicity of usage is EasyLoc (Jamâa et al.,

2012). Normally, RSSI-based methods require a significant effort prior to deployment for pro-

filing the RSSI-to-distance model in each location, aka fingerprinting. EasyLoc, instead, builds

such model using known distances between anchors thus eliminating the need for such complex

pre-deployment configurations. The authors claim EasyLoc provides location errors less than 1m

with 90% probability, with an average of 0.48m for small spaces and 1.8m for larger spaces.

One application domain where precision requirements are less demanding while scalability

and power efficiency are of foremost importance is precision agriculture, e.g., for pH or humidity

sensing. Abouzar et al. (2016) propose an RSSI-based distributed Bayesian localization algorithm

for precision agriculture in which nodes share broadcast messages to infer their most probable

position, with fast convergence.

An approach that builds on RSSI-based localization systems and improves their accuracy tak-

ing advantage of mobility is Social-Loc (Jun et al., 2013). This is a middleware, initially deployed

on Android systems, that exploits the encounters among mobile devices to calibrate the existing

indoor localization systems and improve their accuracy. For example, improvements of over 22%

were claimed in a system based on RSSI fingerprinting of WiFi communications. The MaWi lo-

calization system (Zhang et al., 2014), instead, improves the accuracy of WiFi systems with RSSI

fingerprinting by combining it with geomagnetic information.

Other works studied the use of low frequency magnetic fields (in the kHz range) for localiza-

tion underground, given the good propagation properties of these waves through the soil. For ex-

ample, the Magneto-Inductive localization system (Abrudan et al., 2014) uses a locally generated

magnetic field and the nodes to be localized are equipped with inertial measurement units (IMU)

and tri-axial magnetometers. The RSSI at the magnetometer coils, with appropriate compensation

for field distortion effects, is more stable than with common high frequency RF communications,

hence providing more accurate localization.

Finally, a brief mention to yet another different technique, used by the Easy-Point (Bestmann

and Reimann, 2014) localization system, which relies on the phase difference between sequential

communications sent by the node to be located to a set of anchors using different frequencies in

the 2.4 GHz band. It shows good resilience to multi-path effects and achieves an accuracy better

than 0.72m.

Both this and the previous systems were demonstrated and benchmarked in the Microsoft In-

door Localization Competition in 2014, a competition that took place for more than ten years

within the International Conference on Information Processing in Sensor Networks (IPSN) and

until 20181, constituting a practical benchmark of the effectiveness of a large set of indoor local-

ization systems.

1https://www.microsoft.com/en-us/research/event/microsoft-indoor-localization-competition-ipsn-2018/
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2.2 Networking

The network is a central, thus critical, resource in WSN. The networking technologies that made

WSN possible fall in a category generally called Low-power Wireless Personal Area Networks

(LoWPAN). Within these, the link protocols that became more popular are part of the specifica-

tion IEEE 802.15.4 and its amendments. On top of this specification, several full stack network

protocols were developed, noticeably ZigBee (Alliance, 2006) and the IPv6-based 6LoWPAN

(Shelby and Bormann, 2011). More recently, low-power embedded nodes with WiFi technology

became available, enabling the use of this technology for WSN-like applications, particularly in

the scope of the IoT and in environments with WiFi infrastructure (Pereira et al., 2019).

In general, these technologies offer a limited capacity. Even when using WiFi, the low power

usage constrains significantly the available throughput. Thus, such capacity has to be adequately

managed so it can be efficiently shared among the network nodes. This is particularly relevant

when multiple applications run simultaneously on the WSN and when there are bidirectional com-

munication patterns between the network gateway and the nodes or among the nodes themselves.

Both aspects are considered in this thesis.

Hence, it is generally of interest to reduce the usage of the network in WSN and there are many

works available in the scientific literature addressing such problem. The solutions cover various

aspects ranging from link-layer protocols to network flooding and distributed TDMA solutions.

Conversely, less solutions exist for the case of multiple applications.

One of the approaches that had significant impact in the community for efficient flooding in

multi-hop topologies is Glossy (Ferrari et al., 2011). This protocol relies on precise synchroniza-

tion among the network nodes (better than 0.5µs for IEEE 802.15.4) so that when two nodes in the

same hop retransmit a packet for the next hop they do so at the same time, creating constructive in-

terference. Not only the total number of transmissions needed for flooding is significantly reduced

but the constructive interference increases the power with which packets are received, reducing

errors significantly, thus improving reliability.

The efficiency of Glossy was then used to create the so-called Low-Power Wireless Bus

(LWB) (Ferrari et al., 2012) that multiplexes in time flooding processes from one or more ini-

tiators. Since the data sent by each initiator reaches every other device in the network, the protocol

emulates a bus-like behavior, independently of the network topology, even being multi-hop. How-

ever, the fact that all packets are flooded through the network, even if they are directed to a small

subset of nodes within a few hops, leads to a high degree of unnecessary redundant transmissions.

In the case of multiple applications, the situations of transmissions directed to different subsets of

nodes located at different depths of the network topology become more common and the resulting

overhead can become prohibitively large.

Other approaches aim at reducing the amount of time that a node keeps the RF interface active

by defining a periodic wake-up scheme. These approaches can be divided in two groups, namely

synchronous and asynchronous. In synchronous wake-up schemes, nodes agree on a common

sleep/wake-up schedule (Ye et al., 2002; Van Dam and Langendoen, 2003) to save energy, which
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is also frequently called duty-cycling. Asynchronous approaches are based on channel polling

by receivers and preamble transmission by the transmitters (Polastre et al., 2004; Buettner et al.,

2006). In this case, nodes that wish to transmit send a preamble followed by the actual packet.

In turn, the receivers wake up periodically and sense the channel. If the channel is active, then

the nodes stay awake to receive the packet transmissions, else they go back to sleep. This process

requires that preambles are at least as long as the wake up period of the receivers.

An approach that was proposed specifically to improve network efficiency in scenarios with

multiple applications is Unified Broadcast (UB) (Hansen et al., 2011). In this case, packets from

broadcast services running in each sensor node, e.g., synchronization, heartbeats and data dis-

semination, are accumulated in the protocol stack. There they are transparently combined in UB

broadcast packets and transmitted when the number of packets reaches a certain threshold, only.

In their work, the authors also showed experimentally that UB preserves the correctness of a set of

representative WSN protocols, such as FTSP (Maróti et al., 2004), Trickle (Levis et al., 2004) or

CTP (Gnawali et al., 2009), even when their packets are delayed due to UB bundling. The periods

of the applications are implicitly detected when a second packet of the same application is sent to

the protocol stack for transmission and automatically recovered at the receiver side.

Finally, another large class of wake-up techniques relies on Time Division Multiple Access

(TDMA) transmission control. In this case, nodes wake-up at the scheduled transmit/receive time

instants, only, at a cost of tight synchronization requirements and limited flexibility to changes.

TDMA for multi-hop networks typically uses 2-distance graph-coloring algorithms to build the

transmissions schedules. Such protocols require much more information about the network topol-

ogy, which can be acquired with a central coordinator, as in RT-Link (Rowe et al., 2006), or in a

distributed way, as in Distributed TDMA (Herman and Tixeuil, 2004).

An interesting approach to create a TDMA round in a self-organizing manner, without clock

synchronization, is proposed in Desync (Degesys et al., 2007). This approach follows the prin-

ciple of pulse-coupled oscillators and creates a round that all nodes synchronize to, and then use

different offsets to create non-overlapping slots. This approach was later on extended to multi-

hop networks. A very similar approach is followed by the so-called Reconfigurable and Adaptive

TDMA (RA-TDMA) family of protocols, which use maximum consensus and flooding to make

the nodes converge to a common TDMA frame (Oliveira et al., 2018).

At the end of this thesis we will also build upon another TDMA-based approach that is partic-

ularly suited for compact schedules and energy-saving by maximizing nodes sleep time, namely

Rate-Harmonized Scheduling (Rowe et al., 2008). In particular we will show how to extend this

framework to a multi-application scenario and context-awareness.

2.3 Programming Wireless Sensor Networks

The technological progress of the last decades enabled many new use cases for WSN. However,

the effective deployment and use of WSN depends significantly on the availability of easy ways to

program the sensor devices and the respective network (Mottola and Picco, 2011). In this section,
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we revisit commonly referred taxonomies for programming WSN such as (Sugihara and Gupta,

2008), (Mottola and Picco, 2011) and (Alajlan and Elleithy, 2015). We will also present a brief

description of Contiki and Tiny OS, which have been the two most popular programming tools

adopted by the WSN community. Finally, we take a view on the progress made in recent years in

macroprogramming and in supporting multiple applications on WSN, topics that are of particular

relevance to our work.

The taxonomy proposed by Sugihara and Gupta (2008) considers, at the highest level, two ap-

proaches to programming sensor networks, namely low-level and high-level programming models.

The same classification is proposed by Alajlan and Elleithy (2015) in their analysis and taxonomy.

However, despite having been published seven year later, this work goes little beyond the previous

taxonomy, following essentially the same classification.

Low-level programming models are focused on abstracting hardware and allowing flexible

control of nodes. These models take a platform-centric view and are also referred to as Node-level

models. TinyOS with nesC is one of the earliest examples in this class and has been the de facto

standard software platform for programming WSN nodes. An interesting approach in this class

is to run a virtual machine on each node. A virtual machine provides an execution environment

for scripts that are much smaller than binary codes for TinyOS. Thus it is appropriate for the

situations where the code on each node needs to be dynamically reprogrammed after deployment

via a wireless channel.

High-level programming models take an application-centric view instead of the platform-

centric view and focus on programming the application logics, as opposed to each node indi-

vidually. More specifically, they mainly focus on facilitating collaboration among sensors, which

is a major drive of sensor network applications and also one of the most difficult challenges for

sensor network programming. A typical approach in this class provides a set of operations for a

group of sensors defined by several criteria. These operations include data sharing and aggregation

so that programmers can describe collaborative data processing using them. Other approaches of

high-level programming provide communication abstractions that use a simple addressing scheme

like the access to a variable.

High-level programming models are further divided into two classes, namely group-level and

network-level abstractions. Group-level abstractions provide a set of programming primitives to

handle a group of nodes as a single entity. These define APIs for intragroup communications and

thus make it easier for the programmers to implement collaborative algorithms. Network-level

abstractions go beyond the notion of group by treating the whole network as a single abstract

machine. The sensor database approach, which allows users to query sensor data by declarative

SQL-like languages, falls within this class. Similarly, Macroprogramming languages that offer a

macroscopic viewpoint are also in this class. In fact, macroprogramming is frequently referred as

a synonym of network-level programming.

Finally, note that high-level programming models are often based on lower-level components

as a runtime environment that allows them to run on actual hardware platforms. Figure 2.3 shows

this entire taxonomy of programming models for sensor networks proposed by Sugihara and Gupta
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(2008).

Figure 2.3: The taxonomy of Sugihara and Gupta (2008) for WSN programming models.

The survey presented by Mottola and Picco (2011) subsumes the previous taxonomies, ad-

dressing more dimensions, namely application, language and architecture, and proposing a spe-

cific taxonomy for each of them. This global view allows relating the application requirements

with the programming solutions and separating the language and architectural aspects.

The WSN applications taxonomy focuses on the applications requirements. By understand-

ing these requirements we can also understand the motivation that is behind the development of

specific programming constructs. This taxonomy classifies WSN applications according to their

goal (pure WSN or WSAN), interaction pattern, mobility, space (coverage) and time (temporal-

control).

The taxonomy on language aspects considers six classes, namely, communications scope, ad-

dressing, awareness, computations scope, data access model and programming paradigm. The

authors dedicate a significant space to the analyses and explanation of the primitives provided to

the programmers to carry out communication and computation, discussing the specifics of each

programming model. One of the most interesting aspects of this survey is the extensive use of

concrete code examples, really facilitating the understanding of each approach.

The last taxonomy in the survey is on software architectural aspects of WSN. In this case, exist-

ing WSN programming solutions are analyzed with respect to the programming support (holistic

or building blocks), layer focus (vertical or application), low-level configuration and execution

environment.

For the sake of simplicity, the remainder of the section will follow the classification in (Sug-

ihara and Gupta, 2008) concerning node-level, group-level and network-level programming ab-

stractions. We are aware that it does not capture some detailed aspects referred in (Mottola and

Picco, 2011), but it is enough for our purposes.
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2.3.1 Node-level Programming

At the level of programming WSN nodes there are two classes of approaches, those that rely on

node operating systems or programming languages and those that rely on virtual machines and

specific middleware. The first class is the most popular and whithin it, the two most popular tools

are Contiki and Tiny OS. In this section we present an overview of these tools as well as of a few

virtual machine approaches.

Contiki

Contiki is a lightweight open-source operating system for the Internet of Things. It was developed

at the Swedish Institute of Computer Sciences (SICS) by Dunkels et al. (2004). It is written in

the C programming language and all programs for it are also in C. Contiki is a highly portable

OS and it has already been ported to several platforms running on different types of processors.

The most common are the Texas Instruments MSP-430 and the Atmel ATmega series of micro-

controllers. Contiki relies on an event-driven programming model to handle concurrency. All

processes share one single stack, allowing substantial memory savings, which is one of its main

advantages. Protothreads are used to realize this model. Protothreads provide conditional and

unconditional blocking wait and they use local continuations to save the state when they block.

When the Protothread is resumed, it jumps back to the next instruction.

Contiki supports both IPv6 and IPv4 stack implementations, along with the recent low-power

wireless standards: 6LoWPAN, RPL and CoAP. It also uses the Rime protocol stack. This is a

lightweight communication stack for sensor networks and it has thinner layers than traditional

stacks. The layers are simple and messages use small headers (only a few bytes). Rime also

supports code reusing and the main purpose of this protocol stack is to simplify the implemen-

tation of sensor networks (Figure 2.4). Contiki is used in numerous systems, such as electrical

power meters, industrial monitoring devices, alarm systems, remote house monitoring, city sound

monitoring, street lights and radiation monitoring. The latest version of Contiki is Contiki 3.0.

Figure 2.4: Contiki Architecture
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A running Contiki system is made of the core, i.e., the kernel, libraries, protocol stack and the

program loader, and a set of processes related to the specific application. Each process can be an

application program or a service. The latter is a function that can be used by multiple application

processes. All processes can be dynamically replaced at run-time. Interprocess communication

is achieved through the kernel by posting events. For the sake of simplicity, there is no hardware

abstraction layer and device drivers and applications communicate directly with the hardware.

Moreover, the kernel provides just simple processor scheduling and event handling. Additional

functionality is provided by system libraries and processes.

A process has two handler, an event handler and an optional poll handler. Its state is saved

locally in the process memory. The kernel uses pointers to access process states. To give an idea

of size, the process state uses 23 bytes in the ESB platform2 that uses the MSP430 microcon-

troller (Dunkels et al., 2004). There is only a single global address space that is shared by all

processes.

The composition of a Contiki system is defined at compile time specifically to each application.

Typically, the core is compiled into a single binary that is loaded in the nodes before deployment,

not being modified at runtime. Programs can also be linked statically to libraries in the core and

loaded together with the core. However, programs can also be loaded by the program loader at

runtime, either using the communication stack or from local storage, e.g., non-volatile memory.

In this case, the programs can be linked with libraries that are part of the loadable program or the

programs can use libraries implemented as services, which they invoke at runtime. These libraries

can also be replaced at runtime. The kind of libraries to use depends on how frequently they

are used and by how many programs. Widely used libraries are more efficiently implemented in

the core, saving space in the loadable programs. Conversely, libraries that are local to just one

program are better implemented in the loadable program and save space in the core. Libraries that

may need to be frequently updated during the system lifetime are better implemented as services.

One very important component of the Contiki ecosystem is Cooja (Osterlind et al., 2006), the

Contiki network simulator. It is a Java-based application with a graphical user interface. The

GUI, shown in figure 2.5, is based on Java standard Swing toolkit. Cooja also supports simulation

of the radio channel and integration with external tools, providing an emulation framework that

offers additional features to the application. It can simulate large and small networks of Contiki

motes (simulated sensor modules). Motes can be emulated on less detailed level, which is faster

and allows simulation of larger networks, or at the hardware level, which is slower but allows

precise inspection of the system behavior. This tool has two emulator software packages: Avrora

for emulation of Atmel AVR-based devices, and MSPSim for emulation of TI MSP430-based

devices. Given the higher popularity of the latter, MSPSim ends up being the most used software

package for simulation of WSN.

Cooja can emulate multiple node platforms like the TelosB/SkyMote, the Zolertia Z1 mote,

the Wismote, the ESB and the MicaZ mote. It is a very useful tool for Contiki applications devel-

opment and debugging. It allows developers to test their code and systems before running them on

2http://www.scatterweb.com



2.3 Programming Wireless Sensor Networks 27

Figure 2.5: The Cooja simulation tool

the real target hardware, for example, to estimate power consumption of nodes or to analyse radio

transmissions and receptions.

More recently, a new branch of Contiki has been created named Contiki-NG. This new version

is more focused on dependable IPv6 communication. In addition, it is meant for modern Internet

of Things platforms such as the ARM Cortex M family of microcontrollers. However, this is a

recent development and yet to be used in real WSN deployments.

Tiny OS

TinyOS (Levis et al., 2005) is an operating system specifically designed for WSNs. It has a

component-based programming model, provided by the nesC language, a dialect of C. Similar

to Contiki, TinyOS is not an OS in the traditional sense. It is a programming framework for

embedded systems that includes a set of components that enable featuring each application with

its own application-specific OS.

A TinyOS program is formed by a graph of components and each component is an independent

computational entity. Each TinyOS component has a frame, which is a structure of private vari-

ables. i.e., accessible to that component, only. Components can make use of three computational

abstractions: commands, events, and tasks. The former two support inter-component communica-

tion and the latter allows expressing intra-component concurrency.

Commands and events are like the two directions of non-blocking service invocations. The

actual invocations are done with commands that return immediately and the service completions
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are signalled by corresponding events that trigger associated handlers. Events can also signal other

asynchronous occurrences, such as hardware interrupts or message arrivals.

Commands can also be used to post tasks, i.e., functions to be scheduled by TinyOS for exe-

cution at a later time, concurrently. This can be very useful to decouple in time the execution of a

component from specific complementary computations that can take longer. Tasks follow a run-

to-completion execution model, i.e., they run once, and they can access their component’s frame,

only. The scheduling policy used by TinyOS to schedule tasks is FIFO. In TinyOS all hardware

resources are abstracted as components. Thus, it is possible to issue commands to invoke hardware

functions and use events handlers to receive the respective outcomes.

To help application developers, TinyOS offers a large number of already defined components

that can be wired to application-specific components to compose applications. These TinyOS com-

ponents provide typical services, some abstracting hardware components, such as sensors, single-

hop networking, ad-hoc routing, power management, timers, and non-volatile storage. These

components are available to application developers through interfaces (Table 2.1).

Interface Description
ADC Sensor hardware interface
Clock Hardware Clock
EEPROMRead/Write EEPROM read and write
Hardware ID HardwareId access
I2C Interface to I2C bus
Leds Red/yellow/green LEDs
MAC Radio MAC layer
Mic Microphone interface
Pot Hardware potentiometer for transmit power
Random Random number generator
ReceiveMsg Receive Active Message
SendMsg Send Active Message
StdControl Init, start, and stop components
Time Get current time
TinySec Lightweight encryption/decryption
WatchDog Watchdog timer control

Table 2.1: Interfaces provided by TinyOS, adapted from (Levis et al., 2005)

Virtual Machine / Middleware

Another class of node-level programming models is based on using a virtual machine (VM) that

enables the sharing of resources and/or infrastructure among multiple independent entities. One

of the main purposes of these solutions has been reprogrammability. This is clear in the early VMs

that were proposed for WSN.

For example, Mate (Levis and Culler, 2002) is one of the first VMs for WSN and it was

developed on top of TinyOS. It is a stack-oriented application-specific VM that offers a small and

application-tailored instruction set to support a safe and efficient programming environment. Mate
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aims at supporting code propagation in WSN to re-program sensors in an energy efficient way. For

this purpose it is important to produce lean programs to reduce the overhead. Programs are broken

into small capsules of code that are transmitted throughout the WSN with a single command. A

small piece of code in each node identifies whether the node must retrieve a passing capsule to run

the respective program locally. Programs can run several tasks, which are executed sequentially.

Another historical VM for WSN nodes aiming at reprogrammability is VMStar (Koshy and

Pandey, 2005), a Java-based framework to build application-specific virtual machines that allows

updating both the WSN applications and the OS itself. VMSTAR also provides abstraction of

the platform, maintaining code portability. It supports multi-threaded application programs that

execute concurrently.

However, VMs were not the only way for reprogrammability. Other early works achieved it by

means of middleware, a software layer that provides adequate abstractions to the applications. For

example, Impala (Liu and Martonosi, 2003) is a middleware that was designed for the ZebraNet

project to provide modularity, adaptability to dynamic environments and repairability to the appli-

cations. The modularity, particularly, supports easy and efficient on-the-fly reprogramming over

the wireless channel.

Since these early works, many other developments occurred, some focusing on other specific

aspects. For example, Yu et al. (2006) presented a significant extension of Mate called Melete

specifically designed to support multiple concurrent applications, which is particularly relevant

to this thesis. With Melete, users separately compile the code of their applications. Then the

framework creates and maintains a dedicated execution space for each application. This allows

constructing multiple application-specific environments in each node. Another interesting feature

of Melete is the capacity to limit the deployment area to which an application code is to be sent,

instead of sending to the whole network. Overall, Melete creates a flexible runtime environment

that executes simultaneously in each node multiple applications. However, the framework did not

address the node heterogeneity issue.

More recently, Raee et al. (2018) considered the case in which the WSN executes a set of

applications, each with different sensing tasks. They proposed a method to assign these tasks to

physical and virtual sensors that leads to the lowest energy consumption. This flexibility for task

assignment builds directly on the virtualization layer. Similarly, Wu et al. (2021) also considered

the general problem of mapping applications to nodes, physical or virtual, but motivated by the

problem of survivability. In this case, the virtualization layer is used to support the re-mapping of

applications tasks to nodes in case of node failures, for application resilience.

