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Resumo

Este documento descreve o trabalho de Dissertação realizado para o Mestrado em
Engenharia Mecânica, na especialização de Automação, na Universidade do Porto,
em colaboração com a empresa 4DC Tech.

O tema versa a optimização do controlo em ”full state feedback” de barcos com
”hydrofoils”, tendo em conta a sua dinâmica longitudinal e considerando 3 graus de
liberdade (Avanço, Elevação e Inclinação), através de algoritmos para identificação
de sistema e métricas que avaliem a sua eficácia e estabilidade. Este estudo advém
de uma necessidade técnica e comercial, para o respetivo mercado.

Um resumo inicial aborda a evolução histórica de embarcações hidrófilas, desde
os desenvolvimentos de Farcot às inovações realizadas por Bell. A f́ısica deste tipo
de barcos, movidos a motor ou a vela, é explicada, abordando as propriedades das
forças de arrasto e de sustentação com tecnologias ”hydrofoils” espećıficas.

Descrevem-se também os pontos principais da teoria de controlo moderna, sendo
apresentadas noções de espaços de estados e controlo em ”full state feedback”. Além
disso são analisadas técnicas como o posicionamento de polos e LQR para demon-
strar como a estabilidade e a eficácia de um sistema de feedback pode ser analisada
ou otimizada.

Um dos primeiros passos para desenhar um controlador em espaço de estados, é
o desenvolvimento de um modelo teórico que retrate o melhor posśıvel a dinâmica do
sistema. O modelo para o barco hidrófilo em questão é apresentado acompanhado
pelas equações dinâmicas desenvolvidas para tal e pelos sistemas de coordenadas de
referência.

Um modelo teórico pode ser útil como aproximação à dinâmica de um sistema,
mas carece de informação relacionada com a influência de fenómenos não contabiliza-
dos nas equações. Para obter uma modelação realista, são utilizados algoritmos para
identificação de sistemas a partir de dados recolhidos. Estes algoritmos são testados
inicialmente em dados teóricos, para a verificação da sua utilidade e eficácia.

O processo para aplicação destes algoritmos em dados reais engloba: a lin-
earização de ganhos não lineares em relação à velocidade do barco, tratamento
de rúıdo e atrasos nos sinais, determinação da frequência de amostragem ideal e a
produção do input necessário para a excitação das diferentes dinâmicas do sistema.
Uma validação prática estava prevista, contudo, devido a loǵısticas do desenvolvi-
mento do barco em questão, tal não foi posśıvel a tempo da escrita desta dissertação.
Como alternativa, os processos foram aplicados a dados de simulação para aprofun-
dar o conhecimento da eficácia dos mesmos através das métricas referidas.

A estrutura do processo total é descrita para ser aplicada futuramente em dados
recolhidos de testes práticos.
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Abstract

This report presents the Master’s degree dissertation in Mechanical Engineering,
specialization in Automation, at the Faculty of Engineering of the University of
Porto in collaboration with the company 4DC Tech.

The subject is the optimization of the full state feedback control of hydrofoil
vessels in its longitudinal dynamics considering 3 degrees of freedom (Surge, Heave
and Pitch) through system identification algorithms and metrics that evaluate its
efficiency.

An initial summary regarding the hydrofoiling boats historical evolution is made,
from the developments of Farcot to the innovations of Bell. The underlying physics
of these types of sail and motorboats are explained mainly regarding the lift and
drag properties of specific hydrofoil technology.

Following this, the modern control principles are introduced and a simple and
short explanation is made to contextualize the readers of the control modern devel-
opments and the employment of state space equations and full-state feedback con-
trollers. Furthermore, techniques like pole placement and LQR are demonstrated
to show how feedback systems stability and performance can be analyzed and opti-
mized.

Making an accurate model of a system’s dynamics is one of the first steps in
regulating it. The model for the hydrofoil boat under investigation is presented
together with the equations that reflect its parameters and the coordinate systems
used for reference.

A theoretical model can be an useful approximation to a system, however it will
not describe its dynamics completely. To approximate this model to reality, system
identification methods are used in order to identify a model’s parameters using
real data retrieved from the hydrofoil boat tests. Different system identification
algorithms are tested in sample theoretical data to understand which ones are more
reliable.

A process for applying these algorithms to real data is developed encompassing
linearization of non linear gains in relation to boat’s velocity, noise and delay, sam-
pling frequency and input design. A practical implementation was predicted to be
done, however that was not possible due to logistics problems with the hydrofoil
in question. With that in mind, simulation data was analyzed and performance
metrics adopted to assess the results.

Robustness and error metrics were investigated to be applied and give a better
insight of the results.

A final process structure is summarized for future application of the sequence of
processes discussed in the thesis for real data.
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Introduction

The advent of ships capable of crossing seas and connecting the Earth’s continents
was one of the earliest disruptions in human mobility, enabling for the universal
sharing of resources required for our development and progress. Since then, boats
have continued to evolve, and today’s fastest sailing boats hardly touch the sea.
These vessels are known as hydrofoils and are characterized by its ability of cruising
above the sea level. Hydrofoiling is gaining popularity as a technology that can
improve boat travel efficiency (both motor and sail) by raising the hull above the
water and minimizing drag energy losses.

Despite being far more energy efficient this technology requires sophisticated
systems to control the vessel, assure stabilization and avoid major collisions. Due
to our society’s evolution and developments in the field of control we are capable of
maintaining these boats in automatic control without the need of human intervention
to keep them leveled and in the optimum traveling conditions.

However, like everything else, this can still be perfected and has margin to be
improved upon, since the ocean challenges these hydrofoils with harsh conditions
and a plethora of variables to evaluate and react to.

This thesis was developed alongside 4DC Tech, a Portuguese company that de-
velops control systems for hydrofoil boats, both driven by motor and by sail. The
control structure described in this report is based on the structure defined by 4DC
Tech and their solutions applied to a variety of vessels. A solid theoretical base
was already defined in the company’s models, so the project proposed was centered
in the practical model identification and optimization. The evaluation of control
performance was key in the perception of the quality of this process. This required
an initial research to discover the proper identification methods and their evaluation
metrics, followed by the operations needed for their application in real data after
processing.

1.1 Contextualization

Hydrofoiling is the practice of using foils or underwater wings (as it is named for
airfoils) to generate enough lift and to raise a boat’s hull, so that it can cruise
without making contact with the water. By reducing the contact with the water,
this technique enables a vessel to move with less drag, allowing it to move faster
and more efficiently (energetically) when the right technology is used.

The first hydrofoil boat patent dates back to 1869, designed and built by the
Parisian Inventor, Emmanuel Denis Farcot [32], despite being a rudimentary design
it marked the beginning of the hydrofoiling era. For the purpose of this report, foil
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and hydrofoil will have the same meaning, since they represent the same object.
Nowadays sailboats with foil based technology can achieve speeds 3.5 to 4 times

the speed of the wind. The America’s Cup [2], in which catamarans (2013 and
2017) and monohulls (2021) hydrofoils-driven sailboats compete at high speeds for
the grand triumph, is one of the most prestigious sailing regattas. Luna Rossa’s
boat is shown in Figure 1.1 and was one of the highest performance sailing boats in
2021.

Figure 1.1: Luna Rossa in the America’s Cup 2021 [7]

Besides racing, for our daily lives, this technology can reduce our purchasing costs
and environmental impact. Around 80% of the cargo transported across our planet is
moved in the ocean [43], so if we could optimize the energetic costs and consumption
of this transportation, then our impact would reduce significantly. Even though the
lift to velocity ratio generated by these hydrofoils is superior to that generated by
airfoils, due to the higher density of the water, there is still much work to be done in
order to be able to sustain the massive weights that cargo ships carry, with sufficient
velocity, while controlling their stability and crossing the defying winds and waves
of the outer ocean.

Even if we are not yet in the phase of implementing this technology on cargo
and carrier ships, we have began developing control technologies that will advance
hydrofoiling. Commercial and passenger vessels ranging in size from 10 to 30 me-
ters are being developed by companies such as Mobyfly [34]. Seabubbles [48] has
already launched prototypes that have proven to be successful in a variety of tests,
outperforming current solutions for the Rotterdam’s waterline in terms of economy,
travel duration, and environmental friendliness [37]. As with any market disruption,
the process must start small and gradually expand until it becomes second nature
in our daily lives.

The tricky part for the evolution of these vessels is to ensure their stability
against high oscillating and intensity winds, as well as big waves that tilt the boat
in different axis, destabilizing the foil lift. Together, central and lateral foils provide
the necessary lift and stabilization. Different types of controllers can be used to
guarantee the control of the control surfaces. In this case a Full State Feedback
controller [40] is the one of interest. A summary of the controller architecture and
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implementation is provided in Section 2.4.1
Similarities can be found when comparing the control implemented in these boats

to the ones in aircraft and, curiously, part of the developments made in this report,
come from theory and practice implemented originally in aircrafts [3][25][20]. How-
ever, the level of precision in hydrofoils needs to be much higher since the margin of
error fluctuates under 0.5 m, while in aircraft 50 m, at high altitudes, can be mean-
ingless. The physics behind the lift and drag calculations related to the hydrofoils
and airfoils is based on the same principles. These forces are computed by analyzing
pressure differentials and how fluid velocity changes affect these gradients, as it is
seen in Figure 1.2.

Figure 1.2: Wing pressure differential [50]

Finally, taking into account all the information stated above, it is clear that con-
trol optimization of hydrofoil vessels is not a direct approach. Several experiments
need to be done and theory needs to be correlated with practice and real data. Sys-
tem identification has an important role in this aspect, since it can be possible to
evaluate boat’s dynamics through inputs and outputs gathered in real testing of the
boats in various conditions. With this method we can compare the empirical values
with the theoretical developed manually and assess, through different metrics, where
the control parameters can be tuned and optimized in order to achieve more efficient
and stable flight.

1.2 Motivation

It is significant to note that there are numerous variables to take into account when
modeling such a complex system. Given that these boats go through challenging
weather, including wind, waves, and temperature variations, it is clear that these
environmental factors are perturbations and can have a significant impact on the
stability of the entire control system. The correct control of the boat can be improved
by exact models that accurately capture the dynamics of the system and take into
account all noisy measurements.

The complexity along with the opportunity of innovation and to improve the
way we tune a boat are the main drivers of this project. A lot of work has been
done in the area of control, however it is not easy to come by with practical work
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showing real data and proper exemplification of how to identify and optimize a
MIMO (Multiple Input Multiple Output) closed-loop system. Mostly theoretical
approaches are presented for system identification methods whilst work showing
practical quantification and qualification of methods is scarce [11][59].

Reality is never a perfect reflection of our mathematical equations and approx-
imations. Even if there are models that can achieve outstanding results, there is
always a margin of error related to the inherent stochastic behaviour of a system.
Through real data analysis, an approximation can be done and aligned with the
previous theoretical computations achieving a equilibrium between both.

This report aims to discuss some of these topics and provide a tool to optimize
system dynamics identification, as well as control performance analysis.

1.3 Report Outline

This work is structured as follows:
Chapter 2 describes the state-of-art. It discusses some of the work developed so

far. This work is related to the developments in hydrofoil history, inherent physics,
configurations and control in general.

Chapter 3 defines different models needed to apply the control theory.. The
dynamics equations used to describe the system state-space matrices are presented.

Chapter 4 includes an overall theoretical look and application followed by the
process developed for the application to real data of system identification methods.
These are evaluated with identification performance metrics for various conditions.

Last but not least, control performance and stability metrics are shown in Chap-
ter 5, followed by the conclusions and future works in Chapter 6.
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State of the Art and Literature Re-
vision

2.1 Historical Evolution

The history of hydrofoils is littered with significant turning points that collectively
mark the boat industry’s technological advancement. In this section, some of the
important history will be discussed, followed by the technological principles that
pushed this process forward.

After the first efforts by Emmanuel Denis Farcot, several patents were issued and
hydrofoil technological potential rose. It was the Italian engineer, Enrico Forlanini,
that designed and developed the first ”serious” vessel in 1906, weighting 1202 kg with
a 60 hp motor which could attain speeds of up to 69 km/h . It consisted in a ladder-
like structure as shown in Figure 2.1. Forlainini, through his model experiments,
proved that the lift was proportional to the speed squared. This meant that, as
speed increased, less foil area was required. This area reduction was obtained with
the ladder structure [32].

(a) Drawing schematic (b) Prototype in action

Figure 2.1: Forlanini’s hydrofoil representation with a ladder-like structure [32]

The next big step was done by Alexander Graham Bell (inventor of the telephone)
and it was at this moment that hydrofoils got more publicity and awareness. Bell
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denominated these ships as hydrodomes and his early prototypes resembled scaled-
down airplanes. Only in 1918, with the assistance of Frederick Baldwin, did Bell
develop the HD-4, the best hydrofoil at the time. The foils of this boat were arranged
in such a way that it could continuously lift out of the water in a controlled and
stable manner. This was referred as continuity or reefing, by Bell. The foils were
spaced so that there was no vertical space between them. The lower part of one
wing was the same height as the top end of the wing directly below it. The HD-4,
in Figure 2.2, weighed 5 tons and was powered by two 350 hp engines reaching a
speed of 114 km/h [51].

Figure 2.2: HD-4 [51]

The world of hydrofoil was calm between the HD-4 and 1927, with no important
breakthroughs until Baron Von Schertel’s inventions. Von Schertel experimented
with hydrofoils in a variety of configurations, from fully submerged foils to v-shaped
foils (details in Section 2.2), until he made the first trip demonstrating that hydrofoils
can be used commercially by traveling in all weather conditions with seven people on
board and achieving 55 km/h with a 50 hp motor. Schertel proceeded to work with
the German navy during the World War 2 along with other important engineers,
such as Tietjens, in a variety of hydrofoil projects, pushing the boundaries of this
technology and paving the way for the next engineers [32].

Since then, numerous vessels were invented from large to small, fast to slow, for
transportation of people, goods, from high mobility to high stabilization, propelled
by sails or motors, with submerged or surface-piercing foils, and the list goes on [32].

