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Resumo

A metodologia de desenvolvimento de software DevOps e a utilização de pipelines CI/CD
aceleraram significativamente o tempo de entrega dos seus adoptantes, mas esta abordagem ao
desenvolvimento de software coloca desafios à forma como a segurança é tradicionalmente im-
plementada, por esta não ser capaz de acompanhar o ritmo do Ciclo de Vida do Desenvolvimento
de Software DevOps. Torna-se assim, necessária uma nova abordagem sobre como integrar a
segurança neste paradigma de desenvolvimento.

DevSecOps visa responder este problema incorporando técnicas de segurança nas práticas de
DevOps, deslocando assim a segurança para as fases iniciais de desenvolvimento. Este processo
promove a automação de testes para a simplificação de métodos que por outros meios seriam mais
complexos e demorados. Actualmente, DevSecOps é um tópico popular entre profissionais do
setor de desenvolvimento de software, como se pode ver pela produção de literatura cinzenta nesta
área, mas não lhe é dada tanta atenção por parte dos meios académicos.

Esta dissertação apresenta um estudo sobre a forma de integrar funcionalidades de segurança,
tais como testes de segurança dinâmicos a aplicações (DAST) e testes de segurança estáticos a
aplicações (SAST), em pipelines CI/CD, e qual o impacto destas adições na segurança do código
utilizado para construir artefactos de containers, no tempo para lançamento e na segurança da
pipeline em si.

Para o conseguir, primeiro, foi criada uma arquitectura pipeline CI/CD de referência tendo
em conta o caso particular de utilização. Em seguida, foi realizada uma análise dos relatórios de
vulnerabilidade produzidos pelas ferramentas DevSecOps. Nesta análise, a eficácia e a eficiência
dos testes, considerando as métricas de desempenho do sistema, foram avaliadas. Finalmente,
fazendo uso da análise anteriormente mencionada e da documentação da arquitectura da pipeline,
foram tiradas conclusões sobre os efeitos das fases de testes de segurança no processo de CI/CD.
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Abstract

The DevOps software development methodology and the use of CI/CD pipelines have sped
up the delivery time of its adopters significantly, yet this approach to software development poses
challenges to the way security is traditionally implemented, by it not being able to keep up with the
pace of the DevOps Software Development Life Cycle. Thus, a new approach on how to integrate
security into this development paradigm is required.

DevSecOps aims to answer this problem by merging security techniques into DevOps prac-
tices, shifting security to the earlier stages of development. This process leverages testing automa-
tion for the simplification of otherwise more complex and time-consuming methods. Currently,
DevSecOps is a popular topic with industry practitioners, as can be seen by the grey literature
output of this field, but not as much attention has been given to it by academia.

This dissertation presents a study on how to integrate security features, such as dynamic
application security testing (DAST) and static application security testing (SAST), into CI/CD
pipelines, and what impact these new stages will have in the safety of the code used to build
container artifacts, time to deploy and security of the pipeline itself.

In order to achieve this, first, a reference CI/CD pipeline architecture was created taking into
account the particular use-case. Then an analysis of the vulnerability reports produced by the
DevSecOps tooling, was performed. In this analysis, the effectiveness and efficiency of the tests,
considering the system’s performance metrics, was evaluated. Finally, making use of the previ-
ously mentioned analysis and pipeline architecture documentation, conclusions on the effects of
the security testing stages on the CI/CD process were drawn.
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“We become what we behold. We shape our tools, and thereafter our tools shape us.”

John Culkin
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Chapter 1

Introduction

1.1 Context

Nowadays, we are seeing the widespread adoption of DevOps practices, this software devel-

opment model although lacking a universal definition, can be identified by some core traits and

values such as, a culture of increased cooperation between the IT operations and development

teams, workflow automation, monitoring and observability and the concepts of Continuous Inte-

gration / Continuous Delivery.

The main driving force behind the shift to the DevOps model is the reduced time it takes

for software changes to enter production, this gives its practitioners the ability to deploy new

iterations of their products much faster than traditional models would allow. This is facilitated

by Continuous Integration and Continuous Delivery practices. In addition to that, a substantial

number of software development companies nowadays utilise Cloud Computing service models

for their offerings, such as Software as a Service (SaaS), where software products are hosted in

cloud infrastructure with no need for user installation of updates, giving developers the ability to

update frequently without disrupting the end user experience.

This methodology, however presents new challenges to the implementation of security prac-

tices in the software development life-cycle as these are commonly implemented at the end of it

and tend to be lengthy endeavours which slow down deployments. With this problem in mind,

DevSecOps tries to integrate security practices into DevOps, by shifting security “to the left”, as

in earlier in the development stage.
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2 Introduction

1.2 Motivation

With the aim of reconciliation of security testing and CI/CD in mind, new pipeline architec-

tures and DevOps tools have been developed to make these two approaches compatible. To better

understand how to incorporate these security features into DevOps, the design of CI/CD pipelines

needs to be studied in order to assess how DevSecOps mechanisms, methods and tools, integrate

into existing DevOps pipelines, this study of multiple possible configurations will be beneficial for

the understanding of the effectiveness, scalability, and code security at the output of DevSecOps

pipeline architectures. As this is not a popular topic in academia, at the moment, this effort will

attempt to clarify and quantify the benefits and drawbacks of incorporating DevSecOps into a new

project.

1.3 Objectives

The expected outcomes of this dissertation are the creation of a DevSecOps pipeline, and a

study that documents the performance results, modularity, scalability and compatibility of each

solution. The pipeline that will be discussed, is responsible for the generation of containerized

artifacts, the security of each artifact will be tested through code analysis and application testing.

The pipeline itself will be designed with its own security in mind, as well as time constraints so

that multiple deployments per day are achievable.

1.4 Document Structure

The document is divided into six chapters and an appendix. Apart from this first chapter, the

second chapter 2 provides a literature review on topics related to or that are going to be discussed

in further chapters. The third chapter 3 details the specifications and considerations in the design

of the CI/CD pipeline, from which time and vulnerability metrics were extracted. The fourth

chapter 4 explains how these metrics were collected, offers an analysis of these and discusses the

implications they have in a DevSecOps strategy. The sixth and last chapter 5, highlights the major

conclusions of the work described in the previous chapters, and references possibilities for future

work.



Chapter 2

Literature Review

2.1 Cloud Computing

Nowadays, the Cloud Computing model has become increasingly more accessible, public

cloud providers can provide projects the means to implement their own cloud infrastructure, with-

out having to resort to building their own, while also being feasible from a profitability perspec-

tive, when compared to an on-premises solution [3]. It also has created new service models for

businesses and institutions, these have been made possible due to capabilities specific to cloud

computing. Naturally, this has lead to an increase in interest in this approach, which has had an

impact in the application development process.

Cloud Computing according to [4], is defined as a model for enabling ubiquitous, conve-

nient, on-demand network access to a shared pool of configurable computing resources that can

be rapidly provisioned and released with minimal management effort or service provider interac-

tion.

This model has five main characteristics:

1. On-demand self-service: A consumer can provision computing resources automatically

without requiring human interaction with a service provider.

2. Broad network access: Capabilities can be accessed over the network through standard

mechanisms.

3. Resource pooling: The provider’s computing resources are pooled to serve multiple con-

sumers using a multi-tenant model, with different physical and virtual resources dynami-

cally assigned and reassigned according to consumer demand.

4. Rapid elasticity: Capabilities can be provisioned and released elastically to provide scala-

bility according to demand.

5. Measured service: The cloud system controls and monitors resource usage for optimization,

transparency purposes.

3



4 Literature Review

The service models can be characterized as:

1. Software as a Service (SaaS): The consumer uses the provider’s applications running on a

cloud infrastructure. The consumer does not control the application’s cloud infrastructure.

2. Platform as a Service (PaaS): The consumer deploys to the cloud provider’s infrastruc-

ture, applications using the provider’s development environment (i.e. the programming lan-

guages, libraries, services, and tools supported by the provider) The consumer does not have

control over the underlying infrastructure.

3. Infrastructure as a Service (IaaS): The consumer can provision computing resources in

which it can run software chosen by himself. The consumer does not have control over

the cloud’s infrastructure, yet it can choose operating systems, storage, deployed applica-

tions and networking options.

2.1.1 Cloud Native

Arisen out of the Cloud Computing paradigm, Cloud Native is an approach to development

that tries to take advantage of the capabilities of cloud computing, such as those listed in section

2.1, typically through a Microservices architecture [5]. In a Microservices architecture, an applica-

tion is broken down to several smaller independent services that run on containers, this approach

facilitates Continuous Software Development by enabling parallel development of features. It

provides better modularity, scalability at the cost of higher network costs and latency. These ap-

plications are commonly deployed in clusters, managed by container orchestration software, such

as Kubernetes.

2.1.2 Microservices

Microservices are small applications with a single responsibility that can be deployed, scaled,

and tested independently. It also enables agile teams to structure their work around these services,

given that microservices are, by definition, autonomously developed [6]. Typically used in Cloud

Native / DevOps applications, these provide benefits in availability (if well integrated), maintain-

ability, testability at the cost of reliability, performance and complexity in implementing security,

all of these properties have to do with the distributed nature of this type of architecture [6].
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Figure 2.1: Monolithic and Microservices architecture

2.1.3 Containerization

Containers are a form of OS-level virtualization, they are primarily used for delivering soft-

ware, that is, they have a platform-as-a-service (PaaS) focus [1], they also make it easier to

move applications between development, testing, and production environments. By providing

a lightweight portable runtime environment, containers let developers package and isolate their

apps with everything they need to run, including application files, dependent libraries and config-

urations.