Along these recent year, the concept of virtualization expanded to the network-level, too, giv-

ing rise to the so-called Virtual Sensor Networks (VSN), which use subsets of the physical WSN as

logically independent networks. This concept, however, goes beyond the node-level approaches.

Up-to-date thorough surveys of the topic of virtualization in WSN can be found in (Khan et al.,

2016) and (Farias et al., 2016).



30 From WSN to Context-Aware SEnsor networks

2.3.2 Group-Level Programming

Some WSN applications, such as environmental monitoring and target tracking, benefit from the

capacity to address multiple nodes located in a given area instead of a single sensor. Applications

such as environmental monitoring also require the nodes in a certain area to collaborate among

them and produce consolidated data such as averages. Programming these applications can be

significantly simplified if specific group-level abstractions are available. For example, consider

language constructs that allow assigning sets of operations to sets of nodes. These group-level

programming abstractions are typically divided in two classes according to how the group is de-

fined, whether by physical neighborhood or logically.

Neighborhood Based

WSN applications that monitor continuous processes in space naturally fit the concept of physical

neighborhood. For example, the measurements done by sensors that are physically near each other

can be processed together to consolidate their readings in a shorter but more robust data to be sent

up through the WSN sink. This kind of local collaboration is rather common in WSN applications

and also fits well with the broadcast nature of the wireless communication, which allows efficient

data dissemination among neighbor nodes.

One of the emblematic approaches offering neighborhood-based group-level programming

abstractions is Abstract Regions (Welsh and Mainland, 2004). It provides spatial operators that

support neighborhood discovery, variable sharing and reduction operations. In Abstract Regions,

groups are defined in terms of radio connectivity, geographic location, or other properties of nodes.

For example a group can be defined including all nodes within N-radio hops from a given node,

or including its k-nearest neighbors. In addition, Abstract Regions expose the trade-off between

computations accuracy and communication bandwidth. This allows not only the programmer to

tune the accuracy according to the network capacity available but also the applications to adapt to

changing network conditions. Abstract Regions were implemented in the TinyOS programming

environment and demonstrated in adaptive sensor network applications.

Using neighborhood-based group programming is intuitive and easy, and can be efficiently

mapped on top of the broadcasting network. On the down side, the neighborhoods depend on the

topology which is frequently unknown at the time of development and can even vary at runtime.

This raises the importance of using adaptive approaches, as provided by Abstract Regions, to allow

the application to adapt to changing neighborhoods.

Logical Group

Certain WSN applications, such as target tracking, may require the collaboration of a rather dy-

namic group of nodes. In this case, defining groups based on physical closeness is not adequate

since such groups are essentially static. Conversely, a convenient approach may be to define a

group according to some adequate logical properties beyond physical closeness, such as the type

of nodes and the instantaneous input acquired from the environment. This would allow building
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highly dynamic groups with rapidly changing group membership, i.e., nodes quickly joining and

leaving the group as determined by dynamic properties such as target detection.

We refer to two ionic approaches of this kind. The first one is EnviroTrack (Abdelzaher et al.,

2004), which provides a convenient and powerful interface to the application developer to facilitate

programming WSN applications that track dynamic objects in the physical environment. For this

purpose, EnviroTrack uses addresses assigned to physical events in the environment. For example,

a set of sensors detecting the same event are automatically integrated in a group. As other group-

based approaches EnviroTrack also provides data sharing and aggregation features. However, it

includes a sophisticated distributed group management protocol to support highly dynamic group

membership.

The second approach is integrated in the SPIDEY language (Mottola and Picco, 2006) for

WSN programming, which defines the notion of logical neighborhood. Each node has a logical

representation that includes exported attributes, some of which are static, e.g., node type, and

others are dynamic, e.g., sensor data. A logical neighborhood can be defined using a predicate that

conditions these attributes. This allows joining the intuitive concept of neighborhood with that of

dynamic groups. SPIDEY provides APIs to communicate within the logical neighborhood that are

supported by an efficient routing mechanism.

2.3.3 Macroprogramming

Network-level programming treats the whole network as a single abstract machine. Two typical

approaches can be found in this class, the database approach, in which the whole WSN is managed

like a real-time database accessed with queries, and macroprogramming that provides high-level

programming constructs to control the behavior of the whole network. The latter is the most

common and it is frequently taken as a synonym of network-level programming (Mottola and

Picco, 2011).

Macroprogramming has been a popular area of the research in WSN for more than a decade,

already. Some well-known works include Regiment (Newton et al., 2007), Abstract Task Graph

(Bakshi et al., 2005), Kairos (Gummadi et al., 2005) and Flask (Mainland et al., 2008), from which

we give an overview of the first two.

Regiment is a functional reactive programming model, which treats the outputs of sensor nodes

as streams. A programmer can write functionalities based on these streams instead of worrying

about the nodes. There are some basic primitives, such as rmap, rfilter and rfold, to operate on

these streams, as shown in Figure 2.6. The streams can be combined into groups which are called

regions. Due to using a functional approach, Regiment provides a high level of accuracy.

As opposed to Regiment and its functional approach, Abstract Task Graph (ATaG) follows a

data driven model. In ATaG, every application is divided into three declarations: Abstract Tasks,

Abstract Data and Abstract Channels. Abstract Tasks represent the type of processing in any appli-

cation, Abstract Data represents the type of data handled by the applications and Abstract Channel

associates the task declaration with data declaration. Using these declarations any application can
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Get the temperature values

Filter the values above threshold

Operate on the filtered values

rmap(sense("temp",id),reg)

rfold(do_sum, reg)

rfilter(thresh(id),reg)

Streams

Region

Figure 2.6: Regiment Macroprogramming with some basic primitives

be described by a model, as shown in Figure 2.7, and then this model can be instantiated any num-

ber of times through out the sensor network. ATaG provides abstraction because the number and

placement of applications can be determined at compile or run time according to target devices.

1 node /room

Average

10 ms

Temperature

Abstract
Channel

Instantiation

Abstract
 Tasks

Frequency

Abstract Data

Abstract
Channel

Figure 2.7: Abstract model of an application in Abstract Task Graph and its instantiation

One of the limitations of these early works is that they do not take into account the poten-

tial diversity of devices in the sensor network. They essentially considered homogeneous WSN.

However, such diversity became more relevant with time given the growing availability of more

capable IoT devices. These devices bring in new capabilities, e.g., stronger in-network processing,

and imply new challenges, too, e.g., presence of different software and hardware platforms and

need for more complex resource management. Some of these challenges were already addressed

in earlier works. For example, Nano-CF (Gupta et al., 2011) is a macroprogramming framework

designed to support in-network processing and resource management to enable concurrent appli-

cation execution. This particular aspect of multi-application support will be further developed in

the next section.

Another example is T-Res (Alessandrelli et al., 2013), which deserves a special reference for

the influence it had on our work. T-Res also follows a macroprogramming approach to decouple

the IoT applications from the network infrastructure while still supporting in-network processing.

This allows the user to think about applications in an abstract manner, offloading any responsibili-

ties regarding the resources needed for the actual computations. One important feature of T-Res is

the use of IPv6 and CoAP, building on the concept of resources that can be control through REST

operations, thus increasing interoperability and modularity. In Chapter 3 we will introduce T-Res

in more detail and show how its features can be used to support mobility.
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More recent work embraced the diversity of IoT devices. For example, Giang et al. (2016)

propose a programming model that focuses on coordinating heterogeneous IoT distributed sys-

tems in the context of smart cities. Other complete framework-based IoT solutions that address

interoperability can be found in (Hatzivasilis et al., 2018; Gaglio et al., 2019).

In (Giang et al., 2016), which we referred just above, one aspect that authors also considered,

and which is particularly relevant in the scope of our thesis, is dynamic user requirements. These

concerns with dynamic behavior became growingly important during the last decade leading to

significant amount of related recent work. For example, Afanasov et al. (2018) propose a set

of tools to define, implement and verify desired adaptive behavior in WSN. This topic will be

further extended later in this chapter in the scope of context-awareness and adaptation and/or

reconfiguration to multiple contexts of operation, which is central to our thesis.

2.3.4 Multi-application support

The evolution of the technology behind WSN brought significant increases in hardware integra-

tion, effectiveness and efficiency. This is visible in the typical 8-bit microcontrollers used in WSN

nodes. For example, the relatively recent ATMEGA128RFA1 microcontroller uses an AVR en-

hanced RISC architecture capable of executing powerful instructions in a single clock cycle with

a fully static design granting a throughput close to 1 MIPS per MHz. More importantly, the static

design allows the designer to tune and adapt the trade-off power consumption versus processing

speed. Moreover, integrated with the processor is a high data rate transceiver for the 2.4 GHz ISM

band that has hardware assisted features, e.g., frame handling. This grants the hardware platform

sufficient capacity to multiplex several concurrent applications with low energy consumption. This

feature is further motivated by the capability to handle multiple sensors integrated together on the

same node with low impact on cost, which can enable different concurrent sensing tasks.

Naturally, this evolution created the opportunity to turn WSN into networks of nodes on which

one or more users can deploy multiple applications that may run at the same time. This requires

specific support in complementary directions, such as to write applications transparently to each

other, to abstract the specific IO, to develop protocols to deploy and control applications, and

architectures to track resource usage, from processing and communication resources to memory

and specific IO. At the end, the goal is to improve scalability, flexibility, adaptivity and energy-

efficiency of WSN physical deployments.

The path towards supporting multi-application execution naturally crosses several of the di-

mensions of the classification on programming models that we addressed before. This is expected

since the programming models provide the abstractions on which multi-application execution lies.

This is just to say why we will refer again to some works that were already referred in the previous

sections.

One early work towards supporting multiple applications that had reasonable impact in the

WSN community is (Yu et al., 2006). It proposed the Melete system, which supported multiple

applications based on the node-level VM Mate. Virtualization techniques have frequently been

the enabler of multi-application execution. Ultimately, the whole physical WSN is virtualized,
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offering the users logical subsets of the network that they can use transparently as a separate

network on its own. These became know as VSN (Sarakis et al., 2012), as we already referred

before, and gained significant adherence in the current WSN landscape (Khan et al., 2016).

SenShare (Leontiadis et al., 2012) is another example of using abstraction to support multiple

applications. It is an early work towards virtual sensor networks, building upon the concept of

overlay networks. SenShare separates the infrastructure from running applications in such a way

that each application runs on its isolated environment, i.e., an overlay network that accesses node

hardware through an abstraction layer.

Other frameworks were developed to support multiple applications focusing on simplifying

in-network programming. The purpose was to allow users to deploy applications on the network

without necessarily knowing programming languages. CITA (Ravindranath et al., 2012) is one of

the finest examples of how users can deploy multiple applications that run at the same time over

a mobile sensing platform. It provides abstraction between building the application on the user

side and programming it on the server side. The user can simply give commands in laymen terms

such as "turn off WiFi while outside the home". The programmer, in turn, programs the server

side in a platform-independent way, writing code that can be deployed on one or multiple devices

seemingly.

In a similar line, other frameworks used macroprogramming to provide abstraction and support

multiple applications. PyoT (Azzara et al., 2014) is one such example, aiming at the simplification

of development for applications that coordinate activities across groups of nodes. The framework

abstracts nodes functionality and low-level communication details, allowing programmers to fo-

cus on high-level application goals. This abstraction also facilitates distribution, supporting in-

network processing applications and providing a distributed sensor data storage system that can be

used as data sensor caching to reduce communications. Similarly to our work, PyoT is built on top

of T-Res, referred in the previous section, using IPv6 and CoAP resources, but it adds a resource

monitor capable of resource discovery and the possibility to program WSN applications as Python

scripts. However, while PyoT aimed at simplifying the development of complex applications for

the Internet of Things, our work aims at providing autonomous reconfiguration mechanisms that

allow applications to continuously adapt to varying execution contexts.

An almost parallel thread to PyoT is PyFUNS (Bocchino et al., 2015). Both allow program-

ming WSN applications with Python scripts and use IPv6 and CoAP to control applications in

the network, providing abstraction and modularity. However, PyFUNS builds directly on Contiki

and uses a Python-based small footprint virtual machine, namely PyMite, to isolate and run ap-

plications. PyFUNS, similarly to PyoT and particularly T-Res, has been very influential in our

work.

A substantially different focus is found in this early work, UMADE (Bhattacharya et al.,

2010). This framework focuses on Cyber-Physical Systems and on assigning nodes to applica-

tions according to a quality-of-monitoring (QoM) metric. This metric, for any physical parameter,

depends on the measurements from various associated sensors. One node’s contribution to the

QoM of the whole application depends on other nodes as well. Hence, all such nodes with QoM
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dependencies are allocated to the same application, leading to a positive effect on QoM.

Finally, we present another early work that supports multiple applications on a WSN, focusing

on yet another perspective, the management of system resources in this case. It is called Nano-CF

(Gupta et al., 2011) and it supports the deployment and concurrent execution of multiple indepen-

dently written applications. Nano-CF builds upon the Nano-RK (Eswaran et al., 2005) operating

system that manages the system resources. However, Nano-RK lacks adequate support to net-

work communications scheduling. This limitation was handled later on by Gupta et al. (2014)

with the so-called Network Harmonized Scheduling (NHS). NHS is a technique that schedules

packets from different applications on same node in such way that the radio transmission remains

coordinated across the network. NHS uses a harmonizing period to transmit all the packets from

the node, which is inspired on Rate Harmonized Scheduling (Rowe et al., 2008). It is a fully dis-

tributed approach that works well in multi-hop networks that lack a central coordinator. Later on,

in Chapter 6, we will show how our work can benefit from NHS and extend it to support dynamic

application settings.

2.4 Context-Awareness and Mobility

In the previous section we addressed WSN programming and we saw different programming ab-

stractions, many of which providing specific support to aspects like application development and

deployment, resource allocation, energy management and concurrent applications.

A specific topic we referred a few times but did not cover in detail, and which is central to

our thesis, is dynamic adaptation. This is particularly relevant when the WSN applications need

to make an efficient use of the system even when the operational scenarios change, be it due to

changes in physical parameters such as location of nodes, i.e., mobility, or in the system structure

such as availability of nodes, energy levels, etc. For this purpose, programmers need to account

for resources globally and anticipate possible future scenarios and thus program actions to adapt

to such scenarios.

These concerns frequently extend beyond the strict domain of WSN into broader areas such as

IoT and networked mobile systems. Nowadays, it is common to have smartphones and wearable

devices contributing to, or integrating, general WSN systems. Because of the intrinsic mobility

of these devices, such systems are also referred to, in the research literature, as Mobile Sensing

Systems (Macias et al., 2013). In these systems, the sensing can be performed by both mobile

devices and traditional WSN devices together (Figure 2.8). For example, a smartphone can provide

temperature data, a wearable device can complement a motion sensor for better accuracy while a

smart card or RFID tag can provide user presence and identification information.

Therefore, WSN, pushed by these mobile sensing systems, have become much more pervasive

and ubiquitous than ever before. Devices can collect more quantity of data about the user and also

different types of data such as location, temperature, motion, etc. Such broad expansion of data

collection can allow a system to have a better understanding of its users and environment. It is
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Figure 2.8: WSN and Mobile Sensing Systems.

now possible to infer different operational scenarios during system run-time and also adapt based

on such scenarios.

Mobility, in particular, is crucial as it is one of the main triggers of operational changes. More-

over, discussing operational changes requires a structured look on what actually changes, which

leads to the concept of context. In this section we will revisit the notions of context and context-

awareness in mobile systems that are keystones in our thesis, followed by an overview of context-

aware middleware architectures and context-aware programming, with an emphasis on the WSN

and IoT domains.

2.4.1 Basics of Context-Aware Mobile Systems

Context-aware mobile systems are a type of mobile systems that can observe the physical en-

vironment around them and adapt to it. Such systems are generally categorized as pervasive or

ubiquitous systems. These systems offer anytime, anywhere, anyone computing by creating clear

separations, i.e., interfaces with adequate abstractions, between devices, applications and users.

For a system to offer anytime, anywhere, anyone computing it must be aware of three key aspects

related to itself: i) where it is, i.e., the environment, ii) who it is with, i.e., the user, and iii) which

other resources are nearby, i.e., other systems. Some examples of these aspects are nearby peo-

ple, sensor or actuator devices, lighting conditions, noise levels, network connectivity, location of

devices, and even social status of the user. Those three aspects combined together can represent

an entity called context. Context can capture the status of the system, needs of the users and the

activities in the environment.
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The concept of context-awareness goes back to early research on ubiquitous computing con-

ducted at Xerox PARC in the early 1990s. The term context-aware was coined in an experimen-

tal work at PARC facilities with mobile devices called PARCTAB (Schilit et al., 1994). In this

work, context-awareness refers to context as location, identities of nearby people and objects, and

changes to those objects. In a contemporaneous work, Brown et al. (1997) define context as lo-

cation, identities of the people around the user, the time of day, season, temperature, etc. These

works define context to be the constantly changing execution environment, including i) comput-

ing, ii) user and iii) physical parts of the environment. Abowd et al. (1999) frame the concept in a

better defined form that we reproduce here, for the importance it has within our thesis:

Context is any information that can be used to characterize the situation of an entity. An

entity is a person, place, or object that is considered relevant to the interaction between a

user and an application, including the user and applications themselves.

This definition makes it easier for an application developer to enumerate the context for a

given application scenario. If a piece of information can be used to characterize the situation of a

participant in an interaction, then that information is context.

A categorization of context can help application developers uncover the pieces of context that,

most likely, will be useful in the application itself. The previously referred descriptions of context

lead to different context types. However, there are certain types of context that are more relevant

than other. Those types we consider more relevant within our scope, i.e., WSN and IoT systems

with mobility, are location, identity, activity and time. The location type helps identifying where,

identity helps with who, activity helps with what and time helps with when. To characterize a

context properly, all of these four types can be used in different combinations.

Context-aware mobile system were first defined by Schilit and Theimer (1994). In their work,

the authors referred to such a system as software that adapts according to its location of use, the

collection of nearby people and objects, as well as changes to those objects over time. Rephrasing

to refer explicitly to the notion of context, we also reproduce here the definition of context-aware

system as initially given by Abowd et al. (1999):

A system is context-aware if it uses context to provide relevant information and/or services

to the user, where relevancy depends on the user’s task.

In 2009, Hong et al. (2009) provide one of the first extensive literature reviews of context-

aware systems, covering the research carried out in this topic in the first decade of the years 2000.

This review proposed an abstract layered architecture for context-aware systems. According to

this study, such architecture is composed of the following four layers:
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• Network infrastructure layer that involves the network that supports context-aware mobile

systems and allows sensors to collect low-level context-related information;

• Middleware layer that manages processes and context-related information, as well as their

instantiation and interactions to support desired abstractions;

• Application layer that provides users with services and abstractions that are relevant for

different classes of applications;

• User infrastructure layer that offers suitable interfaces for interaction with the user.

Beyond these layers, Hong et al. (2009) also refer to a concept and research layer that includes

the basic research on the concepts that support context-aware systems. However, in the following

we focus on the middleware layer, for its importance in the operation of context-aware systems

and in our thesis, and also because it was not specifically covered in the previous sections.

2.4.2 Context-aware Middleware Architectures

Middleware generally refers to a software layer encompassing operational information, its orga-

nization and the processes that manage it, to support desired abstractions that are not natively

provided by the underlying platform, typically an operating system. In the scope of context-aware

systems, it is the middleware that supports acquiring contextual information, reason about it using

different logic and then adapt to changing contexts. In their review, Hong et al. (2009) propose

a classification of middleware for context-aware systems in six categories that we refer next with

existing examples.

Agent-based middleware relies on mobile agents. The Apricot Agent Platform (Alahuhta

et al., 2006) is an example designed for developing context-aware, personalized and user-friendly

mobile services. This agent architecture consists of an agent platform, agents and agent containers,

that provides built-in functionality and communication mechanisms.

Reflective middleware is characterized by its distinguishing ability to model itself through

self-representation, allowing the manipulation of its behavior. An example of this category is

the Mobile Platform for Actively Deployable Service (MobiPADS) system (Chan and Siu-Nam

Chuang, 2003). It provides an execution platform that supports active service deployment and

reconfiguration of the service composition following varying contexts, adjusting the configuration

of resources to optimize the operations of mobile applications.

Metadata-based middleware uses metadata such as information on users, devices, resources

and runtime binding strategies to carry out dynamic binding of services. CARMEN (Bellavista

et al., 2003) is an example of such a middleware that combines metadata with mobile agents to

achieve component reusability and automatic service reconfiguration upon context changes. The

context is determined using metadata, including declarative management policies and profiles for

user preferences, terminal capabilities and resource characteristics.

Tuple spaces-based middleware uses a blackboard, i.e., a shared repository of information,

to hold partially known information in the form of a tuple-space and share it among applications.
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TinyLIME (Curino et al., 2005) is an extension of a previous MANETs middleware to the scope of

WSN that provides access to sensors through a tuple space interface. Mobile monitoring stations

access the sensors within a proximity range and perform location-dependent data collection.

Adaptive and objective-based middleware can be found in smart-homes as well as gen-

erally in WSN. It uses a quality-based objective function to optimize the matching between the

application QoS requirements and the quality that a specific context can provide. An example is

MidFusion (Alex et al., 2008) that aims at WSN and allows discovering and selecting dynamically

the best subset of sensors that maximize QoS for the application and minimize the data acquisition

cost.

OSGi-based middleware uses the OSGi specification3, describing a modular system and a

service platform for the Java programming language that implements a complete and dynamic

component model. OSGi allows both applications and components to be remotely installed,

started, stopped, updated and uninstalled without requiring a reboot. An example of an OSGi-

based middleware is CMM (Zhiwen Yu et al., 2006), a context-aware multimedia middleware that

supports multimedia content filtering, recommendation, and adaptation according to a dynamic

context. It also performs context aggregation, reasoning, and learning. OSGi is key for device and

service interoperability.

A more recent survey of context-aware middleware architectures is presented in (Li et al.,

2015). They discuss the principles of context, context awareness, context modelling, and con-

text reasoning to set a baseline to then provide an overview of eleven paradigmatic middleware

architectures. These architectures are then compared on architectural style, context abstraction,

context reasoning, scalability, fault tolerance, interoperability, service discovery, storage, security

and privacy, context-awareness level, and cloud-based big-data analytics. As a conclusion, the

authors stated that, at the time the paper was published there was no context-aware middleware

architecture that complied with all requirements. We believe this is still true.