The 1958 Canadian hydrofoil ”BADDECK” was designed to demonstrate certain
mechanical and structural attributes for use in other vessels. After the trials, it was
determined that their foil system had failed and was insufficient, since the boat only
remained stable in a limited range of foil angles. However, key conclusions were
drawn from these experiments. Bell and his team’s concepts had become outdated
for heavier vessels and bigger waves, and using them as a foundation for getting
the intended results was no longer productive. For surface-piercing foils, these ships
should have a forward and aft (rear) foil, with the forward one acting as a trimming
mechanism, allowing the main aft foil to react ahead of a wave. Also the main
foil (aft) should be bigger. This arrangement was called ”canard” and it was an
important development for surface-piercing hydrofoil [32].

In 1955 the speed record for an hydrofoil was beaten for a speed of 144 km/h
by the XCH-4 developed by the U.S. Navy, represented in Figure 2.3. This statistic
is important because it encouraged the Navy to pursue the investment in this tech-
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nology and forsee its potential. The record was broken again in 1963 by FRESH-1
an initiative pursued by Boeing and the NAVY with a speed of approximately 160
km/h [38].

Figure 2.3: XCH-4 [32]

Various efforts have been made since then for the evolution of hydrofoils. Not
always for the best reasons since there were projects with military interests, how-
ever some projects are intended to make the world a better place and to work in
the sustainability of people and cargo transportation. These are the ones worth
pursuing. Successful projects such as the Jetfoil [21] and Rodriquez Hydrofoils [12],
have proven to be capable of transporting people (around 200 passengers) com-
fortably and efficiently, still with combustion engines and non-automatic control.
Companies like Seabubbles [37] and Mobyfly [34] are pursuing the same objective
but with renewable energy sources and automatic foiling control. These are in the
prototype stage but have great future prospects. Hydrofoil technology and control
systems were also pushed by the extremely agile and fast America’s Cup sailboats
that travel at speeds up to 100 km/h and have extremely fast responses in their con-
trol systems and maneuverability by riding in near unstable conditions. For more
information on the history of hydrofoils John R. Meyer makes a really good job in
his work [32].

2.2 Hydrofoils Arrangement and Inherent Physics

There are several possible arrangements and types of hydrofoils to establish in any
hydrofoil boat. As it was shown in the historical part of the thesis, throughout the
years the geometry and location of the hydrofoils changed abruptly as well as the
materials and the treatments they are submitted to. A gathering of information
related to this subject was made and it will be displayed briefly.

Hydrofoils are the main component that assures the boat’s hull lift from the water
providing it the main advantages of this systems. By uplifting the boat the drag
forces are reduced significantly and the power needed to achieve the same velocities
as a conventional boat is reduced. The net hydrodynamic force on the hydrofoil is
given by the integration of the pressure and shear stress distribution over the entire
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surface in contact with the fluid. Being F the resultant hydrodynamic force on the
body, it can be calculated as in equation (2.1). In Figure 2.4a and 2.4b it is shown a
more detailed version of Figure 1.2 and how lift and drag forces are generated, that
is

F = −
∫ ∫

S

pndS +

∫ ∫
S

τkdS (2.1)

where n and k are unit vectors, normal and tangent to the surface at a specific point,
respectively, p and τ are the local and shear stress in the selected point. Finally dS
is and infinitesimally small section of the wing [3].

(a) Foil pressure distribution and forces
[35]

(b) Shear stress distribution (adapted from
[60])

Figure 2.4: Pressure and Sheer distribution

The net force represented can be divided into two different forces in the y and x
direction, these being the lift and drag forces respectively, where they are inclined
relative to the angle between the foil and the fluid free-stream, angle of attack. So
the lift force is perpendicular to the free-stream whereas the drag force is parallel.
In Figure 2.4b the free-stream is parallel to the foil and is represented by U , the
angle of attack being 0◦. In (2.2) and (2.3) these forces equations are represented
and they are proportional to the square of the fluid free-stream velocity relative to
the foil (U2

0 ), to the fluid density (ρ), the projected area of the foil in relation to the
direction of the respective force (S) and the respective coefficients (CL(α), CD(α))
that represent complex dependencies and are determined experimentally in function
of the foil angle of attack α [35]. These equations simplify integral calculations,
because knowing the pressure and shear stresses for all areas of the wing in all
conditions is considerably more complicated, therefore the lift and drag coefficients
come in useful to simplify the computations [3], meaning

L = CL(α)× S × ρ× U2
0

2
(2.2)

D = CD(α)× S × ρ× U2
0

2
(2.3)

As it can be seen in Figure 2.5 the foil coefficient increases with the angle of
attack until it achieves a stall position where the lift decreases abruptly inversely
proportional to the drag. The stall condition occurs when the upper side of the foil
is fully in the separation zone, the area where the fluid detaches from the surface of
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Figure 2.5: Lift and Drag coefficients in respect to α [35]

the foil and goes from laminar to turbulent [35]. In [3] an in depth description of
the foil dynamics is done with accurate examples and explanations.

As the speed of the hydrofoil increases, the angle of attack of the foil can be
reduced in order to maintain the lift force. The only scenario in which hydrofoils have
more drag than conventional boats is before the takeoff where the whole structure of
the foils is submerged and the hull is in contact with the water increasing the drag
area, so it is important to keep the boat in the foiling condition, above the water,
at all times. The control system is important to maintain this condition reacting
to the past, current and predicted state of the system, commanding the different
actuators.

Foils arrangement comes into play when designing the hydrofoil since differ-
ent configurations are going to influence the boat stability, maneuverability, speed,
etc. There are two main types of foil configurations: surface-piercing and fully-
submerged, as it is seen in Figure 2.6. As the names indicate, the former refers to a
configuration where the foils are partially submerged in the water whereas the latter
defines the configuration where the foils are fully submerged.

Figure 2.6: Surface-piercing foils (left) Submerged (right) [46]
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The submerged part of the surface-piercing configuration is responsible for the
lift of the boat’s hull and as the speed increases the area of the foils submerged can
be reduced and still lift the hydrofoil’s weight due to the balance of the lift forces
(equation (2.2)), that is why the foil is v-shaped and as the speed increases and the
boat rises the foils get less submerged. This configuration can be defined as being
self-stable since the foils automatically go deeper or higher as it is needed. It does
not need automatic control, however, by doing this stabilization the boat is going
to be oscillating and the foils are in constant interaction with the waves and the sea
level oscillation, thus never being fully optimized and leveled. It can also be highly
unstable when the boat rolls to turn. The ventilation in the transition area of the
foil between the submerged and the non-submerged sections also generates a high
induced drag, which is minimized by fully submerged foils.

Considering the fully-submerged configuration it can be deducted that the foils
will need automatic control since they are always under water and the area of contact
with the water remains the same. If the speed were to increase constantly the foils
would fully come out of the water and the lift would be lost, causing the hull to
crash and lose a big portion of its velocity. That is why it is needed a control system
that varies the angle of attack of the foils, either through the entirety of the foil or
partially through flaps, like an airplane, as it is shown in Figure 2.7 [32] [14] [46].

Figure 2.7: Entire foil angle variation (below), flap angle variation (above) [32]

Besides the foil configuration, these can also be located in different places of
the hull and have different sizes according to the requirements. The most common
arrangements are shown in Figure 2.8

The Canard and Conventional configurations are the ones that are more common
in automatic control. The Canard configuration consists in one or two foils (if
splitted) in the aft of the boat and one forward flap. The Conventional configuration
consists in one or two flaps in the forward part of the boat and one flap in the rear.
These configurations differ in the location of the bigger wing. Whether it is in front
(Conventional) or behind (Canard) the cg (center of gravity of the boat), the bigger
wing should be the closest to it, acting as an horizontal stabilizer. Splitted aft foils
provide 1 more degree of freedom to command, since these flaps can be actuated
individually, differentially or through an average between both. Essentially in this
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Figure 2.8: Foil Arrangements [32]

report the average aft flap command and forward flap command are going to be
considered [9].

2.3 Hydrofoil Control

2.3.1 General Outline

Hydrofoil control can be a complex subject where multiple systems and forces in-
teract with each other. The calculation of the hydrofoils dynamics is a subject by
itself and is of great importance to construct an initial model and idea of how the
system is supposed to behave and how it is necessary to be controlled.

Basically the whole physical dynamics can be divided in two: the actuator (ser-
vomotor) and the boat itself. Figure 2.9 describes properly how the commands
interact and what happens in a control cycle for the Seabubbles prototype Sb4 [6].

The sensor system is composed by an ultrasound measuring the ride height of the
boat in relation to the water whereas the IMU (inertial measurement unit) collects
data through 3 gyroscope and 3 acceleration sensors. These provide information
related to the different accelerations/velocities and the boat’s inclination, in relation
to the different axes. Both measurements are fused by an FNS (Foiling Navigation
System) unit that estimates the necessary states by filtering/approximating the
measurements to the most probable current state. Measurements usually are noisy
and have inherent errors, that is why it is important to use an FNS unit. Also, other
states cannot be directly measured or are not measured due to the lack of sensors
or easiness of calculating through other measurements. The depth of the estimation
and data collection is out of the scope of this report, although it is beneficial to have
an idea of the process.

After the determination of the states, the controller is going to act according
to the information presented. The controller can be of different types defined by
the designer preferences and their advantages and disadvantages. The controller
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Figure 2.9: Foiling Control System subsystems [6]

objective is to compare its inputs (the current states of the system) and by firstly
comparing them to a reference value compute a command for the actuators to act
on the boat. The designer needs to define a gain matrix or a specific set of opera-
tions for the controller to apply according to the measurements performed. These
gains/operations (depending on the controller) define the performance of the sys-
tem in relation to the inputs it receives. If it is stable, fast or slow, overshoots or
undershoots, among others.

The actuators will perform an action on the control surfaces of the boat and
change its orientation. Depending on the boat dynamics and geometrical character-
istics, the changes in the actuating surfaces are going to have a different effect in
the state of the boat. These relations between the actuating surfaces and the actual
changes in the boat’s states are the parameters needed to determine and what makes
this subject complicate.

2.3.2 FaRo Software

FaRo [15] is responsible for the design and implementation of navigation control
systems for many different racing boats. Alongside with 4DC Tech, a partnership
that began in 2014, they have developed software to perform automatic control
for high performance hydrofoil boats such as the Luna Rossa’s AC45s and Flying
Nikka 60 for the America’s Cup. For this report, FaRo’s software has integrated
the controller logic as well as a simulation algorithm developed by 4DC Tech. It
was possible to input different excitations to the simulated actuators and generate
data to be analyzed. As it is explained, more in depth, in Chapter 4.5.5 a function
was created and implemented, in FaRo software, to develop predefined excitation
through different input parameters.

Furthermore, it is possible to have access to simulations where the FCS (Foiling
Control System) is turned off and have just the excitations providing the input to
the boat. Through this actions an overview of the boat’s open-loop dynamics is
illustrated.
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2.4 Control Theory

Several questions need to be made and answered before anyone tries to implement
any sort of control technique in order to manipulate some variables to achieve a
desired performance or condition in a given element. In the case of this report the
system is an hydrofoil boat, more precisely the Seabubbles SB4 and it is character-
ized by a mathematical model, a set of equations that represent the dynamics of
the system as precisely as possible. This mathematical model is not unique for a
system due to the possibility of different interpretations and simplifications decided
by the brain behind the model development, since we can not represent reality 100%
accurately. To do so we use differential equations that represent how a system will
vary according to specific inputs and the correlation of the its inherent variables
[40].

The control part of the system appears when we decide to generate actions
through the manipulation of different actuators (motors, pistons, etc.) and influence
its internal variables or states through the correlation of the actuators variations and
these states alteration.

With that being said control theory can be divided into two categories: classical
and modern.

Classical control methods are based on Fourier and Laplace transforms and these
methods are common for SISO systems (Single Input Single Output). Also these
use controllers known as PID (Proportional–Integral–Derivative) that include the
three operations that are represented in the name - multiplication by a constant,
integration and derivation. Other forms of the PID controller appear when one or
more operations are neglected and the controller ends up being simply proportional
or proportional-integral for example [41]. For MIMO systems with a higher order
differential equation the representation in state-space is simpler.

2.4.1 Modern Control (State-Space)

Control systems have been evolving throughout the years and along with this evolu-
tion comes complexity. MIMO systems have become more common and the control
techniques to handle them as well. The way we are deciding to represent our MIMO
system is by structuring it into state space equations, organizing this equations into
matrices that represent its dynamics. For more complex systems is usual to use this
state space equations due to its simplicity and computing velocity. This technique
is applicable to linear or nonlinear, time varying or time invariant systems through
a time and frequency domain approach. Classic control theory contrasts with this
since it is only applicable to SISO, linear and time-invariant systems, thorough a
complex frequency domain approach [40].

If we consider a simple mechanical system consisting on a mass, a spring and a
damper, as represented in Figure 2.10, we can derive its mechanical equations in the
Newtonian way, equaling the external net forces to the sum of the system’s objects
momentum change, that is

u = mÿ + bẏ + ky (2.4)

Immediately, we can distinguish the different terms that compose this equation.
On the left-hand side there is the external force applied, and on the right-hand
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Figure 2.10: Dumped Spring Mass mechanical system (adapted from [40])

side the terms related to the kinetic energy, the potential energy, and the energy
dissipation. Also, there are 3 possible states that can be identified (y, ẏ, ÿ) , however
only two of these states are needed since the acceleration can be found through
position and velocity. With that being said there are a minimum of 2 states needed
to describe the system at any given moment knowing the system parameters. Thus,
this is a second order system and we can define its states as:

x(t) =

[
x1(t)
x2(t)

]
=

[
y(t)
ẏ(t)

]
The state-space continuous time representation of a linear, time-invariant deter-

ministic system can be represented as:

ẋ = Ax(t) +Bu(t) x(0) = x0 (2.5)

y = Cx(t) +Du(t) (2.6)

where A is the system matrix that represents the internal relation between the
system variables and parameters, B is the control matrix that represents the relation
of the states to the inputs, u(t) and C and D are the output matrices. Matrix
C is used to determine the desired outputs function of the states (usually is an
identity matrix) and D is used to bypass inputs directly to the output (usually a
zeros matrix). In the end, the output is basically the calculation of the states in
relation to the past states and current input/command. By applying the state-space
equations to (2.4) it is trivial to understand the meaning of each component.