Figure 2.2: Containerization illustration from [1]

2.1.4 Infrastructure as Code

Infrastructure as Code (IaC) permits the use of “source code”, for infrastructure designs, such

that the entire set of scripts, automation and configuration code, models, required dependencies

and operational configuration parameters can be expressed using the same standard language,

version control could also be applied to these scripts, all these properties enable the merging of the

concepts of operations and development. [7] Thus, by being less error-prone, and easier to test, it

provides a faster and safer way to configure and manage configuration files than older methods of
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scripting (e.g. manually running Shell scripts)[8]. Still, it has its limitations due to the fact that it

is vulnerable to the unintended introduction of code smells by developers. [9]

2.2 DevOps

A universal definition of DevOps at the moment is nonexistent, mostly due to the fact that

it spans a range of concepts that overlap with each other, making its classification difficult. Yet

it can be said that it is a combination of practices, tools, methods, and principles, these include

Continuous Software Engineering, that strives for fast, continuous reliable delivery of software[2].

Implementing DevOps typically involves an organizational and cultural shift inside software

projects. [10] There is an incentive to break down complex architectures and feature sets into small

chunks so that they can be produced and deployed independently. There’s also the need to maintain

a configuration and build environment that provides constant visibility of what’s deployed, with

which versions and dependencies. The bridging of the traditionally siloed cultures of development

and operations. These guidelines are easier to implement in application and web development,

being able to leverage the advantages of cloud computing. An example of this, would be the use

of container orchestration systems when implementing a DevOps strategy, such as Kubernetes.

Due to its relevance and adoption by DevOps practitioners, Section 2.2.3 provides an introduction

to some Kubernetes concepts.

2.2.1 Continuous Software Engineering

Commonly associated with DevOps, Continuous Software Engineering has the aim of integrat-

ing various typically separate activities in software engineering into one continuous movement.

At its core there are three main methodologies, Continuous Integration, Continuous Delivery and

Continuous Deployment [11] [12] [13].

2.2.1.1 Continuous Integration

Continuous Integration, commonly abbreviated to CI, describes a set of practices where devel-

opers commit changes to the main branch of a project frequently, these changes then run through

automated builds and tests, so that integration problems get detected and resolved accordingly. As

CI allows developers to have immediate feedback on their code changes and fix problems earlier

in the development cycle, it became a major point of interest in the DevOps movement as smaller

and more frequent changes reduce merge and integration issues [13].

2.2.1.2 Continuous Delivery/Deployment

Continuous Delivery, in its two abbreviated forms CD or CDE, involves the use of tests in

a staging environment, in order to have production ready software available at all times, yet the

deployment process is still manual, involving human action before the product is released. Every

change is treated as a potential release candidate to be frequently and rapidly evaluated through
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one’s continuous delivery pipeline, so that one is always able to deploy and/or release the latest

working version, yet one may decide not to [11].

Continuous Deployment, also abbreviated CD, is similar to Continuous Delivery, but it adds

automatic deployment to production once staging tests are passed, requiring no human interaction

at the end [14]. Figure 2.3 illustrates the actions performed in the CI and CD processes, at the right

end of the figure the difference between Continuous Delivery and Deployment is highlighted.

Figure 2.3: CI/CD illustration from [2]

2.2.2 DevOps Tooling

Software associated with DevOps, ranges from tools devoted to configuration management,

to continuous integration, deployment of infrastructure through scripts, container runtime envi-

ronments and container orchestration. In all of these there is an emphasis in automation [10].

An extensive list of DevOps software projects can be found at the Cloud Native Foundation’s

Landscape [5], and CD Foundation’s Landscape [15] websites. It is worth noting that a sizeable

proportion of the projects mentioned above are Open Source Software (OSS) solutions.

2.2.2.1 CI/CD Tooling

Here, a brief presentation of some common CI/CD tools will be made.

GitLab and GitHub are software development platforms for project management, version con-

trol, CI and source code hosting[16] [17]. The version control component of both is based on

Git, a distributed version control system, which gives developers the ability to develop features

in parallel by using development branches[18]. Both also provide CI/CD, with build automation,

integration testing and staging environments. A GitLab instance can be self-hosted whereas a

GitHub one can’t.

Jenkins is an open source automation server which can be used to automate tasks related to

building, testing, and delivering or deploying software[19]. It is a Java application extensible

through plugins. It provides installation options through Docker containers, package managers

and standalone files. Its website[19] provides documentation, and walkthroughs on how to deploy

it correctly. The pipeline is described in stages which are defined in a script named “Jenkinsfile”

written in the Groovy language. This script is interpreted and executed when a build job starts.
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It can be edited through the Jenkins GUI or in a text editor. The execution of a typical Jenkins

build job is illustrated in figure ??, in this example the Jenkinsfile script is parsed by a Jenkins

master server which then delegates the execution of the tasks to an agent. The agent generates the

software artifacts and deploys them to the infrastructure, while the master controls the execution

of the stages and the archiving of logs.

Figure 2.4: Jenkins operation

2.2.2.2 Configuration Management Tooling

Ansible is a Python based IT automation tool for configuring systems, deploying software, and

other related IT tasks [20]. Ansible operates in an agentless manner, it does not have dedicated

master nodes for management. The tasks to be performed are specified in Playbooks written in the

YAML markup language, that will then be parsed and executed by Ansible, which then pushes the

changes to its targets. Due to its agentless architecture it makes scalability simpler, at the cost of

more centralized control.

2.2.2.3 Containerization Platforms

Docker is a containerization platform for building, deploying, and managing containerized

applications [21]. It runs a client-server architecture between its client and daemon, the client

is responsible for user interaction and configuration, and the daemon is in charge of the actual

building and deployment of container images. Configuration is done by editing docker-compose

files and Dockerfiles. Docker can also configure external storage, networking and how isolated a

container is from others and its host machine [22].

2.2.2.4 Container Orchestration Tooling

Kubernetes is a container orchestration tool designed to manage and configure distributed

container systems (e.g. Microservices). It can act as a load-balancer and storage orchestrator,

and has also authentication management, failover and automatic provisioning features. It was
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originally designed with scalability in mind by Google, due to their need to deploy large amounts

of containers consistently [23].

2.2.3 Kubernetes Concepts

This section will outline some concepts crucial to the operation of a Kubernetes cluster. These

typically deal with configuration files written in the YAML format.

2.2.3.1 Pods and Namespaces

Pods are groups of containers with shared storage and network resources, they are the smallest

unit of computing one can deploy in Kubernetes. In a way similar to Docker, pods are isolated by

Linux namespaces, cgroups and other isolation techniques. They can be thought of as a group of

containers with shared namespaces and shared filesystem volumes.

In Kubernetes namespaces, are used to separate resources in a cluster. They provide a scope

for certain non cluster-wide components, such as Deployments or Services. They are useful for

distributing resources between users or organizing different kinds of software. [24]

2.2.3.2 Deployments and StatefulSets

Deployments describe desired states for pods, in these files users provide details in a declar-

ative form, such as the number of container replicas, open ports, and other metadata for easier

querying of information and management. The Deployment Controller is tasked with carrying out

the changes that lead to the desired final state. [24]

StatefulSets are similar to Deployments in that they also describe a desired state, but they

provide more features for handling stateful use-cases. Each pod in a StatefulSet has a unique

identifier, and can be deployed in an ordered manner. It is recommended for use-cases that require

unique network identifiers, persistent storage, and ordered updates [24].

2.2.3.3 PersistentVolumes and PersistentVolumeClaims

Persistent storage in Kubernetes is handled using PersistentVolumes and PersistentVolume-

Claims. When a Pod is created, by default, no persistent storage is allocated, this means that if

a Pod is shut down its data will be lost. To get over this, PersistentVolumes are used for storing

the information that would be written to disk. To access a PersistentVolume, a Pod must first be

associated with a PersistentVolumeClaim that quantifies the amount of storage requested and its

properties (i.e. ReadWrite, ReadOnly...)

To configure PersistentVolumes an appropriate volume provisioner is needed, these exist in

the form of plugins. Each plugin may be used for a specific kind of storage protocol, for example

NFS or local storage.



10 Literature Review

2.2.3.4 Secrets and ConfigMaps

ConfigMaps store non-confidential data in key-value pairs, as the name implies, they are com-

monly used to supply configuration files to the running pods. They are mounted in a way similar

to storage volumes.

When there is the need for storing confidential information, for example a private SSH key,

it is best not to store it inside a ConfigMap or container image, especially if that image is public.

This issue can be circumvented by using a Secret, they behave similarly to a ConfigMap, but they

are designed for holding confidential data, it is recommended that they are stored encrypted, as the

default is non-encrypted.

2.2.4 Kubernetes Distributions

Kubernetes distributions provide a platform by modifying and reorganizing the main compo-

nents of standard Kubernetes. They aim to simplify the configuration, startup, and maintenance

of low-resource clusters. [25] They aggregate Kubernetes dependencies into a single package for

a simpler setup. These distributions, due to how they simplify the configuration of clusters, be-

come opinionated, as in, they reflect certain preferences of the developers of these products in the

configurations they choose. Examples of this kind of software are K3s developed by SUSE or

MicroK8s developed by Canonical, both backed by enterprises connected to the cloud computing

and Linux development realms.

2.3 Security and Testing

As applying DevOps methods to security techniques implies moving security checks to earlier

in the development stage, application testing becomes a crucial phase in the security process.

