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Abstract

Many telecommunication industries run preventive maintenance models to assure lower operation
costs, higher network stability and, more importantly, costumer’s satisfaction. Many events, like
equipment malfunction or service installation, require interventions by technicians in customers’
houses. These interventions can have a substantial impact both on the client himself and his
neighbours. Sometimes, solving one problem leads to another. The purpose of this thesis is to
develop predictive maintenance models to allow planning of preventive actions. We propose to
achieve this objective by detecting technical interventions that may affect the service of other
clients in the same building.

A predictive model of technical interventions was developed, using network signals. The goal
is to identify contaminant interventions, i.e., those that degrade the signals of a neighbouring
customer. This project faces a highly imbalanced setting, as data shows few cases with
contaminant interventions. Thus, specific techniques are applied to circumvent this issue.
This study employs machine learning techniques, using several classification algorithms such
as tree based, distance-based and artificial neural networks. We also resort to strategies for
tackling imbalance domain learning problems. Given that the available data is collected at
different time intervals, the experimental evaluation is carried out with growing and sliding
window methodologies, using appropriate metrics for imbalanced classification.

Results show that each approach employed in this thesis concerning the prediction of
contaminant technical interventions obtained results that are considerable better in comparison
with base models. Thus, we conclude that the models proposed in this thesis are capable of
improving the identification of contaminant interventions in an extremely imbalanced domain.
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Resumo

Muitas indústrias de telecomunicações executam modelos de manutenção preventiva para garantir
redução de custos de operação, maior estabilidade de rede e, mais importante, satisfação do
cliente. Muitos acontecimentos, como falhas de equipamento ou instalação de serviços, exigem
intervenções por parte de um técnico em casa dos clientes. Estas intervenções podem ter um
impacto substancial no próprio cliente e nos seus vizinhos. Algumas vezes, resolver um problema
pode desencadear outro. O objetivo desta tese é desenvolver modelos de manutenção preventiva
para possibilitar o planeamento de ações preventivas. Para alcançar este objetivo propomos
detetar as intervenções técnicas que podem afetar o serviço de outros clientes no mesmo edifício.

Para resolver este problema, foi desenvolvido um modelo preditivo de intervenções técnicas
utilizando sinais de rede. O objetivo é identificar intervenções contaminantes, ou seja, aquelas
que degradam os sinais de um cliente vizinho. Este projeto enfrenta um cenário altamente
desbalanceado, pois os dados mostram poucos casos com intervenções contaminantes. Portanto,
foram aplicadas técnicas específicas para contornar esse obstáculo. Este estudo aplica técnicas
de machine learning, usando vários algoritmos de classificação tais como baseados em árvores,
baseados em distâncias e redes neuronais artificiais. Também recorremos a estratégias para lidar
com o problema de domínios desbalanceados. Dado que a informação disponível é coletada em
diferentes intervalos de tempo, a avaliação experimental é realizada com as metodologias de
growing e sliding window, usando métricas apropriadas para classificação desbalanceada.

Os resultados mostram que cada abordagem aplicada nesta tese acerca da previção de
intervenções técnicas contaminantes obtiveram resultados que são consideravelmente melhores
em comparação com os modelos base. Assim, concluímos que os modelos propostos nesta tese
são capazes de melhorar a identificação de intervenções contaminantes em datasets extremamente
desbalanceados.
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Chapter 1

Introduction

Transport, telecom and other companies aim to fulfil the customer’s individual needs through
a collaborative technology ecosystem. In manufacturing, one of the advancements in this new
technological era is predictive maintenance. Equipment failure or unplanned downtime will have
an adverse effect on planned operations as the necessary repairs cost time and money. One of
the reasons for these occurrences derive from the fact that people are used to only have to repair
their equipment too late, causing their production lines to slow or stop.

The goal of predictive maintenance is to predict and prevent unexpected events before they
even happen by drawing upon huge sets of data and by doing so, they can proactively schedule
the optimal time for maintenance, significantly reducing or even avoiding downtime. Properly
maintained equipment lasts longer, cost less to maintain and operate more effectively, improving
throughout and overall profitability.

1.1 Motivation

Leading network operators in the telecommunications industry perform preventive maintenance
actions, ensuring lower operating costs and greater network stability. Doing so also allows efforts
and investments to be focused on developing innovation.

Based on defined time intervals, this approach determines when future maintenance activities
will be appropriate. These techniques are designed to help determine the condition of the
equipment, thereby reducing the risk of equipment failure or performance degradation.

In the telecommunications industries, service perturbances can happen when a technician
causes damage to the services of other clients. These perturbances often lead to new maintenance
operations. By applying data mining techniques to network signals and technical interventions, it
is possible to extract and create knowledge that allow us to predict the probability of perturbances
for each intervention.

1



2 Chapter 1. Introduction

1.2 Objectives

This project aims at predicting the technical interventions that can perturb the service of other
customers, i.e. predictive maintenance. To fulfil this objective, we apply machine learning
approaches and study their combination with strategies for dealing with imbalanced domains.
Then, we carry out empirical studies based on real-world data provided by the partner institution.

The accomplishment of this work lead to the following main contributions:

i. a review of related work is presented on imbalance domains and predictive maintenance;

ii. a dataset of network signals and technical interventions is presented followed by an exploratory
analysis of this data;

iii. the prediction of perturbances in the services is structured as imbalanced domain learning
task;

iv. an evaluation of the predictions approaches is presented.

1.3 Structure

This thesis is organised into four more chapters described bellow.

Literature Review Provides a review of previous work focusing on the most important concepts
related to this project, such as data mining techniques, machine learning models, approaches
to deal with imbalanced domains and suitable performance metrics for these domains and also,
some time series concepts. This chapter ends with similar studies performed by other researchers.

Anticipation of Perturbances The third chapter describes with more detail the context of
our target application, the methodology to solve the problem and a description of the dataset
that we work on.

Experimental study Presents the experimental study, detailing the learning algorithms used,
as well as the strategies for imbalanced domains and the performance indicators. This chapter also
includes the experimental methodology followed by the results of all the implemented techniques.

Conclusions The fifth and final chapter presents a summary of the motivations and main
contributions given by this work. Finished with future work directions that can go deeper into
this subject.



Chapter 2

Literature Review

In this chapter, the methods and techniques necessary to achieve our objectives are reviewed. It
starts with a brief overview of data mining, followed by the explanation of some machine learning
algorithms. Next, techniques for handling imbalanced domains are introduced, and finally time
series concepts. The chapter ends with the study of some similar work.

2.1 Data Mining

The amount of stored data from industrial activities makes it difficult to analyse them without
the use of automated analytical techniques. With this problem in mind the area of Knowledge
Discovery in Databases (KDD) emerged with new tools and computational techniques. These
new techniques are mostly data mining approaches to extract useful knowledge, patterns, and
tendencies.

The KDD process is a set of continuous activities that share the knowledge discovered from
databases. According to Fayyad et al. [29] this set is composed of five steps: data selection,
pre-processing and data cleaning, processing of data, data mining, interpretation and evaluation
of results (cf. Figure 2.1). Data mining is a very important step in the KDD process for the
resolution of this problem. It is the application of algorithms for extracting information from the

Figure 2.1: KDD process [29]

3



4 Chapter 2. Literature Review

data.

The objective of Machine Learning is to understand the way data relate. It is based on
algorithms that can learn models from the data and make predictions. Machine learning tasks
are categorised as supervised, unsupervised or semi-supervised. In supervised learning the goal is
to learn a mapping function from a set of predictor/independent variables to a target/dependent
variable. When the predictor variables are known but the target variable is unknown, then this
is a case of unsupervised learning. In semi-supervised learning, some of the target values are
known.

Supervised learning tasks includes two categories of algorithms: classification and regression.
The goal of classification is to predict a nominal target variable, i.e. classes. The classification
model results from the analysis of the training data set (i.e., set of examples for which the class
labels are known) and is used to predict the class label for which the class label is unknown. For
example, a credit card company that receives hundreds of thousands of requests for new cards.
The requests contain information about several different attributes, such as annual salary, any
outstanding debts, age, etc. The point of classification, in this case, is to categorise the requests
into those who have good credit or bad credit.

Whereas classification is discrete and has no order (categorical labels), regression is used to
predict a numeric or continuous value. For example, a regression model can be used for predicting
house price values. In addition to the value, the data may have the age of the house, square
footage, number of rooms, number of floors, having a garage, and so on. The house value would
be the target and the other attributes would be the predictors. A regression model estimates the
value of the target as a function of the predictors for each case.

This thesis will focus on solving classification tasks, for which several learning algorithms are
described below.

2.2 Classification Algorithms

The goal of classification tasks is to obtain a good approximation of the unknown function that
maps predictor variables toward the target value. The unknown function can be defined as
Y = f(X1, X2, ..., Xp), where Y is the target variable, X1, X2,..., Xp are features and f() is the
unknown function we want to approximate. This approximation is obtained using a training
dataset D = {〈xi, yi〉}ni=1.

There are many classification algorithms available, but we will only focus on the seven
algorithms used in this study: Decision Tree, Random Forest and XGBoost, also on Support
Vector Machine (SVM), k-Nearest Neighbours (KNN), Logistic Regression and Artificial Neural
Network (ANN).
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2.2.1 CART Decision Trees

Decision trees can be used for classification or regression problems. These are structures used
to represent data formed by a set of elements that store information on nodes. Each tree has
a node called root, which has the highest hierarchical level (the starting point) and links to
other elements, called leaves (cf. Figure 2.2). The node that does not have a leaf is known as a
terminal node. With these concepts clarified we can conclude that a decision tree is nothing more
than a data structure that stores rules on its nodes (attribute), in which each link represents the
decision to be made (rule) and the leaves represent an outcome (categorical or continues value
for the target variable).

Figure 2.2: Decision tree example

There are some algorithms to build a decision tree, but we only focus on the CART algorithm
proposed by Breiman et al. [9]. This algorithm uses a divide-to-conquer strategy: a complex
problem is decomposed into more simple sub-problems. Recursively, the same strategy is applied
to each sub-problem. In the execution of the classification task through the CART algorithm
there are four elements involved in growing a tree:

• Set of binary questions

Binary questions are used to divide each node. In cases where the answer is yes, it follows
to the left node and in those that the answer is no, to the right node.

• Division

The first task is to find out which of the attributes performs the best division. The criterion
used by the algorithm to measure the impurity of a node is the Gini index, created by
Gini [33] and is used to select the best division of the data. A node is pure when all cases
belong to a single class. According to this criterion, if a dataset D contains examples from
c classes, the impurity of a node is given by:

Gini(D) =1−
c∑
i=1

p2
i (2.1)
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where pi is the relative frequency of class i in D.

After splitting D into two subsets D1 and D2 with sizes N1 and N2, the Gini index of the
split data is defined as:

Gini(D) =N1
N
gini(D1) + N2

N
gini(D2) (2.2)

The Equation 2.2 corresponds to the weighted average of each branch index. This procedure
is performed for all the predictor variables. The one chosen for the division of the node
will be the one with the lowest Gini index.