We can now consider ẋ as the derivative of states x1(t) and x2(t):

ẋ =

[
ẋ1(t)
ẋ2(t)

]
=

[
ẏ(t)
ÿ(t)

]
(2.7)

Then, as ẋ1(t) = x2(t) and transforming equation (2.4) to matrix form we get
the final state space representation as
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[
ẋ1(t)
ẋ2(t)

]
=

[
0 1

− k
m

− b
m

] [
x1(t)
x2(t)

]
+

[
0
1
m

]
u (2.8)

y =
[
1 0

] [x1(t)
x2(t)

]
(2.9)

where

A =

[
0 1

− k
m

− b
m

]
, B =

[
0
1
m

]
, C =

[
1 0

]
, D = 0 (2.10)

There can be multiple state space representations for the same system by con-
sidering different states, basis, outputs and inputs.

Now that the equations that describe the system are defined, we can proceed
to the implementation of the control. Figure 2.11 depicts a Full State Feedback for
a linear, time-invariant system block diagram. Besides the state space equations
defined above, there is also a gain matrix K that defines how the control is going
to act upon the system. In the Section 2.4.2 it is going to be explained how it is
possible to manipulate the gains of the K matrix in order to change how the system
is commanded.

Figure 2.11: Full State feedback system block diagram [29]

When developing a full state feedback controller of the system there are two im-
portant notions to take into consideration: controllability and observability. These
are related to the capability of the actuators to influence the system and the exis-
tence of sensors that measure the necessary states, respectively.

A system is controllable if it can output control signals that allow a system the
reach any desired state in a limited amount of time. The controllability of a system
is evaluated through the matrix in (2.11) and can only be assumed controllable if C
is of rank(n) being n the order of the system [22].

C = [A AB ..... An−1 B] (2.11)

A system is observable if all the states can be known through the system outputs.
It is important to note that the states of the system need to be known for very
discrete time parcels, this usually requires high sample frequency that depends on
high quality sensors. The system states can be obtained directly (through sensors)
or indirectly through calculations involving other measurements. If matrix (2.12) is
of rank(n) the system can be considered observable:
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O =


C
CA
.
.
.

CAn−1

 (2.12)

For more information on this section the references [40] [53] [13] provide good
guidance.

2.4.2 Pole Placement

From looking at the diagram in Figure 2.11 and considering the state space equa-
tions, it is possible to start deriving the closed-loop matrices of the system. Replac-
ing in (2.5) u(t) by (r(t)−Kx(t)) we get,

ẋ = Ax(t) +B(r(t)−Kx(t)) (2.13)

and

ẋ = (A−BK)x(t) +Br(t) (2.14)

where (A−BK) represents the closed-loop A matrix or Acl. Determining the eigen-
values of Acl through its determinant, det(Acl − λI)=0 we can analyze the poles
of the system, and with the variation of K get different responses. Considering a
transformation of the system we obtain,

Ż = ÃclZ (2.15)

where Ãcl represents the eigenvalues of Acl in its diagonal. In this representation,
Ż is affected only by its own state, since Ãcl is a diagonal matrix. Representing Ż
this way presents a simplification to the solution of Z, where it is in the form of

Zn = Ceλt (2.16)

It is now possible to simply plot the response of a state to a given initial condition
for t = 0, given by C. By changing the value λ the response is changed. A simple
way of analysing this problem is to plot the Real and Imaginary axis and plot the
values for λ. The way λ is placed shows how oscillatory and how the energy is
going to be dissipated in the state response. The first major factor to avoid are real
positive poles, because they originate unstable responses. Also poles that are ”too
negative” can be unfeasible due to the system incapability of performing to those
speeds. Imaginary poles originate oscillating responses and, according to the real
part, they can exponentially grow or decay. Figure 2.12 depicts how the location of
the closed-loop poles of the system can affect its response.

The method described is intuitive, and the easiest way to understand how the
simple manipulation of a gain matrix can change how a system reacts to different
changes. However, when systems get more complex, pole placement can be tricky.
This because it is hard to understand how different poles are going to interact with
each other and originate a final response. Other methods can be applied, such as
the LQR.
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Figure 2.12: Poles effect on system response [26]

2.4.3 LQR

The LQR method is more intuitive in order to find an optimal solution for the
controller gains of a specific problem. In this it is useful to think of it as finding the
optimal solution for a given problem, where the user decides the weight/relevance
he attributes to the controller effort and to the performance of the controller. When
more energy, money and resources in general are used, it is normal that the controller
performs better. Needless to say that infinite resources are not in play and that at
some time the amount of money/energy invested does not correspond linearly to the
increase in performance obtained.

The optimization process for the LQR method uses from base a cost function:

J =

∫ ∞

0

x(t)⊺Qx(t) + u(t)⊺Ru(t)dt (2.17)

with

K = R−1B⊺S (2.18)

where K is the gain matrix determined, Q is an n × n weight matrix associated
with the states, being n the order of the system, R is an m × m weight matrix
associated with the inputs, being m the number of inputs and S is the solution for
the algebraic Riccati equation. Since Q is a positive semi-definite matrix and R is
a positive definite matrix, the integral is always going to be a positive value.

The end goal is to minimize the cost function respecting the state space equations
(2.5). It is clear that the more we increase Q or R coefficients the more importance
is being given to each part of the equation. For high performance, increase Q and
for low effort, increase R.

The mathematical development to solve these equations can be seen in [39], that
develops a method to solve the Ricatti equation (2.18) for the optimum values of
K. More than one set of solutions is given by these equations, so it is important to
select the one that ensures the system stability.

All-in-all LQR can be a useful method for practical and fast tuning of a controller,
by adjusting the values from the Q and R matrices according to the given results
[27]. This is the method used for the determination of the gain matrices in this
scope.
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Models

3.1 Coordinate System

The overall dynamics of a boat can be represented in the 6 DOF axes referential,
consisting of 3 linear and 3 rotation motions. Also two coordinate systems are de-
fined, one with its origin in the ocean surface, representing the ”World” or ”Global”
referential, and one in the center of gravity of the boat, moving analogous with the
boat along its coordinates in the Global referential. Figure 3.1 depicts the boat
coordinates in its referential system and its nautical motion denominations, where
Xs aligns with the forward direction of movement, Zs to the vertical motion pointing
to the earth and Ys to the starboard (right) side of the ship. X,Y and Z represent
the global axes that are attributed arbitrarily to a point of reference [55].

Figure 3.1: 6 DOF coordinate system

The control of the boat’s orientation in the Euler angles, is going to be done
through the different actuating surfaces present in the system. These can be the
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aft and forward foils, the rudder, the thruster and any other auxiliary surfaces
implemented by the designers. This control for the hydrofoils is usually divided in
3DOF (longitudinal dynamics) or the 6DOF (longitudinal + transversal dynamics).
In Figure 3.1 the different DOF are depicted.

The linear motions along the axis Xs,Ys and Zs are the surge, heave and sway,
respectively, whereas the rotational motions are the roll, pitch and yaw, respectively.
For the purpose of this thesis only the 3DOF coordinate system is going to be
considered [5].

Also to control these motions 2 actuating surfaces are commanded: the forward
flap, and the average between the port (left side of the boat) and the starboard aft
(rear) flaps.

3.2 Dynamics Model

As it was said previously, before trying to identify a system, it is important to have
a notion of what results are expected. This theoretical approach had already be
done for the hydrofoil being worked on and, in this section, the models being used
are described.

This preliminary model was developed for the Seabubbles SBH2V1 boats in this
report [6].

Initially 3 DOF are going to be considered, and these are related with the longi-
tudinal dynamics of the boat. These are, the longitudinal speed(along the Xs axis),
the pitch (rotation along the Ys Axis) and the heave (vertical displacement along
the Zs axis). Ultimately, for the dynamics of the 3DOF, 5 states are needed to fully
describe the longitudinal dynamics. These are included in the state vector in (3.1).
ẋ, is given by vector (3.2):

x =
[
∆V ω q ∆Z ∆θ

]⊺
(3.1)

ẋ =
[
aXS

ω̇ q̇ ω q
]⊺

(3.2)

where ∆V is the longitudinal speed variation, aXS
the longitudinal speed accelera-

tion, ω is the vertical rate, ω̇ the vertical acceleration, q is the pitch rate, q̇ the pitch
acceleration, ∆Z is the vertical displacement and ∆θ is the pitch variation.

The inputs considered are the forward flap actuation (FF) and the average aft
flaps average command (FA) represented in (3.3):

u =
[
δFF δFA

]⊺
(3.3)

After determining the dimensions of the state and input vectors, it is possible to
assume the dimensions of matrix A and B, as being 5×5 and 5×2, respectively.Their
parameters are represented in equations (3.4) and (3.5). Important to notice that
these matrices only refer to the dynamics of the boat, other two matrices are needed
for the actuator dynamics, to be coupled to the boat’s dynamics. However, the
actuators dynamics are simpler and well known since they have been tested by the
manufacturers several of times, in order to improve the accuracy of their parameters
determination. When integrated with the boat, there could be a change in the
dynamics of the servomotor, but they are less significant than the changes that have
an effect in the boat’s dynamic matrices.
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A =


XV XW Xq XZ Xθ

ZV ZW Zq ZZ Zθ

MV MW Mq MZ Mθ

0 1 0 0 0
0 0 1 0 0

 (3.4)

B =


XδFF

XδFA

ZδFF
ZδFA

MδFF
MδFA

0 0
0 0

 (3.5)

The dynamics parameters are represented in equations (3.6) to (3.24) and the
control parameters in equations (3.25) to (3.30) [6]. Looking at matrix A it is
possible to realize where the ones come from representing the equalities existing
between ẋ and x. In ẋ the last two rows represent the height rate and pitch rate,
respectively, that also exist in the x vector, in this case, being the represented by
the second and third rows. This originates equalities represented by ones and null
relations represented by zeros.
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XV = −2SQ

mV
CD,V (3.6)

XW = − SQ

mV
(CD,αWF

+ CD,αWA
) ≈ Xθ

V
(3.7)

Xq =
SQ

mV
(CD,αWF

xWF + CD,αWA
xWA)−XV

zWF + zWA

2
(3.8)

XZ =
SQ

mb̄
CD,h (3.9)

Xθ = −SQ

m
CD,θ ≈ −SQ

m
(CD,αWF

+ CD,αWA
) (3.10)

ZV = −2SQ

mV
CL,V ≈ −2g

V
(3.11)

ZW = − SQ

mV
(CL,αWF

+ CL,αWA
) ≈ Zθ

V
(3.12)

Zq =
SQ

mV
(CL,αWF

xWF + CL,αWA
xWA)− ZV

zWF + zWA

2
(3.13)

ZZ = −SQ

mb̄
CL,h (3.14)

Zθ = −SQ

m
CL,θ ≈ −SQ

m
(CL,αWF

+ CL,αWA
) (3.15)

MV = −2Sc̄Q

IyyV
Cm,V (3.16)

MW = −Sc̄Q

IyyV
(Cm,αWF

+ Cm,αWA
) ≈ Mθ

V
(3.17)

Mq = −Sc̄Q

IyyV
(Cm,αWF

xWF + Cm,αWA
xWA) +MV

zWF + zWA

2
(3.18)

MZ = −Sc̄Q

Iyy b̄
Cm,h (3.19)

Mθ = −Sc̄Q

Iyy
Cm,θ ≈ −Sc̄Q

Iyy
(Cm,αWF

+ Cm,αWA
) (3.20)

Q =
ρV 2

2
(3.21)

L = CLSQ (3.22)

D = CDSQ (3.23)

M = CmSc̄Q (3.24)
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XδFF
= −SQ

m
CD,δFF

(3.25)

XδFA
= −SQ

m
CD,δFA

(3.26)

ZδFF
= −SQ

m
CL,δFF

(3.27)

ZδFA
= −SQ

m
CL,δFA

(3.28)

MδFF
= −Sc̄Q

Iyy
Cm,δFF

(3.29)

MδFA
= −Sc̄Q

Iyy
Cm,δFA

(3.30)

where m is the boat mass and Iyy is the inertia moment around the boat lateral
axis. g is the gravity acceleration. C#,αWF

and C#,αWA
are the coefficients for the

angle of attack of the whole forward and aft foil wings, respectively. xWF ,xWA, zWF

and zWA are the x and z coordinates of the forward and aft foils hydrodynamic
centers with respect to the center of gravity. L and D are the lift and drag forces,
respectively given by (3.19), (3.20) and C# the corresponding coefficients, M is the
pitch moment and Cm the corresponding coefficient, S is the total foils area projected
on the horizontal plane. b̄ and c̄ are the average foil span and chord, respectively, Q
is the dynamic pressure, given by (3.18) and V is the boat speed [6][5].

To finalize these matrices we need to replace the variables with their real values.
For that we use the prototype values described below.

3.2.1 Prototype Inertia and Geometry

Through various measurements and calculations the boat’s properties were deter-
mined and are listed here:

Inertia for base configuration

• Mass: 1350 kg

• Iyy: 1547.8 kg.m2

Boat geometry estimates

• Lboat: 5 m - Boat overall length

• B: 2 m - Boat beam

• hboat: 2 m - Boat overall height

Inertia extrapolation for heavier configuration

• Mass, m: 1500 kg

• Ixx: 1080 kg.m2

• Iyy: 1711 kg.m2
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• Izz: 1500 kg.m2

Foil geometry estimates from drawings

• xHC; WFwd = xWF : 2.213 m

• zHC; WFwd = zWF : 1.273 m

• xHC; Waft = xWA: -1.153 m

• zHC; Waft = zWA: 1.293 m

• yFAft = yFA: 0.5 m

Foil geometry estimates

• xHC; WFwd = xWF : 2.100 m

• xHC; WAft = xWA: -1.153 m

• zT : 1.6 m

With that the final open loop matrices defining the boat global dynamics are
defined as [6]:

Aglobal =


−0.3375 −0.7689 −1.9232 −0.0600 −9.1054
−2.9227 −12.09715 −11.1535 −5.35857 −74.5785
−0.4310 −0.8449 −32.07000 −0.8204 −6.69750

0 1 0 0 0
0 0 1 0 0

 (3.31)

Bglobal =


0.4793 −3.8256

−7.34759 −43.65366
41.44857 −44.11284

0 0
0 0

 (3.32)

Further in section 4.2.3, the closed-loop matrices are computed.