2.3.1 Continuous Security

Continuous Security is an approach for bringing security to DevOps by having security teams

adopt DevOps techniques instead of traditional practices more concerned with infrastructure. This

way, the focus shifts to the continuous improvement of a product, rather than on posterior fixes

[26].

Continuous Security has three main components:

1. Test driven security (TDS): Its goal is to define, implement, and test security controls. It

provides security by implementing basic controls and consistently testing those controls for

accuracy. Tests should be established for application vulnerabilities, such as those in the

Open Web Application Security Project (OWASP) top-10 list [27], infrastructure miscon-

figurations, for example in SSH servers, VPNs or administration panels and for the CI/CD

pipelines themselves.
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2. Monitoring and responding to attacks: In order to prepare for a security incident logging,

intrusion detection and incident response are critical.

3. Assessing risks and maturing security: Beyond the purely technical aspects of implementing

security, risk management and the implementation of a security program play a major role

in the overall security of an application or organization.

2.3.2 Vulnerability classification

According to [28], a vulnerability can be described as the existence of a weakness, design, or

implementation error that can lead to an unexpected, undesirable event compromising the secu-

rity of the computer system, network, application, or protocol involved. These, when exploited,

potentially cause an adverse impact on the system on which it was present.

Security scanning tools identify and classify vulnerabilities according to one or more standards

for reference and categorization.

2.3.2.1 CWE and CVE

For the classification of weaknesses, CWE [29] is a list that is widely used. A weakness in this

case means a flaw, a fault, a bug, or other errors that can result in systems, networks, or hardware

being vulnerable to attack. Each weakness in the CWE list receives a numbered entry, which then

can be used to consult the list. This list is a community effort, governed by the Mitre corporation.

Related to the CWE list, there is also the CVE list. CVE entries are specific vulnerabilities

found in an implementation, as opposed to CWE entries which are not related to specific software

or hardware projects. These can be described in terms of CWE entries in order to classify the

vulnerability type. [30] CVEs are also evaluated in terms of severity, by way of CVSS scores.

CVEs are given a score from 0 to 10, with a higher CVSS number representing a higher severity

vulnerability.

2.3.2.2 OWASP Top Ten

Another classification system is the OWASP Top Ten [27]. It classifies weaknesses similarly

to the CWE list, but it organizes them in ten different categories which are a representation of the

ten most critical security risks affecting web applications. These are ordered in ascending order

of severity. OWASP entries are broad definitions, with this in mind they can be described in terms

of CWEs which offer more granular classification. The latest update to the list was released in

September 2021, and has the following categories:

• A01:2021-Broken Access Control: details failures of policy enforcement such that users act

outside their intended permissions. Includes Path Traversal and Cross-Site Request Forgery.

• A02:2021-Cryptographic Failures: focuses on problems related to cryptography or the lack

of it.
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• A03:2021-Injection: is concerned with user-supplied data not being validated, filtered, or

sanitized by the application. Includes Cross-site Scripting and SQL injection.

• A04:2021-Insecure Design: focuses on risks related to design and architectural flaws.

• A05:2021-Security Misconfiguration: deals with insecure configurations across an applica-

tion’s stack. Includes XML external entity (XXE).

• A06:2021-Vulnerable and Outdated Components: usage of vulnerable components, can be

expressed using CVEs.

• A07:2021-Identification and Authentication Failures: related to the confirmation of the

user’s identity, authentication, and session management.

• A08:2021-Software and Data Integrity Failures: highlights the lack of Integrity verification

across software updates critical data and CI/CD pipelines.

• A09:2021-Security Logging and Monitoring Failures: relates to failures in the detection,

escalation, and response to active breaches.

• A10:2021-Server-Side Request Forgery: deals with vulnerable applications not validating

user-supplied URLs when fetching resources.

2.3.3 Application Testing

2.3.3.1 Static Code Analysis

Static analysis tools examine the text of a program, without executing it. They can examine

either a program’s source code or a compiled form of the program, although decoding the latter

can be difficult. As it has access to the source code and program binaries it is considered a white-

box technique. Static analysis tools are faster than manual audits, and they encapsulate security

knowledge in a way that doesn’t require the tool operator to have the same level of security exper-

tise as a human auditor. Static analysis tools look for a fixed set of patterns, or rules, in the code,

if a rule hasn’t been written yet to find a particular problem, the tool will never find that problem

[31]. Static Application Security Testing (SAST), can be applied early in a CI/CD pipeline after

a build stage has been passed, but it can slow down a deployment by flagging false positives that

need to be manually reviewed, or by taking too long to scan incremental changes [2].

2.3.3.2 Dynamic Application Testing

In contrast to static analysis, dynamic analysis tests a program while it is running. Dynamic

Application Security Testing (DAST), tries to determine how a running application would respond

to malicious requests. As it does not have access to the source code or binaries it is considered a

black-box technique. These requests are crafted by either an auditor or an automatic scanner, and

then sent to the running application[32]. However, this implies that the application must be built,
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installed and configured, which only happens in the latter part of the CI/CD pipeline, this coupled

with the fact that the automatic tools used for these tasks also need configurations specific to the

application being tested, this makes this method costly in terms of time [2].

2.3.3.3 Interactive Application Security Testing

Interactive analysis relies on the monitoring of the code execution in an application. Like

SAST 2.3.3.1, it is a white-box technique, but like 2.3.3.2 it requires execution, thus combining

properties of both techniques. Generally IAST tools generate fewer false positives than other

options, and are easy to correlate with SAST results. Unlike both SAST and DAST, they need to

be installed in the server running the targeted application, it also needs some degree of integration

with the application. [33]

2.4 DevSecOps

DevSecOps focuses on bringing security to software projects in a way that conforms to the

DevOps methodology, thus implementing DevSecOps poses many challenges that need to be ad-

dressed, such as the slow pace at which vulnerability assessment programs detect flaws and the

inability to completely automate some security processes which limit the speed at which deploy-

ments can be made. Developers lacking security skills and complex infrastructure are also con-

tributing factors to the difficulty of an implementation. There are multiple methods for testing

and hardening a DevOps pipeline these include Static Application Security Testing (SAST), Dy-

namic Application Security Testing (DAST), Intrusion Detection/Prevention Systems (IDS/IPS),

cryptographically secure connections and an effective logging policy. [26] [32] [34].

2.4.1 SAST Tooling

SAST tools, have the capability to not only audit the code commited by the developers to their

project’s source code repository, but also the third party libraries needed to build the project, if

they are open source. These kinds of tasks can be accomplished by programs like Sonarqube,

BlackDuck, Snyk and LGTM. These services can be used on-premises or in SaaS subscriptions.

2.4.2 DAST Tooling

There are various options for DAST tools, they range from programs specifically targeted at

web applications, like Arachni and OWASP ZAP, to more full-featured suites with support for

more protocols and use-cases such as GVM/OpenVA, and Nessus.

There are different DAST methodologies that can be employed. Some tests are based on

webcrawlers that after discovering all possible URLs start attacking pages with malicious requests,

others are crafted using browser automation tools, such as Selenium, to replicate the behaviour of

a typical user of an application, and proxying their traffic through an attack proxy. The most
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common of these two approaches is the first one. [32] The results are obtained by analyzing the

responses of the application’s user interface to the malicious requests.

2.4.2.1 OWASP ZAP scan

OWASP ZAP can be used to perform DAST scans on web applications or as an HTTP proxy.

It can perform pre-packaged scans and user-scripted scans. The pre-packaged scans follow a

conventional structure. It consists of three stages, first a web crawler proceeds to enumerate all

the URLs it finds, then an active scan sends malicious requests to the URLs found earlier, in the

final stage a report is produced with the findings from the earlier phases. User-scripted scans can

follow a different structure and make use of other plugins, they can also define hooks to call other

scripts, they are useful if some kind of authentication is needed.

2.4.3 Runtime Security Tooling

Other tools can monitor the containers runtime during execution, for example tools that rely

on eBPF [35], that use system calls to monitor a system by parsing Linux system calls from the

kernel at runtime, asserting the returned stream against defined policies and then alerting if a rule

has been violated.

2.5 Conclusion

As concerns with norm compliance and security grow, the need for reliable testing of soft-

ware has increased. This has led to more interest being directed to DevSecOps. Like DevOps,

DevSecOps’ definition can be ambiguous, literature has been published with the intent of defining

this new term [9] [36] [37], explaining the concepts related to an organization’s culture and what

particular terms mean, but these don’t explain the methods used to implement DevSecOps. Others

have looked into how organizations struggle with adoption [2], and how to overcome that.

However, literature describing an implementation and its performance is not as common.

There have been attempts at this [32], in which DAST and SAST methods were studied in conjunc-

tion with GitLab, not including logging, or the design and implementation of the pipeline itself.

The performance of tools used in security testing has been documented [33], but its integration in

the SDLC was not the main focus. This dissertation will aim to fill the gap in this category by pre-

senting a more complete review of a pipeline’s architecture choices in addition to the performance

comparison of DevSecOps tools.



Chapter 3

Solution Architecture and CI/CD
Software

Over the course of this chapter, the details pertaining to the design and implementation of the

DevSecOps pipeline developed during the elaboration of this dissertation, will be presented.

There is no shortage of tools in the DevOps space as we can see in section 2.2.2, as well as

cloud provider solutions dedicated to this field, this in turn, makes it so that there are a myriad

of ways of crafting a pipeline architecture. The criteria for the selection of the tools and methods

presented in this chapter was mostly based on market adoption, whether it is open-source software

and not being a complete proprietary solution, e.g. Azure or AWS DevOps solutions.

