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Abstract

We calculate loop contributions to correlation functions involving 20’ operators in N = 4

Supersymmetric Yang-Mills Theory, which are related to Wilson loops via a duality.

We begin by explaining the basics of conformal symmetry. We show why it’s useful and
interesting to study conformally invariant theories, and N = 4 Supersymmetric Yang-Mills

Theory in specific.

We derive the constraints imposed by conformal symmetry on 2- and 3-point correlation func-
tions, and show that these are fully determined in terms of the dimensions A; of the operators
and OPE coefficients ¢;j;, of the three-point functions. We also introduce the Operator Product

Expansion and show that higher-point functions introduce no new parameters.

We then present the method of asymptotic expansions, which one can use to calculate integrals
in the OPE limit. We show how this procedure can be used to express an integral depending
on n external points as a sum over asymptotic regions, so that we only need to calculate

integrals depending on at most n — 1 external points.

We explain how integrals with scalar products involving integration points in the denominator
of the integrand can be expressed in terms of integrals without such scalar products, and
how to reduce the set of integrals to evaluate to a smaller set of “master integrals” using

integration-by-parts identities.

We introduce 20’ operators in N/ = 4 SYM and calculate their four-point function up to two
loops, their five-point function up to one loop, and the correlator of four 20’ and a Lagrangian
operator up to one loop. By comparing with the conformal block expansion, we extract OPE

coefficients and anomalous dimensions of twist-two operators.

We finish with a brief discussion of possible continuations of this work.






Resumo

Calculamos fungoes de correlagdo envolvendo operadores 20’ na teoria N = 4 Yang-Mills

supersimétrica, que podem ser relacionadas com Wilson loops por via de uma dualidade.

Comecamos por explicar algumas nogoes bésicas sobre simetria conforme. Mostramos as razoes
pelas quais é 1til e interessante estudar teorias com invarincia conforme, e a teoria N = 4

Yang-Mills Supersimétrica em especifico.

Deduzimos as restricoes impostas pela simetria conforme nas funcoes de correlacdo de dois
e trés pontos, e mostramos que estas fungoes sdo completamente determinadas em termos
das dimensoes A; dos operadores e dos coeficientes de OPE ¢;j;, das fungoes de trés pontos.
Também introduzimos a Operator Product Expansion e mostramos que fungoes de correlagao

de mais pontos nao introducem dependéncias em mais parametros.

Apresentamos depois o método de expansodes assintéticas, que pode ser utilizado para calcu-
lar integrais no limite de OPE. Mostramos como este procedimento pode ser utilizado para
exprimir um integral que depende de n pontos externos como uma soma sobre regides assin-
toticas, de tal modo que apenas precisamos de calcular integrais que dependem de, no méximo,

n — 1 pontos externos.

Explicamos como integrais com produtos escalares que envolvam pontos de integracdo no
numerador do integrando podem ser expressos em termos de integrais sem produtos escalares,
e como é possivel reduzir o conjunto de integrais que temos de avaliar a um conjunto mais

pequeno de “integrais mestre” usando identidades de integracdo por partes.

Introduzimos operadores 20" em N = 4 SYM e calculamos a sua fun¢do de 4 pontos até
ordem 2 no acoplamento, a sua funcdo de 5 pontos até ordem 1 no acoplamento, e a funcio
de correlagdo de quatro 20’ e um operador Lagrangeano até ordem 1 no acoplamento. Por
comparacao com a expansao em blocos conformes, conseguimos extrair coeficientes de OPE e

dimensoes andémalas de operadores com twist 2.

Terminamos com uma breve discussdo de possiveis continuacgoes deste trabalho.
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Chapter 1

Introduction

1.1 Conformal field theory

Conformal Field theory (CFT) has been a subject of great interest in the past decades, for
many reasons. One of these reasons relates to the Renormalization Group (RG). In this
framework, we begin by assuming that a theory has a momentum cutoff A, such that the

generating functional Z is given by

2= [Dal, S £r0e (1.1)
where
D¢l = [] déx (1.2)
|k|<A

and ¢y, is the Fourier component of the field ¢. We can then integrate over a shell in momentum
space, expressing the generating functional as an integral up to a new cutoff bA, where 0 <
b<1:

Z = / [Dg),, e Fertl? (1.3)

The new Lagrangian Leg will have different parameters, and so it will correspond to a different
point in parameter space as L. Integrating out this momentum shell is called a step of the
RG. If we take successive steps and take infinitely many steps, while taking the step length to

?

be infinitesimally small (b =~ 1) we get a continuous “flow” in parameter space, which we call
RG flow. This flow continues until the theory reaches a point where taking a step will leave
it in the same point. These are called fixed points of RG flow. Conformally invariant theories

are interesting because they are fixed points.

16
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Another reason we want to study conformal theories is that they have a large symmetry group,
which imposes constraints on correlation functions. This naturally makes the theory simpler
to study, and makes it so we can obtain non-perturbative results, while in general Quantum
Field Theory (QFT) these are hard to come by.

A third reason is what’s known as the AdS-CF'T correspondence. This is a conjectured duality
between d-dimensional gravity theories in anti-de Sitter (AdS) space and (d — 1)-dimensional
CFTs.

1.2 N =4 supersymmetric Yang-Mills theory

We will focus on the particular case of N' = 4 supersymmetric Yang-Mills theory (SYM). This
is a gauge theory with gauge group SU (N.). It has 6 real scalar fields

&, I=1,...,6, (1.4)

4 fermionic fields

Uy, A=1,...,4, (1.5)

and one gauge field A,, where p is a spacetime index. As the name suggests, this theory also
exhibits supersymmetry, having 4 sets of supercharges. As is typical for a gauge field theory,

all fields are N, x N, matrices:

o, = B,
Uy = Yt
A, = Ast,

where t, are the generators of the gauge group in the adjoint representation and the implicit

sum in a runs over the generators. The N’ =4 SYM Lagrangian is

1 1 1 -
L= - Tr |5 [Dy, D, + (D, ®;)* - 5 (@i O, +i0 ("D, + I' [0, U]) +
Y M

+O"EDye+ ¢ (9" A,)?
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where D, is the covariant derivative, which is defined by

D,® = 0,® —i[A,, P, (1.6)

I'* are matrices, ¢ and ¢ are the Faddeev-Popov ghosts, and ( is the parameter which corre-
sponds to the choice of gauge. This theory is interesting for a number of reasons. First, as
mentioned before, it is conformally invariant, and therefore a fixed point of RG flow. Secondly,
it is supersymmetric, which means there will be more restrictions to the observables. This
makes the theory easier to study, and may even lead to nonperturbative results. Thirdly, it
is an integrable theory in the planar limit N. — 0o, meaning it has an infinite number of
conserved charges. This restricts the observables even more, and is another possible way of
obtaining nonperturbative results. This theory is also a practical example of the AdS-CFT
duality, since it is dual to a type IIB superstring theory in S5 x AdSs space. In N = 4
SYM in particular, there are duality relations between Wilson loops, correlation functions,

and scattering amplitudes.

The focus of our work will be related to the duality between correlation functions and null-

polygon Wilson loops, which was first proposed in [1]. This duality can be stated as

Jim G /GY) o WG] (1.7)

z7 ;410

where (¢, is the n-point function of local gauge-invariant operators

W [C,,] is the Wilson loop

1
WG = oy (0

tradj P {exp (ig yﬁcn dr - A (m)) }‘ 0> , (1.9)

and C), is the piecewise-null polygon defined by the points x;, i = 1,...,n. A specific case
of the duality (1.7) is the duality between a six-point function of scalar operators and the
null-hexagon Wilson loop, i.e. n = 6. By taking OPEs as depicted in figure 1.1 (the so-called
snowflake configuration), this duality can be understood as relating the null-hexagon Wilson
loop to the three-point function of spinning operators. This particular duality was made exact
in [2]. In this paper, the authors verified the duality up to one loop. One of the goals of our
work will be to verify this duality at higher orders in the coupling.

In N =4 SYM, correlation functions and Wilson loops can both be calculated using integra-

bility. Single-trace scalar operators like the ones we will be studying are cyclical, and so can
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Figure 1.1: OPE decomposition of the six-point function of scalars ¢ in the snowflake configu-
ration. The operators O; are those appearing in the ¢ x ¢ OPE and have arbitrary spin. The
dashed outer lines represent a null separation between points.

be represented as circles. The three-point function of these operators in the planar limit has
the topology of a pair of pants (see Figure 1.2). By cutting the pair of pants along the dotted
line, it is divided into two hexagons, which make up the front and back of the pants (see Figure
1.2). The hexagons can be computed exactly using integrability [3]. Higher-point functions
can also be cut into pair of pants, and therefore the n-point functions of these operators can
be calculated with integrability. We can also divide a null-polygon Wilson loop into pentagons

(see Figure 1.3). These pentagons can also be calculated using integrability [4].

1.3 Thesis outline

This thesis is structured as follows: In chapter 2 we review some properties of conformal field
theories. We will define conformal symmetry and determine the generators of the conformal
group. We will examine the restrictions imposed by conformal symmetry on correlation func-
tions of local operators, and introduce some tools which will be useful later, like the Operator

Product Expansion and decomposition in conformal blocks.

In chapter 3, we will introduce some techniques to calculate the integrals which appear in
the correlation functions we will be studying. We will detail the procedure of asymptotic
expansions of integrals. We will also explain how to reduce integrals with spin to scalar
integrals, and how to find integration-by-parts identities which reduce the number of scalar
integrals to be evaluated to a smaller set of master integrals. We will finish the chapter by

calculating some example integrals.

In chapter 4 we will calculate some four- and five-point correlation functions of local operators
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in N =4 SYM. For the four-point function, we will consider the OPE limit 22, — 0, and for
the five point functions we will take the double OPE limit z%,, 23, — 0. By comparing the
correlator with the conformal block expansion, we will extract the relevant CFT data, and

compare the results to the literature.

Figure 1.2: The three-point function of scalar single-trace operators in the planar limit. The
dotted lines divide the pair of pants into the green and red hexagons.

Figure 1.3: The null hexagon Wilson loop can divided into three squares, and any two adjacent
squares form a pentagon.



