
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Development of an Open-Source
Data-to-Text System

Nuno Miguel Teixeira Cardoso

Mestrado em Engenharia Informática e Computação

Supervisor: Sérgio Nunes

October 22, 2022

Development of an Open-Source Data-to-Text System

Nuno Miguel Teixeira Cardoso

Mestrado em Engenharia Informática e Computação

Approved in oral examination by the committee:

President: Prof. Jorge Barbosa

Referee: Prof. Nuno Escudeiro

October 22, 2022

Abstract

The amount of data produced and stored in databases is continuously increasing, leading to new
data presentation opportunities that facilitate its interpretation. Structured data can serve as a ba-
sis for creating various informative textual contents, such as summaries, reports, or news articles.
These may represent a more convenient way for lay users to obtain and showcase information
rather than through complex charts, tables, and query tools. With the help of an automatic writing
system, the opportunity to report information based on the structured data and present it in an
accessible way can be seized. Template-based natural language generation systems can produce
news and summaries using data about different entities and events and editable sentence templates.
These generators provide various ways to express the same idea or concept and make it possible
to describe the data in multiple languages. Throughout the last years, ZOS has been developing
the Prosebot system. Prosebot is a natural language generation system that can generate match
summaries, given sports data from ZOS’ database and pre-defined language templates, in an ef-
ficient and autonomous way. The main contribution of the present project is the conversion of
Prosebot into an open-source software model, with corresponding code restructuring and domain
generalization. Other contributions include finishing the multilingual support and creating a tem-
plates validation algorithm for users writing support. To open the system to a larger audience,
in an easy-to-use way, a new web platform with a user-friendly interface was also developed to
help manage templates. The idea was to embrace the no-code paradigm so that lay users without
programming skills could interact with the system. The evaluation of the final product showed
promising results. With the validation algorithm, the number of errors made by the zerozero.pt’s
newsroom journalists, when writing the templates, decreased considerably. In addition, through
some user experience interviews, it was possible to obtain feedback and some prospects of im-
provement in developing the Templates Management Platform. With the use of the SonarQube
platform, a thorough code analysis of the generator showed great results in terms of maintain-
ability, security and reliability, and an improvement compared to the initial state of the project.
The successful development and publication of this project’s work produced a helpful system for
content creators and companies to speed up the process of writing news and summaries through
the automatic generation of semi-finalized text versions from structured data.

Keywords: Natural Language Generation, No-Code, Open-Source

i

Resumo

A quantidade de dados produzidos e armazenados em bases de dados está em contínua ascensão,
criando novas oportunidades para apresentação da informação de forma a facilitar a sua interpre-
tação. Dados estruturados podem servir de base à criação de vários conteúdos textuais informa-
tivos, tais como sínteses, relatórios ou artigos de notícias. Este tipo de conteúdos pode represen-
tar uma forma mais conveniente de utilizadores leigos obterem e partilharem informação, do que
através de gráficos e tabelas complexos, ou recorrendo a ferramentas de interrogação. Com a ajuda
de um sistema de escrita automática, a oportunidade de relatar informação que reside nos dados
estruturados, apresentando-a de uma forma acessível, pode ser aproveitada. Sistemas de geração
de linguagem natural baseados em templates (modelos de frases) são capazes de produzir notícias
e sínteses usando dados sobre diferentes entidades e eventos e templates de frase editáveis. Estes
geradores permitem exprimir a mesma ideia ou conceito de diferentes formas e fornecem ainda a
possibilidade de descrever os dados em múltiplos idiomas. Ao longo dos últimos anos, a ZOS tem
vindo a desenvolver o sistema Prosebot. Prosebot é um sistema de geração de linguagem natural
capaz de gerar sínteses de jogos, de forma eficiente e autónoma, a partir de dados de desporto
armazenados na base de dados da ZOS e de templates de linguagem predefinidos. A principal
contribuição do presente projeto é a conversão do Prosebot para modelo de software open-source,
com a respetiva restruturação do código e generalização do domínio. Outras contribuições in-
cluem a finalização do suporte multilingue e a criação de um algoritmo de validação de templates
como suporte à escrita dos utilizadores. De modo a abrir o sistema a um público mais abrangente,
uma nova plataforma web de interface apelativa e fácil utilização foi desenvolvida para gerir os
templates. A ideia passa por abraçar o paradigma no-code, permitindo que utilizadores leigos,
sem conhecimentos de programação, possam também interagir com o sistema. A avaliação do
produto final revelou resultados promissores. Com o algoritmo de validação, o número de erros
cometidos pelos jornalistas da redação do zerozero.pt, ao escrever os templates, diminuiu consid-
eravelmente. Além disso, através de algumas entrevistas de experiência do utilizador, foi possível
obter feedback e algumas perspetivas de melhoria no desenvolvimento da Plataforma de Gestão
de Templates. Com a utilização da plataforma SonarQube, uma análise completa do código do
gerador demonstrou bons resultados em termos de capacidade de manutenção, segurança e fiabil-
idade, e uma melhoria em relação ao estado inicial do projeto. O desenvolvimento e publicação
deste projecto deram origem a um sistema particularmente útil a criadores de conteúdos e em-
presas que pretendem acelerar o processo de redação de notícias e sínteses, recorrendo à geração
automática de versões semi-finalizadas de texto a partir de dados estruturados.

Keywords: Geração de Linguagem Natural, No-Code, Open-Source

ii

Acknowledgements

Initially, I would like to thank my supervisor Sérgio Nunes for all the support and guidance
throughout this process. I also want to thank zerozero.pt’s workers for the friendly environment
they received me with, and the working conditions offered during the past months. In particular,
I would like to thank Marco Sousa, Pedro Dias, and Vasco Ribeiro for the technical support and
guidance, and Daniel Oliveira, Gonçalo Silva, Paulo Mangerotti, Paulo Freitas, and Steve Ramos
for the help given in writing professional-quality content for the system.

Finally, I want to thank my friends and family and give a special thank you to my parents,
Lurdes Cardoso and Nuno Cardoso, who always supported me throughout the years and provided
me with education and great values.

Nuno Cardoso

iii

“A wise man will make more opportunities than he finds.”

Sir Francis Bacon

iv

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 1
1.3 Objectives . 2
1.4 Document Structure . 2

2 Overview of NLG Systems 3
2.1 Natural Language Generation . 3
2.2 Architecture of an NLG System . 3
2.3 Commercial NLG Systems . 5
2.4 Open-Source NLG Systems . 7
2.5 Literature Review Analysis . 30
2.6 No-Code Paradigm . 35

3 Prosebot Background 37
3.1 The GameRecapper System . 37
3.2 Statistical Language Models . 39
3.3 Prosebot . 40
3.4 Evaluation Metrics . 41
3.5 Community-Based Platform and Post-Editing 42
3.6 Placement on the Typical NLG Architecture . 43

4 Prosebot Generator 46
4.1 Multilingual Support and Improvements . 46
4.2 Templates Validation Algorithm . 51

5 Open-Source Refactoring 62
5.1 The Prosebot System . 62
5.2 Code Restructuring . 62
5.3 Automatic Dictionaries Generation . 68
5.4 API Decouple and Base Content Definition . 71
5.5 Code Analysis . 72
5.6 Architecture . 73
5.7 Publishing Process . 75

6 Templates Management Platform 77
6.1 API development . 77
6.2 Views . 78
6.3 Features . 78

v

CONTENTS vi

7 Evaluation 84
7.1 Methodology . 84
7.2 Results . 85

8 Conclusions and Future Work 93
8.1 Conclusions . 93
8.2 Future Work . 94

References 95

A Open-Source NLG Solutions 103

B Complete Class Diagram 105

C Templates Management Platform UX Interview Guide 106

List of Figures

2.1 NLG systems’ architecture and task distribution presented by Reiter and Dale [68].
Adapted from Aires [1]. 5

2.2 SURGE input-output example. Image from Elhadad and Robin [27, Fig. 1]. . . . 10
2.3 KPML text generation in English, French, Greek, German, Japanese and Dutch.

Image from Bateman [6]. 11
2.4 Architecture of TG/2. Image from Busemann [9, Fig. 1]. 12
2.5 GenI input screen. Image from Kow [45]. 13
2.6 GenI debugger. Image from Kow [45]. 14
2.7 ASTROGEN architecture. Image from Dalianis [17]. 17
2.8 MUG workbench. Image from Reitter [69]. 18
2.9 The RNNLG framework for language generation. Image from Wen and Young [85,

Fig. 1]. 20
2.10 RosaeNLG demo. Image from Stoecklé [77]. 21
2.11 The processing stages and sub-stages of NaturalOWL. Image from Androutsopou-

los, Lampouras and Galanis [3, Fig. 1]. 22
2.12 Modular architecture of PASS. Adapted from Lee, Krahmer and Wubben [82, Fig. 1]. 23
2.13 Accelerated Text Document Plan. Image from Navickas [92]. 25
2.14 LKB screen dump. Image from Copestake et al. [13, Fig. 1]. 27
2.15 General architecture of NLGen 2. Image from Singh et al. [74, Fig. 4]. 29
2.16 Open-source NLG solutions over the years. 32
2.17 Open-source NLG solutions popularity. 33
2.18 Language support of open-source NLG solutions. 34
2.19 Open-source NLG solutions licenses. 35

3.1 Example match information from www.zerozero.pt. Image from Aires [1, Fig. 3.1]. 39
3.2 User interface. Image from Soares [75, Fig. 3.3]. 40
3.3 Prosebot architecture. Adapted from Ribeiro [71, Fig. 3.2]. 41
3.4 View after inserting the match ID and loading the event information. Image from

Correia [14, Fig. 6.3]. 42
3.5 Match summary generated by Prosebot and published on zerozero.pt. Image from

https://www.zerozero.pt/news.php?id=352050 (accessed Feb. 10, 2022). 44
3.6 Prosebot generation process example. 45

4.1 NFA diagram - Regular strings and token declarations. 54
4.2 NFA diagram - Token declaration. 55
4.3 NFA diagram - Connector declaration. 55
4.4 NFA diagram - Condition (and = &&; or = ||; var = variable name). 57
4.5 User interface for templates validation . 59

vii

https://www.zerozero.pt/news.php?id=352050

LIST OF FIGURES viii

5.1 UML components diagram of the Prosebot system. 63
5.2 Directories tree of the core files. 66
5.3 Directories tree of a specific context. 67
5.4 Prosebot generator’s UML activity diagram. 74
5.5 Prosebot generator’s UML class diagram. 75

6.1 Home page. 79
6.2 File import page. 79
6.3 Template file view. 80
6.4 Delete template file pop-up. 81
6.5 Rename template key. 82
6.6 Template edit view. 82
6.7 Template validation. 83

7.1 Number of detected writing errors over time. 87
7.2 Percentage of writing errors over time relative to the number of logs produced. . 88
7.3 SonarQube measures report of the version before the project’s work. 88
7.4 SonarQube measures report of the final version before revision. 89
7.5 SonarQube measures report of the final version after revision. 89

B.1 Prosebot generator’s complete UML class diagram. 105

List of Tables

2.1 Reference NLG companies. 7
2.2 Other NLG vendors. 8
2.3 Availability of open-source NLG solutions. 9
2.4 Top 10 open-source NLG references. 31
2.5 Top 15 authors, according to Google Scholar h-indexes. 31
2.6 Top 15 authors, according to Scopus h-indexes. 32
2.7 Popularity of open-source NLG solutions through analyses crossing. 34

4.1 Previous match variables. 48
4.2 Italian regular connectors. 49
4.3 Variations of “il”. 50
4.4 Variations of “e”. 50
4.5 Italian composite connectors. 50
4.6 Token declaration patterns. 53
4.7 Connector declaration patterns. 53
4.8 Templates validation algorithm rules. 61

6.1 Prosebot component API. 77
6.2 Prosebot Editor component API. 78

7.1 Templates validation logs fields. 84
7.2 SonarQube labeling scale. Source: SonarSource S.A [73]. 85

A.1 Open-source NLG solutions. 104

ix

Listings

2.1 Example Chimera RDF triplets input from Moryossef, Goldberg and Dagan [57]. 24
4.1 Example template keys. 52
4.2 Unused template warning. 54
4.3 CFG for text productions. 56
4.4 CFG for condition productions. 57
4.5 Error messages formats. 60
4.6 Warning messages formats. 60
5.1 Example grammar and linguistic functions for the Spanish language, before re-

structuring. 64
5.2 Example list of connectors for the Spanish language, after restructuring. 65
5.3 Example grammar functions for the Italian language, after restructuring. 65
5.4 CompetitionData’s get_entity method, before restructuring. 69
5.5 EntityGetter classes. 70
5.6 MatchData’s list of tokens, after restructuring. 71
7.1 Testing logs of the validation algorithm integration. 86

x

Abbreviations and Symbols

AI Artificial Intelligence
API Application Programming Interface
CFG Context-Free Grammar
HTML HyperText Markup Language
JSON JavaScript Object Notation
NFA Non-Deterministic Finite Automaton
NLG Natural Language Generation
UX User Experience
XML Extensible Markup Language

xi

Chapter 1

Introduction

1.1 Context

Natural Language Generation (NLG) is a subarea of Artificial Intelligence (AI) that handles the

automatic production of textual content [66]. With increasing interest by companies and customers

for speeding up the writing of summaries, explanations, news, and descriptions from structured

data stored in their databases, NLG has grown to become a fully established commercial cate-

gory [16].

ZOS1 is a Portuguese company that provides sports data support for multiple media chan-

nels, from news publications to betting companies, and claims to have the world’s largest football

database [48]. Considering the daily number of games and sports events and the large amount

of data gathered, a new opportunity arises to generate textual content from ZOS’s structured data.

Showcasing information through complex charts and tables can turn it challenging for some people

to comprehend. Thus, presenting it in a text form can be the best way to increase user engagement.

Throughout the last years, ZOS has been developing Prosebot, alongside their collaboration

with FEUP, as part of the zerozero.pt project. Prosebot is a template-based natural language gen-

eration application that produces mainly matches’ summaries from sports data extracted from

their database in an automatic efficient way. Journalists can use it to generate an initial version

of the news content to serve as a basis for their work. Additionally, it is already being used by

zerozero.pt’s advanced users to automatically generate summaries for football matches that range

from amateur to professional leagues, from senior footballers to the young football academies [64].

1.2 Motivation

Despite the continuous advancements in the NLG area and the growing demand by companies for

these types of technologies and tools to help produce textual information, the number of open-

source systems available for public use is still low. Ehud Reiter [67] mentions that developing

open-source software is an arduous and time-consuming task. Converting a company’s internal

1https://www.zos.pt/

1

https://www.zos.pt/

Introduction 2

tool into open-source requires refactoring, reorganizing, and documenting the code, improving

readability and comprehension for future users. Flexibility, robustness to failures, maintenance,

and support for questions and problems users may encounter are also essential aspects to consider.

Although these may represent stopping factors to development, some companies already pay their

employees to develop the open-source software they use. With the conversion of Prosebot into

open-source software, ZOS intends to make the system known to a broader audience, promote

knowledge sharing and expand its functionality through collaboration with the community.

Moreover, a development approach following the no-code paradigm [91] and including multi-

lingual support would create new opportunities for lay users to interact with the system, create and

manage templates, and take advantage of the overall NLG features, overcoming the lack of pro-

gramming skills and knowledge. It could change how these projects are approached by opening

the development environment to a larger audience.

1.3 Objectives

The main objective of this work is to adapt the existing version of the Prosebot application into

an open-source software project, making it freely available for public use. Following the no-code

paradigm, implementing a templates management platform with an intuitive interface is also an

objective. Other goals include improving the implementation of multilingual support and devel-

oping a validation algorithm for evaluating the code used in each text template.

In the end, programmers should be able to reuse the code, expand the tool’s functionality, and

integrate it into their systems. At the same time, lay users should be provided with resources to

execute simple tasks, manage language templates, and create initial versions of descriptions, news,

and summaries.

1.4 Document Structure

This document consists of seven main chapters. Chapter 2 conveys an overview of the state of

the art in Natural Language Generation in the commercial and open-source fields, a definition of

typical architectures, and some examples of available technologies in the area. Chapter 3 describes

previous work developed in Prosebot over the years. Chapter 4 presents the improvements made

to the NLG module, the inclusion of new features to expand the multilingual support of Prosebot,

and the implementation of a templates validation algorithm. Chapter 5 depicts the development

process to adapt the system to open-source software. Then, Chapter 6 describes a user-friendly

web application developed to help manage templates, following the no-code paradigm. Chapter 7

presents the evaluation results of the use of the templates validation algorithm, the code quality

of the generation module, and the use of the templates management platform. Lastly, Chapter 8

concludes the project description and outlines some future work.

Chapter 2

Overview of NLG Systems

This chapter presents a literature review on Natural Language Generation systems and their typical

architecture. Then, it describes the commercial state of the art, from the early days to the current

development wave, and enumerates some existing commercial tools. Finally, it presents an in-

depth review of open-source NLG systems.

2.1 Natural Language Generation

Reiter and Dale define Natural Language Generation as “the subfield of artificial intelligence and

computational linguistics that is concerned with the construction of computer systems that can

produce understandable texts in English or other human languages from some underlying non-

linguistic representation of information” [68, p. 1]. Data-to-text systems generate textual content

from structured input data and thus perfectly fit the definition. However, text-to-text systems

should not be ignored since they also use NLG to translate and summarize texts [14, 29].

2.2 Architecture of an NLG System

2.2.1 Tasks

According to Reiter and Dale [68], an NLG system should execute several tasks in order to

progress from input data to the production of output text. The six main tasks agreed within the

NLG community are described below.

Content determination: It is essential to start by “deciding what information should be commu-

nicated in the text” [68, p. 9]. The idea is to filter the input data to choose the relevant information

based on the context of the system. This information creates a set of messages and will then be

used on the following tasks to generate the appropriate textual content.

3

Overview of NLG Systems 4

Discourse planning: After the content is determined, begins “the process of imposing ordering

and structure over the set of messages to be conveyed” [68, p. 10]. Discourse planning splits the

information through an organized structure that in the simplest form can be just the division into

a beginning, a middle, and an end. However, more sophistical divisions are often witnessed. The

result of this process is usually a tree structure with leafs being individual messages and internal

nodes describing the relations and grouping between them.

Sentence aggregation: It is “the process of grouping messages together into sentences” [68,

p. 10]. Although this may be a pivotal task to improve the fluidity and readability of the speech,

some messages may not need aggregation as they are complete enough to make a full sentence.

Lexicalization The task of “deciding which specific words and phrases should be chosen to ex-

press the domain concepts and relations which appear in the messages” [68, p. 11]. This decision

is highly context-dependent. Further, it can follow a hard-coded approach, using the same words

or expressions for each domain situation, or a more varied approach allowing for multiple options

of expressing an idea or concept. This task is particularly beneficial for systems with multilingual

support.

Referring expression generation: This task is correlated with lexicalization and deals with

“selecting words or phrases to identify domain entities” [68, p. 11]. Unlike lexicalization, referring

expression generation has to consider the position in the text to distinguish the reported entity. For

example, a pronoun identifying an entity can only be used if that entity was mentioned right before

in the text, establishing a reference between the two.

Linguistic realisation: Finally, linguistic realisation, also known as surface realisation, applies

“the rules of grammar to produce a text which is syntactically, morphologically, and orthograph-

ically correct” [68, p. 12]. This task encompasses rules such as adding propositions and phrase

connectors (syntactic component), fulfilling the concordance between gender, number, and verbal

tense (morphological component), and the correct use of capital letters and punctuation (ortho-

graphic component), amongst others.

2.2.2 Architectures

Reiter and Dale [68] defend that there are multiple ways to distribute the aforementioned tasks.

For example, develop a module for each, or represent the tasks by constraints and axioms. How-

ever, the most typical architecture of current NLG systems splits the NLG tasks into three main

stages: text planning, sentence planning, and linguistic realisation. Text planning contains the

first two tasks: content determination and discourse planning. Sentence planning encompasses

sentence aggregation, lexicalization, and referring expression generation. Finally, linguistic real-

isation includes the NLG task with the same name. Figure 2.1 depicts a diagram of the proposed

architecture.

2.3 Commercial NLG Systems 5

Goal

Text Planner

Content Determination

Discourse Planning

Text
Plan

Sentence Planner

Sentence Aggregation

Lexicalization

Referring Expression Generation

Sentence
Plans

Linguistic Realiser

Linguistic Realisation
Surface

Text

Figure 2.1: NLG systems’ architecture and task distribution presented by Reiter and Dale [68].
Adapted from Aires [1].

2.3 Commercial NLG Systems

According to Robert Dale [16], Natural Language Generation was not adequately valued for a

long time. One reason that could explain it states that the amount of textual content needing

automatic interpretation surpassed on a large scale the quantity of data available for descriptions

generation. It was not until more recently that this factor changed. In the 2010s, NLG started to

gain relevance through commercial products and increasing customer demand for text generation

tools, thus becoming a fully established commercial category in the software market.

2.3.1 The first steps

The first attempts to develop cost-effective commercial NLG applications occurred during the

1990s [16]. The FoG system, designed by CoGenTex, to generate weather reports was the first

functional NLG application. CoGenTex1 is a company founded by Dick Kittredge, Tanya Ko-

relsky, and Owen Rambow in 1990 that worked on producing bilingual output texts, namely in

English and French. Multilingual support is a significant feature of NLG systems, as generating

various multilingual outputs from input data provides better results than translating the output af-

ter the text generation. On the other hand, some companies like Cognitive Systems, located in

the USA, and GSI-Erli, located in France, proposed applications to automatically generate fluent

answers to customers’ doubts and complaints. Both Cognitive Systems and GSI-Erli have already

ceased their activity.

2.3.2 The turning point

On April 24, 2012, Steven Levy published an article in the Wired magazine entitled “Can an

Algorithm Write a Better News Story Than a Human Reporter?” [50]. Dale [16] considers this

publication to be the turning key point that brought the attention of mainstream media to the

capabilities of NLG. This article showed what would be possible to accomplish with the right

tools and appropriate data through the work employed by Narrative Science, a company founded

in 2010, recently acquired by Salesforce2 [31], that produced news stories and summaries of sports

1http://cogentex.com/
2https://www.salesforce.com/

http://cogentex.com/
https://www.salesforce.com/

Overview of NLG Systems 6

events and financial reports. It started by presenting a short example of a paragraph automatically

written by Narrative Science’s algorithms, catching the reader’s attention to the fluidity of the text

and the imperceptible differences between human and computer writing. According to Narrative

Science’s CTO, Kristian Hammond, computer-generated textual content will dominate the future

of news and stories publication. However, it will not remove humans from the creation process or

take their jobs away. NLG will assume a leading role in reporting information journalists cannot

cover. More, it can go beyond journalism and be used to generate descriptions of large data sets,

explanations of spreadsheets, complex charts, and tables. And consumers seem to be interested

in this type of functionality. As Steven Levy [50] says, “it turned out that (. . .) people would

pay to convert all that confusing information into a couple of readable paragraphs that hit the key

points”.

2.3.3 The market expansion

Since the early days, some major NLG companies have been founded and continuously evolved

their products until they became prominent names. Five of those stand out as the most recognized

and established companies in the NLG market: Ax Semantics3, Yseop4, Automated Insights5,

Narrative Science6, and Arria NLG7 [16]. The products and services provided by the previously

mentioned companies usually take two approaches:

1. Development and maintenance of a customized NLG tool solution, ordered by a customer

to satisfy a particular need;

2. Self-service toolkits for customers to implement their applications, following a Software

as a Service (SaaS) model. This approach usually emerges naturally due to the experience

acquired during the first one.

In addition, some NLG vendors also integrate their applications into recognized platforms with

already established user bases as a strategy to catch users. For example, Automated Insights and

Yseop had plug-ins for Excel for their Wordsmith and Savvy products, respectively. Despite some

distinguishable features and specificities of each of the products provided, they seem to be very

similar in accessibility and utilization. In fact, for the usual use cases, the currently available NLG

tools share a big part of the characteristics of their predecessors from the 1990s.

The advancements in the NLG market and companies’ production led to a point in which

usability represents a key factor to a product’s success. The end-user should be abstracted from

the theoretical notions NLG comprises and be provided with an interface to interact with the

system. Dale mentions that “much more important in terms of the success of the tool is the quality

and ease of use of its user interface” [16, p. 4].

3https://en.ax-semantics.com/
4https://yseop.com/
5https://automatedinsights.com
6https://narrativescience.com
7https://www.arria.com/

https://en.ax-semantics.com/
https://yseop.com/
https://automatedinsights.com
https://narrativescience.com
https://www.arria.com/

2.4 Open-Source NLG Systems 7

2.3.4 Commercial solutions

As stated before, companies tend to follow two approaches to the products and services they pro-

vide. According to Dale [16], Ax Semantics opted for the self-service toolkit approach since the

beginning. It offers plug-ins and integration with many available platforms and has focused its

motivation on improving the generation of product descriptions from structured data. Automated

Insights has its Wordsmith NLG platform and offered a free trial period for its users in 2014, and

Arria presented its NLG Studio8 tool around 2017. Narrative Science had Quill9, which generated

stories for dashboards, and then developed Lexio10, an application for generating business news-

feeds from Salesforce input data. As for Yseop, it had Savvy11, a data-to-text application with

multilingual capabilities. Table 2.1 shows the most recognized NLG companies in the market, and

Table 2.2 shows a list of other NLG vendors and their contributions, based on Dale [16, pp. 4-5].

Table 2.1: Reference NLG companies.

Name Foundation Country
AX Semantics 2001 Germany
Automated Insights 2007 USA
Yseop 2007 France
Narrative Science 2010 USA
Arria NLG 2013 UK

2.4 Open-Source NLG Systems

In a publication in his blog in 2017, Ehud Reiter [67] stated that there are still too few open-source

NLG systems available. Reiter [67] declared that creating or adapting an existing software into

an open-source model requires a great effort and is time-consuming. So does its maintenance

and continuous support for users of the system. There is still the need to bring more commercial

developers into the NLG area, which would encourage the development of more open-source

systems and promote knowledge sharing amongst the community. According to Reiter, the “NLG

community is pretty bad at letting its members know about software resources” [67]. The present

section aims to disclose the state of the art in open-source NLG, splitting the existing systems in

line with the architecture proposed by Reiter and Dale [68].

