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Abstract

We calculate loop contributions to correlation functions involving 20' operators in N = 4

Supersymmetric Yang-Mills Theory, which are related to Wilson loops via a duality.

We begin by explaining the basics of conformal symmetry. We show why it's useful and

interesting to study conformally invariant theories, and N = 4 Supersymmetric Yang-Mills

Theory in speci�c.

We derive the constraints imposed by conformal symmetry on 2- and 3-point correlation func-

tions, and show that these are fully determined in terms of the dimensions ∆i of the operators

and OPE coe�cients cijk of the three-point functions. We also introduce the Operator Product

Expansion and show that higher-point functions introduce no new parameters.

We then present the method of asymptotic expansions, which one can use to calculate integrals

in the OPE limit. We show how this procedure can be used to express an integral depending

on n external points as a sum over asymptotic regions, so that we only need to calculate

integrals depending on at most n− 1 external points.

We explain how integrals with scalar products involving integration points in the denominator

of the integrand can be expressed in terms of integrals without such scalar products, and

how to reduce the set of integrals to evaluate to a smaller set of �master integrals� using

integration-by-parts identities.

We introduce 20' operators in N = 4 SYM and calculate their four-point function up to two

loops, their �ve-point function up to one loop, and the correlator of four 20' and a Lagrangian

operator up to one loop. By comparing with the conformal block expansion, we extract OPE

coe�cients and anomalous dimensions of twist-two operators.

We �nish with a brief discussion of possible continuations of this work.
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Resumo

Calculamos funções de correlação envolvendo operadores 20' na teoria N = 4 Yang-Mills

supersimétrica, que podem ser relacionadas com Wilson loops por via de uma dualidade.

Começamos por explicar algumas noções básicas sobre simetria conforme. Mostramos as razões

pelas quais é útil e interessante estudar teorias com invariância conforme, e a teoria N = 4

Yang-Mills Supersimétrica em especí�co.

Deduzimos as restrições impostas pela simetria conforme nas funções de correlação de dois

e três pontos, e mostramos que estas funções são completamente determinadas em termos

das dimensões ∆i dos operadores e dos coe�cientes de OPE cijk das funções de três pontos.

Também introduzimos a Operator Product Expansion e mostramos que funções de correlação

de mais pontos não introducem dependências em mais parâmetros.

Apresentamos depois o método de expansões assintóticas, que pode ser utilizado para calcu-

lar integrais no limite de OPE. Mostramos como este procedimento pode ser utilizado para

exprimir um integral que depende de n pontos externos como uma soma sobre regiões assin-

tóticas, de tal modo que apenas precisamos de calcular integrais que dependem de, no máximo,

n− 1 pontos externos.

Explicamos como integrais com produtos escalares que envolvam pontos de integração no

numerador do integrando podem ser expressos em termos de integrais sem produtos escalares,

e como é possível reduzir o conjunto de integrais que temos de avaliar a um conjunto mais

pequeno de �integrais mestre� usando identidades de integração por partes.

Introduzimos operadores 20' em N = 4 SYM e calculamos a sua função de 4 pontos até

ordem 2 no acoplamento, a sua função de 5 pontos até ordem 1 no acoplamento, e a função

de correlação de quatro 20' e um operador Lagrangeano até ordem 1 no acoplamento. Por

comparação com a expansão em blocos conformes, conseguimos extrair coe�cientes de OPE e

dimensões anómalas de operadores com twist 2.