Chapter 2

Conformal Field Theory

Quantum Field Theory is best understood as an effective long-distance limit of some other
microscopic theory, which may be arbitrarily complex. This microscopic theory is not expected

to have long-distance correlations; these should decay exponentially as:

(#(0)o(x)) ~ e ¢ (2.1)

and so a long-range QFT description is ruled out. However, if the theory is a fixed point of
RG flow, then the correlation length £ diverges, £ — oo, and so correlations extend out to
ranges much larger than the interatomic spacing. At such a fixed point, the theory must be
invariant by a scale transformation:

at — At (2.2)

The corresponding transformation of the metric is

Ju(x) = /\QQIW(.T) (2.3)

This type of transformation - also known as a dilatation - is a special type of what is known as
a conformal transformation. A transformation is said to be conformal if the metric transforms

like

G — 0?2 ()9 (2.4)

In this way, a conformal transformation is a kind of “local dilatation”, with the factor 2

being dependent of z. The change in the metric corresponding to this transformation is

21
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0Guw = (QQ(x) — 1) guv- Defining the stress-energy tensor as the response to a metric change,

we get:

085 /dDac Ty (2)dgh (z) = 2/de (Q%(x) — 1) 17 (z)

Since at a fixed point we must have 5 = 0 for any Q(x), we conclude that in a conformally
invariant theory we must have 7)) = 0. Now, if we consider a general infinitesimal change in

coordinates

=t + e (x), (2.5)

we might wonder which choices of € lead to a conformal transformation. For a general coordi-

nate transformation z — Z, the metric transforms as

0z 0z
Juv — Gt 5 08 (2.6)

Inserting equation 2.6 into equation 2.4 and assuming flat spacetime with a Euclidean signature

(guv = 0), we obtain the condition

03" 05"

Dk B 0B = 0% (2)8 (2.7)

For an infinitesimal transformation z# = x* + e*(z), we have

oz

and so equation 2.7 becomes
(82 + B (2)) (55 + 8,8 (g;)) Sag = Q)0 (2.9)
= O + Opev(x) + Ovey(z) + O (62) = 92(37)6”” (2.10)

Neglecting quadratic terms in €, this condition is equivalent to

Opev(x) + Opeu(x) = (QQ(x) —1) 6 = c(x)d,0 (2.11)
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These are the Killing equations for conformal symmetry. Their solutions tell us which vectors
€ result in conformal transformations for a Euclidean metric. We will now find these solutions.
First, we take the trace of both sides:

20 - € = de(x) (2.12)

Substituting equation 2.12 into equation 2.11, we obtain

2065 (2.13)

aNEV +a’/eﬂ = d(

Next we take the divergence of this equation in both indices:

2 <1 - ;) 2*(@-¢)=0 (2.14)

This tells us that either d = 1 or 9*(9-€) = 0. Assume d # 1. We apply 9”9, to equation
2.13:

0,00 (0 €) + 0°Bye = 0,0, (0 ) (2.15)

Now we symmetrize the equation in p and u:
1,9 2
0,0, (0 - €) + 58 (Op€n + Ouep) = ga,,au (0-€) (2.16)
Once again, using equation 2.13, we get
1., 2
0,0, (0 - €) + g(? (0-€)0u = &(%OH (0-€) (2.17)

Using 02 (0 - €) = 0, we obtain:

(1 - Z) 9,0, (9-¢) =0 (2.18)

This tells us that either d = 2 or 9,0, (0 -€) = 0. Assume now that d # 2. Now we apply
040, to 2.13 and use 0,0, (0 - €) = 0, yielding:

040,060 + 050,00, = 0 (2.19)
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By taking permutations of p, v, u, we get three equations, which have the solution

040,060 = 0 (2.20)

This means that € is at most quadratic in x. The most general quadratic expression is given
by

e (z) = af + crzt + mba” + (ag - x) 2" + nf 2”2’ + ala?, (2.21)

I

where ¢; is a constant scalar, a!' are constant vectors, and mj, and n}, are constant higher-

order tensors. We can now use previous equations to place restrictions on these constants. We

can start by taking a derivative:

et = 16" +mM + (ag - ) " + agat 4 2nb"xP 4 2aka” (2.22)

Symmetrizing both sides:

et + oHe” =
=2(c1 4 ag - ) 0" + (M +m"™) 4 (ay + 2a3) 2" + (df + 2a5) z¥ + 2 (nh¥ + nZ“) af =
= c(z)o" (2.23)

This tells us that

mt +m" = 0 (2.24)

ah +2ady = 0 (2.25)

ay +2ay = 0 (2.26)

nh” +ntt =0 (2.27)

We conclude that m* and nh” are antisymmetric in 4 and v, and afy = —2a%. However, since
ulj . . . . .
ny is also symmetric in v and p by construction, we have:

Npvp = ~Nwpp = ~Nwpp = Npvp = Nppuy = —Nppy = —Npuwp (2.28)

Therefore we conclude that n,” = 0. Inserting these conditions into equation 2.21 and rela-

belling a; — a, a3 — b, c; — — A, we get
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e (x) = a* + mba” — Nzt + ba® —2(b- ) zH (2.29)

This is the most general form of ¢ for a conformal transformation. We can determine the
generators of this symmetry group by considering the effect of this infinitesimal transformation

on a function f(x), neglecting quadratic and higher order terms in e:

fz+e(@)=f(x)+ [a"dy + m" 2,0, — A\a"0, + b (220, — 2z, (x - 9))] f(z)  (2.30)
Remembering that m*” is antisymmetric, we can write equation 2.30 as
1
fx+e(@)=f(z)+ |a"P,+ im‘“’MW +AD + V'K, | f(x), (2.31)
where
P, =0, M, = 2,0, — 2,0,
D = —zt0, K, = 1%, — 2z, (z - 0)

are the generators of the conformal group, and a*, m*”, XA and b* are the corresponding

parameters. These generators obey the commutation relations

(D, Pu] =P, (D, Ku] =-K, [Kﬂ, P = 20, D —2M,, (2.32)
[Muua Pp] = 5Vppu - 5upPV [MW, Kp] = 5VpKu - 5upKV (2.33)
[M;wv Mm] = 5VpMm - 5upMV'y - 5V7Mup + 5/WMV/J (2.34)

Note that the P and K operators obey the same algebra as the ordinary ladder operators
a and a' in single-particle quantum mechanics, with D being the equivalent of the number

operator afa. Consider an operator O such that

DO = AO (2.35)

where A is a constant. If we act with K, on this operator:

DK,O = (ID,K,] + K,D)O = (A —1)K,,O (2.36)
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5
t_2
i3

Figure 2.1: Foliation of spacetime through surfaces of constant time.

Because, as will be shown below, we must have A > 0, there must be operators O such that

K, O = 0. These are called conformal primaries.

2.1 Radial quantization

In general QFTs we can define a spacetime direction as time, say 2% = ¢, and identify the
component of the momentum operator associated with that direction as the Hamiltonian,
Py = H. Then, given an operator O(tp,x) defined on the spacetime surface of time tg, we can

determine the form of this operator for arbitrary ¢, via:

O(t, x) = etHO (4, x)e~ ) H (2.37)

This amounts to foliating spacetime through surfaces of constant time (Figure 2.1).

Because conformal theories also have translation invariance, we can also quantize in this way.
However, there is a more convenient method we can use. Instead of a component of the

momentum operator, we can use the dilatation operator D.

First, we choose a point of spacetime as the origin and define operators and commutation

relations at this point. Then, we define the operator at an arbitrary radius as:

O(r) = ePO(0)e"P (2.38)

This amounts to foliating spacetime through surfaces of constant radius (Figure 2.2).
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I3

Figure 2.2: Foliation of spacetime through surfaces of constant radius.

In this way an operator is completely determined by its commutation relations with other
operators at the origin. We will be mainly interested in so-called primary operators, which

are defined by the commutation relations

[D,0(0)] = A0(0),  [K,,00)] =0,  [Mu, 0%0)] = (Su); O°(0) (2.39)

where S, are the generators of the rotation group in the relevant representation and the

constant A defined by these relations is called the dimension of the operator.

2.2 Restrictions to correlation functions

Correlation functions of local operators are objects of fundamental importance in QFT. They
can be interpreted as probabilities of certain interactions occuring, and can also be used to
determine scattering amplitudes, which can be measured in particle colliders. It is therefore
natural to study these functions. In CFTs, the additional symmetries impose restrictions on
correlation functions, which makes them considerably easier to determine. Let us examine

some of these restrictions.

2.2.1 Two-point functions

Consider the two-point function of scalar primary operators
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<01((L'1)02((L'2)> (2.40)

If the correlator is invariant under a transformation with generator L and parameter 6 to both

operators:

(01 (21)Oz(22)) = <ewol(xl)e*wew@(xg)e%@ (2.41)

In the limit # < 1 we can expand the exponentials:
(O1(21)0s(z3)) = ((1+L6O) O1(x1) (1 — LO) (14 LO) Oa(w2) (1 - LY)) + O (6?)

Because this equality must hold for arbitrary (but small) 6, we must have

([L, O1(21)] O2(22)) + (O1(21) [L, Oa2(22)]) =0 (2.42)

In particular, for dilatation symmetry, this means that

(—.%'1 . (91 —Z9 - (92 + Al + Ag) <01($1)02(I’2)> =0 (2.43)

Let us look at the restrictions imposed by conformal symmetry on the two-point function

(2.40). First of all, it is clear by Poincaré¢ invariance that it must be a function of z%,:

(O1(21)Oa(22)) = f(x7y) (2.44)

. . . . 2 .
Assuming this function f can be expanded in powers of z7,:

Fat) = ca (235)” (2.45)

and inserting this into equation 2.43 we get

D o 20+ Ay + Ay) (23,)" =0 (2.46)

«

Therefore we must have

=0V _S1tA82 (2.47)
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We conclude that the two-point function is of the form

(01(21)0s(22)) = — S (2.48)

(1) 2

For the special conformal generator K, we have, if O is a scalar:

(K., O (z)] = [Ky, 0 (0) e_x'P] =P [eI'PKMe_x'P, 0(0)] e P = (K, + 2Az,) O (z)
(2.49)

Therefore the function f must satisfy:

(2:31/1 (1‘1 . 81) — 56%81# =+ 21’2# (:BQ . 82) — x%agu + 2A1x1u + 2A2$2#) f (xfg) =0 (2.50)
Using the form (2.48) for f we get the condition

A=AV C =0 (2.51)

Therefore, we conclude that conformal symmetry implies that the two-point function is given
by:

(O1(21)02(22)) = ——— A~ (2.52)

The constant C' can be absorbed in the definition of the operators, so that the two-point

function is completely determined by the symmetry:

(01(@1)Oaf2)) = ~2122 (2.53)
(3712)

This result implies that Ay > 0. Otherwise, correlation functions would grow infinitely with
distance, which is clearly unphysical. For operators with spin, the correlator is a bit more
complicated, but still quite simple. The form of the two-point function of symmetric and

traceless operators with spin J and dimension A is:

JHv1 ($12) N ) (5012)

(x%Q)A

(O 1 (21) O (m9)) = + permutations — traces,  (2.54)
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where

2zt v

2

" (z) = 6" — (2.55)

The correlator is zero if the operators have different spins or different dimensions. The per-
mutations make the correlator symmetric in the y; and in the v;, while subtracting the traces

makes it traceless. A derivation of this result can be found in [5].

