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Abstract

Modern compiled software, written in languages such as C and C++, relies on complex compiler
infrastructure that transforms programs in ways that improve their non-functional characteristics.
However, developing new transformations and improving existing ones can be challenging to re-
searchers and engineers. Often, transformations are conceived in terms of the high-level language,
but must be implemented by transforming a lower-level intermediate representation (IR) or by
modifying the compiler itself, which may not be feasible, for technical or legal reasons.

Source-to-source compilers make it possible to directly analyze and transform the original
source, making transformations portable across different compilers. This approach allows trans-
formations to be composed upstream of the compilation toolchain, allowing rapid research and
prototyping of source code transformations, and its use has been proposed as a solution for imple-
menting program transformations whenever it would prove to be infeasible or impractical to do so
at the compiler level. One such tool is Clava, which embeds a scriptable Javascript environment
and provides access to the Abstract Syntax Trees of C and C++ programs, allowing the source
code to be queried and manipulated.

However, this approach has the drawback of exposing the researcher to the full breadth of
the source language, which is often more extensive and complex than the IRs used in traditional
compilers. Because of that complexity, it is hard to perform complete analyses that can account
for all edge cases in the language. On the other hand, those constructs, such as loops or structures,
can be useful to encode properties that are not made explicit in lower-level representations.

In this work, we propose a solution to tame the complexity of the source language and make
source-to-source compilers an ergonomic platform for program optimization work, by dividing
the transformations into two distinct steps. First, we define a simpler subset of the language that
can encode the programs with fewer primitives, and implement a set of transformations, termed
normalizations, to transform the input programs into equivalent programs expressed in that sub-
set. Afterwards, we implement a function inlining transformation as a case study, showing how
the assumptions afforded by using a simpler language subset allow us to successfully apply the
transformation to codes that would otherwise not be able to be transformed.

We validate our experiment and evaluate our work by comparing the application of optimiza-
tions with and without normalization, in terms of the number of transformation cases successfully
applied and the performance of the resulting programs, and test the composability of several trans-
formations. On the one hand, the inlining transformations we tested were able to take advantage of
the normalized language, regardless of whether they were developed with a normalized program
in mind. Our performance testing also suggests that, in general, source-to-source compilation is a
good technique to apply optimizations when using less developed compilers. On the other hand,
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we observed challenges when composing our transformations with existing source-code transfor-
mations, which expected primitives that were not kept in the subset, such as for loops.

Keywords: source-to-source compilers, source-code optimization, source-code normalization



Resumo

O software compilado de hoje (escrito por exemplo em C ou C++) depende de infraestruturas
de compilação complexas que transformam programas de maneira a melhorar as suas caraterísti-
cas não funcionais. No entanto, desenvolver novas transformações e melhorar as existentes pode
provar-se um desafio para investigadores e engenheiros. Frequentemente, as transformações são
concebidas pensando na linguagem de alto nível, mas precisam de ser implementadas como trans-
formações de uma representação intermédia (IR) menos abstrata, ou mesmo através de modifi-
cações dos compiladores, o que poderá não ser viável por motivos técnicos ou legais.

Os compiladores source-to-source permitem analisar e transformar diretamente o código-fonte
original, tornando as transformações portáteis entre diferentes compiladores. Esta abordagem per-
mite que as transformações sejam compostas a montante das ferramentas de compilação, per-
mitindo uma rápida investigação e prototipagem de transformações de código, e o seu uso tem
sido proposto como uma solução para a implementação de transformações de programas, sempre
que fazê-lo ao nível dos compiladores seja inviável ou inconveniente. Uma dessas ferramentas é
o Clava, que contém um ambiente de execução programável em Javascript e dá acesso às Árvores
de Síntaxe Abstratas de programas em C e C++, permitindo a interrogação e transformação do
código-fonte.

No entanto, esta abordagem tem a desvantagem de expor o investigador a toda a largura da
linguagem de fonte, que frequentemente é mais extensa e complexa do que as IRs usadas nos
compiladores tradicionais. Devido a essa complexidade, é difícil efetuar análises completas, que
possam ter em conta todos os detalhes e exceções da linguagem. Por outro lado, estes construtos,
como ciclos e estruturas, podem ser úteis para codificar propriedades que não são explícitas nas
representações de nível mais baixo.

Neste trabalho, propomos uma solução para domar a complexidade da linguagem de fonte e
tornar a compilação source-to-source uma plataforma ergonómica para trabalho de otimização de
programas, através da divisão das transformações aplicadas em dois passos distintos. Primeiro,
definimos um subconjunto simplificado da linguagem, que possa codificar os programas escritos
nela com menos primitivas, e implementamos um conjunto de transformações, apelidadas de
normalizações, para transformar os programas-alvo em programas equivalentes expressos nesse
subconjunto. De seguida, implementamos uma transformação de inlining como caso de estudo,
mostrando como as assunções que emergem do uso da linguagem simplificada permitem-nos
aplicar com sucesso a transformação a códigos à qual esta não seria aplicável.

Validamos a nossa experiência e avaliamos o nosso trabalho, comparando a aplicação de
otimizações com e sem normalização, em termos do número de casos transformáveis e do de-
sempenho dos programas resultantes, e testamos a capacidade de composição de várias transfor-
mações. Por um lado, as transformações de inlining testadas foram beneficiadas pelo processo
de normalização, independentemente de terem sido desenvolvidas com programas normalizados
em mente. Os nossos testes de desempenho também sugerem que a compilação source-to-source,
genericamente, é uma boa técnica para aplicar otimizações em conjunto com compiladores menos
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desenvolvidos. Por outro lado, observamos desafios ao compor as nossas transformações com
transformações de código-fonte pré-existentes, que esperavam primitivas que não foram mantidas
no subconjunto, tais como ciclos for.

Keywords: compiladores source-to-source, otimização de código fonte, normalização de código
fonte
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“Try looking into that place where you dare not look!
You’ll find me there, staring out at you!”

Frank Herbert
(probably writing about software bugs)
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Chapter 1

Introduction

Modern compiled software is written in languages, such as C and C++, that allow the author to

abstract themselves away from the implementation details of the machine or lower level abstrac-

tions, and focus on properly encoding the functional requirements of their application. However,

to do so, we rely on modern compilation toolchains, such as LLVM and GCC, to optimize our

programs and ensure they satisfy non-functional requirements such as performance and efficiency.

Moreover, developers usually expect that these transformations are applied automatically, or

by supplying minimal amounts of configuration. Developers usually choose a level of optimization

along a scale that balances a trade-off between compilation times and the number or complexity of

performed optimizations, or, in rarer and more advanced cases, might manually enable or disable

certain optimizations, or insert directives in the source-code to guide the compiler.

1.1 Context

Generally, compilers are tools that read code, usually written in a high-level, human-readable

language, and translate the code to another language, usually low-level and for machines (e.g.

machine code, byte-code). Compilers can apply a number of transformations during translation,

to meet certain objectives, usually on a intermediate representation (IR), that lowers the code from

language-specific constructs but that abstracts away platform-dependent concepts.[18] Optimizing

compilers focus especially on transformations that improve the code’s performance and efficiency

characteristics.

These transformations can be classified as optimizations, which directly contribute to improv-

ing the programs’ performance, and/or enabling transformations, which, irrespective of their di-

rect performance impact, might enable or facilitate further optimizations. An example of an opti-

mization is constant folding, which directly reduces the amount of work done at run time, and an

example of an enabling transformation is function inlining, which may or may not improve per-

formance, but has the further effect of enabling further optimizations across function boundaries.
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Source-to-source compilers are compilers whose output, instead of being low-level code, is

code in the same or a different, but still high-level, human-readable language (in this case they

are commonly named transpilers). Clava is a source-to-source compiler, developed at FEUP and

based on the LARA framework and Clang, that supports the use of a Javascript-based domain

specific language (DSL) to transform C and C++ programs, by manipulating their Abstract Syntax

Trees (ASTs).

1.2 Motivation

To research, prototype, and implement novel compilation techniques, the traditional approach has

been for researchers to extend existing compilers and implement transformation passes on their

low-level IR. This process presents a number of challenges:

1. Because the compiler IRs have a lower level of abstraction, the researcher meets a higher

learning curve when performing their work, because they must represent their transforma-

tion in terms of those low-level primitives instead of the semantics of the target language.

Furthermore, some semantic details of the high-level language that might be useful in per-

forming the transformation are frequently lost in translation to the low-level IR, or are only

recovered after performing complex analysis of the low-level code [28].

2. The low level of abstraction of the most used IRs (e.g., LLVM-IR [19]) ties the effort to a

specific computing model, e.g. the von Neumann machine, even when the semantics of the

transformation are applicable to a larger range of computing models, if encoded in terms of

the high-level language [20].

3. Because each compiler tends to have its own Intermediate Representation, supporting trans-

formations that have been encoded in terms of one IR to another compiler toolchain requires

non-trivial porting and duplication of effort. This means that custom compiler passes be-

come tied to a specific compiler.

4. Often it is not feasible to modify the compiler. This may be a practical issue, e.g. because

modifications must be either coordinated with upstream developers or a separate fork must

be maintained over an extended period of time, or a regulatory issue: some projects, such

as those in the automotive industry, may need to use certified compilers that need to be kept

deliberately simple, or the cost of certifying those transformations is prohibitive.

A complementary approach that has been proposed to address these issues is the use of source-

to-source compilers as the first step in the compilation toolchain. By encoding the semantics of

the transformation in terms of the source language, challenges 1 and 2 are adddressed, since the

semantic model of the the original source code is preserved, and is not restricted to a specific target

architecture. By generating as the output a program in the source language, challenges 3 and 4

are addressed, since the ability to reuse the underlying compilation infrastructure is preserved, and

existing optimization work can be re-purposed.
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However, this approach is not without caveats. The most important of these is that a high-

level language, by design, presents an extensive set of syntactical and semantic constructs, which,

by confronting the compiler developers with an increasing number of semantic primitives and

an explosion of the number of interactions between them, increasingly requires more complex

analyses.

To control this complexity, compiler developers have begun implementing multiple tiers of

IRs, which aim to balance different levels of expressibility (higher-level abstractions) and parsi-

mony (lower-level primitives). However, this approach of restricting the semantics of the language

to a subset by construction eschews the ease-of-use benefits of source-to-source compilation, by

requiring compiler developers to work with even more models and languages.

Our work presents an alternative approach that can be taken, specifically within the context

of a source-to-source compiler. We present a technique to simplify the high-level language by

a process of subtraction. This process exploits the wealth of primitives present in the high-level

language, by rewriting specialized language constructs in terms of their more general counterparts.

That way, we are left with a simpler program, still in the source language, that can be confidently

targeted by simpler analyses and transformations.

1.3 Objectives

Taking into account the context and our motivation, we set out with three research questions:

1. What are the techniques that are used, both traditionally and in recent developments, to

manage the complexity of program representations and enable analysis and optimization

work?

2. What is the minimum subset of the C and C++ languages that allow an expressive represen-

tation of programs, while being more amenable to program analysis and transformation in a

source-to-source compilation environment, such as Clava?

3. Can an optimization be prototyped, following the normalization of programs to this sub-

set, that produces measurable effects on their non-functional characteristics, namely perfor-

mance?

1.4 Document Structure

In this first chapter, Chapter 1, we discuss the context in which the work is undertaken, the moti-

vation, and its expected objectives. Chapters 2 and 3 discuss the state of the art that is relevant to

provide context to the work. Chapter 2 provides the background needed to understand this work,

namely discussing the architecture that compiler engineers have developed to streamline the pro-

cess of supporting compilation and program transformation while simultaneously targeting multi-

ple source languages and target platforms, and categorizing the scope and nature of code analyses
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and transformations. Having this background in mind, as well as the challenges to traditional ap-

proaches that were described in Chapter 1, we go over and summarise what other approaches have

been taken to solve these problems, including approaches based on constructing IRs with different

levels of abstraction, and earlier contributions that precede our work. Chapter 4 details the general

approach that we have taken to architect, implement, validate and evaluate our proposed solution.

Chapter 5 describes the theoretical framework that we developed to guide our language normaliza-

tion effort, and enumerates the analyses and normalization steps that we derived and implemented

based on that framework. Chapter 6 details a case study that we developed to validate our normal-

ization approach, contributing a source-to-source function inlining transformation that is able to

leverage the normalized subset to inline functions in cases where it would not be possible before.

In Chapter 7 we present three experiments that we performed to evaluate the enabling effects of

our normalization transformations and the performance and enabling effects of our inlining trans-

formation, and discuss the results we obtained. In Chapter 8 we summarize our contributions and

results, discuss the outcomes of our work, and reflect on the shortcomings of our contributions,

proposing possible avenues to be explored in future works.



Chapter 2

Background

2.1 Architecture of Traditional Optimizing Compilers

Fully discussing the history of compiler construction is out of scope for this work. However, we

present an overview of the architecture of modern compilers, taking as examples LLVM, GCC,

and CompCert.

Modern, retargetable compilers emerged to solve the so-called m× n problem: how can we

reduce the work of providing a compilation infrastructure that support a set of source languages

(such as C, C++, FORTRAN, Ada, Rust, and so on) and yet also be able to generate optimized

code for several hardware architectures (such as x86 and x86-64, Arm, POWER, RISC-V, and so

forth), while avoiding a combinatorial explosion of implementation effort?

To do so, they relied on two key insights: that these high-level languages were able to be

transformed down to equivalent code in a subset of core imperative primitives that is still hardware-

independent, and that this low-level intermediate representation (IR) contains enough information

to perform most common optimizations.