3.1 Infrastructure and Cloud Providers

3.1.1 Private Cloud, On-Premises and PaaS

As this implementation prioritises open-source solutions that can be deployed on-premises or

in a private cloud, cloud providers that offer PaaS (Platform-as-a-Service) solutions, such as AWS,

Google Cloud and others, were excluded in favor of providers more in-line with this approach, in

this case DigitalOcean and Linode were chosen as the cloud providers.

In contrast to PaaS providers, these do not offer complete proprietary DevOps/DevSecOps

solutions. Provisioning computational power, storage, and network resources is the main focus,

making the implementation of other features up to the customer. The lack of complex pre-made

solutions, consequently brings the monthly cost of these services down, it also helps in keeping a

project platform independent.

3.1.2 Cloud Provider Features

Cloud block storage can be provisioned automatically when creating VM instances, by sending

requests to the provider’s API, or by requesting it through the user interface. This allows for

15
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scalability in case, the need for storage becomes larger. Cloud providers also offer backup services,

in case recovery to a previous state is needed, using custom virtual machine images.

Both Linode and DigitalOcean offer managed Kubernetes solutions, these services abstract the

Kubernetes control plane, giving the user only worker nodes, this may prove useful in conditions

in which the client does not desire the burden of completely administrating a cluster. In this case,

these services were not used due to the fact that they limit access to the machines running the

workloads, for example not allowing SSH access to the nodes.

3.2 Cluster Configuration

For this setup, three virtual machines were provisioned, each one with access 2 virtual CPU

cores and 4 GB of RAM. All virtual machines were running the microK8s Kubernetes distribution,

forming a three node cluster. Each node in the cluster functions as both a worker node and control

plane node. With a replicated control plane over the three nodes, there is fault-tolerance in case

one or two nodes crash, or stop responding correctly to liveness probes. These specifications

were chosen by taking into account the workload each virtual machine would be submitted to, in

addition to the benefits to fault-tolerance that running three nodes, instead of just two, brings. The

nodes share a LAN in which they could deploy applications without them being exposed to the

rest of the Web. This aspect is relevant to the testing of an application that could potentially have

vulnerabilities.

The operation of microK8s, created an increase in the processor load and RAM usage of

each VM similar to that found on [25]. A minimum of 540 MB of free RAM is stated in the

microK8 documentation, for normal operation but a regular use-case commonly exceeds this limit.

In smaller deployments with limited resources, such as this one, Kubernetes has an impact on the

workload capacity of the virtual machines. A managed Kubernetes service that offloads the control

plane, can reduce this impact, but at the cost of no access to the underlying VMs.

Cluster administration was performed using the SSH protocol either through the VMs shell in

interactive mode, shell scripts or Ansible Playbooks. Authentication was done through password-

less SSH, using SSH key pairs for authenticating hosts who would attempt to log in.

3.2.1 Storage

Each one of the machines had access to 80 GB of block storage locally. Distributed storage

for the cluster was provided by an NFS server configured in one of the virtual machines. This

method centralized storage in a single point, instead of having multiple Kubernetes volumes spread

across the three VMs. It makes management simpler, and simplifies the process of switching pods

between nodes in the cluster, because permanent storage does not have to move between machines.

An NFS storage provisioner was configured in the cluster, it is deployed as a pod in Kubernetes

and enables the cluster to allocate disk space on-demand when volume claims are issued. This

provisioner creates and manages the NFS directories to be mounted by the pods, it implements
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the NFS protocol for the pods. This way a pod does not have the need for installing NFS tools to

mount NFS directories.

Three pods inside the cluster need persistency, the SonarQube server, the SonarQube database,

and the Jenkins master. These need to store state information for normal operation and storage

of logs. The other components employed during the build process don’t need this property, as

their state information is not relevant outside the build process, and their outputs are exported to

permanent storage in the Jenkins master volume. Thus, when a build job finishes, the contents of

the pods are lost.

Figure 3.1: NFS server and container mounts

Daily backups to cloud storage were performed using rclone. The cron daemon was used to

initiate a backup script daily, that would archive and compress the NFS server’s data and upload it

to Google Drive. This strategy was chosen due to its ease of implementation, its security and cost

efficiency is lackluster when compared to production grade solutions.

3.3 CI/CD software

3.3.1 Jenkins

Due to its widespread adoption and Open-Source nature, the CI/CD tool chosen to be tested

was Jenkins. This implementation runs a Jenkins container image in the cluster supplied by the

Jenkins developers, available for download at Docker Hub. The version of this container image

was the Jenkins LTS (long term support) release version number 2.346.2.

The repositories used in the build process were hosted on GitHub, from which the Jenkins

server would pull the source code. Both Jenkins and GitHub provide interoperability, as GitHub

provides authentication measures by generating tokens to be used with its API, which then permit
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as GitHub to use Webhooks to notify the Jenkins server of a commit, and the Jenkins server to

notify GitHub of whether a build job was successful or not.

The container images generated after each build were uploaded to Docker Hub where a repos-

itory was previously setup, these are then stored for future deployment.

3.3.2 Kubernetes Integration

For added security, Jenkins build jobs can be delegated to agents, this way the master node

does not perform the actual build tasks, and only serves administration purposes. Jenkins when

paired with Kubernetes and its container orchestration capabilities can create agents on demand,

this integration can be achieved by using the Jenkins Kubernetes plugin, which can be fetched from

the Jenkins plugin page. These agents run the Jenkins agent container image, they are connected

to the master through an encrypted session on port 50000 using the Java Network Launch Protocol

(JNLP) protocol.

The agents when running on Kubernetes, can make use of more than just the Jenkins agent

image container, if other functionalities are needed, one can specify a Kubernetes pod declaration

in the Jenkinsfile or the Cloud configuration page. This way, features not available to the standard

image can be implemented, such as a container running a SAST scan or a container with tools for

use in deployment tasks. This is achieved by having the agent interact with the Kubernetes API

server, to get access to the other containers when needed.

The agent image can also be customized, as the Dockerfile of this image is Open-Source under the

MIT license.

Figure 3.2: Jenkins and Kubernetes interaction
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3.3.3 Project compilation and Maven

The application chosen for testing is a Java application, and it uses Apache’s Maven for build

automation and project management. This tool reads XML files (pom.xml) containing the infor-

mation that is necessary for the compilation of application’s binary, and then executes it. It is

through Maven plugins that SonarQube and OWASP’s dependency-check interact with the Sonar-

Qube server, these are also defined in the pom.xml files.

The remaining pipeline structure is not dependent on Maven or Java, and it can be repurposed

for the use of other programming languages or project management tools.

3.3.4 Container image compilation

When compiling Docker container images, access to the Docker daemon is normally needed,

which in turn requires root privileges. In Kubernetes this could be implemented by using the

“Docker in Docker” approach. By having a container running the Docker daemon while connected

to the host system’s Docker daemon socket. This ends up giving root access to the container which

is not something desirable from a security perspective.

To tackle this problem, third party tools that can compile container images without root access

in user-space, have been developed. The pipeline that was put in place makes use of Kaniko,

an Open-Source tool maintained by Google, to compile and publish the container images to the

registry (Docker Hub). In this use-case Kaniko needs access to Docker Hub credentials, these are

passed to the container as a Kubernetes secret volume.

3.3.5 Pod template specification

The agent’s pods were specified using a Kubernetes deployment file in YAML format. This

file was stored inside the Jenkins server, but it could be written directly in the Jenkinsfile. This

pod specification was composed of four containers, one container is the agent responsible for the

communication with the master, execution of pipeline steps and running Maven for compilation

and execution of the SonarQube, dependency-check plugins, another is the OWASP ZAP con-

tainer that performs a WAST scan of the target application, and the other two were responsible

for executing the Snyk analysis and communication with Snyk’s servers. The download of these

container images before the start of a build job requires 1549,5 MB of disk space, 250,6 MB for

the Snyk Maven image, 301,1 for the Snyk Docker image, and 997,8 MB for the OWASP ZAP

image. The time impact of this was mitigated by storing the container images for future builds. It

can be further reduced by using Snyk’s lighter container images, these do not include build tools.

The Snyk Alpine image uses 32 MB of disk space, by substituting the other Snyk images by this

one, the total disk space necessary becomes 1061,8 MB.

The YAML file can also be expanded to accommodate new container and volume declarations,

if use-cases were to be changed.
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1 apiVersion: "v1"
2 kind: "Pod"
3 metadata:
4 annotations: {}
5 labels:
6 jenkins: "slave"
7 jenkins/label-digest: "eb8b520873bb6b61c45c0696d94d47e6c5e8bdf5" # label hash
8 jenkins/label: "kubeagent" # pod template name
9 name: "kubeagent-p72p2" # pod name with random identifier

10 namespace: "jenkins"
11 spec:
12 containers:
13 image: "jrolaubi/jenkins-agent-ansible"
14 imagePullPolicy: "Always"
15 name: "jnlp"
16 resources:
17 limits: {}
18 requests: {}
19 tty: true
20

Figure 3.3: YAML Pod template of the Jenkins agent

3.3.6 Pipeline stages

The Jenkinsfile stored in the source code repository of the project is interpreted and executed

by the agent. The agent executes the stages defined in the Jenkinsfile in the order shown in 3.4.