Li et al. (2015) refer to eleven paradigmatic middleware architectures, some of which could

be included in the classes referred above. Nevertheless, we refer briefly to the following three for

focusing on concepts that are particularly relevant to our thesis, namely heterogeneity of devices,

simplicity of programming applications and contexts, efficiency in using resources and suitability

for wide-spread usage.

FlexRFID (El Khaddar et al., 2015) is a policy-based middleware that aims at facilitating the

development of context-aware applications and the integration of heterogeneous devices. Hetero-

geneity is supported on a Device Abstraction Layer (DAL) that abstracts the interactive operations

among the physical network devices. The main feature of FlexRFID, though, is the capability of

policy enforcement, which can be used to ensure privacy, constrain access control or offer cus-

tomized services.

Octopus (Bernhard Firner et al., 2011) is an open-source and extensible middleware system for

data management and IoT applications that is specifically designed to help non-technical people to

deploy sensors, manage context and develop applications quickly. Octopus follows a distributed

3https://docs.osgi.org/specification/osgi.core/8.0.0/framework.introduction.html
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node-based architecture and is organized in abstraction layers that separate the developer from

data analysis and application manipulation.

Finally, we refer to FIWARE4 as an example of a middleware aiming at wide-spread usage. It

provides an infrastructure to support creation and delivery of services with high QoS and security,

and which can be easily adapted to multiple domains, such as safety, logistics, environment, en-

ergy, traffic and mobility, and agriculture. Its architecture is composed of elements called enablers

that manage aspects of the system, e.g., context, and support the three main middleware abstrac-

tions, namely Actors, Resources, and Applications. One specific type of enablers, the Cognitive

Enablers, make use of metadata to take decisions regarding the efficient use of available resources

while satisfying the application requirements.

In a recent work, Temdee and Prasad (2018) present another survey of context-aware middle-

ware architectures, but it includes essentially the same examples as those already included in the

previously referred surveys. Nevertheless, it also includes a survey of context-aware middleware

applications, with a focus on smart environments such as smart homes and personalized spaces.

2.4.3 Programming for Context-Awareness

One particularly challenging issue in context-aware systems is their programming, which has to

consider the applications operating in dynamic scenarios as well as the contexts that represent

such scenarios. There has been some effort towards developing complete software solutions for

context-aware systems, such as (Villegas, 2013), but they are still hard to program, putting sig-

nificant responsibility on the programmer to manage the context. Conversely, there is not much

effort towards providing abstractions for the sensor nodes to detect changes globally and adapt

accordingly.

Among the existing approaches to tackle the programming of context-aware systems is Context-

Oriented Programming (COP) (Hirschfeld et al., 2008a), a network-level approach according to

the classification in Section 2.3. COP is a tool to modularize context-dependent behavioral varia-

tions in an application, where such variations can be dynamically switched on and off in response

to changes of execution contexts. For example, a navigation program running on a smartphone

displays a map with different resolution (behavioral variations) depending on whether the device

is outdoor and indoor (execution contexts). Along the years, COP was further enhanced with spe-

cific programming techniques (Ghezzi et al., 2010b; Kamina et al., 2011; Salvaneschi et al., 2012;

Sehic et al., 2011; Aotani and Leavens, 2016).

Another example of context-aware programming is EventCJ (Aotani et al., 2011), a Java-

based language that combines existing modularization mechanisms for context-dependent behav-

ioral variations with a novel event-based layer activation mechanism. It employs the layered

partial methods that can also be found in other context-aware programming languages such as

ContextJ (Hirschfeld et al., 2008b) and JCop (Appeltauer et al., 2010). There are many similar

event-based programming languages which can be used for context-aware programming.

4https://www.fiware.org/
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In the same way, there are several other examples of context-aware programming. For exam-

ple, ContextL (Costanza et al., 2006) is an extension of Common Lisp Object System (DeMichiel

and Gabriel, 1987) that describes features independently of the object model. The Erlang program-

ming language can also be adapted to introduce context in a parallel or distributed system (Ghezzi

et al., 2010a). This approach natively supports distribution and concurrency. Erlang comes with

the OTP platform, which provides a rich set of libraries supporting reliable, large-scale, distributed

and dynamically evolvable applications.

Afanasov et al. (2014) also focus on providing support for context-awareness, specifically for

WSN. They note that when contexts change, so do applications, too. However, there is still a need

for more support in such areas for programmers and end-users. Another complete framework is

RTCOP (Tanigawa et al., 2019), which is based on C++ and aims at providing support to context-

awareness in generic embedded systems, not just for WSN.

Context Toolkit (Salber et al., 1999) provides an extensive support to build context-aware

applications using features like context widgets. This is a step forward in easiness of programming

making this approach one of the closest solutions to the concerns underlying our thesis. Recently,

following the general trend of using Machine Learning, the work in (Deniz et al., 2020) proposed

using Deep Learning to detect context in Cyber-Physical Systems. This approach also alleviates

the programmer since it uses a model that is defined through training and learning, but still these

steps requires significant effort.

There are many more context-aware programming tools available (Gonzalez Montesinos et al.,

2011). However, most are targeted to mobile systems with complex devices or continuous user

interface. WSN applications must require less direct user interface once applications are deployed.

In spite of all the evolution and solutions reported above, there is still a lack of open and easy

to use approaches to define any kind of adaptations, particularly the corresponding abstraction and

its re-usability.

2.5 Summary

In this chapter we have discussed related research work in the major aspects of the WSNs, namely

in localization, networking, programming and adaptivity. To highlight the importance of the prob-

lem underlying our thesis, we focused on programming wireless sensor networks, particularly

for context-awareness, and looked at different programming approaches proposed by the research

community roughly after the 1990s. In this review we did not find any context-aware middleware,

particularly for WSN, that could support heterogeneous devices, high-level programming of ap-

plications and contexts suitable for non-expert users and efficient use of resources, while being

suitable for wide-spread usage. This highlights the novelty and relevance of the middleware we

developed and present in Chapter 4, which supports all these properties.
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Chapter 3

Macroprogramming and Mobility

As we saw in the previous chapters, WSN applications were originally designed to perform a

single task, repetitively, often in strictly controlled environments. This meant that programming

applications for a specific system was a one-time task. Nowadays, WSN have become an integral

part of the IoT, making it more pervasive, powerful, reliable and able to incorporate an increasing

number of functionalities. These advancements also enabled the development of a self-adapting

IoT that can respond to changes in context, such as location, activity, availability of resources or

time, without need of actions from the users. This development is our target, towards Context-

Aware Sensor Networks, but to achieve it we need adequate tools.

In this chapter we introduce and discuss two technical steps upon which we will develop our

main contributions in the following chapters. These steps are T-Res (Alessandrelli et al., 2013) and

its extension to support mobility mT-Res (Gaur, 2015). T-Res decouples the IoT applications from

the network infrastructure while supporting in-network processing. Thus, it provides a fundamen-

tal property to our purposes, which is abstraction. However, despite its flexibility, T-Res does not

consider another fundamental property that we need, which is mobility of nodes, particularly as

a driver of context changes. Thus, we added a mobility feature to it and called it mT-Res (Gaur,

2015), which is a preliminary contribution of this thesis, as stated in Section 1.7. We will use

the abstraction and the mobility of mT-Res to develop our main contribution, i.e., a context-aware

middleware for sensor networks.

3.1 T-Res: macroprogramming for IoT

T-Res is a task-based approach to macroprogramming for IoT nodes. As mentioned in (Alessan-

drelli et al., 2013), T-Res is meant to support the following functionalities:

• Resource Monitoring: Using T-Res, it is possible to monitor one or more resources identi-

fied with IPv6 addresses;

• Data Processing: T-Res allows for processing of data collected and/or generated by re-

sources;

43
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• Connecting Tasks with Resources: T-Res connects tasks with different resources using both

input and output connectors.

T-Res is able to support these functionalities by enabling representation of a task as a resource

itself. For example, an IoT device executing a task would represent two resources, the device

itself as one resource and the task as another resource. Similarly to the IoT device, this task is

also assigned an IPv6 address that allows addressing and controlling it. This control is done using

Constrained Application Protocol methods. These methods are used to create, remove, modify

or retrieve resources. The CoAP methods used in T-Res are GET, POST, PUT and DELETE, as

well as the OBSERVE feature. With these methods a user can build applications by connecting

tasks to other tasks, or generally other resources, or assigning various resources to tasks including

input and output devices. This also allows for resources to automatically retrieve tasks from other

resources or other complex scenarios for automatically finding tasks or resources.

3.1.1 T-Res Basics

As referred above, in T-Res the concept of task is central. In order to connect tasks to resources in

general, be it other tasks or input / output devices, T-Res assigns the following four sub-resources

to each task:

• Input Source (/is) collects input data for the respective task from the devices declared here;

• Processing Function (/pf) is the actual code of the task that will process the referred input(s)

and generate the expected output;

• Output Destinations (/od) is the set of destination devices where the output of the respec-

tive task is posted;

• Last Output (/lo) stores the most recent output generated by the respective task.

IPV6 URI addresses are used to assign input and outputs to /is and /od, respectively. An exe-

cutable file is provided to /pf as the task function. This function will consume the input obtained

from /is and generate an output that will be sent to /od. Note that inputs are received with the OB-

SERVE feature of CoAP, which supports asynchronous communication. This allows triggering

the task function /pf automatically, as a callback function, whenever new input arrives at /is. Fi-

nally, /lo also has an assigned URI and makes available the output that was generated by /pf in the

last function invocation and this can also be used as input for another task. Table 3.1 summarises

the sub-resource structure of a task together with the CoAP methods that are used to access the

addressed resources.

3.1.2 T-Res Processing Functions

As previously mentioned, T-Res isolates the key data-processing part of a task from its input

and output using processing function sub-resource. In order to have a fully realized macropro-

gramming approach, this processing function sub-resource has to be device independent. This
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Table 3.1: The sub-resource structure of T-Res tasks and associated CoAP methods.

Tasks Sub-resources Possible actions CoAP methods
Task_Name input sources (/is) fetch/update GET, PUT, POST

processing function (/pf) fetch/update GET, PUT
output destinations (/od) fetch/update GET, PUT, POST
last output (/lo) fetch/observe GET

allows the mobility of the code across multiple resources in a WSN. To enable this, the processing

function is written in Python. Python is a scripting language that can be compiled directly into

executable bytecode and allows for ease of access for various interpreters. In addition, Python

scripts are commonly used for IoT devices and are getting more and more popular with machine-

to-machine applications.

Moreover, T-Res also provides to the processing functions written in Python an API to access

the task input/output data and state, namely:

• getInput() returns the value of the last input received;

• getInput() returns the tag of the last input received;

• setOutput() sets the output value;

• getState() retrieves the task state;

• saveState() saves the task state.

The tag is a string that identifies the source that triggered the data-processing function. This is

relevant when there are multiple inputs that can trigger the processing function so that the function

can select the right variable to receive the new input. The state is represented by an object and

can be defined by the user and which allows preserving the history of the processing function

execution. The example that we show in the following section clarifies these features.

3.1.3 Illustrative Example using T-Res

The need for the abstraction that T-Res provides becomes clear when similar functionalities are

needed from an IoT system across multiple scenarios. For example, let us consider an IoT system

where a temperature sensor is used to track the temperature of a room and actuate a heating system,

accordingly. Most common heating devices already include the capability to sense temperature

locally, but if additional resources, namely external temperature sensors, are available the system

may give preference to those additional resources. This is demonstrated in Figure 3.1 where

the same IoT temperature control system can be applied to two different scenarios transparently,

namely a smart office and a smart home.

To better describe T-Res functionality, we follow a similar example to that provided in (Alessan-

drelli et al., 2013) applied to the smart home scenario above. Consider an abstract IoT application

that keeps the temperature of a given space between two values, say LO and HI. The application
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Figure 3.1: Example of an abstract IoT-based system applied to two different scenarios.

can operate with just a heating device provided with a local sensor. In our concrete case, let us

consider this device is assigned the address aaaa::1 and that the sensor and actuator are accessible

through CoAP methods in the following URIs, respectively:

coap : / / [ aaaa : : 1 ] / s e n s / TEMP−HEAT−LIVING
coap : / / [ aaaa : : 1 ] / a c t / HEAT−LIVING

The sensor can be read sending a GET command, and the heater can be controlled ("on"/"off")

sending a PUT command, to the respective URIs. This setting is shown in Figure 3.2.

In order to build the desired temperature control application we need to create a T-Res task in

an existing resource. In this case, we create the task TEMP-CONTROL in the heating device1.

This is achieved sending a PUT command to the following URI:

coap : / / [ aaaa : : 1 ] / t a s k s / TEMP−CONTROL

Now we need to set the sub-resources of the task appropriately. At this point, the task will read

from the local sensor and actuate in the local actuator. Thus:

/ i s :
coap : / / [ aaaa : : 1 ] / s e n s / TEMP−HEAT−LIVING

/ od :
coap : / / [ aaaa : : 1 ] / a c t / HEAT−LIVING

The /pf sub-resource is then set with the bytecode from the Python script that performs the

desired action. In this example, the bytecode can be complied from the following Python script,

in which HI and LO are adequate predefined constants:

1Note that a T-Res task can be created in any node in the system.
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Figure 3.2: Initial application deployment with a T-Res resource in the heating device.

from t r e s import *

t = g e t I n p u t ( )
i f t < LO:
s e t O u t p u t ( " on " )
i f t > HI :
s e t O u t p u t ( " o f f " )

As referred in (Alessandrelli et al., 2013), the script above has the inconvenience that it is

sending commands to the actuator every time it receives an input. This is not needed most of the

times, since only changes to the state of the actuator need to be applied to the output. This can be

easily fixed using the task state. This is shown in the following script that includes the definition

of the state class with a variable prev that holds the last command sent to the actuator.
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from t r e s import *
c l a s s s t a t e :

def _ _ i n i t _ _ ( s e l f ) :
s e l f . p r ev = " o f f "

t = g e t I n p u t ( )
s = g e t S t a t e ( s t a t e )
i f ( t < LO) and s . p r ev ==" o f f " :

s e t O u t p u t ( " on " )
s . p r ev = " on "

i f ( t > HI ) and ( s . p r ev ==" on " ) :
s e t O u t p u t ( " o f f " )
s . p r ev = " o f f "

s a v e S t a t e ( s )

Now consider that a new sensor is added to the scenario, namely NEW-TEMP-LIVING as

shown in Figure 3.3, with address aaaa::3. In this case, we want to adapt the application so that it

now reads from this sensor and not the sensor local to the actuator as before.

NEW-TEMP-LIVING

HEAT-LIVING

Smart Home Scenario

TEMP-HEAT-LIVING

Figure 3.3: Additional external sensor resource added.

In order to accomplish this adaptation, there is no need to write a new script for the new

temperature source. T-Res allows this reconfiguration by replacing the previous sensor (TEMP-

HEAT-LIVING) with the new temperature sensor (NEW-TEMP-LIVING) as input to the process-

ing function of the task TEMP-CONTROL. Thus, all that is needed is to set its /is sub-resource to
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the new sensor device:

/ i s :
coap : / / [ aaaa : : 3 ] / s e n s /NEW−TEMP−LIVING

Finally, consider that the new external sensor is provided with an alarm that can be switched

"on" or "off" remotely, designated TEMP-ALARM. To control the alarm we create another T-Res

task, namely ALARM-CONTROL. This task should read from all sensors available, in this case

TEMP-HEAT-LIVING and NEW-TEMP-LIVING, and set the alarm if all sensors are above a

predefined threshold TMAX. Likewise, if all sensors are below TMAX, then the alarm should be

reset. We deploy this task in the external sensor by issuing a PUT command to the following URI:

coap : / / [ aaaa : : 3 ] / t a s k s / ALARM−CONTROL

Then we set the sub-resources of the task as follows:

/ i s :
coap : / / [ aaaa : : 1 ] / s e n s / TEMP−HEAT−LIVING "T_LOC"
coap : / / [ aaaa : : 3 ] / s e n s /NEW−TEMP−LIVING "T_REM"

/ od :
coap : / / [ aaaa : : 3 ] / a c t / HEAT−LIVING

Note the tags specified after the URI of the sensors, which are used as alias of each sensor, to

allow distinguishing the inputs received in the processing function.

The processing function /pf can then be set to the byte code of the following Python script.

Note the use of the getInputTag() function to identify the input that triggered the task function

execution. Here we use a state variable to hold the last input from the sensor that was received in

the previous function invocation. This way, at each invocation the function receives input from one

sensor and reads the last value of the other sensor stored in the state, allowing a joint comparison

with the predefined constant threshold. Nevertheless, we also use the state variable to store the

previous state of the alarm, whether "on" or "off", so that commands to set or reset are sent only

on the state transitions.
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from t r e s import *
c l a s s s t a t e :

def _ _ i n i t _ _ ( s e l f ) :
s e l f . l o c = 0
s e l f . rem = 0
s e l f . p r ev = " o f f "

s = g e t S t a t e ( s t a t e )
t a g = g e t I n p u t T a g ( )
i f t a g == "T_LOC" :

s . l o c = g e t I n p u t ( )
e l i f t a g == "T_REM" :

s . rem = g e t I n p u t ( )
i f ( s . l o c > TMAX) and ( s . rem > TMAX) and ( s . p r ev ==" o f f " ) :

s e t O u t p u t ( " on " )
s . p r ev =" on "

e l i f ( s . l o c < TMAX) and ( s . rem < TMAX) and ( s . p r ev ==" on " ) :
s e t O u t p u t ( " o f f " )
s . p r ev =" o f f "

s a v e S t a t e ( s )

Finally, note that the current state of the heater and alarm are available in the respective /lo

sub-resources (last output). Suppose we wish to develop a new task that logs the state of these

devices and its transitions. Such a task could simply have its /is sub-resource set as follows. If the

task was not expected to generate any action, its output destination sub-resource /od could be left

empty.

/ i s :
coap : / / [ aaaa : : 1 ] / t a s k s / TEMP−CONTROL/ l o
coap : / / [ aaaa : : 3 ] / t a s k s / ALARM−CONTROL/ l o

/ od :

3.2 Extending T-Res with Mobility

To understand the limitation of T-Res with respect to mobility and context changes, we resort to

another example from (Alessandrelli et al., 2013), similar to the one we examined before. Consider

again an application that controls the temperature of a room, this time using one heater and two

external nodes, with addresses aaaa::1, aaaa::2, aaaa::3, respectively. We define one T-Res task,

namely avgtemp, that computes the average temperature from the sensors available (two in this

case) and actuates on the heater. This task is deployed on the sensor with address aaaa::2 as

shown in Figure 3.4. The figure also shows another T-Res task, namely control, deployed on the

heater node, which is not relevant for now. More importantly is the sub-resources structure of the

T-Res avgtemp task. The /is sub-resource is set to read from the local sensor in aaaa::2 and from

the other sensor in aaaa::3, while the /od sub-resource is set to the heating actuator in aaaa::1.
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aaaa::2

/sens/temp
/tasks/avgtemp/is
/tasks/avgtemp/pf
/tasks/avgtemp/od
/tasks/avgtemp/lo
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/act/heater
/tasks/control/is
/tasks/control/pf
/tasks/control/od
/tasks/control/lo

X

Figure 3.4: T-Res task structure for a room temperature control application.

Now, suppose that the external temperature sensor in aaaa::3 is part of a mobile node that, at

some point, moves out of reach and becomes unavailable. This could also be caused by energy

depletion or communication failure. Thus, the avgtemp task loses one of its /is resources and, to

continue generating consistent control values, it needs to be reconfigured so that it now reads from

the local sensor in aaaa::2, only. An obvious reconfiguration is removing the address of the absent

sensor from the /is of avgtemp. Second, it is important that the processing function /pf is designed

to handle this situation and continue generating correct commands to the heater. Alternatively,

consider that the control task could already be prepared to control the heater from a single sensor.

Thus, we could suspend avgtemp and redirect the input and output of control appropriately.

This apparently simple modification, in T-Res, has to be done by the user, providing manual

instructions using a CoAP agent. Although there may be many other possible solutions to support

an automatic reconfiguration of this type, we opted to extend T-Res with this capability, because

of the high level of abstraction it provides, which is in-line with what we need to support context-

awareness. We called this extension mT-Res (Gaur, 2015).

Therefore, our goal when developing mT-Res is to detect situations that represent changes

of context, like the silent sensor failure in the previous example, be it due to mobility, energy,

communications or other, and perform the necessary changes in the tasks sub-resource structures,

automatically.

This is what we refer to as mobility support and it is the core of the mT-Res extension to

T-Res. We define mobility as a feature where the resources and the processing function can be

moved around to satisfy system context requirements, without needing explicit user inputs. In the

previous example, the failure of a temperature node should be detected by the system that should

be able to reconfigure the avgtemp task /is sub-resource as also shown in Figure 3.4.

One final note to acknowledge that PyoT (Azzara et al., 2014) is also an evolution of T-Res

that includes some support for mobility. It also has a resource monitor that tracks the current

status of all resources and can trigger reconfiguration events. However, it had in mind multiple

application support and distributed sensor data storage, which is a different direction than the

context-awareness in heterogeneous networks that we pursue. Therefore, we decided to extend
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T-Res while keeping its main features, just by adding two architectural elements as we will see

further on, in mT-Res. Then, we left the extension for context-awareness to be developed on top

of mT-Res.

3.2.1 mT-Res Architecture

To achieve the goals referred above, dynamic management elements must be added to the system,

capable of detecting context changes and carry out the corresponding reconfigurations.

To achieve this goal we opted for an architecture with two centralized management elements,

namely the Resource Administrator and the Application Manager, as outlined in Figure 3.5. The

Resource Administrator deploys the code to host devices, assigns the input and output devices and

keeps track of any changes in the system. The Application Manager allows defining applications

and their requirements in terms of resources needed, both for input and output as well as for

processing. All other features of T-Res are kept unchanged.

Sensor Task Actuator

Application
Manager

Resource 
Administrator

T-Res

mT-Res

User

User
Manual
Automatic

CoAP

Methods

Figure 3.5: mT-Res, a simple middleware that extends T-Res with mobility support.