As this process is recursive, the binary tree is divided until the nodes are as pure as possible
or until neither node can be further divided by some stopping criterion (e.g. the number of
cases in the node).

• Associating a prediction with leaf

The criterion used to associate a prediction with the leaf is the assignment of the most
likely class or value within the target variable of the examples on this leaf.

• Pruning

When decision trees are constructed, some sub-trees may reflect noise or errors causing
overfitting. The pruning method is used to detect these sub-trees, whose objective is to
improve the rate of success of the model for new examples, which were not used in the
training set.

2.2.2 Ensembles of Decision Trees

An ensemble method is a combination of multiple learning algorithms. In order to deal with
our particular case, we choose ensemble decision trees. Although decision trees are conceptually
simple because of easy interpretation and they do not require much data processing, they are
very powerful. Nevertheless, individual decision trees tend to overfit on its training data since
they have low bias and high variance [54]. This problem can be mitigated by training multiple
distinct trees and aggregating their predictions. By combining the result of many decision trees
the variance is reduced while maintaining low bias.

Some of the most commonly used ensemble methods include Bagging and Boosting. Bagging,
also known as bootstrap aggregating, was introduced by Breiman [10]. It is a technique used to
reduce forecast variance that combines the results of several classifiers using averages, modelled
on different sub-samples of the same dataset. Boosting is based on the question of whether a
"weak" learning algorithm can be converted into a "strong" learning algorithm, posed by Kearns
and Valiant [39].

Whereas in Bagging each model is built independently (parallel), in Boosting it is sequentially.
Initially, each observation has equal weights. If the classes are predicted incorrectly, the
misclassified observations get higher weights. The weights are redistributed after each training.
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The new dataset is created via sampling, where previously misclassified observations will have a
higher probability of being selected.

In the following, two of the most known ensembles methods are explained: Random Forest
and XGBoost, which are based on the Bagging and Boosting strategies, respectively.

2.2.2.1 Random Forest

The Random Forest algorithm introduced by Breiman [11] is an ensemble method. As the name
suggests, this algorithm creates a forest with a large number of decision trees, which are trained
by performing Bagging to reduce the variance and prevent the over-fitting. This procedure
randomly selects both a sample of features and examples from the original training dataset. Each
of the obtained datasets are then used to construct each of the decision trees composing the
Random Forest. Each classifier tree is pointed as a predictor component.

In the case of classification tasks, Random Forest constructs its decision by counting the
votes of the predictor components in each class and then selects the winning class in terms of the
number of votes accumulated, i.e. majority voting. The process of this algorithm is represented
in Figure 2.3: the first phase consists of training each decision tree with data subsets from the
training set. Then, the test cases are classified by majority vote.

Figure 2.3: Example of Random Forest algorithm [36]

2.2.2.2 Gradient Boosting

The Gradient Boosting algorithm, created by Friedman [30], follows the same logic as Boosting
[39]. It uses several iterations of a weak predictor, such as decision trees, to create a more robust
predictor with superior performance. It begins by training a decision tree to generate predictions
for each observation. Those predictions are used to determine a loss function that will be fitted
a new model. This model will be added to the ensemble. Thus, the goal is to optimise the loss
function of the previous learner by adding a new model that adds weak learners to reduce the
loss function, making the current learner more effective than the previous one. Equation 2.3
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represents the loss function that indicates a measure of how good the model coefficients are by
adjusting the underlying data.

L =
N∑
i=1

(yi − ŷi)2 +
K∑
i=1

Ω(fi) (2.3)

where yi and ŷi are the true and the predicted target value for case i, respectively, and Ω(fi) is
used for regularisation at each f tree . The Ω function penalises complex trees, which is necessary
to avoid overfitting.

XGBoost is an open source library created by Chen and Guestrin [16] and its name comes
from an abbreviation for eXtreme Gradient Boosting. This model is a self-contained derivation
of Gradient Boosting algorithm that focuses on computational speed and model efficiency. Since
the Gradient Boosting computing the output at a very slow rate due to the sequential analysis
of the dataset takes a longer time to execute it. The XGBoost emerged to improve these flaws.
It supports parallelisation by creating trees parallelly, use distributed computing methods for
evaluating any large and complex models, it also uses out-of-core computing to analyse huge
and varied datasets and implements cash optimisation to make the best use of the hardware and
resources.

2.2.3 Logistic Regression

In linear regression, the dependent variable is continuous and follows a normal distribution.
The model allows estimating the average value of the dependent variable given a certain set of
values of predictor variables. If the dependent variable is binary, the average of this variable is
p, where p is the ratio of times the variable takes the value 1. To estimate the probability of p
associated with a binary response, a technique called logistic regression is used. This technique
was introduced by Agresti [2].

Figure 2.4 shows the main differences between linear and logistic regression. Basically,
compared with linear regression, logistic regression is distinguished essentially by the fact that
the independent variable is categorical.

The logistic regression model is displayed by an S-shaped function obtained by Equation 2.4.
This expression known as the Sigmoid function does not admit negative values nor values greater
than 1.

p = eα+βx

1 + eα+βx (2.4)

where x correspond to independent variables and the parameters α and β determine the logistic
intercept and slope.

The General Linear Model (GLM) created by McCullagh and Nelder [43] is a generalised
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Figure 2.4: Example of Logistic Regression algorithm [55]

version of the linear regression. The GLM was formulated for many other statistical models, like
logistic regression and Poisson regression.

2.2.4 Support Vector Machines

Cortes and Vapnik [21] proposed the Support Vector Machine (SVM) which consists of a method
that tries to find the largest margin to separate different classes of data. The concept of SVM
is to construct an optimal hyperplane so that it can separate different classes of data with as
much margin as possible. In the following example (cf. Figure 2.5) we can see how SVM works.
There are several straight lines that can be drawn to separate the data (cf. Figure 2.5a). The
support vectors are data points that are closer to the hyperplane and they serve to choose the
best hyperplane, represented by the filled points (cf. Figure 2.5b).

(a) Possible hyperplanes (b) Optimal hyperplan

Figure 2.5: Example of a Linear SVM [52]

The data is not always linearly separable. The approach used by the SVM to solve this type
of problem consists of mapping the data to a space of higher dimension. For this, we need to
introduce the concepts of soft margin and kernel trick. The idea of a soft margin is to allow
some examples to be placed on the wrong side of the dividing hyperplane. The kernel transform
non-separable data to separable data by adding more dimension [47]. Boser et al. [5] proposed
nonlinear kernel functions to make linear SVM work in nonlinear settings. Table 2.1 provides
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some of the kernel functions. The Polynomial kernel (cf. Equation 2.5) represents the similarity
of vectors on the training samples over polynomials of the original features. The Gaussian Kernel
(cf. Equation 2.6) also called Radial Base Function (RBF) is a measure of similarity between
two sets of features. The Sigmoid Kernel (cf. Equation 2.7) is similar to the Sigmoid function in
Logistic Regression and uses an activation function that can be used for ANN. The r, p and γ
are Kernel parameters that correspond to independent term, degree of polynomial function and
Kernel coefficient, respectively.

Type of Kernel Formula

Polynomial kernel K(xi, xj) = (xi ∗ xj + r)p, r ≥ 0 (2.5)

RBF kernel K(xi, xj) = exp(−γ||xi − xj ||2), γ > 0 (2.6)

Sigmoid kernel K(xi, xj) = tanh(ηxi ∗ xj + υ) (2.7)

Table 2.1: Kernel functions

2.2.5 k-Nearest Neighbours

The k-Nearest Neighbours (KNN), introduced by Cover and Hart [22], is a method based on
distances that consider the proximity between the data in the realisation of predictions. The
hypothesis of this method states that similar examples tend to be concentrated in the same
region in the dispersion space of the data. Thus, given a new example to be classified, the KNN
performs the following steps:

• calculates the distance between these examples and the others of the set, according to some
measure of similarity;

• the k-nearest examples are selected;

• the example is classified in a certain category according to some criterion and grouping of
the categories of the selected examples.

There are several distance metrics, and the choice of which to use varies according to the
problem. The most used is the Euclidean Distance function.

Figure 2.6 shows the application of this method. In the centre is the test example that
should be classified. The first step is to calculate the distance between this example and all
other examples. Then the distances must be ordered from the lowest to the highest distance. If
we considerer k = 1, the new example is assigned to class 1 since only exist one example that
correspond to the class 1. If k = 3, the new example is assigned to class 2 because there are two
examples of class 2 and only one of class 1 inside the circle defined by the 3-nearest neighbours.
To avoid tie between classes the k parameter must be odd.
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Figure 2.6: Example of KNN algorithm [1]

2.2.6 Artificial Neural Networks

An Artificial Neural Network (ANN) is a mathematical model inspired by biological neuronal
networks. It can be defined as a complex structure interconnected by neurons, which have the
ability to perform operations such as calculations in parallel, for data processing and knowledge
representation. Mcculloch and Pitts [44] were one of the first to introduce this concept.

Artificial Neural Network Perceptron was later introduced by Rosenblatt [53]. This model
deals only with a neuron classifying the result in a linear form. In Figure 2.7 the artificial neuron
is a perceptron that calculates the weighted sum of several inputs, applies a function, and passes
the result forward through an activation function.

Figure 2.7: Schema of the artificial neuron model [38]

In order to deal with non-linear problems, layers of hidden neurons were added in the
perceptron model, forming the Artificial Neural Network Multilayer Perceptron [37]. This new
topology works as a progressive network. The output of one neuron connects to another neuron
of the next layer formed by a set of neurons called nodes, as shown in the Figure 2.8. One of the
learning methods is back-propagation that re-adjusts the weights of each neuron so that it can
produce the desired output for a specific input at the end of the training.
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Figure 2.8: Artificial Neural Network Multilayer Perceptron model [63]

2.3 Imbalanced domain learning

The subject of this project faces an imbalance domain learning problem. This problem occurs
whenever the user has an interest in cases that are rare and few exist in the training set. The
combination of these two factors create obstacles at several levels. Namely, the models created
by standard learning algorithms tend to be biased towards the majority class. Moreover, the
evaluation metrics will not capture the competence of models in relevant cases [8]. Thus, it is
necessary that the learning process focuses on the rare cases and that the evaluation metrics are
biased towards the performance of the models in these rare cases.

2.3.1 Approaches for handling imbalanced domains

The problem of imbalanced data is a challenge when building a prediction model because it
will bias standard classification methods over the majority class while having lower predictive
accuracy over the minority class of interest. According to Branco et al. [8] there are four main
strategies to solve this problem: data pre-processing, special-purpose learning methods, prediction
post-processing, and hybrid methods. Figure 2.9 provides a general overview of these strategies.

Figure 2.9: Approaches for handling imbalanced domain learning [8].
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Data pre-processing

In the pre-processing strategies, the data will be pre-processed given the user preferences
so that the learning algorithm is not applied directly to the training sample. Pre-processing
strategies can be achieved both by Distribution Change or by Weighting the Data Space.