2.2.2 Three-point functions

In the same way as before, we can try to find differential equations for the three-point function

2

of scalar primaries. By Poincaré invariance, the three-point function must only depend on z7;,

i ji=1,2,3
(O01(21)Oz(22) O3(x3)) = f(a1y, 413, T33) (2.56)

If the three-point function has a symmetry with generator L, then we have

(L, 01] 0203) + (01 [L, 03] O3) + (0102 [L, O3]) = 0 (2.57)

where we omitted the positions of the local operators, O; = O; (x;). Using this condition for
L =D and L = K, together with the ansatz

f(x%mw%s?x%s) = Z Cayazas (35%2)&1 (x%s)(m (9533)&3 (2.58)

1,002,003

for the three-point function, we conclude that f must be of the form

C

2 2 2
f(@1g, 373, w33) = NSEEE A tA3-Ay AatAz—B (2.59)
) ’ (2%3) ’ (233)

More generally, the correlator of three operators with arbitrary spin is [6]

l1l2l3 Ji—lao—l3y,Jo—l1—1l3y,J3—l1—12 r7l3 r7l2 77l1
O 10) _ CJlJQJg‘/l,Q?) ‘/2,31 V3,12 H12H13H23 2 60
( k1 (z1,21) ... ks (x3,23)) = Z o \Fathazhy T Ri¥hazhy - hothazhy (2.60)
L (z1) ? T3 ? T3 2

where 2; are null polarization vectors (22 = 0), h; = Ay, + Ji, and
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(zi - wij) 22, — (21 - wap) o x5 (zi - 25)
V;’jk _ % ) > :EQ ? ) ] Hij — (Zi X 55@']') (Zj . xij) Y ) .
ik

(2.61)

The sum in [; is constrained by the fact that negative powers of z; cannot appear in the

correlator. This means that, for example, lo + I3 < Jj.

2.2.3 Higher points and cross-ratios

We have seen that conformal correlators of two and three points are fixed up to undetermined
constants. At four and more points, however, there are conformally-invariant variables on
which the correlator can depend, which we call conformal cross-ratios. We might wonder how
many independent cross-ratios there are for, say, four points. A simple way to determine this
is by using conformal transformations to a special frame of reference, where the number of
degrees of freedom of our system will become clearer. The steps to get to this frame are as

follows:

Start with four points in arbitrary positions x;, 1 = 1,2, 3, 4.

Use special conformal transformations to send x4 — oc.

Use translations to move z; to (0,...,0).

Use rotations around the origin and dilatations to move z3 to (1,0,...,0).

Use the rotations that leave x3 invariant to move z2 to (x,y,0,...,0).

Now, if a function of x; is conformally invariant, as conformal correlators must be, then it can
only depend on z and y. Therefore, we have determined that the four-point function depends

on only two variables. The usual choice for these variables is

2 .2 2 .2
_ T12T34 _ Ta3Ty
= <=5, V=55 (2.62)
Liaql Lial
13724 13124

Now that we know the four-point case, we may ask how many cross-ratios there are for five
or more points. We can follow the same procedure as for four points, and then add another
point at an arbitrary position 5. We have already exploited the translation, dilatation, and
special conformal symmetries, as well as part of the rotation symmetry. We can, however, still
exploit the part of the rotation group which is orthogonal to the plane we fixed before. We
can use these symmetries to fix all but 3 of the coordinates of point x5. Therefore, we will

have 5 independent cross-ratios for 5 points. We will choose them to be
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2 .2 2 .2 2 .2 2 .2 2 .2
PEDYIE THal Lo, X Tyr T TisT
uq 1235 w 2314 U 34+25 u 4513 U 1524 (263)

2 .2 2,20 2 .2 2 .2
T13%35 LogT13 T35Lo4 L1435 Lo5L14

Similarly, if we add another point xg, we can use the remaining rotation symmetry to fix all
but 4 of its components. Adding a point x7, we can fix all but 5 of its components, and so on.
This will continue until we add point x419. At this stage, we will already have used the full
rotation symmetry, and therefore we will be adding d degrees of freedom for all further points

we add. The number of independent cross-ratios for n points will therefore be given by

n(n=3) ifn<d+3

2.64
pd— G g 200

2.3 State-operator correspondence

In any quantum field theory, given a local operator O(z), we can define a state on the corre-

sponding Hilbert space by:

|O(x)) = O()|0) (2.65)

In general, the opposite is not true. That is, we cannot uniquely define a local operator from
a state. However, in a CFT, there is a unique correspondence between states and operators.

We will give a proof adapted from [5]. Say we have an eigenstate of the dilatation operator

|A):

D|A) = A|A) (2.66)

This state is defined on a Hilbert space a radius r from a point. We can write it as a path

integral

8) = [ Dalaala), (2.67)

where ¢ is a scalar field defined only on the surface where the state |A) is defined, and

(6s]20) = / Débin(r', ) O ()~ 5] (2.68)
Gin(rn)=¢p(n)
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®n

¢

Figure 2.3: Splitting of the path integral by introducing a field ¢;, inside the sphere of radius
r. This field is integrated over, with boundary conditions ¢, (r,n) = ¢p (n). The field ¢
outside the sphere is also integrated over, with boundary conditions ¢ (r,n) = ¢y, (n). Finally,
the boundary field ¢y is also integrated over.

where ¢y, is defined only inside the ball of radius r. This procedure is pictured in figure 2.3.

Now, we want to define an operator Oa(z) out of the state |A), where = is a point inside
the ball. To do so, we need to define correlation functions with this operator. Correlation

functions are defined by path integrals. For example, for the two-point function of ¢:

(6(21)d(22)) = / Dég(1)d(z)e) (2.69)

where the field ¢ is defined on the entire space. In order to calculate, for example, the

correlation funcion

((21)p(22)Oa () (2.70)

we can use the auxiliary fields ¢i, and ¢y to calculate the path integral:

(P(z1)B(22)OA(2)) = /D¢¢(x1)¢(w2)oA($)€S[¢] _
- /D¢b/ qu D¢in¢($1)¢($2)0A($)6_5[¢] —
Plos=¢ binloB=¢s

= / Dy (p|A) /¢ . Dop(x1)d(z2)e 1 (2.71)

In the same way, for any correlation function involving Oa:
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(O (21). . Op (20) Oa (z)) = / I pol|| I ofcsei-
i=1,....,n,A

i=1,...n,A

~ [ Dovianis) /¢ o [ T oo e

i=1,...,n i=1,....,n

In this way, we can express any correlator involving Oa in terms of the state |A). Therefore,
we have defined correlation functions involving this operator. This is essentially the same
thing as having defined the operator itself, since we don’t “measure” an operator by itself, we

simply understand local operators through their correlation functions.

2.4 Operator Product Expansion

Another useful property of conformal theories is the operator product expansion (OPE). This

property consists of expressing the product of two operators as a sum over conformal primaries:

C 411
O1@1)Os(w2) = Y ——am—Firoiy, (212,02) 0, (22) (2.73)
k primary (17%2 2

where f is a differential operator and Ji is the spin of the primary operator Q. To prove
this, we use the state-operator correspondence. First, we foliate the space around z3. Then
consider a ball centered on xy and containing ;. The operators will generate a state |¢12)
on the surface of the ball. This state can be expressed as a linear combination of dilatation

eigenstates:

[12) = crorlA) (2.74)
2

Because of the state-operator correspondence, each state |Ag) is equivalent to an operator

inserted at xo. Therefore, we have
c
O1(21)Os(w9) = > —— o Ok(w2) (2.75)
ko(afy)

The operators Oy are either conformal primaries or descendants, meaning we can turn this

sum into a sum over primaries in the following way:
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C 111
O1(21)0a(w2) = >~y froiy, (01,02,3)0, T (22)  (2.76)
k primary (l‘%Q 2

where 1, = Ap—Jg is the twist of the primary operator O. Additionally, because of translation
invariance, the only scale allowed in the function f is z15. This proves equation 2.73. So far,
we have not determined the differential operators f(z12,02) acting on the exchanged operator
in the OPE, apart from the scaling in x12. However, we know the form of the three-point
function in a CFT (equation 2.59), and the OPE must be consistent with this form. Consider

the three-point function of identical scalars:

(p(x1)9(22)9(x3)) (2.77)

Using the OPE on ¢(x1)¢(x2), this is equal to:

Cook i1-4 15 1
Z fo—A;ﬁ»Jk firig, (212, 02)(0;, " (z2)(w3)) = % (xlg,ag)ﬁ
k primary (x%Q)f (m%z) 2 (ZEQS)
(2.78)
Using equation 2.59, this means that

1 1 1 — (—D4/2\ (235 + 2m12 - T3 g

f(212,05) 2 \8e 35 2\ A Z( k > ( 2. (2.79)
(@3)™ (202) 7 (@R)7 i 3

We can use this equation to determine the operator f by expanding the left-hand side in x1o

and equating the coefficients. Due to rotation invariance, we can write the operator f as:

f(x12,00) = Z Anm@hy - ThY (3312) oht - ohm (3§)m (2.80)

n,m=0

We can determine the constants a,,, explicitly in the case of three identical scalars. We can

calculate how the Laplacians and derivatives act on powers:

(5§)n( L _pllozbtl), (2.81)

w35)" (xgg)am
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($12 : aZ)n

- _ kk—l
(=2)" ()i (215 - 22)" 2 (a2,) H(ﬂ—ﬂ) (2.82)

(3553)CY k=0 (mgs)aJrn—k 1=0

Expanding both sides of (2.79) in 2%, we can find the coefficients a,,. There is another kind
of OPE we can take, where, instead of taking the coincidence limit 19 — 0, we take the
lightcone limit 22, — 0. The lightcone OPE was first written in [7]. It can be written in the
form [8]:

(w1 4 tx12, 712
¢ (1) ¢ (22) ch%/ 7, T’k )+~-- (2.83)
(9512) ’
where the - - - represent subleading terms in 22, and the second argument in O}, is the vector

which is contracted with the open indices of the operator. The integration measure is defined
by

F(Ak —I—Jk) Ak’;ﬁ]k

[dt] = @ (t(1—1))

“Lat (2.84)

where Ay is the dimension of O and Jj is the spin of O;. We will sometimes refer to the
coincidence limit OPE as the Euclidean OPE and the lightcone limit OPE as the Lorentzian
OPE. Note that in the Euclidean OPE the primaries being summed over are located at the
point around which the theory is quantized (x5 in equation 2.76), while in the case of the
Lorentzian OPE, the leading term receives contributions from operators extending along the

light-like segment between both points in the product (z1 and x5 in equation 2.83).