A search methodology was followed to find open-source solutions with natural language gen-

eration capabilities. Ehud Reiter’s blog [67] was used as a starting point for finding some systems.

Then, Google search permitted finding more open-source solutions and relevant documentation us-

ing selected keywords. The keywords chosen were “natural language generation”, “open-source

NLG”, “no-code NLG”, “NLG systems”, and “NLG state of the art”. The search led to the list

of “Downloadable NLG systems” from the ACL wiki [30]. A more in-depth search for articles,
8https://www.arria.com/nlg-studio/
9https://narrativescience.com/quill/

10https://narrativescience.com/lexio/
11http://yseop.github.io/savvy-api/

https://www.arria.com/nlg-studio/
https://narrativescience.com/quill/
https://narrativescience.com/lexio/
http://yseop.github.io/savvy-api/

Overview of NLG Systems 8

Table 2.2: Other NLG vendors.

Name Foundation Country Focus
Linguastata 2005 USA Product descriptions.
Retrescob 2008 Germany Product description, real estate, sports report-

ing, traffic news, and stock market reporting.
Infosentiencec 2011 USA Sports reporting.
Phrasetechd 2013 Israel NLG with theoretical bases.
2txte 2013 Germany Product descriptions.
Textual Relationsf 2014 Sweden Product descriptions and support for 16 lan-

guages.
Narrativag 2015 Spain Financial services, e-commerce, healthcare

and telecommunications.
VPhraseh 2015 India Case studies for industries and multilingual

support.

ahttp://www.linguastat.com
bhttps://www.retresco.de/
chttps://infosentience.com
dhttps://www.phrasetech.com
ehttps://2txt.de
fhttps://textual.ai
ghttps://www.narrativa.com
hhttps://www.vphrase.com

GitHub repositories, and web pages’ content was done afterwards for each solution found. In

addition, from those articles, new systems were pursued through references.

The following subsections are an enumeration of open-source NLG solutions and their char-

acterisation according to their features, time of creation and development, license, and position

inside the architecture of NLG systems proposed by Reiter and Dale [68]. Subsections 2.4.1 to

2.4.7 depict linguistic realisers, 2.4.8 to 2.4.13 enclose solutions that are both sentence planners

and linguistic realisers, and 2.4.14 to 2.4.18 describe open-source solutions that cover all stages.

Finally, in solutions of Subsections 2.4.19 to 2.4.24, neither the authors place them in the architec-

ture, nor it was possible to deduce their position from the information found. Table 2.3 summarises

the solutions, and Table A.1 details their characteristics. The solutions marked with a “*” are no

longer available.

2.4.1 FUF/SURGE

Functional Unification Formalism Interpreter (FUF) [25, 26] implements the FUG formalism [43],

a recognized valuable formalism on developing syntactic realisation grammars for generation, and

expands it. The interpreter was written in Common Lisp. In his thesis, Michael Elhadad [26]

enumerates some of the contributions of the FUF implementation in contrast to past FUG systems:

• More efficient and can sustain larger grammars;

• It is used for syntactic realisation, lexical choice, and content determination;

http://www.linguastat.com
https://www.retresco.de/
https://infosentience.com
https://www.phrasetech.com
https://2txt.de
https://textual.ai
https://www.narrativa.com
https://www.vphrase.com

2.4 Open-Source NLG Systems 9

Table 2.3: Availability of open-source NLG solutions.

Name Creation Last Update
DAYDREAMER* 1983-88 -
LKB 1991 2019
FUF/SURGE 1992-96 2017
KPML 1993 2020
ASTROGEN 1996-99 2005
TG/2* 1998 2005
CLINT* 1999-2000 -
MUG 2002 2004
Suregen-2 2002 -
STANDUP 2003 2007
OpenCCG 2003 2019
NaturalOWL 2007 2008
GenI 2007 2017
NLGen & NLGen2 2009 2010 & 2009
SimpleNLG 2009 2021
PHP-NLGen 2011 2020
TGen 2014 2021
JSrealB 2015 2022
RNNLG 2016 2017
PASS 2017 2021
Syntax Maker 2018 2021
RosaeNLG 2018 2022
Chimera 2019 2020
Elvex 2019 2021
Accelerated Text 2020 2022

• Supports inheritance, making the formalism more concise and expressive;

• Includes mechanisms to treat grammars in a modular way and to handle exchange with

external knowledge sources, thus improving readability and robustness in their development.

Systemic Unification Realization Grammar of English (SURGE) [25, 27] was written in FUF

by Michael Elhadad and Jacques Robin between 1992-1996 and distributed as a package accompa-

nied by a FUF interpreter. It is “a syntactic realization front-end for natural language generations

systems” [27]. Figure 2.2 shows an example of an output to a given input to the SURGE system.

According to Essers and Dale, KPML [6] 2.4.2 and FUF [25, 26] are the “two most well known

realisers” [28, p. 1], alongside their English grammars, namely Nigel [52] and SURGE [25, 27],

respectively. Their study comparing the two systems concluded that “both systems are excellent re-

sources for anyone who needs to incorporate a surface realiser into a natural language generation

system” [28, p. 11]. KPML/Nigel requires more abstract semantically oriented input, therefore,

the micro-planner can undertake a more relaxed sentence planning. On the other hand, FUF/-

SURGE deals with more syntactic input, thus, the micro-planner must be aware of the syntactic

possibilities and be capable of mapping them with document elements.

Overview of NLG Systems 10

Figure 2.2: SURGE input-output example. Image from Elhadad and Robin [27, Fig. 1].

The source code of FUF/SURGE can be seen in a public GitHub repository12 and is licensed

under GNU General Public License 2.0. More information on the package and documentation

can be found on the FUF/SURGE website13. There is also a web page14 explaining how to install

FUF/SURGE.

2.4.2 KPML

Komet-Penman Multilingual (KPML) [6] is a platform for large-scale multilingual grammar devel-

opment, including construction and maintenance, to provide resources for generation applications

dealing with the flexibility of expression and speed of generation. According to Reiter and Dale,

the system is “a linguistic realiser based of systemic grammar” [68, p. 27]. Systemic grammar

is an approach that uses a series of choices on linguistic realisation to characterize the sentence

being generated, rather than the standard sets of grammar rules that usually translate the input to

output [68]. Bateman [7] enumerates the following features KPML offers when integrated into

other natural language generation projects:

• A set of standardized linguistic resources and continuously expanding;

• A generation engine to handle the resources;

12https://github.com/melhadad/fuf
13https://www.cs.bgu.ac.il/~elhadad/surge
14https://www.cs.bgu.ac.il/~elhadad/install-fuf.html

https://github.com/melhadad/fuf
https://www.cs.bgu.ac.il/~elhadad/surge
https://www.cs.bgu.ac.il/~elhadad/install-fuf.html

2.4 Open-Source NLG Systems 11

• Debugging support for continuous maintenance and development of new linguistic resources;

• Customization tools;

• Specialized multilingual development techniques.

KPML was developed in ANSI Common Lisp, and its graphical interface is supported by

the Common Lisp Interface Manager (CLIM). Example languages of grammars developed with

KPML are Bulgarian, Chinese, Czech, Dutch, English, French, German, Greek, Japanese, Rus-

sian, and Spanish. Figure 2.3 show some generation results in several languages.

Figure 2.3: KPML text generation in English, French, Greek, German, Japanese and Dutch. Image
from Bateman [6].

KPML users tend to fall into one of the three types [6]: grammar developers, grammar and lin-

guistic students, and NLG developers. The available online documentation15 indicates the correct

steps to follow to install and operate with KPML, according to the use intended for the system.

KPML is maintained at the Universität of Bremen, Germany, under no specific license. The

system can be installed via executable images for Windows or by source code compilation, using

15http://www.fb10.uni-bremen.de/anglistik/langpro/kpml/README.html

http://www.fb10.uni-bremen.de/anglistik/langpro/kpml/README.html

Overview of NLG Systems 12

Common Lisp and CLIM in Unix and Windows15. Currently, two system versions are available:

4.1 is the most recent, and 3.2 is the legacy one.

2.4.3 TG/2

TG/2 [9, 74] is a template-based generator written in Lisp by Stephan Busemann in 1998. It is

a shallow verbalizer that combines canned text, templates, and context-free grammar rules into a

single formalism to produce textual and tabular outputs. In addition, it can be integrated with deep

generation, it can “reuse the generated substrings for additional solutions” [9, p. 2] and “can be

parameterized according to linguistic properties (regarding style, grammar, fine-grained rhetorics

etc.)” [9, p. 2]. The generation rules used by TG/2 are condition-action pairs, and they are treated

independently from their interpreter. The interpreter is composed of a three-step cycle [74, 10]

that starts by defining a set of applicable rules (matching), then proceeds by choosing one of them

(conflict resolution), executing it (firing), and repeating the cycle for the extracted sub-structure of

the input. Figure 2.4 depicts the architecture of the TG/2 system.

Figure 2.4: Architecture of TG/2. Image from Busemann [9, Fig. 1].

TG/2 web page16 refers to a hyperlink from which it would be possible to visualize a mul-

tilingual demo at work in Chinese, French, English, German, Japanese, and Portuguese of the

application. However, the demo is no longer available.

16https://www.dfki.de/~busemann/more-tg2.html

https://www.dfki.de/~busemann/more-tg2.html

2.4 Open-Source NLG Systems 13

2.4.4 GenI

GenI [46, 44] is a Haskell surface realiser developed by Carlos Areces and Claire Gardent in 2007

within the TALARIS project [15]. It takes as input a Feature Based Lexicalized Tree Adjoining

Grammar [46] and a set of first-order terms and generates sentences through the semantics of

the grammar. The system includes a batch generation mode and a graphical user interface for

development and debugging [44]. Figure 2.5 demonstrates an example of the input screen, and

Figure 2.6 shows the graphical debugger. According to the ACL wiki entry of GenI [30], some

basic example grammars are provided for English and French, and a complete version for the

French grammar is in development.

Figure 2.5: GenI input screen. Image from Kow [45].

The source code of GenI is freely available in Hackage, the Haskell community’s package

archive of open-source software17 and licensed under GNU General Public License 2.0.

2.4.5 SimpleNLG

SimpleNLG [34, 35] is a Java library that offers an API to control the realisation process pro-

grammatically. It was created by Ehud Reiter [34], Professor at the University of Aberdeen’s

17https://hackage.haskell.org/package/GenI

https://hackage.haskell.org/package/GenI

Overview of NLG Systems 14

Figure 2.6: GenI debugger. Image from Kow [45].

Department of Computing Science, UK, and co-founder of Arria NLG, in 2009. The current of-

ficial released version of SimpleNLG only offers support for English. However, several other

adjacent projects are in development covering other languages, such as French, Italian, Brazilian

Portuguese, German, Spanish and Dutch [35].

SimpleNLG features [35]:

• A lexicon/morphology system. The “morphological rules (...) cover the full range of En-

glish inflection, including regular and irregular forms” [34, p. 2];

• A realiser for producing natural language from a syntactic form, with limited grammatical

coverage in comparison to other known realisers, such as KPML (2.4.2) or FUF/SURGE

(2.4.1);

• Basic micro-planning, through aggregation, despite not being the system’s focus.

According to Gatt and Reiter [34], SimpleNLG has been well-accepted by the NLG commu-

nity and used in many projects with different purposes. It can be used as part of a complete project

where realisation is not the main focus, as a natural language generator for systems working in

other research areas, or ultimately as a teaching tool.

2.4 Open-Source NLG Systems 15

The source code of SimpleNLG and the list of adjacent projects for other languages are freely

available in a public GitHub repository18 and licensed under Mozilla Public License 2.0.

2.4.6 JSrealB

JSrealB is a bilingual text realiser for English and French. Paul Molins and Guy Lapalme [55, 4]

developed it at the University of Montreal, written in JavaScript to facilitate the integration into

web applications.

JSrealB results from the combination of SimpleNLG-EnFr [84], a bilingual version of Sim-

pleNLG (2.4.5) [34] with support for English and French, and JSreal [19], a JavaScript web realiser

for French. It can be used individually as a standalone application or as part of another genera-

tion system. To start using it integrated with a web application, one needs to import the program

and write the command to initiate the loader of resources. JSrealB can produce syntactically cor-

rect expressions and sentences and deals with morphology, declension of word syntactic forms,

and verb conjugation. Declensions cover gender and number agreement for every grammatical

category.

JSrealB follows equivalent procedures to SimpleNLG to execute the generation:

1. Data structures are created to represent the various parts of the sentence to be generated.

Usually, these are represented in a tree structure format;

2. Then, the tree is traversed, and a list of the tokens of the sentence is created;

3. The lexicons of JSrealB are based on SimpleNLG-EnFr and can be edited if the user in-

tends to add other domain-specific vocabularies. Each word of the lexicon has grammatical

properties and a pointer to an inflection table;

4. JSrealB has stated inflection tables for “nouns, adjectives, verbs, determiners and pronouns

in both English and French” [55, p. 2].

According to Molins and Lapalme [55], their objective was to develop a text realiser for En-

glish and French yet scalable to other languages with less effort. This premise is opposed to

SimpleNLG-EnFr and JSreal systems, as their lexicons encompass many irregular forms that hin-

der the expansion.

The source code of jsRealB is freely available in a public GitHub repository19 and licensed

under Apache 2.0 license.

2.4.7 Syntax Maker

Syntax Maker [40] is an open-source library written in Python that generates sentences in Finnish.

According to Hämäläinen and Rueter [40], it focuses mainly on the linguistic realisation/surface
18https://github.com/simplenlg/simplenlg
19https://github.com/rali-udem/jsRealB

https://github.com/simplenlg/simplenlg
https://github.com/rali-udem/jsRealB

Overview of NLG Systems 16

generation stage of the NLG architecture proposed by Reiter and Dale [68]. It is currently in-

tegrated into the Poem Machine [39] system, taking part in the generation of Finnish poetry. By

doing so, the tool aims to solve the issue of generating “novel, grammatical sentences not tackled

by the previous Finnish poem generators” [40, p. 3].

Syntax Maker takes the abstract linguistic structure of a sentence in JSON format as input, that

is, specific phrases of a speech nested under each other such that the highest root of the tree is a

verb phrase, and noun phrases are assigned to slots of the verb phrase. Then, it evaluates the verb’s

valency and characterizes it as transitive, ditransitive, or intransitive. In addition, it analyzes the

agreement and government writing rules of a sentence. By resolving the latest, it can then modify

verb phrases to produce more complex sentences, such as negations, interrogations, converting to

passive voice, and even handling mood and tense.

The source code of Syntax Maker is available in a public GitHub repository20 and licensed

under Apache 2.0 license.

2.4.8 ASTROGEN

Aggregated Deep and Surface Natural Language Generator (ASTROGEN) [18, 17] is an NLG

system written in Prolog, designed by Hercules Dalianis between 1996-1999 [74].

ASTROGEN is composed of two main modules: the Deep and the Surface generator. The

Deep generator comprises several sub-modules dealing with sentence planning and specializes in

aggregation. This process depicts the suppression of redundancies from the generated discourse,

thus improving readability and fluency [17]. The Surface generator module is a surface grammar

of Definite Clause Grammars, using a lexicon of lexical items as terminals. Following a pipeline

architecture, as depicted in Figure 2.7, the system receives as input formal specifications, such

as the STEP/ EXPRESS standard [18], and uses the previously mentioned modules to translate

them to English text. According to Dalianis et al. [18], the ASTROGEN system is still missing

however a translator to convert the EXPRESS specifications to the Prolog format and a separate

text planner.

The source code of ASTROGEN is freely available on its documentation website21, with a

copyright Hercules Dalianis [17] notice forbidding the use of ASTROGEN in commercial appli-

cations without a license.

2.4.9 MUG

In 2002, David Reitter started the development of the Multimodal Functional Unification Gram-

mar (MUG) system in Prolog [74, 70]. The core idea behind MUG was to achieve a graphical

debugging environment and toolset to support the development of functional unification gram-

mars. The system uses a grammar formalism and a hybrid generation algorithm to measure the

20https://github.com/mikahama/syntaxmaker
21https://people.dsv.su.se/~hercules/ASTROGEN/ASTROGEN.html

https://github.com/mikahama/syntaxmaker
https://people.dsv.su.se/~hercules/ASTROGEN/ASTROGEN.html

2.4 Open-Source NLG Systems 17

Figure 2.7: ASTROGEN architecture. Image from Dalianis [17].

output’s efficiency by combining soft and restrictive constraints. Besides, it possesses a knowl-

edge base and a realiser to “optimize different constraints using iterative-deepening branch and

bound, depth-first search algorithm” [74].

MUG features include:

• Multimodal fission [38] and arrangement of output’s structure;

• Sentence planning of the information to include in the produced utterances;

• Generation of natural language through a graphical user interface with different visualiza-

tion options. Figure 2.8 shows a view of the MUG workbench.

The zip file with the source code of MUG can be downloaded from David Reitter’s website22,

and it is licensed under GNU General Public License 2.0, as stated in the COPYRIGHT file.

2.4.10 OpenCCG

OpenCCG [90, 8] is a system written in Java that uses the Combinatory Categorial Grammar

(CCG) formalism [76] for syntax and hybrid logic dependency semantics to parse and generate

textual content. In the approach led by Moore et al. [56] to present information in spoken dia-

logues, the authors used the OpenCCG system for sentence planning and realisation. In more

recent developments undertaken by Michael White and Jason Baldridge [89, 88, 87, 86], the au-

thors tried to continue adapting the realiser utilization into dialogue systems, thus “improving (...)

the grammar development process” [8, p. 3].
22http://david-reitter.com/compling/mug/index.html#dwn

http://david-reitter.com/compling/mug/index.html#dwn

Overview of NLG Systems 18

Figure 2.8: MUG workbench. Image from Reitter [69].

The source code of OpenCCG is freely available in a public GitHub repository23 and licensed

under GNU Lesser General Public License 2.1.

2.4.11 TGen

Ondrej Dušek and Filip Jurčíček [23] present TGen, a sequence-to-sequence natural language

generator with a recurrent neural network architecture [22] that produces deep syntax trees and

regular sentences. It was developed in the Python programming language and had copyright 2014-

2019 Institute of Formal and Applied Linguistics, Charles University, Prague.

TGen deals with spoken dialogue systems, that is, the conversion of meaning representations

into sentences in English. According to Dušek and Jurčíček [23], the previously mentioned con-

version is usually carried out through sentence planning and surface realisation, either following

a two-steps approach, one for each, or a single-step strategy. In contrast to other systems, TGen

can execute in both modes, creating an opportunity to compare the two methods. The system can

plan and produce sentences directly or generate deep syntax trees to serve as input to an external

23https://github.com/OpenCCG/openccg

https://github.com/OpenCCG/openccg

2.4 Open-Source NLG Systems 19

surface realiser. In order to achieve that, TGen needs to receive first as input dialogue acts [51]

composed of an action type, like inform or request, and attributes with the corresponding values.

The results of the study led by Dušek and Jurčíček [23] showed that both modes offered proper

performance, despite producing different quality outputs. The direct approach was more promis-

ing, reflecting higher n-gram based scores with identical semantic errors. It was also concluded

that TGen needed fewer amounts of training data to generate high-quality content than other re-

current neural network systems usually do.

The source code of TGen is available in a public GitHub repository24 and licensed under

Apache 2.0 license.

2.4.12 RNNLG

The Recurrent Neural Network Language Generation (RNNLG) framework [85] is a Python nat-

ural language generator that produces utterances from dialogue acts. It is based on the Recurrent

Neural Network Language Model (RNNLM) [54] and on the idea that RNNLM models tend to

generate adequate surface realisations when properly conditioned during the training phase [85].

According to Novikova et al. [61], RNNLG approaches the two stages of sentence planning and

surface realisation together, resorting to a Long Short-term Memory (LSTM) [42] network.

As mentioned before, the system receives as input a dialog act that includes a type, for example,

“inform, request, confirm, etc” [85, p. 4] and a set of slot-value pairs, and then produces the

appropriate surface realisation. Figure 2.9 depicts the execution flow of the RNNLG system.

The source code of RNNLG, licensed under Apache 2.0 license, and a slides presentation with

more in-depth descriptions and hands-on guides can be seen in a public GitHub repository25.

2.4.13 RosaeNLG

RosaeNLG [77] was created by Ludan Stoecklé and became the first NLG open-source software

provided by a company [2]. Its initial version goes back to 2018, according to the history of

versions provided in the documentation [77]. Ludan Stoecklé is also known for being a former

CTO of Yseop [2], a French company founded in 2007 and part of the most recognized NLG

companies in the market.

Initially called FreeNLG, RosaeNLG got its current name from Latin, considering that “Rosae”

means “Roses” in English. RosaeNLG is a template-based natural language generation library for

Node.js and browser integration (client-side), based on JavaScript and the Pug template engine.

It provides complete multilingual support for English, French, German, Italian, and Spanish, yet

quite a few features for other languages. The system takes input domain data in JSON-like formats,

and through templates written with the Pug syntax, it generates text content in HTML format. In

addition, it gives the possibility of introducing variations in the sentences. This feature is ac-

complished with the definition of synonyms, the introduction of conditional texts, where boolean

24https://github.com/UFAL-DSG/tgen
25https://github.com/shawnwun/RNNLG

https://github.com/UFAL-DSG/tgen
https://github.com/shawnwun/RNNLG

Overview of NLG Systems 20

Figure 2.9: The RNNLG framework for language generation. Image from Wen and Young [85,
Fig. 1].

expressions define which text part is used in the generation, and through pronoun replacement.

These fall directly into the Sentence Planner stage [68], mainly focused on the lexicalization
and the referring expression generation [78]. Finally, it can handle word spacing and automatic

capitalization, thus implementing surface realisation [78]. Figure 2.10 demonstrates the use of

RosaeNLG integrated into a browser.

The documentation of RosaeNLG is freely available online26, as well as some tutorials and

demos to get started with the system quickly. The source code is available in a public GitHub

repository27, where is also maintained an issues tracker to which the users can report.

Most of the RosaeNLG code is licensed under Apache 2.0 license, and the documentation is

licensed under Creative Commons Attribution 4.0 International (CC-BY-4.0) license. Some ele-

ments, however, are licensed under different open-source licenses; for example, “english-ordinals

and rosaenlg-cli modules remain under MIT” [77]. Each linguistic resource package is also li-

censed, and those can be seen in detail in the documentation of RosaeNLG.
26https://rosaenlg.org/rosaenlg/3.2.2/index.html
27https://github.com/RosaeNLG/rosaenlg

https://rosaenlg.org/rosaenlg/3.2.2/index.html
https://github.com/RosaeNLG/rosaenlg

2.4 Open-Source NLG Systems 21

Figure 2.10: RosaeNLG demo. Image from Stoecklé [77].

2.4.14 Suregen-2

Suregen-2 [47, 74] is an ontology-based domain-focused system that generates medical reports,

namely “findings, surgical reports or referral letters” [5], with support for German and English.

The project started development in 2002 with Dirk Hüske-Kraus and was written in Allegro Com-

mon Lisp [74].

Suregen-2 is composed of several modules distributed according to a pipeline architecture. It

has a base ontology for the medicine domain, open to the addition of new concepts relevant to the

specific domain of the application. The ontology functions as an organization of the knowledge

base, and it conveys filtered information to the generation phase, acting directly in text planning.

The system also includes a module specialized in conceptual and sentence aggregation and mod-

ules to handle semantic functions and refer to common medical terminology, phrases, and findings,

thus performing lexicalization and referring expression generation. Finally, Suregen-2 contains

a primary surface generator yet [47, 5].

The source code and the executable file of Suregen-2 can be downloaded from its website28.

2.4.15 NaturalOWL

NaturalOWL [3, 33, 32] is an open-source natural language generator for Web Ontology Language

(OWL) ontologies, written in Java, at the Athens University of Economics and Business, Greece.

It features support for English and Greek and is mainly used in Protégé29. It generates descriptions

of instances and classes given an ontology as input.

According to Androutsopoulos et al. [3], NaturalOWL follows the typical pipeline architec-

ture described by Reiter and Dale [68], consisting of three stages: document planning, micro-
planning, and surface realisation. In NaturalOWL, the document planning stage includes two

sub-stages, namely content selection, and text planning. During content selection, the system

starts by considering the ontology and retrieving all the relevant OWL statements that describe a

class or entity. Then, it transforms them into message triples and chooses the ones to be used.

After, the text planner takes the message triples and orders them. The micro-planning main stage

comprises three sub-stages: lexicalization, sentence aggregation, and generation of referring
28http://www.suregen.de/00023.html
29https://protege.stanford.edu/

http://www.suregen.de/00023.html
https://protege.stanford.edu/

Overview of NLG Systems 22

expressions. During lexicalization, for each property of the ontology and each language sup-

ported, the author behind the domain can come up with some “template-like sentence plans to

indicate how message triples involving that property can be expressed” [3, p. 19]. Sentence ag-

gregation picks up on the triples created and ordered in the previous step, which corresponds to an

organization of the corresponding sentences and links them to improve readability. In terms of re-

ferring expression generation, NaturalOWL possesses a restricted number of referring expressions,

including Natural Language names, pronouns, and noun phrases. Finally, the surface realisation

process converts the internal sentence specifications into text at the last stage. Figure 2.11 shows

the complete pipeline stage flow of the NaturalOWL system.

Figure 2.11: The processing stages and sub-stages of NaturalOWL. Image from Androutsopoulos,
Lampouras and Galanis [3, Fig. 1].

Currently, two versions of NaturalOWL are available in the Protégé wiki30: 1.0 and 1.1, both

compatible with Protege-OWL 3.3.1. A tutorial on how to install and use NaturalOWL is also

available online 31. NaturalOWL is licensed under GNU General Public License 2.0.

2.4.16 PASS

Personalized Automated Soccer texts System (PASS) [82] was developed in 2017 by Chris van der

Lee, Emiel Krahmer, and Sander Wubben at Tilburg University, The Netherlands. It is a Python

data-to-text system for Dutch football matches reports and statistics, following a re-implementation

of the GoalGetter [79] system. It uses input data scrapped from Goal.com32 in an XML format

to generate professional football matches reports with the possibility of tone switch and adapting

to the supporters of each team. The reports produced are divided into four parts represented by

separate paragraphs:

• Title – result (win, lose or tie) and score of the match;

• Introduction – a preview of the expectations and most relevant results;

• Game course – a timeline of the match events, linked by the subjective discourse that pro-

vides the emotional relatedness;
30https://protegewiki.stanford.edu/wiki/NaturalOWL
31http://www.ling.helsinki.fi/kit/2008s/clt310gen/docs/NaturalOWL-README.pdf
32http://www.goal.com

https://protegewiki.stanford.edu/wiki/NaturalOWL
http://www.ling.helsinki.fi/kit/2008s/clt310gen/docs/NaturalOWL-README.pdf
http://www.goal.com

2.4 Open-Source NLG Systems 23

• Debriefing – the consequences to the teams that come from the results and an overview of

the next matches.