Figure 3.4: Pipeline diagram

The order in which the stages are performed is dependent on certain conditions. As can be

seen in 3.4, the testing stages can only start after the project is compiled, this is due to the fact that

the project is written in Java and SonarQube needs the .class files to be present, these are generated

during compilation, other programming languages may not have this restriction. It can also be seen

that the Snyk analysis only happens after the image has been updated to the registry, this has to do

with the fact that the Snyk Container scan needs to connect to a registry first. In this implemen-

tation, SonarQube and dependency-check were executed in a synchronous manner, while Snyk’s

components were parallelized using a parallel stage defined in the Jenkinsfile. The OWASP ZAP

scan stage can only be executed after a successful deployment to the testing environment, thus
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1 stages {
2 stage(’Example stage’) {
3 steps {
4 sh ’echo "Test"’
5 }
6 }
7 }

Figure 3.5: Example pipeline stage

it happens after the Ansible Playbook has finished deploying the application to the cluster. This

deployment is done by using Ansible’s Kubernetes module to interact with the cluster. To prevent

IP address disclosure the Ansible hosts file is passed to the containers as a secret, and is not stored

in the source code repository. The same is done with the SSH keys, used to authenticate the agents

against the cluster’s hosts when they need to perform changes to the cluster’s deployments.

Further parallelization of the testing workload is possible, as those stages could be executed

simultaneously, however for easier measurement of the time taken by each stage the current con-

figuration was used. Apart from the essential compilation and deployment stages, stages can be

removed if needed. Additional stages can be added by adding a pipeline stage block to the script.

When executed, the pipeline script follows an algorithm similar to the one shown in 3.6.



22 Solution Architecture and CI/CD Software

Figure 3.6: Pipeline flowchart
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3.4 DevSecOps Frameworks

DevSecOps, being an area that encompasses such a large amount of different practices, in-

volves a wide range of procedures to create a solid implementation strategy. Recent frameworks/-

models are being proposed to aid in the validation of DevSecOps procedures. A selection of these

were used to evaluate the implementation presented in this document. Some measures proposed

are features that are suited for future work in this present implementation.

The OWASP DevSecOPs Maturity Model (DSOMM) defines various guidelines similar to

other norms like the ISO’s ISO-27001 and OWASP’s SAMM2. It rates implementations in four

levels of maturity, these levels are then used to evaluate five categories which then are split over

eighteen subcategories. The five main categories are “Build and Deployment”, “Culture and Or-

ganization”, “Implementation”, “Test and Verification”, and “Information Gathering”. A visual

representation of the model can be generated from the project’s webpage.

Figure 3.7: Visual representation of the model

As can be observed in 3.7, the work that was documented does not cover part of the categories

described in the model. A full-fledged DevSecOps methodology does not rely exclusively on the

CI/CD process and application testing. It requires many hardening techniques that are out of the

scope of this document that would be crucial in a production implementation.
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3.4.1 Build and Deployment stage

In the “Build and Deployment” category, most of the procedures were implemented, however

the practices related to patch management were not, as defining a patch policy was outside the

scope of this document. In case one was to be defined, practices such as nightly builds, automated

pull requests, and container image lifetime limitation could be considered.

The “Build” subcategory achieved important steps, like a defined build process or the use of

virtualized environments, having only missed in not signing the code commits or artifacts pro-

duced by the pipeline. These two measures would help protect the integrity of the artifacts pro-

duced, and make manipulation of the source code more difficult.

The “Deployment” subcategory was also followed to almost completion, with the exception

being no downtime updates, a defined image decommissioning policy, feature toggles and Blue/-

Green deployments. These were not performed, in part because they would require a larger scale

project, as no downtime updates and Blue/Green deployments would need a production environ-

ment that would require more resources.

3.4.2 Implementation stage

This stage encompasses infrastructure/application hardening as well as source code control.

As the application that was chosen was not modified, application hardening measures were not

pursued. Furthermore, WebGoat being an intentionally vulnerable application does not conform

to various standards of application security. Source control protection was also not a necessity as

the risk of unauthorized edits to the source code was not a concern.

Infrastructure hardening is a major concern that was only partially implemented. Some of the

more important measures include encryption at transit, hardened AAA (e.g. role based access

control, security accounts, 2FA), IaC. Encryption at transit either internally or at the edge of the

network was not implemented, this specific counter-measure is especially important against MITM

(Man in the middle) and sniffing attacks.

The AAA features used were mostly the defaults, without much hardening, this is a bigger concern

in an organization that needs to manage users on a least-privilege principle.

Even though Kubernetes and containerization implement some aspects of infrastructure as code,

the virtual machine images used in the process were not provisioned in an IaC context, with custom

configuration done in the interactive command line interface.

3.4.3 Test and Verification stage

In this stage, tests related to application design and some to infrastructure were not explored,

as integration tests and network related tests were not performed.

Most entries related to SAST techniques at the application level were put into action except for

the static analysis of all individual libraries and dependencies and the integration of static analysis

at the IDE level, before code is committed. At the infrastructure level there were fewer guidelines

followed, as only tests of the virtualized environments, the container image dependencies, and
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exposed secrets were done. The cloud configuration was not tested, malware was not monitored,

and the VMs were not checked for vulnerabilities periodically.

The use of a VMS (Vulnerability Management System) was not considered for this implemen-

tation, even though centralized vulnerability logging is a desirable feature.

3.4.4 Information Gathering stage

Log treatment in this implementation was partially centralized, while the Jenkins master did

store individual reports and the build logs in its NFS volume, other services did not have a central-

ized logging system where important log events were stored.

The metrics that were collected were basic usage metrics obtained either through the Kuber-

netes API server or the process monitoring tools found in Ubuntu’s repositories, such as top or

htop. Observability of metrics is another crucial DevSecOps/DevOps topic, that was not the focus

of this dissertation. The DSOMM specifies targeted alerting, metric visualization, monitoring of

costs, correlation of security events and centralized application logging as important components

to a robust DevSecOps model.

3.5 Conclusion

Over the course of this chapter, the pipeline’s component choices were explained, and its struc-

ture was delineated. An assessment of its coverage of DevSecOps practices was also conducted by

employing a framework based on standardized norms. The next chapter will go into further detail

regarding its security testing features and will provide an analysis of the results produced by its

reports.
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Chapter 4

Security Testing Implementation

The present chapter, focuses on the application security testing aspect of the pipeline described

in chapter 3. First, the setup of the testing stages is described followed by an analysis of the results

produced by these stages, ending with some considerations on the impact of the testing phases on

the pipeline’s overall performance.

4.1 Target Web Application

For benchmarking purposes OWASP’s WebGoat was chosen as the target of the security tests.

OWASP [27] maintains a list of purposefully vulnerable open-source web applications, WebGoat

is one of the most popular, its source code is rather easy to compile, and most static analysis tools

support its programming language, Java. This Web application is divided into various lessons,

with each one covering a specific web application security topic. Ten of these are named after

the OWASP Top Ten 2.3.2.2 categories, with the addition of five other topics. At the end of the

pipeline, this application is deployed to the three node LAN, this way it remains accessible to all

the nodes in the cluster, but not to the outside. The version number of the WebGoat instance used

for testing purposes was 8.2.3, the latest version as of March 2022.

4.2 Static Application Security Testing

During the build process, after the successful compilation of application’s source code, the

Static Analysis stage begins. This stage is formed by two steps, first a SonarQube analysis, and

then a Snyk analysis. These generate report files in HTML format for better readability, users can

access these through the Jenkins UI or the SonarQube server’s UI. The SonarQube version number

used in the tests was the 8.9.9 version. Snyk versions ranged from 1.954 to 1.984, this was due to

Snyk’s upload frequency over the month of July 2022.
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1 stage(’SonarQube analysis’) {
2 steps {
3 script {
4 def scannerHome = tool ’sonarscanner’;
5 withSonarQubeEnv(’sonarqube-webgoat’) {
6 sh ’’’mvn sonar:sonar \
7 -Dsonar.projectKey=webgoat\
8 -Dsonar.host.url=${SONAR_HOST_URL}\
9 -Dsonar.login=${SONAR_AUTH_TOKEN}’’’

10 }
11 }
12 }
13 }

Figure 4.1: SonarQube pipeline stage

4.2.1 SonarQube Parameters

The implementation was done in an on-prem fashion using the oficially supported Helm chart,

this implementation allows the user control over the server unlike other SaaS offerings. Sonar-

Qube’s SonarScanner is primarily concerned with code quality metrics, it will point out common

code smells, bugs and vulnerabilities. The SonarQube server can also track these issues over

subsequent scans to ensure they are resolved, it can also track various projects.

In this example, a Jenkins pipeline stage is used to start a SonarScanner instance using the

Jenkins SonarQube plugin. Authentication information has to be previously configured in the

Jenkins server, and the Maven project must also be compiled for this scan to be successful.

SonarQube can qualify the vulnerabilities it encounters in different categories, such as the

OWASP Top 10. It also indicates CWE numbers of those vulnerabilities.

There is the option of integrating OWASP’s dependency-check as a third-party plugin, this

enables the detection of vulnerable dependencies in SonarQube. Other third-party plugins can

be used for defining new analysis rules or exporting documents to a specific format for further

analysis.

4.2.2 Snyk Parameters

Unlike SonarQube, Snyk does not provide a way to manage a server inside the user’s premises,

so when a scan occurs, it performs requests to a remote server controlled by the Snyk company,

which then responds to the Snyk application.