Distribution Change approach aims to balance the distribution of the classes in the training
dataset using techniques that change the original distribution of the data. Estabrooks et al. [28]
proved that changing the data distribution is an efficient solution to the imbalance problem. A
technique for changing the data distribution is stratified sampling. There are several approaches
to data sampling. The simplest ones are under-sampling, which decreases the number of irrelevant
cases, and over-sampling, which increases the number of important cases. Another approach to
deal with the data sampling is the generation of new synthetic data. The most popular algorithm
is Synthetic Minority Over-sampling Technique (SMOTE) proposed by Chawla et al. [15]. As
the name suggests, creates synthetic samples from the minority class instead of creating copies.

Weighting the Data Space is a form to implement cost-sensitive learning. This method changes
the original data distribution by multiplying each example by a factor that is proportional to the
importance.

Special-purpose Learning Methods

This technique focuses on modifying algorithms to better fit the user preferences. There
are three main solutions: recognition-based methods in which the model is obtained with only
examples of the target class, cost-sensitive algorithms where the costs are incorporated directly in
the algorithm and development of new algorithms which are developed to specifically deal with
this problem. There are several works that explained the transformation of different classification
models into cost-sensitive ones (e.g. Maloof [42]; Akbani et al. [3]; Nunez et al. [48]).

Prediction post-processing

There are two main solutions to prediction post-processing: threshold method and cost-
sensitive method. On the threshold method, each prediction is associated with a score that
represents the degree to which an observation is a member of a class. Hernández-Orallo [34]
explores several threshold choice methods. On the other hand, the cost-sensitive method associates
costs to prediction errors and minimises the overall expected cost. Sinha and May [57] explored
this technique that aims to change the model predictions for making it cost-sensitive.

Hybrid methods

The previous methods presents some disadvantages [6]. Recently, several contributions have
been made from different approaches to dealing with these drawbacks. On this subject, the
hybrid methods arose as a combination of strategies of different types. Basically, these methods
take the main advantages of two selected strategies combining them into one. Estabrooks and
Japkowicz [27] was one of the first to present hybrid methods.
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2.3.2 Evaluation metrics

For these type of imbalanced domain learning problems, the standard evaluation metrics are
inadequate and several measures have been proposed as alternatives to classification problems
[8].

The confusion matrix gives the idea of what the model is getting right and what types of
errors it is making. Table 2.2 shows the confusion matrix for a two-class problem where one
of the classes is called positive and the other is called negative. In this table, the number of
True Positive (TP) and True Negative (TN) are the instances that were correctly classified, and
the number of False Positive (FP) and False Negative (FN) are the instances that were wrongly
classified for each class.

Predicted class

Actual class
Positive Negative

Positive TP FN
Negative FP TN

Table 2.2: Confusion matrix

The Accuracy is obtained from the confusion matrix and is frequently used for evaluating the
performance of classification models. This metric can be defined as follows:

Accuracy = TP + TN

TP + FN + TN + FP
(2.8)

In other words, Accuracy is the ratio between the correct predictions and the total number of
predictions. However, it is not suitable for imbalanced domains because it can be misleading.
For example, consider a two-class problem, where the majority class is 90% of the data, and the
minority is 10%. If the classifier predicts every sample as belonging to the majority class, the
Accuracy will be 90%, but this classifier is useless because the more interesting cases for the user,
the minority class examples, are misclassified. In this context, the majority class examples will
have a greater impact when compared with the least represented examples. The accuracy metric
bias towards majority class is opposite to the user preferences. This phenomenon is known as
accuracy paradox [69].

In the Table 2.3, are defined some examples of metrics, that take into account the data
distribution according to user preferences. Precision assesses the proportion of positive predictions
that were actually correct. This equation was defined by Kent et al. [40] as well as the recall,
that assesses the proportion of actual positives that were identified correctly. The specificity
assesses the cases that are identified as negatives and are in fact negatives. The false positive
rate (FPrate) is the ratio between the number of TP and the total number of actual negative
values. Contrary, the false negative rate (FNrate) is the ratio between the number of FN and the
total number of actual positive values.
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Measure Formula

precision
TP

TP + FP
(2.9)

true positive rate (recall or sensitivity) TP

TP + FN
(2.10)

true negative rate (specificity) TN

TN + FP
(2.11)

false positive rate FP

TN + FP
(2.12)

false negative rate FN

TP + FN
(2.13)

Table 2.3: Evaluation measures based on confusion matrix

One problem with the previous metrics is that they give different but complementary insights
regarding the model performance. Therefore, Table 2.4 presents some measures that result from
the combination of these metrics.

Measure Formula

Fscore (1 + β2)× precision× recall
β2 × precision+ recall

(2.14)

G-Mean √
sensitivity × specificity (2.15)

dominance sensitivity − specificity (2.16)

Table 2.4: Suitable metrics for imbalanced data regarding classification tasks

Fscore [51] is the association of precision and recall, and indicates how effective is the classifier
regarding the positive class. If β > 1, a higher weight is assigned to recall, otherwise favouring
precision. The greater the Fscore (best value is one), better the performance of the model.

Another commonly used metric is geometric mean (G-Mean), defined by Kubat and Matwin
[41]. It tries to maximise the accuracies of two classes while obtaining good balance and it reaches
the best value at one with the worst value at zero.

The most popular tools for dealing with imbalanced data are Receiver Operating Character-
istics (ROC) curve and the Area Under the ROC Curve (AUC) [45] - both are alternatives to
Accuracy. The ROC curve is a graph showing the trade-off between TPrate and FPrate. This
curve plots TPrate and FPrate at different thresholds. The ideal model would obtain TPrate=1
and FPrate=0, i.e. should be closer to (0,1) point. Comparing many models through ROC curves
is inefficient. However, there is AUC, which is more efficient in such scenarios. AUC measures
the two-dimensional area underneath the entire ROC curve. In Figure 2.10 the blue dash is the
ROC curve and the shaded area is AUC.

Still, AUC and G-Mean can yield the same result for several different combinations of FPrate
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Figure 2.10: Example of AUC [25]

and TPrate and, therefore, García et al. [32] proposed dominance (cf. Equation 2.16) that solves
this issue. A dominance of +1 means that all examples of minority class were predicted correctly
and all negative class examples were misclassified. Otherwise is -1, that corresponds to the
opposite situation.

2.4 Time series

The concepts of data mining also are suited to analyse time series [26], revealing hidden patterns
and predicting events. A time series is a collection of observations obtained chronologically.
In this type of data the neighbouring observations are more closely related than more distant
observations.

The main features of many time series are trends and seasonal variations [23]. In general, the
trend is a systematic linear or nonlinear component that changes over time and that does not
appear to be periodic. The seasonal variation refers to the repeating patterns within any fixed
period, it is the opposite to the trend. Also the noise is an important feature for the analysis of
a time series since describes random variations or unforeseen events. Checking whether or not
the time series has cycles is also important. A cycle is a component that reflects repeated but
non-periodic events. If the data does not show trend, seasonal effects or other time-dependent
characteristics, then the time series is stationary.

A time series can be regular or irregular. It is called regular if there is an equally spaced
interval of time [14]. An irregular time series is the opposite situation. Natural disasters like
volcanic eruptions or earthquakes occur at irregular time intervals since the spacing of observation
times is not constant.

There are some different performance measures for time series forecasting. The Mean Absolute
Percentage Error (MAPE) and the Mean Absolute Scaled Error (MASE) are the most common.
MAPE was defined by Armstrong and Collopy [4] and expresses the ratio of error to the
actual values as a percentage. In the Equation 2.17, yt+i is the actual value and ŷt+i is the
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forecasted value i-steps ahead at data point t. Hyndman and Koehler [35] proposed MASE (cf.
Equation 2.18) that is a measure of the accuracy of the forecast. Basically, this metric scales the
errors using the in-sample Mean Absolute Error (MAE) from the naive forecast method.

MAPE = 1
n

n∑
i=1

|yt+i − ŷt+i|
yt+i

(2.17)

MASE = MAE
1

n−1
∑n
i=2 |yt+i − yt+i−1|

(2.18)

where MAE = 1
n

∑n
i=1 |yi − ŷi| .

A time series is a sequence of real numbers, t1, t2, t3, ..., tk. Suppose that the time series
consists of observations equally spaced in time with a set of points ti, i = 1, 2, 3..., in Rk. This
sequence of observations is called as time-delay embedding [59]. The time series can be embedded
into a dataset in the following manner (cf. Table 2.5). Taking successive k − tuples from the
sequence t1, t2, t3, ..., tk.

Predicted variables Target

t1 t2 t3 t4

t2 t3 t4 t5

t3 t4 t5 t6

... ... ... ...

tk−3 tk−2 tk−1 tk

Table 2.5: Embedded time series

In many cases, the time series are embedded in datasets enabling the usage of standard learning
algorithms to be applied without violating the temporal relationship between observations. The
embedded time series is the case of our approach in this study.

2.5 Predictive maintenance in telco

In recent years there have been some case studies of predictive maintenance in the telecom
industry, like mobile phone towers, power equipment, etc. Corazza et al. [20] have implemented
a predictive maintenance approach for mobile service providers to predict failures in mobile
phone networks. The purpose of the problem was to predict the alarm signals in a cell that are
the cause of the malfunction. This work faced the imbalanced domain problem since the alarm
signals represent only 1% of the total. To solve this issue, all the available positive samples were
maintained, which were those with a smaller number of occurrences and the negative samples
were randomly selected. This means that the random under-sampling technique was used.
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The Mobile Broadband Network Ltd (MBNL) provides and manages the entire telecom-
munications infrastructure for two operators. When there are problems on the network, the
company records them in a system. The purpose of these records was to be able to predict fan
and air conditioner failures. The failures in such equipment can overheat the mast and induce
mast downtime affecting network performance. To solve the problem the MBNL use the Natural
Language Processing [13].

China Mobile collects a time series of network data and analyses the anomalies. The company
uses algorithms that are applied to data to build failure prediction models for different types
of services. They later discovered that this intelligent prediction can identify network failures
several hours in advance [24].

The aim of this thesis is to try to prevent the customer from complaining about the
maintenance in telecommunication services. Although this thesis involves imbalance problem like
the case study from Corazza et al. [20], we use different approaches to solve it. We apply other
pre-processing techniques and also post-processing to bypass the class imbalance. With such
strategies, it is expected to improve the operation of the partner telecommunications company
using machine learning on data containing network signals, router status and information on
technical interventions.

2.6 Summary

Throughout this chapter, we study the most appropriate techniques and approaches to anticipate
the service perturbance in telecommunications. In the next chapter, we introduce the problem
as well as the methodology that was used. Since we work on a specific company dataset, it is
important to understand the available data and which transformations should be made to obtain
a dataset that best describes the problem. Therefore, we present a detailed description of the
data and the feature engineering steps applied.
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Anticipation of Perturbances

In this chapter, we describe in detail the problem subject of this thesis and the methodology
to solve it. We perform some exploratory data analysis on the data supplied by the partner
institution and we proceed to several data transformations so to accomplish a new and richer
dataset for further analysis.

3.1 Problem Definition

In an extremely competitive market, telecommunications companies need to focus on maintaining
their customers as satisfied as possible with the services provided. One of the factors that impacts
negatively customer satisfaction is perturbances in service.