2.5 Conformal blocks

The OPE has a very useful application. Consider, for example, a four-point function of scalar

operators:

(O1 (1) Og (22) O3 (23) Oy (24)) (2.85)

Using the OPE, we can write this as

(01 (11) Og (12) O3 (13) Oy (14)) = Z cr20ca0Wo (x1, 22,13, 74) , (2.86)
o
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where

Q1. 1.9
WO = fil...’ijk ($12, 82) fjl...jjl (5[734, 84) <Ok1 Jk (SUQ) Oll Jl (./L'4)> . (287)
are called conformal partial waves. By conformal symmetry, these functions can be written as

As
W — xf%‘l E Lﬂ El Go (2,2) (2.88)
©~ z2, i (xm)%(AwAz) (x34)%(A3+A4) ’

These functions G are called conformal blocks. For d = 4 dimensions, they are given by [6]:

1 2z
Go(z,2) = L [kave(2)ka—e—2(2) — kave(Z)ka—e—2(2)],
(2.89)
- A A
ke(x) = 2% F) Potuz Pt 5.,
2 2
where 9 F is the hypergeometric function
00 W)
oF (a,b,c; z) Z (i nn' " (2.90)
n=0
(a)y, is the Pochhammer symbol
I'(a+n)
2.91
( )n P (a) ) ( )
and the variables z, Z are related to the cross-ratios u,v by
u=zz,v=(1-2)(1-2) (2.92)
We will also need to expand five-point functions in conformal blocks:
G = <01 (:61) 02 (SL‘Q) 03 (563) 04 ($4) 05 (1‘5)> (293)

We can do a light-cone OPE in (12) and another in (34), as depicted in figure 2.4. We will
assume 01 = Oy and O3 = Oy, because we will only calculate correlators of this kind. This
also allows us to use equation (2.83). Because we will only consider correlators of scalars, we

further assume that all O; are scalars. Using (2.83), the correlator G will then be given in
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Os
O1 O,

@ O3

Figure 2.4: OPE decomposition of the five-point function.

terms of three-point functions of spinning operators:

G — C12kC345
Z 28—y 2A3 -7
2 2 2
k.j (51"12) 9”34)

38

1
/01 [dtl] /0 [dtg] <Ok ($1 + t1x12, Ilz) Oj (333 + tox34, «T34) Os (x5)> (2—94)

Using the result for the three-point function of spinning operators, equation (2.60), we can

write

(O (z1 + t1z12, 212) Oj (23 + tax34, 234) O5 (25)) =

min{J,J;} Ju—ly,J; 1
Ck‘]5vk‘j5 Vg5k ij

= lz: hj+h2k hs b ths s hj+h25—hk
=0 2 2 2 2
(xkj) (#%5) (%‘5)

where

Tj = x1 + 1712, T12, T = T3 + t2x34, T34
Therefore, we can express the correlator G as
1 min{Jy,J;}
x?
13
G=— A < > > Z PG (ui)
4) k,j

(‘7312)Al (3 55

where pgj; = 612k634j02j5, and Gyj are the five-point light-cone conformal blocks

(2.95)

(2.96)

(2.97)
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Ag
T Tj 2 2 2
2\ % .2\ [ L15%35
Grji = (213) * (234) < 2 )
13
1 1 vty it
k,j5 7 j,5k kj
/0 [dtl]/o [dt2] hj+h,—hs hyt+hs—h; hj+hs—hy, (2-98)

(ﬁg) i (“7%5) : (95§5> i
2.6 Bootstrap equations

Now, if we consider identical operators:

(9(21)p(22)d(23)P(24)) (2.99)

and perform the OPE between ¢(x1) and ¢(x2), then this function can be written as:

1
2 )A¢

5 Z c12k¢346G A, 7, (U, V) (2.100)
(%25534

k

We could, however, have chosen to perform the OPE between ¢(x1) and ¢(z3) instead, and

we would necessarily obtain the same result. This leads to the equality

1 v
g croncsanGa, g, (u,v) = us % c136c24kG A, (u7 u) (2.101)

In the same way, performing the OPE between ¢(x;) and ¢(x4) must also yield the same
result. This leads to the equality

u

Ay
> cimkcsnGa, i, (u,v) = (;) D cuarcaskGa, i, (v,u) (2.102)

k k

These are the bootstrap equations. They follow from the symmetry only, and can be used to
find restrictions on OPE data of possible conformal theories. We will not be analysing these

equations in this thesis, but an introduction to this topic can be found, for example, in [5].






Chapter 3
How to calculate integrals

In order to verify the duality (1.7) we need to calculate the correlation functions in the null-
polygon limit, as well as the corresponding Wilson loops. When calculating correlators in

perturbation theory, we frequently encounter spacetime integrals of the form:

d d
1 d $p+1-~~d Tp+l
dl
— D

(3.1)

2
i
we are interested in calculating these kinds of integrals. In this section we will explain how

where D is a product of powers 3, where i =1,...,p+land j =p+1,...,p+ . Therefore,

to do this using the method of asymptotic expansions. For p = 4, [ = 2, the most general
integral of the form (3.1) would be:

1/ ddxg,ddl’(; (3 2)
m ) (@35)™ (a35)" (235)™ (a5)™ (2%6)™ (36)™ (236)™ ()™ (a3)™"

Because N’ =4 SYM is a CFT, the integrals we will encounter must be conformally invariant.

This means that the integrand must have weight d in each integration point, i.e.

p+l
Y aj=d, j=p+1,..p+l (3.3)

=1
i#j
Consider the following integral for d = 4 spacetime dimensions:
1 d*
[:2/2 2x52) 2 (3.4)
Q T15T25735% 45

41
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We can use translations to send z; — 0. Then we use a special conformal transformation to
send x4 — 0o. We can also use rotations to put x3 on a coordinate axis, and put x5 in a

coordinate plane. Finally, with a dilatation, we can put m% = 1. This simplifies the integral
(3.4):

1 d4IL’5 1 d4l‘5
72 | 22 22 22 o2 - 72 | 2222 22 (3'5)
15425435445 5425135

These transformations also simplify the cross-ratios u and v:

u— T3 v — 3, (3.6)

We will now explain the method of asymptotic expansions and give an example by calculating

the integral I.

3.1 Asymptotic Expansions

Each of the integrals in x;, ¢ > 5 is taken over the whole space. However, there are two special
regions of integration when one of the external points is “small” compared to the others (say,
x9 K z3, for example). We will make this notion of smallness precise in a moment. In region
1 we have x; ~ x2, which implies z; < x3, and in region 2 we have x; ~ x3, which implies
x; > x2. We can expand some of the propagators in the integrals in these regions, which

simplifies the analysis. In region 1 we can expand:

e > () f;f;fi)n (3.7

n=0 ($3

Likewise, in region 2 we have the expansion:

o = i <_c> S SN (3.8)
2\¢ — + :
(@3)° =\ (@)

There are two ways that the vector zo can be small compared to 3. The first is |24| < |24
for all p. This happens if we take the Euclidean OPE limit 2§ — 0. If this is true, then
powers of 23 and x5 - x3 will both be subleading. The other way z2 can be small is 73 < 22,
which corresponds to the Lorentzian OPE limit 23 — 0. In this case, powers of 23 will be
subleading, but the same will not happen for powers of o - z3. Therefore, in the Lorentzian

limit, higher powers of n in (3.7,3.8) will not necessarily be subleading. In practice, however,
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one can expand in powers of x9 - x3 as well. Now, each of the expansions (3.7,3.8) has a
finite radius of convergence, so divergences will appear if we integrate the sums over the entire
space. However, these divergences will cancel out if we sum over all possible regions. The
usefulness in this procedure lies in the fact that, by doing these expansions, we are expresing
an n-point integral as a sum of a 2-point integral and an (n — 1)-point integral, which are

easier to compute. Consider, for example, expanding the integral (3.5) in region 1, using (3.7):

ddx5 23:3 T5 — )
/2 Z/ )n+15 (3.9)

x5:r25

Because this integral diverges in 4 dimensions, we integrate in d = 4 — 2¢ dimensions. For
simplicity, we can truncate the sum at n = 0, keeping in mind that there will be corrections

in x% and zo - x3:

1 ddCL‘5
1M = / + O (xg - x3) + O (23 3.10

7rd/2x§ x%x%B (22 - x3) ( 2) ( )
We can see that this integral no longer depends on 35, which is a considerable simplification.
In general, going to higher orders in the expansion will not add dependences in the denom-
inator. It will, at most, introduce powers of x5 - x3 in the numerator, which we will handle
next. However, let’s first consider the effect of this expansion on an integral depending on

more points. Consider a general five-point, one-loop integral

- L / d'zo (3.11)
owi ) (afe) ™ (a36) ™ (236) ™ (ad6) ™ (236) ™ '

If the integral is conformally invariant, we can send x5 — oo and set x; = (0,...,0):

1 dxzg
I'=— aie az6 as6 as6 3.12
| e e (312

us Lg Lo L36 16

In the same way as before, we can expand in region 1:

1 d?
0= ot [ e Ol 2+ 0l 2 4O (013

We have actually removed two external point dependences in the integral. However, if we

expand in region 2 (using (3.8)) we get

dd
7@ — / ( 6 + O (22 23) + O (22 24) + O (23) (3.14)
6 36 16

m2)(1164-@26 (:1:2 )036 (:C2 )‘146
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In this region, the integral still depends on three external points. In general, in the region where
all the integration points are large, an integral depending on n external points will originate
integrals with n — 1 external points. Likewise, when all integration points are small, there
will only be integrals with two external points. In the mixed regions, where some integration
points are large and some are small, we will get products of lower-loop integrals. The most
complicated case we’ll have to consider is a product of integrals depending on 2 and (n — 2)

points, respectively.

This procedure can yield integrals which depend on fewer than two external points. These
integrals evaluate to zero, as we can see by taking the general result for one-loop integrals,

equation (3.38), and analytically continuing it to a; = 0 or ag = 0.

3.2 Tensor reduction

Because we can perform successive asymptotic expansions until we have a product of two-point

integrals, we will only need to evaluate integrals of the form:

w1 I
ddpy 25 5 3.15
[ gy (315)

where x,, is an external vector. By rotation covariance, we can write this integral as:

J/2

/ d okt ot Z IRy ( )
drs—"—-2— = Ika 3.16
(‘rg)al ($(215)a2 k=0
where
H];Cu'"w — k2 ., 6#2k—1ﬂ2k’m52k+1 .. -:rgJ (3.17)

and I is a scalar quantity, which we can determine by contracting both sides of equation
(3.16) with the H; """/, This gives a set of linear equations for the I, which we can solve
straightforwardly, for example using matrix methods. The answer will be given in terms of
integrals with z, - x5 in the numerator, but we can rewrite this as % (22 + 22 — 225) and pull

22 out of the integrals, so that, in the end, we only need to evaluate integrals of the form

1 ddl‘5

This procedure is known as “tensor reduction” of integrals, and it works similarly at higher

loops. For the case where a; = ag = 1 in (3.15) there is a simple expression for the integral:
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d? cai)” 1 _ -z d
/ = (;E52 %) = Wy ¢y 1( = >(‘T%$?)J/2/ 29625 (3.19)

J
T5To5 27(d—2), (m%x?)l/z T5To5

where z; is an external vector and C¥ (z) are Gegenbauer polynomials. If we are interested

only in the leading order term as 23 — 0 or 22 — 0, we can take the limit in the Gegenbauer

polynomial to obtain

s (w5 - 2;)” N (% — 1)J (9 - 27)” & (3.20)
5 35 d_ 2) T " Iy ) .