PASS [82] has been designed following a modular approach so that each module could be op-

erated, enhanced, or swapped separately. The generation is similar for each of the four text parts

instantiated above. However, while the order of the topics is fixed for the title and introduction

parts – “title, win/tie/loss information and the final score” [82, p. 5], it is not the case for the game

course and debriefing, which depend on the match events. So, the topic collection module was

added to extract and order the topics. Having sorted the topics, the system then follows a set of

steps. Firstly, a topic is chosen to be handled. After, the lookup module analyzes and provides

the template categories and respective sets of templates regarding the current topic. While some

categories are general-purpose, some can only be used when specific conditions are fulfilled. The

ruleset module is responsible for checking whether the conditions are met for each category, re-

turning "true" in case of success and "false" otherwise. For each successful category, its templates

are moved to a list of possible templates. Then, the template selection module follows a weighted

selection approach and picks a template. The template filler module substitutes the empty en-

trances in the template with data. When all the parts have their corresponding text generated, the

text collection module is responsible for combining them in the correct order. At this point, the

system is fully operational to produce text, but some other modules were added to increase vari-

ety. The information variety module guarantees that some pieces of information are not repeated.

The reference variety module goes throughout the text and substitutes repeated referents with new

ways to address entities. Finally, the between-text variety module retains track of previously used

templates for reports generation and ensures they are not repeated in future reports. Figure 2.12

shows a sequential diagram of the modular architecture of PASS.

Figure 2.12: Modular architecture of PASS. Adapted from Lee, Krahmer and Wubben [82, Fig. 1].

The source code of PASS is freely available in a public GitHub repository33 and licensed under

GNU General Public License version 3.0.

2.4.17 Chimera

Amit Moryossef et al. refer to data-to-text generation as two steps, namely “ordering and struc-

turing the information (planning), and generating fluent language describing the information (re-

alization)” [57, p. 1]. In contrast with the modern neural generators that merge the two steps into

33https://github.com/TallChris91/PASS

https://github.com/TallChris91/PASS

Overview of NLG Systems 24

a single end-to-end architecture, Chimera proposes a different approach, splitting generation into

two distinct tasks: a symbolic text-planning stage and a neural generation stage for linguistic
realisation [57]. In addition, Chimera can also perform referring expression generation, which

fits between planning and realisation.

Chimera is a recent project published in 2019 and written in Python. It receives RDF triplets

as input describing facts of entities and their intertwined relations and generates fluent text content

that matches those facts. Example RDF triplets are depicted in Listing 2.1.

1 John , b i r t h P l a c e , London
2 John , employer , IBM

Listing 2.1: Example Chimera RDF triplets input from Moryossef, Goldberg and Dagan [57].

Example sentences generated (source: Moryossef, Goldberg and Dagan [57, p. 1]):

1. “John, who works for IBM, was born in London”.

2. “John works for IBM and was born in London”.

3. “London is the birthplace of John, who works for IBM”.

4. “John works for IBM. John was born in London”.

Amit Moryossef et al. [57] evaluated it under the WebNLG benchmark. The study concluded

that splitting text planning and neural realisation improved the reliability and adequacy of the

system without spoiling the fluency of the output.

The source code and the training and development data sets of Chimera are freely available in

a public GitHub repository34 and licensed under MIT license.

2.4.18 Accelerated Text

Accelerated Text [80] had its first public release in 2020 by TokenMill UAB in JavaScript and

Clojure programming languages. It is a data-to-text engine for generating data descriptions, with

a visual interface of building blocks, following the no-code paradigm [93] in a Google Blockly35

environment. It allows the variation of the content’s wording and structure by switching the blocks

inside the root, “Document plan”, as depicted in Figure 2.13. In addition, it has support for

multiple languages, like English, German, Russian and Spanish.

According to the documentation [81], the data used by Accelerated Text can come from many

different origins, such as business and financial metrics, customer interaction, and product at-

tributes. Its main features include:

1. A document plan editor to define the information being reported about the data;

34https://github.com/AmitMY/chimera
35https://developers.google.com/blockly/

https://github.com/AmitMY/chimera
https://developers.google.com/blockly/

2.4 Open-Source NLG Systems 25

Figure 2.13: Accelerated Text Document Plan. Image from Navickas [92].

2. Data samples in the form of CSV files for input;

3. Text structure variations to stimulate readability and variety into the generated texts;

4. Language and vocabulary control to adapt to the reader’s specific features;

5. A built-in rule engine to control "what is said based on the different values of data points" [81];

6. Live preview of the generated text.

Overview of NLG Systems 26

The source code of Accelerated Text is publicly available in its GitHub repository36 and li-

censed under Apache 2.0 license.

2.4.19 DAYDREAMER

Mueller and Dyer define daydreaming as “the spontaneous human activity of recalling or imag-

ining personal or vicarious experiences in the past or future” [59], and enumerate some of its

practical usages:

1. Planning for the future – It is the idea that when we drift off in thought about different

scenarios and possible ways for events to happen, we also envision adequate responses to

those situations. Thus daydreaming enhances the ability to make decisions.

2. Learning from successes and failures – The concept is that when daydreaming, by reflecting

on already occurred successful or failed events and coming up with alternative actions, we

are enhancing the ability to plan strategies. Since it is a thinking process that happens after

the event, it can be done with newly acquired knowledge.

3. Creativity – Daydreaming promotes the search for new, outside the box ideas and solutions

for problems, with continuous revision and reformulation. This process can also increase

the motivation to undertake those solutions.

4. Emotion regulation – The process of thinking of different possible outcomes to events and

changing the perception according to that rationalization. For example, “Fear associated

with a future event may be reduced if one daydreams about effective plans to succeed in that

event, or increased if daydreams of likely failure result” [59].

The DAYDREAMER [59] program was developed in 1983-1988 [58] using GATE [60], a de-

velopment environment for the T language [65], a dialect of Scheme. It aimed to test the theory

of daydreaming through computational means. The program receives as input “simple situational

descriptions” [59], or casual events, and generates two outputs: suggested actions for the present

scenario and daydreams, only in the English language. DAYDREAMER has five main compo-

nents, each exchanging information with another. The scenario generator uses experiences pro-

vided by the dynamic episodic memory and is guided by the collection of goals. The dynamic

episodic memory is long-term and encloses the complete daydreams, the planned actions, and

the strategies created from daydreaming. Goals can be personal, that is, all basic needs, such

as, “health, food, sex, friendship, love, possessions, self esteem, social esteem, enjoyment, and

achievement” [59] or control goals. They are ordered in a tree structure regarding importance

in time. Then the scenario generator chooses the path that meets the goal with the highest im-

portance. The emotion component initiates the daydreams and manages the emotional states that

result from the goal outcomes. Finally, the last component encompasses the domain knowledge of

interpersonal relations and daily mundane events.

36https://github.com/accelerated-text/accelerated-text

https://github.com/accelerated-text/accelerated-text

2.4 Open-Source NLG Systems 27

Despite some claims that the DAYDREAMER system is still available at the CMU AI Repos-

itory37 and licensed under GNU General Public License version 2.0 [20], neither the source code

nor the executable file was found.

2.4.20 LKB

Linguistic Knowledge Builder (LKB) [13] was originally developed in 1991, and it is a system for

grammar development written in Common Lisp and distributed as part of the open-source LinGO

tools [12].

According to Copestake et al. [13], LKB was the development environment of many gram-

mars with different sizes and languages. LKB features also make it a fit in teaching due to its

efficiency and availability as open-source, taking part in formal syntax, computational linguistics,

and grammar engineering courses [13]. The system is composed of “a parser, generator, support

for large-scale inheritance hierarchies (...), various tools for manipulating semantic representa-

tions, a rich set of graphical tools for analyzing and debugging grammars, and extensive on-line

documentation38” [13, p. 1]. Figure 2.14 shows a screen dump view of the LKB system.

Figure 2.14: LKB screen dump. Image from Copestake et al. [13, Fig. 1].

37https://www.cs.cmu.edu/Groups/AI/0.html
38https://github.com/delph-in/docs/wiki/LkbTop

https://www.cs.cmu.edu/Groups/AI/0.html
https://github.com/delph-in/docs/wiki/LkbTop

Overview of NLG Systems 28

The source code of LKB is freely available in a public GitHub repository39 and licensed under

MIT license.

2.4.21 CLINT

CLINT [24, 74] was designed by Rinat Gedalia and Michael Elhadad between 1999-2000 in C++

and ran under Microsoft Windows 3.1. It is a hybrid text generator, combining template-based and

word-based generation to create text content. CLINT is composed of four components:

• A template development system;

• A problem definition system that distributes templates following a decision tree structure;

• A run-time generator that inquires the user based on the decision tree and obtains the values

to assign to the parameters;

• A noun-phrase generator that receives the parameter values and chooses the adequate noun-

phrase form according to the discourse context at each point.

CLINT web page40 refers to a hyperlink from which it would be possible to download a zip

file containing an executable clint.exe and an example grammar template. However, this hyperlink

redirects to a not found page.

2.4.22 STANDUP

System To Augment Non-speakers’ Dialogue Using Puns (STANDUP) [74, 62] is a Java project

created by Manurung et al. [53] in October 2003 and finished support in March 2007. It is a

jokes generation system in English, and its “humor-creating behaviour reflects the current state

of the art in computational humour” [53, p. 2]. The main goal of STANDUP is to promote an

exploring environment and friendly user-interface children with complex communication needs

can use to develop their language skills by creating puns in a question-answer pair. An example

of a generated joke: “What kind of tree is nauseated? A sick-amore” [53, p. 2].

In December 2010, a new version of the system was made available, called STANDUP 2, with

slight differences from its predecessor.

The source code of STANDUP and STANDUP 2 can be downloaded from the University of

Aberdeen website41, with a copyright notice to the University of Aberdeen, University of Dundee,

and the University of Edinburgh.

2.4.23 NLGen, NLGen2

NLGen [74, 37] is a Java system designed by Ben Goertzel in 2009 that generates sentences in

English from RelEx semantic relationships using the SegSim algorithm42. NLGen is based on
39https://github.com/jingtaozf/lkb
40https://www.cs.bgu.ac.il/~elhadad/clint.html
41https://www.abdn.ac.uk/ncs/departments/computing-science/software-480.php
42https://wiki.opencog.org/w/Natural_language_generation#SegSim

https://github.com/jingtaozf/lkb
https://www.cs.bgu.ac.il/~elhadad/clint.html
https://www.abdn.ac.uk/ncs/departments/computing-science/software-480.php
https://wiki.opencog.org/w/Natural_language_generation#SegSim

2.4 Open-Source NLG Systems 29

the idea that “most language generation may be done by reversing previously executed language

comprehension processes” [37, p. 2]. RelEx is a natural language comprehension engine that

“takes sentences and maps them into abstract logical relations which can be represented in the

OpenCog Atomspace” [37, p. 2]. NLGen iterates through the predicates of the Atoms and creates a

graph for each, representing the RelEx semantic relationships. Then, by confronting these graphs

with sentences and semantic interpretations stored in memory, NLGen can merge the selected

predicates and generate new sentences.

NLGen 2 [49, 74] was written by Blake Lemoine, also in Java, in 2009. While NLGen could

not generate complex sentences in a timely manner, NLGen 2 could overcome that scaling lim-

itation “by using a psychologically realistic generation strategy that proceeds through symbolic

stages from concept to surface form” [49]. In addition, while NLGen was dependent on a corpus,

NLGen 2 used a Link Parser’s dictionary instead as its knowledge source. Figure 2.15 depicts the

architecture of NLGen 2. Both NLGen and NLGen 2 are part of the OpenCog [41] project, a soft-

ware development framework designed to merge multiple Artificial Intelligence methodologies.

Figure 2.15: General architecture of NLGen 2. Image from Singh et al. [74, Fig. 4].

The source code of both NLGen43 and NLGen 244 can be browsed and downloaded from the

Launchpad website and licensed under Apache 2.0 license.

2.4.24 PHP-NLGen

PHP-NLGen [21] is a framework of PHP classes developed by Pablo Duboue. It includes a gener-

ator, an ontology container, and a lexicon container of lexical entries, which can create recursive-

descent natural language generators. In the recursive-descent generation, each grammar rule is

43https://launchpad.net/nlgen
44https://launchpad.net/nlgen2

https://launchpad.net/nlgen
https://launchpad.net/nlgen2

Overview of NLG Systems 30

represented in a function with two return values: the generated string and the corresponding dic-

tionary of semantic info. Duboue [20] refers to the DAYDREAMER system (2.4.19) [59] as a

precursor to the development of such generators.

PHP-NLGen had its first version published in August 2011 in a public GitHub repository45,

where the source code of the latest version is still available and licensed under MIT license. Some

tutorials and basic examples are provided, and a slide presentation with demos in English and

French.

2.4.25 Elvex

Elvex [11] is a Natural Text Generator in C++, with support for English and French, developed

by Lionel Clément at Bordeaux University, France. The system uses as parameters a handwritten

lexicon and grammar. It also receives a concept as input, a meaning or elements of speech, such

as language level, linguistic utterance acts, and enunciative properties. Then, it produces text

content that represents the concept. Unlike similar systems, the concepts do not have to depend

on previously made lexical choices.

The source code of Elvex is freely available in a public GitHub repository46 and licensed under

GNU General Public License 3.0.

2.5 Literature Review Analysis

2.5.1 Citation analysis

A citation analysis of the bibliography for the open-source NLG solutions was done to evaluate

the references’ quality. “Citation analysis involves counting the number of times an article is

cited by other works to measure the impact of a publication or author” [63]. Google Scholar47

and Scopus48 were used to count the number of articles, proceedings, books and thesis citations.

Table 2.4 shows the top 10 references, sorted according to the average number of citations between

Google Scholar and Scopus counts. Following the same approach, the number of citations and h-

index were considered to evaluate the impact of each author. An author’s h-index represents the

maximum number of papers (h) of that author with at least h citations each [63]. Table 2.5 and

Table 2.6 show the top 15 authors sorted according to the Google Scholar and Scopus h-indexes,

respectively. The values were obtained on August 6, 2022.

45https://github.com/DrDub/php-nlgen
46https://github.com/lionelclement/Elvex
47https://scholar.google.com
48https://www.scopus.com

https://github.com/DrDub/php-nlgen
https://github.com/lionelclement/Elvex
https://scholar.google.com
https://www.scopus.com

2.5 Literature Review Analysis 31

Table 2.4: Top 10 open-source NLG references.

Reference Type Scopus Google Scholar Average
Hochreiter and Schmidhuber [42] article 41,360 69,308 55,334
Wen and Young [85] proceedings 3,223 6,474 4,848.5
Reiter and Dale [68] article 264 2,823 1,543.5
Gatt and Reiter [34] proceedings 240 476 358
Novikova et al. [61] article 143 324 233.5
Bateman [7] article 112 337 224.5
Dušek and Jurcícek [23] proceedings 99 175 137
Mairesse et al. [51] proceedings 87 164 125.5
Elhadad and Robin [27] proceedings 60 185 122.5
White [88] proceedings 82 143 112.5

Table 2.5: Top 15 authors, according to Google Scholar h-indexes.

Reference Citations H-Index
Jürgen Schmidhuber 171,599 110
Steve J. Young 39,068 91
Sanjeev Khudanpur 28,769 61
Ido Dagan 19,355 59
Yoav Goldberg 23,005 58
Johanna D. Moore 12,698 57
Lukás Burget 25,988 57
Ehud Reiter 12,629 54
Sepp Hochreiter 99,080 52
John Carroll 9,601 52
Emiel Krahmer 11079 50
Tomás Mikolov 122,129 48
Robert Dale 11,684 47
Anne Copestake 9,653 46
Oliver Lemon 7,311 45

2.5.2 Vendors

Years between 2000 and 2015 comprised the foundation of many NLG vendors worldwide that

are still active today, including the total of the reference NLG companies. Considering the com-

panies described in Subsection 2.3.4, Europe was the foundation stage of more than 50% of those

companies, with Germany founding three out of seven. The USA also contributed four, two of

which are current reference NLG companies: Automated Insights and Narrative Science. Asian

countries, namely Israel and India, launched two companies.

2.5.3 Open-source solutions

As described in the bar chart of Figure 2.16 and considering the systems found, the number of

open-source NLG solutions had been following a trend of increase, with more solutions being

created in each decade: 1 from 1980 to 1990, 6 from 1990 to 2000, 8 from 2000 to 2010, 9 from

Overview of NLG Systems 32

Table 2.6: Top 15 authors, according to Scopus h-indexes.

Reference Citations H-Index
Jürgen Schmidhuber 87,971 71
Steve J. Young 10,933 54
Sanjeev Khudanpur 15,445 46
Lukás Burget 10,660 42
Yoav Goldberg 6,832 35
Ido Dagan 4,935 34
Sepp Hochreiter 51,857 33
Kai Yu 4,365 33
Emiel Krahmer 4,218 33
Johanna D. Moore 2,787 30
Martin Karafiát 6,423 28
Oliver Lemon 2,530 28
Tomás Mikolov 47,569 27
Milica Gašić 3,826 27
Ehud Reiter 3,314 27

2010 to 2020, and 1 in the last two years. Of these, almost 90% are still available for public use,

and around 64% had updates during the last decade. These results can depict a growing interest

by companies and universities in open-source NLG systems.

Year of Creation

0

2

4

6

8

10

1980 1990 2000 2010 2020 2030

No. Open-Source NLG Solutions Over the Years

Figure 2.16: Open-source NLG solutions over the years.

Regarding the systems currently available at GitHub, the number of stars and forks made to

the repositories by GitHub’s users can be considered as a criterion of popularity. Figure 2.17

presents a bar chart with the values of those measures by the 3rd of August 2022, sorted in order

of increasing number of stars. Of the solutions considered, SimpleNLG [34, 35] stands out as the

most popular with 765 stars and 181 forks, followed by Accelerated Text [80] with 607 stars and

2.5 Literature Review Analysis 33

33 forks, and RNNLG [85] with 409 stars and 126 forks.

2 8 11 15 17 19
45 61

128

199 201

409

607

765

0 3 3 9 7 4 10 14 23
60 41

126

33

181

0

100

200

300

400

500

600

700

800

LK
B

Elve
x

FUF/SURGE
PASS

JS
rea

lB

Syn
tax

 M
ak

er

ph
p-n

lge
n

Ros
ae

NLG

Chim
era

TGen

Ope
nC

CG

RNNLG

Acc
ele

rat
ed

 Tex
t

Sim
ple

NLG

Popularity of GitHub Repositories of Open-Source Solutions

Stars Forks

Figure 2.17: Open-source NLG solutions popularity.

Attempting to find a relation between the GitHub factors of popularity and citation analy-

sis numbers, a new analysis was made by crossing the two methods. The number of stars and

forks, the average h-index of the most popular author and the average number of citations of the

most popular reference regarding an open-source solution were considered. Each value was then

weighted to a number between 0 and 14, considering the 14 open-source solutions analysed and

the values equal to zero for some measures, and then were summed to achieve the popularity value.

The final result depicts a slight change in the order of popularity of the solutions, with RNNLG

being the most popular, as described in Table 2.7.

In terms of languages, the open-source NLG systems tend to find English the most regular

choice for the generation, with 22 solutions out of 25 (88%) supporting it. French and German

follow English with 32% and 24%, respectively. Figure 2.18 shows a bar chart of the percentage

of solutions with support for a set of languages. 16% of the systems have yet generation for other

not so commonly supported languages, for example, Brazilian Portuguese, Czech and Finnish.

Turning the focus to the number of languages supported, 13 of the systems found are monolingual,

with 11 for English, PASS [82] for Dutch and Syntax Maker [40] for Finnish. Bilingual support is

also usual, especially a combination of English and French. Multilingual support is a widespread

way of approaching open-source NLG, representing 24% of the systems when counting only the

ones with more than two languages but corresponding to 48% when including the bilingual ones.

Overview of NLG Systems 34

Table 2.7: Popularity of open-source NLG solutions through analyses crossing.

Name Stars Forks

Average
h-index of the
most popular

author

Average no.
citations of the

most popular
reference

Popularity

RNNLG 409 (12) 126 (13) 90.5 (14) 55,334 (14) 1º (53)
SimpleNLG 765 (14) 181 (14) 40.5 (10) 358 (13) 2º (51)
TGen 199 (10) 60 (12) 72.5 (13) 137 (12) 3º (47)
Chimera 128 (09) 23 (09) 46.5 (12) 87 (09) 4º (39)
OpenCCG 201 (11) 41 (11) 27.5 (06) 112.5 (10) 5º (38)
PASS 15 (04) 9 (06) 41.5 (11) 34.5 (08) 6º (29)
FUF/SURGE 11 (03) 3 (03) 35 (08) 122.5 (11) 7º (25)
JSrealB 17 (05) 7 (05) 28 (07) 15 (07) 8º (24)
Accelerated Text 607 (13) 33 (10) 0 (00) 0 (00) 9º (23)
Syntax Maker 19 (06) 4 (04) 9.5 (05) 10 (06) 10º (21)
RosaeNLG 61 (08) 14 (08) 0 (00) 0 (00) 11º (16)
LKB 2 (01) 0 (00) 37.5 (09) 0.5 (05) 12º (15)
php-nlgen 45 (07) 10 (07) 0 (00) 0 (00) 13º (14)
Elvex 8 (02) 3 (03) 0 (00) 0 (00) 14º (05)

8% 8% 8% 8% 8%
12%

16% 16%
24%

32%

88%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Japanese Chinese Russian Greek Italian Dutch Spanish Other German French English

Language Support of Open-Source Solutions

Percentage of solutions with support for the language (total = 25)

Figure 2.18: Language support of open-source NLG solutions.

When comparing programming languages, Python, Java and Lisp are the most used, with five

systems written in each. JavaScript, alone or together with Clojure or Pug, was used to write three

of the systems, and Prolog and C++ were used to develop two systems each. Other less used

programming languages include Haskell, T and PHP.

Finally, considering only the 20 licensed open-source solutions, there is a general preference

for the GNU, Apache and MIT licenses in this order, respectively, 40%, 35% and 15% of the

2.6 No-Code Paradigm 35

solutions. Figure 2.19 depicts a pie chart with the distribution of licenses through the solutions.

It is essential to notice that GNU GPL v2.0, GPL v3.0 and LGPL v2.1 were joined into a single

category.

5%
5%

15%

35%

40%

Open-Source Solutions Licenses

Custom MPL v2.0 MIT Apache v2.0 GNU licenses

Figure 2.19: Open-source NLG solutions licenses.

2.6 No-Code Paradigm

The low/no-code [91] paradigm defines an approach to software development based on user inter-

faces to facilitate the creation and interaction with applications so that lay users with low or no

programming skills can also enter the development environment. According to an investigation

conducted by Richardson and Rymer in 2016 [72], when interviewing companies regarding their

low/no-code platforms, the “vast majority (...) reported that their low-code platforms helped them

accelerate development by five to 10 times” [72, p. 5].

According to Medelis [93], co-founder and CEO at TokenMill49 and Accelerated Text 50,

no-code is “a perfect fit for Natural Language Generation”. He believes an NLG system must

enhance the author’s capabilities instead of completely substituting the human author in the writing

process. In addition, he declares that the no-code approach can tackle some of the complexity NLG

comprises by giving easier ways to manage the production of text content, acknowledge and adapt

to business requirements, and generate text that relates directly to the input data.

49https://www.tokenmill.ai/
50https://www.acceleratedtext.com/

https://www.tokenmill.ai/
https://www.acceleratedtext.com/

Overview of NLG Systems 36

Following the thoughts of Yan [91], some benefits of the low/no-code approach can be enu-

merated:

• Swiftness: the use of interfaces to visually manage and prototype new applications speeds

up the development process, providing a direct path to continuous testing, user require-

ments’ refining, and showcasing;

• Citizen development: the introduction into the development and delivery processes of lay

users with no programming skills, fully aware of the business requirements and domain

knowledge, has the potential to increase the meet of customers’ needs;

• Security: “If each component or building block in low/no-code platforms is secure, reusable,

and optimized, the applications built with them should automatically be secure and opti-

mized” [91, p. 3];

• Maintainability: the existence of a single and centralized development environment plat-

form for all collaborators leads to lower maintenance costs.

On the other hand, the low/no-code approach may fall into some restrictions that reside mainly

in the products’ scalability and level of closure. Yan [91] describes the following limitations:

• Customizability/Flexibility: the components used to build and interact with the application

are usually predefined and fixed, resulting in low levels of customization of the products’

features;

• Scalability: low/no-code platforms have limited scalability and thus are rarely used to build

large-scale applications;

• Security: having low levels of customizability/flexibility and high levels of abstraction, the

users must accept that the system is bug-proof and will not originate vulnerabilities with its

continuous use;

• Vendor lock-in: companies and organizations that focus too much on a specific low/no-

code platform increase their dependency on the vendor and become more averse to switching

platforms.

Ultimately, the no-code paradigm is a powerful approach with the potential to include domain-

knowledgeable users in development. However, it should be taken cautiously depending on the

platform’s intended use and to avoid creating too much dependency on a single system. The

best approach may be to address the no-code paradigm for specific system parts that need direct

interaction with lay users, leaving more central aspects of the development to programmers.

Chapter 3

Prosebot Background

This chapter briefly describes previous contributions to the development of Prosebot in chronolog-

ical order. The final section of the chapter gives an overview of the Prosebot system and attempts

to place it in the architecture proposed by Reiter and Dale [68].

3.1 The GameRecapper System

Before even Prosebot had its actual name, Aires [1] started developing the GameRecapper system

in collaboration with ZOS. GameRecapper was a template-based data-to-text system that gener-

ated Portuguese football match summaries from structured sports events and games data.

The generation module of GameRecapper was based on the GoalGetter [79] system’s module.