3.2.2 The Resource Administrator

This component is enabled via Python scripts, which provide automated CoAP operations (such

as PULL, PUSH, GET, and using OBSERVE), in form of Python functions. Once applications are

deployed and execution starts, the Resource Administrator updates the status of all active resources

regularly. At any point in time, if any deployment operation returns with an error, the framework

will once again execute the process to allocate resources. However, this time it will use another

available resource and not the one corresponding to the error received earlier.
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3.2.3 The Application Manager

This component uses a Django-based web framework to provide the so-called application form,

i.e., an application form where the user can provide the task and its parameters. The Application

Manager also reacts online to events generated by the Resource Administrator to configure all

applications whenever the context changes. The application form contains four fields, with some

resemblance to the T-Res sub-resources structure. These are: input, output, host and code. In

the code field, the user can provide the task processing function code, the same as in T-Res.

However, in the Input/Output/Host fields the user is asked to do an abstract selection from available

resources, by selecting the type of resource the user wants to use for input or output or to host the

code. The user does not need to provide URI addresses of specific resources. However, there

can be more complex scenarios where more details are required from the user, such as spatial

information, time bounds, etc.

3.2.4 Early Validation

We tested our implementation (Gaur, 2015) on the Cooja simulator in the Contiki Operating Sys-

tem. Cooja provides emulated motes based on the MSP430 microcontroller such as WiSMotes.

The simulation in Cooja is cycle accurate for each device and also bit-level accurate for the radio

transceivers of each device. This allows to have the same behavior in the simulator as on the ac-

tual hardware. IPv6 and CoAP support are provided by Contiki itself. Our implementation also

provides support for the CoAP operations in Python with the help of txthings (Wasilak, 2015).

For our experiments, first we consider the same example as provided by T-Res. This simple

example has four WiSMotes as shown in Figure 3.6. The functions of each mote are as follows:

mote 1 is a border router; mote 2 is a host sensor mote; mote 3 is an input sensor mote; and mote

4 is an output actuator mote. Both sensor motes 2 and 3 can measure the same physical parameter,

temperature in this case. The host sensor mote 2 takes input from the sensor mote 3, performs

some computations with it and provides output to the actuator mote 4.

In T-Res, these three devices have to be connected issuing CoAP PUT requests. The compiled

code of the task is also deployed using another PUT request to the URI address of host mote 2.

To complete the deployment, a POST request to host mote 2 is required. In T-Res the user is

required to issue all these CoAP requests via the Copper CoAP (Kovatsch, 2011) user agent for

Firefox. In mT-Res, the user can provide the same code using the application form provided by

the Application Manager. The Resource Administrator takes care of all CoAP operations.

In this example we take a look at a change in context due to energy failure. We demonstrate

the actions of mT-Res on failure of two motes, both input (Figure 3.6-a) and host (Figure 3.6-b),

respectively.

First, let us assume that after some time of operation, input sensor mote 3 fails due to energy

depletion. mT-Res will automatically reinitialize the deployment by replacing mote 3 with mote 2,

which possesses a sensor similar to that in mote 3. The Resource Administrator performs a PUT
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Figure 3.6: Four motes with a simple T-Res application

request to update the task input source as mote 2. After this, normal execution of the application

resumes.

In the second case, it is the host sensor mote 2 that fails, instead, and not the input sensor

mote 3. In this case, mT-Res reinitializes the deployment replacing mote 2 with mote 3 as host

mote for the task, and assigning itself, mote 3, as the input source, too. Once again, this is done by

the Resource Administrator that performs two PUT requests for both code and input, respectively.

3.3 Summary

In this chapter, we have discussed an existing macroprogramming solution to support adaptation

in WSN that also provides abstraction, namely T-Res. We have demonstrated T-Res using illus-

trative examples. In addition, we have contributed a new feature to T-Res to support application

mobility with automatic reconfiguration, which we called mT-Res, hence removing the reconfig-

uration responsibility from the user. mT-Res is a cornerstone for our main contribution, namely

Context-Aware Programming, and was integrated in it. Thus, we opted for excluding the detailed

description of its mechanisms from this chapter and integrate it in the following chapter, consis-

tently with the description of CAP. This work demonstrates the need of programming solutions

for context-aware sensor networks, particularly explicit context management, which is discussed

in next chapter.



Chapter 4

Context-Aware Programming (CAP)

This chapter brings focus back to the concept of context-awareness in WSN. Specifically, we pro-

pose a new middleware for WSN that provides an adequate programming framework to support

context-awareness, which we name Context-Aware Programming, or simply CAP. This middle-

ware builds on top of mT-Res, the T-Res extension to support mobility (Chapter 3). To provide

context-awareness, CAP goes one step beyond and provides a comprehensive solution resorting to

an architecture that manages automatically not only applications and resources but also contexts.

This architecture allows a user to program and interact with mobile sensing systems in a simplified

way, leveraging context-awareness capabilities efficiently.

CAP is a core contribution of our thesis as briefly introduced in Section 1.7, and we believe it

is a keystone to build context-aware WSN, which we referred to as CASE.

This chapter examines CAP essential design features. The following section revisits the con-

cept of programming for context-awareness and its relevance. Section 4.2 discusses the CAP

solution and its essential features to enable context-awareness. Section 4.3 presents CAP mid-

dleware architecture, its components and implementation. Section 4.4 discusses an experimental

validation of CAP, its results and the benefits of CAP features. Section 4.5 provides a summary of

the chapter.

4.1 The Core Concepts of CAP

The main driver of CAP is to support context-aware WSN by providing the user with appropriate

tools to write and deploy context-dependent applications. As we saw before, there have been many

efforts to provide better programming support for WSN users (Mottola and Picco, 2011). Some

proposals, e.g., by Alessandrelli et al. (2013), already provide support for adaptations, letting the

user express the desired goals without requiring knowledge about specific resources. Note that a

programming framework that provides independence of low-level details of resources and allows

for the mobility of applications over multiple resources is, in principle, capable of supporting

context-awareness.

55
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However, to develop context-awareness programs, it is important to refine the understanding

of context itself. This can be achieved by defining the context for different scenarios, e.g., related

to security, energy, communication or user behavior. For any system, these context scenarios

can change with time or multiple scenarios can exist at the same time. To adapt to new context

scenarios the system must take actions. These actions can be the deployment of new applications

across the network or re-configuration of existing applications for different resources.

In CAP we propose to take a declarative approach to program user applications. In this ap-

proach, a user is able to write self-contained blocks of code that can process a predefined type of

input and provide a certain type of output. We also propose three essential features for CAP, as

follows:

• Abstraction allows the user to write code without worrying about low-level details.

• Modularity allows the user to write code that is reusable in modules to provide specific

functions.

• Mobility allows the user to write code which can be moved around the network across any

suitable device.

To understand these features in a better way, let us take a look at the example of an HVAC

system operation shown in Figure 4.1. Application A takes input from the two temperature sensors

and provides the average temperature as output. Application B checks for user presence using the

input from a motion sensor and the average temperature from Application A and, if conditions

are satisfied, actuation for appropriate heating or cooling takes place. Application A is deployed

on one of the temperature sensors and Application B is deployed on the HVAC actuation device.

There are two motion sensors available which can be used by Application B.

Figure 4.1: Features for Context-Aware Programming
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Assume the motion sensor provided by the wearable device becomes unavailable in the net-

work, either due to low energy levels or connectivity. Application B can still use another motion

sensor available via the smartphone.

To accommodate this change, the code for Application B must not be bound to the hardware

address of one motion sensor. The user should be able to write the required input without specify-

ing each device to be used, but just the input data required. This is where the Abstraction feature

of CAP is required. Similarly, the complete HVAC application to detect user presence and cal-

culate an average temperature could be written all together, which would be the usual way using

traditional WSN programming tools such as Contiki. However, dividing this objective into two

self-contained applications provides the ability to change the input sensors for one application of

the whole objective without interrupting another application. Modularity helps in providing such

ease of access for the system. In another scenario, one of the temperature sensors hosting Applica-

tion A may become unavailable in the network. In that case, Mobility allows the system to deploy

Application A on the other device such as the smartphone to get the temperature as an input.

Abstraction, Modularity, and Mobility, altogether enable the user to write applications for

different contexts. When a context change occurs, the system can make appropriate adaptations

without any manual configurations by the user.

4.2 Implementing CAP

In order to implement CAP, we take inspiration from some of the existing programming frame-

works for WSN and add the necessary adaptations to accommodate context-awareness in mobile

sensing systems. Two such frameworks stand out for their influence on the way we implemented

CAP. One, already explained in the previous chapter, is T-Res (Alessandrelli et al., 2013). T-Res

is able to keep input and output parameters separate from the application code. This is an ex-

tremely useful feature that we also take advantage of, providing a similar abstraction between the

code written by the user and devices on which the code executes. The other work that inspired the

implementation of CAP is PyFuns (Bocchino et al., 2015), which also provides similar abstraction.

However, differently from those frameworks, CAP strives to provide the three features needed

for context-awareness altogether with full autonomy, namely Abstraction, Modularity and Mobil-

ity.

To achieve this purpose, CAP uses an architecture composed of three management components

as shown in Figure 4.2. These are the Application Manager, the Resource Administrator and the

Context Manager.

The Application Manager collects code from the user for each application and also helps in

keeping track of active applications. The Resource Administrator keeps track of the current system

composition concerning devices, resources and their status, and detects any changes in the system.

It also deploys the applications on host devices, assigning the input and output devices, and keeps

track of the current applications deployed in the system. Finally, the Context Manager collects
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Figure 4.2: Components of Context-Aware Programming

information on the contexts defined in the system and compiles a list of applications associated

with each context.

The CAP components are implemented using Python and Django programming languages.

The user applications are coded with nesC, similarly to T-Res and many other popular program-

ming frameworks. Due to its popularity, nesC allows familiar users to use CAP without learning

another new programming language or syntax.

4.2.1 Application Manager

The Application Manager utilizes a web form similar to that used in (Azzara et al., 2014) to collect

code from the user for each task, as shown in Figure 4.3. This form is built using Django and

has a backend in Python to refresh the list of applications. This form has four input fields, namely

input, output, host and code:

• Input is the type of input required by the application. The user can perform an abstract

selection from all the available resources using a drop-down list. There is no need to provide

an address or details of a particular device, just the type of resource is required. For example,

if there are two temperature sensors, three motion sensors, and one pressure sensor available

for the user, the web form will show the user a drop-down menu with these three choices:

temperature, motion and pressure.
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Figure 4.3: Programming web form similar to that used in (Azzara et al., 2014) provided by the
Application Manager

• Output is the output destination for the application. Similarly to the Input field it allows

selecting the destination device of this application output using a drop-down menu.

• Code is the nesC code written in an abstraction similar to T-Res.

• Host is the devices where the Code can be executed. Similarly to the Input and Output fields,

this is also selected from a drop-down menu that also provides keywords that represent

groups of devices, e.g., any.

These four fields are enough to specify a resource-independent application. Sometimes more

information about the devices maybe required such as time bounds, spatial limits, etc.

4.2.2 Resource Administrator

The Resource Administrator is also enabled via Python scripts (resource_track.py and resource_table.py).

These scripts also provide automated CoAP operations, namely PULL, PUSH, GET, and OB-

SERVE. CAP utilizes an open source library, namely txthings (Wasilak, 2015), to make use of

CoAP operations in Python.

As shown in Figure 4.2, the Resource Administrator creates and regularly updates two tables

implemented on a Current Resource Database, the first of which contains the status of all the

devices available in the system and resources provided by those devices1.

The available status indicates that the node is available for use by any application and active

status indicates that the node is already in use by a certain application. More status types can

be easily defined if convenient to provide more information on resources. For example, inactive

1From here on resource defines a sensing resource in a physical device, e.g. a smartphone has multiple resources
such as temperature, location, motion, etc.
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status could be used to indicate that a node is no longer in the network, e.g., due to energy deple-

tion, where as unavailable status could indicate that a node is temporarily incapable of running

applications, but may become available in the future.

After the user submits an application via the provided web form using the Application Man-

ager, the Resource Administrator takes decisions on which resources to use to host the code, to

take input from and provide output to. It creates a dictionary with the list of acceptable resources

for each decision, using the first table. If any of these lists are not created or are empty, the frame-

work notifies the user that the desired resources are not available. Once the decision is finalized,

the Resource Administrator creates a second table with these decisions, as shown in Figure 4.2.

Every time there is an update, the Resource Administrator will execute the CoAP operations

needed to deploy the code on the selected host device and assign the input and output devices using

URI addresses. For this it will choose one of the options from each list with adequate criteria and

keep the selection saved for future references. The Resource Administrator can also track changes

in the code available to be deployed and make decisions based on the changes in the availability

of the code. Such functionality can allow CAP to make decisions based on new code added by

different users.

This functionality is implemented through additional flags that are automatically added by

CAP to the nesC code. These flags are inserted appropriately in the code so that, whenever there is

a context change, the code can be recompiled for and redeployed on another appropriate resource.

Most importantly, these actions are performed autonomously by the CAP middleware to assure

continuous execution of the applications, without intervention from the user.

The CoAP operations such as PUT and POST are executed to deploy the selections and run

the application task, respectively. The GET operation is executed to make sure that selections are

made correctly, as it returns the status of each resource. This can be seen in Listing 4.1, where

resource is the dictionary with lists of all acceptable resources. The host, input and output are

selected from this dictionary. The functions assign and post refer to the CoAP requests for PUT

and POST respectively. The status of each assigned resource is changed from available to active.

h o s t d e v i c e = r e s o u r c e [ h o s t _ t y p e ] [ a v a i l a b l e ]
i n p u t d e v i c e = r e s o u r c e [ i n p u t _ t y p e ] [ a v a i l a b l e ]
o u t p u t d e v i c e = r e s o u r c e [ o u t p u t _ t y p e ] [ a v a i l a b l e ]
a s s i g n ( i n p u t u r i , i n p u t d e v i c e )
a s s i g n ( o u t p u t u r i , o u t p u t d e v i c e )
a s s i g n ( c o d e u r i , open ( code ) . r e a d ( ) )
p o s t ( t a s k u r i , " S t a r t " )

Listing 4.1: CoAP operations to assign resources.

As the application is deployed and execution starts, the Resource Administrator updates the

status of all active resources regularly. This is done by performing GET operations via the Python

function checkresource, as shown in Listing 4.2. At any point, if any operation returns with an

error, the framework will once again execute the process to allocate resources. However, this time

it will use another available resource for the corresponding error received earlier.
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h o s t _ s t a t u s = c h e c k r e s o u r c e ( h o s t u r i , h o s t d e v i c e )
i n p u t _ s t a t u s = c h e c k r e s o u r c e ( i n p u t u r i , i n p u t d e v i c e )
o u t p u t _ s t a t u s = c h e c k r e s o u r c e ( o u t p u t u r i , o u t p u t d e v i c e )
i f h o s t _ s t a t u s != " A c t i v e " or i n p u t _ s t a t u s != " A c t i v e "

or o u t p u t _ s t a t u s != " A c t i v e " :
a p p l i c a t i o n . r e s t a r t ( )

Listing 4.2: Check status of resources.

As mentioned earlier, CAP utilizes multiple Python scripts to iterate through the code pro-

vided by the user. These scripts add additional flags to the nesC code and compile it to generate

the binary file to be deployed on the devices using CoAP operations. These flags are inserted ap-

propriately in the code so that, whenever there is a context change, the code can be recompiled for,

and redeployed on, another appropriate resource. Most importantly, these actions are performed

autonomously by the CAP middleware to assure continuous execution of the applications, without

intervention from the user. CAP utilizes an open source library, namely txthings (Wasilak, 2015),

to make use of CoAP operations in Python.

4.2.3 Context Manager

The Context Manager is enabled by a set of Python scripts named context-dict, context-input and

context-track. These scripts altogether allow defining, adding and removing contexts as well as

keeping track of every context and the applications associated with each one. For an application

to be associated with a context, it must have been already created using the Application Manager.

A context is created using the dictionary data type in Python. Each context has four keys:

• id is used for identification using an integer value.

• group denotes the ranking of individual context, which is used to resolve conflicts between

multiple contexts.

• applications contains a list of all associated applications.

• triggers is a list of items which can affect the context, such as output of devices, application,

or user inputs. A separate list is created with the conditions for each of these triggers.

Using these keys, the scripts are able to detect and inform other components about a change in

context and trigger the associated adaptations.

The definition of a context is not limited by the keys defined in the early stages of the imple-

mentation. As the part of system design, it is possible to allow user to integrate complexities in

context manager. However, each context must always be associated to one or more applications.

Triggers for a context can be customized as long as it is also able to activate triggers using the

resource manager.
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Figure 4.4: Components for Context Manager

4.2.4 Prototype Architecture

Figure 4.5 shows the implementation architecture used in a proof-of-concept prototype. Particu-

larly, it shows how different scripts of CAP work together to provide the functionality of its three

components as described before.

This architecture organizes the whole functionality in four blocks. One block includes the

features managed directly by the user, another block contains CAP’s operational information, a

third block has the actual CAP management features and the last block holds the logging and

redeployment features. The four blocks are described as follows:

• Managed by the User: This block contains the actions that are managed by a user di-

rectly. These actions allow a user to interact with different components of CAP according

to its model (Figure 4.2). For the Application Manager, a user needs to submit the ap-

plication source code through Django web forms. For the Context Manager, a user can

provide different contexts by using command line inputs through the Python script named

context_input.py. Lastly, to provide information regarding all the possible resources in the

system, a user would have to use a form-based approach as done in the Application Manager.

However, for the sake of simplification, this is currently done manually via a Python-based

dictionary.

• External Storage: This block includes the storage needed to hold all the information re-

ferred above and provided by the user. It contains different data objects, possibly imple-

mented separately, that must be accessible to both user and the CAP running on an em-

bedded device in the system. Currently, this storage is implemented on a local disk in a
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Figure 4.5: Architecture for Context Aware Framework

computer connected to same network as the CAP embedded device, but it can be a com-

pletely separate storage accessible through the same network. The information should be

readily available to CAP including upon any changes made by the user.

• CAP: The CAP block contains all CAP management scripts that run on an embedded device

connected to the WSN. These scripts cooperate to implement the functionality of the CAP

components. The Context Manager uses a group of several scripts representing the differ-

ent contexts. These scripts interact with both the Resource Administrator and Application

Manager. Similarly, different scripts are used to track resources and implement the Resource

Administrator component, interacting with the Application Manager and the Context Man-



64 Context-Aware Programming (CAP)

ager, and maintaining the Current Resource Database. Upon any change in the applications,

contexts or resources, the resource_track.py script parses the code, generates the binary and

executes the corresponding deployment in the involved WSN nodes. A main script, named

main.py, carries out a supervisory role, resetting the other scripts when needed and logging

any data to the logging device.

• Log: The Log block includes the functionality needed to save a Data Log generated by

the main.py script in CAP. It is implemented in a different embedded device, but in the

same network as the CAP embedded device. Currently, the device running the Log also

stores copies of all the CAP scripts which may be needed for redeployment of the CAP

management layer on the same or other embedded device.

4.3 An Illustrative Example

This section explains the functionalities of CAP using an illustrative example based on a simple

HVAC system. There are four sensor nodes as shown in Figure 4.6. The function of each node is

as follows:

• Node 1 acts as a border router node

• Node 2 acts as a host temperature sensor node

• Node 3 acts as a input temperature sensor node

• Node 4 acts as an output heating actuator node

Both sensor nodes 2 and 3 can measure the same physical parameter. The host sensor node 2

takes input from the sensor node 3, submits this values to an internal application function (called

halve) and provides output to the actuator node 4.

Similarly to T-Res, these three devices, host, input and output, have to be activated using

CoAP PUT requests. The compiled code of the application task function (halve) is also deployed

using another PUT request to the URI path of host node 2. To complete the deployment, a POST

request to host node 2 is required. In T-Res the user is required to issue all these CoAP requests

via the Copper CoAP (Kovatsch, 2011) user agent for Firefox. In CAP, the user can provide

the same code using the application form provided by the Application Manager. The Resource

Administrator takes care of all CoAP operations.

Table 4.1: Status table after application deployment.

Application Halve Task Running
Code halve.c Sent
Host coap://[aaaa::200:0:0:2]/tasks/halve Active
Input Source coap://[aaaa::200:0:0:3]/sensor Active
Output Device coap://[aaaa::200:0:0:4]/actuator Active
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Figure 4.6: A simple HVAC application with four nodes.

As soon as the user submits the application, CAP will return with a deployment success mes-

sage to the user and build a table with the status of nodes being used for the current deployment

(Table 4.1). This table is refreshed regularly via GET requests in the background. A time bound

for these requests can also be provided by the user. The user may also force a refresh via options

provided by CAP.

4.3.1 Changes in Context

To illustrate the context adaptations supported by CAP, consider the two reconfiguration scenarios

shown in Figure 3.6 (Chapter 3) triggered by an energy failure affecting either the sensor node 3

or the host node 2 (Figure 3.6). These reconfigurations are associated to different contexts that

correspond, in this case, to different sets of nodes available, namely all nodes or just nodes 1, 2

and 4 or then nodes 1, 3 and 4. All contexts are associated to the referred application.

4.3.1.1 Failure of input node 3

First, let us assume that after some time of operation, input sensor node 3 fails due to battery

depletion (Figure 4.7). This causes a switch in context, leading to an update in the system status

as shown in Table 4.2.

Table 4.2: Status table upon failure of the sensor node 3.

Application Halve Task Halted
Code halve.c Running
Host coap://[aaaa::200:0:0:2]/tasks/halve Active
Input Source coap://[aaaa::200:0:0:3]/sensor Inactive
Output Device coap://[aaaa::200:0:0:4]/actuator Active
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Figure 4.7: Failure of a sensor resource.

Upon the change of context, CAP will automatically reinitialize the deployment of task halve

by replacing the input from node 3 with the local input from node 2. The Resource Administrator

performs a PUT request to redefine the application input source as node 2.

After the reconfiguration, normal application execution resumes in a fully user-transparent

way. The new system status is represented in Table 4.3.