Terminamos com uma breve discussão de possíveis continuações deste trabalho.
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Chapter 1

Introduction

1.1 Conformal �eld theory

Conformal Field theory (CFT) has been a subject of great interest in the past decades, for

many reasons. One of these reasons relates to the Renormalization Group (RG). In this

framework, we begin by assuming that a theory has a momentum cuto� Λ, such that the

generating functional Z is given by

Z =

ˆ
[Dϕ]Λ e

´
L+Jϕ (1.1)

where

[Dϕ]Λ ≡
∏
|k|<Λ

dϕk (1.2)

and ϕk is the Fourier component of the �eld ϕ. We can then integrate over a shell in momentum

space, expressing the generating functional as an integral up to a new cuto� bΛ, where 0 <

b < 1:

Z =

ˆ
[Dϕ]bΛ e

´
Le�+Jϕ (1.3)

The new Lagrangian Le� will have di�erent parameters, and so it will correspond to a di�erent

point in parameter space as L. Integrating out this momentum shell is called a step of the

RG. If we take successive steps and take in�nitely many steps, while taking the step length to

be in�nitesimally small (b ≈ 1) we get a continuous ��ow� in parameter space, which we call

RG �ow. This �ow continues until the theory reaches a point where taking a step will leave

it in the same point. These are called �xed points of RG �ow. Conformally invariant theories

are interesting because they are �xed points.
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CHAPTER 1. INTRODUCTION 17

Another reason we want to study conformal theories is that they have a large symmetry group,

which imposes constraints on correlation functions. This naturally makes the theory simpler

to study, and makes it so we can obtain non-perturbative results, while in general Quantum

Field Theory (QFT) these are hard to come by.

A third reason is what's known as the AdS-CFT correspondence. This is a conjectured duality

between d-dimensional gravity theories in anti-de Sitter (AdS) space and (d− 1)-dimensional

CFTs.

1.2 N = 4 supersymmetric Yang-Mills theory

We will focus on the particular case of N = 4 supersymmetric Yang-Mills theory (SYM). This

is a gauge theory with gauge group SU (Nc). It has 6 real scalar �elds

ΦI , I = 1, . . . , 6, (1.4)

4 fermionic �elds

ΨA, A = 1, . . . , 4, (1.5)

and one gauge �eld Aµ, where µ is a spacetime index. As the name suggests, this theory also

exhibits supersymmetry, having 4 sets of supercharges. As is typical for a gauge �eld theory,

all �elds are Nc ×Nc matrices:

ΦI = Φa
I ta

ΨA = Ψa
A ta

Aµ = Aa
µ ta

where ta are the generators of the gauge group in the adjoint representation and the implicit

sum in a runs over the generators. The N = 4 SYM Lagrangian is

L =
1

g2YM

Tr

[
1

2
[Dµ, Dν ]

2 + (DµΦi)
2 − 1

2
[Φi,Φj ]

2 + iΨ̄
(
ΓµDµΨ+ Γi [Φi,Ψ]

)
+

+ ∂µc̄ Dµc+ ζ (∂µAµ)
2

]
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where Dµ is the covariant derivative, which is de�ned by

DµΦ = ∂µΦ− i [Aµ,Φ] , (1.6)

Γµ are matrices, c and c̄ are the Faddeev-Popov ghosts, and ζ is the parameter which corre-

sponds to the choice of gauge. This theory is interesting for a number of reasons. First, as

mentioned before, it is conformally invariant, and therefore a �xed point of RG �ow. Secondly,

it is supersymmetric, which means there will be more restrictions to the observables. This

makes the theory easier to study, and may even lead to nonperturbative results. Thirdly, it

is an integrable theory in the planar limit Nc → ∞, meaning it has an in�nite number of

conserved charges. This restricts the observables even more, and is another possible way of

obtaining nonperturbative results. This theory is also a practical example of the AdS-CFT

duality, since it is dual to a type IIB superstring theory in S5 × AdS5 space. In N = 4

SYM in particular, there are duality relations between Wilson loops, correlation functions,

and scattering amplitudes.