To generate the summaries, the module processed input data retrieved from zerozero.pt’s API in the

form of a JavaScript Object Notation (JSON) tree structure file constructed from the information

of a specific game. Likewise, in order to produce sentences with some variation, domain data

with additional information of the teams was processed, and a set of language templates was

defined to be handled by the module. These templates were manually annotated accordingly to

the typical structure of the news pieces summarizing the first 21 rounds of Liga NOS 2015/2016 –

Introduction, Game Events, and Conclusion. Moreover, the generation module had yet to handle

grammatical functions that ensured the correction of the content by number (singular or plural)

and gender (masculine or feminine), linguistic functions to parse numeric data into words, and

specific information of each team. An example summary generated by GameRecapper, and its

translation, for the match information shown in Figure 3.1, can be seen below, as presented by

Aires [1, p. 36]:

• Original:
“O Arouca bateu a Académica por 3-2, este sábado à tarde, no Estádio Municipal de

Arouca.

Pedro Nuno, aos 11 minutos, abriu o ativo para a equipa visitante.

37

Prosebot Background 38

Aos 18 minutos, Jubal Júnior devolveu a igualdade ao encontro.

Aos 39 minutos, o Arouca confirmou a reviravolta no marcador, com Lucas Lima a ser

omarcador de serviço.

O Arouca ampliou a vantagem aos 43 minutos, quando Artur Moreira colocou o resulta-

doem 3-1, após passe de Adílson Tavares.

A equipa dos estudantes fixaria o resultado final em 3-2 com um golo de Gonçalo Paciên-

cia,depois de uma assistência de Rafa Soares, aos 62 minutos.

Com este resultado, o Arouca mantém o 5º lugar e passa a somar 44 pontos. Já a equipa de

Filipe Gouveia continua com 23 pontos e mantém o 17º lugar.”

• Translated:
“Arouca beat Académica with a 3-2 victory, this saturday afternoon, in the Estádio Munici-

palde Arouca.

Pedro Nuno, at the 11th minute, opened the score for the away team.

At the 18th minute, Jubal Júnior equalized the score.

At the 39th minute, Arouca completed the comeback, with a goal by Lucas Lima.

Arouca extended their lead at the 43rd minute, when Artur Moreira put the scoresheet at

3-1, after an assist by Adílson Tavares.The students team fixed the final result in 3-2 with a

goal by Gonçalo Paciência, after anassist by Rafa Soares, at the minute 62.

With this result, Arouca keeps the 5th position and has now 44 points. On the other side,

Filipe Gouveia’s team continues with 23 points and remains at the 17th position.”

Two types of manual evaluation methods were applied to rate the quality of the generated sum-

maries by GameRecapper. To test the intelligibility and fluidity, Aires [1] generated 44 match

summaries for rounds 25 to 29 of Liga NOS 2015/2016. Then, he divided them into three surveys

accordingly to the match final result so that each survey had a maximum number of different final

results. Five evaluators for each survey were picked from the zerozero.pt newsroom to rate the

two criteria on a scale from 1 to 5. The system achieved high intelligibility and fluidity scores

on the generated summaries according to the results obtained. However, an inverse “correlation

between the fluidity of a text and the number of goals scored in a game as well as for the goal

difference between the winning team and the losing team” [1, p. 56] was noted. This is explained

by GameRecapper’s lack of game events aggregation, generating extensive summaries in event-

ful games. Another survey was conducted to test users’ perception of human-written versus
GameRecapper generated match summaries. Ten random matches were selected for the sur-

vey, where five were human-authored, and the remaining were generated. Forty-six evaluators

answered the survey regarding the summaries’ “accuracy/completeness and (...) readiness to be

published online” [1, p. 50], without knowing their provenience. The results obtained showed

average completeness and readiness scores of 80.42% and 73.04%, respectively, for the GameRe-

capper’s summaries against 87.66% and 81.30% for the human-written ones. Aires concludes that

“despite the evaluators recognized the human-authored summaries as more complete/accurate and

more ready to be uploaded online, the difference between them is considerably low” [1, p. 57].

3.2 Statistical Language Models 39

Figure 3.1: Example match information from www.zerozero.pt. Image from Aires [1, Fig. 3.1].

The development approach and the structure definition undertaken for the GameRecapper were

the basis for the Prosebot application and can still be seen in its present state.

3.2 Statistical Language Models

Soares [75] carried out a different approach to the development of the data-to-text system. Instead

of a template-based methodology, match summaries generation was achieved using statistical lan-

guage models and learning methods.

Soares [75] started by extracting sample sentences from a dataset of summaries from the sea-

son 2015/2016 of the Italian championship and manually replaced some lexicons with tokens.

Some patterns began to pop up, as in all the summaries firstly “the journalist introduces the game,

then he talks about the goals and sent-offs if there were any and finalize it with a conclusion” [75,

p. 31]. Thus, the sentences of the summaries were discriminated into four categories: introduction,

Prosebot Background 40

goals, sent-offs, and conclusion, and from that, the categories were even split into more specific

subtypes. The SRILM1 toolkit was used to train the model with the resulting sentences.

Moreover, as depicted in Figure 3.2, a user interface was designed to select categories of a

match. Then, the system could automatically identify the subtype for the chosen category and gen-

erate a sentence by replacing the tokens with the match data extracted from zerozero.pt’s database

through its API.

Figure 3.2: User interface. Image from Soares [75, Fig. 3.3].

To evaluate the system, Soares [75] distributed surveys with rating questions for the intelligi-

bility and completeness of the sentences generated on a scale from 1 to 5. The results achieved

proved to be not as promising as expected, as the system could produce both high and poor quality

content.

3.3 Prosebot

Prosebot2 is a template-based data-to-text application that had its origin in the GameRecapper

system. While GameRecapper was implemented in Python, Prosebot was adapted to PHP. At its

core, Prosebot has the same objective to automatically generate football match summaries from

structured data provided by zerozero.pt’s API.

Ribeiro [71] employed some enhancements to the Prosebot application. His contribution com-

prised adding new fields to the summaries, and a refactor of the structure, following the organi-

zation of a regular news piece: title, subtitle, abstract, and body. The body section resembles the

one presented by GameRecapper, with an introduction, game events, and conclusion. Ribeiro [71]

also stimulated the diversity of the generated contents by inserting some new match events, such

as red cards, substitutions, and missed penalties. In addition, he initiated the development of mul-

tilingual support for Brazilian Portuguese, Spanish, and English, while maintaining the already

existing support for European Portuguese.

1http://www.speech.sri.com/projects/srilm/
2https://www.zerozero.pt/prosebot.php

http://www.speech.sri.com/projects/srilm/
https://www.zerozero.pt/prosebot.php

3.4 Evaluation Metrics 41

The generation module of Prosebot follows the same methodology as GameRecapper’s, in-

cluding the parse of JSON match data, domain data and language templates, and the use of gram-

matical and linguistic functions. Moreover, a new input field was added to accommodate the

newly implemented multilingual support, that is, the language of the summaries to choose the cor-

rect templates’ files. A new feature was also added to the generation module to analyze and score

the generated texts’ quality on a scale from 0 to 10, considering lexical diversity and sentence size.

Prosebot’s architecture diagram of this period can be seen in Figure 3.3.

Grammatical Linguistic

Domain DataTemplates

Language

Match Data

GeneratedGeneration Module

FunctionsFunctions

News

Figure 3.3: Prosebot architecture. Adapted from Ribeiro [71, Fig. 3.2].

3.4 Evaluation Metrics

The main objective of Correia’s [14] work was to develop a system to evaluate the quality of

computer-generated and human-written texts using evaluation metrics. A literature review on the

state of the art of NLG evaluation methods was conducted, leading to the creation of a metrics

system queried with a developed API and composed of three distinct modules: one for scoring

the computer-generated reports according to some automatic metrics, one to showcase textual

features and scores according to readability indicators and the third one for entity recognition and

Part-Of-Speech tagging (token classification).

Another accomplishment was the development of an interface to facilitate the automatic cre-

ation of football match reports by journalists. The interface allowed to pick match events and

obtain initial versions of Prosebot’s generated text that the user could then edit and improve until

it reaches a state when it is ready to be published. Figure 3.4 shows a view of the user interface

after picking a match.

Prosebot Background 42

Figure 3.4: View after inserting the match ID and loading the event information. Image from
Correia [14, Fig. 6.3].

3.5 Community-Based Platform and Post-Editing

Until this point, Prosebot had only been used and tested internally by ZOS co-workers. Fernan-

des [29] had the task of publishing the application and evaluating it with the target audience:

zerozero.pt users.

The project’s main goal was to speed up the writing process and the number of news generated

for the various matches happening every day that are stored in ZOS’s database. The launching of

Prosebot followed a community-based approach so that zerozero.pt’s advanced users could use it to

generate summaries for a broader range of football matches, from amateur to professional leagues,

for every age group of the athletes. This increased the number of collaborators in the writing

process and the number of generated summaries. Besides, journalists could still use Prosebot to

create initial versions of the articles and post-edit them. By spending less time analyzing sports

data and statistics, journalists can focus more on creativity and increase their writings’ quality,

fluidity, and diversity.

A survey was conducted with journalists from inside and outside zerozero.pt’s newsroom,

addressing their opinion on the platform and the impact of this type of technology in the future of

their jobs. While the feedback was majorly positive from zerozero.pt’s journalists, the acceptance

by the outside ones was not that great, as they believed the introduction of such technology in the

press world would result in journalists losing their jobs, leading to a decrease in the quality of the

content created. Fernandes [29, p. 59] subscribes to their opinion and states that “it is fundamental

3.6 Placement on the Typical NLG Architecture 43

that they are included in the development (. . .) so that we can better understand how to use these

tools to their advantage”.

Finally, some improvements to Prosebot were made, such as bug fixes and the addition of

new templates and information to the generated texts. Figure 3.5 depicts an example of a match

summary generated by Prosebot, published on zerozero.pt with the corresponding disclaimer ref-

erencing Prosebot and the editor of the summary.

3.6 Placement on the Typical NLG Architecture

The previously declared contributions led Prosebot to become a complete Natural Language Gen-

eration system that covers all three stages of the typical architecture presented by Reiter and

Dale [68]: text planning, sentence planning, and linguistic realisation.

During content determination and discourse planning, Prosebot fetches and filters specific

fields from the input data and uses template files to order the messages communicated in the text.

In the Prosebot system, each template file corresponds to a section of the complete summary.

Then, the generation module filters the templates that fulfill the conditions and traces a path in

the template file for the sentences to be written and aggregated. This task is known as sentence
aggregation.

After choosing which templates to use, the generation module produces lexicalization and

referring expression generation by replacing the tokens with values and variable expressions

for referencing entities and using cached memory to handle variability. Moreover, Prosebot is

composed of several linguistic functions to translate numeric data into words.

Lastly, the system uses some grammatical functions to ensure agreement in number (singular

or plural) and gender (masculine or feminine), include phrase connectors, and produce gram-

matically correct summaries. Figure 3.6 shows the Prosebot generation process of part of the

introduction section of a made-up match summary.

Prosebot Background 44

Figure 3.5: Match summary generated by Prosebot and published on zerozero.pt. Image from
https://www.zerozero.pt/news.php?id=352050 (accessed Feb. 10, 2022).

https://www.zerozero.pt/news.php?id=352050

3.6 Placement on the Typical NLG Architecture 45

"score": [
{

"text": "{winner.name} defeated
{loser.name} on {weekday},
{final_score}",
"condition": "final_score_diff>0"

},
(...)

]

title.json

sub_title.json

small_text.json

intro.json

events.json

final.json

stats.json

"entry_point": [
{

"text": "{template.score}.
{template.teams_form}",

"condition": ""

},
(...)

]

"teams_form": [
{

"text": "Both {home_team.name} and
{away_team.name} held their first game
in the competition.",
"condition": "first_competition_game"

},
(...)

]

Santa Iria defeated
UDR Santa Maria on

Sunday, 1-0.

Both Filipe Maritns' team and
Rafael Martinho's team held their

first game in the competition.

{
"DATETIME": "2022-02-06 10-
00-00",
"home_goals": "1",
"away_goals": "0",
"id_home_team": "12794",
"id_away_team": "12816",
"coach_home": {

"id": "34501",
"abrev": "Filipe Martins"

},
"coach_away": {

"id": "36741",
"abrev": "Rafael
Martinho"

}
"FORMHOME": {}
"FORMAWAY": {}

}

{
"ID": "12794",
"NAME": "Clube Futebol Santa
Iria",
"SHORT_NAME": "Santa Iria"

}

{
"ID": "12816",
"NAME": "União Desportiva
Recreativa Santa Maria",
"SHORT_NAME": "UDR Santa
Maria"

}

Data

Referring expression generation in
{home_team.name} and {away_team.name}

Figure 3.6: Prosebot generation process example.

Chapter 4

Prosebot Generator

This chapter describes improvements to the Prosebot generation module and the multilingual sup-

port refinement. It also presents the development process of a templates validation algorithm with

a methodology to meet future integration in a templates management platform following the no-

code paradigm.

4.1 Multilingual Support and Improvements

As mentioned before, one of the project’s goals was to improve the multilingual functionality

of Prosebot to generate production-quality content in every supported language: Brazilian Por-

tuguese, English, European Portuguese, and Spanish. In collaboration with journalists from ze-

rozero.pt’s newsroom, the templates of each language were continuously and cyclically revised,

rewritten, and tested through summaries generation with Prosebot. From this process, some oppor-

tunities for improvement arose. The following subsections describe in detail the most significant

enhancements employed in the generation module, divided by application areas.

4.1.1 Templates writing correction

The Prosebot templates in each language originated from the European Portuguese version. Thus,

some writing issues were found and fixed regarding missing translations, wrongly-placed connec-

tor forms, unused or wrongly-placed template keys, use of undefined variables in conditions, and

not closed hyperlink tags (e.g., <a>). The development of the templates validation algorithm

described in Section 4.2 proved to be very useful for finding and fixing these syntactic errors.

Moreover, new templates were written from scratch in specific languages, beyond simple transla-

tions. Lastly, each template file was cleaned from encoding issues that introduced special Unicode

character forms (e.g., \u003C) and HTML tags in the text of the templates.

46

4.1 Multilingual Support and Improvements 47

4.1.2 Language specific expressions

New expressions and ways of referring to teams were included for the Brazilian Portuguese, such

as, “equipe do técnico {coach_name}”, “equipe comandada por {coach_name}”, “time do técnico

{coach_name}”, and “time treinado por {coach_name}”. A critical aspect of this process was the

gender of each expression. Before, there were only feminine forms, but with the inclusion of “o

time”, the system should now also consider masculine forms.

In addition, versions of the competitions’ and teams’ names for each language were added.

This was particularly relevant in national teams, as while clubs tend to keep their name inde-

pendently of the language, national teams are more prone to change. For example, the Sweden

national team name: Suécia (Portuguese), Suecia (Spanish), and Sweden (English).

4.1.3 Grammatical and linguistic functions

As stated before, Prosebot includes grammatical and linguistic functions to handle the correct

production of varied text content. In order to ensure agreement in gender, feminine versions of

the players’ positions in the field were added, and the corresponding gender selector was changed

from hard-coded masculine to being functionally handled. Due to the lack of data mentioning

players’ gender, if it is a masculine competition match, the players are assigned the masculine

gender. Otherwise, they are assigned the feminine gender.

Furthermore, a neutral form was added to each connector’s existing feminine and masculine

forms, and a new linguistic function was implemented. In contrast to the already existing functions

that produce fully written numbers, the new function, ordinal_num, can generate numeric ordinal

forms, for example, “1ª or 1º”.

4.1.4 General bugs correction

Through Prosebot utilization, several generic bugs were found and fixed. The following list enu-

merates some:

1. In many matches of the league or group phase of a competition, the generated summaries

did not mention the teams’ position in the classification;

2. In matches of a knockout competition, the final paragraph of the summary showed a frag-

mented sentence which was wrongly attempting to mention the next game of the team that

was knocked out;

3. In specific cases, the fixture of the match was printed as the number zero instead of the

correct number;

4. When a player from the bench received a red card, the summary would sometimes tell that

the team was left playing with minus one player. This error was fixed by adding a condition

to verify if the player entered the field;

Prosebot Generator 48

5. Finally, as ZOS intended to use Prosebot in each of its web domains for different coun-

tries, the hyperlinks of the matches, competitions, players, and teams needed to be changed

according to the language.

4.1.5 New features

The previous subsections described changes, improvements, and corrections to already imple-

mented features. Besides those, some new variables and conditions were introduced to Prosebot

to expand its functionality and provide new information in the generated texts.

A new decisive_player entity variable was created to refer to players who scored a decisive

goal during the match, a goal after the eighty-fifth minute that granted the team a victory or a tie. To

ensure Prosebot uses the entity correctly, a new variable was defined, called has_decisive_player.

Every template that uses decisive_player in the text should include has_decisive_player in the

condition.

When analysing generated summaries of knockout competitions, which could be in multiple

hands, it missed mentioning which team went through to the next round. Until then, summaries

only expressed the final result of a single match and had no reference to past games, despite the

system receiving such data from the ZOS database. So, for example, in a two-handed knockout

round, if a team won the match but lost the round, the summary would still express positive

feelings by focusing on the victory. The variables in Table 4.1 were introduced to fill this gap,

all considering a previous match between the same teams for the same competition but in the

other team’s stadium. The created variables made it possible to write new template sentences, like

“despite the defeat, {knockouts_winner.name} knocks out {knockouts_loser.name}”.

Table 4.1: Previous match variables.

Variable Description
prev_match_final_score_diff The difference of goals in the final score of

the previous match
has_previous_match Whether there was a previous match between

the two teams
has_two_hands Whether it is a two-handed knockout round
loser_moves_on Whether the team that lost the current match,

still managed to win the knockout round
winner_moves_on Whether the team that won the current match

also won the knockout round
prev_match_score The final score of the previous match in an

NxN format
prev_match_winner The winning team of the previous match
prev_match_loser The losing team of the previous match
TeamData.prev_match_goals The number of goals scored by the team in

the previous match

One concern expressed by the journalists of zerozero.pt newsroom was the lack of a token

variable they could use on templates to express the position in the field of a player, which was

4.1 Multilingual Support and Improvements 49

solved with the inclusion of position as a new player property. Another problem was the continu-

ous misuse of definite articles before a player’s name in the Portuguese and Spanish texts. When

referencing a player, Prosebot manages to increase sentence fluidity by switching between calling

a player by the name or by the position in the field, for example, “João Cancelo” or “o defesa

(the defender)”. In order to stop using definite articles when mentioning the player’s name while

keeping them for the position, a neutral gender form was assigned to the name part. Furthermore,

a separate PlayerData.name_gender variable was introduced to accommodate situations where

the writer wants to enforce the use of definite articles. The example presented below shows the

difference between using player.name and player.name_gender, in Portuguese.

• “{o%player.name} {player.name} foi expulso ao ver o cartao vermelho.”

Produces:

(1) “João Cancelo foi expulso ao ver o cartão vermelho.”

(2) “o defesa foi expulso ao ver o cartão vermelho.”

• “{o%player.name_gender} {player.name} foi expulso ao ver o cartao vermelho.”

Produces:

(1) “o João Cancelo foi expulso ao ver o cartão vermelho.”

Keeping in mind ZOS’s web domains for other countries, a new feature was considered to

assign time zones to languages, thus converting Portugal’s time zone of the sample data to the

time zone of the destination country in a mutable and programmatic way. Moreover, two new

standards were defined for every language. The nicknames of the teams and players started being

written in italics, and matches’ scores were changed from N-N to NxN format, where N is the

number of goals.

4.1.6 Italian language

During the development phase, there was the opportunity to expand the multilingual support by

adding a new language from scratch: Italian. Following the same approach as other languages,

the European Portuguese template files were translated into Italian. New connectors needed to be

defined from this process, and new versions of the linguistic functions were implemented so that

Prosebot could correctly generate written cardinal and ordinal Italian numbers. Table 4.2 shows

the connectors defined and their appropriate form according to gender and number.

Table 4.2: Italian regular connectors.

Singular
Neutral

Plural
Name Masculine Feminine Masculine Feminine
a al alla a ai alle
di del della di dei delle
da dal dalla da dai dalle
in nel nella in nei nelle

Prosebot Generator 50

Following the grammatical rules of Italian, the “il” and “e” connectors had to be handled sep-

arately, as their variations depended not just on the gender and number but also the first characters

of the word after them. Tables 4.3 and 4.4 present the correct form of the “il” and “e” connectors

according to each scenario.

Table 4.3: Variations of “il”.

“il” variations Scenario Variation

Singular

Beginning in vowel l’
Feminine beginning in consonant la
Masculine beginning in “s” or “z” + consonant lo
Other masculine words il

Plural
Feminine le
Masculine beginning in vowel or in “s” or “z” + consonant gli
Other masculine words i

Table 4.4: Variations of “e”.

Scenario Variation
Beginning in “i” or “e” ed
Other words e

In the same way, composite connectors were implemented after, comprising a set of connectors

followed by an “il” variation. These connectors included “a, da, di, e, in, su” plus “il”. The correct

variations’ construction handled by the generator can be seen in Table 4.5.

Table 4.5: Italian composite connectors.

Name Connector il lo l’ la i gli le
a_il a al allo all’ alla ai agli alle
da_il da dal dallo dall’ dalla dai dagli dalle
di_il di del dello dell’ della dei degli delle
e_il e ed il e lo e l’ e la ed i e gli e le
in_il in nel nello nell’ nella nei negli nelle
su_il su sul sullo sull’ sulla sui sugli sulle

Lastly, new referring expressions were included for teams, such as “squadra di {coach_name}”,

“squadra {di_il%city} {city}”, and “nazionale {di_il%country} {country}”, and week’s days and

player positions in the field were translated. An example summary generated in Italian is pre-

sented below for a match between the national teams of Portugal and Azerbaijan for the World

Cup Qualifiers (UEFA) 2022:

Title: “Il Portogallo ha battuto l’Azerbaigian 1x0”

Sub-title: “Vittoria di misura degli ospiti”

4.2 Templates Validation Algorithm 51

Small text: “Il Portogallo ha vinto l’Azerbaigian in una vittoria serrata mercoledì, 1x0. Tra i

titolari è stato Cristiano Ronaldo.”

Summary: “Il Portogallo ha vinto l’Azerbaigian in una vittoria di misura, mercoledì, 1x0, nella

prima settimana di gare della Qualificazioni ai mondiali (UEFA). Sia i "portugueses", che la

nazionale dell’Azerbaigian giocavano la sua prima sfida nella competizione. Cristiano Ronaldo è

stato titolare nella partita.

Al trentaseiesimo minuto della partita, Maksim Medvedev ha avuto la sfortuna di segnare nella

propria porta.

Dopo questo risultato il Portogallo si incontra nel secondo posto in classifica generale, 17 punti,

trovandosi l’Azerbaigian al quinto posto, 1 punto. Quanto alle prossime sfide della competizione,

la squadra di Fernando Santos si trasferisce a casa della Serbia, mentre la squadra di Gianni De

Biasi accoglie la Serbia.”

And the corresponding translation:

Title: “Portugal beat Azerbaijan 1x0”

Sub-title: “A narrow victory for the guests”

Small text: “Portugal defeated Azerbaijan in a tight victory on Wednesday, 1x0. Among the

starters was Cristiano Ronaldo.”

Summary: “Portugal overcame Azerbaijan in a narrow victory on Wednesday, 1x0, in the first

week of World Cup Qualifiers (UEFA) matches. Both the "portugueses" and the Azerbaijan na-

tional team were playing their first challenge in the competition. Cristiano Ronaldo was a starter

in the match.

In the 36th minute of the match, Maksim Medvedev had the misfortune to score in his own goal.

After this result, Portugal is in second place in the overall standings, 17 points, with Azerbaijan in

fifth place, 1 point. As for the next challenges in the competition, Fernando Santos’ team travels

to the home of Serbia, while Gianni De Biasi’s team welcomes Serbia.”

4.2 Templates Validation Algorithm

This section describes an algorithm developed to validate the writing correction of Prosebot’s

templates. Besides being a valuable resource to help the users validate and fix common mistakes,

it is also a key feature to follow the no-code paradigm in the management and edition of templates

by enforcing and automating writing rules.

Prosebot Generator 52

4.2.1 Search for writing patterns

Since the objective was to automate the validation of syntactic rules for writing templates, the

already existing templates’ JSON files were analyzed to find patterns. Initially, Prosebot had

support for four languages: Brazilian Portuguese, English, European Portuguese, and Spanish,

with seven template JSON files each. Thus, twenty-eight files were taken into account. Later,

seven new files were introduced with the addition of the Italian language and keeping the same

writing rules. A template JSON file is a set of template keys composed of arrays of elements in a

text-condition pair format. Listing 4.1 presents an example of two template keys: best_player and

best_player_contribution.

1 " b e s t _ p l a y e r " : [
2 {
3 " t e x t " : " was t h e s t a r { t e m p l a t e . b e s t _ p l a y e r _ c o n t r i b u t i o n } " ,
4 " c o n d i t i o n " : " h a s _ b e s t _ p l a y e r "
5 }
6] ,
7 " b e s t _ p l a y e r _ c o n t r i b u t i o n " : [
8 {
9 " t e x t " : " w i th { b e s t _ p l a y e r . g o a l s } g o a l s " ,

10 " c o n d i t i o n " : " h a s _ b e s t _ p l a y e r "
11 }
12]

Listing 4.1: Example template keys.

The patterns extracted from analysing the JSON files were the following:

• Tree structure vs. Sparse keys:
Five (title, sub_title, small_text, intro, final) out of the seven template files had a tree

structure where each template key node redirected to template key leaves. In the exam-

ple Listing 4.1, the {template.best_player_contribution} token in best_player redirects to

the best_player_contribution key. The remaining two files (events, stats) did not have this

hierarchic structure. Instead, they present independent key declarations.

• Text-Condition pairs:
Each template is depicted as a text-condition pair, in which text is the content, or rather a set

of regular strings and tokens, and condition is the boolean expression that should be fulfilled

so that text can be used.

• Regular string:
A regular string is any set of characters besides tokens, opening and closing brackets, that

form words, expressions, or sentences.

• Token declaration:
A token declaration is any chunk of text that begins in an opening bracket and ends in a

4.2 Templates Validation Algorithm 53

closing bracket. Tokens are the parts of the text that variable values will replace during the

generation. Table 4.6 shows the different writing patterns of tokens and their corresponding

use cases.