Snyk has various components in its platform that can perform Static Analysis, in this case the

Open-Source, Code, and Container modules were used. These modules distinguish themselves

by focusing on specific areas, for example the Open-Source module concerns itself with finding

vulnerable Open-Source libraries in the dependencies of the code, the Code module performs more

general Static Analysis techniques, and the Container module examines the dependencies of the

container images.
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The container module specifically distinguishes Snyk from SonarQube, as there is not a similar

feature implemented in that product, and it highlights an important attack surface.

Snyk can be integrated in Jenkins in two manners, either using the Jenkins plugin or through a

Snyk container image. The first approach, is limited to the Snyk Open-Source module. The second

option has access to the all Snyk CLI commands. In order to not leak Snyk credentials, a user must

be aware that he shouldn’t pass credentials to the commands using Groovy string interpolation (i.e.

using double quotes), as this can cause the credentials to appear in the pipeline log.

One can interact with the containers by issuing commands through the Jenkins kubernetes

plugin command interface.

1 stage(’Snyk analysis’) {
2 steps {
3 catchError(buildResult: ’SUCCESS’, stageResult: ’FAILURE’) {
4 snykSecurity(
5 snykInstallation: ’snyk’,
6 snykTokenId: ’snyk’,
7 additionalArguments: ’--debug --all-projects’
8 )
9 }

10 }
11 }

Figure 4.2: Snyk plugin stage

1 stage(’Snyk Code scan’) {
2 steps {
3 container(’snyk-docker’) {
4 catchError(buildResult: ’SUCCESS’, stageResult: ’FAILURE’) {
5 sh ’’’
6 snyk auth ${SNYK_TOKEN}
7 snyk code test --json \
8 --debug | snyk-to-html -o code-results.html
9 ’’’

10 }
11 }
12 }
13 }

Figure 4.3: Snyk Code container stage

4.3 Dynamic Application Security Testing

In the penultimate stage of the build process, after the Static Analysis stage finishes, a Dynamic

Application test is performed using OWASP ZAP, the version number being used for the tests is

2.9.11. This stage also generates a report file in HTML format for better readability, users can also

access these through the Jenkins UI.
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4.3.1 OWASP ZAP parameters

OWASP ZAP has various kinds of tests, in a Python script format, that can be used in a CI/CD

scenario, these are included in the official container image, and can be invoked by sending com-

mands to the container. Users can also define their own scans by making use of the Automation

Framework, in which users can declare a scan structure in YAML format. ZAP can also be con-

figured to interact with scripts for general purposes.

For this purpose the pre-packaged full scan and the Automation Framework were used. These

two have three stages, first a standard web crawler which maps all the webpages it encounters,

then a second web crawler targeted at modern JavaScript-based Ajax web applications, and last

an active scan of the vulnerabilities in each found webpage, these vulnerabilities are then reported

and classified by severity.

The pre-packaged scan method can be an effective way to test an application, especially if no

authentication is needed, however in WebGoat’s case it has its problems. First, WebGoat requires

authentication, this forces the user to generate a context file using the Desktop GUI and then

exporting it to the container, in order to authenticate properly. Then, some of WebGoat’s pages are

not accessible by ZAP’s crawlers, this is the case for the lesson pages, which are the intentionally

vulnerable ones, to overcome this, additional scripts would have to be called during the scans

execution

So, because of the added complexity this method would bring, tests with the need of direc-

tory enumeration and authentication were performed using the Automation Framework. Which,

through its easier to read YAML syntax, gives the user the means to perform these tasks without

having to write additional scripts. Tasks are specified as a YAML list, which then enumerates the

parameters for each task, in 4.4 an example of an active scan task is shown.

1 - parameters:
2 context: "WebGoat"
3 user: "testing"
4 policy: "Default Policy"
5 maxRuleDurationInMins: 0
6 maxScanDurationInMins: 0
7 policyDefinition:
8 defaultStrength: "medium"
9 defaultThreshold: "off"

10 rules: []
11 name: "activeScan"
12 type: "activeScan"
13

Figure 4.4: ZAP YAML automation example

To complete the authentication process it was necessary to create a user account prior to test-

ing, this was achieved by running a simple Python script that would send a POST request with

the account’s details to the registration page, with the credentials specified as environment vari-

ables. ZAP would then log in using these credentials passed to it as Jenkins credential environment
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variables, and then would do conventional session management with a JWT passed as a cookie.

1 import sys
2 import requests
3

4 url = sys.argv[1]
5 username = sys.argv[2]
6 password = sys.argv[3]
7

8 req = requests.post(url, data={’username’:username,’password’:password,’
matchingPassword’:password,’agree’:’agree’})

Figure 4.5: Registration script

4.4 Results and Discussion

The information discussed in the next subsections was obtained by analyzing the log outputs

of the SAST and DAST tools stored in the Jenkins master node, in the form of JSON and HTML

formats, and the Jenkins master timestamps for each stage of the pipeline. The time data used was

obtained by manually registering the values that the Jenkins master UI had shown.

Figure 4.6: Jenkins build job timing

The graphs and tables related to vulnerability data namely CVE and CWE numbers were

generated by extracting the values through regular expression pattern matching of the JSON keys,

or using Python’s JSON parser, and then using Python’s matplotlib library for obtaining an image.

Each tool had its JSON key-value pair structure, which meant custom scripts for each tool had

to be written. The exceptions to this were Snyk Container and Snyk Open Source which used the

same structure.
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4.4.1 Impact on Build Times

Both methods do have considerable impacts in build times, however the DAST method is much

more time-consuming. Test times in the SAST options did not take more than twenty minutes to

complete. While a full dynamic scan of the application would take approximately two and a half

hours.

These time differences highlight the different nature and purpose of both tests. As a DAST

scan can impact the deployment speed of a project considerably, in a CD scenario this can lead

to higher lead time for changes and lower deployment frequency. Both static analysis and WAST

also introduced considerable dispersion in the time that a build job would take to complete. This in

turn, makes the pipeline less predictable, as it is more difficult to predict when a job will terminate.

µ = 2h29m σ = 16.7m (4.1)

job ID time deviation
149 2h16m 13m
152 2h16m 13m
154 2h51m 22m
155 3h6m 37m
156 2h38m 9m
157 2h14m 15m
158 2h23m 6m
159 2h18m 11m
160 2h30m 1m
161 2h17m 12m

Table 4.1: Build job duration

This test also evaluates if a service like Snyk’s SaaS offering has an advantage over the com-

pletely on-prem SonarQube plus dependency-check in terms of performance. The on-prem option

needs to do the dependency checking stage and static analysis synchronously (if one wants re-

porting also inside the SonarQube server), as opposed to Snyk’s possibility of parallelism, due to

the self-contained nature of each component. Snyk Code also takes less time scanning a project

than its counterpart, SonarQube, with the majority of scan time being spent on the dependency

inspection phase.

The addition of the test stages has resulted in an increase in the duration of the build job of

94% in Snyk’s case and 136% in SonarQube+dependency-check’s case. While the WAST analysis

of ZAP had an impact of 2439%.
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Figure 4.7: Time comparison of SAST and DAST implementations

4.4.2 Vulnerabilities Found

Both kinds of scans reported a considerable number of vulnerabilities, due to outdated depen-

dencies, intentional weaknesses and insecure configurations related to the implementation details.

The nature of the vulnerabilities found by each component will be discussed in the following

subsections.

4.4.2.1 Snyk, SonarQube and dependency-check

A rough equivalence in functionalities can be established between the components of each

solution. SonarQube’s static code analysis is similar in function to that of Snyk Code, and

dependency-check performs the same role as that of Snyk Open-Source. Meanwhile, Snyk Con-

tainer’s dependency checking at the container image level does not have an equivalent in the Sonar-

Qube plus dependency-check configuration. Using this feature, Snyk also checks other binaries

shipped in the container image for vulnerable dependencies broadening the scope of the analysis.

The version of WebGoat that was used for running tests was forked from the main repository

in the 31st of March. As no git fetch or git pull actions were run, the project’s dependencies

have become outdated. Snyk Open-Source and dependency-check were able to catch a number

of CVEs that were present in the outdated versions of the libraries. In addition, WebGoat makes

use of specific out-of-date libraries in some of its lesson pages. Both tools produced reports in a

human-readable html format, and JSON. After parsing the JSON version of the report, the number

of unique CVEs found and the respective CVSS scores was retrieved. Snyk also flagged three

vulnerabilities without a CVE number.

Tool n CVEs n unique CVEs vulnerable dep. dep. scanned
dependency-check 129 99 27 285

Snyk 21 18 40 269
Table 4.2: Vulnerable dependencies found
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Even though dependency-check flags more CVEs than Snyk, it reports less vulnerable depen-

dencies than its counterpart, this is due to the way Snyk counts its dependencies. Snyk divides the

WebGoat project into four different modules, this has to do with how the Maven project is struc-

tured, because of this a dependency can be counted as vulnerable more than once if it is present in

more than one module.

Considering the CVSSv3 scores, dependency-check found more CVEs in all ranges except in

the 4.0 to 6.0 range, this is especially relevant in the High to Critical severity range, 7.0 to 8.9 and

9.0 to 10.0 respectively.

Figure 4.8: CVSSv3 score distribution of Snyk and dependency-check

In the static analysis of code, SonarQube and Snyk, both flag issues by category, CWEs, and

severity. After inspecting the output of the reports that were produced, it is possible to conclude

that many of the same CWEs were detected, though SonarQube flags more CWEs as it also in-

cludes related ones. This last observation makes CWE count not a very good indicator of how

many vulnerabilities were encountered, this is due to the nature of CWEs, which are more generic

indicators of a weakness than a specific vulnerability. One can also observe that Snyk’s catego-

rization of vulnerabilities is more granular. In the following tables 4.4 4.3 the output of the reports

are compiled.