3.3 IBP identities

3.3.1 1 loop

We can evaluate integrals of the form (3.18) for general a;, as. However, for higher loops - i.e.
[ >21in (3.1) - this is still complicated. We can, however, simplify the problem even further
by using integration-by-parts (IBP) identities. We can derive these identities by acting on the
integrand of (3.18) with 05 - x4 and 05 - x5. Acting with 05 - z4:

1 [ 1
w‘zi/d oo 08 <($§)m1 ($i5)a2> -
1 d —2a1Tq * T5 209Tq * Tas _
n ’ [(%?)al+1 (22:)"  («3)" (x§5)a2+1] -
- L[« [al<za5 — o} —a3) | aa(ads — a3 + a)
: (23)" 7 (a25)™ (@)™ (a25)™"
= a1 (Toy+1,00-1(Ta) — T2 Ta141,05(Ta) — Tayaz (a)) +

+ az (Ia1,a2 (Ta) — Ia1—17a2+1(95a) - xg{]ahaz-i-l(xa))

™

Because the original integral is the integral of a total derivative and the boundary terms vanish

at infinity, it equals zero. Using this fact, we are left with the identity:

ai (Ia1+17a2—1($a) - inaﬁ-l,aQ (a) — Loy o, (xa)) +

+ az (1(11702 (Ta) — Toy—1,a9+1 (Ta) — xilal,az-&-l(l’a)) =0
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Likewise, acting with 95 - x5 = 0, 0% %"

(SHV d v 'T'g
A ((90%) ' (225)"

= (d —2a1 — a2) Loy a5 (Ta) — @214y, ~1,05+1 (Ta) + a2miIa1,a2+1 (za)

Again, the original integral equals zero, so we get the identity

— — _ 2 —
1, - a ’ - N
(d = 2a1 — a2) Iay a5 (Ta) — 210y —1,00+1 (Ta) + 0275 a1 0541 (Ta) =0 (3.21)

As discussed before, we also know that scaleless integrals vanish, which yield the boundary

conditions:

Io,a; =10, 0=0 (3.22)

Using these identities, we can greatly reduce the number of integrals we need to evaluate.
Because these equations are linear in the integrals, we can use matrix methods to solve them
and determine their values in terms of a smaller set of so-called master integrals. In practice,
however, the number of equations can get quite large and is very tedious to do by hand,
especially for higher loops. There are, however, some publicly available codes which we can
use to find and solve the relations between integrals. Two such codes are LiteRed [9] and
FIRE [10]. In this work we used LiteRed. At one loop, it tells us that there is only one master
integral, which we choose to be I ;. This is only one possible choice for the master integral,

because we could simply use the relations to rewrite everything in terms of another integral.

3.3.2 2 loops

At two loops, we can still perform asymptotic expansions and tensor reductions, so that we
only need to evaluate scalar integrals depending on a single external vector. The most general

form of these integrals is:

) 1 dd$5ddl’6
oy asasanas (53) = = | (@)™ (@)™ (425)™ (22)™ (@3) "™
o o

(3.23)

where z, is an external vector. We can again generate the IBP identities by acting with 0; - z;
on the integrand, where ¢ = 5,6 and 5 = «,5,6. This gives us 6 identities. The boundary

conditions this time are determined by the fact that the integral is zero if two out of a1, as, as
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are zero, or two out of asg, a4, as are zero. At two loops, LiteRed tells us that there are two

master integrals. We will choose the integrals Iy 1,1,0,1 and I7,1,1,1,0 as our masters.

3.4 Calculating master integrals

3.4.1 1 loop

As was previously said, there is only one master integral at 1 loop. However, it is just as easy
to calculate the general one-loop scalar integral (3.18), so we will go through the general case
here. We start by using the Schwinger parametrization. Using the fact that

1 [

— = / du u" e (3.24)

Y I'(n) Jo

we can rewrite the integral in expression (3.18) as

1 o0 o
d/ddx5/ du/ dv y Lyl gmuad vl (3.25)
2D (a1)T(az) 0 0

We can now easily complete the square in the exponent and perform the Gaussian integral in

position space, yielding:

uf1— 1 p%2— 1 w2
/ du/ dv LU T (3.26)
I(a1)l(az) (u+wv)2

We can simplify this expression further using the identity
[e.e]
1:/ dXA 6(A —u —v) (3.27)
0
Inserting this in expression (3.26), we get

0‘1 1 CL2 1 uv_ .2
/ du/ dv/ d\ (N —u — v) e utv®i (3.28)
I'(a1)I'(az2) (u+ v)

Rescaling the Schwinger parameters:

u— Au, v —= Av (3.29)

and using the delta function property
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d(cx) = —d(x) (3.30)

we get:

ud— 1 2= 1 N 2
/ du/ dv/ A\ A Fa2=5 L (1—u—v)—————e "ute™ (3.31)
[(a1)T(az) (u+wv)2

~1
ut 9:2) A and perform the integral in A:

We can now rescale A — ( 5T

d
I'(a +a _d 4 [ 0 —a1—a2+35 a1—1,.a2—1
(a1 +a2—9) (:B?)aﬁ-ag 2/ du/ o ( uw ) 5(1—u—v)L
0 0

d
2

[(a1)T(a) utv (u+v)
(3.32)
Finally, taking advantage of the delta to perform the integral in v, we get:
r (al + a2 — %l) a1taz—% —aj—az+2
; du (u(l —u))~ "7 TE M (1 — )2 3.33
LI Al TR T) w1~ ) (3.3

The integral in u now runs only form 0 to 1, because for © > 1we have 1 —u < 0 and therefore

the integral in v vanishes in that region. Simplifying, we obtain:

r (a1 +az — %) o\ —a1 —ag+ 4 /1 d d
€T 2 du w271 (1 —¢) " @ts—1 3.34
Fla)T(ar) ) . (1-u) (3:34)

We can use integration by parts to calculate integrals of the form

/1 du u®(1 —u)? (3.35)
0

Integrating by parts we get:

1
/ du u*(1 —u)? = _h du vt (1 —u)Pl = /du w1 —w)’t (3.36)
0 o+ 1

We can use successive integrations by parts, and we get:

L _ BB-1--1 T(a+DI(B+1)
/0duu(1_“)B_a(a+1)---(a+6+1)_ T(a+B+2) (3.37)
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Using this result in expression (3.34), we get the final result

1 1 —a1—a +i
W/d%g,w = (7)™ "2 G (ar, az) (3.38)
where
Tr _A1(d (g —
G (a1,a2) = (a1+a2—5)T (5 —a))T (5 —az) (3.30)

F(al)F(ag)F (d —ay — ag)

Note that the RHS diverges for some values of a1, as. To deal with this, we set d = 4 —2¢ and
expand in powers of €. The result will, naturally, still be divergent as € — 0 - i.e, there will
be poles in € - but, when we sum over all the asymptotic regions, these poles will remarkably

cancel out.

3.4.2 2 loops

At two loops, our master integrals are:

1 dlzsdiag
. oy 1 / d*z5dze 3.40
0,1,1,0,1( a) wd x%xi5$§6 ( |

1 dlzsdiag
, oy _ 1 / dwsdimg 3.41
11110 (72) md | atada? ol o

Both of these can be calculated using the one-loop result (3.38). We start with the first one:

1 [ dlsdas  G(11) / T @) enne <2 . 1> (3.42)
md xgxgcf)x%() ﬂ'% (l‘g)Z_g '1"35 “ ’ 2’
As for the second one:
1 dd$5dd$6 9 %72 1 dd$5 9\d—4 2
— | 5 = G(1,1)— | —5 = G(1,1 3.43
Wd/x§x§x§5$36 (xa) (1, )71-% /J:gxis (xa) (1,1) ( )

So we have determined the master integrals at two loops. Together with the IBP identities,

we can determine all two-loop integrals.
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3.5 An example at one loop

We are finally ready to calculate the original integral (3.5). We include a prefactor z3 for

convenience:

2 dd
=[S0 (3.44)
T2 L5Lo5T35

Because our goal will be to test the duality (1.7) in the limit where separations between points
are null, we only need to calculate the integral to leading order in x3. The first step is to

do asymptotic expansions in this limit. Since this is a one-loop integral, there are only two

regions:

Ry : 2} <1l Ry : 22> 13 (3.45)

We also need to truncate the sums (3.7) and (3.8) at some finite order in z9. For simplicity,

we will keep only the first order terms. This lets us rewrite I as:
I=10 413 (3.46)

where

dxs (23:3 - Ty — x%)k

L i 1 /
2 = (22)" w33
2 2 £ dlgs (229 - x5 — a2)"
1<2>:x32/ 5 ( -3 )
T2 k=0 (23)" " a3

To leading order in x3, we can neglect the squares in the numerator:

7 Li 1 /dd% (223 - x5)
% i (xg)k 5055
) 3 N [ dirs (2% - x5)
~ 7 Z 2 k+2 2
T2 k=0 335) 35

We can use equation (3.19) to do the tensor reduction in region 1:
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0o d _ ZE
T2 p—o

Substituting 2zs - x5 — 2% — 23, in the numerator (we are neglecting powers of 23), expanding,

and doing the integral in =5, we get:

0~ ZZ() 3 5 (_;§%3>l(x§)32c:(1,1) (3.48)

k=0 1=0

For region 2, we can restore point z; and rewrite the expression as:

/@ e~y ) [ dlas (3.49)
g k +0U J (22,) a2 '
T2 = T15) T35 ly—z1,
Evaluating the integral, we get
~ 72 Z -9 (%) G (1,2) (3.50)
3 (k+1) V1 ’

Y=x1i2

Acting with the derivatives on the power and restoring the point x1 to zero, we get

k=l (d 5. .
ZZ<> - (k2+2]; Z ()" (13) ¢ (1,2) (3.51)

k=0 [=0

In practice, these sums must be evaluated up to a given value of k, but since we have an
expression for any k this cutoff is arbitrary. As an example, we can set £ = 1. Additionally,

setting d = 4 — 2¢ and expanding to order O (60), we obtain:

Y\1 e 1 1
1M ~ <1+2> -+ (Z—We—logu—logazg)—i-Y(l—v—zlogu—Qlogx§> +(’)(Y2)
€

2
I(2>~—<1+Y

1 1 1
2>6+(’ye—|—logx§)+Y< —i-%—l—logxg) +(’)(Y2)

2 2 2

where Y = 1 — v and 7, is Euler’s constant. It is now apparent that when we sum over the

two regions, the divergences in € cancel out. The final result is:

I~2+§— <1+§> logu+O(Y2) (3.52)
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The integral I is actually known analytically [11]:

I =W (u,0), (3.53)

where the functions ®) (u,v) are the multi-ladder functions [12], which can be written in

terms of z, z as

D) (u,0) = —— 1) (2, 2) (3.54)
z2—Z
where
L
CDMRL-K) . _
— kl L K)IL! log” (z7) (Lizz—k (v) — Liap— (7)) (3.55)

Our result agrees with the analytical result up to the given order.