3.2.2 Control Surfaces

These calculations were done for the boat dynamics, so the actuator matrices are
still missing. Considering that the actuators are all the same, we can just determine
the matrices for one of them. For the 2 states of the actuator, angular position and
angular velocity, with an angular rate settling time of 0.2 s and lack of oscillatory
motion we have [44]:
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Aservo =

[
−30 −225
1 0

]
(3.33)

Bservo =

[
225
0

]
(3.34)
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System Identification

4.1 Introduction

To control a system it is important to have an idea of how it behaves and which
are its main characteristics. In a mechanical system we look for its dynamics, how
the different masses react to forces and displacements, how it stretches and shrinks,
how the energy is dissipated and how it is conserved and converted from kinetic
to potential. There are different ways of determining these sets of equations that
represent the system described as a model.

Firstly, it is important to have an initial model that represents the system as
precisely as it is possible. We can do this through the known laws of physics and
by developing force diagrams in Newtonian mechanics [16] or through the equations
of energy in the Lagrangian mechanics [8]. The model for the problem in question
is based on a theoretical approach where the system is represented as precisely as
possible with the known laws that can be applied.

The main problem is that this method relies in a lot of approximations and
simplifications that may not apply in the real world. A system will never be the-
oretically perfect and even if sometimes we can rely on that it is not always the
case.

In a complex system like the one being analyzed for a hydrofoil, in this report,
the first approach may not be enough. A manual tuning of the controllers may be
needed when confronted with real time experiments. With an experienced operator
this tuning can be done in the eyes of experience. This also comes with the problem
that a tuning for one set of given conditions may not be the most performing for
another situation. More specifically in the case of the hydrofoils a different type
of environment conditions may impact the system in different ways and cause its
instability.

To solve the problem mentioned, a good solution would be the gathering of as
much data as possible that includes the biggest variety of possible conditions that
the system will encounter. This way we will get information that will minimize the
error due to manual tuning and real values that represent the system beyond the
theoretical evaluation.

After the data gathering, there needs to be an implementation of identification
methods, that through inputs and outputs, can fit a model as precisely as possible.
Some of the methods need to be tested for the various conditions and data and
compared, through performance metrics, to analyze which ones fit better in the
given system.

This last method is also not perfect. To have this measurements as close as
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reality as we can get, high quality sensors, capable of measuring all the necessary
states and variables, are needed and can end up being expensive. Also the methods
used for system identification can have errors and the more complex the system gets,
with more inputs and outputs and more intricate variables inner-relations, the more
difficult is going to be to define a precise model. However, this method can provide
interesting and eye opening results [53].

The identified model in Figure 4.1 consists of two components: a mathemati-
cal description of the cause-effect relationships, usually known as the deterministic
model and a statistical-plus-mathematical description of the uncertainties, known
as the stochastic model.

Figure 4.1: Identification using input-output model fitting [53]

The first one is related to the definition of the laws and dynamics that define
the system. The second to the presence of noise and errors in the observations. For
more introductory and advanced theory the following books are of great use and
were an important aid for the development of this project [53][25][13][23][28].

For this project, the first part of the identification process (theoretical determi-
nation of the model dynamics), was already done, so here the input-output analysis,
through generated theoretical data, is going to be done and various approaches to
identify the system are going to be implemented as a first understanding of the iden-
tification method. A second analysis was done through simulated data generated in
the FaRo software simulator. The end goal would be to apply the identification in
real data and compare the results with various metrics, however this was not possi-
ble since there were delays with the vessel in question that prohibited the gathering
of real test data in the current configuration. Furthermore, the final objective is to
have a structure ready to be implemented in real data. Some analysis were still done
with previously logged real data to test different hypothesis, regarding data treat-
ment and processing, but the quality was insufficient for complete identification, due
to low sampling rates and inappropriate excitations.

4.2 Theoretical Application

Since the system is complex, as well as the methods that are going to be applied, it
was more practical to first test the existent functions, for the system identification,
in data generated using the first theoretical matrices developed before. This way,
we can get a sense of the effectiveness of the methods chosen and use this as the
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ground truth data. Also, it is easier to find a pattern in data free of noise and which
we know what the result should be.

For that we simplified the system into different dynamics:

• Vertical Dynamics

• Rotational dynamics in relation to y (pitch)

• Vertical Dynamics + Speed

• Full coupled boat actuator dynamics

This way we can analyze the different dynamics of the system separately, being
this a good way of knowing it better and understand how the variables react to
each other. If everything is shown together, variables can override others and omit
important information. Then, when everything is prepared we can start identifying
the empirical data.

4.2.1 Generating Data

Firstly, we need to generate our data by creating an input to our state-space equa-
tions. With that, get an output to work with. This was done by creating a GBN
(Generalized binary noise) [54] sequence, which is a group of step functions, ranging
from user-defined minimum and maximum values, number of points, minimum num-
ber of points between value change, sample time and probability of change. These
system excitations were chosen, since we want to have results regarding as many
frequencies as possible. Step functions can be approximated as a sum of an infinite
number of sinusoidals, of different frequencies and amplitudes. So, with these inputs
we can get valid results that cover all the dynamics required with a simple function.
After simulating an output through the state-space equations (2.5), we can call the
identification methods on these data sets.

For the practical implementation, the input design requires more attention, since
the testing times, budgets and actuators constraints are finite. Also, in real imple-
mentation the dynamics can be harder to be excited properly. Later in Section 4.5.5,
the design of the inputs for real data is going to be described.

Inputs were simulated for different sampling frequencies such as 20 Hz, 100 Hz
and 1000 Hz. 20 Hz due to the fact that the initial data provided had a sampling
time of 0.05s (20 Hz), 100 Hz since it is the maximum it can be achieved for the
future data to work with and 1000 Hz to evaluate the effect of much higher sampling
rates on the identification precision. These inputs were related to the Forward Flap
and Aft Flaps average command and were given in rad/s, even if in the graphs they
are plotted as deg/s for the reader to interpret the results easier. They can be seen
in Figure 4.2.

4.2.2 Identification Methods

System identification methods can be divided into two main categories: Prediction
Error Methods (PEMs) and Subspace Identification Methods (SIMs). This report is
going to be focused in the SIMs, since they were developed for state space models.
PEMs are oriented to identify input-output transfer function models through the
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search of system parameters that minimize the errors between the given data and
the estimated. The latter methods, are considered to be more precise, however,
their computation depends on the solution of nonlinear optimization problems and,
for large MIMO systems, that are more complex, they can be unreliable. This is
then followed by Singular Value Decomposition (SVD) steps. State space models
have a simpler parametrization by performing linear projections of data matrices.
Subspace identification methods estimate linear time invariant space models from
input-output data [28][42].

After an extensive research, for Python [58] compatible libraries, capable of per-
forming the computations required, it was concluded that the only one available
with the proper methods was SIPPY (System Identification Package for Python)
[4]. Some methods of this package are also available for Matlab [30] but, in the end,
Python was selected due to its easiness for treating data and faster computational
speeds. Besides simulation tools and input generation the package also includes
PEMs and SIMs. For the purpose of this work 3 of the methods defined in the
package are going to be used: MOESP [19][18] PARSIM-K [42], N4SID [19][18][56].

N4SID and MOESP are two of the main algorithms utilised for subspace iden-
tification. They are based on QR (Q: orthogonal matrix, R: upper triangle matrix)
decomposition, SVD, matrices projection and the angles of subspaces that are robust
linear algebra numerical tools for multivariable systems [57].

The PARSIM-K method is an identification algorithm with parsimonious (using
the minimum number of parameters as possible) model parametrization. Usually
there is a trade-off between good fit of identification and number of parameters. A
parsimonious model can represent a system better if well performed, since is more
reliable for the prediction with other data sets, having a direct relation with the real
parameters. High parameter models can have good short term fitness but not work
as well for the prediction with other data sets, having an indirect relation with the
real parameters [42].

In this report the depths of the linear algebra, needed for the description of these
methods, is not going to be reviewed since if out of its scope. These methods will
be tested for different data sets and compared.

One of the problems for identifying systems is the determination of the model
order. There are several methods to calculate an estimate for the most probable
order, like the Akaike information criterion [1]. For our model, since there was an
extensive theoretically model development we can assume the order of the model to
be the number of states defined, due to the fact that they are the minimal number
of variables that we need to fully describe the current situation of our system.

After simulating the data we will try several sub-space identification methods
and compare their results both for initial data and for validation data to verify the
correctness of the system’s parameters determination.

These methods are going to be applied through a function from the SIPPY
package. This function, system identification(), takes as parameters the inputs and
outputs, the method wanted (in this case MOESP, N4SID and PARSIM-K), order
of the system, time sample, number of iteration, requirement of the D matrix to be
zero or not and past and future horizons.

The use of this function presents some obstacles that need to be solved through
different manipulations. These are:

• Some A and B matrices calculations were giving values that were erroneous,
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because it is known that there exists 1 to 1 and null relations between some
states and other states derivatives. These are defined with rows with zeros
and ones. Since that is a predetermined constraint, it is going to be imposed
manually and compared to a not constrained version.

• The system identification() function, does not allow the user to define C as an
identity matrix as a restriction. And in the case of this study this is important,
since the states defined are the ones that are going to be analyzed by the user
and that are needed for the boat stability and performance analysis. This can
be changed with ease with a change of basis operation.

• The theoretical matrices were derived for a continuous-time system, whereas
the ones calculated from the simulation results were determine for a discrete-
time system.

All of these obstacles can be solved and its solution is going to be shown in the
next section.

4.2.3 Matrix Manipulation

Now that the different steps required for the identification of the system are defined,
we can start by applying this logic.

To begin the application some theory needs to be discussed for the comprehension
of further developments. The first step is to analyze the initial order reduction
required to establish the pre-determined, well known, zeros and ones that define
null or equivalent relation between variables.

Considering the following matrices A and B:

A =

[
x1 x2

1 0

]
(4.1)

B =

[
x3 x4

0 0

]
(4.2)

where the values x are the constants that need to be determined through system
identification. The last rows are known so it is possible to impose those values by
some manipulation. By removing the last column of matrix A, and considering these
system as having only 1 state (A is 1×1) we can transfer this column to be the first
column of B (B is now 1×3) and define an extra input, as being the state we are
transferring to B. The matrices would now be:

A =
[
x1

]
(4.3)

B =
[
x2 x3 x4

]
(4.4)

(4.5)

30



Remaining the 4 unknown constants that are going to be determined. Since the
state space equations defined in (2.5), represent a linear, time-invariant combination
of parameters, the results and the transformation is valid. At the end of all calcula-
tions, the first value of B can be re-transferred to A to the same position as it was
and the final rows of both matrices are implemented as being [1,0] for A and [0,0]
for B. This method is independent of the size of the matrices whilst there exists a
1 to 1 or null relation between the derivative of the variable being transferred and
a state that remains in the A matrix. Thus, this can be done with the height and
pitch columns, since there is always going to be their derivatives as a state.

The next step will be done after the identification process, along with the re-
organization of matrices A and B, to transform the matrices from discrete-time to
continuous. This is because the theoretical matrices are determined for continuous
time and in order to compare the identified ones (from discrete signals) with the
theoretical ones, a conversion is needed. One of the simpler methods to compute
this approximation is the Euler’s method [17]. By considering the first derivative as
t = kT with k being the time step defined and T the time sample. With that being
said we can define:

ẋ(t) =
dx(t)

dt
≈ 1

T
(x((k + 1)T )− x(kT )) (4.6)

merging (4.6) and (2.5) we get

1

T
(x((k + 1)T )− x(kT )) ≈ Ax(kT ) +Bf(kT ) (4.7)

(4.8)

x((k + 1)T ) ≈ (I + TA)x(kT ) + TBf(kT )

(4.9)

x[k + 1] ≈ (I + TA)x[k] + TBf [k]

where

Ad = I + TA, Bd = TB (4.10)

and d is a subscript for ’discrete’. With these simple calculations we can convert
the discrete time to the continuous time and the problem is solved.

Finally, the transformation of the C matrix to the identity matrix can be done
with a change of basis of the equations. There are infinite representations for a
system, so the one given by an identification process can be different of the one used
for the simulation. Through some manipulation, it is possible to approximate both
solutions. The first step was already done, now the focus is on getting C to be an
identity matrix. Considering z the identified values for the states and AZ , BZ and
CZ , the identified matrices we get:

ż = AZz +BZu (4.11)

x = CZz (4.12)
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so,

z = C−1
Z x (4.13)

C−1
Z ẋ = AZC

−1
Z x+BZu (4.14)

ẋ = CZAZC
−1
Z x+ CZBZu (4.15)

In the end we get:

A = CZAZC
−1
Z , B = CZBZ (4.16)

Important to notice that C needs to be invertible, and that the order of the
system needs to correspond to the number of outputs defined [10].

Now that the theory has been outlined, it can be applied to the generated data
and to the different dynamics of the boat, from simpler to more complex.

4.2.4 Closed-Loop Matrix

From the work in [6] the theoretical matrices for the open-loop system were
determined in section 3.2. For the theoretical generation of data, the matrices
should be representing the closed-loop to illustrate properly the usage of real data,
since the system is highly unstable, while in open-loop, and the gathering of data
can involve unnecessary risks.

In equation (2.14) it was shown that the Acl = Aglobal − BK. Considering the
matrix K, shown in 4.17, pre-determined through manual tuning in the SB4 tests,
Acl can be calculated.