The focus of our work will be related to the duality between correlation functions and null-

polygon Wilson loops, which was �rst proposed in [1]. This duality can be stated as

lim
x2
i,i+1→0

Gn/G
(0)
n ∝W [Cn] (1.7)

where Gn is the n-point function of local gauge-invariant operators

Gn = ⟨O (x1) · · · O (xn)⟩ , (1.8)

W [Cn] is the Wilson loop

W [Cn] =
1

N2
c − 1

〈
0

∣∣∣∣tradjP {exp(ig ˛
Cn

dx ·A (x)

)}∣∣∣∣ 0〉 , (1.9)

and Cn is the piecewise-null polygon de�ned by the points xi, i = 1, . . . , n. A speci�c case

of the duality (1.7) is the duality between a six-point function of scalar operators and the

null-hexagon Wilson loop, i.e. n = 6. By taking OPEs as depicted in �gure 1.1 (the so-called

snow�ake con�guration), this duality can be understood as relating the null-hexagon Wilson

loop to the three-point function of spinning operators. This particular duality was made exact

in [2]. In this paper, the authors veri�ed the duality up to one loop. One of the goals of our

work will be to verify this duality at higher orders in the coupling.

In N = 4 SYM, correlation functions and Wilson loops can both be calculated using integra-

bility. Single-trace scalar operators like the ones we will be studying are cyclical, and so can
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Figure 1.1: OPE decomposition of the six-point function of scalars ϕ in the snow�ake con�gu-
ration. The operators Oi are those appearing in the ϕ× ϕ OPE and have arbitrary spin. The
dashed outer lines represent a null separation between points.

be represented as circles. The three-point function of these operators in the planar limit has

the topology of a pair of pants (see Figure 1.2). By cutting the pair of pants along the dotted

line, it is divided into two hexagons, which make up the front and back of the pants (see Figure

1.2). The hexagons can be computed exactly using integrability [3]. Higher-point functions

can also be cut into pair of pants, and therefore the n-point functions of these operators can

be calculated with integrability. We can also divide a null-polygon Wilson loop into pentagons

(see Figure 1.3). These pentagons can also be calculated using integrability [4].

1.3 Thesis outline

This thesis is structured as follows: In chapter 2 we review some properties of conformal �eld

theories. We will de�ne conformal symmetry and determine the generators of the conformal

group. We will examine the restrictions imposed by conformal symmetry on correlation func-

tions of local operators, and introduce some tools which will be useful later, like the Operator

Product Expansion and decomposition in conformal blocks.

In chapter 3, we will introduce some techniques to calculate the integrals which appear in

the correlation functions we will be studying. We will detail the procedure of asymptotic

expansions of integrals. We will also explain how to reduce integrals with spin to scalar

integrals, and how to �nd integration-by-parts identities which reduce the number of scalar

integrals to be evaluated to a smaller set of master integrals. We will �nish the chapter by

calculating some example integrals.

In chapter 4 we will calculate some four- and �ve-point correlation functions of local operators
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in N = 4 SYM. For the four-point function, we will consider the OPE limit x212 → 0, and for

the �ve point functions we will take the double OPE limit x212, x
2
34 → 0. By comparing the

correlator with the conformal block expansion, we will extract the relevant CFT data, and

compare the results to the literature.

Figure 1.2: The three-point function of scalar single-trace operators in the planar limit. The
dotted lines divide the pair of pants into the green and red hexagons.

Figure 1.3: The null hexagon Wilson loop can divided into three squares, and any two adjacent
squares form a pentagon.



Chapter 2

Conformal Field Theory

Quantum Field Theory is best understood as an e�ective long-distance limit of some other

microscopic theory, which may be arbitrarily complex. This microscopic theory is not expected

to have long-distance correlations; these should decay exponentially as:

⟨ϕ(0)ϕ(x)⟩ ∼ e
−x

ξ (2.1)

and so a long-range QFT description is ruled out. However, if the theory is a �xed point of

RG �ow, then the correlation length ξ diverges, ξ → ∞, and so correlations extend out to

ranges much larger than the interatomic spacing. At such a �xed point, the theory must be

invariant by a scale transformation:

xµ → λxµ (2.2)

The corresponding transformation of the metric is

gµν(x) → λ2gµν(x) (2.3)