Therefore, as seen in Figure 2.1, we can conceptualize the retargetable compiler as a system

consisting of three separate sets of modules:

Figure 2.1: A conceptual model of a retargetable compiler. Re-printed from [28]
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Figure 2.2: Diagram of LLVM compiler infrastructure’s architecture. Reprinted from [18]

• Front-ends: these modules are responsible for parsing and checking the semantics of the

source code, and then transforming it to the common intermediate language, which might

imply compiling down language-specific features, such as monomorphization, dynamic dis-

patch, and so on. Usually, one front-end is implemented for each supported high-level

language.

• Common core: this module is responsible for performing the bulk of the optimization steps,

repeatedly transforming the program. Because these transformations are coded in terms of

the intermediate representation, they can be re-used by each pair of source and target.

• Back-ends: Finally, the optimized code is processed to transform it to a code suitable for

the final target, by performing target-specific tasks such as register allocation, instruction

selection, linking according to the platform conventions, etc. These modules are usually

implemented for each supported target.

Figure 2.2 shows that LLVM’s architecture aligns closely with this model. Support for each

language or language family is implemented in separate front-ends (Clang for C/C++, rustc for

Rust, the Julia compiler, etc.), which then generate code in the LLVM IR to be optimized by

the LLVM optimizer, and finally a backend such as LLVM CodeGen [5] can generate the output

code (x86-64, Arm, WebAssembly), or another backend such as lli [4] can directly interpret or

JIT-compile the optimized IR.

Other compiler projects take a similar approach to their architecture. The GNU Compiler

Collection uses several Intermediate Representations throughout the compilation process [26]

- GENERIC, an abstract syntax tree representation; GIMPLE, a three-address-code representa-

tion; and a register transfer language - to simplify operations in different sections of the pipeline,

and help modularize an otherwise monolithic architecture. Ongoing efforts [2] are being under-

taken to further modularize this system into separate front-end, middle-end and back-end modules.

CompCert[21], a formally verified compiler for the C programming language, also uses several

intermediate representations to aid their goal of implementing and verifying each stage of the

compilation process (see Figure 2.3).
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Figure 2.3: Diagram of CompCert’s architecture. Reprinted from [1]

2.2 Optimization Techniques

For the aims of our work, it proves useful to understand the kind of techniques that are commonly

utilized to transform user-supplied codes into equivalent, yet more performant programs. This is

done through analyzing the code and determining opportunities for transforming it into an opti-

mized form, and performing those transformations, usually as a series of passes, which yield a

transformed version of the program.

We specifically wish to highlight two different aspects of the optimization process: the scope

of the analyses, and the nature of the applied transformations.

2.2.1 Scope of analysis for optimization

Seeing as the first step of the optimization process is an analysis step, to determine which opti-

mizations can be applied, we can distinguish optimizations by which scope the analysis is done.

The smallest scope is local code analysis. This analysis considers distinct instructions or

small blocks of instructions. For example, let us consider the strength reduction optimization.

This optimization substitutes specific instances of complex instructions for equivalent but simpler,

and therefore faster to execute, instructions. Consider the following two codes:

1 // prologue

2 // assume this variable exists and is set through an external interaction

3 int input_var;

4

5 // before strength reduction

6 int transformed_var = input_var * 4;

7

8 // after strength reduction

9 int transformed_var = input_var << 2;

The analysis is able to transform a multiplication by a power of two by an equivalent arithmetic

shift instruction. Notice that, to perform this optimization, the analysis needs to just consider the

one line of code, or a small block of instructions (load from memory, multiply with an immediate,

store to memory). Therefore, it is local in scope. In fact, this optimization can even be applied by
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linearly scanning the generated low-level code and replacing the instruction directly, in a process

called peephole optimization.

An intermediate scope at which analyses can be performed, and probably the most common

one, is that of global code analysis[17]. This kind of analysis considers all visible code in a

self-contained block, which usually corresponds to a function or procedure in the high-level lan-

guage. Because such a scope might contain branching control and data-flow, stemming from the

existence of loops and conditionals, these analyses rely on more advanced techniques, such as con-

trol and data-flow analysis[13], logical induction of variables, etc, but in turn are able to deliver

transformations that stem from the interaction between different blocks of instructions.

Some examples of this scope of analyses are:

• Constant folding and propagation, or compile-time evaluation - this technique substitutes

complex expressions whose arguments are only constants by the use of a single constant,

that is yielded by performing the computation at the time of compilation.

• Common sub-expression elimination - this analysis detects expressions where a factor is

repeatedly computed, and reworks the code to only compute it once, storing its value in a

temporary variable to be reused.

• Loop unrolling - this analysis duplicates the body of a loop in the code, to perform fewer

branches, which may improve instruction pipelining on the CPU.

• Dead code elimination - eliminates sections of the code which are unreachable, based on an

analysis of the program’s control flow.

• Some kinds of strength reduction, such as substituting the iterative computation of an arith-

metic series by its direct computation, are only possible through global analyses, such as

inductive variable analysis.

Even though this scope of analysis often suffices to perform many useful transformations, it

carries the limitation that calls into other global scopes, such as calls to other functions, procedures,

and units of compilation, are opaque, meaning that transformations which need information from

several global scopes are impeded. To solve that issue, another scope of analysis is needed, inter-
procedural analysis. On this scope, the interactions between different procedures are considered

by analyses. Let us consider the following code as an example:

1 template <type T>

2 class vector<T> {

3 const T get(size_t i) const {

4 if (i < size) {

5 return array[i];

6 } else {

7 throw Exception(/*...*/);

8 }
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9 }

10

11 size_t get_size() const {

12 return size;

13 }

14

15

16 private:

17 T* array;

18 size_t size;

19 }

20

21 int main(void) {

22 auto vec = new vector<int>();

23

24 // initializing code here ...

25

26 for (size_t i = 0; i < vec.get_size(); i++) {

27 auto elem = vec.get(i);

28 std::cout << elem * elem << ’\n’;

29 }

30 }

In this code listing, we can intuit that there are several optimization opportunities that go

unexploited unless we consider the interaction between both functions:

• On line 26, a naïve call to the get_size function will involve multiple operations related

to calling the function - saving to the stack a number of values whose registers might be

overwritten, storing the parameters and the return instruction pointer in specific registers or

stack positions, jumping to the subroutine, storing the return values in specific registers or

stack positions, jumping back to the callee, restoring the values that were previously ejected

from the registers, etc - even though the body of the function itself consists only of loading

a number from a memory address. By using an inter-procedural analysis such as function

inlining, which duplicates the body of the called function inside the body of the caller, the

compiler is able to remove such operations, yielding a simpler version of the code.

• While we can recognize that the loop header in line 26 and the branch in line 4 contain

a duplicated condition check, simple global analysis in each procedure will not be able to

detect such redundancy. However, an inter-procedural dead code elimination analysis is

able to do so, and remove the redundant check and associated unreachable code.

2.2.2 Nature of transformations

When considering which transformations can be applied in the context of optimizing codes, we

distinguish the nature of the transformation, in relation to how it affects the performance of the

code and the process of optimization itself.
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Often, a transformation can itself be considered a direct optimization. The nature of these

transformations is that they directly improve the performance of the transformed code. For ex-

ample, strength reduction operations directly substitute computations for equivalent yet cheaper

operations, directly improving the speed of the code. Likewise, constant propagation and folding

allows computation to be shifted from run-time to compilation time, allowing expensive compu-

tations to be replaced by cheap loading of an immediate value.

On the other hand, some transformations might benefit the optimization process, regardless of

their direct impact on the codes’ performance. We term these enabling transformations. These

transformations enable previously impossible optimizations, surfacing an emergent optimization

property from the composition of different techniques[12].

For example, function inlining may or may not impact positively the performance of the

code[11], depending on the balance between the improved instruction pipelining, and the wors-

ened program size, which may affect negatively the caching of the program’s instructions. In any

case, the extra information that the body of the inlined function provides may be instrumental in

performing other analyses and transformations, such as dead code elimination, vectorization, or

constant folding.

Another example of this phenomenon is constant folding and propagation. Besides directly

reducing the amount of computation performed at run time, it may enable the compiler to prove

that certain code paths are unreachable, aiding the process of dead code elimination.

Furthermore, some transformations, which are often called normalization transformations,

have the explicit goal of putting the analysed codes in a canonical form, so that latter analy-

ses have fewer edge cases to contend with, making the transformation code simpler and more

maintainable. Examples of these include factoring complex computations into several temporary

variables, or normalizing loop headers[15] e.g. so that they are always of the form for (int i

= 0; i < N; i++).

2.3 Summary

In this chapter, we have given an overview of important background concepts, for our work,

namely by describing the three-stage architecture of modern optimizing compilers, and by cat-

egorizing the scope and nature of the analyses and transformations that they may perform on the

programs they compile.



Chapter 3

Related Work

To meet the challenges presented in Section 1.2, several distinct approaches have been proposed

and developed.

3.1 Developments in IR-based optimization approaches

3.1.1 Mid-level Intermediate Representations

As high-level languages have expanded their breadth to capture more semantic details, several

compiler infrastructures have introduced their own IR between the high-level language, and AST,

and the underlying optimizer, and its respective low-level IR.

These representations generally work on an intermediate level of abstraction, in which the

set of syntactic constructs is restricted, and the semantic details of the language are encoded, as

opposed to being eliminated in the process of lowering to a low-level IR.

Several of these approaches have been identified [20]:

• The Rust compiler lowers the programs written in the language to their internal IR, MIR[23].

This representation eliminates several syntax constructs to facilitate several analyses, such

as liveness, death and reachibility checking, borrow checking (which implements Rust’s

static guarantees of memory safety), and guiding translation to the lower-level LLVM-IR.

• The Swift compiler lowers the programs to the Swift Intermediate Language (SIL) [6],

which they use to provide the following analyses: "A set of guaranteed high-level optimiza-

tions [...]. Diagnostic dataflow analysis passes that enforce Swift language requirements

[...]. High-level optimization passes [...]. A stable distribution format that can be used to

distribute ’fragile’ inlineable or generic code with Swift library modules, to be optimized

into client binaries."

• The Julia compiler lowers the programs to a SSA-form representation [3] after perform-

ing macro inlining and other syntax simplification tasks, in order to perform middle-end

optimization tasks.

11
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While the intermediate level of abstraction might be appropriate for some optimizations, this

approach is limited by several factors.

Firstly, it still ties the optimization work to a single compiler implementation: whereas these

languages have had their effort mostly concentrated on a single implementation (Swift compiler,

rustc, and the Julia compiler) and so are able to mitigate this disadvantage, other source languages,

such as C and C++, have multiple compiler implementations, where this approach suffers from a

fragmentation of effort.

Moreover, this approach continues to necessitate a lowering of the level of abstraction, which

might impede optimization efforts that depend on high-level details of the programming language.

This effect is exacerbated when considering the use cases of finding optimizations for codes that

make use of eDSLs or libraries [28].

3.1.2 MLIR: Declarative approach to defining and optimizing a Multi-Level Inter-
mediate Representation

Another recent contribution in this space is MLIR [20]. This extension of the LLVM represen-

tation aims to deal with several deficiencies of that system’s approach to compilation, namely

shortcomings in dealing with heterogeneous targets and non-scalar data.

To that end, it formalizes a system of intermediate representation with the following charac-

teristics:

• Ability to capture multiple levels of abstraction through the use of nested blocks of opera-

tions, and the use of attributes to capture semantic details of tagged code regions.

• Separation of concerns between different translation passes through the definition of di-

alects, static traits and dynamic interfaces.

• Ability to define schemas for non-scalar data.

• Declarative approach to defining code transformations, including the ability to progressively

and partially lower the abstraction level of code regions.

A practical example of this approach is the recently proposed Clang Intermediate Represen-

tation [22] (CIR). This representation leverages MLIR’s ability to define dialects and transforma-

tions within and between them to provide an intermediate language that does not necessarily rely

on the syntactic constructs of the C and C++ languages, but allows important semantic concepts

from these languages to be abstractly represented and reasoned about in analyses, before being

morphed into other, and lower-level, IR dialects.

While this approach might prove valuable in its stated goal of generalizing and driving a wide

goal of compiler projects, the generic nature of the representation may worsen the ergonomics

of developing code transformations. In particular, the transformation implementer must learn the

semantics of the IR representation, which is constructed to support the semantics of the language
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but not derived from it, and how to perform transformations on it. In the case of MLIR, the imple-

menter must, depending on the specifics of their transformation, implement the transformation in

terms of an external DSL and Python bindings, or even may need to write out their transformation

imperatively, using a C++ template-based system.

In comparison, using source-to-source compilation allows us to provide a simpler development

experience to users. By relying on the structure and semantics of widely supported high-level lan-

guages (C and C++), we are able to support a wide range of targets and assure the users that if they

are able to implement the transformation on high-level code, they will be able to automate it. By

relying on source-code normalization and simplification passes, we are able to provide a represen-

tation that is derived from the high-level language by subtraction, which can more immediately

be understood (it is "just a simple C/C++"). Not only that, by providing an compiler interface

embedded on, or embedding, an extremely popular and easy-to-use language such as Javascript,

we are able to provide the optimization developers-to-be with a more ergonomic experience.

3.2 C Intermediate Language: Source-to-Source normalization of C
code

Another work that is particularly relevant for this dissertation is the C Intermediate Language

[25]. This project is similar to, and can be in some ways considered to be a precursor of, our

work, as it similarly recognizes that the C language has a wealth of complex constructs hampering

a straightforward analysis process of source programs.

To tackle this issue, it constructs a high-level representation that preserves most semantic

aspects of the C source code, but simplifies several aspects of the language, including removing

redundant constructs and syntactic sugar, making implicit casts explicit, and separating value eval-

uation, side-effect creation, and control-flow changes. It also incorporates a Control Flow Graph

into the representation to make analyses relying on it simpler. After converting to this representa-

tion, it applies any transformations that the user has specified, using an embedded DSL in OCaml,

and outputs the transformed program in C.