K =


0.10470 0.08376
−0.10091 −0.08073
0.70000 −0.32550
−0.83538 −0.66830
3.50000 −1.62750


⊺

(4.17)

Acl becomes

Acl =


−0.06729 −1.02933 −3.503944 −2.21627 −17.00908
1.50303 −16.36277 −20.21948 −40.67052 −119.90820
−1.07577 −0.22351 −75.44272 4.32406 −223.56116

0 1 0 0 0
0 0 1 0 0

 (4.18)
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4.3 Identification Evaluation Metrics

Different metrics were gathered in order evaluate the quality of a system’s identifi-
cation. They will be displayed accordingly.

4.3.1 Best Fit Criterion

Computing the best fit criterion, based on the explained variance between two data
sets, demonstrated by equation (4.19), we get a measure of the ’fitness’ of the iden-
tified system [45].

Fit[%] = (1−

√∑N
k=1(y(k)− ŷ(k))2√∑N
k=1(y(k)− ȳ)2

)× 100 (4.19)

where y(k) represents the real values, ŷ the predicted values and ȳ the real values
average. Important to note that the effect of the variance for an almost constant
signal, will be low, decreasing the value of fitness. So if a system is not excited
properly the identification of an almost constant state is not as reliable, since there
can be a marginal error and sill have low fitness. This will be explained in detail in
Section 4.6.2.

4.3.2 Relative Error (RE) and Root Mean Square Error
(RMSE)

The RE, (4.20) and the RMSE, (4.21) can be important to serve as a confirmation of
the fitness values. For fitness values averaging 90-99%, usually, the best fit criterion
portraits properly the quality of the system identification. However for lower fitness
values the result can be less accurate.

Analyzing an identified state that has a low value of fitness regarding the gathered
data, lets say below 50% , it can be noticed that sometimes the curves do not match
but they are separated constantly by a small neglectable margin.However, this small
margin can be invisible in a fitness value if the signal variance is even lower. Small
errors between two signals but with even smaller variances correspond to smaller
values of fitness, as it can be deducted from equation (4.19).

RE =
yi − ŷi
max(yi)

(4.20)

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2 (4.21)

The application of identification metrics and its further explanation will be
showed, with more detail, in Section 4.6.2. This is needed specially for lower fitness
values and in real data sets this happens.

33



4.4 Identification Methods Evaluation

Vertical Dynamics

As we are interested in the vertical dynamics, an intersection of the 2nd and
4th rows and columns is going to be used. These are the values corresponding to
the vertical displacement, rate, and its inner relation. They represent the vertical
dynamics of the system, as it can be seen from (4.22) to (4.25):

Avert =

[
−16.36277 −40.67052

1 0

]
(4.22)

Bvert =

[
−7.34759 −43.65366

0 0

]
(4.23)

Cvert =

[
1 0
0 1

]
(4.24)

Dvert =

[
0 0
0 0

]
(4.25)

By using the forced response() function from the control package it was possible
to simulate the height and height rate states from the system dynamics matrices
and inputs defined, in this case the excitation was between -1 and 1 degrees for
the forward flap and average aft flap, with a minimum of 20 time steps per input
variation and this variation, with a 50% probability of occurring. In Figure 4.2 an
example of data generation for a frequency of 100 Hz is shown.

Now that the inputs and outputs are determined, they are ready to be introduced
in the system identification functions.

The identification is going to be implemented in two different ways:

• With no previous matrix manipulation besides changing basis for C to be an
identity matrix and convert from discrete to continuous-time. No constraints
for ones and zeros.

• With the whole manipulation discussed before.

This way we can confirm the effectiveness of the method and in which way, the
system fits better the data. Furthermore we are going to name the non manipulated
results as ”original” and the manipulated results as ”1 state”. The practical dif-
ference is going to be in three parameters given to the identification function - the
inputs, the outputs and the system order. For the original data the order is going to
be 2, due to the 2 states present in matrix A and for the ”1 state” the order is going
to be only 1, with the inputs being now defined as u1state = [δZ δFF δFAAvg]. The
inputs for the original results remain the same uoriginal = [δFF δFAAvg]. The outputs
vector will have the same dimension as the states vector for each set of data, 1 for
the 1 state case and 2 for the original.
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Figure 4.2: Vertical dynamics response and inpunts

After the identification is done, the two final steps are applied, converting the
matrices to continuous time and changing the basis to have an identity matrix for
C.

Finally, to get our last approximation to the matrices calculated, for the ”1state”
values, we need to force the last rows of the matrices A and B to be [1 0] and [0 0]
respectively and return the state moved to B, to A and have the final dimensions
as they were originally and with the correct structure.

Now that the identification process is complete, it is time to compare the fitness
of each system in relation to the original data. Also validation with a different set
of inputs is done to confirm if the identified values add up for a different excitation.

In Tables 4.1 and 4.2 it is possible to see the different results for the height and
height rate fitness, respectively, for the various identification methods and for the
original, non manipulated, matrices (Org) and the manipulated matrices (1State).
Also, the ”1st” refers to an initial matrix identification for a given data set and the
”test” refers to the validation data set, implemented to the ”1st” identified matrices,
in order to test the generalization of the identified matrices.

A helpful measure to take into account is the comparison between the fitness of
the original identification (without the post-process manipulation) and the fitness
of the 1 state matrices. In general, the original identification provides better results
across the 3 methods and the only method providing good identification for the 1
state matrices is ”PARSIM-K”. When the result is given by ”—–”, it is because the
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Height Fitness [%] - 20 samples average
Method Org 20 Hz 1state 20 Hz Org 100 Hz 1state 100 Hz Org 1 KHz 1state 1 KHz

1st PARSIM-K 91.8243 93.3422 98.3077 98.9192 99.7908 99.8541
test PARSIM-K 91.4611 92.676 98.0643 98.8078 99.7673 99.8473

1st N4SID 92.9742 —- 98.4251 53.9169 99.8486 93.8723
test N4SID 92.0013 —- 98.1629 61.4472 99.8254 92.9929
1st MOESP 92.3605 —- 98.3432 57.5372 99.8398 91.795
test MOESP 91.3792 —- 98.1729 59.1116 99.8205 91.7244

Table 4.1: Vertical dynamics height fitness results

Height Rate Fitness [%] - 20 samples average
Method Org 20 Hz 1state 20 Hz Org 100 Hz 1state 100 Hz Org 1 KHz 1state 1 KHz

1st PARSIM-K 90.3399 93.5095 98.5393 98.8767 99.8291 99.8475
test PARSIM-K 90.167 93.4424 98.5511 98.8915 99.8326 99.8513

1st N4SID 86.5053 —- 97.6043 85.0308 99.7709 98.3887
test N4SID 85.5778 —- 97.5636 86.3447 99.7557 98.4364
1st MOESP 86.07 —- 97.6487 85.6036 99.7686 97.754
test MOESP 85.8022 —- 97.4776 86.7076 99.7617 97.9048

Table 4.2: Vertical dynamics height rate fitness results

values were unstable and the fitness of those methods for a given frequency were not
positive.

A process similar to this, applied to the vertical dynamics, was applied to other
dynamics and is described below.

Pitch Dynamics

Proceeding to the Pitch dynamics, the first step is going to be to simulate data
through the theoretical matrices calculated before. The A and B matrices used are
represented in equations (4.26) and (4.27) where the C and D matrices are the same.
These values were taken from the intersection of the 3rd and 5th rows/columns of
the matrix Acl, representing the pitch rate and the pitch variation, respectively.

Apitch =

[
75.44272 223.56116

1 0

]
(4.26)

Bpitch =

[
41.44857 −44.11284

0 0

]
(4.27)

The same identification package was used throughout the different dynamics, so
no more explanation of the current process is needed. In this case, the state that is
moved to the inputs is the pitch variation. Tables 4.3 and 4.4 show the results for
the pitch and pitch rate fitness, respectively.

Again, as it happened with the Vertical dynamics, results remain unstable for the
1state at 20 Hz for the N4SID and MOESP methods. However, the trend continues
from the 100 Hz mark and the results get better. Curiously for the original 100
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Pitch Fitness [%] - 20 samples average
Method Org 20 Hz 1state 20 Hz Org 100 Hz 1state 100 Hz Org 1 KHz 1state 1 KHz

1st PARSIM-K 91.2566 87.2125 —- 94.5615 99.5263 99.5261
test PARSIM-K 89.2564 80.8166 —- 93.8823 99.2931 99.2826

1st N4SID 94.2426 —- 98.6298 32.7532 99.8514 80.5879
test N4SID 93.2336 —- 98.7085 24.3687 99.8331 80.8795
1st MOESP 94.2296 —- 98.6003 36.4125 99.849 71.3498
test MOESP 92.7255 —- 98.5648 12.1585 99.8235 71.5361

Table 4.3: Pitch dynamics pitch fitness results

Pitch Rate Fitness [%] - 20 samples average
Method Org 20 Hz 1state 20 Hz Org 100 Hz 1state 100 Hz Org 1 KHz 1state 1 KHz

1st PARSIM-K 81.3068 89.2371 —- 96.1184 99.6171 99.6211
test PARSIM-K 79.9494 88.607 —- 96.0151 99.6024 99.6062

1st N4SID 80.5766 —- 96.4928 79.7765 99.6574 96.6194
test N4SID 79.1868 —- 96.0039 79.4202 99.6404 96.7883
1st MOESP 80.3182 —- 96.4627 79.4118 99.6556 95.4774
test MOESP 78.8648 —- 95.9742 80.2347 99.6294 95.2301

Table 4.4: Pitch dynamics pitch rate fitness results

Hz data the PARSIM-K method fails to identify the system. The reason remains
unsolved. 1 KHz data reinforces the statement that as sampling rate increases so
does the identification quality.

Vertical + Longitudinal Speed Dynamics

Following the same procedure as before, equations (4.28) and (4.29) represent the
theoretical matrices regarding the vertical dynamics plus the longitudinal speed.
Once again for the 1 state fitness calculation, the height state is transferred as an
input to the identification. Tables 4.5, 4.6 and 4.7 show the results for the speed,
height rate and height, respectively.

Aspd+vert =

−0.06729 −1.02933 −2.21627
−1.50303 −16.36277 −40.67052

0 1 0

 (4.28)

Bspd+vert =

 0.4793 −3.8256
−7.34759 −43.65366

0 0

 (4.29)

Results for the vertical + longitudinal speed dynamics are similar to the ones
of the vertical dynamics. These only differ from the previous pitch results in the
original 100 Hz data.
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Speed Fitness [%] - 20 samples average
Method Org 20 Hz 1state 20 Hz Org 100 Hz 1state 100 Hz Org 1 KHz 1state 1 KHz

1st PARSIM-K 92.8907 89.2697 98.7372 95.3996 99.7793 96.2485
test PARSIM-K 85.7086 73.3201 97.9489 72.7827 99.6509 94.5056

1st N4SID 96.7217 —- 99.3386 82.5221 99.9193 96.9025
test N4SID 96.2118 —- 99.2452 76.3019 99.9009 96.0705
1st MOESP 96.6979 —- 99.3036 77.58 99.9284 91.0126
test MOESP 95.992 —- 99.1725 71.8158 99.9153 89.1672

Table 4.5: Vertical + Longitudinal speed dynamics - speed fitness results

Height Rate Fitness [%] - 20 samples average
Method Org 20 Hz 1state 20 Hz Org 100 Hz 1state 100 Hz Org 1 KHz 1state 1 KHz

1st PARSIM-K 89.8979 91.7422 98.4961 95.5805 99.8242 96.9449
test PARSIM-K 89.2668 90.9955 98.495 93.7497 99.8279 97.0562

1st N4SID 86.4279 —- 97.7041 90.2651 99.7798 98.8283
test N4SID 84.882 —- 97.4666 90.3591 99.7468 98.9015
1st MOESP 86.1675 —- 97.6505 88.985 99.7739 95.715
test MOESP 85.5754 —- 97.4748 89.9942 99.7639 96.1701

Table 4.6: Vertical + Longitudinal speed dynamics - height rate fitness results

Height Fitness [%] - 20 samples average
Method Org 20 Hz 1state 20 Hz Org 100 Hz 1state 100 Hz Org 1 KHz 1state 1 KHz

1st PARSIM-K 91.1526 90.8987 98.3623 94.1561 99.7879 96.721
test PARSIM-K 89.3672 85.7501 98.0567 78.5411 99.7826 96.0042

1st N4SID 92.3217 —- 98.4488 78.055 99.8438 97.2462
test N4SID 91.7061 —- 98.3328 73.9326 99.8316 96.1841
1st MOESP 92.926 —- 98.5102 73.2483 99.8509 89.6941
test MOESP 92.059 —- 98.1935 67.8186 99.8171 88.3094

Table 4.7: Vertical + Longitudinal speed dynamics - height fitness results

Global Dynamics

Finally the identification methods were applied for the global dynamics, after the
interpretation of the separated dynamics. In this case the pitch and height variables
were given as an input to the identification functions and reorder later into the states
as originally shown. Acl, (4.18), and Bglobal, (3.32), matrices were used to generate
the data. Tables 4.8, 4.9, 4.10, 4.11 and 4.12 show the results for the speed, height
rate, pitch rate, height and pitch fitness, respectively.

Conclusion

From analyzing the tables for the fitness results, it is clear that with increasing
sampling rate the results tend to be better. Looking, for example, at N4SID for the
original matrices, fitness values can increase from 82% to 99%, from 20 Hz to 100
Hz. This is because the data is more insightful, describing the system better and
not disregarding important dynamics. Even though, for real systems, a sampling
rate that is too high can incorporate unwanted noise and can be unfeasible with the
equipment provided, a compromise should be made between precision and noise.