Table 4.6: Token declaration patterns.

Pattern Use case Example
template.template_name Traverse templates keys tree

structure
{template.normal_title}

template.template_name%entity Traverse templates keys tree
structure and pass entity as ar-
gument

{template.team%away_team}

entity.property Property of an entity {loser.name}
property Property of the main entity

(match)
{stadium}

connector%token Number and gender adaptable
expressions

{de%scorer}

link_name string a Hyperlink on the given string {edition_link}table

aLater, an “@” was added before the link_name so that the validation algorithm could identify this particular pattern
(e.g. {@edition_link}table)

• Connector declaration:
A connector declaration is the part of a token that appears before a “%” signal (except on

a template.template_name%entity pattern). It allows the expression to vary according to

the number (singular or plural) and gender (feminine, masculine or neutral) of the entity

residing after the “%” signal. A connector declaration in the templates is ultimately linked

to the grammatical and linguistic functions of the system. Table 4.7 depicts the different

writing patterns of connectors and their use cases.

Table 4.7: Connector declaration patterns.

Pattern Use case Example
connector_name Expressions connector {de%competition.name}
s:[string]|p:string Singular and plural forms {s:ampliou|p:ampliaram%team.name}

{s:|p:m%#arg.name}
f:string|m:stringa Feminine and masculine forms {f:decisiva|m:decisivo%decisive_player.name}

aLater, an optional neutral form was added in n:string format

The search for patterns in the templates led to the definition of rules for the algorithm to

validate. Each pattern was directly translated into a rule, and others were included later as the al-

gorithm was improved. Table 4.8 summarises the rules used by the templates validation algorithm.

Prosebot Generator 54

4.2.2 JSON files validation

Following the previously described patterns and rules, a JSON file validation was initially imple-

mented with an input checkbox to guarantee the distinction between tree-structured and sparse

keys files. When checked, the validation algorithm would traverse the tree of keys in-depth, leav-

ing the isolated keys out of the validation. These were pushed into an unused templates list,

resulting in a warning as depicted in Listing 4.2.

1 Warning : " $ u n u s e d _ t e m p l a t e " d e f i n e d b u t n e v e r used

Listing 4.2: Unused template warning.

On the other hand, if the checkbox were left unchecked, the validation would consider every

key, and no warnings would be printed. The algorithm would after parse every array element

inside a template key. It would verify first if the text and condition keys were set and then validate

each separately.

4.2.3 Text content validation

The text side of a template text-condition pair was validated using regular expression techniques

to catch wrong token constructions. Initially, the validation verifies whether the link declarations

were correctly closed by tags. Then, the algorithm splits the text string through {token}

chunks into an array of regular strings and tokens and validates each separately, following the

patterns described before. The regular strings validation checks the existence of opening or closing

brackets ({}) and throws an error in a positive case. In turn, token declarations verification must be

more thorough as they are the core aspect and the reason for developing a validator. The validation

algorithm has the critical task of ensuring that the token writing standards mentioned above are

met.

To better understand and analyze the token declaration patterns and make it easier to develop

validation functions that follow a modular approach, a Non-Deterministic Finite Automaton di-

agram (NFA) was designed and converted to the corresponding grammar definition. Due to the

great inherent complexity of the production and visualization of such a diagram as a whole, this

was divided into simpler diagram parts to improve readability and comprehension, both during

production and for the reader. Figure 4.1 shows the NFA diagram in the highest level of abstrac-

tion, with the distinction between regular strings and token declarations, being S both the initial

and the goal state.

S

string
A{

F,H}

token

Figure 4.1: NFA diagram - Regular strings and token declarations.

4.2 Templates Validation Algorithm 55

Figure 4.2 depicts the NFA diagram that dives inside the token declaration, where the states’

names mark it as a continuation of the higher level NFA presented before. Each path in the NFA

represents one of the token’s patterns.

F I%

H
A

property

D
entity

J
connector

B

template

E.

G
%

C
.

template_name

property

entity

property
entity

Figure 4.2: NFA diagram - Token declaration.

In the same way, Figure 4.3 goes through the connector declaration in-depth, showing the path

for the number, gender, and basic connector name formats. The connector declaration is enclosed

in the transition from state A to state J.

J

A

connector_name

Ks

P

f
L:

Q:

string

M| Np
O:

string

R
string

T|

m

Figure 4.3: NFA diagram - Connector declaration.

Later, the NFA diagrams were converted into a single Context-Free Grammar (CFG) describ-

ing each writing production of text. After simplification, the established grammar is presented in

Listing 4.3, accompanied by an example text production. The validation algorithm ensures that

each production rule is obeyed.

Prosebot Generator 56

1 S −> s t r i n g S | { A | e p s i l o n
2 A −> " t e m p l a t e " . t empla t e_name F | e n t i t y . p r o p e r t y } S | p r o p e r t y } S |

connec to r_name% G | s : L | f : s t r i n g v e r t i c a l _ b a r m: s t r i n g% G
3 F −> %e n t i t y } S | } S
4 G −> p r o p e r t y } S | e n t i t y . p r o p e r t y } S
5 L −> s t r i n g L | v e r t i c a l _ b a r p : s t r i n g% G
6 v e r t i c a l _ b a r = |
7

8 / * Example : "{ o%s c o r e r } { s c o r e r . name} f e z o go lo da p a r t i d a aos { t e m p l a t e . t ime
}"

9 S −> { A
10 −> { connec to r_name% G
11 −> {o%p r o p e r t y } S
12 −> {o%s c o r e r } { A
13 −> {o%s c o r e r } { e n t i t y . p r o p e r t y } S
14 −> {o%s c o r e r } { s c o r e r . name} s t r i n g S
15 −> {o%s c o r e r } { s c o r e r . name} f e z o go lo da p a r t i d a aos { A
16 −> {o%s c o r e r } { s c o r e r . name} f e z o go lo da p a r t i d a aos {" t e m p l a t e " .

t empla t e_name F
17 −> {o%s c o r e r } { s c o r e r . name} f e z o go lo da p a r t i d a aos { t e m p l a t e . t ime } * /

Listing 4.3: CFG for text productions.

4.2.4 Condition validation

The validation of condition is the parsing of a string representing a boolean expression. Origi-

nally, only simple expressions were considered, including equations, inequations, conjunctions,

disjunctions, and their combinations, as regular expressions verification could solve them:

• Equation:
left_hand == right_hand

left_hand != right_hand

• Inequation:
left_hand >= right_hand

left_hand > right_hand

left_hand <= right_hand

left_hand < right_hand

• Conjunction:
left_hand && right_hand

• Disjunction:
left_hand || right_hand

4.2 Templates Validation Algorithm 57

Following the same procedure, an NFA diagram of the simple conditions was built to clarify

the writing of a condition, as shown in Figure 4.4.

S

A
var

E

number, "string"

B
>=,>,<=,<,==,!=

Cand, or

D
and, or

>=,>,<=,<,==,!=

var, number, "string"

var
number, "string"

Figure 4.4: NFA diagram - Condition (and = &&; or = ||; var = variable name).

After simple conditions validation was operational, the opportunity to start analyzing more

complex boolean expressions emerged. Thus, parentheses were introduced, allowing for compos-

ite expressions. The Context-Free Grammar, which depicts the condition writing rules, is delivered

in Listing 4.4, accompanied by an example condition production. Again, the validation algorithm

ensures that each rule is fulfilled.

1 S −> C | l e f t _ p a r e n t h e s e s S r i g h t _ p a r e n t h e s e s A | e p s i l o n
2 A −> E | D
3 B −> v a r i a b l e D | ! v a r i a b l e D | number D | " s t r i n g " D
4 C −> v a r i a b l e A | ! v a r i a b l e A | number E | " s t r i n g " E
5 D −> and C | o r C | e p s i l o n
6 E −> >= B | > B | <= B | < B | == B | != B
7 l e f t _ p a r e n t h e s e s = (
8 r i g h t _ p a r e n t h e s e s =)
9

10 / * Example f o r " e x t r a _ t i m e !="PEN " " :
11 S −> C
12 −> v a r i a b l e A
13 −> e x t r a _ t i m e E
14 −> e x t r a _ t i m e != B
15 −> e x t r a _ t i m e !=" s t r i n g " D
16 −> e x t r a _ t i m e !="PEN" * /

Listing 4.4: CFG for condition productions.

4.2.5 Vocabulary definition

Up until this point, only syntactic rules were assessed. Another feature was introduced to the

validation algorithm that considered a dictionary of valid variable names, the vars.json file. Any

variable name used on the template files and not included in the dictionary would cast an undefined

variable error.

Prosebot Generator 58

The dictionary is a JSON file composed of properties, entities, and connectors. The properties

are divided into two types: properties for text and properties for condition. The entities object

encloses the valid entities variables’ names and corresponding inner properties list. As for the

connectors object, it was composed of all connectors names divided by language. Finally, the

variables’ names had to follow some rules, such as do not have white spaces, do not start with

numbers or special characters, except for the particular case of #arg (used to pass an entity as an

argument of the next template in the hierarchy).

4.2.6 Execution methods, settings and actions

As mentioned before, the validation algorithm represents a powerful tool in the context of the

no-code paradigm and speeds up the fix of writing issues. In order to take full advantage of the

algorithm’s capabilities, some new ways of executing it were thought of that could meet further

user needs. The three methods of execution that were made available were:

1. Full validation - Validate templates’ syntactic rules and check if the entities used are defined

in the dictionary of variables’ names;

2. No entities definition check - Validate syntactic rules without checking if the entities used

are defined;

3. Get entities names - Validate syntactic rules, do not check if the entities used are defined

and print the names of the entities separated by their type: property, entity, property of an

entity, and connector (divided by language).

In addition to the different methods of execution, some extra settings with defaults were made

available to tune the validation. These include:

1. Context switch - The contexts available are a core complete Football domain and a Weather

dummy example.

2. Languages switch - The available languages are Brazilian Portuguese, English, European

Portuguese and Spanish. This setting is needed due to the division of connectors’ names by

language.

3. Hierarchy checkbox. When checked, the algorithm traverses the tree hierarchy, leaves out

of the validation the templates which are not mentioned by parent nodes and prints warnings

if a template key is defined but not traversed. When not checked, the algorithm validates all

template nodes independently.

Finally, the available actions make use of the methods and settings presented before and per-

form the validation accordingly:

1. Validate input file - Choose a template JSON file to validate.

4.2 Templates Validation Algorithm 59

2. Text-Condition pair - Validate a single text and/or condition. It does not check if a tem-

plate_name is defined.

3. Validate all - Validate all templates of a chosen language.

4. Validate and get status - Validate a text-condition pair and get status. Status options in-

clude [1, “Success”] and [0, $Error], where $Error is in one of the formats presented in

Subsection 4.2.7. This action, in particular, is not available in the interface, only through

the definition of its function.

5. Generate dictionary - Later in the development, another action was added to generate au-

tomatically the vars.json dictionary file used on the validation. This action will be described

more in detail in Chapter 5.

Figure 4.5 shows the user interface for validating Prosebot’s templates, with distinct field sets

for the execution methods, settings, and actions.

Figure 4.5: User interface for templates validation

4.2.7 Error handling

Whenever a typo is found in a template that would cause a mistake in Prosebot’s writing, the

algorithm casts an exception and stops execution. The exceptions thrown include a variable $path

Prosebot Generator 60

with the place in the JSON tree where the error occurred, an explanatory message, and, depending

on the setting used, the name of the template file. They obey one of the formats depicted in

Listing 4.5.

1 E r r o r : [$ p a t h] − Miss ing " t e x t " key on e l e m e n t
2 E r r o r : [$ p a t h] − Miss ing " c o n d i t i o n " key on e l e m e n t
3 E r r o r : [$ p a t h] − Miss ing " $ b r a c k e t " on chunk " $chunk "
4 E r r o r : [$ p a t h] − Expec ted " $ e x p e c t e d " , found " $found "
5 E r r o r : [$ p a t h] − Wrong t o k e n c o n s t r u c t i o n : "{ $ to ken } " , $ e x p l a n a t i o n
6 E r r o r : [$ p a t h] − Wrong c o n s t r u c t i o n : "{ $ c o n s t r u c t } " , $ e x p l a n a t i o n
7 E r r o r : [$ p a t h] − Wrong c o n d i t i o n c o n s t r u c t i o n : "{ $ c o n d i t i o n } " , $ e x p l a n a t i o n
8 E r r o r : [$ p a t h] − I n v a l i d v a r i a b l e name : " $ v a r i a b l e "
9 E r r o r : [$ p a t h] − Wrong b o o l e a n e x p r e s s i o n c o n s t r u c t i o n : " $ e x p r e s s i o n "

10 E r r o r : [$ p a t h] − Wrong l i n k c o n s t r u c t i o n : " $ l i n k " , $ e x p l a n a t i o n
11 JSON v a l i d a t i o n e r r o r s (e r r o r s i n t h e i n t r i n s i c c o n s t r u c t i o n o f t h e JSON f i l e)

Listing 4.5: Error messages formats.

In some cases, it is not worth stopping execution and throwing an error since, despite being a

typo, it will not compromise the text production. Instead, a warning message is printed, letting the

validation keep going. The warning messages obey the formats presented in Listing 4.6.

1 Warning : D i r e c t o r y i s empty
2 Warning : " $unused_key " d e f i n e d b u t n e v e r used
3 Warning : $ p a t h − I n v a l i d v a r i a b l e name : " $ v a r i a b l e "
4 Warning : $ p a t h − Wrong t o k e n c o n s t r u c t i o n : "{ $ t e m p l a t e } " , t e m p l a t e n o t d e f i n e d

Listing 4.6: Warning messages formats.

“Invalid variable name” appears both in errors and warnings. The algorithm should cast an

exception when the variable is an entity, property, property of an entity or connector name. How-

ever, the program should not stop its execution in the case of template names used as keys in the

JSON hierarchy.

4.2 Templates Validation Algorithm 61

Table 4.8: Templates validation algorithm rules.

JSON level Rule

Root

• JSON has to be valid, following JSON syntax rules;

• A template key should have a valid variable name: do not have
spaces, do not start with numbers or special characters (w);

• A template key represents a template name;

• A template key has an array of elements as corresponding value.

Element • Each element must be a text-condition pair.

Text

• text can be just a string, including the empty string (“”);

• text is a set of regular strings and tokens;

• Regular strings in text cannot have “{” or “}”;

• text can include tokens in {token} format.

Token

• A token should obey the formats presented in Table 4.6 and cannot
be null;

• Each entity, property, template name, and link name should have a
valid variable name. In addition, the entity can also be #arg.

Connector

• A connector should obey the formats presented in Table 4.7 and can-
not be null;

• Each connector name should have a valid variable name;

• Regular strings in connector declarations do not have validation.

Condition

• A condition must be a boolean expression or the empty string (= no
condition);

• A condition has equal numbers of opening “(” and closing parenthe-
ses “)”, and a closing parentheses “)” cannot be immediately followed
by an opening parentheses “(”;

• At each place of the condition, the number of appearances of closing
parentheses “)” should always be less or equal to the number of ap-
pearances of opening parentheses “(”;

• A condition cannot start or end with “&&, ||, >=, <=, <, >, == or
!=” (symbols), and symbols cannot be immediately followed by other
symbols;

• Boolean expressions can be equations, inequations, or variables in
[[!]entity.]property format, linked by boolean operators “&&” (and)
and “||” (or).

Chapter 5

Open-Source Refactoring

5.1 The Prosebot System

The main objective of this work was to convert the existing Prosebot application into an open-

source software project that could be freely used and expanded by the community with less effort.

The generator’s source code was restructured, and new components were included to meet the

no-code paradigm and make it possible for lay users and programmers to interact with the system.

The components architecture of the new Prosebot system is described in the following subsection.

5.1.1 Components

The Prosebot system was idealized to be composed of three main components and correspond-

ing interfaces: Prosebot (generator), Prosebot Editor, and Templates Management Platform. The

components diagram in Figure 5.1 shows an overview of the entire system.

Prosebot is the natural language generator described in the past chapters, with the correspond-

ing code refactoring. Besides, a new API was developed to support the Templates Management

Platform with templates validation and other supporting methods.

Prosebot Editor is an auxiliary component written in PHP that provides a copy of the template

files and an API for their management. With this extra component, it is possible to preserve the

templates stored in the Prosebot system while using the Templates Management Platform.

The Templates Management Platform is a React JS1 platform that provides a user-friendly

interface for helping with creating, editing, deleting, and validating templates.

5.2 Code Restructuring

As stated, the generator component suffered a refactoring process to fit the new Prosebot system.

While reorganizing the source code, attention was always focused on future third-party utilization,

and thus, it needed to be as comprehensible and prone to change as possible.

1https://reactjs.org

62

5.2 Code Restructuring 63

Prosebot

Prosebot Editor
Templates Management Platform

Sample Data
Templates

files

Copy of the
templates files

Templates Management

Templates Validation

Figure 5.1: UML components diagram of the Prosebot system.

The first step was to restructure the entities’ class files. Due to the inherent characteristics

of PHP programming language and the support of dynamic variable declarations, the code found

did not distinguish between class properties and methods, and many variables had public access

without being necessary. In many files, it was even tough to identify the properties of a class.

To solve this issue, a class attribute was created with the corresponding access modifier for each

dynamic variable declaration. Then, a clear separation between properties and methods, and a

further separation between getters, setters, and other functions, was undertaken. In addition, all

source code was adequately documented according to the PHP standards. Prosebot’s source code

featured an EntityData class from which some entities’ classes were sub-classes. In order to en-

force normalization, the source code was adapted so that all classes representing entities extended

the EntityData class, thus inheriting its properties and methods. These include id, name, link,

__toString() to translate the entity into a reference expression, and get_entity() to get the value of

an entity, amongst others.

A second task featured a reorganization of generic functions and conditions-related classes.

All functions with generic purpose and global usability were passed to an already defined Utils

class. All variables with a global scope, namely the lists of contexts, languages, time zones and

classes of the main entities, were compiled in a list to avoid code repetition. Moreover, the Prop-

erties and the Templates classes were separated into different files to improve readability, and a

PropertiesManager class was created to handle the construction of properties for templates’ con-

ditions.

Open-Source Refactoring 64

The next step consisted in reorganizing the grammar files and so the grammar and linguistic

functions of Prosebot. Initially, the methods of each child’s grammar class (GrammarBR, Gram-

marEN, GrammarES, GrammarPT, and GrammarIT) were revised, and shared functions were

modified and moved to the higher abstract Grammar class. Moreover, some domain-related func-

tions were moved from the grammar classes to other scopes, such as the entities manager class.

Then, the grammar and linguistic functions were reformulated to improve legibility. Before, both

types were represented as function declarations whose return value would be used to write the text,

as shown in Listing 5.1.

1 p r i v a t e s t a t i c f u n c t i o n de ($gender , $number , $ t e x t) {
2 $ r e s u l t = " de " ;
3 i f ($gende r === NameGender : : MALE) {
4 i f ($number === NameNumber : : PLURAL) {
5 $ r e s u l t = " de l o s " ;
6 }
7 e l s e {
8 $ r e s u l t = " d e l " ;
9 }

10 }
11 i f ($gende r === NameGender : : FEMALE) {
12 $ r e s u l t = " de l a " ;
13 i f ($number === NameNumber : : PLURAL) {
14 $ r e s u l t . = " s " ;
15 }
16 }
17 re turn $ r e s u l t ;
18 }
19

20 p r i v a t e s t a t i c f u n c t i o n a ($gender , $number , $ t e x t) {}
21 p r i v a t e s t a t i c f u n c t i o n e l ($gender , $number , $ t e x t) {}
22 p r i v a t e s t a t i c f u n c t i o n c a r d i n a l ($gender , $number , $ t e x t) {}
23 p r i v a t e s t a t i c f u n c t i o n c a r d i n a l _ f e m ($gender , $number , $ t e x t) {}
24 p u b l i c s t a t i c f u n c t i o n o r d i n a l ($gender , $number , $ t e x t) {}
25 p r i v a t e s t a t i c f u n c t i o n o r d i n a l _ f e m ($gender , $number , $ t e x t) {}

Listing 5.1: Example grammar and linguistic functions for the Spanish language, before

restructuring.

During the restructuring, a list of connectors was defined, like the one in Listing 5.2 for the

Spanish language. It depicted a clear distinction between grammar functions that depended on

gender and number, other grammar functions that depended on more concrete scenarios, and lin-

guistic functions to produce cardinal and ordinal numbers’ forms. The generation module handles

the $connectors list and executes different operations according to the type of the assessed ele-

ment. Each element has the connector’s name as a key, which is the one written in the templates.

The element’s value can be either an array of connector forms sorted in Singular Male, Singular

5.2 Code Restructuring 65

Female, Neutral, Plural Male, Plural Female order or the name of the grammar function or the

linguistic function to call. If the element is an array of connector forms, the generation module

writes the correct number-gender form according to context. Otherwise, it calls the specified func-

tion and writes the returning value. This change even repaired the lack of some grammar functions

in the different languages. As another example, Listing 5.3 shows the grammar functions of the

Italian language that produce the correct forms for the connectors defined in Subsection 4.1.6.

1 p r i v a t e s t a t i c $ c o n n e c t o r s = array (
2 / / Name => [S i n g u l a r Male , S i n g u l a r Female , N e u t r a l , P l u r a l Male , P l u r a l

Female]
3 " a " => [" a l " , " a " , " a " , " a l o s " , " a l a s "] ,
4 " de " => [" d e l " , " de l a " , " de " , " de l o s " , " de l a s "] ,
5 " e l " => [" e l " , " l a " , " " , " l o s " , " l a s "] ,
6 / / Name => l i n g u i s t i c _ f u n c t i o n
7 " c a r d i n a l " => " c a r d i n a l " ,
8 " c a r d i n a l _ f e m " => " c a r d i n a l _ f e m " ,
9 " o r d i n a l " => " o r d i n a l " ,

10 " o r d i n a l _ f e m " => " o r d i n a l _ f e m " ,
11 " ord ina l_ fem_num " => " ord ina l_ fem_num " ,
12 " o rd ina l_num " => " o rd ina l_num "
13) ;

Listing 5.2: Example list of connectors for the Spanish language, after restructuring.

1 p r i v a t e s t a t i c $ c o n n e c t o r s = array (
2 (. . .)
3 / / Name => grammar_ func t ion
4 " i l " => " i l " ,
5 " e " => " e " ,
6 " a _ i l " => " a _ i l " ,
7 " d a _ i l " => " d a _ i l " ,
8 " d i _ i l " => " d i _ i l " ,
9 " i n _ i l " => " i n _ i l " ,

10 " s u _ i l " => " s u _ i l " ,
11 (. . .)
12) ;

Listing 5.3: Example grammar functions for the Italian language, after restructuring.

5.2.1 Context generalization

One of the major concerns during source code refactoring was the possibility of opening the Pros-

ebot generator to more domains than just football matches summaries generation. The basic idea

was to reformulate the source code so that domain-specific elements were separated from the

Open-Source Refactoring 66

core linguistic, grammar and management features. New abstractions were created to reinforce

classes’ coding rules and guide the future programmer. The code of every entity, manager, fetcher,

and grammar class considered generic was abstracted into parent classes, and new extending ones

were defined, enclosing the remaining domain-specific code.

Before restructuring, the source code files of Prosebot were all located at the project’s root,

except for a grammars directory and a templates directory. Despite not being ideal, this disposition

was acceptable when dealing with just one domain. For multiple domains, it becomes essential

to re-dispose the files in a directory tree structure to show a better visual presentation. Figure 5.2

shows a high-level representation after generalization of the directories tree of the core files of

Prosebot, and Figure 5.3 shows the tree inside of a specific <context>.

root

index.php

utils.php

global_vars.php

validator

grammars

contexts

data_fetcher.php

entities.php

entitiesmanager.php

properties.php

propertiesmanager.php

templates.php

templatesmanager.php

<context>

Figure 5.2: Directories tree of the core files.

Analysing each core directory and file individually, starting with the index.php files, the one

located at the root was changed so the user could choose between the available domains and

go to the corresponding generator’s page. The validator and grammars directories include the

code of the templates validation algorithm and the grammar and linguistic functions of each lan-

guage, respectively. The properties.php and propertiesmanager.php files include the Property

class and corresponding manager to handle the template condition variables construction. The

templates.php and templatesmanager.php feature a Template class and corresponding manager

responsible for the production of the summaries. The entities.php file defines the EntityData

parent class and a new MainEntityData abstract class that extended EntityData and was created

to accommodate each domain’s main entity (e.g., in the football context, MatchData). Then, the

entitiesmanager.php includes an abstract class responsible for referring expressions generation

5.2 Code Restructuring 67

<context>

index.php

dictionary

entities

fetcher

templates

managers

entitiesmanager.php

propertiesmanager.php

templatesmanager.php

Figure 5.3: Directories tree of a specific context.

for entities. Finally, the data_fetcher.php file defines a DataFetcher abstract class to fetch data

given an API endpoint or directory path.

The directory of a context includes all domain-specific files of that context. The dictionary and

templates directories contain the JSON files for the vocabulary and language templates, respec-

tively. In turn, the fetcher and managers directories possess the data fetcher, entities, properties,

and templates managers, which extend the core manager classes described before, with adapted

characteristics for the need of the specific domain. Moreover, a new SummaryParts abstract class

was defined to be handled by the TemplatesManager class and deal with the summary division

into sections. The following subsections describe football as the primary context and a dummy

weather example to demonstrate the new capabilities of the restructured Prosebot system.

5.2.1.1 Football context

The football context already existed in the Prosebot system and has been developed throughout

the years. One of the significant aspects considered during refactoring was keeping the football

context intact despite the number of modifications made to the system, thus not interfering with

match summaries generation. The football context comprises MatchData as the single main entity

class, CompetitionData, TeamData, PersonData, and Stat as sub-entity classes and Event and

Curiosity as auxiliary classes.

5.2.1.2 Weather context

In order to test the viability of the source code restructuring, especially the context generalization

process, a new basic context for weather reports was added to the system. The OpenWeatherMap2,

through its API, was selected to be the data provider, given that its data and database are open and

licensed by Open Data Commons Open Database License (ODbL)3. The API provided weather

2https://openweathermap.org
3https://openweathermap.org/full-price#licenses

Open-Source Refactoring 68

conditions of the current day, given the city’s id, following the same approach as the football

context for match summaries generation.