As close as this approach may be to our work, there are still some different trade-offs between

this approach and ours:

• This approach still works by constructing a new representation that, while mapping closely

to the source language, still is separate from it. While this allows for a significant transfer

of domain knowledge compared to other IR-based approaches, it still is not as close to

the source language as we desired. In comparison, our AST-based approach, which only

subtracts elements that are deemed too complex, keeps a more faithful representation of the

original program.

• The language proposed by the authors eliminate some features, such as some kind of syn-

tactic sugars (->) or scoped variable declarations, that we consider to be useful enough and



14 Related Work

simple enough that they do not hamper the analysis of the language, while departing from

the original program.

• The front-end parser for the language is rather limited, only supporting ANSI C with some

GNU and MSVC extensions. While this is understandable when considering the age of

the tool, it stands in contrast with Clava, which is able to use Clang’s frontend tooling to

support codes written not only in C, but also C++ and OpenCL, evolving to support more

recent features of the language as Clang evolves to support them too.

• When implementing further transformations, CIL requires them to be written using a limited

interface based on OCaml and using only a visitor pattern. In contrast, the LARA environ-

ment that Clava uses allows full access, including imperative modification if needed, to the

program’s AST, using a widely-used host language (Javascript).

• While CIL does preliminary analysis to present a unified CFG and AST representation of

the program, this needlessly complicates reasoning about program when such analysis is

not required. In the Clava standard library, we implement normalization and control-flow

analysis separately, improving separation of concerns between these two tasks.

3.3 C–: Reduced C-language Subset as Compilation Target

Another set of authors that historically proposed the use of a reduced subset of C as a language to

be used by compilers is Peyton Jones, Ramsey, and Reig, with C– [16].

In their work, the authors identify several limitations encountered by using C as a portable as-

sembly language to be targeted by compiler front-ends for other abstract programming languages.

Specifically, they mention the lack of support of continuations, multiple return in registers, con-

trol of the stack framing and calling conventions, among other deficiencies as severely limiting to

implementing functional languages like Haskell, ML, or Scheme.

To solve this issue, they propose a language that at first sight looks like a simplified version of

C, but is not a proper subset. They define abstractions to control a number of lower-level behaviors,

such as precise control over static data layout, and stack-less jumps to implement continuations or

perform tail call elimination.

While there is stand-alone value in this approach for its purported use case of providing a

portable target to implement high-level languages, though a fair comparison with more recent

contributions in IRs [19] is warranted, this approach does not meet our particular use case.

With our contribution, our goal is to support an optimization use case for compiler-independent

analysis and transformation of C and C++ programs, not programs in other languages. That means

that it is more ergonomic to provide a representation that captures a proper subset of our source

languages, and we do not feel the need to break the confines of the C and C++ languages as they

are specified.
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3.4 Formally-verified optimization techniques for certified compilers

In the context of certified compiler implementation, several recent contributions have aimed to

implement formally-verified optimizations for the CompCert project:

• Tristan and Leroy, 2009 [27] implement and formally verify a Lazy Code Motion optimiza-

tion pass.

• Barthe et al, 2014 [9] contribute a formally-verified middle-end that adopts an SSA-form

intermediate representation, which simplifies the implementation of further optimizations.

These two contributions have in common the use of a combined technique for implementing

verified compilers. Specifically, the respective authors follow a process where they implement

the optimization pass using an unverified algorithm, for performance purposes, and introduce a

subsequent verification pass where a formally-verified validator program checks the correctness

of the transformation.

Another contribution in this space is a formally-verified implementation of a global common

sub-expression elimination and loop-invariant code motion pass [24].

These contributions prove that, with enough effort, it might be possible to formally verify and

implement a large breadth of optimization techniques, but several concerns remain unaddressed:

• The optimization work is still tied to a specific compiler. This aspect is exacerbated by the

consideration that other compilers’ models might not be formally specified or validated to

the same extent, and that the presence of differing abstractions between compilers will now

entail not only the need to adapt the implementation, but also the validation step.

• Although we consider these contributions a good first step in proving that it is possible for

certified compilers to be enhanced in their optimization abilities, there are other reasons that

might impede their modification by users and researchers, such as their being proprietary or

other impeding circumstances.

• In some cases, namely during prototyping work, it might be desirable to work with a sin-

gle, high-level abstraction, whereas the process of verification necessitates multiple, more

detailed formal constructs.

For this reason, we consider that the use of source-to-source compilation, followed by the use

of a certified compiler for the final compilation step, might be a good middle-of-the-road alter-

native to provide a degree of safety and simultaneously allow for research into new optimization

techniques.

3.5 Summary

In this chapter we have given an overview of recent related contributions to our work. We found

that there have been efforts in providing more flexibility to IR-based approaches and in formally-

verifying optimization passes for certified compilers.
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We reached the conclusion that there is space to push further with a source-to-source compi-

lation approach to analysis and transformation, which we detail in Chapter 4.
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General Approach

To fulfill our objective of providing an environment where program analysis and optimization re-

search for C and C++ is faster and more ergonomic, we focused on the following general approach:

1. Define a language subset where program analyses need to account for fewer primitives,

constructs and edge cases.

2. Implement a series of transformations that normalize a given program to only use said lan-

guage subset.

3. Target a specific optimization to be evaluated.

4. Implement the optimization as a transformation to be applied to the code.

5. Apply the normalization and optimization passes on sample programs and benchmarks.

6. Compile with standard toolchains and evaluate the performance of the optimization.

4.1 Architecture

We chose to simplify the architecture of our system as much as possible, by using the source-to-

source compiler, Clava, to output source code files that can be used with a pre-existing standard

compilation toolchain, such as LLVM, instead of imposing a specific choice of compiler. Figure

4.1 shows the general architecture of the system as described.

Firstly, we implement the normalization and optimization passes using the Clava source-to-

source compiler. Clava is fully scriptable in Javascript, using an embedded DSL. As described

in Figure 4.2, Clava parses the input C or C++ programs using Clang’s libtooling library, and

generates an AST representation for them. This representation is then automatically converted to

an AST for use inside the LARA Framework’s Javascript environment, where scripts written in

Javascript can manipulate the AST at will. At this stage, we run a series of transformations to

simplify and optimize the AST representation of the program, and output the transformed version

of the program in the source language.

17
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Figure 4.1: Diagram showing the overall architecture of the compilation system.

Afterwards, we are able to use the transformed program as input of a compilation toolchain

of choice. This allows us to provide the maximum portability for the final build step of our com-

pilation process, by allowing us to choose a compiler that is the most appropriate for any given

use case. If the target of our compilation is a general-purpose computer running a mainstream

operating system, we are able to use any popular compiler, such as the Clang compiler, the GCC

compiler, or the MSVC compiler, as the backend for our process. Furthermore, Clava already pro-

vides an integration with CMake, making this process easier for existing projects. If, on the other

hand, we need to use a certified compiler, such as CompCert, or a compiler that is specific to an

specialized use case, such as automotive or embedded systems development, we can still use Clava

as the front-end. This is only possible because we are using the source language as the target of

our optimizations, yielding a program that is at least as portable as the original program. Besides

that, the Clava compiler and the LARA Framework are both developed in-house at FEUP’s SPeCS

laboratory, which allowed us to leverage existing expertise with the tool to quickly prototype our

research, and quickly communicate and fix any tooling flaws that were identified, which made it a

natural choice over other source-to-source compilation systems.

Figure 4.2: Diagram of Clava’s architecture, in relation to the LARA framework. Adapted from
[10].
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4.2 Organizing Analyses and Transformations Effectively in Clava

Another question that we faced was understanding how the analyses and transformations that we

aimed to implement could be organized to maximize the ease of development and showcase the

ergonomy benefits of our approach.

Firstly, it is useful to revisit the goals set out in the introduction of this work. As mentioned

then, one of the goals for the transformations provided is that they should be automatic. This

means that we cannot, for the most part, rely on the developer to indicate which transformations

should be transformed in which parts of the code. To fulfill that goal, we relied on the already

existing notion of transformation passes, which is present in most compilers. This abstraction

posits that the transformations that we aim to perform on the code can be modelled as a sequence

of discrete transformations to be applied to the program. A pass will, in principle, be composed of

two separate elements. First, an analysis must be performed, usually resorting to structural pattern

matching on the program, to identify cases where a certain transformation may be applied prof-

itably. Afterwards, the transformation is applied to the identified program fragments, modifying

its structure and yielding a new code for that fragment that meets the compiler developers’ goals

of improving non-functional aspects of the code or enabling further transformations, while main-

taining the function of the existing program. Because of the structural nature of these analyses,

the use of an AST-based compiler provides an interesting advantage for implementing them: the

variety of primitives present in the source language and associated AST allows many structural

elements to be explicitly modelled, reducing the need to perform complex analyses to re-surface

those details from a lower-level representation.

We introduced, therefore, to the LARA framework the Pass abstraction, which is responsible

for, from any given node of an AST, finding the descendants to which a given transformation can

be applied and applying the desired transformation to the relevant nodes, yielding back to the

main script statistics and error diagnostics for development purposes, as well as implementation

specific details such as whether the program should be re-parsed to deal with inserted literal code.

To use this abstraction, the researcher only needs to implement a predicate establishing whether a

specific node in the AST is a candidate to be transformed in that pass, and a function that performs

said transformation, and the abstract implementation can be responsible for visiting the matching

nodes in the AST and transforming it.

Finally, to support the goal of providing a frictionless environment, we implemented our lan-

guage normalization algorithm as part of the Clava standard library.

4.3 Validation Case Study: Function Inlining

After having defined our normalized language subset and implemented the transformations to ob-

tain it, we validate the approach by implementing a sample code optimization transformation -

in this case, we chose function inlining. The choice of transformation was made based on three
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main factors: the first factor we considered was the ease of translating the model of the trans-

formation in terms of a source-to-source transformation. Inlining proved an interesting candidate

under this factor because, in the optimal case of isolated calls, it can trivially be implemented by

copying the code of the inlined function into the body of the function that calls it. The second

factor we considered was choosing a transformation whose implementation was tangibly eased

by the preceding code normalization steps. In the case of inlining, the possibility of calling func-

tions within nested expressions, which was removed by our code normalization steps, impeded a

straightforward implementation of the optimization, whereas normalized code targeting our subset

has clearly delineated calls, allowing the transformation to be applicable in more cases. Finally,

the final factor that we considered was that the optimization that we would implement should pro-

vide a clear non-functional improvement to the final program. In the case of function inlining,

we theorized, based on previous experiments and literature [11], that the transformation would

provide clear performance improvements when inlining a small function in a hot section of the

caller, such as inside a loop, by removing unnecessary branching and improving instruction cache

locality.

In terms of a strategy for evaluation, we opted to evaluate our case study along two axes.

The first axis is ergonomics. In particular, we tested two versions of an inliner transformation

and evaluated whether the normalization steps allowed the inlining to operate in more cases than

previously allowed. The second axis is the quantifiable effect on runtime performance of code

processed with our transformations. We tested both synthetic micro-benchmarks created by us

to illustrate ideal cases of applicability for function inlining, and a more general suite, NAS, to

exercise our transformed code and provide a better point of comparison with related work.

4.4 Summary

In this chapter, we discussed the general approach that our solution takes to solve the problem

of providing functional and ergonomic support for code optimization research for C and C++.

Particularly, we enumerate the main tenets of our approach and present the general architecture of

our compilation system, accompanied by a high-level discussion of the trade-offs that led us to that

choice. This is followed by a discussion of the logical organization of the proposed techniques’

implementation, and by a brief discussion of our approach to validating and evaluating our work.
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A Normalized Subset of the C and C++
Languages

As we explored earlier in this work, two factors predominate in providing researchers and devel-

opers with a powerful and ergonomic program optimization platform.

The first, the tooling’s ability to provide simple, yet powerful abstractions for querying and

manipulating the programs, is arguably tackled, even if not yet completely, by the use of Clava,

with its simple model and straightforward scripting in a high-level language.

However, the other predominant aspect, one that goes under-appreciated, is ensuring that the

level of abstraction of the representation used is appropriate for the task at hand. This requires

balancing parsimony - making sure that only the language elements that are needed to represent

the domain are exposed, and no more - and expressiveness - exposing a set of language elements

that is rich enough to represent the domain in a natural and concise way. The balance between the

two factors naturally depends on the task. Let us consider two examples that typify opposite ends

of this balance.

• A refactoring tool will find itself needing an extremely expressive intermediate representa-

tion. This stems from the overwhelming need to preserve most of the syntactic structure

of the original program, compared to the relatively local kinds of changes that will be per-

formed (such as renaming the occurrences of a variable, or extracting a method out). In

extreme cases, even spacing, line breaks and indentation must be preserved, so correspond-

ing elements must be present in the internal language.

• On the other hand, the middle and back-ends of a standard compilers may admit and use

a much more restricted set of elements in their intermediate representation. This occurs

because the target language is not meant for human consumption and is itself quite parsimo-

nious, and because simpler languages are often easier to statically analyze, since structural

pattern matching must account for a smaller set of elements and their combinations.

By analysing the use case that we tackle: supporting ergonomic, automatic yet inspectable

research and implementation of program optimization, we are able to establish a set of principles

21
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to navigate this trade-off, and to present a normalized or canonical subset of the C and C++

languages to use as our intermediate representation.

This chapter presents these underpinning principles, and contributes a set of transformations

that may be applied to reach our normalized subset.

5.1 Simplified, but structured, control flow

The first set of complexities that were tackled is the diverse set of control flow constructs. Control

flow in C and C++ is performed by using several different statements, which can be categorized

further into several categories:

1. Selection statements

2. Iteration statements

3. Unstructured control flow statements

For each of these categories, we considered whether the corresponding statements could be re-

placed with a set of patterns using fewer primitives, while rejecting the goal of replacing structured

control flow statements with equivalent patterns made of unstructured control flow statements.