At the container image level of analysis, done exclusively using Snyk, a higher number of

vulnerabilities were found. From the entries that possessed a disclosure time field, a table with the

number of vulnerabilities per year was compiled. 4.5 The report that was used was generated the

4th of July 2022. It can be concluded that the majority of vulnerabilities were from the same year

the analysis took place or the previous one. This suggests that a number of vulnerabilities could

be mitigated by pulling the new WebGoat version from its repositories, as the new version also

uses a more up-to-date base image in its Dockerfile.
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Vulnerability n. Occurrences Severity CWEs
Authentication 14 High CWE-798,CWE-259

CSRF 22 High CWE-352
SQLi 11 High CWE-89
XSS 5 High CWE-79,CWE-1004
DoS 2 Medium CWE-400

Cryptography 16 Medium CWE-326,CWE-327,CWE-330,CWE-338,CWE-916
XXE 1 High CWE-611,CWE-827

Configuration 9 Low CWE-311,CWE-315,CWE-614,CWE-489,CWE-215
Others 2 Low CWE-409,CWE-377,CWE-379

Table 4.3: SonarQube SAST table

Vulnerability n. Occurrences Severity CWEs
XSS 10 High CWE-79
SQLi 18 High CWE-89

Path Traversal 9 High CWE-23
JWT Signature Verification Bypass 8 High CWE-347

Hard-coded Constants 14 High CWE-547
CSRF 2 High CWE-352
XXE 2 High CWE-611

Insecure Deserialization 2 High CWE-502
Cookie HttpOnly flag 3 Medium CWE-1004

CRLF Sequences HTTP headers 3 Medium CWE-113
Hard-coded credentials 8 Medium CWE-798,CWE-259

Weak Cryptography 1 Medium CWE-916
Permissive Cross-domain policy 1 Medium CWE-942

HTTPS without Secure 1 Medium CWE-614
Table 4.4: Snyk SAST table

Year n CVEs
2022 113
2021 112
2020 27
2019 25
2018 9
2017 21

Table 4.5: Vulnerable dependencies by year
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4.4.2.2 OWASP ZAP

The non-deterministic nature of ZAP’s WAST scanning, affects the number of vulnerabilities

found across the reports. In this case, a discrepancy between the number of SQL injection, Path

Traversal, Remote OS code injection, and XSS vulnerabilities was found. To illustrate this, 4.6

contains the number of SQL injections found over the course of ten build jobs.

µ = 12.4 σ = 5.99 (4.2)

job ID SQLi deviation
149 8 4.4
152 10 2.4
154 25 12.6
155 23 10.6
156 7 5.4
157 11 1.4
158 10 2.4
159 8 4.4
160 10 2.4
161 13 0.6

Table 4.6: SQL injection per build job

This poses a question of whether some of these vulnerabilities are actually false positives or

genuine ones. Some of these vulnerabilities could be unintended ones, not related to the lessons.

In fact, some responses WebGoat gives could be interpreted as a vulnerability, even though they

are just hints of one, present for educational purposes. Coupled with the black-box nature of

DAST, the process of finding the root cause of the warning becomes more difficult. ZAP only

lists the URL, parameters, and HTTP response where the perceived vulnerability was found, not

highlighting any specific code.

Figure 4.9: Presentation of a SQL injection in a ZAP report

After consulting a list WebGoat’s intended vulnerabilities [38] and ZAP’s logs, it became

apparent that most of the SQL injections, and the Path Traversals, exploits were indeed false

positives. Some were presented with no specific evidence. Part of the lessons included in WebGoat

contain mitigations that an automated DAST scan would find more difficult to surpass.
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Category n. Ocurrences Risk level CWEs
Cross Site Scripting (Reflected) 2 High CWE-79

Path Traversal 1 High CWE-22
SQL Injection 8 High CWE-89

Absence of Anti-CSRF Tokens 112 Medium CWE-352
Application Error Disclosure 1 Medium CWE-200

Content Security Policy (CSP) Header Not Set 46 Medium CWE-693
Format String Error 1 Medium CWE-134

Parameter Tampering 18 Medium CWE-472
Vulnerable JS Library 6 Medium CWE-829

Application Error Disclosure 66 Medium CWE-200
Cookie No HttpOnly Flag 1 Low CWE-1004

Cookie without SameSite Attribute 1 Low CWE-1275
Cross Site Scripting Weakness (JSON Response) 14 Low CWE-79
Information Disclosure - Debug Error Messages 66 Low CWE-200

Private IP Disclosure 1 Low CWE-200
Timestamp Disclosure - Unix 15 Low CWE-200

Table 4.7: ZAP vulnerabilities and CWEs

Only one of the 110 reports generated by ZAP generated true positive SQL injections, these

were classified as Hypersonic SQL injection vulnerabilities in the report. ZAP found 11 of these

True Positives in a total of 34 total vulnerabilities. The Precision of this report amounts to 32,3%.

Precision =
T P

T P+FP
∗100 =

11
11+23

∗100 = 32,3% (4.3)

This highlighted how many of the actual vulnerabilities would be difficult to find using ex-

clusively an automated DAST scan. Increasing the test intensity may reduce the number of false

positives encountered, though this will make testing more time intensive.

ZAP supports four attack strength settings:

• Low: Maximum 6 requests

• Medium: Maximum 12 requests

• High: Maximum 24 requests

• Insane: No specified maximum requests, potentially hundreds

As the medium strength policy was used, if the intensity were to be increased for the whole

application, then the build job time could potentially double.

Most of the warnings present in 4.7 are related to HTTP responses that highlight some kind of

flaw or misconfiguration, like information disclosure or insecure HTTP headers. As ZAP does not

have access to the code that may originate these warnings, it will flag all sources of them, resulting

in numerous warnings.
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4.5 SAST and DAST integration in DevSecOps

Both SAST and DAST, present some integration problems in a CI/CD scenario, with the lead

time to change impact being a great concern in these kinds of setups. Organizations that aim

to deploy on-demand or several times a day as an SLO (Service Level Objective) are especially

susceptible to this factor, like the highest performers mentioned in [39]. Parallelization of the

testing workload was only used partially in this specific implementation 3.3.6, further optimization

is desirable in order to lower the build and scan times. Part of Snyk’s performance edge may be

due to this fact, but it also could be that its SaaS offering has better performance than SonarQube’s

on-premises scanner.

As previously mentioned in 4.4.1, there was a considerable difference in the impact on build

times between both techniques, with SAST options completing a full scan of the application ap-

proximately twenty times faster in some samples. This suggests that defining a more detailed

application testing strategy is desirable if there is the need for faster deployments, as the time

needed for a full DAST scan may not be available. DAST test intensity may also be scaled down,

either by limiting the number of requests a tool can make or by just testing specific components

of an application. Defining different deployment environments with different testing intensities

can also help in reducing the time spent on a build job, as builds directed to staging environments

might not be put to the same scrutiny as one destined to production workloads.

The precision of both options is also a factor in the process of manual code review that is

necessary for the identification of true and false positives. Such process, requires knowledge of

the codebase and security notions. This is especially important in DAST as was shown earlier in

4.4.2.2, considering that warnings are given based on URLs and not specific lines of code, due

to its black-box nature. The amount of hours dedicated to these kinds of tasks will be higher in

DAST scans, and consequently fixing flagged issues will be more expensive to an organization.

Both SonarQube and Snyk offer user interfaces that make the process of suppressing known false

positives easier, ZAP does the same by specifying alert filters in the automation framework.

Fine-tuning of the scan parameters might also wield better results when applied to DAST. Dif-

ferent components of an application require different intensities in testing. The analysis of simple

header messages can be accomplished with low intensity, while other more complex exploits may

require more requests.

These measures however, do not ensure a that the DevSecOps methodology being practiced is

necessarily a robust one, as they mostly focus on the safety of the artifacts produced by the pipeline

and not on the security of the pipeline itself. Some procedures were described when commenting

on the implementation, but these are still not sufficient, as was seen when the OWASP DSOMM

was discussed 3.
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Conclusion

The work produced in this dissertation documented the design and performance of a DevSec-

Ops pipeline, and how its security testing methods impact the delivery of software in a CI/CD

scenario.

The design decisions and implementation of the pipeline documented in chapter 3 were made

relying on cloud features, but without recourse to PaaS options. In order to delineate a reusable ar-

chitecture reliant on open-source options. This chapter also showed how a security testing method-

ology can be integrated in the CI/CD pipeline, with a higher focus on the CI aspect. An appraisal

of the coverage of DevSecOps pratices by the pipeline was also done 3.4, this highlighted the

breadth of measures that need to be taken to create a robust system. A study of all procedures was

not undertaken, due to the scale of this task, instead the focus was put on the application testing

phase of the CI process.

In chapter 4, an assessment of the impact that each scan type had on the duration of the soft-

ware building process was performed, from which it was concluded that SAST options, while

still having a considerable time impact, were the more time efficient testing method. In addition,

the results produced by the testing tools showed that the non-deterministic nature of DAST tools

made the identification of vulnerabilities more difficult, this, coupled with a low precision when

detecting specific categories vulnerabilities and a black-box testing paradigm, makes this testing

approach require more hours of manual code review. This contrasts with SAST tools, which can

point out specific vulnerable lines of code, making the code review process much faster. The met-

rics that were collected were also used to compare two SAST solutions, one hosted on-premises

while the other used a SaaS model. Both tools outperformed each other in different categories,

Snyk had the advantage in test duration and code analysis, while SonarQube/dependency-check

solution handled Java dependency checking better.