More importantly identification with 100 Hz data is clearly possible, since its
original identification fitness for the various methods wanders around 85% to 95%.
Real and simulation data, to be used, are going to be in that frequency range.
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Speed Fitness [%] - 20 samples average
Method Org 20 Hz 1state 20 Hz Org 100 Hz 1state 100 Hz Org 1 KHz 1state 1 KHz

1st PARSIM-K 89.4233 67.9906 82.9201 81.7193 99.1808 98.6147
test PARSIM-K 75.0103 64.46 84.2676 74.3253 98.579 94.2369

1st N4SID 95.7996 —- 99.2003 63.5164 99.9193 96.9025
test N4SID 95.8415 —- 99.1792 43.5563 99.9135 30.5343
1st MOESP 95.8151 —- 99.1892 19.3015 99.904 —-
test MOESP 95.7425 —- 99.1466 23.8257 99.9173 —-

Table 4.8: Global dynamics - Speed fitness results

Height rate Fitness [%] - 20 samples average
Method Org 20 Hz 1state 20 Hz Org 100 Hz 1state 100 Hz Org 1 KHz 1state 1 KHz

1st PARSIM-K 87.8127 78.7039 95.7883 84.155 99.6101 98.4892
test PARSIM-K 85.2309 81.5419 93.8167 86.0132 99.1728 98.2459

1st N4SID 89.3213 —- 97.8069 86.1084 99.782 82.8947
test N4SID 85.2858 —- 96.5054 79.6321 99.7552 72.5366
1st MOESP 89.2984 —- 97.8544 40.7907 99.7778 —-
test MOESP 88.6259 —- 96.9583 35.5849 99.7263 —-

Table 4.9: Global dynamics - Height rate fitness results

Pitch rate Fitness [%] - 20 samples average
Method Org 20 Hz 1state 20 Hz Org 100 Hz 1state 100 Hz Org 1 KHz 1state 1 KHz

1st PARSIM-K 88.8422 95.1417 96.0991 98.2764 99.6059 99.7751
test PARSIM-K 86.7328 94.7427 95.5075 98.2812 99.4254 99.6893

1st N4SID 84.424 —- 96.9516 94.5718 99.6782 94.0754
test N4SID 82.394 —- 94.4327 91.5615 99.6413 88.6867
1st MOESP 85.1962 —- 96.9944 77.1763 99.9284 —-
test MOESP 82.7918 —- 95.5834 67.1727 99.9153 —-

Table 4.10: Global dynamics - Pitch rate fitness results

Height Fitness [%] - 20 samples average
Method Org 20 Hz 1state 20 Hz Org 100 Hz 1state 100 Hz Org 1 KHz 1state 1 KHz

1st PARSIM-K 88.238 62.5957 89.2772 78.2769 99.3384 98.8839
test PARSIM-K 77.5593 65.5691 86.4472 78.6932 98.652 97.187

1st N4SID 95.663 —- 99.1537 82.0848 99.9138 60.3827
test N4SID 96.1675 —- 99.1326 64.485 99.8996 57.117
1st MOESP 95.1489 —- 99.2123 34.0837 99.9284 —-
test MOESP 95.7067 —- 99.0829 —- 99.9153 —-

Table 4.11: Global dynamics - Height fitness results

Pitch Fitness [%] - 20 samples average
Method Org 20 Hz 1state 20 Hz Org 100 Hz 1state 100 Hz Org 1 KHz 1state 1 KHz

1st PARSIM-K 88.729 61.4764 90.1151 77.7402 99.3343 99.3857
test PARSIM-K 79.5934 63.7982 85.6479 79.2944 98.69 99.0446

1st N4SID 95.5872 —- 98.9063 84.6557 99.8715 52.0227
test N4SID 95.8108 —- 98.8656 66.1861 99.87 64.3842
1st MOESP 94.5095 —- 98.9485 35.3241 99.9284 —-
test MOESP 94.5095 —- 98.7238 22.6472 99.9153 —-

Table 4.12: Global dynamics - Pitch fitness results

An iterative process should be useful to realize which frequencies of the system’s
dynamics are of importance to determine the optimum sampling rate. Considera-
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tions about this are developed in Section 4.5.5
The ’PARSIM-K’ method seems to be the only one consistently compatible with

the matrix manipulation data ’1 state’, thus being of interest when applying to real
data after the model order reduction.

’N4SID’ and ’MOESP’ have a similar approach to the identification process, how-
ever, ’N4SID’ provides slightly better results for almost every section of the testing,
specially when more states are in play. N4SID should be used as the primary method
for identification and MOESP as a backup to confirm the previous statements.

4.5 Real Data Application

In this section, a process for identifying real data systems is discussed. This includes
ideas about data generation and treatment, since the overall process relies on the
same methodologies applied in theoretical data, besides the part of irregularities
present in data due to several random phenomena. Figure 4.3 summarizes the
process defined and is useful for the reader to follow along.

Figure 4.3: Final process diagram
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4.5.1 Gain Matrix Speed Linearization

As it was discussed previously, the dynamics of the boat will change with the vari-
ation of its velocity, this due to the lift and drag forces being proportional to the
square of the speed (section 3).

Instead of considering all the nonlinearities and how they manipulate the sys-
tem’s dynamics a straightforward quadratic compensation is used to relate the boat’s
controller gain changes with the average speed during a certain time interval (Vavg)
and a reference speed (Vref ). This equation is given by (4.30).

Klin =
V 2
ref

V 2
avg

(4.30)

Klin is the constant calculated that will multiply the K original matrix to produce
a final linearized speed matrix in relation to a boat reference speed and K matrix.

4.5.2 Noise Analysis

When utilising real data, instead of computer generated data, some problems were
identified regarding the quality of it. These are related to delays, excess of noise
from the measurements, presence of outliers, aliasing of the signals, etc. In this
section these obstacles and their determination and solutions are addressed.

One of the major key points of system identification is data quality. If the data
is not precise, then the identification is going to give misleading responses, since it is
not representing reality but a distorted version of it. There are various aspects that
contribute to the quality of the data from the sampling rate to the noise present in
it [53].

For multiscale systems, with phenomena that occur on diverse time scales rather
than a universal one, sample rate selection might be an issue. A compromise must
be found that optimally obtains data from relevant dynamics, while avoiding noise
excess. In relation to noise, it is true that as the sample rate increases, the precision
of the data acquired increases, because the data will be more complete, filling in the
gaps that lower sampling rates would leave empty. However, with higher sampling
rates, undesirable phenomena are gathered. These unwanted data can be denomi-
nated as noise and is dependent on external variations that are uncorrelated with
the system [53].

Even if measurements to reduce noise are taken, such as vibration damper im-
plementation, there is still going to be noise present. However, it is possible to
remove frequencies of the signal that may be interfering with the data quality using
frequency analysis. The data will be subjected to post-processing filtering in order
to remove as much noise as feasible.

For this system data was gathered in the testing of Seabubbles SB4 boat with a
sampling rate of 50 Hz. For the excitation of all the system’s important frequencies,
step excitations were induced in the different control surfaces of the boat.

The noise was removed for all variables that will be used in the system identifi-
cation procedure, which are those defined in the equations (3.3) and (3.1). To get a
sense of the essential frequency components from each variable, the first step is to
translate from the time domain to the frequency domain. Figure 4.4 shows the height
state, frequency components, as an example. Through the graphical representation,
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it is possible to compute which frequencies have predominant influence and where
is it possible to define a cutoff frequency. After that, a Butterworth fourth-order
zero-lag low-pass filter is applied to remove the higher frequencies from the signal
with no lag (by passing the filter twice in opposite directions) [52]. Different low
pass filters like the Chebyshev or the Bessel filter could have been used, however
the Butterworth filter was applied due to its linear gain decrease and easiness of
determining the frequencies that are being passed. In this study, a method was uti-
lized to translate to the frequency domain, which is discussed in [25] and described
in Appendix A. In [61] a method was developed to find an optimum cutoff taking
into consideration not only the sampling rate but also a mean residual error. This
method consists in 4 steps:

• Determine a cutoff frequency taking into account the sampling rate using (4.31)

• Filter the data by the frequency determined

• Compute the mean residual error between the filtered and non filtered data

• Calculate the final cutoff frequency with equation (4.33)

Figure 4.4: Height in the frequency domain

In [61] a correlation was found between the optimum cutoff frequency and the
sampling frequency through several regressions for different data with different noises
and time samples. With that equation (4.31) was found.

fc = 0.071fs − 0.00003f 2
s (4.31)

where fc is the first cutoff frequency solely influenced by fs (sampling frequency).
After filtering the original data the final step can be done by firstly computing the
mean residual error (4.32) followed by the final cutoff frequency with equation 4.33

ϵ =

√∑N
n=0(xn − x′

n)∑N
n=0(xn − x̄)2

∗ 100% (4.32)

fc2 = 0.06fs − 0.000022f 2
s + 5.95

1

ϵ
(4.33)

x̄ is the mean of xn, the original data, and x
′
n is the filtered data set for fc.
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This method gives an estimation of the cutoff frequency taking into consideration
the noise present in a given signal. However, for signals with almost no noise, fc2
would be too high (higher than the Nyquist frequency), so in those cases the cutoff
frequency should be determined by the user’s interpretation given the visual inter-
pretation of the signal in the frequency domain and the cutoff frequency associated
with the chosen sampling rate, fc.

Finally, for different samples the noise can be different, this can be approxi-
mated for similar testing conditions but it should be noticed that the cutoff values
can change in between data sets due to variation in the testing conditions and un-
predictable phenomena.

As an example, different fitness values for identification processes are shown, in
pre and post filtered data. In table 4.13, the different calculated values for the cutoff
frequencies are shown. SNR (signal to noise ratio), represents the relation between
the power of a signal and the noise content in it. In theory, usable results should
have a minimum SNR of 3 [25]. Some of the variables in analysis, like the height
and pitch rates, are not compatible with this criterion, however, the data used in
this section, was for testing only of the filtering processes.

Variable SNR fc [Hz] fc2 [Hz] Visual [Hz] Final [Hz]
FF 3.90 3.4750 20.2237 5 5

FA Avg 7.23 3.4750 8.6142 7 7
Speed 127 3.4750 11.2236 2 2

Height Rate 0.0015 3.4750 5.8890 5 6
Pitch Rate 0.0016 3.4750 5.9800 5 6
Height 17.73 3.4750 16.6100 2 2
Pitch 0.7141 3.4750 25.6700 4 4

Table 4.13: Noise filtering values

Looking at table 4.13 besides the frequencies fc and fc2 a cutoff frequency de-
termined visually is displayed alongside the final determined cutoff frequency. To
determine the final frequency, different cutoff values were tested, for the same data
set, and the filtered data was inputted into the system identification function. The
”Final” cutoff frequency values selected were the ones that originated the higher
identification fitness.

It can be concluded that for noisy signals, with low SNR, fc2 can be a reliable
optimum cutoff frequency. The Pitch state, even if it has higher SNR, its noise
contents are predominantly on the low frequencies so fc2 is exaggerated . In the
end, the visual cutoff frequency worked the best. The rest of the variables have
high SNR so this means that their noise content is relatively low. After testing the
different cutoff frequencies for the rest of the states and inputs (FF, FA Avg, Speed
and Height) it was concluded that the visual method ends up being the best since
fc2 is underwhelming.

Before filtering the fitness results were unstable and extremely negative which
was unfeasible. After filtering, the values are given in table 4.14 and are positive and
stable, with the exception of speed. A possible explanation about the low values of
speed fitness is given in Section 4.6.2.
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State Fitness [%]
Speed -36

Height Rate 45.53
Pitch Rate 54.45
Height 24.47
Pitch 70.791

Table 4.14: Fitness results after noise filtering

4.5.3 Signal Delays

Besides the noise coming from various phenomena involved in the data gathering
process there can also be problems related with the delay of specific signals that
occur due to electrical/communication issues and not from the inherent dynamics of
a system. This can be seen when utilising a controller that manages different input
signals, taking a finite amount of time transforming them to the outputs required.

In the case of this hydrofoil analysis delays can occur in the FCS (foiling con-
trol system) and it is possible to evaluate them, through signal cross-correlation,
calculating which signal time step translation corresponds to the biggest similarity
between them. In order to have a more intuitive result in a form of a coefficient
instead of a disproportional number, the correlation coefficient, r, is demonstrated in
relation to the square root of a ratio of the auto-correlation of each signal, equation
(4.35). Equation (4.34) shows how the cross-correlation, z of two discrete, finite
signals, x and y, is computed for a number of points N where k represents the time
step of the delay, thus the equivalent delay in seconds being k*∆t.

zx,y[k] =

||x||−1∑
l=0

xly
∗
l−k+N−1 k = 0, 1, ...., ||x|| − 1 (4.34)

r(k) =
zx,y(k)√

zy,y

(
||y||
2

)
zx,x

(
||x||
2

) ||x|| = ||y||, k = 0, 1, ...||x|| − 1 (4.35)

where .* accounts for the conjugate of the vector and ||x|| for the length or number
of points of the signal vector and it is subtracted by 1 due to the nature of Python
indexing starting in 0. Since the signals in question consist in real numbers the
conjugate is redundant. These functions were implemented through the Python
package ”SciPy”.

Important to note that the correlation coefficient of a specific time lag can be
marginally higher than the 0 lag coefficient, which means, that the time difference
between the signals can be neglected. Due to that both the maximum correlation
and the 0 lag correlation coefficients were computed and compared along with a
visual interpretation of the signals.

As an example of the noise delay analysis being applied, Figure 4.5 shows two
signals which are delayed approximately by one time sample interval (0.02 s - 50
Hz) and Figure 4.6 the respective delay and cross-correlation graphic.

The equation almost perfectly identifies the lag, that was supposed to be 0.02
s, and it is shown as 0.025 s. To be noted, that the signals are real logged signals
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from testing and the delay is not perfect, due to natural irregularities. With this
method a problem can be solved. This identified the delay of the controller between
the FCS command and the actual final command, that is the summation of the FCS
and excitation value, seen in Figure 2.9.

Figure 4.5: Forward flap transmitted command (ff cmd) with a 20 ms delay relative
to the command computed by the flight controller (fcs ff cmd)

Figure 4.6: Cross-correlation and time delay graphical representation

4.5.4 Sampling Frequency

When selecting the sampling frequency it is important to take into consideration
some aspects. First of all, the sampling frequency needs to be high enough to
capture the important dynamics of the system without distorting them, phenomena
known as aliasing, and not too high to respect the sensors limits and to avoid the
gathering of unwanted noise that usually occurs in higher frequencies.