In our context a perturbance can be considered an unusual change in the quality or behaviour
of a service caused by some event. As such, the Quality of Service (QoS), that is a very
important factor for many industries like telecommunications, can be compromised. These small
perturbances in the service are an annoyance to the costumers and can possibly lead to a loss to
the company since the user might ask for a change of provider.

Whenever there is a perturbance in a Distribution Point (DP), such as installations/disconnec-
tions in the network, it is necessary the participation of a technician. When those interventions
are performed, there is an underlying probability that it will affect the services of other costumers
in the following days which can lead to a Technical Participation (TP) or Technical Order (TO).
In order to prevent these events from happening, it is necessary to forecast the probability of
complaint or technical order for each intervention executed by technicians and to enable the
planning of some preventive actions to reduce the number of interventions.

However, there are two types of errors that must be accounted for in this setting: no plans
should be made when there is no need and, most importantly, no perturbance occurrence should
be missed, as the cost of not taking actions is very high.

19
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3.2 Methodology

Many of the problems involving data mining solutions use the Knowledge Discovery in Databases
(KDD). As this process does not focus on business issues or model generation, but on the
discovery of knowledge from the data, we follow the CRISP-DM (Cross-industry standard process
for data mining) model [56]. In Figure 3.1, a detailed diagram of the process is shown.

Figure 3.1: CRISP-DM process diagram [65]

Business and data understanding
The proposed methodology begins by understanding the main concepts about the telecommunic-
ations market in order to get a better insight into the problem that we intend to solve. In this
phase, the business questions are translated to data mining goals. Once the partner institution
provides the data, the workflow begins with a prior analysis to inspect the various attributes and
verify data quality.

Data preparation
The data is spread across different sources. It is therefore important to collect this data and
integrate it into a single structure. After integrating data, we consider a few criteria for data
selection. Then, we clean the data, correcting or removing wrong records, analysing them from
the perspective of time series. Subsequently, if the resulting data does not have enough features,
we need to resort to a feature engineering techniques.

Modelling and evaluation
The last phase of this methodology is to select a model that is adequate to the problem. Since
we are dealing with an imbalanced dataset, an approach to decrease the imbalance present on
the data is made. This step is very important since we want learning algorithms to focus on
accurately anticipating rare cases. Finally, a classification model is built with the training set
and with suitable performance estimation metrics, and evaluated concerning how accurately it
predicts unseen labels in a test set.
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3.3 Dataset description

The data that we work on is divided between many aggregators that are distributed in the
network (cf. Figure 3.2). The HUB is the maximum aggregator and there are only a few in the
whole country. The Cable Modem Termination System (CMTS) is a router that centralises all
communication with the Cable Modem (CM) of an Hybrid Fiber Coax (HFC) structure such
as NET, cable TV, and others. At the end of the topology, there is a Distribution Point (DP).
Usually DP serves multiple buildings.

Figure 3.2: Network topology

The data provided by the partner institution has a large amount of observations as each
corresponds to a daily record of network signal behaviours for the whole country. This information
regards the number of hourly events per day above or below a threshold (defined by the partner
institution). The partner institution has also provided data about TO, TP and the locality of the
devices. The data period is from October 2018 until December 2018. Table 3.1 gives a succinct
description of the most relevant features from the two tables of data. The table "Client Vision"
contains information about the network signals, address information, router status, TOs, and
TPs dates. The table "TO" contains additional information about TOs, like the type of problem,
affected equipment and others. Each feature on the signals and router status can be represented
as a time series. The dataset is composed of these several embedded time series.

Table Features Description Information

Client Vision

TX power Transmitted signal power in the up/downstream carrier

Signal

RX power Received signal power in the up/downstream carrier
Cer Ratio of downstream errors received by the CM
SNR Signal-to-Noise Ratio (SNR) of up/downstream related to CM
Sum up/down Sum of up/downstream kpis
Median up/down Median of up/downstream kpis
DP Distribution point

Address informationBuilding address Address of the building
Unique Address House identification of the building
Not online CM status is not online

Router status
Reboots Number of daily reboots
TO date TO day and hour

Dates
TP date TP day and hour

TO
Symptom area TO Problem type

Additional information on TOs
Equipment Type of affected equipment
TO situation TO status
TO delegation Zone

Table 3.1: Description of the main features of the initial dataset

As an example, Figure 3.3 depicts the SNR of downstream behaviour for all customers in a
particular building that went through a technical intervention. The x-axis represents the period
of time and the y-axis represents the number of hours the signal was below the threshold. Thus,
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above zero means that the signal has been disturbed. First, the "Neighbour 12" made a call to
the customer service and in the next day there was a TO, that is, the technician went to the
that customer’s home to solve the problem. With this technical intervention, the SNR of the
neighbours of this client fired immediately causing the "Neighbour 7" to complain and suffered a
TO later.
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Figure 3.3: Signal-to-Noise Ratio (SNR) behaviour after a Technical Order (TO)

3.4 Data preparation

Due to the large dataset size, the partner company needed to split the dataset into smaller parts
and passed us by a sharing folder because this data was not available in the data warehouse.
Once we received the data, we joined some parts together and used HUE [19] to upload it into
a data warehouse. The HUE is an open source SQL Cloud Editor that allows querying and
visualising data.

Then, we put together a single data set with the Zeppelin notebook [68]. Apache Zeppelin
is a web-based notebook that supports a group of Spark interpreters [58], such as PySpark
that we chose to use as we establish as the most mature. The partner institution supplied a
virtual machine with the Zeppelin (2.2.0.cloudera2) [18] and thus we have access to the HUE via
Zeppelin.

As the data came from two different tables we had to combine them together. As we did
not need all the data, we made a selection that only considered buildings with more than two
apartments. Also, we only considered the period of 5 days before and 7 days after a TO to
compare the oscillations of the signals when this TO occurs. Initially, the dataset consisted
of 70.753.957 observations, and with this selection, the dataset was drastically reduced, from
tens of millions of observations to hundreds of thousands. Thus, it was possible to continue the
pre-processing with R software [50].
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In this stage we proceeded to the initial data exploratory analysis illustrating the devices
per locality (in tens of thousands) and the TOs percentage that happens in those devices (cf.
Figure 3.4). It can be observed that there is no direct relationship between the two graphs. And
it is also verified that the percentage of TOs is globally identical in all localities.
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Figure 3.4: Devices distribution and corresponding percentage of TOs

The initial data did not contain any variable that could indicate whether a technical
intervention was contaminant or not, so we had to construct it. The definition of a TO
contaminant follows the principle that after the next day of a TO in a particular apartment in a
building, a TO or a TP occurs in the following 6 days in some neighbour (cf. Figure 3.5). We
chose to consider the starting date as the day after the TO because the records are daily, and if
a TO occurs at the end of the day, the changes in the signals may not be noticeable on that day.
The decision to only treat the next 6 days is because it is the standard time that a signal needs
to stabilise. The TPs are important in the construction of the target because if an intervention
happens in an apartment and a neighbour suffers with it, then it is expected that this neighbour
calls to solve its problem and then there is an intervention.

In order to create relevant variables, it is important to note that the affected signal improves,
worsens, or holds after an intervention. We then created the following variables: the aggregated
maximum, mean, variance of each signal on the previous 5 days and the following TO day;
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Figure 3.5: Time period to consider a Technical Order (TO) contaminant

maximum and minimum difference for each previous day in relation to the following day. We
also added the numbers of neighbours for each apartment and the number of TPs before a TO.
In total 149 features were created.

After all these steps, it is necessary to clean the data. We started by removing some columns
that contained few unique values or even just a single value. In order to deal with missing values,
we use two different approaches. In the attributes "n_reboots" and "avg_reboot_duration", the
missing values were replaced by zero. The minimum value is 1 which means that only records
in the positive case occur - when there are reboots on the device. In this case, it is reasonable
to fill the missing spaces with zero. In the attributes of mean and median of up/downstream
and standard deviation of signals, the KnnImputation function of the DMwR package [61] was
applied with the method of weighted average. With so many variables it is necessary to confirm
the relation between them, and for that reason we use the correlation coefficient with significance
level of 0.05. The findCorrelation function of the package caret [31] identifies the variables
correlated for a confidence level at 95% (cf. Figure 3.6). With this auxiliary help, we identified
a correlation between (1) the mean of the Rx power signal in the downstream carrier and the
variance thereof for the days prior to a TO; (2) the mean of the SNR in the downstream carrier
and the variance for the previous days; (3) the correlation between the variance of signal cer and
the mean for the day following a TO in the downstream carrier. The output of this function
suggested the removal of variables that are related to the mean and, as such, we removed them.
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Figure 3.6: Top 3 correlated variables for significance level at 5%

At the end of the data cleaning process we excluded 15 variables of the 149. All the 193
features are described in detail in Table A.1 in Appendix A.

The last process was to prepare a dataset for the machine learning models. The categorical
features (additional information on TOs, address information and service account) of our dataset
had too many levels. This reduces the performance level of the model [66]. Thus, we select only
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the TO observations and the numeric features (network signals, router status and TPs).

Figure 3.7 is a summary of the entire data preparation methodology. At the beginning we
have a dataset with millions of observations and we ended with a sharp reduction in size.

Figure 3.7: Data preparation methodology

As previously mentioned, this predictive modelling challenge is known as an imbalanced
domain task - Figure 3.8a shows the difference between the two classes (contaminant/non-
contaminant TO). The data has a very low percentage of possible contaminating TOs which
only accounts 9,22% of the total TOs. Also, the percentage of possible contaminating TOs in
each week is not constant as it can be seen in Figure 3.8b.
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Figure 3.8: Distribution of the target variable on dataset

An intervention can be made to disconnect devices (when the customer ceases the contract),
maintenance, installation (new customer) and alteration of service. Calls can be distinguished
between complaints and requests from the customer. However, both usually lead to the scheduling
of an intervention. Figure 3.9 shows the relationship between technical interventions and calls
after the first TO occurring in each building during the following 7 days. Most of the days on
which there are no, or almost none, TOs records correspond to Sundays.
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Figure 3.9: Relationship between TOs and TPs after a TO

3.5 Summary

In this chapter, we realised what kind of data we were provided and built a dataset with richer
information. We have performed data understanding and preparation phases of the CRISP-DM
methodology. We reduced the initial dataset with millions of observations to thousands. We
built new variables to notice changes in signals after a technical intervention, and we also built
the target variable and others such as the number of neighbours and the number of TPs before a
TO.

Next, we apply the last part of the proposed methodology, modelling and evaluation. We
start by applying machine learning algorithms and strategies to solve the imbalance domain
problem. Finally, we present and discuss the obtained results from this methodology.
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Experimental study

In this chapter we describe the methods applied to the development of the project. The first step
is to detail the algorithms used as well as the techniques for dealing with the data imbalance,
and the evaluation metrics. Then, we present the experimental setup and the results, along with
a discussion.

4.1 Experimental setup

The solution to the subject of this thesis involves the application of classification algorithms. In
this section, the algorithms that were used as well as the chosen strategies to handle imbalanced
domains and the experimental methodology is described.