Table 4.3: Status table upon reconfiguration and redeployment

Application Halve Task Running
Code halve.c Sent
Host coap://[aaaa::200:0:0:2]/tasks/halve Active
Input Source coap://[aaaa::200:0:0:2]/sensor Active
Output Device coap://[aaaa::200:0:0:4]/actuator Active

The sequence of operations is shown in Figure 4.8. Note that the status change caused by the

input node failure is detected by the Resource Administrator. The comment boxes indicate the

points in the sequence when the system status is the one shown in the status tables above.

4.3.1.2 Failure of host node 2

In a second case, instead of the failure in the input node 3, we now have a failure of the sensor

node 2 that hosts task halve, again due to battery depletion. In this case, CAP will reinitialize

the deployment by replacing node 2 with node 3 as host node and assigning the same node as the

input source as well (Figure 4.9). This reconfiguration is done by the Resource Administrator with

two PUT requests, for both code and input deployments, respectively. The respective sequence

diagram is shown in Figure 4.10.

In both cases of context changes shown above, the user is not required to intervene since CAP

is able to detect the context change and adapt accordingly. Moreover, the architectural components
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Figure 4.8: Sequence diagram with input node failure.
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Figure 4.9: Failure of a task host resource.

of CAP necessarily need to run on an adequate node. In the example above, this could hypothet-

ically be the router node 1, or another node that supports the application in the background, just

for the purpose of running CAP management components.

Finally, there are a few parameters involved in CAP operation that we did not explicitly refer
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Figure 4.10: Sequence diagram with host node failure.

and which have an impact on the efficiency and reactivity of systems running on CAP middleware.

For example the status table can be refreshed upon the occurrence of an event, but it also needs

to be refreshed upon a timeout, to detect omission events, such as those caused by silent failures

(like the energy failures referred before). The length of such timeout imposes a trade-off between

reactivity to failures and overhead. We envisage that this timeout can either be pre-defined by the

user or adapted dynamically by an enhanced resource management algorithm.
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4.3.2 General Operations Flow in CAP

Generalizing the flow of operation in CAP, between WSN devices and the CAP management

node, we can represent in a simplified manner both normal operations and interruptions with

reconfigurations occurring in various stages of the WSN operation. This helps understanding how

CAP adapts and executes the changes required for each context.

Initially, we have a list of applications ready to be executed on our run-time system, developed

with the help of the Applications Manager. Then, the user provides the details of the contexts with

help of the Context Manager. With this input, the applications are assigned to different contexts

and possibly grouped under one or more contexts.

Simultaneously, the Resource Administrator builds a system status table with all the devices

available. When applications are ready to be deployed, using the system status table the assign-

ment of executable code and its deployment begins (distribution). Once applications are delivered

their execution on specific devices can start. This is shown in Figure 4.11.

Figure 4.11: Initial applications deployment with CAP.

Under normal operations, the Resource Administrator monitors continuously the devices in the

system, thus detecting node failures or additions of new nodes. This is shown in Figure 4.12 (left).

The system status is updated and a new context is activated, potentially leading to a new deploy-

ment (adapted distribution). Once the redeployment is done, normal operation resumes.

It may also happen that a given application is suspended (interrupted) due to lack of adequate

resources. In this case, when the Resource Administrator detects new resources in the system, a

new context is activated, which may already allow the suspended application to resume operation.

Thus, a new redeployment is done (new distribution) and the execution is restarted. This situation

is shown in Figure 4.12 (right).
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Figure 4.12: Adaptation operations in CAP.

4.4 Experimental Results

CAP was developed in an incremental fashion, building on technologies that already exist for

WSN, such as T-Res, and re-purpose them for CAP. In this section we discuss several experiments

that were carried out to validate CAP, namely its dynamic management mechanisms. We refer to

some preliminary experiments which purpose was to debug CAP and validate specific features and

mechanisms. Then, we discuss resilience experiments carried out in a remote IoT facility where it

was possible to assess the autonomous adaptations of CAP for an extended period of time.

4.4.1 Preliminary Experiments

During the various implementation stages of CAP, most of the development effort was done to run

applications using Contiki-OS on TelosB and MicaZ sensor motes. We used Cooja simulations for

Sky motes to advance initial development and debugging of code for the CAP. The Sky mote is

the basic mote available in Cooja that can be used within a WSN and does not require significant

configuration efforts for simulations. Once a proof-of-concept simulation version of CAP was

ready, we deployed simple applications using MicaZ motes and TelosB motes.

These experiments were essentially carried out on an IEEE 802.15.4 (Zigbee) network using

the existing MAC layer and running on Contiki. As most of the CAP-related developments work

at the application layer, there was no need to make modifications to lower layers.

As referred above, these experiments aimed at debugging CAP and its functionality but not

at performance assessment. For this reason, the necessary adaptations were forced manually. For

example, removal of nodes was forced by removing energy sources manually from one of the

motes engaged in the WSN application and discovery was triggered by powering on a new mote.

Initially, the experiments with the core scripts of CAP were run on a virtual machine on the

same computer that was running the Contiki-OS and Cooja for the motes. Once this initial debug-

ging phase was completed successfully, CAP was moved to a Raspberry Pi, that we considered as
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providing a more realistic target, better suited for higher autonomy systems.

4.4.2 Resilience Experiments

Once all the preliminary experiments were successfully completed, we looked for a suitable

testbed that could support more realistic experiments during sufficiently large periods of opera-

tion to assess its resilience and autonomous adaptation. The chosen testbed was the IoT-LAB

from the Future Internet Testing Facility and provided by OneLab in France, among multiple test

sites. For these experiments we used the sensor nodes provided by testbed site itself, namely IoT-

LAB M3 and IoT-LAB A8-M3. These are the most widely available boards in the testbed and

designed specifically for that purpose.

The IoT-LAB M3 node, shown in Figure 4.13, is based on a 32 bit CPU with 64kB of RAM,

256kB of ROM, 2.4 GHz radio chip and four sensors, namely light, pressure and temperature,

accelerometer and gyroscope). We used this type of nodes as sensor nodes in our experiments,

running the applications as a replacement of TelosB or MicaZ motes that we had used in the

preliminary experiments.

Figure 4.13: IoT-LAB M3 node with 32 bit CPU, 64kB RAM, 256kB ROM and 4 sensors.

The IoT-LAB A8-M3 node, shown in Figure 4.14, is a more advanced board with a high-

performance ARM Cortex-A8 microprocessor. It is capable of emulating the behaviour of a

smartphone or tablet. Some boards are also equipped with a GPS module. One of these nodes

is used to run the core scripts of CAP, as a replacement of the Respberry Pi used in the prelim-

inary experiments. Note that the IoT-Board A8 M3 runs a version of Linux. This simplified the

porting of CAP from the Raspberry Pi version, requiring just very small modifications to support

new sensors available in the testbed. Though CAP management components are all running on the

same node, the node itself may need to be exchanged for another one multiple times since it may

deplete its energy source. One interesting feature of the IoT-LAB A8-M3 node is that it includes

a clone of the IoT-LAB M3 node attached to itself, hence enabling it to be used as a sensor node,

too, if needed.

For the sake of simplicity and without risk of confusion, from here on we use just M3-x where

x ∈ [1,8], or simply M3 node, to refer to the IoT-LAB M3 x node and A8-y where y ∈ [1,3], or

simply A8 node, to refer to the IoT-LAB A8-M3 y node.
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Figure 4.14: IoT-LAB A8-M3 with Cortex A8 high-performance CPU and a clone of the IoT-LAB
M3 attached.

Concerning the programming of the testbed, it provides a REST API, hence facilitating the

porting of the scripts that had already been developed before in the preliminary experiments. Using

the REST API, CAP scripts can execute all the actions required for adaptation such as monitoring

nodes, deploying code, collecting outputs, etc.

For the experiments, we defined our system as composed of eight M3 sensor nodes and three

A8 nodes. On this system we deployed three applications. The CAP management components

(scripts) are deployed on another A8 node and yet another A8 node is used for logging purposes.

The initial selection of the nodes for each application is done manually by addressing each node’s

IPv6 address. However, at runtime CAP builds up its resource manager table, collecting IPv6

addresses of all the nodes. We also provide manually the information on the sensing services

offered by each sensor through the respective IPv6 address. This information should be collected

automatically in the future. The experimental setup is shown in figure 4.15 in which we can

identify the following components:

• Testbed Local Storage: The main interface of the testbed allocates a local storage on a

server with a front-end GUI through which the user can upload various files and save them

for future usage in the experiments. This local storage is also used to save any data/output

produced during the experiments.

• Remote Connection to Local Storage: A remote connection is available to access the local

storage to upload or download files. It is also used to monitor the status of the running

experiment via a dashboard.

• Testbed deployment: Through the Remote Connection the user can allocate different files

to different nodes in the testbed and assign various parameters such as time duration of the

experiment, location to store output data, etc.

• Nodes: Once the user determines the application assignment, the testbed will automatically

connect to the nodes and deploy the respective scripts/application. In some cases, the testbed

may also redeploy the whole image of a node if needed.
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Figure 4.15: Experiments execution setup within the testbed.

The hardware architecture of the experimental setup is displayed in Figure 4.16. Note that

we use a logical star topology for the management of the experiment, with the A8(CAP) manage-

ment node communicating directly with all other nodes, both sensor nodes as well as the A8(log)

logging node.

A8 (CAP) A8 (Log)

M3-1A8-2 M3-2 M3-3A8-1 M3-4

M3-7M3-8 M3-6 M3-5A8-3

Figure 4.16: Hardware setup in the testbed, showing the network topology used for the manage-
ment of the experiment. Note that A8(CAP) communicates with all sensor nodes, while A8(log)
just communicates with A8(CAP).

In this testbed we deploy three applications, A, B and C, described and initially deployed

(using IPv6 addresses assigned manually) as follows:

• Application A: Measures average temperature across multiple nodes.

Deployed on: M3-1(host), M3-3(Input), M3-4(Input).



74 Context-Aware Programming (CAP)

Table 4.4: Contexts used in the experiments for applications A, B and C.

Context 1 App. A: node M3-8(temperature) is ON, replace input node M3-4
Context 2 App. A: node A8-3(temperature) is ON, add input node
Context 3 App. B: node M3-6(temperature) is ON, add input node
Context 4 App. B: node M3-7 is OFF, relocate host
Context 5 App. C: node A8-2(GPS) is ON, add host node

• Application B: Measures average pressure and temperature across multiple nodes.

Deployed on: M3-7(host), M3-5(Input)

• Application C: Monitors nodes GPS and logs it on an external base station.

Deployed on: A8-1(host), A8-3(host)

On the referred applications we define five contexts (Table 4.4) that correspond to configu-

rations that require certain actions. Specifically, we define two contexts for Application A, two

for Application B and one for Application C. Therefore, as new nodes are automatically added

or removed, context changes occur, triggering CAP to reconfigure the applications appropriately.

This addition / removal of nodes occurs by turning them on or off, randomly, mimicking mobility,

energy depletion, crashes, etc. All contexts used in the experiments are listed in Table 4.4.

These contexts and associated reconfigurations are all described and executed using a script.

For example, Context 1 consists of replacing node M3-4 with M3-8 in Application A, while Con-

text 2 consists in adding node A8-3 to the Application A. These changes must be duly accounted

for in the respective processing function.

However, there will be additional context changes due to connectivity, energy and deployment

issues. CAP will try to adapt to those as well, looking for alternative deployments. For example,

if node M3-1 fails, CAP will look for another active node that can host Application A and, if so,

transfer the application to it. Overall, CAP will adapt for the context changes included in one of

the following three categories as we discussed earlier: (i) change of host; (ii) change in input node;

and (iii) addition of new input node.

In the experiments, we only considered the three kinds of context changes and the results

integrate all kinds. The Context Manager was also developed to satisfy these changes, however

the design aspects allow for evolution as discussed in earlier section about Context Manager. The

context changes were added incrementally, at a predefined rate. Then, after a period of 48h, the

experimental procedure increased by one the number of context changes that would be generated

at a time per application. This increment repeated every 48 hrs. Note that simultaneous context

changes means that different changes occurred in a period shorter than the reconfiguration time.

In this case, CAP serializes the handling of the context changes and performs them in sequence2.

Finally, the A8(log) node would restart autonomously in case of a crash for any unforeseen

reason, which could lead to temporary loss of data. The case of permanent failure of this node,

2Other approaches to handle simultaneous context changes are possible, too, e.g., ranking their importance and
performing just the most important one, possibly aborting an on-going reconfiguration with lower importance.
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e.g. due to energy depletion, was not considered, but it did not affect the experiments, either. The

A8(log) node was also supervising the A8(CAP) node, which is responsible for the whole man-

agement operation of CAP. Its higher activity implied higher energy consumption, thus permanent

crashes. In this case, this situation would be detected by the A8(log) node that redeployed all CAP

scripts and functionality on another A8 node available in the testbed, which would take over as a

new A8(CAP) node, thus testing a full restart of the whole system, too.

4.4.2.1 Experimental Results

We ran the experiments in the conditions referred above, continuously and autonomously, for

nearly 16 days, with 8 cycles of 48h. We collected 563 individual context changes, which may

have occurred separately or together with other context changes. These data points were collected

by a log script that wrote them, regularly, on a text file on the A8(log) node. Out of the 563 data

points, 100 represent incomplete reconfigurations due to various situations, e.g., changes or er-

rors occurring during reconfiguration actions, that needed a restart of the reconfiguration process.

These incomplete context changes are still included in the results reported ahead, whenever mean-

ingful. Note that we do not intervene to check those specific situations, since we wanted to show

CAP could manage to restart the corresponding processes autonomously, in case of failures.

In this section, we discuss several aspects of CAP performance arising from the experimental

results, namely:

• periods (and variability) of continuous operation of the A8(CAP) node against number of

simultaneous context changes;

• the number of trials to complete a single context change in the scope of an application;

• number of context changes occurring during different periods of A8(CAP) node continuous

operation before redeployment on another node;

• simultaneous context changes processed to completion;

• time taken by CAP to prepare and deploy new code in one context change.

Figure 4.17 shows the average hours of continuous operation of the same A8(CAP) node,

which runs all CAP management scripts, against the number of simultaneous context changes.

The number of hours are obtained as follows. Each context change data point occurred within

a period of continuous operation of the CAP management node. The values displayed in the

figure are the average of the duration of such periods, for all data points grouped by number of

simultaneous context changes.

Overall, the figure shows that, when there are single context changes, only, CAP runs on

average for 25 hours continuously. This value is sustained approximately until four simultaneous

context changes, but for higher numbers of simultaneous context change events, there is a clear

trend towards shorter average periods of A8(CAP) node continuous operation. Our interpretation

is that higher numbers of simultaneous context changes imply, by design of the experiments, higher
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Figure 4.17: Hours of continuous operation of the CAP management node, A8(CAP), with in-
creasing number of simultaneous context changes.

total number of context changes and, consequently, higher execution load on the A8(CAP) node,

increasing its energy consumption.

Figure 4.18 shows the variability observed in the periods of continuous operation of the

A8(CAP) node for different numbers of simultaneous context changes, using a box-plot diagram.

This variability is expected to be relatively small, which is consistent with the observations, since

most context changes occur within the same periods of CAP continuous operation, or even when

they occur in different periods but with similar number of simultaneous context changes, the com-

puting load should be similar and so should the longevity of the management node.

We believe that an important source of variability is the restart of reconfiguration processes

caused by communication errors or topology changes, both explicitly generated, as when nodes

are switched on or off, and spontaneous, as when nodes crash or run out of energy. To check this

hypothesis we looked into the concrete case of Application A and we plotted the number of trials

to enforce each of its context changes. This is shown in Figure 4.19, where we can observe that

most context changes were applied at once (single trial, no restart needed) and a few more took

one restart, only (2 trials), followed by a relatively long tail of few sporadic longer restart counts.

Still concerning the periods of consecutive operation of the A8(CAP) node, Figure 4.20 shows

the number of context changes (Y-axis) that occurred in a given period of CAP consecutive op-

eration (X-axis). The figure clearly shows that the majority of the context changes occurred in
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Figure 4.18: Variability of periods of continuous operation of the CAP management node,
A8(CAP), with increasing number of simultaneous context changes.

periods of 23h to 27h of consecutive operation, which, as we saw before, correspond to periods

with up to 3 simultaneous context changes. This figure also shows that the averages of continuous

operation in Figure 4.17 and associated variability in Figure 4.18 are built with significant differ-

ences in the numbers of data points considered. This is particularly relevant for the cases of 4 or

more simultaneous context changes, that show operation intervals that were observed with fewer

data points.

The referred asymmetry in the number of data points of context changes occurring in different

intervals of CAP continuous operation is explicitly shown in Figure 4.21 in which we can see

the distribution of simultaneous context changes that were processed to completion. Here we see

that approximately 1/3 of all context changes are single changes (150), and approximately 2/3 are

changes with up to 3 simultaneous context changes, while the remaining 1/3 are changes with 4 or

more simultaneous context changes.

Finally, Figure 4.22 shows the time taken by CAP on the A8(CAP) node to redeploy code for

the cases of a single context change. This is the time taken from the point when CAP scripts are

notified of the change, start parsing the code to be adapted, compile the code until the new code

is deployed on the target node. The time is computed using the timestamps logged by CAP upon

the detection of each context and upon the successful completion of the deployment. Even with

a relatively simple computing node running on limited energy, the average time for such interval
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Figure 4.19: Frequency of the number of trials needed to complete each context change in Appli-
cation A.
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Figure 4.20: Number of context changes against the duration of the period of CAP continuous
operation in which they occurred.

varied between 40ms and 50ms, with an average at approximately 45ms, which we consider a

rather small time. However, the time reported above applies to single context changes, only, and
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Figure 4.21: Histogram of simultaneous context changes processed to completion.

does not include the time to resume the application in the target node. Moreover, it should naturally

vary with the size of the code to be adapted, too.
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Figure 4.22: Mean time in ms for CAP to deploy new code for one context change
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4.4.2.2 Summary of Resilience Results

Probably the most relevant result from these experiments is the validation in practice of the ca-

pacity of CAP for continued full autonomous operation, even under considerable stress of context

changes. In this sense, CAP showed resilience and adapted autonomously to all the changes within

the declared contexts as well as any other changes that, in spite of not being in the context list, oc-

curred and could be classified in one of the three groups that CAP handles (change of host, change

of input and addition of input). Other changes beyond these classes were ignored by CAP, as ex-

pected. CAP also resisted consistently to spurious communications errors, asynchronous crashes,

and other similar situations that occasionally prevented the correct completion of the respective

context change.

Another interesting observation, though intuitive, is the impact of the intensity of context

changes, i.e., rate and number, on the system overhead and energy consumption. Naturally, the

higher the rate and number, the higher the overhead and energy consumption by the CAP manage-

ment.

During all experiments, it is assumed that the cost and quality of communication between

different nodes is maintained by the infrastructure. We also assume that the limitations of such

costs would not affect quality of context-awareness. For example, we assume that the nodes would

have reported their aliveness status to a certain centralized system already. CAP only utilizes

that aliveness status for the desired adaptation. However, if any system is not built with those

assumptions, deploying CAP will increase cost of communication and impact energy usage of

each node in significant way.

4.5 Summary

In this chapter, we have proposed a framework to support Context-Awareness on WSN and de-

scribed essential features required for such framework. The framework, called Context-Aware

Programming, or CAP, combines multiple Python scripts with a Django-based web application to

provide autonomous adaptations for different contexts. This proposed framework and its capa-

bilities were tested and debugged using local and remote experiments using TelosB sensor nodes

and TinyOS software. These experiments validated the three essential features that we needed for

the framework, namely: Abstraction, Modularity and Mobility. Further experiments with fully

autonomous operation during an extended period of time, using the IoT-LAB facilities, tested the

resilience of CAP and its capability to withstand strong loads of context changes, consistently.

The proposed framework is a proof of concept of Context-Aware Sensor Networks, or CASE,

enabling context-awareness in WSN and mobile sensor systems. To our best knowledge such

a complete framework has not been done by any of the previous works reported in the related

literature.

The current implementation of the CAP is limited, though. In the future, CAP can be extended

to include more advanced features. A key feature would be to provide faster adaptation with
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switching between multiple contexts or a group of contexts. Another future goal could be to

include complex data from multiple sources such as web services (e.g. calendars and SMS) and

recognize context with such data. Basic machine learning algorithms can help in recognizing such

context with more reliability. Efforts to evaluate such contribution against existing context-aware

work in mobile computing would be critical, as well.

The implementation explained in this chapter can serve as a building block for more com-

plete systems or advanced tools. In the same way that we took T-Res and extended it to mT-Res

and then CAP, a similar approach is possible with the framework proposed in this chapter. Such a

framework would include various aspects such as application management, resource management,

and network management. Each aspect entails its own research problems. For example, to design

an efficient resource management, it may be required to create a dynamic schedule to provide as-

surance on deadlines for different applications with the switch between contexts. We will address

this issue later on, in Chapter 6.
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Chapter 5

Adaptation Policies for
Context-Awareness

The Context-Aware Programming introduced in the previous chapter provides basic features for

writing code by different users for various goals. However, CAP as presented earlier, supports

context changes just by re-connecting and re-locating to different resources the applications tasks

provided by the user. The code of such tasks remains immutable. Thus, writing WSN applications

that can adapt to changes in operational scenarios, be it changes in physical parameters, such as

location, or system changes, such as availability of nodes, energy levels, etc., requires that pro-

grammers anticipate all possible future scenarios and thus program actions to adapt accordingly.

This is limiting and, in practice, constrains adaptability to topological adaptability, i.e., adaptations

are achieved with changes in the set of tasks and their deployment on the WSN resources.

This limitation can be strongly attenuated by supporting dynamic and more adaptable code to

face context changes, providing code adaptability, i.e., the tasks code can itself change. However,

despite the efforts already described in Chapter 2 to improve support to WSN programmers and

end-users and to context-awareness (Afanasov et al., 2014), these efforts still lack an easy way

of writing adaptations policies, particularly lacking an adequate abstraction that could foster re-

usability.

In this chapter we study how a programmer would establish such adaptation policies and we

show the difficulties in achieving so. In addition, we demonstrate the need for writing such adap-

tation policies considering a couple of use cases from different domains. With the help of these

use cases, we also examine essential features to build a generic model. Based on that model, we

propose a new programming abstraction, named AdaptC, for writing adaptation policies that can

be reused and extended, to support continuous and complex adaptations. This is the second most

relevant contribution of this thesis as shown in Section 1.7.