5.1.1 Selection statements

C and C++ use the if-statement as the main pattern for structured selection control flows. This

statement takes an expression as a condition, and, depending on it evaluating to a non-zero (truthy)

or zero (falsy) value, it will execute the statement contained in a respective statement (termed as

the then or else branch of the statement). We consider this statement the main candidate for being

the target of normalization of other selection statements.

The language allows several expressive liberties to be taken when using this statement, so

Clava already performed several normalization steps for this statement. Specifically:

• A branch of this statement could be a single statement, or a compound statement (a scope,

denoted by the use of curly brackets around one or more inner statements). Clava automati-

cally inserts a scope around single statements.

• The else branch is optional. In that case, no statement would be executed if the condition

was falsy. Clava automatically inserts an empty scope for that branch.

This means that a code like:

1 if (condition) singleStatement();

Is transformed into the code:
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1 if (condition) {

2 singleStatement();

3 } else {}

Furthermore, the ternary operator can be considered a selection statement as well. As with the

if-statement, this operator takes an expression as a condition, and evaluates to different expressions

depending on whether the condition evaluates to a truthy or falsy value.

We aimed to rewrite this operator in terms of the if statement, and so implemented the trans-

formation clava.code.SimplifyTernaryOp to do so automatically. Leading the following

code:

1 condition ? trueExpr : falseExpr;

2

3 a_type result = condition ? trueExpr : falseExpr;

To be transformed into:

1 if (condition) {

2 trueExpr;

3 } else {

4 falseExpr;

5 }

6

7 a_type result;

8 if (condition) {

9 result = trueExpr;

10 } else {

11 result = falseExpr;

12 }

This transformation furthermore requires that non-linear control flow in evaluated expressions

is performed explicitly, as detailed in 5.2, so as to have ternary operators be placed in top-level

statements or as the right hand side of a top-level assignment.

Finally, we must consider the existence of the switch (case) statement, which evaluates a con-

dition and jumps to an execution path based not on the truth value of a condition, but by comparing

it to a set of values (the cases of the statement). However, this statement, in C and C++, does not

exhibit structured control flow by default, since in the absence of a break statement, the flow of

execution falls through to the code path of subsequent cases in the code. It is however possible to

devise a transformation that, based on analysing the existence or nonexistence of break statements

and using code duplication, could guarantee structured control flow in these cases, transforming

code such as:
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1 switch (cond) {

2 case 1:

3 stmt1_1;

4 stmt1_2;

5 case 2:

6 stmt2;

7 break;

8 case 3:

9 stmt3;

10 }

Into code like:

1 switch (cond) {

2 case 1: {

3 stmt1_1;

4 stmt1_2;

5 stmt2;

6 break;

7 }

8 case 2: {

9 stmt2;

10 break;

11 }

12 case 3: {

13 stmt3;

14 break;

15 }

16 }

allowing the switch statement to be subsequently transformed into a chain of if statements:

1 if (cond == 1) {

2 stmt1_1;

3 stmt1_2;

4 stmt2;

5 } else if (cond == 2) {

6 stmt2;

7 } else if (cond == 3) {

8 stmt3;

9 }

The main factor that complicates this transformation is that there is no guarantee that the con-

trol flow in a switch statement is structured. For example, one could have case labels in between

components of an if statement, or a Duff’s device [14], or declarations that are unreachable for a
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label but reachable code that nevertheless uses said declarations. Therefore, it was infeasible, at

least for the scope of this work, to devise a general transformation for this case. We also decided

to de-prioritize work on a restricted version of it, so no attempt was made at such implementation.

5.1.2 Iteration statements

Iteration statements are statements where a condition is repeatedly evaluated, and a set of state-

ments are executed as long as the condition holds. The C and C++ languages define four types of

statement to perform this control flow: the while statement, the do-while statement, the traditional

(three statement) for statement, and the range or iterator-based for statement (for-each statement,

in our parlance).

While these statements could be rewritten in terms of selection statements and unconditional

jumps, the pattern of iteration is important enough to warrant explicit expression, and at least one

of the iteration statements should be kept. Thus we chose to keep as a primitive the while state-

ment, which is the conceptually simpler of the four. The while statement evaluates the condition

at the beginning of each iteration and executes the body if the condition holds true.

The other conceptually simple statement is the do-while statement. The do-while statement

evaluates the condition at the end of each iteration, and so is guaranteed to execute at least one

iteration.

The processes for transforming a while statement into a do-while statement and vice-versa are

well known. To transform a while statement into a do-while statement we would perform a loop

inversion: replace the while statement with a do-while statement, and wrap it in an if statement,

duplicating the condition. This inversion often proves to be worthwhile in terms of performance,

since it reduces the number of branches, which predominates over the duplicated code to calculate

the condition.

However, we find that while statements are generally more used and better understood, so we

implemented instead the transformation DoToWhileStmt, which transforms a do-while state-

ment to a while statement by peeling the first iteration in a separate scope before the transformed

loop, transforming code such as:

1 stmt0;

2 do {

3 stmt1;

4 stmt2;

5 } while(cond);

Into code like:

1 stmt0;

2 {

3 stmt1;

4 stmt2;
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5 }

6 while(cond) {

7 stmt1;

8 stmt2;

9 }

While this transformation results in more duplicated code, we believe that its expected infre-

quency compared to the reverse transformation makes it more desirable.

The next element to consider is the for statement. This statement allows the user to concisely

define a canonical loop by having the usual steps of it (declaring the inductive variable, expressing

the loop condition, and stepping the inductive variable) all present in the loop header. However, to

maintain our desirable degree of parsimony, we implemented the ForToWhileStmt transforma-

tion, which extracts out the initialization and step sub-statements and transforms the for statement

into a while statement, turning code like:

1 for (init; cond; step) {

2 stmt1;

3 stmt2;

4 }

Into:

1 {

2 init;

3 while (cond) {

4 stmt1;

5 stmt2;

6

7 step;

8 }

9 }

Finally, we considered the C++-only ’range-based for statement’, or for-each statement for

short. This statement can be converted in a straight-forward manner to a for statement, according

to the C++ standard:

The range-based for statement

for (init-statement for-range-declaration : for-range-initializer)

statement

is equivalent to

{

init-statement
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auto &&range = for-range-initializer ;

auto begin = begin-expr ;

auto end = end-expr ;

for ( ; begin != end ; ++begin ) {

for-range-declaration = * begin ;

statement

}

}

Following that, it could be further rewritten in terms of a while statement. We did not imple-

ment this transformation, since we considered it to be of low priority in a prototypical implemen-

tation.

5.1.3 Unstructured control flow

The last category of statements that we considered were unstructured control flow statements:

• Break statements

• Continue statements

• Early return statements

• Exception throwing and catching

• Long jumps

• Go-to statements

These statements, in the general case, cannot be converted to equivalent structured statements

without introducing meaningfully complex code changes and/or auxiliary variables, so we decided

against implementing transformations to remove them. Two exceptions were made against this

decision.

Firstly, in the case where for statements were converted to while statements, it was necessary to

transform continue statements into equivalent go-to statements to a label before the step expression

at the end of the loop.

Secondly, a transformation to remove early returns from a function, by introducing uncondi-

tional jumps to the end of a function and the use of an auxiliary variable, was developed, for use

in specific applications (such as function inlining).



28 A Normalized Subset of the C and C++ Languages

5.2 Explicit side-effects and transfers of control flow in expression
evaluation

C and C++ allow the building of arbitrarily complex expressions to be evaluated during execution,

expressions which may contain elements in their construction that perform side-effects or transfer

control flow in some way.

Some examples of this complexity may include divergent control flow in evaluation, such as

when using ternary operators, side-effects during expression evaluation, such as when evaluating

assignments and unary increment and decrement operators, and potentially interprocedural jumps,

such as when evaluating a call or a throw.

In many situations, when performing analyses, it is useful to separate these complexities from

the comparatively mundane calculations that may be performed around them.

Furthermore, we found that, when performing some transformations, such as function call

inlining, there were cases where we would need to place several statements in a place that only

accepted a single expression, and so it would be useful to separate the complex steps of a certain

expression’s evaluation from its use, in order to simplify implementation.

Therefore, we aimed to restrict the expression syntax to a more manageable set of elements.

Specifically, we decided that any use of an expression (such as in a call parameter or in a header of

a selection or iteration statement) could only be made with an immediate or an existing variable,

and that the evaluation of any complex expression ought to be simplified by using one or more

temporary variables, according to the following rules - the rvalue of a variable assignment can be:

• An immediate or an existing variable.

• One or more unary operators applied in succession to an immediate or an existing variable.

Unary decrement and increment operators are not allowed.

• A binary operator, whose arguments are an immediate, an existing variable, or another bi-

nary operator, to which this restriction on allowed arguments applies recursively. Assign-

ment operators are not allowed.

• An interprocedural call, whose arguments can only be an immediate or an existing variable.

In general, these restrictions should be understood to adhere to the principle that expressions

should pertain only to combinations of pre-existing and primitive values. Other concerns should

be dealt with externally to expression evaluation.

Of course, these restrictions imply that a range of valid expressions must be rewritten using

our restricted set of constructs. The following subsections detail such cases, and how they were

rewritten.

Other expressions need only to be decomposed. In those cases, we insert temporary variables

to contain the intermediate results of those expressions’ evaluation.

After this process of transformation and decomposition, we are left with a sequence of state-

ments to be placed preceding to any place the expression is evaluated in, a new value for the
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expression, and a sequence of statements to be placed after the evaluation1. These statements

might be repeatedly inserted, depending on the control flow of the program (for example, in a

while statement, the preceding statements will be inserted before the loop and at the end of each

iteration, and the succeeding statements will be placed at the beginning of each iteration and after

the loop, coinciding with the occasions where the loop condition is evaluated).

5.2.1 Explicit side-effect evaluation

There are several expressions in C and C++ that can also effect changes on the global state.

These expressions, while useful when writing expressive, high-level code, can complicate rea-

soning about the program automatically, since, for a single expression, both value production and

side-effects must be tracked. Therefore we aim to rewrite these expressions to separate value

computation and side-effect application.

The first kind of expressions that needed to be rewritten were the ones that performed side-

effects on the variables they were operating on. These were assignment operators and unary incre-

ment and decrement operators. These operators, while returning a value, simultaneously mutate a

variable. Separating this mutation is useful to allow analyses to reason about the mutation sepa-

rately, and to be able to assume that expression evaluation is a pure computation.

Therefore, we devised transformations to insert a separate statement performing the mutation,

and to reference the results of the mutation explicitly, according to the semantics of each operator:

• When evaluating an assignment operation, the assignment will be performed in a previ-

ous statement, and the lvalue of the assignment will be subsequently used in the computed

expression.

• When evaluating a pre-increment or pre-decrement unary operator, the increment or decre-

ment will be inserted before the expression evaluation, and the target will be used in the

computed expression.

• When evaluating a post-increment or post-decrement unary operator, the target will be used

in the computed expression, and the operation will be inserted as a subsequent statement.

This means that code like:

1 int a = 1;

2 int i = 2;

3 int j = 3;

4

5 int b = (a += i++ + ++j);

1Strictly speaking, there is not a specific total order of evaluation, as the standards do not mandate a general or-
der of evaluation, unless an operator with more specific semantics introduces such an order. These operators are
known to introduce sequence points into the program evaluation. Examples of such operators are: the comma operator,
short-circuiting union and intersection operators, ternary operators, function calls, among others. In practice, we must
serialize the order of evaluation anyway, since the program source is sequential by nature, so we serialize the expression
tree left-to-right, post-order.
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Will be rewritten to:

1 int a = 1;

2 int i = 2;

3 int j = 3;

4

5 ++j;

6 a += i + j;

7 int b = a;

8 i++;

Afterwards, the isolated unary increment and decrement operators can safely be rewritten to a

simple assignment with a sum.

5.2.2 Explicit transfers and divergences in control flow

We also strive to make complex control flow more explicit.

Firstly, calls are isolated from other elements of the expression:

1 int a = f(b, g(c, d);

2

3 // becomes

4

5 int temp0 = g(c, d);

6 int a = f(b, temp0);

Secondly, ternary operators are completely removed and rewritten in terms of an if-statement,

after they are separated from the rest of the expression evaluation:

1 int a = conditionA ? (conditionB ? expr1 : expr2) : expr3;

2

3 // becomes

4

5 int a;

6 if (conditionA) {

7 if (conditionB) {

8 a = expr1;

9 } else {

10 a = expr2;

11 }

12 } else {

13 a = expr3;

14 }
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Another relevant transformation, that was not implemented and is left as future work, is rewrit-

ing short-circuiting boolean operators with if statements, so as to preserve the sequencing and

conditional execution properties of the operator when the operators are decomposed. This would

mean that a statement such as:

1 bool condition;

2 condition = (expr1 && expr2) || (expr3 && expr4);

Would be rewritten not as:

1 bool condition;

2

3 bool temp1;

4 temp1 = expr1;

5 // semantic error: executes side-effects of ‘expr2‘ when ‘expr1‘ evaluates to false

6 bool temp2;

7 temp2 = expr2;

8 bool temp1and2;

9 temp1and2 = temp1 && temp2;

10

11 // semantic error: executes side-effects of ‘expr3 && expr4‘ when ‘expr1 && expr2‘

evaluates to true

12 bool temp3;

13 temp3 = expr3;

14 // semantic error: executes side-effects of ‘expr4‘ when ‘expr3‘ evaluates to false

15 bool temp4;

16 temp4 = expr4;

17 temp3and4 = temp3 && temp4;

18

19 condition = temp1and2 || temp3and4;

But as:

1 bool condition;

2 {

3 bool tempUnion;

4 {

5 bool temp1and2;

6 {

7 temp1and2 = expr1;

8 }

9 if (temp1and2) {

10 // correct: only executes side-effects of ‘expr2‘ when ‘expr1‘ evaluates to

true

11 temp1and2 = expr2;

12 }
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13 tempUnion = temp1and2;

14 }

15 if (!tempUnion) {

16 // correct: only executes side-effects of ‘expr3 && expr4‘ when ‘expr1 && expr2

‘ evaluates to false

17 bool temp3and4;

18 {

19 temp3and4 = expr3;

20 }

21 if (temp3and4) {

22 // correct: only executes side-effects of ‘expr4‘ when ‘expr3‘ evaluates to

true

23 temp3and4 = expr4;

24 }

25 tempUnion = temp3and4;

26 }

27 condition = tempUnion;

28 }

A final transformation that was left unimplemented was removing the comma operator, which

would transform code like:

1 // void side_effect(int *n);

2 // int arg;

3 int n;

4 n = side_effect(&arg), arg;

Into:

1 // void side_effect(int *n);

2 // int arg;

3 int n;

4 side_effect(&arg);

5 n = arg;

5.3 Overall simplification of the language and removal of superfluous
elements

Besides the two kinds of simplification detailed in the two previous sections, we defined a further

set of simplifications to be made to the language. They consist of rote substitutions of convenience

operators for their more verbose primitive versions, and other simple transformations. These in-

clude:
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• Breaking up variable declaration statements into several statements, to ensure that only one

variable is declared in each statement.