When considering the minimum sampling frequency, it is not enough to define it
as the higher frequency the user wants to capture, neither by the Nyquist frequency,
shown in equation (4.36), defined as the theoretical minimum sampling frequency to
capture discrete samples of continuous signals with a frequency up to the fs. This
because aliasing can happen, where the captured signal is not defined by a sufficient
number of points. In Figure 4.7 a sin wave with a frequency of 1Hz captured with
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a sampling frequency slightly above fN is represented. The sin wave is stretched by
the sampling process and its frequency diminished [25].

fN =
fs
2

(4.36)

Figure 4.7: Aliasing example [25]

In practice, to obtain good results, considering fmax the maximum frequency of
interest, fs should be [25]

fs = 25fmax (4.37)

With that being said, a first excitation of the system should be performed in
order to understand where the most predominant frequencies are situated in the
spectrum and decide an optimum fs. When defining the input design, this is going
to be calculated through the frequency transformation of the time response. From
the results gathered from the initial tests, the predominant frequencies of the boat’s
dynamics were around 1-3 Hz, so a sampling rate of 100 Hz was tested, to have a
safety margin.

4.5.5 Input Design

To properly identify a system, its dynamics need to be fully described in the data, in
which the methods are acting upon. As it is usually said, it is impossible to identify
something that is not there, and even if the identification looks correct it is going to
fail when the parameters are subjected to validation data because most likely, this
data is going to reflect the dynamics of the system differently [20].

Different maneuvers are needed to excite the different axes of the dynamic motion
of the vessel. Since the longitudinal motion of the hydrofoil is being considered, the
most important dynamics are related with the height, pitch and speed variations,
function of the activation of the actuating surfaces (forward flap and and aft flaps).
The aft flaps (starboard and port) are not going to be commanded individually
or differentially in order to avoid excessive roll of the boat and other transverse
movements. For that reason the aft flaps are actuated in an average command.
Also both these actuations need to be orthogonal or uncorrelated not to mislead
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the identification and associate different variations of the boats states to the same
inputs. That is why these control surfaces are actuated within a time difference,
enough for the boat to stabilize in between excitaions.

To ensure that the first paragraphs are fulfilled, tests were conducted for arbitrary
inputs that could cause a general excitation of the dynamics, allowing for an initial
glance at the data and analysis of the relevant factors to consider. After the data
was recorded, it was possible to examine its frequency components to determine
which frequency band was dominant and had the greatest impact on the outcomes.

As it was expected and shown in Figure 4.8, most of the predominant frequencies
lie in the range of ]0,3] Hz. From this point there are many ways to define the inputs
required and some of them can be seen in references [20][33][36]. Some of the most
common are: frequency sweeps, pulse signals, steps, doublets, 3211 signals, etc.

These different input signals can be employed in a variety of situations. Square
waves have a broader frequency range that includes critical intermediate frequencies.
That is why, in this report, only the steps, doublets and 3211 signals are studied,
since they combine simplicity with good identification data.

When deciding which signal/combination of signals to choose, one key part to
understand, is which frequencies of the system are going to be excited and if these
ones are the ones required. Figure 4.9 is useful to understand the frequency compo-
nents of the input signals defined [20].

Starting by the step input, it is interesting to understand that only the low
frequencies of the system are going to be excited. The step function is of zero
frequency however in the frequency domain is going to be a combination of sine waves
of low frequencies. Also important to notice that as the ∆t (step duration) increases
its frequency shape gets narrower, increasing the energy of the lower frequency
components and decreasing the energy of higher frequencies. The inverse happens
with the decrease of ∆t. The step input, can be useful to excite lower frequencies
of the system, that usually are the ones of most importance for systems like the one
in study. However the band range is really small limiting the dynamics in question.

Next the doublet input, consisting of one pulse excitation followed by its sym-
metric, almost like an approximated squared sine wave. It is characterized by its
frequency (cycles per second), amplitude and by being symmetric in relation to
the origin, useful to get the boat back into steady conditions. The doublet takes
into consideration a broader frequency band than the step, where the frequency
of the doublet is predominant with a quasi-linear attenuation of energy in nearby
frequencies.

Finally the 3211 signal, where ∆t is the duration of the smaller 1 pulses preceded
by a 3∆t and a 2∆t pulse. This standard input can be really useful, since it broadens
the spectrum of frequencies to which the system is going to react, as it can be seen
in Figure 4.9. The downside is the asymmetry presented in this excitation, where, in
the end, the boat has been excited more for the positive direction than the negative
taking longer to settle into a steady condition. In the system of study this does not
present as a problem, due to the fast control reaction and achievement of the steady
state, also a time interval between excitations is given for this condition to be met
[20].

With that being said for this specific report, initially, a combination of the step
input and the 3211 signal is used. The 3211 signal alone would not be enough
due to the fact that lower frequencies would be neglected and in this case they
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(a) Boat Speed

(b) Vertical rate

(c) Pitch Rate

(d) Height

(e) Pitch

Figure 4.8: Frequency response of the system’s states
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Figure 4.9: Energy spectrum of standard inputs [20]

are clearly relevant. Applying the step alone would cause the same deficit but
in higher frequencies. All in all a combination of the two inputs would give the
optimum excitation. This combination was applied to both actuating surfaces with
a separating time interval, to ensure the orthogonality between excitations. The
final excitation selected can be seen in Figure 4.10.

Figure 4.10: Forward (FF) and aft (FA) flap excitation signals

To apply this excitation both in real implementation and simulation data, a
function was developed to be implemented in the software FaRo. This function was
created according to the structure of the software being worked on with the objective
of providing the capability of exciting the system with different signal structures.

It had as inputs the type of excitation (single step for one actuator, one step
for each actuator, 3211, predefined square + 3211 with forward and aft flaps uncor-
related excitation,), amplitude of the signal, the actuator to which the excitation
corresponds, the duration of the excitation corresponding to the ”1” pulse in the
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3211 signal or the step in the simple step signal, total excitation time, initial delay
time of excitation, the time step of the software simulation cycles for the outputs to
be time consistent, two binary flags one for turning on/off the excitation and other
for turning on/off the automatic controller. The latter flag was developed for simu-
lation purposes mainly, since operating hydrofoil vessels without automatic control
can be dangerous due to the instability of the system. The outputs, as it is clear
in Figure 4.10, are the command of the forward and average aft flaps amplitude of
the vessel. The outputs can be changed according to the boat being worked on and
its inputs. Finally this function automatically generated logs to store the data for
future analysis.

4.6 Simulation Data

After having an understanding from the identification methods in the theoretical
application, Section 4.2, these were applied to simulated data. Simulation data from
FaRo offers information that could not be obtained in the theoretical evaluation, this
because

• In FaRo the actual controller is implemented and is acting upon the inputs
and outputs created.

• The data processing is the same that the boat experiments.

• It was possible to prepare the future implementation of this methods in real
boats

Simulation data from the FaRo software was generated through the input func-
tion created and logged automatically.

In initial iterations the results were not satisfactory as the dynamics were not
being excited properly. The fitness results were good for a first identification but
the validation data was giving negative results. Also the results were worse when
comparing with the theoretical fitness values determined before the simulations. It
was noted that speed was not being excited, since it had close to no variation. Also
the theoretical excitation had a faster excitation rate exciting faster dynamics of the
vessel. To properly identify the system the dynamics being excited need to be the
ones predominant in the regular usage of the boat.

With that being said two possible solutions were thought.

• Use motor thrust as input by changing its constant manually. The automatic
control of the thruster is not implemented in the software yet so it cannot be
considered as an input but as an external disturbance.

• Implement faster excitations with smaller time duration.

Applying random thruster excitations was not successful. It should work if it is
considered as an input for the automatic control and that is going to be referred in
the ”Conclusions and Future work” section.

Bear in mind that the excitations mentioned for the FF and FA Avg are of the
form of step+ 3211 defined previously.
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Faster excitations, with a 1∆T of 0.3 s versus the slower 1s were implemented,
and their output results can be seen in Figure 4.11, for the identification data and
in Figure 4.12 for the Validation data. Also, the fitness results for each output were
evaluated. These results are shown for both identification and validation data. To
notice, that the validation data is the same for both fast and slower excitaions.

Tables 4.15 and 4.16, show the fitness results for the slower excitation and for
the faster excitation, respectively. It is shown, that the identification fitness for the
slower excitation is superior to the one of the faster excitation. However, the overall
fitness of the validation data, for a faster excitation, is higher than for the slower
excitation.

A faster excitation alters the state of a system more abruptly, hence stimulating
more the dynamics of the system. This can translate in matrices that represent the
system better for different conditions and environments.

A slower excitation, stimulating slower dynamics, easier to identify, translates in
a system that corresponds adequately to the momentary conditions. Yet, it misses
to incorporate the overall dynamics of the boat and does not suit as well in other
conditions than the ones used for the identification.
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Figure 4.11: Org Vs. 1State Identification. ”sim” represents the simulated data,
”Org” the original non manipulated matrices and ”1State” the manipulated matrices
discussed in Section 4.2.3

Figure 4.12: Org Vs. 1State Validation data.
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Fitness Org Fitness Org Valid Fitness 1State Fitness 1State Valid
Speed 97.0260 -6.6553 91.0469 -23.7942

Height Rate 93.3250 78.0762 92.0225 81.3400
Pitch Rate 88.1254 87.0078 94.5019 92.5396
Height 96.5337 21.9829 84.3305 -0.7515
Pitch 96.4135 73.1544 95.2005 69.4106

Table 4.15: Simulation fitness results [%] for slower excitation. Valid stands for Val-
idation data, 3rd and 5th columns. 2nd and 4th columns represent the identification
fitness values. Same applies for Table 4.16.

Fitness Org Fitness Org Valid Fitness 1State Fitness 1State Valid
Speed 28.9463 84.762 41.6644 -17.1193

Height Rate 82.6095 80.2556 89.7541 82.9075
Pitch Rate 82.4554 78.8144 92.8323 92.7699
Height 27.539 83.3675 48.0845 12.2823
Pitch 81.2158 89.4507 86.5515 72.5661

Table 4.16: Simulation fitness results [%] for faster excitation

4.6.1 Speed Identification

Speed identification is expected to be more difficult since it mostly depends on
the motor’s thrust forces. With that, even with fast excitations on the actuators
the boat’s speed will not change abruptly, hence its dynamics are not going to be
captured. The best solution would be to considered it as an input of the system,
however the current software does not have this function implemented in the control
system. In Section 6.2 a solution to implement speed as an input is discussed.

With real data, speed will be affected by other phenomena not considered for
simulation purposes like the interactions with the ocean currents and waves, speed,
etc. making possible to identify its dynamics.

4.6.2 Application of Identification Metrics

Using values from the identification of a real data set and after analyzing them
graphically, it was concluded that the fitness of a given variable not always corre-
sponds to a truly bad identification.

Figures 4.13 and 4.14 illustrate this point accordingly. It is possible to see that
the identified speed curve is not matching the original values, however the difference
is minimal relative to its maximum value and the RE (equation (4.20)) along time
does not go above 2% even though its values of fitness are negative.

To further confirm this affirmation in Figures 4.15 and 4.16 the same process is
done for the Pitch state for the same data set. Even if the Pitch fitness corresponds
to a value of around 70 %, its relative errors can be as high as 30 %. Meaning that
both curves are similar, having areas of almost null error, but in areas of abrupt
changes the errors can achieve higher values. The user must know if these errors are
allowable.

The RMSE (equation (4.21)) can be a good value to have as a reference of an
average error along a data set, giving the user a notion of how much the predicted
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state is deviating in absolute values of the reference state [47]. In Figure 4.13 the
RMSE has a value of 0.061 knots while the mean speed fluctuate around 5.7 knots
thus being a marginal error. However the RMSE for the Pitch fitness is of 0.1844◦

while this variable fluctuates around 0.5◦. In this case the RMSE is not marginal
and it needs to be taken into consideration.

In the end the RE indicates a relative percentage difference between curves,
having the power of minimizing the relevance of fitness if it is proved that the RE
is insignificant. The RMSE is related to an average absolute error along the data
set so that the user realizes if that absolute value is critical. Analyzing maximum
errors also indicates if the states are surpassing critical values, however, anti-windup
systems are responsible of limiting such instabilities and if the system is proven as
stable it should not happen.

Figure 4.13: Real and Identified speed.Speed fitness between the two signals as an
annotation

Figure 4.14: Speed identification RE and RMSE

Error and Fitness analysis needs to be interpreted by the user. Fitness values
can be trusted when they overcome the 85%, 90% barriers since the fit is almost
perfect and the errors are close to null. As it was seen for 70%, the highest achieved
for the given data, it is still possible to have high percentual errors between curves,

54



Figure 4.15: Real and Identified pitch.Pitch fitness between the two signals as an
annotation

Figure 4.16: Pitch identification RE and RMSE

even if for a big part of the time interval the curves fit seamlessly. In future works
(Sec. 6.2) an overall metric is referred as an interesting project.
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Control Performance Metrics

There are numerous ways someone can model a system and develop a controller
to it, in the end, there needs to be a set of criteria that distinguishes each pair of
model/controller and determines if it is performing accordingly. In this section the
performance metrics utilised to evaluate the success of the controller associated with
the system identified previously are displayed.

5.1 Phase and Gain Margins

The first step to understand if a system is stable or not should be to compute the
system’s open-loop and closed-loop poles, in order to confirm the existence of poles
in the right-hand side of the imaginary plane. However, these poles are part of an
user-determined system’s dynamics and control matrices, not taking into account
the full spectrum of unpredictable phenomena. This means that the poles that are
being analyzed come with an associated uncertainty and do not reflect the complete
nature of the system. Furthermore, like most of engineering problems, a margin
should be set to guarantee a safety gap between stability and instability.