Along this chapter we specifically provide the following:

• Design features for setting continuous and complex adaptation policies.

83
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• A novel programming abstraction for adaptations that can be used with languages such as

nesC.

• Examples of the ability to reuse and extend the adaptation policies written using the pro-

posed abstraction.

5.1 Design Features for Code Adaptations

In this section, we identify the design features which are critical in defining the desired adaptation

policies. These design features can also express the complexities in writing these applications

from a programmer’s perspective. To express the design features we propose the generic model in

Figure 5.1.

Functions and 
Variables

Constraint

Objective Function

Adaptation at Ra

Or by Interesting
events

OutputInput

Figure 5.1: Generic model for design features

This generic model is composed of several elements. Functions and Variables represent all

the relationships between different variables of the application that are relevant to the desired

adaptation. These relationships can either exist from design or can be obtained with the progress

of the application. Constraint describes the restrictions for the adaptations. Objective Function

represents the desired outcome for the user. There must be some relationship between Constraint

and Objective Function, but it is optional to have a direct relationship.

The component on the right expresses the dynamics of the adaptation policy. Adaptations can

either be carried out periodically at a Rate of Adaptation or triggered by other events taking place

in the system. These other events are called Interesting Events in the generic model. The user can

tag different elements of the program as Interesting Event and the adaptation will happen every

time that element of the program is triggered. These Interesting Events can also impact on the

Functions and Variables component. All these changes are included in the next adaptation cycle.

To better explain the design features, we consider two different use cases and try to apply the

proposed model to these use cases.

5.1.1 Usecase 1: tracking the GPS of a wild animal

Consider a use case in which a wildlife animal is tracked by a GPS-enabled sensor node attached

to the animal itself. Base stations are deployed across the forest to collect the GPS data from the

sensor node on the animal. The primary objective is to sample the GPS at a fixed rate and store

the movements of the animal locally at the node itself. Whenever a base station is encountered
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all the recorded data can be transferred and then delivered to the user through the base station.

After this, the user also wants to assure that the sensor node maintains sufficient battery level to

encounter the next base station. To achieve that, the GPS polling rate must be adapted according

to various situations such as the speed of the animal, other applications running on the same node,

the amount of energy left or any encounter with other animals. The programmer can not anticipate

the speed of the animal and program a GPS sensor polling rate for all the possible situations. Also,

some new events which may affect such adaptation may be added later on. Hence, there is a need

to support continuous adaptation capabilities while programming the goals. This adaptation policy

can be expressed, using pseudo-code, as in Listing 5.1.

For Speed (S) and Battery Level (B):

Poll GPS with Sampling Rate (R)

keeping Battery Level (B) above Threshold (BT ) after Time (t)

Listing 5.1: Pseudo-code for the GPS adaptation policy.

The variables in this use case are Speed of the animal (S), Battery Level (B), Sampling Rate

(R) and Time (t). There is a direct relationship between how frequently the GPS is sampled

(R) and the level of the battery (B). This can be either pre-defined by the user based on earlier

studies (Ben Abdesslem et al., 2009; Carroll and Heiser, 2010) or studied by the system over

time. Here, we can express it as B = f (R). This relationship helps to learn how much B will be

affected by changes in R. There is a constraint on how much B can be affected. B should always

be above a threshold battery level (BT ), i.e. B≥ BT . While the system must follow the constraint,

the user may desire that the polling rate must be maximized in order to get as much fresh GPS

data as possible. That would require a complex and continuous adaptation for this application and

maximizing R would be the objective function for this adaptation.

The user can decide a fixed sampling rate at which this objective function should be solved,

which will be the rate of adaptation (Ra). Also, some interesting events within the program can

also trigger the adaptation. For example in this use case, these events can be An encounter of

another base station, Change in the number of other applications, Not able to get GPS position,

Encounter of another wildlife animal, etc. Figure 5.2 shows the design features for this use case.

Function: B=F(R)

Constraint: B > BT

Objective: Max R

Adaptation at Ra

Or by Interesting
events

RB, R, F,t

Figure 5.2: Design features for the GPS use case.
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5.1.2 Usecase 2: controlling an HVAC system

We consider a Heating, Ventilation, and Air-Conditioning system for building automation like

those discussed by Erdelj et al. (2013); Deshpande et al. (2005). HVAC systems are a common

utility in modern infrastructures, such as offices, shopping malls or industrial buildings. Typical

HVAC systems have different sensor nodes to monitor physical conditions such as temperature,

pressure, humidity in the various parts of the building. According to user requirements for those

physical parameters, certain actuation is performed on various cooling or heating devices or any

other actuators. In some HVAC systems, there is only one user requirement such as maintaining a

certain temperature. But in the case of more complex buildings, the user might want to minimize

the cost of operations while satisfying multiple user requirements. During the operation, the HVAC

system should adapt to different events to minimize the cost and provide sufficient performance.

Also, adaptation is expected in other cases such as offices where different occupants might have

different requirements and their behavior might affect the HVAC performance. Hence, it becomes

difficult for a programmer to write an application which can keep up with all the above-mentioned

factors and achieve its main goal. Again using pseudo-code, we can express this adaptation policy

as in Listing 5.2.

For Volume (V) and time ( t ) :

Provide Power (P) to maintain Temperature (TF )

with Cost of operation (C) minimized over time period ( t )

Listing 5.2: Pseudo-code for the HVAC adaptation policy.

The variables in this use case are Volume of the space (V ), Power Consumption (P), Tempera-

ture of the space (TF ), Operational Cost (C) and Time (t). There is a direct relationship between the

temperature being maintained (TF ), the volume of the space (V ) and the power consumption (P).

There is also a direct relationship between the power consumption (P) over time (t) and the oper-

ational cost (C). These can be either pre-defined by the user based on statistics or studied by the

system over time. Here, we can express these as TF = f (V,P) and C = g(P, t). These relationships

show which variables can affect operational cost and how changing them can help in achieving the

objective of the user, i.e. minimizing operational cost (min(C)). The constraint is on temperature

since the system must always maintain a suitable temperature as well. If the required temperature

is TS, then there can be some tolerance (δ ) to minimize operational cost. Hence, that would be

the constraint for this use case, i.e. TS− δ ≥ TF ≥ TS + δ . This would require a complex and

continuous adaptation and minimizing cost would be the objective function for this application.

Concerning the dynamics of the adaptation, the user can decide a fixed sampling rate at which

this objective function should be solved, which will be the rate of adaptation (Ra). Also, some

interesting events within the program can also trigger the adaptation. For example, in this use

case, these events can be Change in the occupied volume in the space, Body temperature of the

occupants, Location of the occupants, Interaction with outside environment when doors open or

close, etc. Figure 5.3 shows the design features for this use case.



5.2 Programming Adaptation Policies 87

Functions: 
TF = f(V,P)
C = g(P,t)

Constraint: TS - δ > TF > TS + δ 

Objective: Min C

Adaptation at Ra
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Figure 5.3: Design features for the HVAC system use case.

5.2 Programming Adaptation Policies

Let us focus on how a programmer would write adaptation policies for WSNs, with current state-

of-practice approaches, using the C language. In particular, let us examine the use case 1 (GPS)

presented in the previous section, for which we provide the code in the Listing 5.3. The relation-

ship between the BatteryLevel and the GPS polling rate is described by the Function in line 5,

which takes the Rate as input. In this function, we assume alpha is the factor by which the GPS

sampling rate affects the battery level. In order to maintain the normal operations and the adapta-

tion simultaneously, the programmer must create multiple threads. In line 9, sensing_thread is

the function that describes the normal behavior of the application using all the parameters provided

by the user. Another thread is required for adaptation, which is called adaptation_thread in

line 23. This function checks the BatteryLevel using the earlier functions for current Rate. Then it

gets a new polling rate under the constraint of keeping BatteryLevel above a threshold defined by

the user. It uses haversine function to calculate the speed from the GPS coordinates in line 28.

One of the design features is that the adaptation must either occur at a fixed rate or triggered

by some interesting events across the application. Hence, a third thread has to be created to

trigger adaptation at a fixed rate by using timers, which is defined in line 16. In addition, the

adaptation_thread must be called back inside all the functions that may generate interesting

events.

As shown in Listing 5.3, the pseudo-code for the adaptation includes threads, timers, func-

tion dependencies, etc. With dynamic and complex adaptation policies it becomes difficult for the

programmer to write the code. For example, if the programmer wants to initiate the adaptation

at a fixed time every day or according to the time stamps of particular data in addition to the rate

of adaptation, then the programmer must start a new timer for that purpose. That creates addi-

tional complexity when the programmer wants to add new interesting events over time, change

the relationships between variables, or change the solution itself. For all these changes, the pro-

grammer must dive into the low-level details which are not always necessary for each change. If

the programmer just wants to add a new time-stamp to trigger the adaptation, it should not require

extensive knowledge of timers and threads in the whole program. Hence, there is a need for an

abstraction that can enable the programmer to achieve goals without delving for every low-level

detail. Such an abstraction did not exist until now, to the best of the authors’ knowledge, and it

has further implications since it also brings the ability to reuse and extend adaptation policies.
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1 int Solve(Speed, BatteryLevelcurrent ) {

2 // Calculate R using the solution for optimization

3 Return R; }

4

5 int Function(Rate){

6 BatteryLevel = alpha*Rate;

7 return BatteryLevel ; }

8

9 void sensing_thread () {

10 while () {

11 timer = clock () ;

12 sleep (Rate) ;

13 GPS[time] = getGPS();}

14 Return 0; }

15

16 void timer_thread () {

17 while (){

18 timer_set ( timer2 , Ra);

19 if ( timer_expired ( timer2) ){

20 adaptation_trigger = 1;}

21 Timer_reset ( timer2) ; }}

22

23 void adaptation_thread () {

24 While(){

25 If ( adaptation_trigger == 1) {

26 BatteryLevel = Function(Rate) ;

27 If ( BatteryLevel < Batterythreshold ){

28 Speed = haversine (GPS[time−1:time]);

29 Rate = Solve(Speed,BatteryLevel ) ;}

30 Timer_reset ( timer2) // reset the timer

31 adaptation_trigger = 0; }}}

Listing 5.3: Pseudo-C code for the GPS use case.

5.3 Proposed Abstraction

In this section we propose, AdaptC, a high-level programming abstraction that can enable not

only ease in programming but also ease in debugging and re-usability of the adaptation policies

written by the programmer. One of the examples of the complexities with the current state of

practice, shown in the code in Listing 5.3, is that the interesting events are not integrated into the
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code. Hence the programmer would have to always remember which functions to check for the

adaptation. AdaptC can provide a better structure to write complex adaptation policies for various

applications.

1 Block Function f {

2 Use variables b, c , d

3 // operation

4 return b }

5 Block Function g {

6 Use variables a ,c

7 // operation

8 return a }

9 Block Constraint B {

10 // define the constraint

11 return true / false }

12 Block Adaptation {

13 // Adaptation here

14 If Trigger = Active :

15 Solve a

16 return a }

17 Block Solution S {

18 Use Function f

19 Use Function g

20 Use Constraint

21 Uses Variables a b c d

22 // solve

23 return a }

24 Block Trigger T {

25 // Combination of different triggers

26 // a fixed rate

27 Use consecutive_time 10s

28 // at fixed system time

29 Use time_stamp 00:00

30 // use different flags or events

31 Use flags }

Listing 5.4: Abstract pseudo-C code of AdaptC.

Listing 5.4 shows an implementation of AdaptC. We divide the code into five blocks based

on the proposed generic model of the design features described in Section 5.1. These blocks are

named Function, Constraint, Adaptation, Solution and Trigger and are explained next:
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• The Function block, or possibly a set of blocks, expressed in line 1, define(s) all the asso-

ciated variables and their relationships. The number of Function blocks depends, by conve-

nience, on how to define multiple relationships between the different variables. There can

also be local variables used in these blocks and this allows ease of access in defining these

relationships.

• The Constraints block in line 9 allows the programmer to define one or many constraints

that affect the adaptation. This block will return a Boolean result of true or false depending

on whether the constraints are satisfied or not, respectively.

• The Adaptation block in line 12 checks for the trigger and if the trigger is active it invokes

the Solution block.

• The Solution block in line 12 solves the objective function subject to the defined constraints.

Once a solution is achieved, this block returns it to the Adaptation block.

• The Trigger block in line 24 allows the programmer to define when the adaptation must

occur. In this block, the programmer can have fixed timers, periodic timers, or flags across

the application. Hence, the programmer can have a flag named interestingEvent, use it

across the complete application and whenever that flag is raised the adaptation is triggered.

As an example, Listing 5.5 shows AdaptC applied to the HVAC system use case and Listing 5.6

shows AdaptC applied to the GPS use case.

1 / / The s o l u t i o n f o r d e s i r e d g o a l s

2 Block Function_TEMP {

3 Use Volume , Power

4 / / c a l c u l a t e Tempera ture

5 re turn TEMP }

6 Block Function_COST {

7 Use Time , Power

8 / / c a l c u l a t e COST

9 re turn COST }

10 Block Constra in t_TEMP {

11 / / d e f i n e t h e c o n s t r a i n t

12 i f T_{S }+\ d e l t a <TEMP<T_{S}−\ d e l t a :

13 re turn t r u e

14 e l s e
15 re turn f a l s e }

16 Block Adap ta t i on_Power {

17 / / A d a p t a t i o n here

18 I f T r i g g e r = A c t i v e :

19 a = Solut ion_COST ( )
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20 re turn a }

21 Block Solut ion_COST {

22 c a l l Function_TEMP ( )

23 c a l l Function_COST ( )

24 / / c a l c u l a t e r e q u i r e d power

25 re turn Power }

26 Block Trigger_HVAC {

27 / / Combina t ion o f d i f f e r e n t t r i g g e r s

28 / / a f i x e d r a t e

29 Use c o n s e c u t i v e _ t i m e 10 s

30 / / a t f i x e d s y s t e m t i m e

31 Use t ime_s t amp 00 :00

32 / / u se f l a g s or e v e n t s a c r o s s a p p l i c a t i o n

33 Use f l a g s }

Listing 5.5: Abstract pseudo-C code for the HVAC system use case.

1 Block Trigger_GPS {

2 / / Combina t ion o f d i f f e r e n t t r i g g e r s

3 / / a f i x e d r a t e

4 Use c o n s e c u t i v e _ t i m e 10 s

5 / / a t f i x e d s y s t e m t i m e

6 Use t ime_s t amp 00 :00

7 / / u se f l a g s or e v e n t s a c r o s s a p p l i c a t i o n

8 Use f l a g s

9 }

10 / / The s o l t u i o n f o r d e s i r e d g o a l s

11 Block Solution_FRESHNESS {

12 c a l l F u n c t i o n _ B a t t e r y L e v e l ( )

13 / / c a l c u l a t e r e m a i n i n g B a t t e r y L e v e l

14 re turn Power

15 }

16 Block C o n s t r a i n t _ B a t t e r y L e v e l {

17 / / d e f i n e t h e c o n s t r a i n t

18 i f B i s g r e a t e r t h a n B_{T } :

19 re turn t r u e

20 e l s e
21 re turn f a l s e

22 }

23 Block Function_TEMP {

24 Use P o l l i n g Rate and B a t t e r y L e v e l
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25 / / c a l c u l a t e B a t t e r y L e v e l

26 re turn B

27 }

28 / / A d a p t a t i o n here

29 Block Adaptation_RATE {

30 I f T r i g g e r = A c t i v e :

31 R = Solution_FRESHNESS ( )

32 re turn R

33 }

Listing 5.6: Abstract Pseudo-C code for GPS Use Case

5.4 Early Assessment of AdaptC

To validate the feasibility of the proposed abstraction, AdaptC, we implemented it for Contiki

using nesC (Gay et al., 2003) and Python to support only basic functionalities as a proof-of-

concept. For a concrete example, we implement the HVAC application using AdaptC and we

compare it against an implementation following state-of-practice approaches. In this section, we

discuss the technical details of that implementation and highlight some characteristics that help

in understanding the benefits of AdaptC. The same characteristics can also apply to many other

applications such as smart homes, smart irrigation systems, etc.

code
example.nc

hvac.nc
src

parse.py
src

compile.py
hvac_contiki.c

lib
contiki files

User Inputs

Blcoks and Flags
identified

Create executable
Contiki code

Figure 5.4: Implementation of the AdaptC abstraction.

AdaptC is implemented to parse the nesC code provided by the user and identify different

blocks as mentioned in Listing 5.4. Then those are compiled into Contiki code. All of this is

done using Python scripts. The implementation is explained in Figure 5.4. To use AdaptC, a

programmer must obtain the repository. It is divided into three directories, code, lib, and src.

The code folder contains already written examples. The programmer can find files such as

example.nc written in nesC equivalent to the abstract pseudo code showed earlier in Listing 5.4.

This can be adapted for the intended application by the programmer. For example, in the case of

the HVAC application, the example.nc code can be modified according to Listing 5.5.

The lib folder contains libraries built for the compilation of example.nc code into a workable

Contiki code. That code can be executed inside Contiki or deployed using Contiki. These libraries

are written in C and modified from the Contiki repository available on GitHub (Dunkels, 2003).
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The src folder contains scripts written in Python. The parser script reads the code provided

by the programmer such as example.nc and identifies each block in it. The compile script uses the

files from the lib directory to create the Contiki code and add each block from example.nc file in

it.

With the help of AdaptC it becomes easier to reuse the same adaptation policies in different

scopes, by just changing input parameters. For example, in the HVAC application, the programmer

sets a constraint on the temperature which is affected by volume and power. Later on, another

programmer might want to use the same policy in an area where the temperature is affected by

other parameters such as the number of people, movement, etc. Hence, the second programmer

can easily reuse the same adaptation policy by just slightly changing the input parameters. In

addition to being reused, the applications are required to evolve with new requirements as well.

For example, in wildlife monitoring using GPS sensor, the programmer might wish to monitor the

health condition of the animal. This can add more interesting events such as any rest taken by the

animal, elevation reached during the day, etc., and that could be easily achieved by adding these

new events in the Trigger block.

A programming language must meet a few basic demands of the user community. We evaluate

our abstraction, AdaptC, for those basic demands provided in (Borning, 2002) as shown in Ta-

ble 5.1. We have already discussed the re-usability earlier. The ability to extend the code implies

the ease of maintenance. Also using AdaptC the programmer is able to write diverse goals quickly

since it takes away the complexities of timers, threads etc. Hence that enables rapid development.

In addition, AdaptC allows adaptation policies to work on different nodes, hence the support of

portability is provided. The design features and their modularity contribute to the ability to learn as

it is easier to understand the role of each feature and their dependencies. The remaining properties,

namely Reliability and Efficiency still remain to be evaluated.

Requirements Development Easy to Update Reliable Portable Efficient Learnable Reusable
AdaptC Yes Yes – Yes – Yes Yes

Table 5.1: AdaptC and common requirements for programming languages.

This is a preliminary evaluation based on software engineering concepts. Since we are not

aware of any existing abstractions for adaptation policies to build WSNs, a direct comparison was

not possible. Further evaluation of the performance requires implementing it with different appli-

cations, which we leave for future work. With those implementations, a more detailed evaluation

of software engineering elements such as the impact on variables, lines of code and functions will

be possible.

Despite the absence of macroprogramming work specifically for adaptation policies, there

is still a great amount of work to support the programmer. Thus, we try to compare AdaptC

with some of the relevant state of the art work as shown in Table 5.2. We selected two related

frameworks aiming at providing some sense of adaptation in WSNs and re-usability for the appli-

cations, namely T-Res (Alessandrelli et al., 2013) and PyFUNS (Bocchino et al., 2015). Both aim

at providing support to the programmer to write applications without the knowledge of low-level
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features, i.e., they are hardware agnostic. However, there is no support to write adaptations for the

applications that change at run-time, i.e., evolvable applications, while AdaptC is able to support

both changes in the node hardware and application code.

Programming Abstractions Hardware Agnostic Evolvable Code
T-Res X x
PyFuns X x
AdaptC X X

Table 5.2: Comparison with existing abstractions.

5.5 Experimental Validation of AdaptC

To provide a simple practical validation of AdaptC, we reused the IoT-LAB setup used earlier for

CAP in Chapter 4. We used the same applications as described in Section 4.4.2, except that the

code for the application is replaced by the code mentioned in this chapter.

We ran the experiments for a shorter duration to observe the correct execution of adaptations

and we also analyzed cross-applications impact. In fact, since the adaptation policies are directly

involved in detecting the adaptation conditions, which in turn can be involved in multiple con-

current applications, we wanted to verify whether having adaptations detected in one application

could interfere with their detection in another one.

Figure 5.5 showcases the cross-application impact that we observed. We have two applica-

tions, A and B, that share some resources in certain contexts, either as input or host nodes. We

then observe if a context change in one application led to parsing code of another application and

making changes in it, too. This indicates that the adaptation policies are being correctly applied

even when multiple applications share resources. In the figure we see, in a total of 23 context

changes, that 13 triggered adaptations in a single application, while 10 triggered adaptations in

the two applications. These situations were traced and verified to be correct. Thus, we observed

that CAP enforced the adaptations correctly in two applications written according to AdaptC, even

when sharing resources.

5.6 Summary

In this Chapter we discussed the problems associated to writing complex adaptation policies for

Wireless Sensor Networks. We exposed these problems using two different use cases with different

user requirements. Drawing from those use cases, we have built a generic adaptations model that

systematizes and clarifies the adaptation process.

Following the generic model for adaptation policies, we defined a new programming abstrac-

tion, AdaptC, that allows a programmer to write such policies without explicit dependence on

low-level node features. In addition, we have implemented one of the use cases with and without
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Figure 5.5: Changes with AdaptC on CAP affecting one application (left) and two applications
sharing resources (right).

the AdaptC abstraction, in Contiki and nesC, and we could verify the desirable properties that

AdaptC meant to provide.