The weather context comprises a main entity class CityData with its properties, which pop-

ulates the sub-entity classes. The sub-entities include a MainValuesData class to express tem-

perature, pressure and humidity values; CloudValuesData to convey the percentage of clouds in

the sky; WindValuesData to indicate wind speed and direction; and a WeatherTypesData class to

express one of the available types: “Clear”, “Clouds”, “Snow”, “Rain”, “Thunderstorm” or “At-

mosphere”. Some basic template condition variables were created to check the weather type and

verify the temperature in a quality manner: #arg.is_hot, #arg.is_cold and #arg.is_neutral, and so

making it possible for different descriptions accordingly. An example summary generated with

Prosebot is shown below for the English version:

• Output:

“A day with blue sky in Lisbon
In the city of Lisbon, in Portugal, it was a sunny day with blue sky.

The current temperature in the city is 25.01º, the maximum and minimum values for the day

are 27.68º and 21.53º.

The humidity and pressure values are 44% and 1015hPa, respectively.

Sky with 0% cloudiness.

Wind blowing at a speed of 6.17m/s and with a direction of 10º.

So it’s been a pretty hot day.”

As OpenWeatherMap could provide JSON and XML data formats, the DataFetcher abstract

class and the WeatherFetcher sub-class were re-imagined to support also XML data, therefore ex-

panding Prosebot’s input data range. This was accomplished with the use of simplexml_load_string()

PHP function and the SimpleXMLElement class.

5.3 Automatic Dictionaries Generation

Dictionaries are the vars.json files of every context that store the vocabulary and are used by the

templates validation algorithm to check invalid variable names. Writing these files represents an

arduous, extensive and monotonous task. With the no-code paradigm in mind and thinking on

further contexts added to the system by the community, a re-implementation was envisioned to

turn this into an automatic task Prosebot can do.

In the Prosebot system, each entity class implemented the get_entity() method, which the

TemplatesManager object would then use to replace the templates’ tokens with variable values.

Starting in the main entity class, the method would return one of its property values or forward the

request to one of the sub-entity classes. This procedure was carried out by a switch statement with

options for every available token of an entity and corresponding return statements, as presented in

the example of Listing 5.4 for the CompetitionData class.

5.3 Automatic Dictionaries Generation 69

1 p u b l i c f u n c t i o n g e t _ e n t i t y ($manager , $ e n t i t y)
2 {
3 sw i t ch ($ e n t i t y) {
4 case n u l l :
5 re turn $ t h i s ;
6 case " name " : {
7 re turn $manager −> g e t _ c o m p e t i t i o n _ n a m e ($ t h i s) ;
8 }
9 d e f a u l t :

10 re turn n u l l ;
11 }
12 }

Listing 5.4: CompetitionData’s get_entity method, before restructuring.

After analysing each entity class’s switch statements, three patterns arose regarding getting a

token value. It was either obtained by simply returning the value of a class attribute, by forward-

ing the request from the main entity to a sub-entity class, or through referring expression gener-

ation with the help of an EntitiesManager object. Following these patterns, a new EntityGetter

abstract class and subsequent EntityGetterFlat, EntityGetterSub, and EntityGetterManager sub-

classes were defined to accommodate each pattern, respectively. Listing 5.5 shows the prototype

and description of each.

Open-Source Refactoring 70

1 / *
2 E n t i t y G e t t e r F l a t :
3 Gets t h e t o k e n ’ s v a l u e d i r e c t l y from t h e re turn v a l u e o f a method i n s i d e

t h e c o r r e s p o n d i n g E n t i t y o b j e c t .
4 $ g e t t e r _ f u n c t i o n − Name o f t h e g e t method imp lemen ted by t h e E n t i t y o b j e c t .
5 $ h a s _ o n l y _ i n d e x − Whether t h e g e t t e r f u n c t i o n has an e v e n t key as parame te r

b u t n o t an e v e n t i t s e l f (o p t i o n a l) .
6 * /
7 _ _ c o n s t r u c t ($ g e t t e r _ f u n c t i o n , $ h a s _ e v e n t = f a l s e) {}
8

9 / *
10 E n t i t y G e t t e r S u b :
11 Gets t h e Sub− E n t i t y o b j e c t . E n t i t y G e t t e r S u b d e c l a r a t i o n s are o n l y used i n

t o k e n l i s t s i n s i d e t h e Main− E n t i t y c l a s s .
12 $ g e t t e r _ f u n c t i o n − Name o f t h e g e t method imp lemen ted by t h e Main− E n t i t y

t h a t re turn s t h e Sub− E n t i t y o b j e c t .
13 $c las sname − Name o f t h e c l a s s o f t h e Sub− E n t i t y .
14 $ h a s _ o n l y _ i n d e x − Whether t h e g e t t e r f u n c t i o n has an e v e n t key as parame te r

b u t n o t an e v e n t i t s e l f (o p t i o n a l) .
15 * /
16 _ _ c o n s t r u c t ($ g e t t e r _ f u n c t i o n , $c lassname , $ h a s _ e v e n t = f a l s e) {}
17

18 / *
19 E n t i t y G e t t e r M a n a g e r :
20 Uses an E n t i t i e s M a n a g e r o b j e c t t o h an d l e r e f e r r i n g e x p r e s s i o n g e n e r a t i o n

and g e t t h e t o k e n ’ s v a l u e .
21 $ m a n a g e r _ f u n c t i o n − Name o f t h e method imp lemen ted by t h e E n t i t i e s M a n a g e r

o b j e c t t h a t re turn s t h e v a r i a b l e ’ s v a l u e . $ a r g _ g e t t e r _ f u n c t i o n − Name o f
t h e g e t method imp lemen ted by t h e E n t i t y o b j e c t t h a t re turn s t h e v a l u e o f
an argument used by t h e manager f u n c t i o n (o p t i o n a l) .

22 * /
23 _ _ c o n s t r u c t ($ m a n a g e r _ f u n c t i o n , $ a r g _ g e t t e r _ f u n c t i o n = " ")

Listing 5.5: EntityGetter classes.

Then, the get_entity() method was abstracted into the EntityData parent class, and the switch

statement for each token was replaced by a switch statement for each pattern. These changes made

it possible to create a separate static list of tokens for each entity that could be used for template

tokens replacement and automatic dictionary generation. Now, each entity class implements a

static list of available tokens, where elements’ keys are the names of the tokens and their values

are EntityGetter objects that tell the system how to obtain the variable values. Listing 5.6 shows a

portion of the tokens list of the MatchData class. In the example:

1. edition is a token whose value is returned by the get_edition() method of the MatchData

class;

2. competition is the left side of a token whose object is returned by the get_competition()

5.4 API Decouple and Base Content Definition 71

method, and the right side will be handled by the CompetitionData class (e.g., competi-

tion.name);

3. weekday is a token whose value will be handled by an EntitiesManager object. The get_weekday()

method is implemented by the EntitiesManager object and uses the value returned by the

MatchData’s get_date method as an argument to create the token’s value.

1 s t a t i c : : $ e n t i t i e s = [
2 " e d i t i o n " => new E n t i t y G e t t e r F l a t (" g e t _ e d i t i o n ") ,
3 " c o m p e t i t i o n " => new E n t i t y G e t t e r S u b (" g e t _ c o m p e t i t i o n " , " C o m p e t i t i o n D a t a ") ,
4 " weekday " => new E n t i t y G e t t e r M a n a g e r (" ge t_weekday " , " g e t _ d a t e ") ,
5 (. . .)
6]

Listing 5.6: MatchData’s list of tokens, after restructuring.

With the newly implemented feature, the user just needs to go to the validation algorithm’s

page and press a button, which will call the generate_dictionary() method of the TemplatesVal-

idator object. This function will automatically crawl over the lists of tokens, condition properties,

and grammar connectors and produce the dictionary for a context. In the future, if needed, pro-

grammers can even expand the feature by building new patterns and adding new EntityGetter

sub-classes.

5.4 API Decouple and Base Content Definition

One of the ambitions of ZOS with the conversion of Prosebot into open-source software was to

decouple the zerozero.pt API, due to security and database exclusivity issues. A sample data

directory was created in the football context, with JSON files comprising a similar structure, with

fewer fields, of the content provided by the API without diminishing the summaries features.

Besides, as the data fields of zerozero.pt API featured bilingual variable names with European

Portuguese, English, and mixed forms, then the sample files and the parsing source code were

translated to the standard English language.

The sample data available for the open-source version include three matches of different com-

petitions: a world cup qualifier match between national teams, a match of the Portuguese league,

and a match of the champions league. Some extra sample files are yet available for the matches’

teams and head-to-head statistics. A similar approach was followed for the weather context, with

sample data files retrieved from OpenWeatherMap’s API in JSON and XML formats. After the

data was gathered, each context-specific data fetcher, meaning the FootballFetcher and the Weath-

erFetcher classes, was slightly altered to locate the sample data in the respective directories instead

from the APIs endpoints.

Open-Source Refactoring 72

5.5 Code Analysis

Once the modifications to the system were concluded and the pretended organization was achieved,

the Prosebot generator component was analysed using the SonarQube platform4 in terms of reli-

ability, security, maintainability, and code duplication. Overall, the analysis caught a couple of

bugs, a few security hotspots needing review, and a significant amount of code smells originated

from the code restructuring.

A new iteration in the code restructuring was employed to improve the project’s scores. Fol-

lowing the PHP standard rules of writing, almost 45% of the code smells found related to missing

curly braces, {, around one-liner nested statements, like if statements and for loops. Moreover,

some modifications were done to reduce loops’ complexity by merging if statements and sup-

pressing redundant jumps. Then, unused functions’ parameters were removed, and variables with

the same name as classes’ properties were renamed, together representing almost 30% of the total

number of code smells. Useless defined variables were also deleted to fix the bugs found. Some

other general changes were made after. These include removing methods that could be inherited

from the parent class, immediately returning expressions stored in useless temporary variables,

renaming constants to fit the PHP naming standards, defining constants to avoid duplicating code,

and simplifying regular expressions. Some functions were refactored and divided into smaller

ones to meet SonarQube’s cognitive complexity boundaries and make the code more perceptible.

In addition, the entitiesmanager.php files for every language were refactored to encapsulate shared

code in the parent class, thus avoiding code duplication.

In order to handle exceptions, a new exceptions.php file was created in the root of the project

with the definition of five dedicated exception classes: ValidationErrorException, UndefinedMeth-

odException, UndefinedEntityException, UndefinedLanguageException, DataFetcherException,

for handling exceptions produced by templates validation, calling of undefined classes’ methods,

use of undefined entities, selection of an undefined language and fetching of data, respectively.

While evaluating try-catch statements, in some cases, the exceptions were not being properly han-

dled and were masking errors. Following this issue, in replacing template condition variables with

values, using the strpos() PHP function for matching was throwing exceptions of undefined in-

dexes. For example, when evaluating player_goal in a condition, it would match with player_goal,

player_goals, #arg.player_goal and #arg.player_goal, and not just the exact variable player_goal.

This was fixed with regular expression matching with word boundaries.

Finally, the security hotspots were reviewed and appropriately handled. The pseudo-random

number generator functions were switched to cryptographically strong ones, and the debugging

code of log injection was commented. Also, a new .env file was created to store the origins that

are allowed to access the API’s endpoints and substitute the previous configuration that permitted

access to all origins.

4https://www.sonarqube.org

https://www.sonarqube.org

5.6 Architecture 73

5.6 Architecture

5.6.1 Activity diagram

Diving further into the internal architecture of the generator component, Figure 5.4 shows an

activity diagram representing the flow control and all the activities and main objects created and

used from the initial state to the production of an article.

Initially, the user has to choose one of the available contexts. After that, the language and the

main entity’s id must be specified. The generator algorithm will create a TemplatesManager object

for the given context and execute some activities. In turn, the TemplatesManager will create an

EntitiesManager object to handle entities’ text variations according to language and position in the

article, a PropertiesManager object to construct templates’ conditions, and the main entity object

(e.g., MatchData, CityData). The main entity object is responsible for creating and populating

itself and the sub-entities (e.g., CompetitionData, PersonData, etc.) resorting to a DataFetcher

object to fetch data from either an API endpoint or a directory path to some samples. In addition,

the TemplatesManager will also load the template files, each representing a part of the article

(e.g., title, intro, final, etc.). For each file loaded, it will filter its templates with the help of the

conditions created by the PropertiesManager and get the valid ones. From the filtered templates,

one is chosen according to weight and a randomness algorithm. Finally, with the help of the

EntitiesManager and the lists of tokens for each entity (main and sub), the generator can replace

the template’s tokens with values and write and assemble the paragraphs of the article.

5.6.2 Class diagram

The diagram in Figure 5.5 depicts the hierarchy of classes composing the generator component. A

complete version of the diagram, with the principal properties and methods identified, can be seen

in Figure B.1.

The Prosebot generator is composed of context-independent and context-dependent classes.

The first ones represent the core of the generator and are divided into five categories regarding

their functionality, distinguishable in the diagram through their colors (the ColorADD5 system

symbols were also included for color labeling):

• Grammar-related classes (green);

• Managers (blue);

• Entities parent classes (red);

• Entities getters (purple);

• Templates validation (yellow).

The remaining classes (white) are created according to the necessity of the context in use. The

example diagram shows how the football context fits in the hierarchy.
5https://www.coloradd.net/en/

https://www.coloradd.net/en/

Open-Source Refactoring 74

z

Choose context

Indicate id of the
main entity

TemplatesManager

Choose language

Create object of the
main entity

Construct properties
for templates

conditions

Create entities
manager

EntitiesManager PropertiesManager Main entity

Filter valid templates
according to

conditions fulfilled

Load templates files

Choose template
according to weight

and randomness

Templates
files <<iterative>>

Valid
templates

for file

Sub entities

Create objects of the
sub entities

Template

Replace tokens and
write text

Paragraphs

for each file

Create data fetcher

DataFetcher

Populate

EntityGetter

Compute lists of
tokens

Create grammar
object

Grammar

Figure 5.4: Prosebot generator’s UML activity diagram.

5.7 Publishing Process 75

PropertiesManagerEntitiesManager

TemplatesValidator

Grammar

GrammarPT

TextStructure

NameGender

NameNumber

Template

DataFetcher

Property

EntityData

MainEntityData

EntityGetter

EntityGetterFlat EntityGetterSub EntityGetterManager

1

GrammarEN GrammarES

GrammarBR

0..1

MatchData CompetitionDataPersonData

PlayerDataCoachData

Stat TeamData2*

1*

FootballFetcher

TemplatesManagerFootball

PropertiesManagerFootballEntitiesManagerFootball

EntitiesManagerFootballPTEntitiesManagerFootballENEntitiesManagerFootballES EntitiesManagerFootballBR

1

* *

*

*

*

*

TemplatesManager

GrammarIT

Figure 5.5: Prosebot generator’s UML class diagram.

5.7 Publishing Process

After the restructuring and project development phases were concluded, the opportunity to publish

the software emerged, therefore making it, in fact, open-source. Some aspects had to be considered

during this process, namely, the publication location, the software licensing, and the support given

to future system users.

The Prosebot system, with its three components, was published in a public GitHub repository6,

accompanied by a README file with quick-start information, a set of wiki pages to serve as

documentation, and an open-source license file following a template provided by GitHub, Inc7.

5.7.1 Licensing

In order to choose an adequate open-source license to fit the Prosebot system and ZOS ideology of

the project, the Open Source Initiative website8 and its list of licenses were consulted. Three of the

most popular ones stood out as potential candidates: Apache License 2.0, MIT license, and GNU

General Public License, version 3. In the end, GNU General Public License v3.0 was the chosen
6https://github.com/zerozeropt/prosebot
7https://github.com
8https://opensource.org/licenses

https://github.com/zerozeropt/prosebot
https://github.com
https://opensource.org/licenses

Open-Source Refactoring 76

one due to its characteristics of a copy-left license [36], which promotes knowledge sharing and

cooperative improvement of the system:

• Permissions:

– Allows for commercial and private use;

– Allows the distribution and modification of the licensed materials;

– “Provides an express grant of patent rights from contributors” [36].

• Conditions:

– States that the licensed material should be accompanied by a copy of the license and

copyright notice, and the source code must be made available upon its distribution;

– Modifications to the licensed material should be documented and released under the

same license.

• Limitations:

– Limitation in liability;

– It does not provide any warranty for the project.

5.7.2 Documentation and users support

Despite being an intuitive, organized system, Prosebot may be too extensive for programmers

who pretend to start right ahead using it. To decrease the learning curve and clarify the relevant

characteristics of the system, a set of wiki pages9 were written and included in Prosebot’s GitHub

repository. The pages are distributed in three categories: internal system-related features, template

writing, and usability and features expansion tutorials. The template writing category includes

vocabulary lists with every available variable and description for the two supported contexts.

In addition to the documentation, it was essential to provide means for users to express con-

cerns, ideas, and problems that may arise from the system’s utilization. This aspect was already

addressed with the selection of GitHub as the publication location. GitHub provides support for

creating issues and pull requests users can use to ask questions and report problems that the repos-

itory maintainer can track.

9https://github.com/zerozeropt/prosebot/wiki

https://github.com/zerozeropt/prosebot/wiki

Chapter 6

Templates Management Platform

As part of the Prosebot system, the Templates Management Platform is a pivotal component in

opening the development environment to a broader audience by following the no-code paradigm.

The platform was implemented using the React JS framework and the CoreUI library’s React Ad-

min Dashboard Template and components1. It provides a user-friendly web interface for creating,

editing, deleting, and validating templates.

6.1 API development

The Templates Management Platform has to communicate with other components to be able to

execute validation and management of templates. A new API was integrated into the Prosebot

generator component to serve the Templates Management Platform with the features of the vali-

dation algorithm (handled by the ValidatorController class) and the lists of available contexts and

languages (handled by the PropertiesController class). The API’s endpoints, and corresponding

methods, are described in Table 6.1.

Table 6.1: Prosebot component API.

ID Method URL Parameters Data fields Description
P01 GET /api/properties/contexts - - Get the list of con-

texts.
P02 GET /api/properties/languages - - Get the list of lan-

guages.
P03 POST /api/validator/file context,

lang
data Validate template

file dataa.
P04 POST /api/validator/template context,

lang
condition,
text

Validate template
text-condition pair.

aConsidering it as a sparse key file, as described in Subsection 4.2.2.

1https://coreui.io/react/

77

https://coreui.io/react/

Templates Management Platform 78

In order to preserve Prosebot’s template files while using the Templates Management Plat-

form, a new Prosebot Editor component was created with a copy of the templates directory and

an integrated API for their management. This architectural decision made it possible to over-

come the need for authentication while keeping the Prosebot component secure and independent.

The Prosebot Editor’s API’s endpoints, handled by the TemplateController class, are described in

Table 6.2.

Table 6.2: Prosebot Editor component API.

ID Method URL Parameters Data fields Description
PE01 DELETE /api/templates/{id} context,

lang, id
- Delete template

file.
PE02 GET /api/templates/names context,

lang
- Get template files’

names.
PE03 GET /api/templates/{id}/data context,

lang, id
- Get the data of

a specific template
file.

PE04 POST /api/templates context,
lang

data, file-
name

Create a template
file.

PE05 PUT /api/templates/{id}/data context,
lang, id

data Edit the data of a
template file.

PE06 PUT /api/templates/{id}/name context,
lang, id

filename Rename a tem-
plate file.

6.2 Views

The platform comprises two leading views, easily accessed through the side navigation bar. The

home page is the main view of the platform and provides an intuitive interface for template vi-

sualization and management. It is divided into two sections: on the right, there are the list of

template files and the context and language switch inputs, and on the left, there is a visualization

of a selected template file, divided by the keys of the JSON structure. Figure 6.1 shows an example

visualization of the home page after opening the title.json template file.

In the file import page, Figure 6.2, the user may import a template JSON file to the system.

First, the user must select the context and the language to which the template file belongs before

uploading it, to ensure that it is placed correctly inside the Prosebot Editor’s templates directory.

6.3 Features

This section describes in detail the functionalities provided by the platform and explains how to

execute them using the interface. The features are sorted following a distribution that goes from

the highest structural level, a template file, to the lowest level, a template text-condition pair.

6.3 Features 79

Figure 6.1: Home page.

Figure 6.2: File import page.

6.3.1 Manage template files

As mentioned, a user may import a predefined template JSON file (PE04) through the import

page’s form, Figure 6.2. A user may also visualize the template files’ data (PE03). On the right

side of the home page, the user should see a list of all the available template files and, on top of

it, inputs to switch between contexts and languages. By clicking on one of the file items, a view

Templates Management Platform 80

of the internal data of the file will open, showing the template keys. In the same way, the user

can click on each key to open it and see the corresponding templates or use the forwarding token

links inside the template texts, as presented in Figure 6.3 by the “template.defeated” token. In

particular, the forwarding token links represent a valuable means to follow the flow of a template

text.

Figure 6.3: Template file view.

Adding to the previous features, the platform allows for direct template file editing through

simple interface interactions, each requesting the respective API with server-side support:

• Add a file (PE04): press the “Add file +” button, give the new file a name (default: filename),

and save.

• Rename file (PE06): press the arrow alongside the name of the template file, choose “Edit”,

rename the file and save.

• Delete file (PE01): press the same arrow, choose “Delete”, and confirm when a pop-up

appears, as presented in Figure 6.4.

• Validate file (P04): open the file, press the “Validate file” button and check for error mes-

sages on the screen.

6.3.2 Manage template keys

A template JSON file is composed of keys that structure the speech. After opening a file, the user

can visualize, add, edit or delete its template keys:

6.3 Features 81

Figure 6.4: Delete template file pop-up.

• Add key (PE05): press the “Add key +” button, give it a name (default: template) and save.

• Rename key (PE05): press the arrow alongside the name of the template key, choose “Edit”,

rename the key, and save, as illustrated in Figure 6.5.

• Delete key (PE05): press the same arrow, choose “Delete”, and confirm when a pop-up

appears.

6.3.3 Manage templates

Achieving the lowest structural level, a template is a single text-condition pair element inside a

template key. The user can edit text and condition individually, and then validate them.

• Add template to key: with a template key opened, press the “Add template +” button, write

the text and the condition (default: empty), and save. The system will automatically validate

the pair and ask for confirmation if there are errors.

• Edit template: click the pencil icon, edit the template and save, as illustrated in Figure 6.6.

Later, resulting from the feedback given during the UX interviews described in Chapter 7,

some buttons with boolean signals were added to help create composite boolean expres-

sions. As discussed, this new inclusion would be valuable for lay users in constructing new

conditions. For example, by clicking on the “AND” button, a new “&&” signal will be

written in the input field for the condition.

• Delete template: click the trash icon and confirm when a pop-up appears.

Templates Management Platform 82

Figure 6.5: Rename template key.

• Validate template: click the “Validate” button and check for error messages on the screen,

as presented in Figure 6.7.

Figure 6.6: Template edit view.

6.3 Features 83

Figure 6.7: Template validation.

Chapter 7

Evaluation

This chapter presents the methodology followed to evaluate each of the elements developed and

analyses the results obtained.

7.1 Methodology

7.1.1 Templates validation logs

In order to evaluate the implementation and usefulness of the templates validation algorithm, the

“validate and get status” action, presented in Subsection 4.2.6, was integrated into the zerozero.pt’s

site lab to produce automatic logs each time a journalist edited a template text. The logs are

composed of seven fields described in Table 7.1.

Table 7.1: Templates validation logs fields.

Name Description
id Identification number of the log
status 0 or 1, where 1 depicts a successful validation and 0 one with errors
error_message “Success” or the error message returned by the validation
prosebot_sentence The edited template text
language One of the supported languages
createdon The editing date
createdby The editor username

7.1.2 Code quality metrics

The PHP source code of the Prosebot generator component was evaluated after open-source refac-

toring using the SonarQube platform. With SonarQube, it was possible to inspect and analyse the

84

7.2 Results 85

code quality and obtain thorough reports on reliability, security, maintainability, and code duplica-

tion. The platform labels those measures on a scale from A to E, following the meanings presented

in Table 7.2.

Table 7.2: SonarQube labeling scale. Source: SonarSource S.A [73].

Scale Maintainability Reliability (at least) Security (at least)
A <=5% of the time spent in the system 0 Bugs 0 Vulnerabilities
B 6 to 10% 1 Minor Bug 1 Minor Vulnerability
C 11 to 20% 1 Major Bug 1 Major Vulnerability
D 21 to 50% 1 Critical Bug 1 Critical Vulnerability
E >=50% 1 Blocker Bug 1 Blocker Vulnerability

To better understand the distinction between the initial and final versions of the Prosebot gen-

erator, the produced reports were compared, and the scores were evaluated.

7.1.3 User experience interview

To obtain feedback regarding the user experience with the Templates Management Platform, four

journalists of the zerozero.pt’s newsroom, who worked in the templates writing, were asked to

participate in a short individual interview, accompanied by a brief presentation of the platform in

action and a short period of up to ten minutes to experiment with it. Beforehand, an interview guide

was written following an online tutorial entitled “Writing an Effective Guide for a UX Interview”1.

The complete interview guide is presented in Appendix C. It comprises several guiding and follow-

up questions, with the final objective of answering the following research questions:

1. Did users like the platform’s presentation, organization, and coloring?

2. What implemented features were more relevant to the users?

3. Would users change how some functions are executed on the platform?

4. What other features would users expect the platform to have?

5. Do users think the platform is intuitive?

6. Do users think the platform is useful?

7.2 Results

7.2.1 Templates validation algorithm

Upon integration of the algorithm into zerozero.pt’s site lab, two initial tests were carried out.

Listing 7.1 shows the two logs produced and corresponding correctly generated error messages.

1https://www.nngroup.com/articles/interview-guide/

https://www.nngroup.com/articles/interview-guide/

Evaluation 86

1 / / Templa te t e x t and e r r o r message (1) :
2 / / <p >\ r \ n { sadasdas </p >\ r \ n
3 / / Error : </ b> [t e x t] − M i s s i n g " c l o s i n g b r a c k e t } " on chunk "<p>{ sadasdas </p

>"
4

5 / / Templa te t e x t and e r r o r message (2) :
6 / / <p >\ r \ n { b e s t e _ p l a y e r . name } </p >\ r \ n
7 / / Error : </ b> [t e x t] − Wrong t o k e n c o n s t r u c t i o n : " { b e s t e _ p l a y e r } " , e n t i t y

n o t d e f i n e d

Listing 7.1: Testing logs of the validation algorithm integration.