Phase and gain margins are one of the simplest methods to evaluate how close
a stable system is of being unstable. These take as a premise that the closed loop
system is unstable if one frequency produces 0 dB gain and -180◦ phase. The most
direct method to compute these margins is through the Bode plot analysis.

The gain margin dictates how much can the gain be increased until the system is
unstable and is determined at the phase crossover frequency, when the phase angle
of the open-loop transfer function is -180◦.

The phase margin dictates how much additional phase lag can be added at the
gain crossover frequency (0 dB), until the system becomes unstable. It is given by
the phase angle of the open-loop transfer function at the gain crossover frequency
plus 180◦.

Figure 5.1 depicts how these margins can be calculated and reflects another key
point for detecting if a system is stable or unstable from the get go. If the phase or
the gain margins are negative the system’s instability can be assumed [40].

Even though these metrics can be important to perform an immediate analysis
of the system’s stability they can be insufficient due to the fact that they do not
take into account simultaneous variation of gain and phase for a specific transfer
function. Also, for MIMO systems phase and gain margins determine the stability
for a 1 to 1 relation between a given input and output. This means that we cannot
be sure if a system is stable for 2 changes at the time just by looking at the Bode
plots due to the existent correlations in between states and inputs.
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Figure 5.1: Gain and phase margins of a stable(left) and unstable system(right) [40]

5.2 Robustness - Disk Margins

By looking at a a stable system’s Bode plots we can commit the error to assume
that a system is stable, for various reasons, listed below:

• Mathematical models do not represent a system’s dynamics 100% accurately
and its transfer functions gains and phase can differ from what was determined.

• Bode plots only represent the stability for a single gain or phase uncorrelated
changes and for the relation of one input to another. Simultaneous gain and
phase changes for multiple inputs/outputs are not taken into consideration.
The ”loop-at-a-time analysis” does not encompass multiple perturbations in
different inputs and outputs.

• Sensitivity of a system is not analyzed. A system with a big gain and phase
margins, apparently stable, can be sensitive to small simultaneous gain and
phase margins by having a Nyquist curve approaching -1 [24].

• Margin requirements need to take into account increase of uncertainty at higher
frequencies.

For a better robustness analysis of a feedback system, for this report, Disk mar-
gins were computed as to evaluate a system’s stability for different gains and dy-
namics matrices [24].

Describing disk margins, as succinct as possible, they consist of a set of pertur-
bations corresponding to a gain and/or phase variation to which the system remains
stable. These disks or sets of perturbations can be computed for a single input or
output or for multiple inputs and outputs, being the more generalized result given
by the disk that takes into account the entirety of the input/output correlations
[49].

Each set of perturbations is represented as D(α, σ), a disk which parameters
correspond to the maximum size (α) for which the closed loop maintains stability
for a given skew (σ). These perturbations represent the uncertainties of the model
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that was developed, ensuring these stability margins guarantees that the model’s
inaccuracy does not deviate into unstable conditions [49].

Figure 5.2, represents a system’s closed-loop with a perturbation, f , to a plant,
P , with a controller, K, integrated in the diagram.

Looking at Figure 5.3 it is easier to understand how the disks parameters interact
with it and what do they represent. The skew (σ) is defined according to the
user’s perception of how the gain is more likely to vary according to the system
uncertainty. If the user believes that the real system will have gains bigger than
the ones predicted, a more positive skew will encompass points which the gains will
be higher and vice-versa. In this case of Figure 5.3, the skew is zero since there is
the belief that the model is accurate or the user does not know whether the gain is
likely to be higher or lower. Also, it is important to notice that as the skew increases
or decreases so does the phase margin, in this case. (α) is calculated for a given
skew and and will be a measure of the size of the disk that will encompass all the
stable perturbations represented by the green dots. Each dot is a complex number
representing a perturbation to a system.

Figure 5.2: Feedback loop with a perturbation f [49]

Figure 5.3: Disk margin for a given system (adapted from [31])

By looking at Figure 5.3 it seems that this metric can be a little conservative
since the pure gain and phase margins are higher than the upper and lower disk gain
margins (phase margins are symmetric and for zero skew disk and traditional phase
margins coincide). However for higher increases of the gain, little phase variations
will get the system to be unstable.

Finally, one of the most important points to retain is that, through the Robust
control toolbox from Matlab, it is possible to compute MIMO disk margins that
take into consideration the presence of perturbations for every channel of the feed-
back closed-loop (inputs and outputs) simultaneously and establish the final gain
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and phase margins for the system, as a whole. This is extremely useful for the
optimisation of the gain matrix to place the closed-loop poles of the system in the
left-hand side of the imaginary plane while maintaining stability and performance
with a comfortable margin.

In Figure 5.4 it is possible to identify a disk margin plot for the closed loop
system of the theoretical global system shown in equation (4.18). The gain and
phase margin are computed from the simultaneous variations of the inputs and
outputs of the system. In the case of this system, the gain and phase margins can
vary according to the points that belong to the disk area, in order to maintain
stability.

It is also possible to analyze if it is worth it to skew the disks and if the system is
more stable for different sets of gains. Skewing the system by a σ of 2 turns it into
a less stable system by having a smaller disk margin in every axis, as it is depicted
in Figure 5.5.

Figure 5.4: Disk margin from theoretical matrices

In the end the goal is to be able to compare different system’s dynamics stability
and access which one fits better in the requirements.

5.3 Errors

Besides analyzing the fitness of the identified matrices, calculating the root-mean
squared error (RMSE) and the relative error (RE) can also be an important measure
to analyze if the system is following the reference values and performing as desired.
These can be applied to the controlled states and commands to evaluate the control
system tracking stability, precision, and accuracy, providing important control per-
formance feedback. The fact that these metrics can be easily computed in real-time
is also very important.

These error metrics were already introduced in section 4.3 and are already im-
plemented in the FaRo software being of great importance for performance analysis.
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Figure 5.5: Disk margin for σ = 0 and σ = 2

5.4 Proposed Performance Evaluation Methodol-

ogy

In the previous 2 chapters a system identification and performance metrics analysis
methodology was introduced. Even though the objective was for these topics to be
applied in real data, that was not possible. A brief summary of the final process for
optimizing the hydrofoiling controller is now presented.

The first step is to gather sufficient data to have proper identification of the
system’s dynamics. FaRo software alongside with the boat’s sensors have the capa-
bility of collecting data at 100 Hz and, with the new function developed, to excite
the boat’s actuators with steps and 3211 signals.

After the logs are collected it is important to analyze the inputs and states fre-
quency contents to determine to which frequency the filters should be implemented.
Also the identification of outliers and time delays should be done alongside the
frequency analysis. The quality of the data pre-identification should be ensured.

The third step involves applying the different identification methods (’N4SID’,
’MOESP’, ’PARSIM-K’) to the already treated data. As discussed before these
methods can be applied to the original data (5 states) or to the modified data (3
steps) to constrain the identification in maintaining the equality between outputs
and inputs for the pitch rate and height rate.

A set of metrics is then used to determine if the identification was successful
and if the identified matrices actually represent the real system better than the
theoretically matrices. For the new dynamics closed-loop matrices the open-loop
matrices can be computed by subtracting a product of B and K. This is important
to use the Matlab functionalities of the Robust Control library and develop the disk
margins. These margins need to be enough for the system to be stable for different
conditions, if not K can be manipulated in order to reposition the system’s poles
and ensure stability. Another way of changing the system’s poles is through an LQR
algorithm in which, by defining weighting matrices for performance and for control,
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optimized K values are determined.
Finally it would be interesting to implement the new controller gains and analyze

the performance differences. This final structure is represented in a diagram in
Figure 4.3. Last conclusions and future work are explicit in chapter 6.
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Conclusions and Future Work

6.1 Conclusions

This report provides a full process of identifying real model parameters, from the
treatment of logged test data, going through the identification algorithms to its
evaluation through different metrics.

Firstly, in Section 2.1, the reader can understand the historical evolution of
hydrofoil boats and why they can be an emerging technology of the future. Its inno-
vations and advantages compared with traditional vessels are clear. These include,
the comfort of traveling by avoiding wave collisions and oscillations; energetic effi-
ciency, offering the possibility of sustainability by electrifying marine transportation
and reduced levels of environment and sound pollution.

Furthermore, developments on hydrofoil implementation are being made with
companies pushing for its commercial implementation. Geometric, dynamic and
control models are shown proving the in depth knowledge present in this area, as it
can be seen in Section 3.2.

Besides the theoretical knowledge, in this work, a methodology for the symbiosis
between theory and practice is shown. Through system identification algorithms,
such a N4SID, MOESP and PARSIM-K, it was shown, in Section 4.2 that it is
possible do identify a model’s parameters successfully from sampling rates of 100
Hz, which is feasible to have in real logging systems. This success was achieved
through applying these algorithms to the different closed-loop dynamic theoretical
matrices, these being, the vertical, horizontal, vertical + horizontal, angular and
global dynamics. A fitness metric was used to evaluate the performance of the
identification algorithms, and it was soon concluded that they were applicable for
different conditions. N4SID and MOESP were the most promising ones showing
good results for 100 Hz data and above, considering the original data. PARSIM-K
showed to be better when the inputted data was manipulated, in order to apply
constraints in some parameters, to represent states that are time integrations of
others. The non-manipulated data gave better results overall.

To reinforce the applicability of the identification algorithms, these were used in
simulation data gathered from the FaRo software simulator, in section 4.6.

For the application of these methods to real logged data from hydrofoil tests,
some methodologies of data processing were discussed. In Section 4.5.2, noise anal-
ysis of data sets in the frequency domain was performed. It consisted in different
equations, alongside with visual aid, to determine the optimum cutoff frequency to
which a 4th order Butterworth Filter was applied. This operation was done suc-
cessfully, since the identification of a data set proved to be much better after noise
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elimination. Signal delay observations, in Section 4.5.3 were also made, through
cross-correlation functions, and exhibited the existence of delay in the samples. Fi-
nally, in the data processing section, an ideal input design was developed to collect
high quality information for system dynamics identification, by exciting the most
important frequencies. This design consists in a step + 3211 signal, described in
section 4.5.5, that broadens the frequency spectrum of the excitation, for a given
time sample interval.

Lastly, different performance and stability metrics were applied, such as, phase,
gain and disk margins, RMSE (Root Mean Square Error) and RE (Relative Error).
Disk margins manifested to be more complete than phase and gain margins, because
of the fact that these take into consideration all the correlations between each input
and output of a MIMO system. Also, disk margins, provide results to simultaneous
gain and phase variations instead of individual changes and offer an important view
of how the system is going to remain stable and which deviations will make it unsta-
ble, these were discussed in Section 5.2. RE and RMSE are helpful in determining
the relevance of the fitness results. One should take into consideration both sides
of the evaluation (fitness and errors) to have the complete set of information to
determine the success of the identification, as it was described in Section 5.3.

In the end, a complete methodology, summarized in Section 5.4, was developed to
properly identify a hydrofoil boat dynamics.This allows to determine if the identified
closed-loop matrix, along with the gain matrix, are stable and performing as desired.
Unfortunately it was not possible to apply this methods to a complete set of real
data due to unexpected unavailability of test vehicles.

6.2 Future Work

Theoretical definition of a system’s dynamics appears to be insufficient since it does
not reflect reality 100%. It would be interesting to apply all the gathered knowledge
in real hydrofoil boats testing and tuning. That way, through the performance
metrics defined, it would be possible to understand where the process and the control
of a system can be improved.

A second step could be to implement automatic control gain tuning using real-
time system identification and evaluation of an object performance. The methodol-
ogy defined throughout this report could be useful, since it provides useful identifi-
cation algorithms and metrics to evaluate its performance. Also an overall control
performance metric, combining the ones described could be developed.

Thirdly, implementing thrust as an input to the model could be advantageous.
Introducing thrust step excitations to the system would provide another tool to
improve the quality of identification data.

Finally, a speed estimator could also be added. There is an indirect relation
between the motor rpms and the boat speed, since a change in the motor velocity
will affect the boat speed differently at different velocities. This ends up being an
indirect measurement of the ocean movements due to the fact that we are interested
in the relative speed between the motor and the water. GPS information is not
enough due to the water currents. Experimental testing can be done to determine
this relation.
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Appendix A

Global Fourier Transform

The Fourier transform applied was based on information gathered from [25].
Considering a measured variable z(t) sampled at intervals ∆t for N time samples

where,

z(i) = z(i∆t) i = 0, 1, 2, ..., N − 1 (A.1)

The objective is to transform data from the time domain to the frequency do-
main. For that, finite, discrete Fourier transform is going to be applied. This implies
that the signals used are periodic, however most of the signals under consideration
are not periodic, so transformations need to be done. The first step will be to sub-
tract a linear trend and make endpoints values equal to zero. After that, the signal
should be reflected about the origin to make it periodic. The new time history
becomes g(i) where g(−N + 1) = g(0) = g(N − 1) = 0. g(i) becomes,

g(i) = z(i)− z(0)− i

(
z(N − 1)− z(0)

N − 1

)
i = 0, 1, 2, ..., N − 1 (A.2)

g(−i) = −g(i) i = 1, 2, ..., N − 1 (A.3)

In Figure A.1 the original data in the time domain is shown and in Figure A.2
data ready for the Fourier transform can be seen.

Figure A.1: Original Signal

expanding function g with a sine Fourier series,
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Figure A.2: Periodic signal with endpoint discontinuities removed

ˆg(i) =
N−1∑
k=1

b(k)sin

[
kπ

(
i

N − 1

)]
i = 0, 1, 2, ...N − 1 (A.4)

where b(k) are the sine series coefficients and (̂g(i) is the approximation of g(i)
using Fourier sine series transformation. For this process only positive values of i
were used, because they correspond to the original function. b(k) is given by,

b(k) =
2

N − 1

n−2∑
i=1

g(i)sin

[
kπ

(
i

N − 1

)]
k = 1, 2, ..., N − 1 (A.5)

Each coefficient b(k) corresponds to one frequency fk related to index k by,

fk =
k

2(N − 1)∆t
(A.6)

Figure A.3 illustrates the sine series coefficients function of fk.

Figure A.3: Signal in the frequency domain
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