• Separating variable initialization from variable declaration, by placing the initial value in a

separate assignment statement.

• Removing complex assignment operators, by replacing with assignments whose rvalue is

the primitive operator corresponding to the complex assignment. E.g, a += 1 becomes

a = a + 1. Exceptions regarding side-effecting lvalue calculations and atomic lvalues

are not implemented, and left as future work.

• Removing variable declarations the condition statements in the headers of selection and

iteration statements. Not implemented.

• Removing variable shadowing. When variables are declared in inner scopes with the name

of an existing variable in an outer scope, they are renamed to avoid shadowing it.

5.4 Schedule of transformations

After considering the goals for our intermediate language, defined as a subtractive subset of the

existing C and C++ languages, we now can define a schedule of transformation passes, to be

applied to a program written in these languages, that normalizes it to an equivalent program in our

language subset:

1. Break up variable declarations, separate variable declarations from their initialization

2. Rewrite all loops in terms of while statements.

3. Separate variable declarations from condition statements in the headers of selection and

iteration statements.

4. Decompose and simplify all complex expressions.

5. Rewrite any remaining ternary operators in terms of if statements.

6. Smaller simplifications, e.g. remove complex assignment operators, remove variable shad-

owing.

Figure 5.1 illustrates the dependencies between each transformation. Furthermore, because

not all transformations were implemented, their implementation status is made explicit. Finally,

we show where some auxiliary transformations are used.

After these transformations, we come to have a normalized program that is ready for further

analyses and optimizations to be applied.
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Figure 5.1: Dependency diagram of the envisioned transformations, their implementation status,
and auxiliary transformations.
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5.5 Conclusion

In this chapter we have discussed the factors that lead compiler developers to opt for more or

less complex intermediate languages, outline the two main goals for our intermediate language

- simplified but structured control flow, and explicit separation of expression value, control flow

and side-effect evaluation - and their implications, and contribute a schedule of transformations

that, when applied to a program, yield an equivalent program in a normalized subset of the source

language.
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Chapter 6

Case Study: Source-to-source function
inlining and enabling effects of
normalization

6.1 Inlining as a concept

Function inlining is an optimization that substitutes a call to another procedure for the body of that

very same procedure. For example, take the following code example, which uses a helper function

to calculate the offset to take into a linear buffer corresponding to a matrix:

1 size_t matrix_offset(size_t n_cols, size_t row, size_t col)

2 {

3 return n_cols * row + col;

4 }

5

6 // size_t n_rows;

7 // size_t n_cols;

8

9 for (size_t i = 0; i < n_rows; i++)

10 {

11 for (size_t j = 0; j < n_cols; j++)

12 {

13 size_t offset = matrix_offset(n_cols, i, j);

14 // do something with the offset

15 }

16 }

If targeting an imaginary stack machine, but one where local variables can be stored in unlim-

ited virtual registers, a naive translation of this code would yield machine code like:

37



38 Case Study: Source-to-source function inlining and enabling effects of normalization

1 procedure matrix_offset:

2 pop r0 // n_cols

3 pop r1 // row

4 pop r2 // col

5 pop r4 // return address

6

7 r5 = r0 * r1 // temporary, row offset

8 r6 = r5 + r2

9

10 push r6

11 jmp r4

12 end procedure

13

14 procedure main

15 // r0 is n_rows

16 // r1 is n_cols

17

18 r2 = 0 // i

19 label loop_1

20 jmp_gt_eq r2, r0, end_loop_1

21

22 r3 = 0 // j

23 label loop_2

24 jmp_gt_eq r3, r1, end_loop_2

25

26 push offset_return

27 push r3

28 push r2

29 push r1

30 jmp matrix_offset

31 label offset_return:

32 pop r4 // offset

33

34 // ... do something with r4

35

36 r3 = r3 + 1

37 jmp loop2

38 label end_loop2

39

40 r2 = r2 + 1

41 jmp loop1

42 label end_loop1

43 end procedure

From this listing, one can see already one of the overheads associated with function calls.

Depending on the calling convention, the system must perform extra copies of the arguments that

are used to pass into the called procedure, either storing them in the stack (main memory) or

in specific registers. Furthermore, if the architecture of the system does not allow an unlimited
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number of registers, it must save any other relevant values stored in the registers to memory, to

prevent them being modified by the called procedure. Finally, the two procedures can be located

in very disparate parts of memory, so performance may suffer because of decreased colocality on

memory.

Let us now consider the same code processed by an inlining step, followed by some basic copy

elision for clarity’s sake, yielding the following code:

1 procedure main

2 // r0 is n_rows

3 // r1 is n_cols

4

5 r2 = 0 // i

6 label loop_1

7 jmp_gt_eq r2, r0, end_loop_1

8

9 r3 = 0 // j

10 label loop_2

11 jmp_gt_eq r3, r1, end_loop_2

12

13 r4 = r1 * r2 // temporary, row_offset = n_cols * i

14 r5 = r4 + r3 // offset

15

16 // ... do something with r5

17

18 r3 = r3 + 1

19 jmp loop2

20 label end_loop2

21

22 r2 = r2 + 1

23 jmp loop1

24 label end_loop1

25 end procedure

Several aspects here are improved. Firstly, there ceases to be a need for branching into remote

code locations, which, coupled by the increased code locality, might decrease the CPU stalling as-

sociated to instruction cache misses and branch mispredictions. Secondly, access to the data mem-

ory is reduced. On our abstract machine stack access is completely eliminated, since the function

parameters can be set by copying parameters to new registers (these copies were later elided for

code clarity, but nevertheless access to them would be more performant than performing reads and

writes to memory), but even in machines where the number of registers is limited, this inlining

may be beneficial because of reduced stack spilling of registers during register allocation. Finally,

having full access to the code of the called procedure could enable further optimizations. For ex-

ample, now that a global analysis of the main function can see that the matrix offset computation

is actually constituted by a loop-invariant row offset computation and a loop-variant addition, it
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could hoist the first part of the computation to the outer loop.

6.2 Inlining in a source-to-source context

Conceptually speaking, inlining should be a relatively simple operation. The compiler must take

the text of the called function, replace the call with said text, adjust references to the arguments of

the function to point to the parameters passed into the call, and store the resulting expression, if it

gets used in the called context. Indeed, in the example presented in the previous section, that can

be quite easily done. One must only assign to the lvalue of the call the expression contained in the

return statement, and replace the arguments of the function declaration with those of the call:

1 size_t matrix_offset(size_t n_cols, size_t row, size_t col)

2 {

3 return n_cols * row + col;

4 }

5

6 // ... size_t n_cols, i, j;

7 size_t offset = matrix_offset(n_cols, row, col);

8 // becomes

9 size_t offset = n_cols * i + j;

However, in the general case, high-level languages such as C and C++ do not exhibit a strict

separation between assignment expressions, side-effects and control flow, and syntax for state-

ments and expressions is not perfectly composable, so there are many factors that will impede this

straight-forward implementation of inlining. In the course of this section, we present several fac-

tors that impede this implementation, and how the normalization process described in Chapter 5

or further transformations might enable implementing this transformation in an increased number

of situations.

6.2.1 References to caller lvalues and mutation of function parameters

The first aspect that we must take into consideration is the fact that C and C++ function calls pro-

vide their parameters by value. This means that a function can modify the value of its parameters,

without modifying said values on the caller’s end.

The concrete implication this has for our inlining transformation is that we must copy all

call arguments and reference those copies in the inlined function code, as opposed to directly

referencing the parameter values. If there is a significant performance impact stemming from

these copies, we could implement a copy elision step afterwards, to remove unneeded duplication.

6.2.2 Calls contained in compound expressions and statement headers

The second aspect we consider is that, in C and C++, function calls can be nested in contexts where

the text of the function (which can be comprised of several statements, including declarations and
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control flow statements) cannot be inlined in a way that is syntactically valid, such as where the

language only allows expressions to be placed, like in compound expressions and in selection or

iteration statement headers.

However, calls as an expression statement, and assignment from the return value of a call to an

lvalue, in the context of a scope, can always be inlined, by inlining the text of the called function

and, if the return is not void, assigning the would-be returned expression to the left hand side of

the original assignment.

Taking into this consideration, we can consider that the transformations detailed in Section 5.2

enable us to perform inlining in more cases, by extracting expression evaluation from statement

headers, and decomposing expressions into simpler expressions that will end up reduced to the

trivially supported cases outlined above.

6.2.3 Early return statements

While C and C++ generally feature structured control flow, early return statements allow a func-

tion to break that structured flow and jump over executed code. When inlining functions that make

use of that ability, the assumption that a return statement can simply be replaced with an assign-

ment to a variable containing the result is no longer valid, an thus impede the straight-forward

implementation of inling.

As mentioned in Section 5.1, we do not think it wise to remove this facility in general, but, for

the inlining of calls to functions that feature early returns, we devised a transformation that would

make it so that only a single-return remains: an output variable is declared at the beginning of

the function’s scope, and a labeled return statement is introduced at the end of the function’s text,

returning said output variable. Then, all other return statements are replaced with a combination

of assignments to the output variable, and unconditional jumps to the labeled return at the end of

the function, as shown in Section 6.3.

6.3 Implementation

Finally, having discussed these conditions and after applying transformations to normalize the

program to our language subset, we are able to implement a transformation to inline function

calls.

First, we must ensure two pre-conditions:

• The call in question is either a top-level expression statement within a scope, or is the right

side of a top-level assignment expression statement. This is ensured by the normalization

process we applied beforehand.

• The inlined function does not access variables which the caller cannot access (e.g. the

function and the caller are in different translation units and the function accesses global

variables that use internal linkage, or a C++ class’s member or friend function accesses
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private fields of the class and is called in an external context). We are not currently verifying

this condition, as we do not think it necessary for a prototypical implementation, so the calls

to be inlined must be chosen with care.

Then, to ensure that the function is able to be inlined, we apply two preliminary transfor-

mations to it: we transform the function, as described before, to ensure that only a single return

statement is made, at the end of the function’s text. Then, we process the variable names to ensure

that there is no shadowing. This ensures that further transformations based on variable names do

not need to handle possible variable shadowing.

Finally, we are able to perform the transformation, in source form, through the following steps:

1. Replace the call or assignment in the caller with an empty scope.

2. Insert variable declarations corresponding to the function’s arguments, and assign the value

of the call’s arguments to those variables.

3. Copy over the nodes corresponding to the function’s body.

4. If the function returns a value, and the caller assigned the value of the call to a variable,

replace the return statement with an assignment, whose left hand side is the caller’s result

variable and the right hand side is the function’s return expression.

5. Rename any variable that needs it to ensure that the naming does not conflict with the caller’s

variables.

To provide a concrete example, in the following code:

1 int *get_elem(int *slice, size_t size, size_t offset)

2 {

3 if (offset >= size)

4 {

5 return NULL;

6 }

7

8 return slice + offset;

9 }

10

11 // int *slice;

12 // size_t size;

13 // size_t i;

14

15 int *elem = get_elem(slice, size, i);

16 }

Firstly, the normalization occurs:
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1 int * get_elem(int *slice, size_t size, size_t offset) {

2 int decomp_1;

3 decomp_1 = offset >= size;

4 if(decomp_1) {

5

6 return ((void *) 0);

7 }

8

9 return slice + offset;

10 }

11

12 // int * slice;

13 // size_t size;

14 // size_t i;

15 int *elem;

16 elem = get_elem(slice, size, i);

Then, the function get_elem is prepared to be inlined:

1 int * get_elem(int *slice, size_t size, size_t offset) {

2 int *__return_value;

3 int decomp_1;

4 decomp_1 = offset >= size;

5 if(decomp_1) {

6 __return_value = ((void *) 0);

7 goto __return_label;

8 }

9 __return_value = slice + offset;

10 goto __return_label;

11 __return_label:

12

13 return __return_value;

14 }

Note that the non-structured control flow is made explicit and only a single return statement

remains. Finally, the inlining is able to be carried out:

1 int * get_elem(int *slice, size_t size, size_t offset) { /* ... */ }

2

3 // int * slice;

4 // size_t size;

5 // size_t i;

6 int *elem;

7 {

8 int * __inline_0_slice = slice;

9 size_t __inline_0_size = size;
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10 size_t __inline_0_offset = i;

11 int *__inline_0___return_value;

12 int __inline_0_decomp_1;

13 __inline_0_decomp_1 = __inline_0_offset >= __inline_0_size;

14 if(__inline_0_decomp_1) {

15 __inline_0___return_value = ((void *) 0);

16 goto __return_label;

17 }

18 __inline_0___return_value = __inline_0_slice + __inline_0_offset;

19 goto __return_label;

20 __return_label:

21 elem = __inline_0___return_value;

22 }

This transformation was implemented in an Inliner class, available on the Clava standard li-

brary, through the methods inline($exprStmt), which inlines a single call, and

inlineFunctionTree($function), which recursively inlines all calls made in a function,

as well as in the functions that are called.