Once the algorithm was integrated and operational, the edition of templates by journalists

started to produce automatic logs. In total, 795 logs were produced. As the algorithm was being

improved between editions, some logs produced wrong results due to a version mismatch between

local development and site lab integrated code. After invalid logs removal, 768 remained and were

considered for the evaluation. Following a language distribution, 56 were produced in Brazilian

Portuguese, 359 in English, 311 in Spanish, and 42 in European Portuguese. Coming into this

project, the English and Spanish templates were less developed, which may explain the consider-

able amount of editions for those languages. On the other hand, European Portuguese templates

were closer to a finished version, resulting in fewer editions.

In general, the number of editions decreased over time as the languages got closer to finished

versions, with more than half of the logs occurring in April, 417, 146 in May, 194 in June, and

only 11 in July. Despite the number of logs not being enough to take statistical meaning from the

experiment that could generalise the results, after analysing the data for this specific case, it was

possible to note a decrease in the number of writing errors over time made by the zerozero.pt’s

journalists, both in absolute value and percentage relative to the number of logs produced for each

month. Figure 7.1 shows a line chart of the number of detected writing errors across the four

months of the experience, and Figure 7.2 presents the percentage of errors over the same period.

Diving further into the validation, 727 template text editions were validated as successful,

and 41 threw error messages. All 768 editions were correctly validated according to the writing

rules of the templates. Of the errors thrown, 33 corresponded to wrongly defined connectors, 7 to

wrongly constructed hyperlinks, and 1 to an invalid property. The Brazilian Portuguese, English,

and Spanish templates had their starting point in the European Portuguese version and were then

translated and expanded. This factor may explain the large number of wrongly defined connectors

and the single error of an invalid property, as the connectors vary between languages while entities’

and properties’ names are kept.

7.2.2 Open-source refactoring

Initially, the code of Prosebot of the version before this project’s work was analysed with the

SonarQube platform. The results depicted label A in terms of security and maintainability, with a

7.2 Results 87

Month Nr errors
April 33
May 8
June 0
July 0

0

5

10

15

20

25

30

35

April May June July

Number of detected errors over time

Figure 7.1: Number of detected writing errors over time.

total of 0 vulnerabilities, 6 security hotspots needing review, and 261 code smells with an estimated

working debt of 4 days and 3 hours. Regarding reliability, 1 major bug was found, resulting in

label C. As for code duplication, the analysis reported a percentage of 15.1% in a total of 23

duplicated blocks. An overview of the scores can be seen in Figure 7.3.

The code analysis made to the final version of the Prosebot generator achieved label A results

for the three categories of maintainability, reliability, and security. It reported a total of 0 bugs, 0

vulnerabilities, 1 security hotspot needing review, 41 code smells, and 10.9% of code duplication,

as depicted in Figure 7.4.

After revision of the results, the single security hotspot was considered safe, and 18 code

smells were acknowledged as false positives since they originated either from deprecated rules

or from wrongly indicated unused functions’ parameters that need to exist. The remaining 23

issues were left unresolved as the changes would not benefit the final result much, while the

effort to overcome them would be high. These included classes with more methods than the 20

allowed, functions with more than 7 parameters, more than 150 lines of code or too high cognitive

complexity, methods with more than 3 returns, and use of generic exceptions instead of dedicated

ones. The main results can be seen in Figure 7.5.

Analysing further each measure, starting with reliability, there was an improvement from the

initial to the final version, with the correction of the major bug and the conversion of label C to

Evaluation 88

Month Nr errors Nr logs Percentage of errors
April 33 417 7,91%
May 8 146 5,48%
June 0 194 0,00%
July 0 11 0,00%

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

April May June July

Percentage of errors over time

Figure 7.2: Percentage of writing errors over time relative to the number of logs produced.

Figure 7.3: SonarQube measures report of the version before the project’s work.

label A. Following into the security category, the number of vulnerabilities stayed at zero, keeping

7.2 Results 89

Figure 7.4: SonarQube measures report of the final version before revision.

Figure 7.5: SonarQube measures report of the final version after revision.

the label A. The code that originated the security hotspots was adequately reviewed and changed

when necessary. The maintainability suffered a considerable improvement, going from an esti-

mated working debt of 4 days and 3 hours, corresponding to a debt ratio of 1.6%, to a working

debt of 1 day and 2 hours and a debt ratio of 0.3%. Although the project size increased in the

number of lines of code from 4,518 to 7,144 and files from 24 to 54, the duplicate code density

decreased from 15.1% to 10.9%. Most of the repeated code is centered on the grammars and enti-

ties managers’ files between each language. By design, each file must be considered independent,

Evaluation 90

despite similarities in the code. For example, in the grammar files, some languages may have the

same connectors and linguistic functions while others may not. Relevant to notice also that the

density of comments had a significant increase from 3.5% to 21.6%, resulting from the inclusion of

standard PHP comments in classes, methods, and properties. Finally, although the overall scores

improved, the analyses reported an increase in the cognitive complexity of the project from 884

to 1,104, following a calculation method described in the SonarQube documentation for metrics

definition [73]. This increase is mainly explained by the context generalization, the development

of the templates validation algorithm, and the restrictive number of loops and returns imposed by

SonarQube analysis inside functions.

7.2.3 Templates Management Platform

The results from the user experience interviews for the Templates Management Platform were

auspicious, revealing unanimity on most topics and providing new ideas for future improvement.

In terms of profile, no significant differences were found between the participants:

• All four declared to use frequently web platforms, mainly social media and news channel

websites;

• Two of them were aware of some technical terms and concepts, however, none had pro-

gramming skills or experience;

• In order to rule out possible differences of opinion due to different visual perceptions, each

user was asked whether they were color-blinded, resulting in negative answers.

Regarding the platform’s overall presentation, participants agreed that it was well structured

and organized, with intuitive interactions, making it easy and logical to use and operate. As high-

lighted by one of the respondents about the platform - “I think it is intuitive, it has the parameters

well organized (...) I do not have to navigate that much to find the things I need”. Another intervie-

wee mentioned - “It allows someone who does not have programming experience to understand

at least a little bit better how it works (...)”. In the same way, unanimously, the participants

declared to understand the templates presentation order and division into files, keys, and text-

condition pairs. When asked whether they would prefer to spread the functionalities into more

web pages/screens of visualization or keep the current condensed version, all agreed the current

version was more intuitive and practical. However, one user highlighted the benefits of adding an

option to open a template key in a new window to give the possibility of working side by side in

template writing.

Talking about specific features of the platform that called the participants’ attention, one gave

notable importance to the existence of forwarding token links between templates - “(...) the short

cuts you implemented, that is, those buttons to go to other places, I think they are very positive

because the platform we use does not have that (...) and yours I believe it is more intuitive because

of that. (...) For people who will eventually use this platform and that are not familiarized with

what we do, it is most important for them to understand what each does, and by jumping to there,

7.2 Results 91

I believe it becomes more perceptible”. Another feature mentioned was the presentation of the

files list menu on the right and the template visualization on the left as a natural and intuitive

way of organizing the visualization - “(...) by having the options in the right and then opening all

templates, and knowing that you can jump from an intro to the events or the cards, everything there

well structured, I believe it is an advantage”. Another participant mentioned that the templates

validation was a crucial feature to reduce working time and give assurance to what the user is

doing - “I think the validation function because one previous difficulty of this process was the

appearance of sentences that did not make sense, things that did not close, so at this moment once

you write something you know already if that is validated or not, it is important to save time”.

The same participant also commented that allowing for editing any part of the template files was

a helpful feature that contrasted with the more restricted system they use at the moment - “Mainly

due to the fact of everything being editable by us (...) we could make that area of the platform

more intelligible for us, the people that feed the platform every day with content”.

Moreover, all respondents claimed they understood how to execute each major operation of

visualizing, editing, deleting, and validating template files, keys, and text-condition pairs. Besides,

they would not change how any of them works and felt that the interface made the template’s

visualization more comprehensible. On the other hand, when asked what other features they would

include in the templates management, some great ideas came into the discussion:

• The inclusion of a live preview of text generation, with some sentence examples and possible

final results;

• An option to choose the platform’s language for users who do not speak English;

• Descriptions explaining the function of each template file in the final result of the generated

summary;

• The addition of a new web page with the content of the vocabulary definitions present on

the wiki of the Prosebot’s repository to help in template writing;

• The implementation of assisting elements for helping users in creating new conditions. Ul-

timately, this feature was implemented and is described in Subsection 6.3.3.

One significant decision during the architecture definition of the platform was creating the

Prosebot Editor’s component as a copy of the templates directory. This choice was explained

to the participants during the presentation, following appropriate non-technical speech to meet

users’ understanding and lack of programming skills. Despite all interviewees confirming they

understood the need for having such a copy, when asked about including login authentication to

surpass this necessity, the participants showed a clear misinterpretation and lack of understanding

of the differences and objective of such change in the system. For that reason, and not being an

issue directly related to the experience of using the web platform, the answers about this topic

were dropped. The exception was the mention of a new feature highlighted by a participant that

comprises the existence of authentication and different templates for each registered account.

Evaluation 92

Regarding the platform’s impact on the future of their work, all users preferred using it to

manage Prosebot’s templates instead of editing the raw template files. One participant emphasized

this difference - “The impact would be absurd, it would be tremendous because it would obviously

be much easier using that platform than understanding the files. With it, it would be possible to

execute. With the other, only the files, would be more complex. It would require programming

knowledge we do not necessarily have”. Similarly, they agreed that the platform would make it

easier and faster to manage templates. Finally, when questioned whether they thought the platform

was useful, the opinion was unanimously affirmative. One user stated - “It is a great idea! I hope

it continues to evolve more and more and that it ends up becoming a platform that everyone uses

widely”.

The number of participants in the UX interviews was openly short, and the results allow just

for hypothesizing. Thus should not be generalized to other domains or a different number of

interviewees. Returning to the research questions defined in Subsection 7.1.3, and considering

only the interview answers given:

1. Did users like the platform’s presentation, organization, and coloring?

– Yes.

2. What implemented features were more relevant to the users?

– The organization and presentation of the platform, the intuitive interactions, the template

visualization and validation, the existence of shortcuts, and the fact that it supports the

edition of every part of a template file.

3. Would users change how some functions are executed on the platform?

– No.

4. What other features would users expect the platform to have?

– Live preview of generated sentences, choice of the interface language, explaining descrip-

tions, and vocabulary definitions to help construct tokens.

5. Do users think the platform is intuitive?

– Yes.

6. Do users think the platform is useful?

– Yes.

Chapter 8

Conclusions and Future Work

8.1 Conclusions

At the end of the project, the main goals were accomplished, and an operational version of Prose-

bot was published as open-source software for free public use on the GitHub platform.

In-depth research on commercial and open-source Natural Language Generation systems and

Prosebot background led to a better understanding of the system and its enclosed opportunities.

During the development phase, the first steps comprised the enhancement of the generation module

of Prosebot and the correction of the summaries produced, with a particular focus on multilingual

support and language-related expressions. Then, an algorithm was developed and integrated into

Prosebot to validate the writing of templates, thus reporting errors and warnings according to

defined syntactic rules and the definition of vocabularies of valid variable names.

Secondly, the Prosebot system suffered a remodeling to make it more accessible to a larger

audience. The source code was restructured, the context was generalized so that Prosebot could

embody new domains, and the zerozero.pt’s API was decoupled and replaced by properly selected

sample data. Also, a new dummy weather context was added to provide an example for future

users on how to integrate new domains into the system. Thinking on user support, the internal ar-

chitecture of the generation module was defined and illustrated, and a set of wiki pages composed

of tutorials, descriptions, and vocabulary definitions were written.

Moreover, a components architecture was employed, adding two new components beyond the

Prosebot generator: the Prosebot Editor, a copy of the templates directory, and the Templates

Management Platform. The latter depicts a web interface platform to meet the no-code paradigm

and help manage templates. Two APIs were implemented and integrated into Prosebot Editor and

Prosebot generator components to manage and validate templates, respectively. The Templates

Management Platform communicates through these APIs and acts as a user-friendly interface

lay users can use to manage each part of a template file structure. The Prosebot system and

documentation were published in a public GitHub repository under an appropriate open-source

license.

93

Conclusions and Future Work 94

Finally, further analysis of the Prosebot generator’s code with the SonarQube platform showed

great results regarding reliability, security, maintainability, and code duplication, and an improve-

ment compared to previous versions.

8.2 Future Work

The work developed paid the way for many projects and new opportunities, from the generation

module to the Templates Management Platform. In terms of multilingual support, future devel-

opment could comprise the inclusion of new languages. During the development phase, besides

the improvements made to the Brazilian Portuguese, English, European Portuguese, and Spanish

languages and the inclusion of Italian, support for French and German was initiated. However, due

to the lack of time, those were left unfinished and out of the final product. On the other hand, with

the current possibility of integrating new domains into Prosebot, future expansions may focus on

including new entities, properties, and templates for summary generation of players’ biographies,

teams descriptions, match previews, or other types of domain data. The players’ biographies’

context support was briefly approached during the development phase. Moreover, a great addition

to the templates validation algorithm would be for it to suggest corrections and automatically fix

some detected writing errors.

In terms of the Templates Management Platform, future improvements could include drag

and drop of interface elements, the possibility of creating a preview of the generated texts, and

automatic completion and suggestion of variables during token construction. A more in-depth ap-

proach may dive further into the no-code paradigm and use code generation for domain entities,

properties, and grammar creation, thus involving lay users even more in the development envi-

ronment. The components architecture of the Prosebot system can also be changed by including

authentication and removing the Prosebot Editor component.

References

[1] João Aires. “Automatic Generation of Sports News”. Master’s thesis, FEUP, UP, Porto,
Portugal, 2016. [Online]. Available: https://hdl.handle.net/10216/85152.

[2] aivancity. “Ludan STOECKLÉ” aivancity.ai. https://www.aivancity.ai/en/corps-
professoral/ludan-stoeckle. (accessed May. 11, 2022).

[3] Ion Androutsopoulos, Gerasimos Lampouras, and Dimitrios Galanis. “Generating Natural
Language Descriptions from OWL Ontologies: the NaturalOWL System”. J. Artif. Intell.
Res., vol. 48:pp. 671–715, 2013. doi: 10.1613/jair.4017.

[4] Recherche appliquée en linguistique informatique. “jsRealB: a bilingual text realiser for web
programming.” ali.iro.umontreal.ca. http://rali.iro.umontreal.ca/rali/?q=en/jsrealb-bilingual-
text-realiser. (accessed June. 14, 2022).

[5] John Bateman and Michael Zock. “suregen-2.” fb10.uni-bremen.de. http://www.fb10.uni-
bremen.de/anglistik/langpro/NLG-table/details/SUREGEN-2.htm. (accessed May. 26,
2022).

[6] John A. Bateman. “What is KPML?” Universität Bremen. http://www.fb10.uni-
bremen.de/anglistik/langpro/kpml/README.html. (accessed Feb. 20, 2022).

[7] John A. Bateman. “Enabling technology for multilingual natural language generation: the
KPML development environment”. Natural Language Engineering, vol. 3(no. 1):pp. 15–55,
Mar. 1997. doi: 10.1017/S1351324997001514.

[8] Cem Bozsahin, Geert-Jan M. Kruijff, and Michael White. “Specifying grammars
for OpenCCG: A rough guide”. Included in the OpenCCG distribution, 2005.
[Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.466.4317
&rep=rep1&type=pdf.

[9] Stephan Busemann. “Best-First Surface Realization”. In Eighth International Natural Lan-
guage Generation Workshop, INLG, Herstmonceux Castle, Sussex, UK, June 12-15 1996.
[Online]. Available: https://aclanthology.org/W96-0411/.

[10] Stephan Busemann. “Ten Years After: An Update on TG/2 (and Friends)”. In Graham
Wilcock, Kristiina Jokinen, Chris Mellish, and Ehud Reiter, editors, Proceedings of the Tenth
European Workshop on Natural Language Generation, ENLG, Aberdeen, UK, August 8-10
2005. ACL. [Online]. Available: https://aclanthology.org/W05-1603/.

[11] Lionel Clément. “Elvex.” GitHub repository. https://github.com/lionelclement/Elvex. (ac-
cessed May. 24, 2022).

95

REFERENCES 96

[12] Ann A. Copestake and Dan Flickinger. “An Open Source Grammar Development Environ-
ment and Broad-coverage English Grammar Using HPSG”. In Proceedings of the Second
International Conference on Language Resources and Evaluation, LREC, Athens, Greece,
31 May - June 2 2000. European Language Resources Association. [Online] Available:
http://www.lrec-conf.org/proceedings/lrec2000/html/summary/371.htm.

[13] Anne Copestake, John Carroll, Dan Flickinger, Robert Malouf, and Stephan Oepen. “Us-
ing an Open-Source Unification-Based System for CL/NLP Teaching”. In Proceedings
of the ACL 2001 Workshop on Sharing Tools and Resources, 2001. [Online] Available:
https://aclanthology.org/W01-1512.

[14] Luís Correia. “Evaluation Metrics for Text and Creation of Writing Tool for Sports
Journalism”. Master’s thesis, FEUP, UP, Porto, Portugal, 2020. [Online]. Available:
https://hdl.handle.net/10216/128563.

[15] Phillip M. Cunio, Alessandra Babuscia, Zachary J. Bailey, Hemant Chaurasia, Rahul Goel,
Alessandro A. Golkar, Daniel Selva, Eric Timmons, Babak E. Cohanim, Jeffrey A. Hoff-
man10, et al. “Initial development of an earth-based prototype for a lunar hopper autonomous
exploration system”. In AIAA SPACE 2009 Conference & Exposition, Sept. 14-17 2009. doi:
10.2514/6.2009-6713.

[16] Robert Dale. “Natural language generation: The commercial state of the art in
2020”. Natural Language Engineering, vol. 26(no. 4):pp. 481–487, June 2020. doi:
10.1017/S135132492000025X.

[17] Hercules Dalianis. “ASTROGEN - Aggregated deep and Surface naTuRal language GEN-
erator”. https://people.dsv.su.se/~hercules/ASTROGEN/ASTROGEN.html. (accessed May.
24, 2022).

[18] Hercules Dalianis, P Johannesson, and A Hedman. “Validation of STEP/EXPRESS Speci-
fications by Automatic Natural Language Generation”. Proceedings of RANLP’97: Recent
Advances in Natural Language Processing, pages pp. 11–13, 1997. [Online]. Available:
https://people.dsv.su.se/~hercules/papers/STEP-NLGvalidation-foto.pdf.

[19] Nicolas Daoust and Guy Lapalme. “JSREAL: A text realizer for web programming”. In
Language Production, Cognition, and the Lexicon, pages 361–376. Springer, 2015.

[20] Pablo Duboue. “Building Recursive-Descent Natural Language Generators”.
http://duboue.net/blog5.html. (accessed May. 12, 2022).

[21] Pablo Duboue. “Generating dynamic prose in PHP”.
http://duboue.net/papers/makewebnotwar20111128.html. (accessed May. 20, 2022).

[22] Ondřej Dušek. “TGen.” GitHub repository. https://github.com/UFAL-DSG/tgen. (accessed
May. 26, 2022).

[23] Ondřej Dušek and Filip Jurcícek. “Sequence-to-Sequence Generation for Spoken Dialogue
via Deep Syntax Trees and Strings”. In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics, ACL, volume 2: Short Papers, Berlin, Germany,
August 7-12 2016. The Association for Computer Linguistics. doi: 10.18653/v1/p16-2008.

[24] Michael Elhadad. “CLINT - A Hybrid Template/Word-based Text Generator”.
https://www.cs.bgu.ac.il/~elhadad/clint.html. (accessed May. 24, 2022).

REFERENCES 97

[25] Michael Elhadad. “FUF/SURGE.” cs.bgu.ac.il. https://www.cs.bgu.ac.il/~elhadad/surge.
(accessed June. 1, 2022).

[26] Michael Elhadad. “Using argumentation to control lexical choice: a functional unification
implementation”. Columbia University, 1993.

[27] Michael Elhadad and Jacques Robin. “An Overview of SURGE: a Reusable Comprehensive
Syntactic Realization Component”. In Eighth International Natural Language Generation
Workshop, INLG 1996, Herstmonceux Castle, Sussex, UK, June 12-15, 1996 - Posters and
Demonstrations, 1996. [Online] Available: https://aclanthology.org/W96-0501/.

[28] Victor R. Essers and Robert Dale. “Choosing a Surface Realiser: Exploring the
Differences in Using KPML/Nigel and FUF/SURGE”. 1998. [Online] Avail-
able: https://www.semanticscholar.org/paper/Choosing-A-Surface-Realiser-Exploring-the-
Di-in-and-Essers-Dale/5a4c9a60e886801a172a889e7a3ab38b02fc30f2#citing-papers.

[29] Pedro Fernandes. “Community-based Sports Articles Generation Platform using NLG and
Post-Editing”. Master’s thesis, FEUP, UP, Porto, Portugal, 2021. [Online]. Available:
https://hdl.handle.net/10216/135617.

[30] Association for Computational Linguistics. “Downloadable NLG systems.” aclweb.org.
https://aclweb.org/aclwiki/Downloadable_NLG_systems. (accessed May. 5, 2022).

[31] Stuart Frankel. “Narrative Science signs agreement to be acquired by Salesforce.” Narra-
tive Science’s Resource Blog. [Blog]. https://narrativescience.com/resource/blog/narrative-
science-signs-agreement-to-be-acquired-by-salesforce. (accessed Feb. 25, 2022).

[32] Dimitrios Galanis and Ion Androutsopoulos. “Generating Multilingual Descriptions from
Linguistically Annotated OWL Ontologies: the NaturalOWL System”. In Stephan Buse-
mann, editor, Proceedings of the Eleventh European Workshop on Natural Language
Generation, ENLG, Schloss Dagstuhl, Germany, June 17-20 2007. [Online]. Available:
https://aclanthology.org/W07-2322/.

[33] Dimitrios Galanis and John Koutsikakis. “Software and data.” Natural Language Process-
ing Group - Department of Informatics - Athens University of Economics and Business.
http://nlp.cs.aueb.gr/software.html. (accessed Feb. 20, 2022).

[34] Albert Gatt and Ehud Reiter. “SimpleNLG: A realisation engine for practical applica-
tions”. In Emiel Krahmer and Mariët Theune, editors, Proceedings of the 12th Euro-
pean Workshop on Natural Language Generation (ENLG 2009), pages 90–93, Athens,
Greece, March 30-31 2009. The Association for Computer Linguistics. [Online]. Available:
https://aclanthology.org/W09-0613/.

[35] GitHub. “SimpleNLG.” GitHub repository. https://github.com/simplenlg/simplenlg. (ac-
cessed May. 31, 2022).

[36] GitHub, Inc. “GNU General Public License v3.0.” choosealicense.com.
https://choosealicense.com/licenses/gpl-3.0/. (accessed June. 30, 2022).

[37] Ben Goertzel, Cassio Pennachin, Samir Araujo, Fabricio Silva, Murilo Queiroz, Ruiting
Lian, Welter Silva, Mike Ross, Linas Vepstas, and Andre Senna. “A general intelligence
oriented architecture for embodied natural language processing”. In Proceedings of the 3d
Conference on Artificial General Intelligence, pages 1–8. Atlantis Press, June 2010. doi:
10.2991/agi.2010.16.

REFERENCES 98

[38] Patrizia Grifoni. “Multimodal fission”. In Multimodal human computer interaction and per-
vasive services, pages 103–120. IGI Global, 2009. doi: 10.4018/978-1-60566-386-9.ch006.

[39] Mika Hämäläinen. “Poem machine-a co-creative nlg web application for poem writing”. In
Proceedings of the 11th International Conference on Natural Language Generation, pages
195–196, Tilburg, The Netherlands, November 5-8 2018. Association for Computational
Linguistics. doi: 10.18653/v1/W18-6525.

[40] Mika Hämäläinen and Jack Rueter. “Development of an Open Source Natural Language
Generation Tool for Finnish”. In Proceedings of the Fourth International Workshop on Com-
putational Linguistics of Uralic Languages, pages 51–58, Helsinki, Finland, January 8–9
2018. Association for Computational Linguistics. doi: 10.18653/v1/W18-0205.

[41] David Hart and Ben Goertzel. “Opencog: A software framework for integrative artificial
general intelligence”. In Artificial General Intelligence 2008, Proceedings of the First AGI
Conference, pages 468–472, University of Memphis, Memphis, TN, USA, March 1-3 2008.
IOS Press.

[42] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Memory”. Neural Comput.,
vol. 9(no. 8):1735–1780, 1997. doi: 10.1162/neco.1997.9.8.1735.

[43] Martin Kay. “Functional Unification Grammar: A Formalism For Machine Translation”. In
Yorick Wilks, editor, 10th International Conference on Computational Linguistics and 22nd
Annual Meeting of the Association for Computational Linguistics, Proceedings of COL-
ING ’84, pages 75–78, Stanford University, California, USA, July 2-6 1984. ACL. doi:
10.3115/980491.980509.

[44] Eric Kow. “About GenI.” kowey.github.io. http://kowey.github.io/GenI/about.html. (accessed
May. 27, 2022).

[45] Eric Kow. “Graphical User Interface.” kowey.github.io.
http://kowey.github.io/GenI/manual/gui.html. (accessed May. 27, 2022).

[46] Eric Kow. “Surface realisation: ambiguity and determinism. (Réalisation de surface : am-
biguïté et déterminisme)”. PhD thesis, Henri Poincaré University, Nancy, France, 2007.
[Online]. Available: https://tel.archives-ouvertes.fr/tel-00192773.

[47] Dirk Kraus. “Suregen-2: a shell system for the generation of clinical documents”. In EACL
2003, 10th Conference of the European Chapter of the Association for Computational Lin-
guistics, pages 215–218, Agro Hotel, Budapest, Hungary, April 12-17 2003. The Association
for Computer Linguistics. [Online]. Available: https://aclanthology.org/E03-2008/.

[48] ZOS LDA. ZOS.pt. https://www.zos.pt. (accessed Feb. 15, 2022).

[49] Blake A. Lemoine and Lafayette UL. “NLGen2: a linguistically plausible, general purpose
natural language generation system”. PhD thesis, University of Louisiana at Lafayette,
2010.