4.1.1 Learning Algorithms

In order to have a good sense of the data and what models fit it better, it is crucial to select
different types of models. For this purpose, we select tree based, ensemble, distance based and
artificial neural networks models. The CART Decision Tree [9], Random Forest [12], XGBoost [16],
Support Vector Machine (SVM) [21], General Linear Model (GLM) [43] for Logistic Regression,
k-Nearest Neighbours (KNN) [22] and Artificial Neural Network (ANN) [44] were used.

The Decision Tree algorithm was the first to be tested. This model consists of training a
single decision tree using the CART algorithm (Subsection 2.2.1). We use the rpart package [60]
and took into account the minsplit and cp parameters. The minsplit is the minimum number of
observations that must exist in a node to make the division and the cp, complexity parameter, is
a combination of the size of a tree and the ability of the tree to separate the classes of the target
variable. If the best division in the growth of a tree does not reduce the overall complexity of
the tree to some extent, the split will not be executed.

After we tried with a tree we headed for an ensemble of trees, the Random Forest (Subsec-

27
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tion 2.2.2.1). To apply this algorithm we use the ranger package [67] with the mtry, num.trees
and max.depth parameters. The mtry is the number of features that are chosen randomly to
split at in each node. With the num.tree we specify the number of trees. The max.depth, as
the name suggests, is the maximal tree depth.

Another model that using trees is the XGBoost, but this one follows the boosting technique
(Subsection 2.2.2.2) while the Random Forest follows the bagging. In this case, we use the
xgboost package [17] with the parameters eta, max_depth, nround and colsample_bytree. The
eta parameter controls the learning rate. Such as max.depth of ranger, the max_depth of
xgboost controls the maximum depth of the trees. The maximum number of iterations is defined
by the nround and, lastly, colsample_bytree controls the number of variables supplied to a tree.
We also specified the learning task and corresponding learning objective with the binary : logistic
which means logistic regression for binary classification and output of probabilities.

The SVM was another algorithm we experienced (Subsection 2.2.4) with the e1071 package
[46]. We use the cost parameter that is the soft margin cost function, in other words, how much
we penalise the SVM for data points within the margin. We also use the gamma parameter that
corresponds to Radial Base Function (RBF) function (cf. Equation 2.6). The gamma is used as
a similarity measure between two points.

The GLM (Subsection 2.2.3) was trained using the stats package [49] and we specified the
statistical model of logistic regression with the logit link function. Only was used the epsilon
parameter which refers to the tolerance of positive convergence of iterations.

Regarding KNN algorithm (Subsection 2.2.5), this one has tested with the caret package
[31] and the k parameter that represents the number of instances (neighbours) to include in the
majority of the voting process for determination of the class. The data we work on has some
features with a large scale compared to others. This is the case with variables sum_upload and
median_up_hour, for example, which are in the order of thousands while most of the rest are
in the order of units or tens. Therefore, we scaled the numerical data with the build_scales
function from dataPreparation [62] package. This function calculates the standard deviation and
divides each example by that standard deviation.

Lastly, an ANN (Subsection 2.2.6) was trained with the nnet package [64]. We used the size,
decay and maxit parameters. This package fits a single hidden layer and the size is the number
of units in this hidden layer. The decay is the weight penalty, in other words, is the regularisation
to avoid over-fitting, and the maxit represents the number of iterations. When forming a neural
network the data normalisation is very important so we use the preProcess function of the caret
package with the method range that normalise values into the range between 0 and 1.

Table 4.1 summarises the learning algorithms, the packages and the set of parameters tested
for each algorithm. Over this set of parameters we have performed a grid search. That is, we
went sequentially through all the possible combinations of parameters, creating a model with
them and testing in the validation set. After running all the combinations, we selected the best
parameterisation and applied it to the test set.



4.1. Experimental setup 29

Learning Model Name Package Parameters

CART CART rpart [60]
minsplit ∈ {5, 10, 20, 30, 50}
cp ∈ {0.01, 0.05, 0.1}

Random Forest RF ranger [67]
mtry ∈ {1, 3, 5, 10}
num.trees ∈ {50, 100, 200, 400, 600}
max.depth ∈ {1, 5, 10}

XGBoost XGBoost xgboost [17]

eta ∈ {0.01, 0.05, 0.1}
max_depth ∈ {5, 10, 15}
nroud ∈ {25, 100, 250, 500}
colsample_bytree ∈ {0.3 ≤ x ≤ 0.9, by = 0.1}

SVM SVM e1071 [46]
cost ∈ {0.01, 0.1, 1, 3, 5, 10, 100}
gamma ∈ {0.01, 0.1, 1, 10, 100}

GLM GLM stats [49] epsilon ∈ {10i : 0 ≤ i ≤ 10}

KNN KNN caret [31] k ∈ {3, 5, 7, 8, 10, 15, 20, 25}

ANN ANN nnet [64]
size ∈ {1, 2, 3}
decay ∈ {0.01, 0.1, 1, 10}
maxit ∈ {100, 200, 300, 500}

Table 4.1: Set of parameters for the models used during train

4.1.2 Strategies for imbalanced learning

Datasets where the classes are not evenly distributed, may be a challenge for the classification
tasks. They are composed by a majority (negative) class and a minority (positive) class and,
thus, the class distribution is skewed. Due to the characteristics of the dataset, and as previously
explained in Section 3.3, learning from such data requires different approaches and evaluation
criteria.

The approaches used to solve this challenge were the pre and post-processing (Section 2.3).
Concerning pre-processing, we apply the techniques of Random Under-Sampling (RUS), Random
Over-Sampling (ROS) and Synthetic Minority Over-sampling Technique (SMOTE) using the
UBL [7] package. Regarding post-processing, we implement the threshold method.

Pre-processing

Through RUS, it is possible to achieve class balance by under-sampling the majority class,
randomly selecting instances of the majority class from a dataset to be easy to learn characteristics
about the minority class. In the case of ROS, the instances corresponding to the minority class
are replicated. SMOTE uses a nearest neighbours algorithm to generate synthetic data. Is an
over-sampling method which generates new artificial examples for the minority classes. We
combined SMOTE with RUS as studied in the original work of Chawla et al. [15]. For SMOTE,
we also need to define the k parameter, indicating the number of nearest neighbours used to
generate new synthetic examples for the minority class.

The set of parameters used for each one of these techniques are present in the Table 4.2.
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Technique % under-sampling % over-sampling k

RUS 10,25,50,75,90 - -

ROS - 150,200,300,500 -

SMOTE+RUS 10,25,50,75,90 150,200,300,500 1,3,5

Table 4.2: Set of parameters for the pre-processing techniques

Post-processing

One of the main post-processing techniques is the threshold method. The classifiers provide
a score that expresses the degree (probability) to which an example is a member of a class. This
method uses the score to get a ranking of the examples and produces several learners by varying
the thresholds for the classes.

To have more precise probabilities we calibrated probability thresholds on a validation dataset
and determined the optimal threshold. The training dataset was splitted into a training and
validation dataset with 70% and 30% of data, respectively. To maximise the score we tested
some different thresholds between 0 and 1 by 0.01 and the best threshold was chose to be applied
on the test set.

4.1.3 Evaluation metrics

There are several metrics and all offer different insights. As previously explained, some evaluation
metrics typically used for classification problems, such as Accuracy, are not suitable for imbalanced
datasets. As so, some metrics were taken into consideration such as precision, recall, Fscore
with β = 1 and Area Under the ROC Curve (AUC) as a complementary metric. The positive
class represents the contaminant Technical Orders (TOs) and the negative class represents the
non-contaminant TOs.

4.1.4 Experimental methodology

Given the temporal character of our data the approaches used in the experimental methodology
were growing and sliding window. Given a training set, the growing window adds the recent data
to the current training set, this constantly increasing the size of this set. Taking into account
our dataset, Figure 4.1 shows all the tests performed with the growing window. Based on the
intuition of the domain we chose four weeks to the training set.

Assuming that recent data is more helpful in producing better models and the oldest part of
training set is outdated, this can lead to a decreasing performance for the models. To overcome
this problem, the sliding window removes the oldest data of the training set and adds the recent
data maintaining a training set of constant size. Figure 4.2 is the application of sliding window
for our dataset.
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Figure 4.1: Growing window

Figure 4.2: Sliding window

In both methodologies we get 6 pairs of training and testing set. For each grid parameter, we
proceeded as the Figure 4.3 suggests.

i. For finding the best threshold, we split the training set into train and validation sets. Then,
we apply re-sampling strategies to the later train set and build a classification model with
this balanced training set. With the validation set, we get a set of predictions as probabilities.
In order to achieve the best threshold, we calculate the Fscore for each threshold. The
selected threshold is the one which yields the best overall Fscore;

ii. After we define the best threshold, we re-sampled the original training set and build a new
classification model on this data set. Then, the set of predictions was obtained with the
testing set;

iii. The AUC was calculated with the set of probabilities;

iv. In order to calculate the Fscore, we first transform the set of predictions into a set of binary
predictions with and without threshold;

v. At the end of 6 tests, an average is calculated to provide the final result.
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Figure 4.3: Flowchart of the experiment

4.2 Results

We start presenting the baseline results, with and without new features. And then, we use the pre-
processing techniques to balance the dataset and compare the outcome with the post-processing
technique. All these steps use growing and sliding approaches.

4.2.1 Baseline

We start by building prediction models that used the initial data set, composed by 21 numeric
features, to have a benchmark to work with. The seven algorithms described above were used with
the grid search present in Table 4.1. The prediction probability threshold in this implementation
was set at 0.5. This means that if the prediction probability exceeds 0.5, the sample is predicted
as contaminant TO (positive class), or else negative.
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The first step in improving baseline results is to do some feature engineering, as it is important
to understand signal oscillations before and after a TO. As we described in Section 3.4, we
created some insights regarding the network signals values, router status, number of neighbours
and number of Technical Participations (TPs). Since there are 7 different signals and we calculate
the maximum, mean and the variance for each one, we end up with too many features in the
final dataset. In total, we add to the initial dataset 145 features.

The best Fscore results obtained without feature engineering and adding new variables are
represented in Figure 4.4. All the remaining results are in Appendix B.1, Table B.1 and Table B.3
for growing and sliding window without feature engineering, respectively. And, Table B.5 and
Table B.7 with feature engineering.
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Figure 4.4: Baseline results

For both cases of growing and sliding window, the results without new features are, as
expected, not very good - the models present a Fscore close to zero. Still, the sliding window
revealed slightly better performance overall, when compared to the growing window. The results
obtained with the new features are overall better, maintaining the patterns that were observed
in the results without those features. The ANN obtained the best result and the one which
increases the Fscore considerably, according to the growing window methodology. Finally, we
should note that without balancing techniques applied, almost no positive cases were correctly
predicted.

The parameters for the models associated with the results without the inclusion of new
features can be consulted in Appendix B.1, Table B.2 and Table B.4. In the feature engineering
case, the parameters are the same for both growing and sliding window (cf. Appendix B.1,
Table B.6)
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4.2.2 Pre-processing

The next step is to apply pre-processing techniques to balance the dataset. The best results for
the three techniques using the growing and sliding window approaches are present in Figure 4.5.
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Figure 4.5: Pre-processing results compared to baseline

We started with RUS that balances the class distribution reducing the number of TOs that
are not contaminating. With this balance, all the models improve their results a lot. The CART,
Random Forest and SVM were the models in which the improvement is more noticeable since the
previously result was zero. The SVM model was the only one that used the 25% under-sampling
(cf. Appendix B.2, Table B.9). All the others used 10%, which means that the number of cases
with the negative class was very low, almost the same of cases of the positive class.