Chapter 7

Experimental Evaluation

Having developed a set of transformations to normalize C and C++ programs to the theorized

language subset, and having implemented an inlining optimization that takes advantage of the en-

abling effects of the normalization process, we devised three experiments to validate our approach:

A Comparing a pre-existing inlining transformation’s effectiveness with and without normal-

ization, and comparing its effect to the new inlining transformation, which fully accounts

for the normalization’s effect.

B Determining the performance effects of the developed inlining optimization.

C Determining the enabling effects, if any, of the normalization transformations on the perfor-

mance of a source-to-source automatic code parallelization tool.

7.1 Experiment A: Comparison of function inlining implementations
with and without normalization

Besides the inlining transformation that we implemented and described on Chapter 6, the Clava

standard library already possessed a previously implemented prototype of an inlining transforma-

tion, accessed through calling the inline method on a call node in the AST.

To compare both implementations, as well as the enabling effect of the normalization, a set

of three synthetic benchmark programs were developed, featuring a variety of function calls in

different contexts of the language:

• A program generating 1,200,000 random two-dimensional observations and clustering them

into 8 classes using a K-Means algorithm.

• A program multiplying two rank-35 square matrices and computing the trace of the resulting

matrix.

• A program generating an array of 1,000,000,000 random natural numbers and performing a

set of aggregations on them.

45
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Scenario # Calls # No function body Calls Inlined Inlining Failures
Old 46 31 2 13

Normalize + Old 50 31 6 13
New 46 31 6 9

Normalize + New 50 31 19 0
Table 7.1: Effects of different inlining implementations with and without normalization.

With these programs as our targets, we then proceded to run Clava to normalize and inline

them as much as possible, under the following four configurations:

1. Old: Using the previously implemented inlining transformation, try to inline all calls in the

test programs.

2. Normalize + Old: Normalize the test programs, then try to inline all calls with the previously

implemented transformation.

3. New: Using the newly implemented inlining transformation, try to inline all calls in the test

programs.

4. Normalize + New: Normalize the test programs, then try to inline all calls with the newly

implemented transformation.

As an evaluation metric, we chose to use the number and ratio of calls that were able to be

inlined.

Table 7.1 shows the results of the experiment. As evidenced on the first results column, we

see that the normalization results on an increased number of calls being present. This is an effect

of our normalization passes, namely passes to decompose expressions on the headers of iteration

and selection statements, duplicating code to preserve the semantics of the normalized program.

Furthermore, we see on the second column that there is a significant number of function calls that

are not elegible to be inlined, owing to the body of the function not being present in the translation

units that are being considered. In our case, these are calls to the C standard library, which is

linked dynamically to the program.

The last two columns provide us with more interesting details.

First, we can observe the results of the program normalization. Compared with the scenarios

where no normalization was made, the normalized programs are easier to inline (the old inliner

goes from inlining ca. 13% of elegible calls to inlining ca. 32% of elegible calls, and the new

inliner goes from inlining 40% of elegible calls to inlining 100% of elegible calls). The reason for

this improvement is that, by decomposing complex expressions and by removing those expressions

from the headers of control statements and other calls, we get a greater number of isolated calls

and simple assignments from the value of a call to a variable, which are feasible cases for source-

to-source inlining.

Secondly, we can perform a direct comparison of the two inlining implementations. From

inspection of the Clava source-code, we see that to implement the inlining transformation in a
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less abstract language, such as Java for the case of Clava, cases where implementation can apply

must be explicitly enumerated, whereas when implementing the transformation on the Javascript

environment, we can rely on structural analysis and exception handling to make the transformation

more general, while catching errors that pop up as exceptions. This is reflected on the comparative

results of both approaches. The previously implemented inliner, which featured the exhaustive ap-

proach in Java, fails to inline calls in several occasions due to not recognizing the nodes contained

within the body of the function, whereas the Javascript-based transformation need not concern

itself with that filtering, leading to a ca. 27 pp. increase of successful transformations with no

normalization, and, leveraging the simplification of the language afforded by the normalization

process, can reach a 100% successful inlining rate, a 68 pp. increase over the Normalize +

Old scenario.

To validate these results, we compiled and ran the original and transformed programs, and

verified that the expected output remained the same. In the case of the first scenario, additional

care had to be taken to extract a useful copy of the transformed code, since one of the inlining

applications produced a structuraly unsound program, therefore we saved and restored the AST

before and after each inlining we tried.

There are, naturally, some factors that might affect the validity of our results:

• The number and nature of the programs that we tested do not constitute an exhaustive sample

of all the language constructs that a C program might contain, much less all of the constructs

contained in a C++ program. There is a strong possibility that there are language features

that are not accounted for and might necessitate changes and/or additions to the normalized

subset or the normalization process. Nevertheless, we believe that this approach is exten-

sible enough to bound the complexity of the resulting subset, at least for C programs and

reasonably simple C++ programs used in scientific computing.

• The two approaches to inlining may not be strictly comparable in terms of complexity, since

the older implementation takes care of some other concerns such as function body caching

that the new implementation does not. However, an analysis of the implementation led us

to believe that the monolithic nature of the old implementation, especially by having to deal

with all the complexities of the source language, as opposed to the subset we had previously

defined, played a part in its reduced flexibility.

7.2 Experiment B: Performance Effects of Inlining

To evaluate the performance effects of inlining, we took the same programs and benchmarked

their runtime performance, with and without inlining, using a variety of compilers and different

optimization settings. Specifically, we compiled the original and transformed programs using the

GCC, clang, and CompCert toolchains, both under the O0 (no optimizations enabled) and the

O2 (standard optimizations) optimization levels, performing, for each combination of program,

compiler, presence of inlining transformation and optimization level, and measuring the average
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Figure 7.1: Microbenchmark performance, inlining vs no inlining. Segmented by program, opti-
mization level.

runtime duration. Inlining was performed for the entire program, by traversing the program’s call

graph in a depth-first fashion and inlining all calls.

We expected the following results:

• Under the O0 optimization level, we expected that, besides generally slower runtime perfor-

mance, we would see a clear performance impact of the inlining transformation, varying in

its sign and magnitude depending on the trade-off between the number of times a certain call

is performed, and the code bloat resulting from the duplicated function bodies. Specifically,

we theorized that inlining small functions that are called often would result in performance

gains, and that inlining bigger functions with less frequent calls would have smaller gains

or even negative performance effects.

• Under the O2 optimization level, we expected that there would be little performance effect,

as the compilers under test already should perform several code optimization transforma-

tions, including inlining, and so the source-code level transformation would have less of an

effect.

Figure 7.1 shows a high-level visualization of the results of this experiment. For each program,

two sets of columns show the average runtime in several configurations. One set presents the

results with no compiler optimizations (O0) and the other presents the results with optimizations

enabled (O2). The columns in light grey show the average runtime of the original program for that
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Compiler Opt. Level Inlining
Program

vec-multiple-returns matrix-mult k-means

CompCert
O0

Yes 4462.37 2864.06 3392.99
No 4454.64 2792.85 4630.94

O2
Yes 4443.17 2694.85 4379.61
No 4445.98 2796.52 4830.31

Clang
O0

Yes 6723.64 6376.61 11379.62
No 19771.91 5714.09 11717.30

O2
Yes 4418.02 1619.00 1972.17
No 4420.98 1889.16 1978.27

GCC
O0

Yes 18486.90 6059.89 11662.09
No 18456.40 5784.92 12703.43

O2
Yes 4451.80 1840.78 3182.59
No 4401.42 1806.91 3173.13

Table 7.2: Runtime performance (ms) for each program, segmented by compiler, optimization
level, source-level inlining.

configuration, and the columns in dark grey show the average runtime of the program after the

source-level inlining was applied.

In aggregate, the results obtained fell within the expectations we had set before. The k-means

and matrix-mult programs, that featured larger functions and less iterations comparatively to

the number of calls, had less expressive and mixed performance impacts on the runtime perfor-

mance of the program when transformed. Specifically, on the O0 configuration, K-Means compute

performance was ca. 9% faster, but Matrix Multiplication was ca. 7% slower. On the other had,

the vec-multiple-returns program, which featured a tight-loop more easily dominated by

a call to a small function, experienced a ca. 30% reduction in average runtime. Under the O2 con-

figuration, the performance effects were generally less expressive, as expected, but, surprisingly,

we saw an inversion on the magnitudes of the performance effects when comparing k-means and

matrix multiplication with the array slice aggregation program. While the performance effect on

vec-multiple-returns dropped to ca. -0.34%, source-level inlining decreased the average

runtime of k-means and matrix-mult by ca. 4.5% and 5.2%, respectively. A possible explana-

tion is that the underlying compilers might not have inlined certain calls, without the source-level

inlining, and the inlined function would enable more optimizations to be performed at the global

analysis level.

Zooming in from the aggregate results to the results separated by compiler, we come upon

other interesting results. Table 7.2 shows the runtime performance numbers, segmented by com-

piler, optimization level, and whether source-level inlining was applied. There, we can see that the

results actually follow two modes regarding the behavior presented by different compilers. Clang

and GCC, which are older but have had more optimization work put it, present a stark difference

between the code that is generated with and without optimization. On the other hand, CompCert

seems to generate comparatively faster code without optimizing, but does not present large gains in

performance when code optimization is enabled. Comparing both sets, we see that the optimized
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code from GCC and Clang seems to be faster than optimized code from CompCert. Neverthe-

less, source-level inlining seems to be worthwhile in general, especially when considering that the

transformations that we developed were prototypical and limited in nature, so further work may

result in even greater performance effects. In some cases, there is a sizable performance benefit

of applying it, such as on array slice aggregation with O0 and Clang, and on k-means with Com-

pCert, in which it performs faster than even the optimized code, supporting our hypothesis that

source-to-source transformation work will be especially impactful on less developed compilers.

To validate our results, we measured, for each configuration, 8 runs of the benchmark. Besides

recording the average runtime duration, we recorded the standard deviation of our observations.

For vec-multiple-returns and k-means, the average standard deviation of our observa-

tions was well under 1% of the measured average runtime duration. For matrix-mult, the

measurement standard deviations were somewhat higher, but still within 10% of the magnitude of

the observations in all cases.

Of course, some factors do limit our analysis and confidence in these results:

• The programs that we tested only represent a subset of the types of computation performed

in C and C++, and thus the results might not be representative of the effect of the transfor-

mation on the overall corpus of existing C and C++ code. A larger set of codes might be

tested to further validate the results.

• Only one hardware target was used in the test and, by extension, only one set of platforms

and computation models. As an extension, it might prove useful to test this optimization

on different platforms, different hardware targets (featuring different single-clock speeds,

cache sizes, etc.) and different computation models (GPU, FPGAs with HLS, etc.).

• We only developed and tested one optimizing transformation. Other transformations might

be more or less worthwhile to be executed at different levels of abstraction, and so we

may not draw overly general conclusions about the potential use of the source-to-source

compilation approach to optimization.

Nevertheless, we can conclude that there are some measurable effects of performing inlining

on the source-code level on the performance of certain C and C++ programs, under different

compilers.

7.3 Experiment C: Enabling Effects of Normalization on Automatic
Parallelizer

The last experiment we performed was running a well-known benchmark through an existing

source to source optimization tool to validate the effect of our normalization code. To do so, we

selected the following benchmark and tool:
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• As the benchmark, we selected the NAS Parallel Benchmarks. These benchmarks, origi-

nally produced by NASA, aim to test the performance of parallel computing systems, which

paired well with the tool we chose. Furthermore, an implementation of these benchmarks

was already packaged in a compatible way with the LARA Framework’s benchmark facility.

• As the tool to test, we chose Autopar-Clava[7], an automatic parallelization transformation

for Clava. This tool analyses a program’s loops, its inductive variables, and its memory

access patterns [8] to insert OpenMP directives in the code, yielding a parallelized version

of it. We chose it for our evaluation due to its presence in the Clava standard library, as well

as previous expertise in the lab developing and using it. Furthermore, Autopar-Clava was

described by its authors as using Clava’s built-in inlining facility, so we hoped to be able to

compare this implementation to our own newly-implemented inlining facility.

We aimed this experiment to explore the enabling effects of the newly developed normalization

and inlining transformations on the effect of further optimizations. Thus, from the NAS bench-

mark suite, we picked a variety of tests, in several classes of magnitude. We chose the tests in a

way that ensured a variety of source-code constructs was represented, and chose the magnitudes

that would be big enough to ensure confidence in the results, yet not too large, in the interest of

time. Specifically, we picked benchmarks for a Block Tri-diagonal matrix equation solver (BT), a

Conjugate Gradient computation kernel for linear differential equation solving (GG), a discrete 3D

fast Fourier Transform computation kernel (FT), a Lower-Upper matrix solver using the Gauss-

Seidel method (LU), a differential equation solver kernel using the Multi-grid method (MG), and

a Scalar pentadiagonal matrix solver (SP), using the magnitude classes W, A, and B, which range

in runtime duration from ca. 0.5 seconds to ca. 8 minutes.

Afterwards, we laid out four scenarios:

1. Baseline: benchmark the selected benchmark instances, without modification.

2. Autopar: parallelize the selected benchmark instances using Autopar-Clava, with no pre-

ceding transformations, and benchmark the transformed programs.

3. Normalize: normalize the selected benchmark instances to our predefined language subset,

parallelize them, and benchmark the tranformed programs.

4. Inline: modify Autopar-Clava to disable the built-in inlining transformation; normalize the

selected benchmark instances to our predefined language subset, perform automated inlin-

ing with our newly developed inlining transformation, parallelize them, and benchmark the

transformed programs (this scenario remained untested).