[50] Steven Levy. “Can an Algorithm Write a Better News Story Than a Human Reporter?”.
WIRED, Apr. 2012. [Online]. Available: https://www.wired.com/2012/04/can-an-algorithm-
write-a-better-news-story-than-a-human-reporter/.

REFERENCES 99

[51] François Mairesse, Milica Gasic, Filip Jurcícek, Simon Keizer, Blaise Thomson, Kai Yu, and
Steve J Young. “Phrase-Based Statistical Language Generation Using Graphical Models and
Active Learning”. In Jan Hajic, Sandra Carberry, and Stephen Clark, editors, ACL 2010, Pro-
ceedings of the 48th Annual Meeting of the Association for Computational Linguistics, pages
1552–1561, Uppsala, Sweden, July 11-16 2010. The Association for Computer Linguistics.
[Online]. Available: https://aclanthology.org/P10-1157/.

[52] William C Mann and Christian MIM Matthiessen. “Nigel: A Systemic Grammar for Text
Generation”. Technical report, University of Southern California Marina Del Rey Informa-
tion Sciences Inst, 1983.

[53] Ruli Manurung, Graeme Ritchie, Helen Pain, Annalu Waller, Dave O’Mara, and Rolf Black.
“The construction of a pun generator for language skills development”. Applied Artificial
Intelligence, vol. 22(no. 9):pp. 841–869, Sept. 2008. doi: 10.1080/08839510802295962.

[54] Tomás Mikolov, Martin Karafiát, Lukás Burget, Jan Cernocký, and Sanjeev Khudan-
pur. “Recurrent neural network based language model”. In Takao Kobayashi, Kei-
kichi Hirose, and Satoshi Nakamura, editors, INTERSPEECH 2010, 11th Annual Confer-
ence of the International Speech Communication Association, pages 1045–1048, Makuhari,
Chiba, Japan, September 26-30 2010. ISCA. [Online] Available: http://www.isca-
speech.org/archive/interspeech_2010/i10_1045.html.

[55] Paul Molins and Guy Lapalme. “JSrealB: A Bilingual Text Realizer for Web Programming”.
In Anja Belz, Albert Gatt, François Portet, and Matthew Purver, editors, ENLG 2015 - Pro-
ceedings of the 15th European Workshop on Natural Language Generation, pages 109–111,
University of Brighton, Brighton, UK, September 10-11 2015. The Association for Computer
Linguistics. doi: 10.18653/v1/w15-4719.

[56] Johanna D. Moore, Mary Ellen Foster, Oliver Lemon, and Michael White. “Generating Tai-
lored, Comparative Descriptions in Spoken Dialogue”. In Valerie Barr and Zdravko Markov,
editors, Proceedings of the Seventeenth International Florida Artificial Intelligence Research
Society Conference, pages 917–922, Miami Beach, Florida, USA, 2004. AAAI Press. [On-
line]. Available: http://www.aaai.org/Library/FLAIRS/2004/flairs04-155.php.

[57] Amit Moryossef, Yoav Goldberg, and Ido Dagan. “Step-by-Step: Separating Planning from
Realization in Neural Data-to-Text Generation”. In Jill Burstein, Christy Doran, and Thamar
Solorio, editors, Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, NAACL-HLT,
volume 1 (Long and Short Papers), pages 2267–2277, Minneapolis, MN, USA, June 2-7
2019. Association for Computational Linguistics. doi: 10.18653/v1/n19-1236.

[58] Erik T. Mueller. Daydreaming in humans and machines: a computer model of the stream of
thought. Intellect Books, 1990.

[59] Erik T. Mueller and Michael G. Dyer. “Towards a computational theory of human day-
dreaming”. In Proceedings of the Seventh Annual Conference of the Cognitive Sci-
ence Society, pages 120–129, 1985. [Online]. Available: https://arxiv.org/abs/cs/9812010,
http://web.cs.ucla.edu/~dyer/Papers/CogSci85Daydream.html.

[60] Erik T. Mueller and U. Zernik. “GATE reference manual”. Technical report, UCLA-AI-84-5.
Artificial Intelligence Laboratory, Computer Science Department, University of California,
Los Angeles, 1984.

REFERENCES 100

[61] Jekaterina Novikova, Ondrej Dusek, Amanda Cercas Curry, and Verena Rieser. “Why We
Need New Evaluation Metrics for NLG”. CoRR, abs/1707.06875, 2017. [Online] Available:
http://arxiv.org/abs/1707.06875.

[62] University of Aberdeen. “STANDUP: System To Augment Non-speakers’ Dialogue Using
Puns”. https://www.abdn.ac.uk/ncs/departments/computing-science/standup-315.php. (ac-
cessed May. 24, 2022).

[63] University of Illinois Chicago. “Measuring Your Impact: Impact Factor, Ci-
tation Analysis, and other Metrics: Citation Analysis”. researchguides.uic.edu.
https://researchguides.uic.edu/c.php?g=252299&p=1683205. (accessed Aug. 8, 2022).

[64] Raquel Pires. “Prosebot: o comentador de bancada baseado em inteligência artificial.”
Notícias Universidade do Porto. https://noticias.up.pt/prosebot-o-comentador-de-bancada-
baseado-em-inteligencia-artificial/. (accessed Feb. 01, 2022).

[65] Jonathan A. Rees, Norman I. Adams, and James Richard Meehan. “The T manual”. Com-
puter Science Department, Yale University, 1984.

[66] Ehud Reiter. “What is NLG.” Ehud Reiter’s Blog: Ehud’s thoughts and observations about
Natural Language Generation. [Blog]. https://ehudreiter.com/what-is-nlg/. (accessed Feb.
16, 2022).

[67] Ehud Reiter. “Why isn’t there More Open-Source NLG Software?” Ehud Reiter’s
Blog: Ehud’s thoughts and observations about Natural Language Generation. [Blog].
https://ehudreiter.com/2017/03/17/open-source-nlg-software/. (accessed Dec. 27, 2021).

[68] Ehud Reiter and Robert Dale. “Building Applied Natural Language Generation Sys-
tems”. Natural Language Engineering, vol. 3(no. 1):pp. 57–87, May 1997. doi:
10.1017/S1351324997001502.

[69] David Reitter. “Multimodal Functional Unification Grammar”. http://david-
reitter.com/compling/mug/index.html. (accessed May. 26, 2022).

[70] David Reitter. “A development environment for multimodal functional unification genera-
tion grammars”. ITRI-04-01 INLG04 Posters: Extended, page p. 32, Aug. 2004. [Online].
Available: http://david-reitter.com/pub/reitter2004inlg.pdf.

[71] Vasco Ribeiro. “Jornalista-Robot: produção automática de conteúdos de texto como apoio
ao jornalismo desportivo”. Master’s thesis, FEUP, UP, Porto, Portugal, 2019. [Online].
Available: https://hdl.handle.net/10216/121340.

[72] Clay Richardson and John Rymer. “Vendor landscape: The fractured, fertile ter-
rain of low-code application platforms”. FORRESTER, Jan. 2016. [Online].
Available: https://www.forrester.com/report/vendor-landscape-the-fractured-fertile-terrain-
of-low-code-application-platforms/RES122549?objectid=RES122549.

[73] SonarSource S.A. “Metric Definitions”. docs.sonarqube.org.
https://docs.sonarqube.org/latest/user-guide/metric-definitions/. (accessed July. 15, 2022).

[74] Sandhya Singh, Hemant Darbari, Krishnanjan Bhattacharjee, and Seema Verma. “Open
source NLG systems: A survey with a vision to design a true NLG system”. International
Journal of Control Theory and Applications, vol. 9(no. 10):pp. 4409–4421, 2016. [Online].
Available: https://serialsjournals.com/abstract/42229_cha-24.pdf.

REFERENCES 101

[75] João Soares. “Statistical Language Models applied to News Generation”. Master’s thesis,
FEUP, UP, Porto, Portugal, 2017. [Online]. Available: https://hdl.handle.net/10216/106475.

[76] Mark Steedman. “The syntactic process”. Language, speech, and communication. MIT
Press, 2004.

[77] Ludan Stoecklé. “RosaeNLG Documentation.” RosaeNLG.org. https://rosaenlg.org. (ac-
cessed May. 11, 2022).

[78] Ludan Stoecklé. “RosaeNLG Tutorial for English.” RosaeNLG.org.
https://rosaenlg.org/rosaenlg/3.2.2/tutorials/tutorial_en_US.html. (accessed June. 15,
2022).

[79] Mariet Theune, Esther Klabbers, Jan-Roelof De Pijper, Emiel Krahmer, and Jan Odijk.
“From data to speech: a general approach”. Natural Language Engineering, vol. 7(no.
1):pp. 47–86, Mar. 2001. doi: 10.1017/S1351324901002625.

[80] TokenMill UAB. “Accelerated Text.” AcceleratedText.com.
https://www.acceleratedtext.com/. (accessed Feb. 20, 2022).

[81] TokenMill UAB. “Introduction” Accelerated Text Documentation. https://accelerated-
text.readthedocs.io/en/latest/. (accessed Feb. 28, 2022).

[82] Chris van der Lee, Emiel Krahmer, and Sander Wubben. “PASS: A Dutch data-to-text
system for soccer, targeted towards specific audiences”. In Proceedings of the 10th Inter-
national Conference on Natural Language Generation, pages 95–104, Santiago de Com-
postela, Spain, September 4-7 2017. Association for Computational Linguistics. doi:
10.18653/v1/W17-3513.

[83] Chris van der Lee, Bart Verduijn, Emiel Krahmer, and Sander Wubben. “Evaluating the text
quality, human likeness and tailoring component of PASS: A Dutch data-to-text system for
soccer”. In Emily M. Bender, Leon Derczynski, and Pierre Isabelle, editors, Proceedings of
the 27th International Conference on Computational Linguistics, COLING, pages 962–972,
Santa Fe, New Mexico, USA, August 20-26 2018. Association for Computational Linguis-
tics. [Online] Available: https://aclanthology.org/C18-1082/.

[84] Pierre-Luc Vaudry and Guy Lapalme. “Adapting SimpleNLG for Bilingual English-French
Realisation”. In Albert Gatt and Horacio Saggion, editors, ENLG 2013 - Proceedings of
the 14th European Workshop on Natural Language Generation, pages 183–187, Sofia, Bul-
garia, August 8-9 2013. The Association for Computer Linguistics. [Online]. Available:
https://aclanthology.org/W13-2125/.

[85] Tsung-Hsien Wen and Steve J. Young. “Recurrent neural network language genera-
tion for spoken dialogue systems”. Comput. Speech Lang., vol. 63:101017, 2020. doi:
10.1016/j.csl.2019.06.008.

[86] Michael White. “Reining in CCG Chart Realization”. In Anja Belz, Roger Evans, and
Paul Piwek, editors, Natural Language Generation, Third International Conference, INLG
2004, Brockenhurst, UK, July 14-16, 2004, Proceedings, volume 3123 of Lecture Notes in
Computer Science, pages 182–191. Springer, 2004. doi: 10.1007/978-3-540-27823-8_19.

REFERENCES 102

[87] Michael White. “Designing an extensible API for integrating language modeling and
realization”. In Proceedings of Workshop on Software, pages 47–64, Ann Arbor,
Michigan, June 2005. Association for Computational Linguistics. [Online] Available:
https://aclanthology.org/W05-1104.pdf.

[88] Michael White. “Efficient realization of coordinate structures in Combinatory Categorial
Grammar”. Research on Language and Computation, vol. 4(no. 1):pp. 39–75, 2006.

[89] Michael White and Kim K. Baldridge. “Adapting Chart Realization to CCG”. In Proceedings
of the 9th European Workshop on Natural Language Generation, ENLG@EACL, Budapest,
Hungary, April 13-14 2003. The Association for Computer Linguistics. [Online]. Available:
https://aclanthology.org/W03-2316/.

[90] Michael White, Mark Steedman, Jason Baldridge, and Geert-Jan Kruijff. “OpenCCG.”
GitHub repository. https://github.com/OpenCCG/openccg. (accessed Feb. 20, 2022).

[91] Zhaohang Yan. “The Impacts of Low/No-Code Development on Digital Transfor-
mation and Software Development”. CoRR, abs/2112.14073, Dec. 2021. doi:
10.48550/arXiv.2112.14073.

[92] Šarūnas Navickas. “AcceleratedText: A short guide.” medium.com.
https://medium.com/accelerated-text/acceleratedtext-a-short-guide-d6363a50de6a. (ac-
cessed Feb. 28, 2022).

[93] Žygimantas Medelis. “No Code — a perfect fit for Natural Language Genera-
tion.” medium.com. https://medium.com/accelerated-text/no-code-a-perfect-fit-for-natural-
language-generation-bbe3027d22ed. (accessed Dec. 27, 2021).

Appendix A

Open-Source NLG Solutions

103

Open-Source NLG Solutions 104

Table A.1: Open-source NLG solutions.

Stage Name Year Programming
Language Languages License Institution

Linguistic Realiser

FUF/SURGE [25, 26, 27, 28] 1992-96 Common Lisp English GNU GPL v.2
Ben Gurion University of
the Negev, Israel

KPML [6, 68, 7] 1993
ANSI Com-
mon Lisp

Multilingual -
University of Bremen, Ger-
many

TG/2 [9, 74, 10] 1998 Lisp Multilingual -

German Research Center
for Artificial Intelligence,
University of Saar, Ger-
many

GenI [46, 44] 2007 Haskell
English,
French

GNU GPL v.2 -

SimpleNLG [34, 35] 2009 Java Multilingual MPL v.2
University of Aberdeen,
UK

JSrealB [55, 4] 2015 JavaScript
English,
French

Apache 2.0
University of Montreal,
Canada

Syntax Maker [40] 2018 Python Finnish Apache 2.0
University of Helsinki, Fin-
land

Sentence Planner,
Linguistic Realiser

ASTROGEN [18, 17, 74] 1996-99 Prolog English -
Royal Institute of Technol-
ogy and Stockholm Univer-
sity, Sweden

MUG [74, 70] 2002 Prolog English GNU GPL v.2
MIT Media Lab Europe,
Dublin, Ireland

OpenCCG [90, 8, 89, 88, 87, 86] 2003 Java English GNU LGPL v2.1 -

TGen [23, 22, 51] 2014 Python English Apache 2.0
Charles University in
Prague, Czech Republic

RNNLG [85, 54, 61, 42] 2016 Python English Apache 2.0
University of Cambridge,
UK

RosaeNLG [77, 2] 2018
JavaScript,
Pug

Multilingual Apache 2.0
LF AI & Data Foundation,
Linux Foundation

Text Planner,
Sentence Planner,
Linguistic Realiser

Suregen-2 [47, 74, 5] 2002 Common Lisp
English,
German

-
University for Health Sci-
ences, Medical Informatics
and Technology, Austria

NaturalOWL [3, 33, 32] 2007 Java
English,
Greek

GNU GPL v.2
Athens University of
Economics and Business,
Greece

PASS [82, 83] 2017 Python Dutch GNU GPL v.3
Tilburg University, The
Netherlands

Chimera [57] 2019 Python English MIT Bar Ilan University, Israel

Accelerated Text [80, 93, 81] 2020
JavaScript,
Clojure

Multilingual Apache 2.0 TokenMill UAB, Lithuania

-

DAYDREAMER [59, 58] 1983-88 GATE, T English GNU GPL v.2
University of California,
USA

LKB [13] 1991 Common Lisp Multilingual MIT

University of Cambridge,
UK; University of Sus-
sex Falmer, UK; Stanford
University and YY Soft-
ware, USA; University of
Groningen, The Nether-
lands

CLINT [74, 24] 1999-2000 C++ English -
Ben Gurion University of
the Negev, Israel

STANDUP [74, 62, 53] 2003 Java English Custom License

University of Dundee, Uni-
versity of Edinburgh and
University of Aberdeen,
UK

NLGen & NLGen 2 [74, 37, 49] 2009 Java English Apache 2.0
University of Louisiana at
Lafayette, USA

PHP-NLGen [21, 20] 2011 PHP
English,
French

MIT
Textualization Software
Ltd., Canada

Elvex [11] 2019 C++
English,
French

GNU GPL v.3
Bordeaux University,
France

Appendix B

Complete Class Diagram

GrammarES

st_connector: string

cardinals: array

ordinals: array

connectors: array

get_st_connector(): string

cardinal(text: string, number:
NameNumber, gender:
NameGender): string

cardinal_fem(text: string, number:
NameNumber): string

ordinal(text: string, number:
NameNumber, gender:
NameGender): string

ordinal_num(gender:
NameGender, number:
NameNumber, text: string): string

ordinal_fem(text: string, number:
NameNumber): string

ordinal_fem_num(text:
string, number: NameNumber):
string

get_connectors(): array

GrammarPT

st_connector: string

cardinals: array

ordinals: array

connectors: array

get_st_connector(): string

cardinal(text: string, number:
NameNumber, gender:
NameGender): string

cardinal_fem(text: string, number:
NameNumber): string

ordinal(text: string, number:
NameNumber, gender:
NameGender): string

ordinal_num(gender:
NameGender, number:
NameNumber, text: string): string

ordinal_fem(text: string, number:
NameNumber): string

ordinal_fem_num(text:
string, number: NameNumber):
string

get_connectors(): array

TemplatesManager

context: string

weighted: bool

update_weight: bool

escape_period: string

arg_str: string

templates_dir: string

language_dir: string

grammar_class: Grammar

read_template_files(files: array): array

read_templates_file(file: string): Template[]

build_fixed_paragraph(main_entity: MainEntityData, templates: Template[],
init_string: string): string

filter_valid_templates(templates: Template[], main_entity: MainEntityData,
event_key: string, arg_replace: string, template_key: string): string

filter_max_weight_templates(templates: Template[]): array

get_random_template_by_type(templates: Template[], template_type:
string): Template

template_recursive(templates: Template[], template: Template, main_entity:
MainEntityData, event_key: string, args: string, used_entities_parent: array,
update_entities: bool): string

PropertiesManager

template_properties: Property[]

template_arg_properties: Property[]

construct_properties()

get_template_properties(): Property[]

get_template_arg_properties(): Property[]

EntitiesManager

cache: array

reset()

read_cache(suffix: string): int | null

write_cache(value: string, suffix: string)

sequential_name(key: string, options: array,
term: string): TextStructure

TemplatesValidator

valid_templates: array

language: string

unused_templates: array

templates_queue: array

templates_array: array

dictionary: string

context: string

validate_full(has_hierarchy: bool)

validate_no_entities_check(has_hierarchy: bool)

validate_get_entities(has_hierarchy: bool)

execution_method(option: string, has_hierarchy: bool)

validate_inputs(text: string, condition: string)

validate_all_files(has_hierarchy: bool)

validate_template_get_status(has_hierarchy: bool)

validate_template(has_hierarchy: bool)

generate_dictionary(context: string)

Grammar

elem_chars: array

get_st_connector()

get_connectors()

treat_entity(entity: string|TextStructure): string

pick_elem(elems: array, gender: NameGender, number:
NameNumber): string

evaluate_elem(elems: array, gender: NameGender, number:
NameNumber): bool

list_str(list: array, st_connector: string): TextStructure

find_connector(connector_name: string, gender: NameGender,
number: NameNumber, text: string): string

apply_func(func: string, entity: TextStructure|string): string

GrammarBR

st_connector: string

cardinals: array

ordinals: array

connectors: array

get_st_connector(): string

cardinal(text: string, number:
NameNumber, gender:
NameGender): string

cardinal_fem(text: string, number:
NameNumber): string

ordinal(text: string, number:
NameNumber, gender:
NameGender): string

ordinal_num(gender:
NameGender, number:
NameNumber, text: string): string

ordinal_fem(text: string, number:
NameNumber): string

ordinal_fem_num(text:
string, number: NameNumber):
string

get_connectors(): array

TextStructure

text: string

gender: NameGender

number: NameNumber

get_text(): string

get_gender(): NameGender

get_number(): NameNumbe

NameGender

MALE: int = 1

FEMALE: int = 2

NEUTRAL: int = 3

NameNumber

SINGULAR: int = 4

PLURAL: int = 5

Template

type: string

text: string

condition: string

weight: int

last_used: int

get_text(): string

get_type(): string

get_condition(): string

get_weight(): int

validated()

used()

DataFetcher

get_json(link: string): JSON

get_xml(link: string): SimpleXMLElement

Property

name: string

func: function

weight: int

EntityData

id: string

name: TextStructure | string

link: string[]

has_mention: bool

get_id(): string

get_name(): string

has_link(): bool

has_mention(): bool

set_id(id: string)

set_name(name: string)

update_link_name()

set_link(link_b: string)

set_has_mention(bool: bool)

get_entity(manager: EntitiesManager, entity: string,
used_step: int, event_n: string, event: object): string

compute_entities()

get_entities_list(): EntityGetter[]

MainEntityData

events: object[]

get_entity_from_main(manager: EntitiesManager,
entity: string, event_n: string, report_mention: bool):
string

EntityGetter

getter_function: string

EntityGetterFlat

has_only_index: bool

EntityGetterSub

classname: string

has_only_index: bool

EntityGetterManager

manager_function: string

arg_getter_function: string

1

GrammarEN

st_connector: string

connectors: array

get_st_connector(): string

cardinal(text: string): string

ordinal_num(text: string): string

get_connectors(): array

*

0..1

MatchData CompetitionDataPersonData

PlayerDataCoachData

Stat TeamData2*

1*

FootballFetcher

TemplatesManagerFootball

PropertiesManagerFootballEntitiesManagerFootball

EntitiesManagerFootballPTEntitiesManagerFootballENEntitiesManagerFootballES EntitiesManagerFootballBR

1

* *

*

*

*

*

GrammarIT

st_connector: string

cardinals: array

ordinals: array

connectors: array

get_st_connector(): string

cardinale(text: string, number:
NameNumber, gender:
NameGender): string

cardinale_fem(text:
string, number: NameNumber):
string

ordinale(text: string, number:
NameNumber, gender:
NameGender): string

ordinale_num(gender:
NameGender, number:
NameNumber, text: string): string

ordinale_fem(text: string, number:
NameNumber): string

ordinale_fem_num(text:
string, number: NameNumber):
string

ordinale_fem_num(text:
string, number: NameNumber):
string

il(text: string, number:
NameNumber, gender:
NameGender): string

a_il(text: string, number:
NameNumber, gender:
NameGender): string

da_il(text: string, number:
NameNumber, gender:
NameGender): string

di_il(text: string, number:
NameNumber, gender:
NameGender): string

in_il(text: string, number:
NameNumber, gender:
NameGender): string

su_il(text: string, number:
NameNumber, gender:
NameGender): string

get_connectors(): array

Figure B.1: Prosebot generator’s complete UML class diagram.

105

Appendix C

Templates Management Platform UX
Interview Guide

Research Questions:

1. Did users like the platform’s presentation, organization, and coloring?

2. What implemented features were more relevant to the users?

3. Would users change how some functions are executed on the platform?

4. What other features would users expect the platform to have?

5. Do users think the platform is intuitive?

6. Do users think the platform is useful?

Platform Presentation:

1. Give an initial description of the web platform, its purpose, and overall organization.

2. Explain the creation of a copy of the templates directory.

3. Present the template file structure and explain how it influenced the visualization.

4. Present the two main pages of the platform.

5. Showcase each significant feature: import a file, visualize, create, edit, delete and validate

each part of the template files.

6. Finally, let the user experiment freely with the interface.

Interview Guide:

1. Before we begin, would you mind telling me a bit about your personal experience with web

applications and interfaces?

106

Templates Management Platform UX Interview Guide 107

• Are you colorblind?

• Do you have programming experience?

• How often do you work with web applications?

2. What do you think in terms of the platform’s presentation and organization?

• Would you spread the functionalities into more web pages/screens of visualization, or

do you prefer this condensed version?

• Do you understand the templates division into files, keys, and text-condition elements?

3. After seeing the platform working, what were the main features that caught your attention?

• Do you understand how to execute each of the major functionalities?

• Do you like the way each of them is executed?

• Do you understand how to visualize the templates?

• Do you understand how to import templates?

• Do you understand how to manually add new templates?

• Do you understand how to edit and delete templates?

• Do you understand how to validate templates?

4. What would you change in the platform?

• Did you think the interface interactions explained were intuitive?

• Would you change the way any implemented feature works?

• What other features would you add to the platform?

5. What do you think of the platform needing a copy of the templates directory?

• Do you understand why the copy is needed?

• What do you think about including authentication to prevent the necessity of having a

copy of the templates directory?

• Do you think it is worth it?

• How much do you think it would impact the user experience?

6. What impact would this platform have on your work while managing Prosebot’s templates?

• Would you use this platform to manage Prosebot’s templates?

• Would you instead use this platform than directly editing the JSON files?

• Do you think it would make the templates’ visualization more comprehensible?

• Do you think it would turn it easier to manage the templates?

• Do you think it would turn it faster to manage the templates?

• Do you think the platform is useful?

7. Would you like to share anything else about this topic?

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	List of Listings
	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Objectives
	1.4 Document Structure

	2 Overview of NLG Systems
	2.1 Natural Language Generation
	2.2 Architecture of an NLG System
	2.3 Commercial NLG Systems
	2.4 Open-Source NLG Systems
	2.5 Literature Review Analysis
	2.6 No-Code Paradigm

	3 Prosebot Background
	3.1 The GameRecapper System
	3.2 Statistical Language Models
	3.3 Prosebot
	3.4 Evaluation Metrics
	3.5 Community-Based Platform and Post-Editing
	3.6 Placement on the Typical NLG Architecture

	4 Prosebot Generator
	4.1 Multilingual Support and Improvements
	4.2 Templates Validation Algorithm

	5 Open-Source Refactoring
	5.1 The Prosebot System
	5.2 Code Restructuring
	5.3 Automatic Dictionaries Generation
	5.4 API Decouple and Base Content Definition
	5.5 Code Analysis
	5.6 Architecture
	5.7 Publishing Process

	6 Templates Management Platform
	6.1 API development
	6.2 Views
	6.3 Features

	7 Evaluation
	7.1 Methodology
	7.2 Results

	8 Conclusions and Future Work
	8.1 Conclusions
	8.2 Future Work

	References
	A Open-Source NLG Solutions
	B Complete Class Diagram
	C Templates Management Platform UX Interview Guide