3.6 An example at two loops

To calculate correlation functions up to two loops, we need to consider integrals with [ = 2 in

(3.1). In this section we give an example of one such integral:

2 d,._qd
x d*zsd*x
I = % 2,2 52 26 2 (3.56)
@ T5L25T56L6736
At two loops, there are four asymptotic regions:
Ry : 2?2k < o Ry :a? < a3, 28> 23
Rs:a?> 1l 2f < a3; Ry : a2k x> a3
This allows us to express the integral I as a sum over regions:
L=1+1? +1¥ + 1Y (3.57)

where
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/dd;v5dda:6 2x3 - xg — x%)k

33595695259556

*'359525 956 36
=0

k
ddZL‘5d T 2:U5 To — x%)

k+2 2 2 2
L56L6T36

1
(«3)"
22 & rsdix 2:E x —1‘2)k
T5 6 6 T5 5
ZZ/ )k+2 2
k=

The asymptotic expansion in region Rj3 yields only scaleless inegrals, so I3 = 0. To leading

order in x3:

LLgLas L5
i/ dd$5ddl‘6 (2.%'5 . Qfﬁ)k
k+2
k=0 x% (376) 5573
2 d d k
@ %Z/ dzsd®xe (229 - x5)

=) (@) gl

1 i 1 /ddfc5ddm6 (23 - 26)"
2 d ok 2,22 .2

k=0 )

3

s

Lo5T36

LeL36T56

This case is more complicated than the one-loop one. However, some tensor reduction formulas
can be deduced for general k if we neglect traces. We tested the following patterns up to k£ = 10
in Mathematica:

/ dda:5ddar6 (1‘3 . xﬁ)k (:L'2 : $3)k (d - 3) (d 2) ( )k 1 / dd$5dd.%'6 (3 58)
T3TFT35 0 a3(d—4)(d+k-3) (% - )iy R .
dd$5ddx6 (x5 . .’L‘(j)k (d - 6) (d - 3) (4 - %)k,1 (%)k,1 (1'2 : xS)k dd.’I}5deJ6
2 (k2 2 o o k1 222202 12 (3.59)
w3 (w5)" " 23523 8(3)p_1 (d—1);_; (3) 57672536
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/ddfbg,ddl'ﬁ (1'2 : l‘5)k
k+2
(x%) i m%x§6x§6
(d—5)(d—3)(3d—10)(3d —8) (6 — d);_, (4— 2),_, (¥2-x3)" /ddac5dd:r6

2(d=8) (d—4) s (5~ 9),, (47)" Rty 0

Using these results and the expression (3.42) and (3.43) for the 2-loop master integrals, we get

the results

Ni2k T - xg) (d—3)(d—2) (ggl (z9)44
—4)(d+k-3)(3-3)_,
= 2k (d - 6> (@=3)(4-9), (9, (@3)" " (@2 29)
~ Z B o\ k—d/2+2
8(3)p—1 (d—1)_4 (xs)
oo ok (d - 5) (d—3)(3d—10) (3d —8) (6 — d);,_, (4~ 2),_, (v2-x3)"

5~y

= 2(d—8)(d—4)3)_, (5-9), , («3)"

These sums can now be calculated up to a given value of k. Plugging in d = 4 — 2¢ and taking

the limit € — 0, we get, up to k = 1:

Y Y 1 Y
Ig~6+38—<3+38>logu+<2+8>log2u+(’)(Y2) (3.61)

The integral I» is also known analytically:

L= a® (u,0) (3.62)

2
L12T34

This result agrees with ours up to the given order.

3.7 A five-point example

Some of the integrals we will have to calculate will depend on five external points. In this

section we will give an example of one such integral:
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1 d%ze d%2r xgﬁ
I= 7l | 22 22 22 22 22 22 22 12 (3.63)
16T26L27L3746L 4756 L 57

Again, we can simplify the integral by sending a point to infinity. In this case, we choose x5:

1 d%ze d%2r xgﬁ
I= 7l | 22 22 22 22 22 22 22 (3.64)
1622622723746 47267

We will start by doing an asymptotic expansion in the limit 2%, — 0:

I=10 4 1@ 4 1 4 1@, (3.65)
where, to leading order in z%,:
d d k1 ko k3
d%zs d 966 —2x13 - 216)" " (2217 - 13)"* (2217 - X14)
7Td Z 2 k1+ko 2 ks+2 2 2 2 2 (366)
13) (5514) L16L26L27L67
ddxe ddﬂc? —2113 - 216)™ (2217 - T12)*2 (2217 - 216)™
Z kl 1 o9 o 2 \k2+k3+2 o o o (367)
55145”16( 17) LogL37Ly7
1® =0 (3.68)
k
1(4) Z/ dda:6 d l'7k xdb (23716 1‘12) ! (21’17 . 3:12) 2 (3.69)
142 ko+1l o o o o
( 17) L37LyeLy7Le7

Now we will expand these leading integrals in the limit 3, — 0. We will not need to expand
in region 1, because the integral in that region already depends on only two points. We must,
however, take the limit :1:§4 — 0 in that region at the end of the calculation as well, for

consistency. The expansion for these integrals is

1O = @D 4 762 4 g6 4 @ — 9 3 4 (3.70)

The integrals I(7) are, to leading order in x2, and T3,
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(2,3)
723) B, / dlzg diar (—a13- 216)" (217 - 212)"™ (217 - 216)" (w37 - 213)™
fe1Fho+Fa Rt 1
iy (“713) o2 Pt e
724) Z/ ddze ddﬂf? —x13 - 216)" (217 - £12)" (217 - 216)"3 (—234 - 237)

)kl ' $%4x16$%6 ($17)k2+k5+2 ($§7)k4+2

k4

T3
(4 1)
J ddxe dd907 236 (216 - T12)" (217 - 212)™ (213 - 236)" (213 - 37)"
9 \kitka+ks+ks+3 o o
(%3)

2 .2
L37Ly6Lyrxe7

(4 3 k k k k ks
743) Bk / d'ze d'wr (16 - 212)" (217 - 212)" (213 - 37)" (236 - £34)"™ (w36 - 237)

(332 )k1+2 (QL’Q )k2+k3+1 2 2 )k4+k5+1 22

16 13 37 (9536 47

7AYo Z/ dlag dar (w16 - 212)" (217 12)"™ (w36 - w30)" (w7 - 230)™

16)k1+2 (ﬁ?)kﬁl (9['%6)]~€3 (x§7)k4+2 5”%7

where

6’(;,3) — 9> ki (—kQ—kz;—z)’ 6124,1) — oY ki (—123—2) (—1224—1)’ 5(4 B3) _ 9> ki (_kifg_l)

and all other integrals are zero. Now we need to do tensor reductions on the scalar products,
for which we need to derive new expressions, or do them “by hand”, contracting with external
vectors and solving the linear system of equations. For the purposes of this example, however,

we will simply keep the leading term (k; = 0).

I(l) - 1 - / dd$5 ddxﬁ
1)

2.2 .2 .9
7 (23 T16L26L27L67

d d
4.2 2 2.2 .92 .9
ToT14213 J T1eToeL37Ly7

724 %y / dzg dag

d .2
TxTy 2

236236 (95%7)2 (%7)2
7(4,1) 1 /dda:g dday 23

3 2.2 .2 .92
T (22,) L37036% 47867
d d
d 2 23\2,2..2 .2
T3 (:UIG) L3736 47
d d
2 2
5”16 9517 $37) L7
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The integrals coming from I23), 124 and I*3) are products of one-loop integrals, which we

know how to evaluate for general exponents. Using IBP identities, we can express the two-loop

integrals as:

(3d — 8) dizs dlzg
w(d =122, (a3,)° /
(d—2) dzg dixy
7 (d—4) (x%3)3 / T3 76T
(44) _ 3(d—5)(d—3)(3d—10) (3d — 8) / dize diaq
7 (d— 6) (d — 4) (%)’ T1 3687

(1)
L~ 22 w3l
17726767

7@

I

Evaluating the integrals:

x%4$13
2\5-2/(.2\53
724 (5512) (3713) G(1,1)G (2,2)
37%4

d—2 2 \d—3

wa _ 3(d=5)(d—3)(3d—10) (3d —8) (a35) """

! (d—6)(d—1)

d
G(1,1)G <2 2,1)
Setting d = 4 — 2¢ and expanding around ¢ = 0 we get:

1
23] ~ 4 — 3logu; + 5 (logu1)? — 2log uz 4 log uy log us, (3.71)

to leading order in u;, ¢ = 1,3 and 1 —u;, j = 2,4,5.






Chapter 4

Extracting CFT data

In this section we will use the previously described methods to calculate the four-point function
of half-BPS operators O

Ga = (0 (21) O (22) O (23) O (4)) , (4.1)
their five-point function
G5 = (O (21) O (22) O (23) O (24) (25)) , (4.2)
and the correlator of four half-BPS operators and one Lagrangian

Gan = (O (21) O (22) O (x3) O (24) L (x5)) (4.3)

The functions G4 and G5 are dual via (1.7) to the null square and pentagon Wilson loops,

respectively:

2lim G4 (21,29, 23,4) X Wy (21, T2, 23, 24) (4.4)
x40
lim Gj (21,22, 3,24, 25) x W5 (21, 22, X3, T4, X5) (4.5)
x?,i+1—>0

These limits are depicted in figure 4.1. The function Gy.1 is dual to the null square Wilson

loop with a Lagrangian insertion, in the limit

W,
hm G4;1 ($1,$2,x3,x4) x < 4(‘T17w27$37$4)£($5)>

4.6
239,233,23,,07,—0 <W4 (37171'27953; x4)> ’ ( )

99
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Figure 4.1: A diagram of the null square and null pentagon configurations. Dashed lines
symbolize null separations between points.
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S §

(@ O3

Figure 4.2: A diagram of the null square configuration with a Lagrangian inserted at a point
x5. Dashed lines symbolize null separations between points.

which is depicted in figure 4.2. These functions have expansions in the coupling, and the
integrands of some of the loop contributions are known [13, 14]. We will calculate these
loop contributions to the correlation functions and, by comparison with the conformal block

expansion, we will extract the loop contributions to the CFT data.