This type of transformation - also known as a dilatation - is a special type of what is known as

a conformal transformation. A transformation is said to be conformal if the metric transforms

like

gµν → Ω2(x)gµν (2.4)

In this way, a conformal transformation is a kind of �local dilatation�, with the factor Ω

being dependent of x. The change in the metric corresponding to this transformation is

21



CHAPTER 2. CONFORMAL FIELD THEORY 22

δgµν =
(
Ω2(x)− 1

)
gµν . De�ning the stress-energy tensor as the response to a metric change,

we get:

δS ∝
ˆ
dDxTµν(x)δg

µν(x) = 2

ˆ
dDx

(
Ω2(x)− 1

)
Tµ
µ (x)

Since at a �xed point we must have δS = 0 for any Ω(x), we conclude that in a conformally

invariant theory we must have Tµ
µ = 0. Now, if we consider a general in�nitesimal change in

coordinates

xµ → xµ + ϵµ(x), (2.5)

we might wonder which choices of ϵ lead to a conformal transformation. For a general coordi-

nate transformation x→ x̃, the metric transforms as

gµν → ∂x̃α

∂xµ
∂x̃β

∂xν
gαβ (2.6)

Inserting equation 2.6 into equation 2.4 and assuming �at spacetime with a Euclidean signature

(gµν = δµν), we obtain the condition

∂x̃α

∂xµ
∂x̃β

∂xν
δαβ = Ω2(x)δµν (2.7)

For an in�nitesimal transformation x̃µ = xµ + ϵµ(x), we have

∂x̃α

∂xµ
= δαµ + ∂µϵ

α(x) (2.8)

and so equation 2.7 becomes

(
δαµ + ∂µϵ

α(x)
) (
δβν + ∂νϵ

β(x)
)
δαβ = Ω2(x)δµν (2.9)

⇐⇒ δµν + ∂µϵν(x) + ∂νϵµ(x) +O
(
ϵ2
)
= Ω2(x)δµν (2.10)

Neglecting quadratic terms in ϵ, this condition is equivalent to

∂µϵν(x) + ∂νϵµ(x) =
(
Ω2(x)− 1

)
δµν ≡ c(x)δµν (2.11)
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These are the Killing equations for conformal symmetry. Their solutions tell us which vectors

ϵ result in conformal transformations for a Euclidean metric. We will now �nd these solutions.

First, we take the trace of both sides:

2∂ · ϵ = dc(x) (2.12)

Substituting equation 2.12 into equation 2.11, we obtain

∂µϵν + ∂νϵµ =
2

d
(∂ · ϵ) δµν (2.13)

Next we take the divergence of this equation in both indices:

2

(
1− 1

d

)
∂2 (∂ · ϵ) = 0 (2.14)

This tells us that either d = 1 or ∂2 (∂ · ϵ) = 0. Assume d ̸= 1. We apply ∂ν∂ρ to equation

2.13:

∂ρ∂µ (∂ · ϵ) + ∂2∂ρϵµ =
2

d
∂ρ∂µ (∂ · ϵ) (2.15)

Now we symmetrize the equation in ρ and µ:

∂ρ∂µ (∂ · ϵ) + 1

2
∂2 (∂ρϵµ + ∂µϵρ) =

2

d
∂ρ∂µ (∂ · ϵ) (2.16)

Once again, using equation 2.13, we get

∂ρ∂µ (∂ · ϵ) + 1

d
∂2 (∂ · ϵ) δµν =

2

d
∂ρ∂µ (∂ · ϵ) (2.17)

Using ∂2 (∂ · ϵ) = 0, we obtain:

(
1− 2

d

)
∂ρ∂µ (∂ · ϵ) = 0 (2.18)

This tells us that either d = 2 or ∂ρ∂µ (∂ · ϵ) = 0. Assume now that d ̸= 2. Now we apply

∂γ∂ρ to 2.13 and use ∂ρ∂µ (∂ · ϵ) = 0, yielding:

∂γ∂ρ∂µϵν + ∂γ∂ρ∂νϵµ = 0 (2.19)
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By taking permutations of ρ, ν, µ, we get three equations, which have the solution

∂γ∂ρ∂µϵν = 0 (2.20)

This means that ϵ is at most quadratic in x. The most general quadratic expression is given

by

ϵµ (x) = aµ1 + c1x
µ +mµ

νx
ν + (a2 · x)xµ + nµνρx

νxρ + aµ3x
2, (2.21)

where c1 is a constant scalar, aµi are constant vectors, and mµ
ν and nµνρ are constant higher-

order tensors. We can now use previous equations to place restrictions on these constants. We

can start by taking a derivative:

∂νϵµ = c1δ
µν +mµν + (a2 · x) δµν + aν2x

µ + 2nµνρ xρ + 2aµ3x
ν (2.22)

Symmetrizing both sides:

∂νϵµ + ∂µϵν =

= 2 (c1 + a2 · x) δµν + (mµν +mνµ) + (aν2 + 2aν3)x
µ + (aµ2 + 2aµ3 )x

ν + 2
(
nµνρ + nνµρ

)
xρ =

= c(x)δµν (2.23)

This tells us that

mµν +mνµ = 0 (2.24)

aµ2 + 2aµ3 = 0 (2.25)

aν2 + 2aν3 = 0 (2.26)

nµνρ + nνµρ = 0 (2.27)

We conclude that mµν and nµνρ are antisymmetric in µ and ν, and aµ2 = −2aµ3 . However, since

nµνρ is also symmetric in ν and ρ by construction, we have:

nµνρ = −nνµρ = −nνρµ = nρνµ = nρµν = −nµρν = −nµνρ (2.28)

Therefore we conclude that nµνρ = 0. Inserting these conditions into equation 2.21 and rela-

belling a1 → a, a3 → b, c1 → −λ, we get
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ϵµ (x) = aµ +mµ
νx

ν − λxµ + bµx2 − 2 (b · x)xµ (2.29)

This is the most general form of ϵµ for a conformal transformation. We can determine the

generators of this symmetry group by considering the e�ect of this in�nitesimal transformation

on a function f(x), neglecting quadratic and higher order terms in ϵ:

f (x+ ϵ (x)) = f (x) +
[
aµ∂µ +mµνxν∂µ − λxµ∂µ + bµ

(
x2∂µ − 2xµ (x · ∂)

)]
f(x) (2.30)

Remembering that mµν is antisymmetric, we can write equation 2.30 as

f (x+ ϵ (x)) = f (x) +

[
aµPµ +

1

2
mµνMµν + λD + bµKµ

]
f(x), (2.31)

where

Pµ = ∂µ Mµν = xµ∂ν − xν∂µ

D = −xµ∂µ Kµ = x2∂µ − 2xµ (x · ∂)

are the generators of the conformal group, and aµ, mµν , λ and bµ are the corresponding

parameters. These generators obey the commutation relations

[D,Pµ] = Pµ [D,Kµ] = −Kµ [Kµ, Pν ] = 2δµνD − 2Mµν (2.32)

[Mµν , Pρ] = δνρPµ − δµρPν [Mµν ,Kρ] = δνρKµ − δµρKν (2.33)

[Mµν ,Mργ ] = δνρMµγ − δµρMνγ − δνγMµρ + δµγMνρ (2.34)

Note that the P and K operators obey the same algebra as the ordinary ladder operators

a and a† in single-particle quantum mechanics, with D being the equivalent of the number

operator a†a. Consider an operator O such that

DO = ∆O (2.35)

where ∆ is a constant. If we act with Kµ on this operator:

DKµO = ([D,Kµ] +KµD)O = (∆− 1)KµO (2.36)
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Figure 2.1: Foliation of spacetime through surfaces of constant time.