ROS balances the domain by randomly introducing replicas of contaminating TOs to the
training dataset. In general, the results are not as good as RUS, this is because, in some cases,
duplicating samples does not help some models as it does not produce new useful data. In this
case, we increased the number of cases of the positive class five times (parameters are present in
Appendix B.2, Table B.11), which may have been the cause for overfitting. Based on the obtained
results, we can state that this situation happens mainly for tree-based algorithms. Figure 4.6
shows the Random Forest behaviour during training and testing set. There are 250 iterations
since we use a grid search where we have 4 examples of mtry, 5 num.trees, 3 max.depth and 4
percentages of over-sampling. The model fits very well with the previously observed data but it
is ineffective in predicting new cases.
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Figure 4.6: Random Forest overfitting on Random Over-Sampling (ROS) from Figure 4.5

We also test the combination of RUS and SMOTE. With this technique, all algorithms
slightly improved their performance, except GLM which kept the same result as RUS. Comparing
the three techniques, the SMOTE is the one that has better results (parameters in Appendix B.2
Table B.13).

Overall, with pre-processing techniques, the Fscore values of each model are similar using
both growing window and sliding window. That is, no considerably different values were obtained
for these methodologies. Regarding to the growing window results, these can be consulted in
Appendix B.2, Tables B.8, B.10 and B.12, with respective parameters in Tables B.9, B.11
and B.13. The results concerning sliding window can be consulted in detail in Appendix B.2,
Tables B.14, B.16 and B.18, with respective parameters in Tables B.15, B.17 and B.19.

4.2.3 Threshold calibration

The default threshold does not work well for imbalanced classification prediction. Therefore, we
use the threshold adjustment as post-processing strategy. To find the best threshold we resort to
the greedy strategy. The parameters used were the same as in Table B.6.

Figure 4.7 displays the obtained results (detailed in Appendix B.3, Table B.20 and Table B.21).
As expected, the overall results improve considerably. The low threshold values (cf. Table 4.3)
mean that the model is predicting almost every example as positive since the dataset is extremely
imbalanced. This type of extreme model bias renders the results as non interesting, due to low
interpretability. The growing window, in this case, presents results equal or greater than the
sliding window.
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Figure 4.7: Threshold method results compared to baseline

Model ANN CART GLM KNN RF SVM XGBoost

Thr growing 0.09 0.088 0.095 0.315 0.085 0.086 0.405

Thr sliding 0.055 0.088 0.385 0.315 0.078 0.206 0.403

Table 4.3: Threshold values of post-processing models from Figure 4.7

4.2.4 Combination of pre and post-processing techniques

The latter approach of modelling used in our approach was the combination of both pre and
post-processing techniques. After balancing the dataset, we adjusted probability thresholds and
then we compare the performance of each model (cf. Figure 4.8).

The ANN was the unique model that improved the results with threshold adjustment over
RUS. The KNN and GLM are the ones that show no improvement with ROS, all the other
models improved their performances followed by threshold calibration. This big difference from
the combination of ROS and threshold adjustment is derived from the overfitting which is solved
with this probability calibration. The KNN is the only one that shows a slight improvement
over SMOTE. The results with growing window are presented in more detail in Appendix B.4,
Table B.22 for RUS with threshold adjustment, Table B.23 for ROS and Table B.24 for SMOTE
and the results with sliding window in Tables B.25, B.26 and B.27.

With the threshold adjustment over the pre-processing techniques, there are more variability
of the Fscore values between the growing and sliding window. In general, the results of the pre
and post-processing combination are worse than pre-processing. Overall threshold adjustment
improved ROS results but not RUS or SMOTE results.
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Figure 4.8: Pre and post-processing combination results compared to pre-processing

4.2.5 Feature Importance

At this point, we would like to understand if all the variables used are equally important to the
model. Therefore, it is crucial to rank them by their contribution to the results. Removing some
of the variables that do not make a big contribution to the solution can be a huge help. Since
the best results were obtained using the SMOTE pre-processing technique with growing window
methodology and the Random Forest model was one that achieved the best results, we applied
the same approaches with the most important features in order to compare with the previous
results.

The dataset was initially composed with a total of 165 variables including the target variable.
For each of the six iterations, an analysis of the most important variables was performed with
the ranger package using the importance parameter and, after that, we created a rank based on
the place that each variable took in each iteration. Figure 4.9 represents the average of the rank
that each variable had for the six iterations.

The six most informative variables are related to the router status. When the router is turned
off, there are no network signal registers. This leads to a high probability of an intervention as
it may indicate network failures in the building. The reboots often happen when the customer
tries to solve the problem before resorting to TO, however often these attempts are in vain. The
number of neighbours for each customer and the number of TPs are also important variables for
the model (the description of each variable is present in Appendix A, Table A.1).

We later ran the Random Forest model using the SMOTE pre-processing technique and
growing window with different number of features according to the rank of variables. The goal is
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Figure 4.9: Rank for the 20 most important variables with Synthetic Minority Over-sampling
Technique (SMOTE) using Random Forest and growing window methodology

to apply the best set of features to the remaining models. First with the top 20, then with 30,
50, 65, 80 and 100 variables. Figure 4.10 shows the performance of Random Forest for each one
of these sizes (detailed results are in Appendix B.6, Table B.28 with the respective parameters in
Table B.29).
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Figure 4.10: Performance of Random Forest using Synthetic Minority Over-sampling Technique
(SMOTE) and growing window with different dataset sizes
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The Fscore values do not gradually increase with number of attributes. The dataset with 80
most important variables is the one with the best performance, so we use this features to run the
remaining models.

Finally, applying the SMOTE combined with RUS pre-processing technique, we compared
the previous results of this technique with the result obtained through the new reduced dataset.
Figure 4.11 shows the results of each model with the 80 most important variables (detailed in
Appendix B.6 Table B.30 with the respective parameters in Table B.31).
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Figure 4.11: Results of Random Forest with Synthetic Minority Over-sampling Technique
(SMOTE) using the 80 most important features and growing window methodology compared to
all features

Overall, with this selection of variables, all models have improved their performance. GLM it
is the one that has the biggest result difference, but nevertheless, ANN is the one that still has
the best results.

4.2.6 Discussion

When the default threshold is set at 0.5, the performance of the models is very poor in terms of
precision and recall and thus, low Fscore value. With the introduction of new features, we were
able to improve the performance of some models, but still, it was not a considerable improvement,
the Fscore values remained low. Due to dataset imbalance, we resorted to pre and post-processing
techniques.

With RUS all the models improved their performances whereas with ROS, Random Forest
and CART have very low recall and Fscore values and some tests have failed to predict any
positive examples. The under-sampling discards potentially useful data, and on the other hand,
over-sampling make exact copies of existing examples, producing overfitting. To bridge the flaws
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of these techniques we use the SMOTE combined with RUS. In fact, with this combination, the
results were marginally better than RUS and we achieved considerable improvements than ROS.

The different thresholds yielded different Fscore values, so we used an adequate threshold
that was set in the testing set. It is normal that the threshold of every model is lower than
0.5 since the dataset is extremely imbalanced, the probability distribution will be dragged to a
lower value and, consequently, the threshold for the positive values will also drop. The threshold
adjustment showed to be effective without pre-processing techniques, but when we combined
both, the results does not improve for the three applied techniques. The ROS was the only one
that had considerably improvements. Before, this one had very low Fscore values, which are a
consequence of overfitting however with the threshold adjustment we get better values of Fscore.

Regarding the different experimental methodologies, growing window and sliding window,
they show differences that in some cases are more notable. However, there are some results
where the sliding window approach is no better than the growing window contrary to what
was expected. The SMOTE pre-processing technique yield the best results from all applied
approaches for both growing and sliding window.

After comparing the models between them and concluding which technique is best, one of
the proposed objectives is also to understand what makes a technical intervention contaminating.
By analysing what variables of the model influence the most the final outcome, it becomes clear
what the problems are. The variables with the highest significant rank are related to the router
status. Using the most important variables helped to improve previous results on the SMOTE
pre-processing technique. Fscore values have increased for almost all models.

After all these attempts to improve the results, we can see that the best result was obtained
with the dataset of 80 variables through the ANN model with the SMOTE pre-processing
technique and the growing window approach. Table 4.4 shows the best results from different
techniques using the growing window methodology. Values marked in bold correspond to the
best model and italics the best technique.

Model
Technique Baseline Pre-processing

Post-
processing

Pre and Post
80 most import-
ant features with
SMOTE

RUS ROS SMOTE RUS ROS SMOTE

ANN 0.105 0.191 0.169 0.206 0.181 0.195 0.192 0.003 0.209

CART 0 0.184 0.077 0.186 0.171 0.160 0.166 0.181 0.192

GLM 0.030 0.180 0.165 0.180 0.186 0.181 0.188 0.181 0.191

KNN 0.043 0.183 0.177 0.190 0.162 0.179 0.168 0.194 0.191

RF 0 0.193 0.007 0.198 0.171 0.185 0.187 0.194 0.202

SVM 0 0.172 0.126 0.193 0.182 0.172 0.172 0.178 0.193

XGBoost 0.026 0.188 0.111 0.192 0.181 0.171 0.172 0.176 0.198

Table 4.4: Best Fscore results of each model for all applied techniques with growing window
methodology
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Figure 4.12 shows the Fscore, precision and recall values for each week of the above mentioned
best model. The Fscore and precision values does not present much variability over the 6 test
weeks. Begins to rise slightly but drops to week 49 rises again at week 50. However, the recall it
rises until week 48, has the worst peak at week 49 and rises again at week 50.
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Figure 4.12: Evaluation metrics behaviour for each test week for Artificial Neural Network (ANN)
model with Synthetic Minority Over-sampling Technique (SMOTE) and using growing window
methodology





Chapter 5

Conclusions

The goal of this dissertation was to enable predictive maintenance area with focus on the
identification of contaminating Technical Orders (TOs), i.e. TOs that could affect the service
of other costumers in the same building. After the development of this project, it was possible
to answer this question. The partner company has problems in the way the technicians deal
with maintenance, and with the model developed they will have the opportunity to improve the
customer experience.

This work focuses on technical interventions made at distribution points. Since interventions
affecting neighbouring clients are a minority, we use pre and post-processing strategies on the
data. This constitutes one of the main contributions of this study.

The final Fscore increases 2 times compared to the baseline results. The models created are
useful to the partner company identify which TOs will cause more problems. However, it also
outputs several False Positive cases that can not be seen as a complete misclassification, since
some of them are indeed, contaminant interventions. The importance of feature engineering for a
predictive modelling problem like this one should also be highlighted. In the top 80 most relevant
variables for the model, 66 of them were a product of feature engineering.