4.1 20’ operators
We will consider operators of the form
1
o =tr (2'@7) - gt (@K @*) s/ (4.7)
These operators belong to the 20’ representation of SO(6) ~ SU(4). These operators are

interesting because they are protected, meaning both their scaling dimension and the coefficient

of their three-point function have no perturbative corrections. We introduce null polarization
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vectors to take care of the tensor structure:

O(z,y) = nyJO%,(x) = yryjtr (<I>I<I>J) , (4.8)

where y? = 0. We also introduce the following definitions:

Z =& + 1P, Z =91 — 1Py (49)
X = &3+ 1Dy, X = P3 — 1Py (410)
Y = &5 + iDg, Y:(I)g;—iq)g (411)

Now consider, for example, the polarization vector

y1 = (1,4, 1,7 a1,0,0) (4.12)

This is a null vector, since y3 = 0. If we choose this polarization for the 20’ operator (4.8), we

get

(’)(xl,yl) =t{r ((Z + O(1X> (Z + OélX)) (4.13)

If we then take a derivative with respect to c; and then set a; = 0, we get

(9(;0<x1’ y1) = (tr (XZ) + tr (ZX)) (4.14)

a1=0

In this way, we can select specific external operators that will be useful later. We can now
further define

Y2 = (1,i,0[2, —1 O‘Zaoao)v Ys = (17 *Z.,0,0,0ég,i 0[3)
Ya = (]-a _i705 Oa Oy, —1 Oé4)

By considering a four-point function of operators with these polarizations and taking a deriva-

tive in each of the a; at a; = 0 we select the operators
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A Wiz
' ZiZ A |
| |

Xz YoZ

Figure 4.3: Wick contractions between the four operators selected with the polarization vec-
tors. The dashed lines represent contractions between X and Y fields, while solid lines repre-
sent contractions between Z fields. In this example the exchanged operators are of the form
tr(ZZ), but the general exchanged operator is more generally given by equation (4.15).

O =tr(XZ)+tr(ZX) Oy =tr (XZ) +tr (ZX)
Os=tr(YZ) 110 (2Y)  Oy=tr(VZ) +tr (27)

Because each of the fields X, Y, Z only has a non-vanishing contraction with its conjugate, the
X fields in 07 and O3 will be contracted, as will the Y fields in O3 and O4. The leftover Z

fields will then necessarily contract with the exchanged operator, as shown in figure 4.3.

In this way, by selecting the external operators, we are restricting the operators which appear
in the OPE. With this choice, the exchanged operators in the (12) OPE must have the form

Oy (@) = tr (DkZDJ_kZ) (4.15)

where

D = 2+, (4.16)

and the operators exchanged in the (34) OPE will simply be their conjugates. These operators
have twist 7 = 2 and spin J. However, they will not, in general, be conformal primaries. The

exchanged primary operator for spin J and twist 2 is given by a linear combination|15]

J
OJ (3?) = Z Ak, J tr <[)k2b‘]_k2) (4.17)
k=0
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where the coefficients ay ; are determined by

J is [y
S oty = o+ C) (20 (118)
k=0 Yy

4.2 Four-point integrands

We start by reviewing some results about the correlation function of four of these operators
[13]:

$zayz Za G $27yz (4'19>

In the last equality G4 is expanded in powers of the t’Hooft coupling a = ¢g?N./(47?) and
N, is the number of colors in the theory - or, equivalently, the dimension of the matrices

®lappearing in the Lagrangian.

The tree-level contribution is given by:

2 2
o = B0 (R (R (s
4 Ty Y5) = ond 2 2 2 22 22
4 (4m2) T T3y T3 Ty Ty
2 2

) S (4.20)
LN (3/123/23934?/41 n @@i L Y Y3 924y4l>
(4r2)t \afp a3z 23, 25, 2fp 23,23, 5’32 ats 233 T3 13
Using superconformal symmetry, the loop corrections el xi,y;) take the form
4
2(N2 1)
G (ziy;) = =5 Rlziyy) FO(x)) (4.21)
(472)

where the function R(z;,Y)) is given by

3/12y2sy34yl4 2 2 2 2 2 2 9%29%3934?/%4 2 2 2 2 2 2
R(x;, y]) 5 5 5 5 (37139524 — T12%34 — 5'3149523) + 55 5 a3 (35145323 — T12T34 — $133724)
3312952337343714 55121'1335245534

2.2 .2 .9 4 .4 4 .4
Y13Y14Y23Y24 (. 2 2 2 2 y12y34 Y13Y24 Y14Y23
+ 202 a2 22 (239234 — 23 ,w53 — 55139524) + 2222 + 222 + 22 22
13T14T23%24 12734 13T24 14723
(4.22)

This allows us to extract all dependence on the polarization vectors Yy in the multiplicative
factor R(z;,Yy). Additionally, this function has no dependence on the coupling, so the problem

is significantly simplified. It is convenient to write the functions FO ag
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2 0,2 .2 .2 2 2

T Ty Ts 4 THaTs,T

FO (r1,22,23,24) = 12 2?(14422)524 34/d4x5...d4x4+gf(2) (T1,. .., Tasr) (4.23)
'(—4m

Because FU is conformally invariant, the integrand functions f) obey a few symmetries. It

was shown in [13] that these symmetries are satisfied by functions of the form

P(K) (331, s 7‘T4+£)

T
1<i<g<4+L <ij

f(e) ((El, ce 7$4+l) = y (424)

2
i
4 4 ¢ points and have appropriate conformal weights in each one. Using these properties, we

where P is a polynomial in 22, which must be symmetric under the permutations of all

can determine the functions f(). The corresponding integrals can then be performed using

asymptotic expansions. The polynomials P up to three loops are given by

P — (4.25)
pr® — 23,235, 72 + permutations (4.26)
P®) = (afya3503,03575) (1'%7)2 + permutations (4.27)

We can use these results to calculate the functions F() up to three loops.

4.3 Four 20’ operators

So far, we have discussed how to obtain the integrands for the four-point function, as well
as how to calculate the integrals themselves using asymptotic expansions. This gives us an
expression for the four-point function in the OPE limit. By comparing with the conformal
block expression, we can read off some OPE coefficients and anomalous dimensions. The

conformal block expansion of the four-point function is given by

1 —
Gi= 5 D oorGann(27) (4.28)
(232231)" %

where the conformal blocks G, s, are given by (2.89). The loop dependence in this expression
comes from the OPE coefficients copr and from the dimensions Ay, of the exchanged operators.

These can be expressed as
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ciji (a) = Z aecgﬁ (4.29)
=0
Ag(a) =AY + 3" afAy? (4.30)
=1

(0

ijk

and 71(f)~ Due to the structure of the

Our goal now is to determine the coefficients c
conformal block expansion, it is more straightforward to determine the loop corrections of
some product p;;r of OPE coefficients. In the case of the four-point function, a natural choice
would be poor = C%Ok. Using the explicit expression for the four-point conformal block in
four dimensions, equation (2.89), we can expand in the coupling a and obtain expressions for
the loop corrections Gz(f) in terms of the CFT data. If we take the sequential light-cone limits
zZ — 0, z = 0, we can determine from the explicit expression that the conformal block behaves

as

1
(-2)”

A+J A+J
2 72

Gaj(z,2) ~ (22)2 27 oy ( JA A+, z> (4.31)
We can see that contributions from higher-twist operators are subleading. Therefore, to leading
order in z, we can consider only the operators with the lowest twist, 7 = 2. By equating the
expressions obtained this way to the ones we obtained earlier by doing the integrals, we can

determine the CFT data.

4.3.1 Tree level

We begin by studying the tree-level part of the correlator, which is given by equation (4.20).

Using the special polarization detailed earlier, this expression simplifies to

NZ—=1)u(l+
oo - Ne-1ull+v) (4.32)
8 (12 2 )2
1678 (23,23,) v
Taking the same limits in the conformal block, we can determine the CFT data at tree-level.

Some results are displayed in Table 4.1.
These results fit the pattern
) _ 2J(J)!2

p; = 2J)! (4.33)

which agrees with the results in the literature ([16, 17|, for example).
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109 g p©
0 1 |8 | 4=
2| 2 |10 | 25
4] & 12| 22
6 % 14 5021(1145875

Table 4.1: CFT data obtained from the four-point function at tree level. The coefficients p

8.2
are defined by py = %, where cppy is the OPE coefficient associated with the exchange
of an operator with twist 7 = 2 and spin J.

4.3.2 One loop

The one-loop integrand is given by

w _ PY (1, ws) 1 (4.34)
H1§i<j§5 x?j x%z95%3x%ﬂ%ﬁ%sx%ﬂ%ﬂgﬂgs)d’”is)
Therefore, the function F(!) is given by
-1 d4a:5
F = —g(1,2,3,4) = / (4.35)
Ar? | afsadsadsels

We have already calculated the integral g using asymptotic expansions. Using the explicit
form for the function M), we obtain the result

G = —ERQ 2,3,4) ®WY (2, 2) (4.36)
- 8(47T2> ) ) ) Z?’Z :

Expanding the analytical result in powers of z and z and comparing it with the conformal block
expansion, we can extract the OPE data at one loop. This data can be found in Table 4.2 for
twist-two operators up to spin 14. In principle, however, since we have an explicit expression,

we could determine the data up to arbitrary spin and higher twist using this method.

These results are also in agreement with [16].

4.3.3 Two loops

At two loops, the integrand is given by
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(1) (1) (1) (1)
J Py Y J by Y
115040456 761
0 0 0 8 T 1127251125 140
53014438928 7381
2 —2 3 10 "~ 1749495609225 1260
4 410 25 12 _40330200644864 86021
441 4638368350036575 13860
6 | _ 8848 49 14 | _ _2764313720840484608 1171733
27225 10 1133832577565190628125 180180

Table 4.2: CFT data obtained from the four-point function at one loop. The coefficients p are

8.2
defined by p; = 87;\,2‘2? , where coos is the OPE coefficient associated with the exchange of

an operator with twist 7 = 2 and spin J.

PO (g x6) 1

2 1,---,2%6 )

@ = 5 = 5 5 5 5 5 5 5 5 5 5 5 5 T permutations (4.37)
H1§i<j§6 Tij L13L14%15%16L23L24L25L26X35L36L45L 46

Using asymptotic expansions, we can obtain the result

F 5 (28— 16logu+ 3 (logu)® +12¢(3)) + O (u) + O (V) (4.38)

— 72 5
42155,

This function can also be determined analytically. We can write it as

1
F® = 2g(1,2,3,4)* (28503, + wtaady + 2igady) + 2(h(1,2:3,4) + h(1,3;2,4) + h(1,4;2,3))

(4.39)
where ¢(1,2,3,4) was previously defined and
x2 d*zsdize 1 1
h(1,2;3,4) = —34 / = ———&® (u,v) (4.40)
S e e M FN P R T

Once again, the analytic expression agrees with our result up to the given order. By comparing

with the conformal block expansion, we can determine the CFT data displayed in Table 4.3.

This data is also in agreement with the results in [16].