As an evaluation metric, we again chose the runtime duration of the benchmarks, seeking to

minimize it. Our expectation was that Autopar-processed code would perform better than the base-

line on our multi-core workstation, with the exception of the FT benchmark, which was expected

to slow down, as per the results previously obtained in [8].
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Program
Magnitude

Class
Scenario

Baseline Autopar Normalize

BT
W 5.32 22.87 5.41
A 113.46 59,979.11 118.31
B 468.25 - 517.56

CG
W 0.57 0.05 0.59
A 2.00 0.11 2.04
B 90.21 7.07 95.97

FT
W 0.44 11.93 0.46
A 7.93 253.65 8.13
B 95.16 5,771.09 98.83

LU
W 16.46 61.10 18.31
A 112.25 947.73 116.44
B 467.46 6,247.38 481.04

MG
W 0.58 0.08 0.64
A 4.62 0.60 5.04
B 20.98 1.85 22.94

SP
W 18.40 23.71 19.43
A 104.44 164.17 110.02
B 437.79 706.49 458.73

Table 7.3: Runtime duration of benchmarks (s), segmented by scenario, program, magnitude class.

Table 7.3 shows the resulting runtime duration for each of our scenarios. Compared to the

baseline, the Autopar scenario showed definite effects on the runtime performance of different

benchmarks. In the case of the CG and MG program, we were able to obtain concrete speedups,

on the order of 7.25x to 18.18x. FT also performed as seen in [8], being several tens of times

slower than the baseline result. However, we could not reproduce the results previously seen for

the BT, LU and SP cases. In the case of LU, slight slowdowns occured. In the case of LU and

BT, though, the performance degradation seemed to scale with the benchmark magnitude super-

linearly, leading to not being able to obtain any results for BT at magnitude class B. We suspected

that the two-chiplet design of our workstation’s CPU could be to blame for the slowdown, owing

to slower communication between cores, but we were also unable to reproduce these results us-

ing codes from the original publication and on another workstation, which did not share the same

hardware peculiarities. Another hypothesis for the slowdown was that the loops that were paral-

lelized did not perform enough work on their own, so the overhead of parallelizing them resulted

in performance degradation.

Compared to the previous two scenarios, the Normalize scenario evidenced a surprising re-

sult. Autopar-Clava was not able to parallelize any loops, and thus the runtime performance was

roughly similar to the baseline scenario, as opposed to being similar to the Autopar scenario. An-

alyzing the output logs, we realized that Autopar relied on analyzing for statements to identify

possible parallelization opportunities. Since our normalization transformation removed for state-

ments from the language subset, the parallelizer was not able to perform its job. In the absence of

more time for reworking the normalization transformations to account for this use, we carried out
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with analyzing the results of this experiment and drawing conclusions, having cancelled testing

for scenario Inline, since the same lack of results was certain.

This experiment showed us that there is still room for reconsideration of the subset that we

defined. For statements are an important expressive construct for use in writing a program but,

guided by the fact that compilers are able to identify loop structures, their invariants and induction

variables, we considered on a theoretical sense that they would not be necessary on our language

subset. However, even if not strictly necessary, the construct is used for automated tools and

analyses in a source-to-source context, and thus removing it may not be the best decision. To

reintroduce the construct into the subset, we might consider the following two routes:

• Only transforming for loops into while loops conditionally, based on the characteristics of

the statements in the header. For example, we could keep simple loops, such as a canonical

loop comparing against a constant or variable, while processing loops that compare against

the return value of a call. In extremis, we could rely on user input of some sort to mark

instances to be kept.

• We can keep our transformation to a while loop, and then follow it with passes for loop

canonicalization, such as loop invariant code motion, induction variable analysis and so on,

reconstituting a normalized version of the for loop afterwards. This approach is certainly

more complex, but might work better in the general case.

7.4 Summary

In this chapter, we presented three experiments to try and understand how source-code normaliza-

tion affects the possibility and ease of implementing program optimizations on the source-code

level. The first experiment showed that after normalizing the code, two independent implemen-

tations of a function inlining transformation were able to inline calls in more situations that they

were able to before. The second experiment validated our case study in implementing a perfor-

mance optimization in a source-to-source context, since performance effects of the transformation

were evident, especially on less optimizing compiler choices and configurations. The third ex-

periment had negative results. Besides having had trouble reproducing a baseline that was in line

with previous works on the tool we chose, our normalization process removed primitives on which

the tool relied and greatly diminished its effect. While not invalidating our approach, it gave us a

perspective on how our work can be improved upon.
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Chapter 8

Conclusions

When considering conclusions, we think that our work can be considered in several different

facets. We first considered our literature review work, followed by work of theorizing a language

subset that would meet our criteria. Then we considered the implementation of our normalization

work and its results, and finally considered our case study in organization.

Regarding our survey of relevant literature, we consider that we were largely successful in

identifying the breadth of approaches that are currently being investigated or implemented to tame

the complexity of optimization work, even if not at great depth. We think that our survey of

approaches tailored towards more heterogeneous systems could have had more depth, but then

again the lack of surveys in this area, coupled with more practical goals, did not allow further

exploration. Nevertheless, we identified many limitations that guided the research questions and

ultimately our proposed solution and contributions.

We think that our main contribution was establishing a suitable theoretical framework for

building a subtractive subset of C and C++, especially considering the sheer breadth and depth of

constructs of these high-level languages. We think that the principles that we identified will be

foundational and useful when applying this exercise to other languages and scenarios and, even if

the subset that we derived was by no means exhaustive or perfectly adequate, it will surely serve

as a good first draft to keep iterating on a better C or C++ subset that could be targeted by source-

to-source compiler users to perform analyses and transformations. Generally speaking, we think

we were successful in meeting our objectives along this facet.

Our case study on function inlining also produced successful results. Our normalization pass

was able to enhance the action of pre-existing and newly implemented inlining transformations

and we observed promising performance results when benchmarking the effect of inlining on the

runtime duration of sample programs.

Our experiment to evaluate our normalization pass’s interaction with other optimizations was

not so successful. Besides having trouble reproducing work by earlier authors, we neutered the

performance effect of their contributions with our transformation. This is a disappointing result,

but allowed us to understand some limitations of the subset we have currently defined, and will

surely guide a future version of the subset that will be able to avoid those problems.
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8.1 Contributions

On a more exhaustive note, we think that we were able to present several contributions along

diffent axes:

• Producing a high-level survey of different approaches for taming the complexity of high-

level languages, with the aim of making them more amenable for analyses and transforma-

tions, and heterogeneous compilation targets, such as mid-level IRs, multi-level IRs, declar-

ative transformations, and discussion of their limitations and tradeoffs, viz. in comparison

with source-to-source compilation approaches.

• Adopting a structure for source-code transformations in Lara and Clava, especially for the

use case of automated transformation, as was the case of the Pass abstraction, common in

other compilers but previously unused in our immediate context.

• Adopting a set of principles that could guide the production of an analysis-friendly subset

of an imperative programming language.

• Implementing a suite of automated transformations that could transform a large subset of

C programs and simpler C++ programs into a normalized subset of the language that was

more amenable for source code transformation.

• Discussing the challenges present in designing a code inlining transformation in a source-

to-source compilation context.

• Producing a simple, yet effective code inlining transformation that leverages the aforemen-

tioned normalization pass.

• Practical evaluation experiments and results that highlight the advantages and deffects of

our implementation, as well as some tradeoffs of our approach.

8.2 Future Work

There are some limitations in our work that could be addressed in the future:

• Having co-developed our theoretical framework for normalization and our implementation

of such transformation, there are several mismatches between what the framework demands,

the specification we derived, and the implementation we built, that produce less than ideal

results in terms of readability, program correctness and expressiveness. Further work is

needed to bring these factors into alignment. Specifically, we would like to see further

work on loop constructs and loop normalization, a more balanced approach to implement-

ing complex expression decomposition (our implementation was particularly overzealous),

and deriving more elements of the subset covering aspects that were not considered in the

interest of keeping a narrow scope, such as C++ specific constructs such as classes, visibility

and templates, atomics, or static and thread local storage.
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• Further work is needed to validate the compatibility of our normalization with other pro-

grams, other compiler toolchains, other computing platforms and models, and so on. The

same can be said for our inlining implementation.

• The Pass abstraction that was introduced to the LARA framework was a step forward in

organizing successive code transformations in a declarative way. However, further work is

still needed, especially investigating the possibility of doing automatic dependency resolu-

tion between passes, as well as checking desirable properties of transformation passes, such

as idempotency.

• On Clava, further work can be done to integrate other alternative approaches and repre-

sentation besides high-level languages. With the emergence of MLIR as a standard for

interoperable IRs, it could be interesting to try to integrate the two approaches, especially

as an alternative to the C++ and visitor-based extension patterns of that technology.

• The implementation itself needs further maintenance and improvement work. We would

like to see work on other ways of improving ergonomics of Clava users, including access to

more modern aspects of the Javascript environment, such as ES Modules and gradual typing

with Typescript, DSLs for testing, integration with common Integrated Development Envi-

ronments (IDEs) and protocols such as VSCode, IntelliJ and the Language Server Protocol,

as well as an easier building and installation story.

We again express our hope that this work can be a foundation for another avenue of exploration

within the compiler research world, and that other developers will be excited to work on successors

to, and competitors of, this project. Compiler research deserves to be a topic that is approachable

by all kinds of engineers, students and scientists, and we believe that transitioning to models that

allow both high-level work and focused work on different layers of abstraction to be easier to work

with is of foremost importance.
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Appendix A

Validation and Benchmarking:
Experimental Setup and Codes

To perform the validation of our technique, tests were run on a workstation with the following

configuration:

• CPU - AMD Ryzen Threadripper 3960X - 24 Cores with 2-way SMT, clocked at 2.2GHz,

boosting to 4.5GHz

• RAM - 2x16 GiB at 3200 MT/s, in dual channel

• OS - Ubuntu 18.04.6 LTS

• Java - Azul Systems Zulu OpenJDK 11.0.5

• Compilers - clang v6.0.0 (experiment B), CompCert v3.10 (Coq platform v2022.04.1) (ex-

periment B), gcc v7.5.0 (experiments B and C)

• Clava - built from source, commit 275e87b

• LARA Framework - built from source, commit 81bf5b62

• SPeCS Java Libraries - built from source, commit fa827db5

To build Clava from source, the repositories for Clava, the LARA Framework and the SPeCS

Java Libraries were cloned and imported into the Eclipse IDE, according to the instructions in

the SPeCS Java Libraries README file, and the build target ClavaWeaver -> Java Application ->

ClavaWeaverLauncher -> ClavaWeaverGUI was used to run the Clava toolchain.
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https://github.com/specs-feup/lara-framework/tree/81bf5b624b0aa37ddd0bebda2b24e2a126f12609
https://github.com/specs-feup/specs-java-libs/tree/fa827db586d7b2cbf94fff98873ee339f04cb694
https://github.com/specs-feup/specs-java-libs/tree/fa827db586d7b2cbf94fff98873ee339f04cb694
https://github.com/specs-feup/specs-java-libs/blob/fa827db586d7b2cbf94fff98873ee339f04cb694/README.md
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A.1 Experiment A

A.1.1 C Source Codes

A.1.1.1 K-Means

Randomly distributes points around a set of pre-defined seed coordinates, and runs k-means to find

clusters of points.

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <time.h>

4

5 float square_distance(float x1, float y1, float x2, float y2)

6 {

7 float x_diff = (x1 - x2) * (x1 - x2);

8 float y_diff = (y1 - y2) * (y1 - y2);

9 float result = x_diff + y_diff;

10 return result;

11 }

12

13 void calculate_centroid_means(size_t n_clusters, size_t gen_factor, float *

centroid_xs, float *centroid_ys, size_t *centroid_counts, float *xs, float *ys,

size_t *classes)

14 {

15 // reset centroid means

16 for (size_t k = 0; k < n_clusters; k++)

17 {

18 centroid_xs[k] = 0.0;

19 centroid_ys[k] = 0.0;

20 centroid_counts[k] = 0;

21 }

22

23 // update centroid means

24 for (size_t i = 0; i < n_clusters * gen_factor; i++)

25 {

26 float x = xs[i];

27 float y = ys[i];

28 size_t k = classes[i];

29

30 centroid_counts[k]++;

31 centroid_xs[k] += (x - centroid_xs[k]) / centroid_counts[k];

32 centroid_ys[k] += (y - centroid_ys[k]) / centroid_counts[k];

33 }

34 }

35

36 int main()

37 {

38 size_t n_clusters = 8;
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39 float cluster_seed_xs[8];

40 cluster_seed_xs[0] = 3.0;

41 cluster_seed_xs[1] = -2.1;

42 cluster_seed_xs[2] = 12.8;

43 cluster_seed_xs[3] = 0.3;

44 cluster_seed_xs[4] = -7.5;

45 cluster_seed_xs[5] = 16.2;

46 cluster_seed_xs[6] = -13.1;

47 cluster_seed_xs[7] = -0.7;

48 float cluster_seed_ys[8];

49 cluster_seed_ys[0] = 3.0;

50 cluster_seed_ys[1] = 2.1;

51 cluster_seed_ys[2] = -12.8;

52 cluster_seed_ys[3] = -0.3;

53 cluster_seed_ys[4] = 7.5;

54 cluster_seed_ys[5] = 16.2;

55 cluster_seed_ys[6] = -13.1;

56 cluster_seed_ys[7] = -0.7;

57

58 size_t allowed_switches = 2;

59 size_t gen_factor = 150000;

60 int dist_factor = 300;

61

62 srand(42);

63

64 float *xs = calloc(n_clusters * gen_factor, sizeof(float));

65 float *ys = calloc(n_clusters * gen_factor, sizeof(float));

66 size_t *classes = calloc(n_clusters * gen_factor, sizeof(size_t));