During the project implementation, we faced several obstacles that had to be overcome.
Working with a large amount of data was very challenging, especially with the limited available
resources. The dataset had to be split into sub-folders and then rejoined to add to the data
warehouse. Due to the size of the dataset, it was not possible to manipulate it locally on the
computer and so PySpark was used. In addition to these challenges, we still deal with changes in
the target variable definition as we were the first in the partner company to work on this subject.
Thus, some definitions were sharpened during the development process.

In short, the project objectives were successfully met, the various challenges presented were
overcome, and with some refinements in our model, the partner company can apply it reactively
in order to deploy preventive maintenance actions that should be able to reduce the technical
interventions and, consequently, improve customer satisfaction.
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5.1 Future Work

Upon completion of the project, it was shown that the model has the potential to predict
which TOs are contaminants. However, we can improve the results and therefore present some
possibilities for future work.

In the beginning, we accessed data collected from Cable Modem (CM) that had hourly events
but did not have all the information necessary for the completion of the project. More granular
data allows better detection of signal differences after the occurrence of a TO. For this reason,
we believe that hourly data rather than daily records, would improve the results.

The analysis of some of the time series could have been done to enrich the feature engineering.
The studies on trend, seasonal variations, periodicity and stationarity of data would give better
insight into the data.

As we saw earlier in the growing and sliding window techniques, we chose the size of the four
week window for the training set given the domain intuition. However, the best approach for
using these techniques is to tune the size of the training window because we do not know which
size presents the best performing models.

In Fscore calculation we gave equal importance to precision and recall with the β parameter
equal to 1. But, as we have already mentioned, we should not make plans if not necessary,
focusing only on interventions that are contaminating. In this sense it is important to give more
importance to precision than recall, and for that, we can set β to 0.5, doubling its importance.
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Appendix B

Results

B.1 Baseline results

Model TP TN FP FN Precision Recall Accuracy AUC Fscore

CART 0 887 0 92 NaN 0 0.905 0.5 0

RF 0 887 0 92 NaN 0 0.905 0.543 0

XGBoost 0 882 4 91 0.137 0.007 0.902 0.505 0.014

SVM 0 887 0 92 NaN 0 0.905 0.487 0

GLM 0 886 0 92 NaN 0 0.905 0.513 0

KNN 2 865 21 90 0.098 0.025 0.885 0.507 0.040

ANN 0 885 1 92 NaN 0.001 0.904 0.515 0.003

Table B.1: Best results without feature engineering using growing window methodology

Model Parameters

CART minsplit = 5, cp = 0.01

RF
mtry = 1, num.trees = 50
max.depth = 5

XGBoost
eta = 0.1, max_depth = 5
nroud = 500, colsample_bytree = 0.4

SVM cost = 0.01, gamma = 0.01

GLM epsilon = 1e−10

KNN k = 3

ANN size = 3, decay = 0.01
maxit = 200

Table B.2: Parameters that led to the best results presented in the Table B.1

53



54 Appendix B. Results

Model TP TN FP FN Precision Recall Accuracy AUC Fscore

CART 0 887 0 92 NaN 0 0.905 0.5 0

RF 0 887 0 92 NaN 0 0.905 0.537 0

XGBoost 0 883 3 91 0.120 0.007 0.903 0.495 0.014

SVM 14 739 147 77 NaN 0.166 0.769 0.487 0.027

GLM 0 886 0 92 NaN 0.001 0.905 0.521 0.003

KNN 2 862 24 89 0.099 0.028 0.883 0.512 0.044

ANN 0 884 2 91 0.336 0.007 0.904 0.527 0.015

Table B.3: Best results without feature engineering using sliding window methodology

Model Parameters

CART minsplit = 5, cp = 0.01

RF
mtry = 1, num.trees = 50
max.depth = 5

XGBoost
eta = 0.1, max_depth = 15
nroud = 500, colsample_bytree = 0.7

SVM cost = 0.01, gamma = 0.01

GLM epsilon = 1e−10

KNN k = 3

ANN size = 3, decay = 0.01
maxit = 200

Table B.4: Parameters that led to the best results presented in the Table B.3

Model TP TN FP FN Precision Recall Accuracy AUC Fscore

CART 0 888 0 92 NaN 0 0.905 0.5 0

RF 0 888 0 92 NaN 0 0.905 0.549 0

XGBoost 1 883 5 91 0.244 0.014 0.902 0.560 0.026

SVM 0 888 0 92 NaN 0 0.905 0.567 0

GLM 1 882 6 90 0.222 0.017 0.900 0.565 0.030

KNN 2 864 24 89 0.100 0.028 0.883 0.527 0.043

ANN 7 858 30 85 0.198 0.074 0.881 0.523 0.105

Table B.5: Best results with feature engineering using growing window methodology
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Model Parameters

CART minsplit = 5, cp = 0.01

RF
mtry = 1, num.trees = 50
max.depth = 1

XGBoost
eta = 0.01, max_depth = 10
nroud = 25, colsample_bytree = 0.9

SVM cost = 0.01, gamma = 0.01

GLM epsilon = 0.01

KNN k = 3

ANN size = 3, decay = 0.01
maxit = 500

Table B.6: Parameters that led to the best results presented in the Table B.5

Model TP TN FP FN Precision Recall Accuracy AUC Fscore

CART 0 888 0 92 NaN 0 0.905 0.5 0

RF 0 888 0 92 NaN 0.003 0.906 0.569 0.007

XGBoost 1 882 6 91 0.157 0.014 0.900 0.569 0.027

SVM 14 740 148 77 NaN 0.166 0.769 0.548 0.027

GLM 1 878 10 90 0.128 0.018 0.896 0.555 0.032

KNN 3 864 24 89 0.115 0.034 0.884 0.526 0.052

ANN 6 843 45 85 0.134 0.074 0.866 0.517 0.095

Table B.7: Best results with feature engineering using sliding window methodology

B.2 Pre-processing results

Model TP TN FP FN Precision Recall Accuracy AUC Fscore

CART 39 594 294 52 0.118 0.426 0.666 0.548 0.184

RF 53 480 408 38 0.116 0.581 0.544 0.574 0.193

XGBoost 54 465 423 38 0.112 0.583 0.528 0.557 0.188

SVM 92 2 886 0 0.094 1 0.996 0.444 0.172

GLM 44 540 348 48 0.111 0.474 0.595 0.551 0.180

KNN 10 799 88 81 0.112 0.461 0.606 0.552 0.183

ANN 46 542 346 45 0.118 0.501 0.601 0.565 0.191

Table B.8: Best Random Under-Sampling (RUS) results using growing window methodology
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Model Parameters % under-sampling

CART minsplit = 30, cp = 0.05 10

RF
mtry = 10, num.trees = 50
max.depth = 5

10

XGBoost
eta = 0.05, max_depth = 15
nroud = 25, colsample_bytree = 0.4

10

SVM cost = 5, gamma = 1 25

GLM epsilon = 1 10

KNN k = 25 10

ANN size = 1, decay = 0.1
maxit = 100

10

Table B.9: Parameters that led to he best results presented in Table B.8

Model TP TN FP FN Precision Recall Accuracy AUC Fscore

CART 8 840 47 83 NaN 0.052 0.866 0.513 0.077

RF 0 887 1 92 NaN 0.004 0.905 0.579 0.007

XGBoost 10 832 56 82 0.134 0.108 0.859 0.540 0.111

SVM 10 830 58 82 0.148 0.112 0.856 0.516 0.126

GLM 15 813 75 77 0.167 0.163 0.844 0.564 0.165

KNN 34 624 264 57 0.118 0.377 0.671 0.534 0.177

ANN 22 748 140 69 0.134 0.424 0.789 0.560 0.169

Table B.10: Best Random Over-Sampling (ROS) results using growing window

Model Parameters % over-sampling

CART minsplit = 50, cp = 0.01 500

RF
mtry = 10, num.trees = 50
max.depth = 5

500

XGBoost
eta = 0.01, max_depth = 5
nroud = 25, colsample_bytree = 0.9

500

SVM cost = 100, gamma = 0.01 500

GLM epsilon = 0.01 500

KNN k = 7 500

ANN size = 1, decay = 0.01
maxit = 300

500

Table B.11: Parameters that led to he best results presented in Table B.10
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Model TP TN FP FN Precision Recall Accuracy AUC Fscore

CART 55 433 455 37 0.112 0.601 0.499 0.546 0.186

RF 57 462 426 35 0.118 0.615 0.532 0.591 0.198

XGBoost 60 413 475 32 0.112 0.654 0.483 0.559 0.192

SVM 47 532 356 44 0.120 0.520 0.589 0.567 0.193

GLM 44 540 348 48 0.111 0.474 0.595 0.551 0.180

KNN 51 499 389 41 0.115 0.550 0.560 0.563 0.190

ANN 29 722 165 62 0.155 0.322 0.767 0.578 0.206

Table B.12: Best Synthetic Minority Over-sampling Technique (SMOTE) results using growing
window methodology

Model Parameters % under-sampling % over-sampling k

CART minsplit = 5, cp = 0.05 25 300 5

RF
mtry = 5, num.trees = 400
max.depth = 5

25 300 3

XGBoost
eta = 0.1, max_depth = 5
nroud = 100, colsample_bytree = 0.5

10 150 5

SVM cost = 0.01, gamma = 0.01 25 300 5

GLM epsilon = 1 10 150 1

KNN k = 25 50 500 3

ANN size = 2, decay = 1
maxit = 100

25 200 1

Table B.13: Parameters that led to he best results presented in Table B.12

Model TP TN FP FN Precision Recall Accuracy AUC Fscore

CART 52 458 430 39 0.109 0.570 0.518 0.538 0.183

RF 54 482 406 37 0.118 0.592 0.547 0.577 0.197

XGBoost 51 494 394 40 0.115 0.560 0.554 0.566 0.191

SVM 92 3 885 0 0.0.94 1 0.097 0.458 0.172

GLM 42 558 330 49 0.116 0.465 0.611 0.541 0.183

KNN 42 545 342 49 0.110 0.461 0.599 0.549 0.177

ANN 43 571 317 49 0.119 0.465 0.627 0.574 0.189

Table B.14: Best Random Under-Sampling (RUS) results using sliding window methodology
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Model Parameters % under-sampling

CART minsplit = 30, cp = 0.01 10

RF
mtry = 10, num.trees = 200
max.depth = 5

10

XGBoost
eta = 0.01, max_depth = 5
nroud = 500, colsample_bytree = 0.4

10

SVM cost = 5, gamma = 1 25

GLM epsilon = 0.01 10

KNN k = 25 10

ANN size = 3, decay = 1
maxit = 100

10

Table B.15: Parameters that led to he best results presented in Table B.14

Model TP TN FP FN Precision Recall Accuracy AUC Fscore

CART 6 847 41 85 NaN 0.072 0.869 0.495 0.080

RF 0 888 0 92 NaN 0 0.906 0.572 0.077

XGBoost 9 850 38 83 0.194 0.100 0.875 0.560 0.130

SVM 20 710 71 178 0.136 0.233 0.744 0.541 0.122

GLM 15 799 89 76 0.150 0.167 0.829 0.561 0.157

KNN 32 619 269 60 0.106 0.349 0.663 0.537 0.163

ANN 27 722 166 65 0.141 0.294 0.763 0.569 0.190

Table B.16: Best Random Over-Sampling (ROS) results using sliding window methodology