Finally, we used AdaptC in two applications running concurrently in the IoT-LAB testbed with

CAP and we could verify that the adaptations of both applications were triggered correctly, even

when sharing resources. We believe that the use of AdaptC makes it easier for CAP to detect and

isolate the code related each context change. This is the basis of its distinguishing capacity of

supporting evolvable code, by allowing dynamic swapping of blocks in the applications and their

respective redeployment at runtime.
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Chapter 6

Network QoS Support for CAP

In previous chapters we discussed the requirements and the construction of CAP as a middleware

to support Context-Aware Sensor Networks, as well as a programming framework, AdaptC, that

allows users to write tasks for WSN applications that can easily adapt to different contexts at

run-time. However, we focused on the programming support to develop such applications and as-

sociated middleware to run them. Conversely, we did not address the important aspect of Quality-

of-Service, particularly in what concerns the timeliness of the communications, which in turn

impacts strongly on the timeliness of the applications.

In this chapter we address the issue of network QoS in CAP, particularly using a traffic schedul-

ing technique proposed previously in the context of real-time packet scheduling in WSN, namely

Network Harmonized Scheduling (Gupta et al., 2014), and adapting it to fit our framework. NHS

determines the communication resource, i.e., the network bandwidth, allocation, defining specific

slots for packet transmission organized in a compact schedule. The main feature of NHS is the

use of strictly harmonic periods for recurrent transmission slots and proper offsets to reduce the

multi-hop propagation delay of data from sources to a designated sink, i.e., the end-to-end com-

munication delay.

We will first revisit the resource allocation aspect and how it can be used within WSN to

improve separation between applications, thus reducing mutual interference and improving their

timing behavior. Then we will describe the NHS technique and, in particular, the construction of

the NHS schedule. Finally, we will discuss the adaptation of NHS to CAP.

6.1 Resource Allocation

As referred earlier in this dissertation, WSN were initially developed with a single application in

mind. Later on, different techniques, as referred in Chapter 2, provided multi-application sup-

port and allowed running multiple applications concurrently. One of these technique is resource

reservation and allocation, which consists is allocating to each application a fraction of the phys-

ical resources involved, namely a fraction of the network and the nodes bandwidth. An adequate

middleware allows doing the allocations and enforces the reservations to provide mutual isolation.

97
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However, when considering Context-Aware Sensor Networks, the requirements of the appli-

cations vary as changes in context occur, potentially impacting the allocation of resources to ap-

plications 1. This impact can take multiple forms. For example, a change in context can enable

different applications to use the same resource, thus needing new resource reservations and ap-

plications allocation. A change in context may also lead to a structural change in an application,

requiring a resource reservation to be modified with different parameters. Figure 6.1 shows two

applications sharing a given resource. These applications react differently to two contexts. Ap-

plication X runs under both context A and B. In turn, Application Y runs under context B, only.

Thus, depending on which context(s) is(are) active at each moment, the resource is shared in a

different way, possible requiring different reservations.

Figure 6.1: Resource allocation with multiple contexts.

To better illustrate this situation, let us take as example a system that tracks wild animals with

GPS sensor nodes. The tracking of each concrete animal is an application. Different contexts may

correspond to different locations, proximity to base stations, proximity to other animals, etc. In

each of these contexts an application records the respective animal location using the GPS sensor,

but may need to poll the sensor at a different sampling rate or even pause the polling. If the

animal is in close proximity to a base station, the application can pause polling the GPS since

the base station can provide location data for the animal. The polling rate also implies the rate of

network communications. Thus, the applications of multiple animals may need different fractions

of network bandwidth depending on the respective contexts.

Hence, in a context-aware framework, resources must be allocated and managed dynamically

to satisfy applications requirements and constraints, as discussed next:

• Application Priority. Priorities can be used to support resource sharing with asymmetric

isolation, only. This means that higher priority applications are isolated from lower priority

ones, but the opposite is not true. In a dynamic scenario, priorities may change depending

on the active context. For example, an application might be critical in a certain context

(higher priority), but not in other (lower priority). In the presence of multiple applications

in the same resource, each context may imply different applications priorities, which may

be generated dynamically according to an adequate function executed upon entrance in the

respective context.

1In practice we allocate resources to the applications to enable their execution. However, we may also consider that
we allocate the applications to the resources, so the applications can make use of the resources. Thus, without risk of
confusion, we will use both directions interchangeably.
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• Application Constraints. Each context may imply a different set of constraints on the ap-

plications. For example, a given context may limit the rate of application execution, or

determine its temporary suspension.

• Resource Constraints. Similarly to the previous case, each context may also determine

different availability of resources with their own constraints, be it in terms of memory, pro-

cessing capacity, communication bandwidth or sensors/actuators available. For example, a

node may become unavailable and the applications that were using it need to be re-allocated.

In certain contexts, more powerful nodes may be available while in other contexts the nodes

available can be severely resource-constrained, or lacking certain sensing capabilities.

Resource reservation/allocation is one major issue in WSN, but also generally in the IoT or in

CPS. Certain techniques were already discussed in Chapter 2, such as virtualization. One tech-

nique available in the literature that is particularly interesting in our scope, and also as example, is

DepSys (Munir and Stankovic, 2014). This is because DepSys allows resolving conflicts among

different applications using priorities. DepSys is a dependency-aware system for specifying, de-

tecting and resolving conflicts among different applications, e.g., multiple applications trying to

control a light simultaneously. DepSys works with these conflicts using additional meta-data

called effect, emphasis, and condition. However, two strong limitations prevent the direct use of

DepSys in a context-aware setting. On one hand, the priorities are provided at design time and are

static. On the other hand, the developers need to provide, using XML and for each application,

information about the device to be used to run it.

Hence, despite solving the problem of application co-existence, DepSys has to be adapted to

cope with the dynamism of context-aware applications. To resolve resource allocation conflicts

during runtime as the constraints change with new contexts, an adaptation layer is needed. List-

ing 6.1 shows the pseudo-code of a possible algorithm to carry out such adaptation.

/ / R = s e t o f r e s o u r c e s a v a i l a b l e

/ / A = s e t o f r u n n i n g a p p l i c a t i o n s

/ / C = s e t o f a c t i v e c o n t e x t s

R e s o u r c e _ a l l o c a t i o n (R , A, C) {

f o r each a p p l i c a t i o n a i n A

Ca = s e t o f a c t i v e c o n t e x t s a f f e c t i n g a

Q = d e f i n e _ c o n t e x t s (A, {Ca , f o r a l l a } , R)

a l l o c a t e (R , A,Q)

}

Listing 6.1: Adaptation of the resource allocation at run-time.

The function define_contexts() decides which is the specific context to be used for each appli-

cation, in case several of the active contexts affect the same application. This is important to define

the actual priority of an application and the resources it needs. This can be done separately per
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application, for example using the active context in which the application has the highest priority,

or the highest criticality, or the lowest resource requirements, etc, but it can also be done holisti-

cally, for example, using the active contexts whose resource requirements better fit the resources

available.

Then, once the specific contexts per application are defined, the function allocate() can resort

to an allocation strategy like the one of DepSys, in which applications priorities are well defined

so as the target resources.

Considering the example we used above with the system to track wild animals, we could pick

at each moment the active context per application (per animal) that has the lowest use of GPS,

to save energy and increase the lifetime of each application. Thus, if an animal would be in the

vicinity of a base station, that specific context used would be the one with the GPS suspended and

location extracted via base station. Another context could be defined when the battery level runs

below a threshold, using a specifically low GPS poll rate, if not in the vicinity of a base station.

6.2 Network Harmonized Scheduling

In WSN, one of the most important resources, with a significant impact on the QoS of the applica-

tions, is the network bandwidth resource. Thus, in this section we will look into the scheduling of

this resource, with the aim of supporting bandwidth allocation to multiple applications that leads

to improvements in QoS with respect to end-to-end delays.

In order to allocate network bandwidth to the applications we need a network scheduling

approach to manage the transmission of all concurrent flows triggered by the applications. For

this purpose we are going to make use of Network Harmonized Scheduling (Gupta et al., 2014),

which was proposed earlier in this thesis, in a joint research work, and which creates a single task

in each node that combines all packet transmissions from the respective child nodes and forwards

them up the network towards the sink. However, NHS was not implemented for multi-application

WSN, nor to support dynamic contexts. In this section we will first describe NHS and how it can

support multiple applications running on a multi-hop WSN and then we will discuss the use of

NHS to support CAP and Context-Aware Sensor Networks in general.

6.2.1 NHS Basics

NHS is a simple and effective approach to build compact periodic schedules that is inspired from

Rate-Harmonized Scheduling (Rowe et al., 2008) and applied to the context of multi-hop network-

ing. When considering WSN, with multiple sensors transmitting recurrently their samples, even if

these transmissions were originally periodic, the global pattern may not be periodic due to packet

collisions, RF interference, packet losses and retransmissions, etc. If the WSN runs multiple appli-

cations, the total number of packets released by a sensor node grows proportionally to the number

of deployed applications. Internal interference in each node may contribute to further degrade the

periodic transmissions pattern and the additional network load may lead to increased contention at
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different hops in the network. If the underlying MAC layer is based on a carrier-sense mechanism,

additional load may, in turn, contribute to wide variations in network access delay.

Therefore, multiple nodes releasing packets independently in a WSN may increase the overall

resource (network bandwidth) consumption and generate prohibitively large and non-deterministic

communication delays. To overcome these issues, NHS aligns packet transmissions from different

nodes in global harmonic periodic boundaries and leverages this periodic framework to consol-

idate the transmissions in the network in a global periodic pattern, but without any global state

maintenance as we will show.

6.2.1.1 Multi-hop Data Forwarding

NHS groups periodic transmissions in batches from different devices per layer of neighbors in a

cluster-tree topology to reduce the time that receiver nodes need to keep their radios turned on

to receive the packets. Figure 6.2 shows an example topology where circles represent clusters.

Each cluster head is shown as the node in a cluster that belongs simultaneously to the next cluster

towards the sink (or root).

Note that in a WSN, most of the network traffic consists of flows of sensor data from the

sensor nodes up to the sink node. Thus, it is a desirable target to schedule the communications so

they start from the leaves of the network, i.e., the nodes that are farther away from the sink, and

propagate upwards until reaching the root. In each cluster, the respective cluster head collects the

transmissions of the cluster members, packs them in a batch and forwards them. For minimum

end-to-end delay of the sensor transmissions, it is important that the sequence of transmissions is

bottom up, i.e., the transmissions of the cluster with a hop count of n (assuming the sink cluster

has a count of 1) should occur immediately before the transmissions of the previous cluster, i.e.,

with hop count n− 1. This way, the head of cluster n, which is a member of cluster n− 1, will

have just received the data from cluster n nodes at the time of transmitting within cluster n− 1,

thus forwarding it with lower latency than other sequencing.

Figure 6.2: A multi-hop cluster-tree network.
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6.2.1.2 Structuring Communications

Organizing the communications in the network according to strictly monotonically decreasing hop

count leverages the periodic harmonic framework making transmissions fit in a global cycle with

period TH , the harmonizing period 2. Figure 6.3 shows the communications schedule correspond-

ing to the topology in Figure 6.2. Generally, this is a TDMA schedule with a sequence of time

slots that are allocated to nodes for transmission.

The sequence shown in the figure focuses on the bootstrap of the global periodic synchroniza-

tion and communications, i.e., the interval of time following start up until the regular periodic

pattern of the network transmissions begins. The labels in the slots show the nodes to which they

are allocated to. Note that we consider the slot duration σ to be constant and equal for all slots.

This facilitates significantly the schedule construction and manipulation and it is a common feature

of WSN protocols applied in practice such as WirelessHART.

Another aspect that simplifies the scheduling significantly, is the allocation of network slices,

i.e., whole fractions of the TDMA schedule, to the communications in different hops (hmax being

the maximum hop count, i.e., the depth of the cluster-tree). Thus, inside each slice, the slots

scheduling is local and can be accomplished by hearing the transmissions of neighboring nodes.

As we explain later in this section, we call the number of slices the cadence-factor ω .

Figure 6.3: Timeline of transmission in NHS, from start up to steady periodic activity.

6.2.1.3 Network Synchronization and Scheduling

One interesting aspect of NHS is that global synchronization is achieved progressively, using

the reception of messages as time references. In fact, in a multi-hop scenario, there is no single

message that can reach all nodes and synchronize them together. Thus, NHS uses the transmissions

2Note that harmonizing periods may imply a certain level of resource over-provisioning, but this is a price to pay
to cut the size of transmissions schedule and achieve minimum end-to-end delays. If different periods are needed, they
must be integer multiples of the harmonic cycle.
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of each cluster head, starting from the root node, to synchronize the nodes in the respective cluster,

including the heads of the next clusters in hop count. Then, once receiving a message from the

cluster head, all nodes in the cluster compute their transmission instants based on specific offsets

that follow the order of their identifiers (ID).

This offset-based approach is then followed by all nodes in the network. For this purpose, each

node transmits an NHS-tuple as a part of the packet header. The NHS-tuple, denoted λ , consists of

η , the number of hops the transmitter is from the root, i.e., the hop count of the respective cluster,

and φ , its offset counted in number of slots:

λ ≡< η ,φ >

The example in Figure 6.3 considers ω = 3, thus with the global harmonizing period TH di-

vided in three equal slices, one per hop, of duration 1/3TH . The root node r transmits at time

t = 0 advertising the harmonizing period TH and λ =< 0,0 >, synchronizing nodes a, b and c.

However, these nodes do not transmit immediately, they compute a reference Tr to the end of the

harmonizing period (Tr = TH), also coinciding with the end of the 3rd slice, just before the next

root beacon transmission, and then compute offsets to the slots (Ts) allocated from that reference

backwards by ID order. Therefore, their λ will be < 1,1 >, < 1,2 > and < 1,3 >, respectively.

For all other levels in the network (hop count > 1), when receiving the parent packet, the nodes

compute the Tr offset to the end of their slice, with respect to the start of the parent slot. This is

shown in the following expression, where φp is the offset of the parent:

Tr =
2
3

TH +φp

The offsets of the slots in each cluster are again applied backwards in ID order. The slot s has

offset Ts = Tr− φ For example, nodes d and e that are in the same cluster will have for their λ

< 2,1 > and < 2,2 >, respectively. In the next hop, nodes j and i in the same cluster will have λ

equal to < 3,1 > and < 3,2 >, respectively.

The factor 2/3 that appears in the expression above results from the cadence-factor ω = 3 and

the policy of ensuring that the nodes in successive hops transmit in the slice that precedes the one

of their parents, in this case by TH/ω . Looking at the slots schedule in Figure 6.3, we can see

that the sensor data collected by the nodes in any hop is propagated to the sink (root) in at most

one harmonizing period (TH). Conversely, the synchronization, which propagates in the opposite

direction, takes approximately 3 (i.e., hmax) harmonic cycles to go from the root to the network

leaves.

Note that we have considered just three hops for convenience of representation and explana-

tion. However, NHS copes with an arbitrary depth of the cluster-tree. If the hops are created at

the boundaries of the communication range, then it is safe to assume that communications in two

clusters that are three hops away of each other do not mutually interfere and can reuse the channel,

transmitting in parallel. Thus, if in the example above we had another layer of external clusters, it

would be hop 4, which could reuse the same slice reserved for hop 1.
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In other words, the protocol ensures at least ω-hop distance between clusters that transmit

simultaneously in the network. Assigning slots to transmissions in a TDMA-based network is typ-

ically accomplished by applying distance-ω vertex coloring graph. To maximize the throughput,

the problem is equivalent to choosing the minimum number of colors (Ramanathan, 1999). How-

ever, we are not aiming at maximum throughput, but at simplicity of deployment, low energy and

low delay, instead. We achieve the required ω-hop distance by dividing each harmonizing period

into ω equal slices. Nodes at consecutive hop-levels transmit only in non-overlapping slices. The

number of slices, i.e., the cadence-factor, can be chosen to be greater or equal to 3.

Designing a protocol with a cadence-factor of less than three (ω < 3) can result in collisions

at the receivers. On the other hand, if ω > 3, data from deeper hops can reach the root within

one harmonizing period. However, given the fixed slot size, a larger ω may also imply a longer

harmonizing period or a stronger limitation on the number of nodes per cluster. Therefore, the

choice of ω provides a trade-off between the latency suffered by a packet to reach the root from a

leaf-node and the maximum number of children a node can have.

In general, for slot scheduling purposes, the reference time Tr can be calculated with respect

to ω as follows:

Tr =
ω−1

ω
TH +φp

In steady state, the network operation is harmonized with respect to the cadence-factor (ω)

and the harmonizing period (TH). The expression above is used to allocate to the nodes in the

current hop the slots in the last slice (ω−1) of the harmonizing period that starts with the slice of

the parent node. Note that the next parent transmission occurs in the following slice. As discussed

before, this approach creates a pipeline propagation of sensor data up the network to the root,

improving the respective end-to-end latency.

In the general case of a network designed to operate with any value of ω and TH we need to

update the definition of λ , the NHS-tuple that we presented before and which was introduced in

(Gupta et al., 2014). In this case we should include these parameters in the NHS-tuple so they

are passed from cluster leaders to cluster nodes, allowing them to compute the offset of their slots

properly.

λ ≡< η ,φ ,ω,TH >

6.2.1.4 Slots Allocations

Finally, concerning the slots allocation we need to consider the allocation order per cluster, which

is based on the IDs of the nodes in the cluster as referred before, and whether they create interfer-

ence (collisions) in the cluster leader. Looking again at both Figures 6.2 and 6.3 we can see that

the slots for nodes inside the same cluster are always serialized (represented in horizontal lines).

Conversely, clusters at the same depth may extend in different spatial directions that will keep
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their transmissions out of the range of each other, as referred before. In such case, as shown in

Figure 6.3, their slots can be allocated in parallel (represented vertically).

To enforce unambiguous allocation of slots to nodes, avoiding collisions caused by hidden-

nodes, all cluster heads (parent nodes) piggyback in their transmissions (in the NHS header) the

list of nodes from whom they successfully received packets during the previous slice. This way,

they share the list of all nodes that must use exclusive slots. With this list the nodes compute their

slots offsets. The simplest approach is to have the parent node sorting the list according to the

nodes IDs and the nodes use the offset of their ID in the list as slot offset.

Different cluster heads will provide different lists to their nodes, which can be allocated the

same set of slots, in parallel, as long as the lists are disjoint (this is the case in Figure 6.3). If there

are overlapping lists, it means that some nodes receive from more than one parent node. In this

case, each such node chooses the parent with the highest signal strength of the received packets

with whom it stays logically connected. However, the offset of the slot needs to consider the

different lists of the multiple parents. A reasonable criterion is to use the slot corresponding to the

highest offset among all the lists. We call this a forced offset because it will have to be enforced in

the other clusters where its offset would have been smaller.

To support forced offsets, all nodes include their offset in the NHS header of their packets and

signal if it is forced. When a parent receives a packet from a node with a forced offset, it adjusts

the schedule of its nodes to respect the forced offset. The easiest way is to shift the position of this

node in the list (inserting idle slots) until its position matches the forced offset.

This phase of having each parent scheduling the nodes it hears in a compact sequential set of

slots is called in (Gupta et al., 2014) compressing the cluster schedule. To bootstrap this scheduling

it is necessary that cluster heads first receive from the nodes. In the same work, this problem is

solved by proposing the use. initially, of absolute offsets that are globally matched to the nodes

IDs. In this case, the first transmissions of all nodes would be using these absolute offsets, while

from the following harmonic cycle onward, the nodes could already use the slots scheduled by

each cluster head. A more efficient, and probably more practical, alternative to the absolute offsets

would be to start transmissions with CSMA access arbitration on and switch it off after the slots

scheduling is done.

The bootstrap process is also shown in Figure 6.3. Note that the final schedule for hop 1 would

be conveyed in the second root message, for hop 2 in the second message of their cluster heads in

hop 1, and for hop 3 in the second message of the respective cluster heads in hop 2. This means

that at t = 3TH (or in general at t = hmaxTH) the slots schedule of the three (all) hops is defined.

The situation of having nodes that are heard by multiple cluster heads was left open in (Gupta

et al., 2014), but it requires another harmonic cycle to be addressed in the bootstrap as referred

above. In this situation, the nodes would keep the CSMA arbitration switched on for two harmonic

cycles after receiving their first cluster head synchronization message. In the same example of

Figure 6.3 the final schedule of all hops would be defined at t = 6TH , only, or in general at t =

2hmaxTH .
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Field Description
ID ID of the transmitter
Slot Offset (φ ), transmitter’s slot backwards from end of slice
Parent ID of transmitter’s parent
Hopcnt Hop count (η), Transmitter’s Hop level
Cycle Current cycle in number of harmonizing periods
N_child Number of transmitter’s child nodes
{Child_k} Set of IDs of the N_child nodes

NHS Data
Data from all the deployed applications, delimited by
application ID and length.

Table 6.1: Structure of the NHS packet.

6.2.2 NHS Preliminary Implementation

To test the feasibility of the protocol, we implemented the Network Harmonized Scheduling on

the Contiki operating system replacing the Radio Duty-Cycling (RDC) and the Medium Access

Control (MAC) layers of the Contiki network-stack. The core of the NHS implementation is a

simple state-machine as shown in Figure 6.4.

Figure 6.4: State machine showing the core of implementation of the NHS protocol at each node.

The state machine is the same for all the nodes except the root node, which is essentially a

gateway with other networks. The NHS packet, structured as shown in Table 6.1, contains all

the information needed to support the proper operation of the state machines in all nodes in a

distributed fashion. It contains a header part with control fields and a data part, the NHS Data

field, which carries all the flows of the applications currently deployed. A node may send multiple

NHS packets if needed to support larger amounts of information. This is particularly relevant at

higher layers of the cluster-tree that need to support the convergence of the data coming from all

the sensors.



6.2 Network Harmonized Scheduling 107

The implementation of the bootstrap phase was simplified, using initial offsets that were al-

ready similar to the steady state ones. We focused on the regular operation. At the beginning the

node is in the network Wait state, waiting for a parent packet. This packet will allow defining

the transmission slot offset Ts, by invoking the function choose_slot_tx(), as well as the offset of

the start of transmissions of the respective child nodes Tr− 2TH/ω (note that Tr is the offset to

the end of the slice in which the node transmits). Then the node moves to the Sleep state. At

Tr−2TH/ω , the ready_to_listen() function expires and the node moves to the Wait state to receive

its child nodes transmissions (next hop). This is done iterating between the Receive and Wait

states (through Sleep).