67

68 // randomly distribute points around seed clusters

69 for (size_t k = 0; k < n_clusters; k++)

70 {

71 size_t base = k * gen_factor;

72 float cluster_x = cluster_seed_xs[k];

73 float cluster_y = cluster_seed_ys[k];

74 for (size_t offset = 0; offset < gen_factor; offset++)

75 {

76 size_t ix = base + offset;

77 float x_delta = (rand() % (dist_factor * 2) - dist_factor) / (float)

100;

78 xs[ix] = cluster_x + x_delta;

79 float y_delta = (rand() % (dist_factor * 2) - dist_factor) / (float)

100;

80 ys[ix] = cluster_y + y_delta;

81 classes[ix] = rand() % n_clusters;

82 }

83 }

84

85 // randomly distribute classes
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86 for (size_t i = 0; i < n_clusters * gen_factor; i++)

87 {

88 int class = rand() % n_clusters;

89 classes[i] = class;

90 }

91

92 float centroid_xs[8];

93 float centroid_ys[8];

94 size_t centroid_counts[8];

95

96 size_t switched_observations = 0;

97 int iterations = 0;

98

99 clock_t start, end;

100 start = clock();

101 do

102 {

103 switched_observations = 0;

104 iterations++;

105 calculate_centroid_means(n_clusters, gen_factor, centroid_xs, centroid_ys,

centroid_counts, xs, ys, classes);

106 for (size_t i = 0; i < n_clusters * gen_factor; i++)

107 {

108 float x = xs[i];

109 float y = ys[i];

110 size_t class = classes[i];

111

112 for (size_t k = 0; k < n_clusters; k++)

113 {

114 float centroid_x = centroid_xs[k];

115 float centroid_y = centroid_ys[k];

116 float centroid_distance = square_distance(x, y, centroid_x,

centroid_y);

117

118 float class_x = centroid_xs[class];

119 float class_y = centroid_ys[class];

120 float class_distance = square_distance(x, y, class_x, class_y);

121

122 if (centroid_distance < class_distance)

123 {

124 class = k;

125 }

126

127 if (class != classes[i])

128 {

129 classes[i] = class;

130 switched_observations++;

131 }

132 }
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133 }

134 } while (switched_observations > allowed_switches);

135 end = clock();

136 fprintf(stderr, "%d\n", iterations);

137 printf("%f\n", (end - start) / (double)(CLOCKS_PER_SEC / 1000));

138 }

Listing A.1: k_means.c

A.1.1.2 Matrix Multiplication and Trace

Pre-populates two square matrices of similar rank, multiplies them, and gives the trace of the

resulting matrix.

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <time.h>

4 #include <stdbool.h>

5

6 typedef struct matrix

7 {

8 size_t side;

9 double **rows;

10 } matrix;

11

12 matrix *matrix_new(size_t sqrt_n)

13 {

14 size_t side = sqrt_n * sqrt_n;

15 double **rows = calloc(side, sizeof(double *));

16

17 for (size_t row = 0; row < side; row++)

18 {

19 double *r = calloc(side, sizeof(double));

20 rows[row] = r;

21 }

22

23 matrix *out = (matrix *)malloc(sizeof(matrix));

24 out->side = side;

25 out->rows = rows;

26

27 return out;

28 }

29

30 void matrix_destroy(matrix *m)

31 {

32 double **rows = m->rows;

33
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34 for (size_t row = 0; row < m->side; row++)

35 {

36 free(rows[row]);

37 }

38

39 free(rows);

40 free(m);

41 }

42

43 double matrix_mult_coord(matrix *a, matrix *b, size_t i, size_t j)

44 {

45 double acc = 0.0;

46

47 for (size_t k = 0; k < a->side; k++)

48 {

49 acc += a->rows[i][k] * b->rows[k][j];

50 }

51

52 return acc;

53 }

54

55 void matrix_mult(matrix *a, matrix *b, matrix *out)

56 {

57 size_t side = a->side;

58

59 for (size_t i = 0; i < side; i++)

60 {

61 for (size_t j = 0; j < side; j++)

62 {

63 out->rows[i][j] = matrix_mult_coord(a, b, i, j);

64 }

65 }

66 }

67

68 void matrix_fill_rand(matrix *m)

69 {

70 for (size_t i = 0; i < m->side; i++)

71 {

72 for (size_t j = 0; j < m->side; j++)

73 {

74 m->rows[i][j] = ((double)rand()) / 100.0;

75 }

76 }

77 }

78

79 double matrix_trace(matrix *m)

80 {

81 double trace = 0.0;

82
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83 for (size_t i = 0; i < m->side; i++)

84 {

85 trace += m->rows[i][i];

86 }

87

88 return trace;

89 }

90

91 int main(void)

92 {

93 srand(42);

94

95 matrix *m1 = matrix_new(35);

96 matrix *m2 = matrix_new(35);

97 matrix *out = matrix_new(35);

98

99 matrix_fill_rand(m1);

100 matrix_fill_rand(m2);

101

102 clock_t start = clock();

103 matrix_mult(m1, m2, out);

104 clock_t end = clock();

105 printf("%f\n", (end - start) / (double)(CLOCKS_PER_SEC / 1000));

106 double trace = matrix_trace(out);

107 fprintf(stderr, "%f\n", trace);

108

109 return EXIT_SUCCESS;

110 }

Listing A.2: matrix_mult.c

A.1.2 Array Slice Aggregations

Pre-populates a fixed array with random non-negative integers, and aggregates them.

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <time.h>

4

5 int *slice_new(size_t size)

6 {

7 return (int *)calloc(size, sizeof(int));

8 }

9

10 void slice_rand_fill(int *slice, size_t size)

11 {

12 for (size_t i = 0; i < size; i++)

13 {
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14 slice[i] = rand();

15 }

16 }

17

18 int *slice_ref(int *slice, size_t size, size_t offset)

19 {

20 if (offset >= size)

21 {

22 return NULL;

23 }

24 return slice + offset;

25 }

26

27 size_t slice_size(int *slice, size_t size)

28 {

29 return size;

30 }

31

32 int main()

33 {

34 srand(42);

35

36 size_t size = 1000000000;

37 int *slice = slice_new(size);

38 slice_rand_fill(slice, size);

39

40 unsigned int acc = 0;

41

42 clock_t start = clock();

43 for (size_t i = 0; i < slice_size(slice, size); i++)

44 {

45 int *elem;

46 elem = slice_ref(slice, size, i);

47 acc += (unsigned int)*elem;

48 acc *= (unsigned int)*elem;

49 acc += (unsigned int)*elem;

50 acc *= (unsigned int)*elem;

51 acc *= acc;

52 acc += (unsigned int)*elem;

53 acc *= (unsigned int)*elem;

54 acc += (unsigned int)*elem;

55 acc *= (unsigned int)*elem;

56 }

57 clock_t end = clock();

58 fprintf(stderr, "%u\n", acc);

59

60 printf("%f\n", (end - start) / (double)(CLOCKS_PER_SEC / 1000));

61 return EXIT_SUCCESS;

62 }
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Listing A.3: vec_multiple_returns.c

A.1.3 Clava Scripts

These Clava scripts try to inline all possible calls in a given set of source-files, determined by the

Clava config file, and report statistics about the inlinings.

1 laraImport("clava.code.Inliner");

2 laraImport("weaver.Query");

3

4 let calls_total = 0;

5 let calls_no_definition = 0;

6 let calls_inlined = 0;

7 let calls_inlining_fails = 0;

8

9 const inliner = new Inliner();

10

11 for (const call of Query.search("call")) {

12 calls_total += 1;

13 if (!call.function.isImplementation) {

14 calls_no_definition += 1;

15 continue;

16 }

17 try {

18 println(

19 ‘Trying to inline call ’${call.code}’ at location ${call.location}‘

20 );

21 call.inline();

22 println("Inlined successfully\n");

23 calls_inlined += 1;

24 } catch (e) {

25 println(‘Inlining failed: ${e.message}\n‘);

26 calls_inlining_fails += 1;

27 }

28 }

29

30 println("Results:");

31 println(

32 JSON.stringify(

33 { calls_total, calls_no_definition, calls_inlined, calls_inlining_fails },

34 undefined,

35 2

36 )

37 );

Listing A.4: Clava built-in inlining with no normalization
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1 laraImport("clava.code.Inliner");

2 laraImport("weaver.Query");

3 laraImport("clava.opt.NormalizeToSubset");

4 laraImport("clava.opt.PrepareForInlining");

5

6 let calls_total = 0;

7 let calls_no_definition = 0;

8 let calls_inlined = 0;

9 let calls_inlining_fails = 0;

10

11 NormalizeToSubset();

12

13 for (const call of Query.search("call")) {

14 calls_total += 1;

15 if (!call.function.isImplementation) {

16 calls_no_definition += 1;

17 continue;

18 }

19 try {

20 println(

21 ‘Trying to inline call ’${call.code}’ at location ${call.location}‘

22 );

23 PrepareForInlining(call.function);

24 call.inline();

25 println("Inlined successfully\n");

26 calls_inlined += 1;

27 } catch (e) {

28 println(‘Inlining failed: ${e.message}\n‘);

29 calls_inlining_fails += 1;

30 }

31 }

32

33 println("Results:");

34 println(

35 JSON.stringify(

36 { calls_total, calls_no_definition, calls_inlined, calls_inlining_fails },

37 undefined,

38 2

39 )

40 );

Listing A.5: Clava built-in inlining with normalization

1 laraImport("clava.code.Inliner");

2 laraImport("weaver.Query");

3

4 let calls_total = 0;
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5 let calls_no_definition = 0;

6 let calls_inlined = 0;

7 let calls_inlining_fails = 0;

8

9 const inliner = new Inliner();

10

11 for (const call of Query.search("call")) {

12 calls_total += 1;

13 if (!call.function.isImplementation) {

14 calls_no_definition += 1;

15 continue;

16 }

17 try {

18 println(

19 ‘Trying to inline call ’${call.code}’ at location ${call.location}‘

20 );

21 const exprStmt = call.ancestor("exprStmt");

22 inliner.inline(exprStmt);

23 println("Inlined successfully\n");

24 calls_inlined += 1;

25 } catch (e) {

26 println(‘Inlining failed: ${e.message}\n‘);

27 calls_inlining_fails += 1;

28 }

29 }

30

31 println("Results:");

32 println(

33 JSON.stringify(

34 { calls_total, calls_no_definition, calls_inlined, calls_inlining_fails },

35 undefined,

36 2

37 )

38 );

Listing A.6: Newly developed inlining with no normalization

1 laraImport("clava.code.Inliner");

2 laraImport("weaver.Query");

3 laraImport("clava.opt.NormalizeToSubset");

4 laraImport("clava.opt.PrepareForInlining");

5

6 let calls_total = 0;

7 let calls_no_definition = 0;

8 let calls_inlined = 0;

9 let calls_inlining_fails = 0;

10

11 NormalizeToSubset();
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12

13 const inliner = new Inliner();

14

15 for (const call of Query.search("call")) {

16 calls_total += 1;

17 if (!call.function.isImplementation) {

18 calls_no_definition += 1;

19 continue;

20 }

21 try {

22 println(

23 ‘Trying to inline call ’${call.code}’ at location ${call.location}‘

24 );

25 PrepareForInlining(call.function);

26 const exprStmt = call.ancestor("exprStmt");

27 inliner.inline(exprStmt);

28 println("Inlined successfully\n");

29 calls_inlined += 1;

30 } catch (e) {

31 println(‘Inlining failed: ${e.message}\n‘);

32 calls_inlining_fails += 1;

33 }

34 }

35

36 println("Results:");

37 println(

38 JSON.stringify(

39 { calls_total, calls_no_definition, calls_inlined, calls_inlining_fails },

40 undefined,

41 2

42 )

43 );

Listing A.7: Newly developed inlining with normalization
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Standalone Code Transformations (clava.code)

Transformation Name Description

DoToWhileStmt Transforms do statements into a iteration and a while statement.

ForToWhileStmt Transforms for statements into a scope containing the initial statement and a
while statement containing the body and the step statement.

Inliner Inlines expression statements containing calls or assignments to calls, or re-
cursively inlines a tree of functions and their calls.

RemoveShadowing Removes shadowing between variables in inner scopes of a function.

SimplifyAssignment Transforms compound assignments into simple assignments.

SimplifyTernaryOp Transforms a ternary operator into an if statement.

StatementDecomposer Recursively decomposes expressions into its components. Added support
for ternary statements and unary decrement and increment operators.

SingleReturnFunction Removes multiple returns in a function by introducing unconditional jumps
to a dedicated return section in the function. Contained in package
clava.pass.

Code Transformation Passes (clava.pass)

Transformation Name Description

DecomposeDeclStmt Separates all variable declarations from their initialization.

DecomposeVarDeclarations Separates all declarations of multiple variables into distinct statements. Au-
thored by Dr. João Bispo.

SimplifyLoops Transforms all iteration statements into while statements, decomposing the
loop condition.

SimplifySelectionStmts Decomposes the conditions of all if statements.

Automated Transformations (clava.opt)

Transformation Name Description

NormalizeToSubset Applies all normalization transformations in order.

Inlining Based on a simple heuristic, automatically inline calls within the program.

Table B.1: Transformations that were developed for the dissertation, grouped by package.

https://github.com/specs-feup/clava/tree/275e87bacf9cf82fbfcf4bbb39ae5c3ae4071676/ClavaLaraApi/src-lara-clava/clava/clava/code
https://github.com/specs-feup/clava/tree/275e87bacf9cf82fbfcf4bbb39ae5c3ae4071676/ClavaLaraApi/src-lara-clava/clava/clava/pass
https://github.com/specs-feup/clava/tree/275e87bacf9cf82fbfcf4bbb39ae5c3ae4071676/ClavaLaraApi/src-lara-clava/clava/clava/opt
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