The work presented in this document has illustrated the advantages and disadvantages that may

arise from the implementation of both SAST and DAST testing methods in a CI/CD environment,

while also documenting the design decisions of the underlying pipeline system.
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5.1 Future Work

Regarding the possibilities of future work, many of the procedures mentioned in 3.4 present

avenues for new work to be developed, namely in the infrastructure hardening and information

gathering categories. As for the information gathering category, a more efficient logging system,

making use of a centralized tool for the interpretation of vulnerabilities such as a VMS (Vulnera-

bility Management System), could be a worthy addition.

Related to the testing of artifacts, some additions that should be studied include:

• IAST described in section 2.3.3.3 is a testing technique that was not employed in this dis-

sertation.

• The efficiency of container registries and container vulnerability/compliance scanning tools.

• Runtime security solutions, such as those based on eBPF.

Further investigation could also make use of other web applications in addition to WebGoat, as

this would help in broadening the analysis of vulnerabilities, one specific example is the OWASP

Benchmark which provides its own tool for benchmarking scanning tools by identifying the true

and false positives in the scan reports.
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Jenkinsfile code

1 pipeline {

2 triggers{

3 githubPush()

4 cron(’’’0 */3 * * *’’’)

5 }

6 agent {

7 kubernetes {

8 label ’kubeagent-webgoat’

9 }

10 }

11 tools {

12 maven ’maven’

13 jdk ’jdk17’

14 }

15 environment {

16 SERVER_ADDR = ’192.168.128.54’

17 SCAN_URL_SITE = ’http://192.168.128.54:30680’

18 SCAN_URL_YAML = ’http://192.168.128.54:30680/WebGoat’

19 SCAN_URL_PYTHON = ’http://192.168.128.54:30680/WebGoat/login’

20 }

21 stages {

22 stage(’Clone repo’) {

23 steps {

24 checkout scm

25 }

26 }

27 stage(’Build project’) {

28 steps {

29 sh ’’’sed -i "s/0.0.0.0/${SERVER_ADDR}/" ${WORKSPACE}/docker/start.

sh’’’

30 sh ’’’cat ${WORKSPACE}/docker/start.sh’’’

31 sh ’mvn clean install -DskipTests’

32 }

33 }

34 stage(’SonarQube analysis’) {

41
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35 steps {

36 script {

37 def scannerHome = tool ’sonarscanner’;

38 withSonarQubeEnv(’sonarqube-webgoat’) { // If you have

configured more than one global server connection, you can specify its name

39 sh ’’’

40 mvn org.owasp:dependency-check-maven:7.1.1:aggregate -

Dformats=JSON,HTML

41 mkdir ${WORKSPACE}/dependency-check-reports

42 cp ${WORKSPACE}/target/dependency-check-report.json ${

WORKSPACE}/dependency-check-reports/

43 cp ${WORKSPACE}/target/dependency-check-report.html ${

WORKSPACE}/dependency-check-reports/

44 mvn sonar:sonar \

45 -Dsonar.projectKey=webgoat\

46 -Dsonar.host.url=${SONAR_HOST_URL}\

47 -Dsonar.login=${SONAR_AUTH_TOKEN}’’’

48 }

49 }

50 }

51 }

52 stage(’Build and push image’) {

53 environment {

54 PATH = "/busybox:$PATH"

55 REGISTRY = ’index.docker.io’

56 REPOSITORY = ’jrolaubi’

57 IMAGE = ’webgoat-tese’

58 }

59 steps {

60 script {

61 container(name: ’kaniko’, shell: ’/busybox/sh’) {

62 sh ’’’#!/busybox/sh

63 /kaniko/executor -f ‘pwd‘/docker/Dockerfile -c ‘pwd‘/docker --

build-arg webgoat_version=8.2.0-SNAPSHOT --cache=true --destination=${REGISTRY

}/${REPOSITORY}/${IMAGE}

64 ’’’

65 }

66 }

67 }

68 }

69 stage(’Snyk Scan’) {

70 failFast true

71 environment {

72 SNYK_TOKEN = credentials(’snyk-api’)

73 }

74 parallel {

75 stage(’Snyk Open-Source scan’) {

76 steps {
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77 catchError(buildResult: ’SUCCESS’, stageResult: ’FAILURE’)

{

78 container(’snyk-maven’) {

79 sh ’’’

80 snyk auth ${SNYK_TOKEN}

81 snyk test --json --json-file-output=maven-

results.json \

82 --debug --all-projects | snyk-to-html -o maven-

results.html

83 ’’’

84 }

85 }

86 }

87 }

88 stage(’Snyk Code scan’) {

89 steps {

90 container(’snyk-code’) {

91 catchError(buildResult: ’SUCCESS’, stageResult: ’

FAILURE’) {

92 sh ’’’

93 snyk auth ${SNYK_TOKEN}

94 snyk code test --json --json-file-output=code-

results.json \

95 --debug | snyk-to-html -o code-results.html

96 ’’’

97 }

98 }

99 }

100 }

101 stage(’Snyk Docker scan’) {

102 steps {

103 container(’snyk-docker’) {

104 catchError(buildResult: ’SUCCESS’, stageResult: ’

FAILURE’) {

105 sh ’’’

106 snyk auth ${SNYK_TOKEN}

107 snyk container test --json --json-file-output=

docker-results.json \

108 jrolaubi/webgoat-tese \

109 --file=‘pwd‘/docker/Dockerfile | snyk-to-html -

o docker-results.html

110 ’’’

111 }

112 }

113 }

114 }

115 }

116 }

117 stage(’Move Report Files’) {
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118 steps {

119 container(’snyk-maven’) {

120 sh ’’’

121 mkdir ${WORKSPACE}/snyk-reports

122 mv ${WORKSPACE}/maven-results.* ${WORKSPACE}/snyk-reports

123 mv ${WORKSPACE}/code-results.* ${WORKSPACE}/snyk-reports

124 mv ${WORKSPACE}/docker-results.* ${WORKSPACE}/snyk-reports

125 ’’’

126 }

127 }

128 }

129 stage(’Ansible playbook’) {

130 steps {

131 ansiblePlaybook(

132 playbook: ’${WORKSPACE}/ansible/deploy.yml’,

133 inventory: ’/home/jenkins/ansible/inventory’)

134 }

135 }

136 stage(’ZAP scan’) {

137 environment {

138 WEBGOAT_CREDENTIALS = credentials(’webgoat’)

139 }

140 steps {

141 timeout(time: 30, unit: ’SECONDS’) {

142 waitUntil {

143 script {

144 try {

145 def response = httpRequest "${SCAN_URL_YAML}/

registration"

146 return (response.status == 200)

147 }

148 catch (exception) {

149 return false

150 }

151 }

152 }

153 }

154 script {

155 container(name: ’zap’, shell: ’/bin/sh’) {

156 sh ’’’#!/bin/sh

157 export PATH=/zap:$PATH

158 mkdir /zap/wrk

159 mv ${WORKSPACE}/zap/zap.yml /zap/zap.yml

160 mv ${WORKSPACE}/zap/createAccount.py /zap/createAccount.py

161 sed -i "s,REPLACE_SITE,${SCAN_URL_SITE}," /zap/zap.yml

162 sed -i "s,REPLACE,${SCAN_URL_YAML}," /zap/zap.yml

163 python3 /zap/createAccount.py ${SCAN_URL_YAML}/register.mvc

${WEBGOAT_CREDENTIALS_USR} ${WEBGOAT_CREDENTIALS_PSW}

164 /zap/zap.sh -cmd -autorun zap.yml
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165 cp -r /zap/wrk ${WORKSPACE}/zap-report

166 ’’’

167 }

168 }

169 }

170 }

171 }

172 post {

173 always {

174 // publish html

175 publishHTML target: [

176 allowMissing: false,

177 alwaysLinkToLastBuild: false,

178 keepAll: true,

179 reportDir: ’./zap-report’,

180 reportFiles: ’index.html’,

181 reportName: ’OWASP Zed Attack Proxy’

182 ]

183 publishHTML target: [

184 allowMissing: false,

185 alwaysLinkToLastBuild: false,

186 keepAll: true,

187 reportDir: ’./dependency-check-reports’,

188 reportFiles: ’dependency-check-report.html’,

189 reportName: ’dependency-check report’

190 ]

191 publishHTML target: [

192 allowMissing: false,

193 alwaysLinkToLastBuild: false,

194 keepAll: true,

195 reportDir: ’./snyk-reports’,

196 reportFiles: ’docker-results.html’,

197 reportName: ’Snyk Docker results’

198 ]

199 publishHTML target: [

200 allowMissing: false,

201 alwaysLinkToLastBuild: false,

202 keepAll: true,

203 reportDir: ’./snyk-reports’,

204 reportFiles: ’code-results.html’,

205 reportName: ’Snyk Code results’

206 ]

207 publishHTML target: [

208 allowMissing: false,

209 alwaysLinkToLastBuild: false,

210 keepAll: true,

211 reportDir: ’./snyk-reports’,

212 reportFiles: ’maven-results.html’,

213 reportName: ’Snyk Maven results’
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214 ]

215 }

216 }

217 }
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