4.4 Five 20’ operators

We now turn our attention to the five-point function of 20’ operators:
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(2) (2)
J by Vi
0 0 0
2 74 3¢3 -3
76393 |, 10 925
4 18522 T 7C3 216
880821373 | 28 45619
6 539055000 %C3 79000
8 5944825782678337 | 12176 ¢ 138989861
10663175654381250 ' 75075 >3 24696000
10 171050793565932326659 | 21472 12120281899
971893271052863032500 ' 440895 >3 2000376000
12 14615179364935008540244231 846976 ¢ _ 17061829801679
275810510299034275520051250 | 60063465 >3 2662500456000
14 566041205925631272638053216892969 | 209963648 ¢ _39197535449025593
36623992887821258804467129812890625 ' 75293843625 >3 5849513501832000

Table 4.3: CFT data obtained from the four-point function at two loops. The coeflicients p

8 .2
are defined by py = 87;\,2‘3(1” , where coo s is the OPE coefficient associated with the exchange

of an operator with twist 7 = 2 and spin J.

G = (O (z1,51) O (x2,42) O (23,y3) O (x4, y4) O (25, y5)) (4.41)

Just like the four-point function, we can decompose this correlator in conformal blocks. For
five points, these are given by equation (2.98) with As = 2. Using this result, we can extract
OPE coefficients.

4.4.1 Tree level

The tree-level contribution to this correlator is given by

2.,2,2 4 2.2 .2 92 9
(0) x Y23Y24Y34Y15 4 Y12Y23Y34Y45Y15

Gs R R PR e s + permutations (4.42)
15723724734 1272373474521 5

where the permutations being summed over are all the different ways to arrange the points

into the configurations displayed in figure 4.4.

Using the same special polarization as before for y;, ¢ = 1,...,4, this simplifies to
Géo) _ Suiuzris

(x%2$§4)2 5”%5%5

1 U U usU uglU
|:w1,2 <1 + + us + 5) + w34 (Ul + 1) +ws 6 ( 35 42 5)} , (4.43)
UU4 Uy ) Uy UU4
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X1 x1 T4

Z2 Ts

x3 Ly T2 T3 x5

Figure 4.4: The configurations contributing to the tree-level part of the five-point function.

(J1,J2, ) p((][]l)J2g (J1, J2, ) PS?he
(0,0,0) = (4,2,1) 10

(2,0,0) & (4,2,2) =

(2,2,0) - (4,4,0) | 5=
(2,2,1) E (4,4,1) | £
(2,2,2) = (4,4,2) | 2%
(4,0,0) o5 (4,4,3) | 3%
(4,2,0) 315 (4,4,4) | 155

Table 4.4: OPE coefficients obtained from the five-point function at tree level. The coefflicients
p are defined by pj, 7,0 = coo, COOchf}ngo—

where

wij = (5)? + (1) (4.44)

and gy is the i-th component of the polarization vector ys. Because we will be taking the

limits x%Q, ZB§4 — 0, we will keep only the leading terms in this limit:

Géo) . 8&)172111171,3.%'%3 <1 4

u,
= +u5+5) (4.45)
(35129534) L15%35

Uy Uy
Because the dependence in ys is contained in the simple prefactor wq 2, we can study the cor-
relator without specifying a polarization for O (x5). Using the conformal block decomposition,

we can determine the tree-level OPE coefficients. Some of these coefficients are displayed in
table 4.4.

We can now try to find a pattern in this sequence of OPE coefficients. In fact, the data we

found matches the expression
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Py e = 2R A (Y (4.16)
TERET (2 (2001 (20)! (J1 = €)! (J5 — 0)!
4.4.2 One loop
At one loop, the integrand is given, for example, in [18]:
Gél) X (F12345 + Figoas + Fioazs) + (5 1)+ (5 2)+ (5 3)+ (5 < 4), (4.47)
where
2.2 2 2 .2 9
Fi2345 = D1234 <y§5y§5y324 + y%2y§5yé5) (4.48)
T15T25T34  L12735T5
D ;tb(l) uy1)2 — 1) Sy —1—u) 2y 4.49
1234 = 2 2 (u,v) (2uyisysy + (u v) Uy14y23 + (v u) yor3e ), (4.49)
Ti9T34

where u and v are the four-point cross-ratios and the remaining terms are obtained by per-
muting the indices. Note that, when applying the permutations, one must also permute the

hidden indices in u and v. For example, when permuting 1 <> 3:

2 .2 2 .2

_ T1aT34 Lo3L1y

2 2 2 .2 = (4.50)
Ti3To4 L13To4

and, similarly, v — u. Because there are many such permutations, the definition of ®() in
terms of z,Z , eq. (3.54) is clearly inconvenient to work with in this case. Although this
function has an explicit expression, we can derive a simpler expression from the previous
definition if we keep only the leading order in the first argument. First, note that taking the
sequential limits u — 0,v — 1 is equivalent to taking the limits Z — 0,z — 0. Now, if we look
at eq. (3.54) and take the limit z — 0, we get

F(2L — k)!
(L) N o/ o\t
e (u, v) Z k' L W)L log" (22) Lig— (2) (4.51)
If we take the same limit in the cross-ratios, we get

u—zzZ, v—1—2z (4.52)
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(J1,J2,0) pf,ll)Jﬂ/pjlhe (J1, Ja, 0) pJ1 Jzé/pfl(z)hg

(0,0,0) 0 (4,2,1) _ oy

(2,0,0) -2 (4,2,2) 1651 7] A
(2,2,0) -9 (4,4,0) _ 102 ol o
(2,2,1) —Z (4,4,1) _ 14825 5 | _3
(2,2,2) —2 (4,4,2) —15% 4| -9
(4,0,0) — 1025 (4,4,3) _ 3155

(4,2,0) e (4,4,4) _ 17990

Table 4.5: OPE coeflicients obtained from the five-point function at one loop. The coefficients
p are defined by pj, 7,6 = coo, co@bcf}lh@.

Therefore, we can rewrite the previous limit as

L

k(2L — k)! .

W) (u,v Nkz “ i logF (u) Ligz 1 (1 — ) (4.53)
=0

For the specific case L = 1, we get

®W (u,v) ~ 2Liy (1 — v) — log (u) log (1 — v) (4.54)

This expression is valid to leading order as the first argument approaches zero. Fortunately,
the functions ® (z,y) we will have to evaluate can all be brought to a form in which this

limit is valid using the identities

oW (z,y) = oW (y,z) (4.55)
1 1
(1) _te (1 Y
o (z,y) =~ (H> (4.56)

Now, using these results and the conformal block expression, we can determine some one-loop

OPE coefficients and anomalous dimensions. These results are displayed in Table 4.5.

(

Note that the anomalous dimensions ~y J) have already been determined from the four-point
function. Comparing the results, we can see that they are consistent. The OPE coefficients

are in agreement with the closed expression found in [2].
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4.5 Four 20’ and one Lagrangian

We now move on to the correlator of four 20’ operators and one Lagrangian

G = (O (z1,91) O (22, y2) O (23,93) O (4, y4) L (25)) (4.57)

This correlator is useful because, using the Lagrangian insertion procedure, one can show that:

Gy = (0102030,) = ZngGﬁf) (4.58)
=0
where

G0 = / dlzs - dz, g (O1020304L5 - Lot g)

n

|B0rn (459)
and O; = O (x4,v;), L£L; = L (z;). The subscript “Born” indicates that we are evaluating the
correlator at the lowest nontrivial loop order. The integrands of the correlator G4.; are known
for arbitrary positions z; [14], and we want to calculate the corresponding integrals in the
null-square limit. We will also expand the correlator in conformal blocks. The conformal

blocks for this correlator are similar to the five-point function:

1 23 2
G4;1 = 5 ( 5 132 > Zpklekﬂ (uz> (460)

(23) (23,)* \ats23s ) (=

where the conformal blocks are again given by 2.98, but in this case Ay = 4.

4.5.1 Tree level

We now move on to calculating the loop contributions to the correlation function. We start
with the tree level, which corresponds to the Born-level approximation in this case. Therefore,
the tree-level contribution can be read off directly from the one-loop integrand of the four-point

function using (4.58):

—2(N2 -1 1
7 (472) Ti5To5235T 5

Comparing this with the conformal block expansion, we obtain the CFT data in table 4.6.
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(J1, Jo, ) pS?)JZZ J1, Ja, £) pf]()l)J2E
(0,0,0) 0 (2,2,2) | 18a
(2,0,0) 0 (4,0,0) 0
(2,2,0) 0 (4,2,2) 5a
(2,2,1) 0 (4,4,4) 250a

73

Table 4.6: OPE coefficients obtained from the correlator Gy4,1 at tree level. The coefficients
p are defined by pj, 1,0 = coos, coo JQCf}l JoL- The data is determined up to a normalization

constant a.

(1, T2 0) | P | (1 T2 0) | DY)
(0,0,0) 0 (2,2,2) 90a
(2,0,0) 0 (4,0,0) 0
(2,2,0) 0 (4,2,2) | B4
(2,2,1) 0 (4,4,4) | 3828

8

925
216

Table 4.7: CFT data obtained from the correlator G4.;; at one loop. The coefficients p are
defined by pj, 1,¢r = coo.,c00, c?]1 Joc- The data is determined up to a normalization constant

a.

4.5.2 One loop

At one loop, we only need to evaluate four-point integrals, which we already calculated previ-

ously. Evaluating the correlator to leading order in the cross-ratios u; and uzand comparing

with the conformal block expansion, we can extract the CFT data.

Because these coefficients are different from those in the five-point function, we unable to fix

the constant a by comparison.






Chapter 5

Conclusion and outlook

In this thesis, we endeavoured to calculate correlation functions in N' = 4 SYM theory, in

order to verify the duality with Wilson loops.

We started from the integrands of some of the loop contributions to these functions. We
described the method of asymptotic expansions, which can be used to evaluate those integrals
in the OPE limit. The integrals we encountered can be calculated exactly, however, and so

this method will be more useful for higher loop order, or when we consider more points.

By comparing the correlation functions with their conformal block expansions, we extracted
the loop contributions to the OPE coefficients and anomalous dimensions from the four-point
function of 20’ operators up to two loops, from the five-point function up to one loop, and

from the correlator of four 20’ and one Lagrangian up to one loop.

To verify the duality (1.7) using this data, we would also need to calculate the relevant Wilson
loops, so this work is ongoing. Furthermore, as the procedure used here is easily extended
to higher loop orders - as well as different correlators - interesting continuations of this work
would be calculating CFT data for the six-point function of half-BPS operators for higher
loops, and comparing the data with the dual Wilson loops.

Another possible avenue of research would be to study the properties of the loop contributions

to the five- and six-point functions of operators of the form

O =Yy, -+ Yy tr (@1 - 9lk) (5.1)
For four points and large k, it was found [19] that imposing that the correlator have certain

properties at all loops, it is possible to determine it uniquely. It would be interesting to

examine higher-point functions to try to find out if this is possible for more than four points.
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