Model Parameters % over-sampling

CART minsplit = 50, cp = 0.01 500

RF
mtry = 5, num.trees = 50
max.depth = 5

500

XGBoost
eta = 0.01, max_depth = 5
nroud = 25, colsample_bytree = 0.9

500

SVM cost = 100, gamma = 0.01 500

GLM epsilon = 1e− 4 500

KNN k = 7 500

ANN size = 1, decay = 0.01
maxit = 300

500

Table B.17: Parameters that led to he best results presented in Table B.16
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Model TP TN FP FN Precision Recall Accuracy AUC Fscore

CART 48 521 367 44 0.116 0.519 0.581 0.561 0.189

RF 43 589 299 49 0.127 0.469 0.646 0.591 0.198

XGBoost 63 408 479 29 0.116 0.686 0.481 0.586 0.198

SVM 69 334 553 22 0.111 0.755 0.412 0.588 0.194

GLM 44 544 344 48 0.113 0.477 0.599 0.540 0.182

KNN 74 279 609 18 0.108 0.800 0.360 0.568 0.190

ANN 39 627 261 52 0.131 0.428 0.679 0.564 0.201

Table B.18: Best Synthetic Minority Over-sampling Technique (SMOTE) results using sliding
window methodology

Model Parameters % under-sampling % over-sampling k

CART minsplit = 50, cp = 0.01 25 500 3

RF
mtry = 3, num.trees = 400
max.depth = 1

50 500 5

XGBoost
eta = 0.01, max_depth = 10
nroud = 500, colsample_bytree = 0.4

10 150 3

SVM cost = 0.1, gamma = 0.1 25 300 5

GLM epsilon = 1 10 150 1

KNN k = 25 10 500 5

ANN size = 1, decay = 0.01
maxit = 100

75 500 5

Table B.19: Parameters that led to he best results presented in Table B.18

B.3 Post-processing results

Model TP TN FP FN Precision Recall Accuracy AUC Fscore Thr

CART 92 0 888 0 0.094 1 0.094 0.5 0.171 0.088

RF 91 6 882 0 0.093 0.992 0.099 0.549 0.171 0.085

XGBoost 65 321 566 26 0.109 0.700 0.390 0.560 0.181 0.405

SVM 57 418 469 35 0.111 0.608 0.480 0.567 0.182 0.086

GLM 49 492 396 43 0.124 0.534 0.545 0.565 0.186 0.095

KNN 25 690 198 66 0.114 0.279 0.729 0.527 0.162 0.315

ANN 38 580 308 54 0.125 0.420 0.628 0.523 0.181 0.09

Table B.20: Threshold adjustment results using growing window methodology
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Model TP TN FP FN Precision Recall Accuracy AUC Fscore Thr

CART 92 0 888 0 0.094 1 0.094 0.5 0.171 0.088

RF 60 392 496 31 0.110 0.648 0.468 0.569 0.187 0.078

XGBoost 70 247 641 21 0.107 0.761 0.316 0.569 0.174 0.403

SVM 69 276 612 23 0.106 0.744 0.349 0.548 0.182 0.206

GLM 32 632 256 60 0.130 0.321 0.683 0.555 0.122 0.385

KNN 25 689 199 66 0.114 0.278 0.728 0.526 0.161 0.315

ANN 48 454 434 43 0.106 0.518 0.517 0.517 0.168 0.055

Table B.21: Threshold adjustment results using sliding window methodology

B.4 Pre and post-processing combination results

Model TP TN FP FN Precision Recall Accuracy AUC Fscore Thr

CART 32 657 231 59 NaN 0.350 0.699 0.548 0.160 0.568

RF 59 394 494 33 0.110 0.642 0.460 0.574 0.185 0.483

XGBoost 55 403 485 37 0.103 0.589 0.469 0.557 0.171 0.471

SVM 88 45 842 4 0.094 0.956 0.136 0.444 0.172 0.678

GLM 40 581 306 52 0.115 0.431 0.636 0.551 0.181 0.538

KNN 51 456 432 40 0.108 0.549 0.552 0.552 0.179 0.476

ANN 40 611 277 52 0.126 0.433 0.664 0.565 0.195 0.546

Table B.22: Results of Random Under-Sampling (RUS) and threshold adjustment combination
using growing window methodology

Model TP TN FP FN Precision Recall Accuracy AUC Fscore Thr

CART 78 139 749 13 0.098 0.848 0.220 0.513 0.166 0.223

RF 35 618 269 56 0.110 0.648 0.468 0.569 0.187 0.078

XGBoost 46 502 386 45 0.109 0.484 0.562 0.579 0.172 0.456

SVM 42 515 373 49 0.113 0.459 0.573 0.516 0.172 0.14

GLM 37 614 273 54 0.129 0.409 0.666 0.564 0.188 0.353

KNN 36 575 313 55 0.108 0.399 0.627 0.534 0.168 0.381

ANN 51 484 404 40 0.121 0.560 0.549 0.560 0.192 0.335

Table B.23: Results of Random Over-Sampling (ROS) and threshold adjustment combination
using growing window methodology
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Model TP TN FP FN Precision Recall Accuracy AUC Fscore Thr

CART 59 336 551 33 NaN 0.639 0.406 0.546 0.144 0.481

RF 65 384 504 27 0.114 0.698 0.455 0.591 0.194 0.485

XGBoost 48 481 407 44 0.109 0.528 0.539 0.559 0.176 0.555

SVM 44 536 352 47 0.122 0.482 0.594 0.567 0.178 0.51

GLM 40 581 306 52 0.115 0.431 0.636 0.551 0.181 0.538

KNN 63 396 491 29 0.114 0.677 0.471 0.563 0.194 0.441

ANN 0 888 0 92 NaN 0.001 0.905 0.578 0.003 0.885

Table B.24: Results of Synthetic Minority Over-sampling Technique (SMOTE) and threshold
adjustment combination using growing window methodology

Model TP TN FP FN Precision Recall Accuracy AUC Fscore Thr

CART 55 424 463 36 0.112 0.585 0.490 0.538 0.181 0.435

RF 64 348 540 27 0.107 0.686 0.422 0.577 0.182 0.476

XGBoost 73 269 619 19 0.106 0.777 0.351 0.566 0.185 0.396

SVM 78 135 753 13 0.088 0.831 0.223 0.458 0.158 0.658

GLM 31 635 253 60 0.119 0.340 0.676 0.541 0.157 0.82

KNN 50 424 42 0 0.105 0.540 0.528 0.549 0.174 0.476

ANN 52 492 396 40 0.115 0.554 0.553 0.574 0.193 0.485

Table B.25: Results of Random Under-Sampling (RUS) and threshold adjustment combination
using sliding window methodology

Model TP TN FP FN Precision Recall Accuracy AUC Fscore Thr

CART 74 176 712 18 NaN 0.804 0.244 0.495 0.142 0.223

RF 61 395 493 31 0.110 0.648 0.468 0.572 0.187 0.318

XGBoost 56 398 490 35 0.109 0.484 0.562 0.560 0.172 0.441

SVM 58 390 498 34 0.113 0.629 0.461 0.541 0.184 0.178

GLM 39 573 315 52 0.141 0.404 0.633 0.561 0.131 0.488

KNN 41 541 347 50 0.108 0.452 0.597 0.537 0.173 0.346

ANN 45 538 350 46 0.118 0.489 0.599 0.569 0.187 0.341

Table B.26: Results of Random Over-Sampling (ROS) and threshold adjustment combination
using sliding window methodology



62 Appendix B. Results

Model TP TN FP FN Precision Recall Accuracy AUC Fscore Thr

CART 54 416 472 37 0.106 0.601 0.476 0.561 0.176 0.48

RF 60 410 478 32 0.113 0.635 0.482 0.591 0.187 0.488

XGBoost 55 465 423 36 0.117 0.590 0.533 0.586 0.192 0.545

SVM 72 286 602 19 0.108 0.786 0.369 0.588 0.190 0.441

GLM 48 477 411 43 0.107 0.521 0.541 0.540 0.174 0.475

KNN 43 379 509 28 0.111 0.684 0.456 0.568 0.191 0.556

ANN 0 888 0 92 NaN 0 0.905 0.564 0 0.83

Table B.27: Results of Synthetic Minority Over-sampling Technique (SMOTE) and threshold
adjustment combination using sliding window methodology
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Figure B.1: Rank for the 80 most important variables with Synthetic Minority Over-sampling
Technique (SMOTE) using Random Forest
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B.6 Feature importance results

Top N Features TP TN FP FN Precision Recall Accuracy AUC Fscore

20 77 226 662 14 0.105 0.843 0.310 0.566 0.187

30 80 190 697 12 0.103 0.864 0.277 0.563 0.184

50 45 571 316 47 0.125 0.489 0.631 0.594 0.198

65 46 551 337 45 0.124 0.503 0.611 0.584 0.198

80 39 634 253 53 0.134 0.423 0.688 0.593 0.202

100 50 529 358 42 0.122 0.542 0.592 0.593 0.200

Table B.28: Best results for each top N of most important features with Random Forest

Top N Features Parameters % under-sampling % over-sampling k

20
mtry = 10, num.trees = 400
max.depth = 1

25 300 1

30
mtry = 10, num.trees = 100
max.depth = 1

25 300 5

50
mtry = 1, num.trees = 400
max.depth = 1

50 500 3

65
mtry = 1, num.trees = 50
max.depth = 1

50 500 3

80
mtry = 1, num.trees = 100
max.depth = 5

50 500 5

100
mtry = 3, num.trees = 50
max.depth = 5

25 300 5

Table B.29: Parameters that led to he best results presented in Table B.28

Model TP TN FP FN Precision Recall Accuracy AUC Fscore

CART 46 544 344 45 0.120 0.504 0.605 0.560 0.192

RF 39 634 253 53 0.134 0.423 0.688 0.593 0.202

XGBoost 64 392 495 27 0.115 0.703 0.465 0.573 0.198

SVM 70 324 564 22 0.110 0.761 0.402 0.587 0.193

GLM 44 558 330 47 0.119 0.484 0.616 0.564 0.191

KNN 60 411 477 31 0.112 0.653 0.480 0.581 0.191

ANN 28 739 149 64 0.164 0.306 0.783 0.580 0.209

Table B.30: Best results for 80 most important features with Synthetic Minority Over-sampling
Technique (SMOTE) using growing window methodology
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Model Parameters % under-sampling % over-sampling k

CART minsplit = 5, cp = 0.05 25 200 3

RF
mtry = 1, num.trees = 100
max.depth = 5

50 500 5

XGBoost
eta = 0.01, max_depth = 15
nroud = 100, colsample_bytree = 0.6

10 150 5

SVM cost = 0.01, gamma = 0.1 50 500 5

GLM epsilon = 1 10 150 1

KNN k = 25 25 300 5

ANN size = 3, decay = 1
maxit = 100

25 200 3

Table B.31: Parameters that led to he best results presented in Table B.30
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