Once the slice of the child nodes hop is over, at Tr − TH/ω , the node returns to the Sleep

state. At Ts the wake_at() function expires and the node moves to the Transmit state to send its

information (a batch with its locally generated information plus the information to be forwarded).

When the transmission ends, the node moves again to the Sleep state until the harmonic period TH

expires and the node restarts the cycle, moving again to the Wait state to receive the next parent

message.

One important detail that is hidden in the figure is the routing of information. This is done

implicitly in the Receive state. Data coming both from the parent and the child nodes is aggregated

and transmitted in a batch. It is the receiver that discards the information that is flowing in counter-

direction. The parent discards its own information in the messages it receives and keeps just the

information from the child nodes, while the child nodes discard all information except that coming

from the parent. In the implementation reported here, nodes may add their own data, generated

locally, to the communication batch and it will be taken as if it was coming from the child nodes.

This implies that, currently, nodes can send their own information upwards, only,i.e., to the sink,

which is consistent with typical WSN that do sensor data gathering.

The protocol was implemented on TMote Sky sensor nodes and with networks up to 10 nodes,

with diverse topologies including line and cluster-tree (Gupta et al., 2014). The results not only

validated the feasibility of the protocol, but they also confirmed that the duty-cycle needed for

diverse sets of communication requirements was lower with NHS than with ideal TDMA, con-

firming the capacity of NHS to generate compact schedules, thus reducing overhead and energy.

6.2.3 Using NHS to Support CAP

Coming back to our aim of supporting CAP, we need to revisit the requirements that need to be

met to achieve such capacity. In particular, we need to support multiple applications running

on the network, bidirectional and node-to-node communication and dynamic topology, and these

requirements may also change over time, i.e., the requirements themselves are dynamic. One

particular aim of using NHS to support CAP is to provide some level of QoS control in the timing

domain by means of adequate resource (network bandwidth) management. We will also address

this issue at the end of this section.
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6.2.3.1 Multiple Applications

NHS intrinsically supports multiple applications by separating applications and network and pro-

viding a data interface between both. Applications read and write data to this interface. Transmis-

sion and reception to and from the network is carried out by a specific management task that is part

of the network stack and implements the state machine in Figure 6.4. This data interface naturally

multiplexes the flows of multiple applications in the node communication channel. This sepa-

ration allows keeping control of the transmission instants, according to network objectives, like

compressing schedules and reducing duty cycle requirements, independently of the applications

running in the nodes. However, the service provided to the applications naturally depends on the

properties of the communication channel, namely the harmonizing period TH , the cadence-factor

ω and the slot width σ . Applications are expected to run recursively with periods that are larger

than TH , normally asynchronously with respect to the network. Thus, a random access latency

with uniform distribution between virtually 0 and TH can build up in the interface, adding to the

end-to-end communication delay (from sensing to delivery in sink).

6.2.3.2 Bidirectional and Node-to-node Communication

As discussed previously, NHS supports communication in both directions, from the sink to the

network leaves and vice-versa. However, the network scheduling that was adopted and described

above is such that favors the upward flows, i.e., from the leaves to the sink, granting them expedite

forwarding with a latency that is upper bounded by TH as long as the network depth hmax is not

more than ω . In general, the upward forwarding latency is bounded to dhmax/ωeTH . Accounting

for the access latency referred in the previous section, the upward end-to-end delay upper bound

dup can be determined as:

dup = TH(1+ dhmax/ωe)

On the other hand, the downward forwarding, from root to the network leaves, is significantly

slower, taking approximately TH per hop minus one. If we consider that there can be an access

delay of TH in the root caused by asynchronous application data generation, the downward end-

to-end delay upper bound ddown can be determined as:

ddown = hmaxTH

This asymmetry is adequate to networks that are sensing-oriented, as most WSN. This is also

adequate to Context-Aware Sensor Networks, in which the low latency of sensing can help in

keeping track of contextual information. However, in WSAN, it could be the case that a certain

network is used essentially to connect actuators. If this is the case, NHS can be easily reconfigured

to switch the asymmetry to favour downward flows, instead. This can be accomplished simply by

programming the slice allocated to hop n to occur immediately after the slice of hop n−1, instead
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of immediately before as it is now. This would change the reference time to compute the slots

offsets to:

T a
r =

1
ω

TH −φp

The slots would then be allocated from the beginning of the slice, using offset T a
s = T a

r +φ ,

where φ would start from 0 onward. This change would essentially lead to switching the delay

upper bounds shown above for the two direction of end-to-end communication.

Concerning node-to-node communication, this is not currently supported by NHS. In the cur-

rent implementation, all nodes communicate with the sink/root, only. Thus, node-to-node commu-

nication would require a full upward and downward cycle, with a significant overhead. However,

as it was clear in the examples provided in Chapter 4, CAP can take advantage of direct sensor to

controller, or sensor to actuator, or even sensor to sensor communication. Fortunately, supporting

direct node-to-node communication in NHS requires a relatively small change in the routing of

data, namely the addition of routing tables in all nodes with the set of nodes that are accessible

through each child node.

When receiving a packet, a node can know whether a give piece of information is meant to

itself, thus moving it to internal buffers and removing it from the communication batch, or whether

it is meant to a child node and keeps it in the batch, in the child nodes area, or the destination is

unknown among all child nodes and the data is kept in the batch to be transmitted to the parent

node. The use of node-to-node communication, however, has different end-to-end delay upper

bounds than those referred above, since it may involve a small fraction of the network, only. For

this reason, it also complicates the analysis of the network delays in general since this kind of

communication affects differently each network link, thus requiring global information to support

such analysis. Finally, the extra amount of memory to hold routing tables in the nodes might be

prohibitive and disallow this feature.

6.2.3.3 Dynamic Topology

This is a fundamental requirement in Context-Aware Sensor Networks, since an important source

of context changes arises from topology changes, e.g., caused by mobility or node failures. Un-

fortunately, this aspect has relatively low support in NHS. By design, NHS is more suitable and

reliable for static and nomadic sensor deployments than mobile and intermittent networks.

Nevertheless, NHS can still cope with certain changes in the network topology. For example,

removal of nodes can be accomplished in a fairly simple way. If a parent node does not receive

from a child node for a pre-configured number of communication cycles, it may assume the child

and corresponding branch has left the network, thus freeing the corresponding slots and possibly

compressing the resulting schedule in that cluster. On the other direction, if a node does not

receive a packet from its parent for a preset number of cycles, it chooses a different parent within

its neighborhood, if available, and keeping the same slots. Again, a compression of the cluster

schedule may be required after the reconfiguration.
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To avoid removing a whole branch and reattach a part of it immediately after, the number of

cycles to detect the loss of a parent should be smaller than to detect the loss of a child. Thus,

the loss of an intermediate node in the tree would be first detected from below, the child nodes

side, triggering a re-connection of the associated branches. In the case of loss of parent node and

lack of alternative parent, it is possible that there is still another path that allows recovering the

cluster-tree. However, this would need building the whole cluster-tree from scratch, launching the

bootstrap process.

The situation is somewhat more complicated when admitting new nodes due to the need to

provide a mechanism to allow new nodes to announce themselves or explicitly request integration.

As proposed in (Gupta et al., 2014) one possible solution is to allocate a few slots for asynchronous

announcements with CSMA access control enabled. New nodes can hear for a certain period to

acquire fundamental network parameters, such as TH , ω , hmax and the potential parents in range,

and synchronize with the network schedule. Then, the new node could pick one parent node and

send a join request in one of the available CSMA slots. The parent would confirm in the following

cycle and update the cluster slots schedule already including the new node, or could reject or

ignore the new node that could, then, try another available parent node.

Note that the solution above may imply an extra complexity in the presence of overlapping

neighbor clusters due to slot sharing and the need to consider joint slot allocation, including forced

offsets (see slots allocation in the previous section). If several clusters need to update their sched-

ules in the course of a joining process, the updates should be consistent and simultaneous (same

cycle) across all clusters at the involved hop. This can be achieved with a two cycle process similar

to the one proposed for the bootstrap process. In a first cycle the different parents that heard the

new node request publish updated cluster schedules but with a flag telling the cluster members to

keep the previous schedule. Parent nodes hear each other and determine conflicting slot assign-

ments, solving them with forced offsets. In the following cycle all cluster schedules are updated

accordingly and can be applied to the cluster nodes.

6.2.3.4 Dynamic Requirements

Concerning the application requirements, NHS already provides support for dynamic definition

of certain parameters. For example, the applications working rate, or recurrence period can be

changed at run-time without impact on the network given the separation between applications

and network enforced by NHS. Such a change would have implications on the utilization of the

slots of the respective nodes, only. In the same way, applications can be launched and removed

without impact on the network, but again on the utilization of the slots of the involved nodes, only.

This is very convenient since context-awareness frequency leads to changes in the set of running

applications or in their frequency of operation.

In the course of these adaptations, it may happen that the capacity of a slot is not enough for

the new requirements. In this case, NHS can support the dynamic addition of slots with a small

modification. Adding slots can be done in a similar way to adding a new node as described in

the previous section. It is possible to use a two-cycle protocol in which the first cycle is used to
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communicate the slot request to the respective cluster head and to all other cluster heads that hear

it. The cluster heads will independently compute and then transmit proposals for cluster schedules

with the new slot, which are not applied, yet. In the second cycle, all cluster heads hear each other

and agree on possible forced offsets for the slots in their schedules and build new compressed

schedules accordingly. These new schedules are announced and enforced in the following cluster

head messages.

Beyond the application requirements, there may be system requirements that may also change,

such as the harmonizing period or the cadence factor. NHS directly supports some of these changes

by having the root node disseminating and enforcing these values through the network, hop by

hop until the leaf nodes. When the new configuration can co-exist with the current configuration,

then NHS can apply the changes dynamically without any modification. For example, increasing

the harmonizing period will cause the next hop to transmit later while following hops will still

transmit earlier according to the previous period, thus without collisions. The same happens when

increasing the cadence-factor, which reduces the length of the hop slices, thus the next hop will

transmit less, while the following hops still have current slice width. The situation is more complex

when decreasing the harmonizing period or decreasing the cadence-factor, because during the

propagation of the new values there will be moments in which there will be collisions due to

overlapping communications caused by hops that were already updated and other that are still with

the previous configuration. Fortunately, this can also be easily sorted out by first communicating

the new values throughout the whole network and deferring the change in configuration to a later

cycle, when all hops have already received the updated values.

6.2.3.5 Fitting NHS in the CAP Architecture

Finally, when addressing the use of NHS in the scope of CAP it is necessary to see how NHS could

be integrated in the middleware architecture. NHS is a scheduling method that manages an asso-

ciated WS(A)N. In terms of CAP, this network can be just a subset of the whole network managed

by the middleware, connected through the root node that works as gateway. Nevertheless, CAP’s

Application Manager may support the design of applications for the WSAN nodes. As referred

earlier in this section, NHS currently supports upward flows to the sink/root and downward flows

from the root, only. Thus it is well suited to include sensors and actuators, only, that communicate

with controllers that rest outside the WSAN.

CAP’s Resource Manager can also keep track of the current WSAN topology by talking to

the respective root. When instantiating applications, it can also keep track of the utilization of the

nodes as well as their WSAN slots. Moreover, it can now interact with the WSAN root to compare

possible timing requirements of the applications with the guarantees that NHS can provide. In this

way, the Resource Manager can inform applications that use the WSAN when NHS cannot meet

their requirements. On the other hand, the Resource Manager can also trigger the reconfiguration

of the WSAN itself, such as the harmonizing period or cadence-factor as discussed above. A

concept architecture of this integration is shown in Figure 6.5.
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Figure 6.5: Concept architecture of CAP enhanced by NHS

Finally, the sensors in the WSAN can feed CAP’s Context Manager to drive contextual updates

and trigger associated reconfigurations. Some of these reconfigurations may include changing the

applications that currently use the WSAN itself, as discussed earlier.

In terms of topology, by inserting the WSAN in a larger network under CAP, it is reasonable

to expect that nodes with higher mobility will be outside the WSAN, while this subnetwork can be

kept just for a set of nodes embedded in the environment, e.g., sensors and actuators in a building,

which do not change often. This is in-line with the target WSN for which NHS was designed and

allows using NHS directly in the scope of CAP, even with its limited support to dynamic topology.

6.3 Summary

In this chapter, we have discussed the interest in using resource allocation in the network to pro-

vide some level of QoS guarantees in terms of communication latency in the scope of WSN and

generally in WSAN. In this scope, we made use of a scheduling method for multi-hop cluster-tree

WS(A)N, namely NHS, which was partially developed in the scope of this thesis.

Overall, the NHS protocol is distributed by design and maintains very little state. The primary

benefit from this approach is that the transmissions are harmonized around periodic boundaries

and packets do not suffer from contention. The radios on the nodes only need to be turned on in a

periodic manner for a short time-span, which considerably reduces the radio switching overhead.

The proposed protocol reaches a good compromise between simplicity of deployment (favored by

its distributed clockless character) and timeliness (favored by its TDMA-based compressing slot

scheduling).

Most importantly, NHS allows decoupling the timing behavior of applications running in the

nodes from the communications in the network, which enables improving the network timing
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behavior with benefits for latency, reliability and energy consumption, while supporting flexibility

at the applications level.

Finally, the chapter ends with a discussion of how NHS can be used in the scope of CAP.

This discussion left it clear that NHS can be readily applied, in spite of some limitations in what

concerns its flexibility. The whole WSAN managed with NHS can be incorporated in the larger

network running CAP, connecting mobile nodes and controllers in general to more stable sensors

and actuators embedded in the environment. It is also reasonable to assume that CAP can actually

integrate several WS(A)Ns together using different non-overlapping channels, all managed by its

Resource Administrator, thus improving the gathering of sensing information and, by that means,

the perception of contextual information and the support of the Context Manager towards more

effective CASE.

Along this line, we can envisage the use of a separate cluster-tree to connect sensors, only,

a true WSN, with NHS configured to provide low-latency upward sensor readings. Then, an-

other cluster-tree could be used to connect actuators exclusively, with NHS configured to provide

low-latency downward actuation commands. This would allow implementing control loops with

optimal low sampling-to-actuation delay, consequently enabling performance improvements of

global feedback control.
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Chapter 7

Conclusion and Future Work

In this chapter we revisit the thesis statement proposed in the Introduction and the work developed

towards supporting that statement. We first comment on how our contributions and how they

provide the desired support for CASE, i.e., Context-Aware Sensor Networks. This allows us to

validate our thesis. We then end this chapter presenting some lines for future work.

7.1 Summary of Contributions

In the Introduction we stated the following contributions of this work, which emerged while re-

searching to support our thesis and which are the following:

1. CAP - Context-Aware Programming, a middleware that allows building CASE - Context-

Aware SEnsor networks with high-level programming tools suitable for non-experts.

2. AdaptC, a set of basic adaptation policies that programmers can use to write context-aware

applications.

3. mT-Res, a proof of feasibility of context-awareness in WSN that consisted in adding features

to an existing macroprogramming approach, namely T-Res.

4. NHS - Network-Harmonized Scheduling applied to CAP, a scheduling technique, developed

in collaboration within another work, that manages the communications of multiple appli-

cations in a WSN efficiently and timely.

The two first contributions, namely CAP and AdaptC, are the core contributions of this thesis,

putting forward novel concepts to provide Context-Aware Sensor Networks that can be easily

developed by non-expert users. The remaining two contributions are complementary works that

were either needed to developed the previous ones (mT-Res) or that constitute an enhancement to

them (NHS).
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7.1.1 CAP - Context-Aware Programming

This is a novel middleware that offers native support to Mobility, Modularity, and Abstraction, and

with these design features it allows developing Context-Aware Sensor Networks. This middleware

is the topic of Chapter 4, where we propose the concept and an architectural plan. The middleware

relies on multiple tools and technologies, particularly CoAP instructions in Python scripts. We

also used the Django project with the help of some existing libraries of node.js to support the

applications design process. A preliminary validation was carried out on both Contiki-OS and

TinyOS, and several practical experiments were carried out on a deployment in the IoT-Lab. These

results showed the resilience of CAP, having persisted in constant operation for over 15 days,

constantly adapting to forced contextual changes.

7.1.2 AdaptC - Adaptation Policies

This is a novel way of structuring the development of applications that require frequent adaptation.

With these adaptation policies, presented in Chapter 5, the users can write adaptable code that can

change the application logic based on the context. These policies are part of the Context Manager

and allow activating/deactivating contexts previously defined by the users and are then applied

by the middleware on the set of running applications. We demonstrate the implementation of the

adaptation policies and also showcase their benefits in terms of effort required by the users to write

such adaptable code.

7.1.3 mT-Res - Macroprogramming with Mobility

This work can be seen as a first step in the development of CAP. It is described in Chapter 3

and consisted in adding the needed architectural elements to a well-known Macroprogramming

solution for IPv6-based WSN, namely T-Res, to support Mobility. This was achieved with Python-

based scripts. This work validated the possibility of providing context-awareness by extending an

existing WSN programming approach. However, given that several other works built on T-Res in

similar ways as we did, despite with other purposes, we consider this a secondary contribution.

7.1.4 NHS - Network Harmonized Scheduling and CAP

In our early work, we contributed to the development of a scheduling technique to manage the

execution of multiple applications in a WSN by scheduling the associated traffic in a way that

reduces communication latency. However, of interest to this thesis is the application of NHS

in the scope of CAP as a means to achieve network QoS support, particularly in what concerns

low-latency communications. Thus, the main contribution is the discussion of how NHS can be

deployed within CAP. However, in spite of the extended discussion and the experimental validation

of both CAP and NHS separately, their joint operation was not validated in practice. For this reason

we also consider this a secondary contribution.
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7.2 Validating the Thesis

We believe that the contributions we just summarised directly validate the thesis. We claimed that

by providing i) programming models with mobility, modularity, and abstraction features; ii)

a resource manager that tracks computing resources available and their capabilities; and iii) a

context manager that tracks collected data to activate/deactivate contexts then a WSN middleware

can automatically adapt the execution of applications to changes in contexts while enabling high-

level applications programming with efficient operation. This middleware is a cornerstone for the

wide adoption of context-aware sensor networks (CASE).

In fact, we have shown experimentally that our CAP middleware leverages the design features

in i) and the architectural elements in ii) and iii) to provide automatic adaptation of WSN ap-

plications as reaction to contextual changes, while offering an application programming interface

and adaptation policies that are easy to use by non-expert users. Thus, we strongly believe that

CAP is an adequate tool to build and promote the adoption of CASE.

7.3 Future Work

With Mobility, Modularity, and Abstraction as essential features available, we could focus on

improving interoperability and support more platforms, computing and communications, to make

Context-Aware Programming sustainable for WSNs. CAP was implemented on two programming

platforms popular in WSNs, namely Contiki-OS and TinyOS. While TinyOS has not been updated

for a while, Contiki-OS remains an up-to-date and reliable solution, majorly due to its expansive

library. It would be interesting, though, to study the problems associated to supporting more

hardware nodes and networking protocols and verify the capacity to handle full heterogeneity.

In addition, CAP allows us to target some key WSN problems with a fresh perspective. One

of these problems is resource allocation. WSNs have always been a resource-oriented paradigm

due to their dependence on energy. In a typical WSN, if a node runs out of energy the application

running on that node is interrupted alongside that node. Either a new node needs to be deployed

to replace the older node or the whole WSN application needs to be re-written. With CAP, there

are alternative ways to deal with such problems. A smart Resource Allocation Manager could

be designed to anticipate context changes such as low energy levels and make changes sufficiently

ahead of time before any WSN node loses power completely.

Another key problem to consider is the conflict between multiple applications and contexts.

Multiple contexts may require the same resources at the same time and, to meet demands, some

applications may take priority. To resolve these conflicts a certain algorithm can be designed based

on features associated with the application such as critical importance to the user, impact on the

performance of WSN nodes and other QoS parameters. Machine Learning could potentially be

used to learn about regular WSN operation and make decisions on behalf of the users to sort such

conflicts.
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When multiple users are using the same WSN nodes in different contexts, the privacy of
data may become a challenge. Especially if the nodes are connected to the Internet or any other

external service. It would be interesting to look at where the WSN data must be saved and for how

long it is saved and carry out a full security risks analysis together with proposing mechanisms to

mitigate the main risks.



Appendix A

Brief Setup Guide for the IoT-Lab
Deployment

This appendix introduces a user with the requirements to run Context Aware Programming (CAP)

in the IoT-Lab. This also provides hints on applying CAP in other execution environments. This

guide was prepared with certain assumptions, the primary one being that the user is knowledgeable

in Contiki-OS and related popular WSN tools.

A.1 Software

Following is the software needed to use CAP:

• Python and all its dependencies: https://www.python.org/downloads/

• CLI tools: https://www.iot-lab.info/docs/tools/cli/

• Txthings for CoAP: https://github.com/mwasilak/txThings

• Contiki-OS: https://github.com/iot-lab/contiki

• CAP Source Code: https://bitbucket.org/shashankgaur_/CAP_V2

• Testbed Webportal: https://github.com/iot-lab/testbed-webportal

Instruction for installing each software are provided in their own pages, please make sure you

follow those according to the version of the software you install.

A.2 Hardware

Currently CAP works on following hardware:

• TelosB Motes

• MicaZ Motes
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• IoT-lab Testbad Boards: www.iot-lab.info/docs/boards/iot-lab-m3/

A.3 Setup Step-by-Step

1. Concerning the IoT-Lab, to start using the testbed you must follow all the steps mentioned

at the testbed website: https://www.iot-lab.info/docs/getting-started

2. Once you have setup your account, please upload CAP scripts to your workspace using the

CLI tools by following the command:

iotlab-experiment submit [...] –site-association <site>[,<site>],script=/CAP_V2/CAP.py

3. Now select the boards you would like to use in the testbed. At that point, there are two alter-

natives available to you to select nodes, by properties or by ID. More info on this is available

here:https://www.iot-lab.info/docs/getting-started/resources/

4. Once you have selected resources and your boards, you must schedule the experiment using

the CLI tools. This is explained here: https://www.iot-lab.info/docs/tools/run-script/

www.iot-lab.info/docs/boards/iot-lab-m3/
https://www.iot-lab.info/docs/getting-started/resources/
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