Because, as will be shown below, we must have ∆ ≥ 0, there must be operators O such that

KµO = 0. These are called conformal primaries.

2.1 Radial quantization

In general QFTs we can de�ne a spacetime direction as time, say x0 = t, and identify the

component of the momentum operator associated with that direction as the Hamiltonian,

P0 = H. Then, given an operator O(t0,x) de�ned on the spacetime surface of time t0, we can

determine the form of this operator for arbitrary t, via:

O(t,x) = e(t−t0)HO(t0,x)e
−(t−t0)H (2.37)

This amounts to foliating spacetime through surfaces of constant time (Figure 2.1).

Because conformal theories also have translation invariance, we can also quantize in this way.

However, there is a more convenient method we can use. Instead of a component of the

momentum operator, we can use the dilatation operator D.

First, we choose a point of spacetime as the origin and de�ne operators and commutation

relations at this point. Then, we de�ne the operator at an arbitrary radius as:

O(r) = erDO(0)e−rD (2.38)

This amounts to foliating spacetime through surfaces of constant radius (Figure 2.2).
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Figure 2.2: Foliation of spacetime through surfaces of constant radius.

In this way an operator is completely determined by its commutation relations with other

operators at the origin. We will be mainly interested in so-called primary operators, which

are de�ned by the commutation relations

[D,O(0)] = ∆O(0), [Kµ,O(0)] = 0, [Mµν ,Oa(0)] = (Sµν)
a
b O

b(0) (2.39)

where Sµν are the generators of the rotation group in the relevant representation and the

constant ∆ de�ned by these relations is called the dimension of the operator.

2.2 Restrictions to correlation functions

Correlation functions of local operators are objects of fundamental importance in QFT. They

can be interpreted as probabilities of certain interactions occuring, and can also be used to

determine scattering amplitudes, which can be measured in particle colliders. It is therefore

natural to study these functions. In CFTs, the additional symmetries impose restrictions on

correlation functions, which makes them considerably easier to determine. Let us examine

some of these restrictions.

2.2.1 Two-point functions

Consider the two-point function of scalar primary operators
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⟨O1(x1)O2(x2)⟩ (2.40)

If the correlator is invariant under a transformation with generator L and parameter θ to both

operators:

⟨O1(x1)O2(x2)⟩ =
〈
eLθO1(x1)e

−LθeLθO2(x2)e
−Lθ
〉

(2.41)

In the limit θ ≪ 1 we can expand the exponentials:

⟨O1(x1)O2(x2)⟩ = ⟨(1 + Lθ)O1(x1) (1− Lθ) (1 + Lθ)O2(x2) (1− Lθ)⟩ + O
(
θ2
)

Because this equality must hold for arbitrary (but small) θ, we must have

⟨[L,O1(x1)]O2(x2)⟩+ ⟨O1(x1) [L,O2(x2)]⟩ = 0 (2.42)

In particular, for dilatation symmetry, this means that

(−x1 · ∂1 − x2 · ∂2 +∆1 +∆2) ⟨O1(x1)O2(x2)⟩ = 0 (2.43)

Let us look at the restrictions imposed by conformal symmetry on the two-point function

(2.40). First of all, it is clear by Poincaré invariance that it must be a function of x212:

⟨O1(x1)O2(x2)⟩ = f(x212) (2.44)

Assuming this function f can be expanded in powers of x212:

f(x212) =
∑
α

cα
(
x212
)α

(2.45)

and inserting this into equation 2.43 we get

∑
α

cα (2α+∆1 +∆2)
(
x212
)α

= 0 (2.46)

Therefore we must have

cα = 0 ∨ α = −∆1 +∆2

2
(2.47)
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We conclude that the two-point function is of the form

⟨O1(x1)O2(x2)⟩ =
C(

x212
)∆1+∆2

2

(2.48)

For the special conformal generator Kµ we have, if O is a scalar:

[Kµ,O (x)] =
[
Kµ, e

x·PO (0) e−x·P ] = ex·P
[
ex·PKµe

−x·P ,O (0)
]
e−x·P = (Kµ + 2∆xµ)O (x)

(2.49)

Therefore the function f must satisfy:

(
2x1µ (x1 · ∂1)− x21∂1µ + 2x2µ (x2 · ∂2)− x22∂2µ + 2∆1x1µ + 2∆2x2µ

)
f
(
x212
)
= 0 (2.50)

Using the form (2.48) for f we get the condition

∆1 = ∆2 ∨ C = 0 (2.51)

Therefore, we conclude that conformal symmetry implies that the two-point function is given

by:

⟨O1(x1)O2(x2)⟩ =
Cδ∆1∆2(
x212
)∆1

(2.52)

The constant C can be absorbed in the de�nition of the operators, so that the two-point

function is completely determined by the symmetry:

⟨O1(x1)O2(x2)⟩ =
δ∆1∆2(
x212
)∆1

(2.53)

This result implies that ∆1 ≥ 0. Otherwise, correlation functions would grow in�nitely with

distance, which is clearly unphysical. For operators with spin, the correlator is a bit more

complicated, but still quite simple. The form of the two-point function of symmetric and

traceless operators with spin J and dimension ∆ is:

〈
Oµ1···µJ

1 (x1)Oν1···νJ
2 (x2)

〉
=
Iµ1ν1 (x12) · · · IµJνJ (x12)(

x212
)∆ + permutations− traces, (2.54)
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where

Iµν (x) = δµν − 2xµxν

x2
(2.55)

The correlator is zero if the operators have di�erent spins or di�erent dimensions. The per-

mutations make the correlator symmetric in the µi and in the νi, while subtracting the traces

makes it traceless. A derivation of this result can be found in [5].

2.2.2 Three-point functions

In the same way as before, we can try to �nd di�erential equations for the three-point function

of scalar primaries. By Poincaré invariance, the three-point function must only depend on x2ij ,

i, j = 1, 2, 3:

⟨O1(x1)O2(x2)O3(x3)⟩ = f(x212, x
2
13, x

2
23) (2.56)

If the three-point function has a symmetry with generator L, then we have

⟨[L,O1]O2O3⟩+ ⟨O1 [L,O2]O3⟩+ ⟨O1O2 [L,O3]⟩ = 0 (2.57)

where we omitted the positions of the local operators, Oi ≡ Oi (xi). Using this condition for

L = D and L = Kµ, together with the ansatz

f(x212, x
2
13, x

2
23) =

∑
α1,α2,α3

Cα1α2α3

(
x212
)α1
(
x213
)α2
(
x223
)α3 (2.58)

for the three-point function, we conclude that f must be of the form

f(x212, x
2
13, x

2
23) =

C(
x212
)∆1+∆2−∆3

2
(
x213
)∆1+∆3−∆2

2
(
x223
)∆2+∆3−∆1

2

(2.59)

More generally, the correlator of three operators with arbitrary spin is [6]

⟨Ok1 (x1, z1) . . .Ok3 (x3, z3)⟩ =
∑
li

C l1l2l3
J1J2J3

V J1−l2−l3
1,23 V J2−l1−l3

2,31 V J3−l1−l2
3,12 H l3

12H
l2
13H

l1
23(

x212
)h1+h2−h3

2
(
x213
)h1+h3−h2

2
(
x223
)h2+h3−h1

2

, (2.60)

where zi are null polarization vectors (z2i = 0), hi = ∆k + Jk, and
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Vi,jk =
(zi · xij)x2ik − (zi · xik)x2ij

x2jk
Hij = (zi · xij) (zj · xij)−

x2ij (zi · zj)
2

. (2.61)

The sum in li is constrained by the fact that negative powers of zi cannot appear in the

correlator. This means that, for example, l2 + l3 ≤ J1.

2.2.3 Higher points and cross-ratios

We have seen that conformal correlators of two and three points are �xed up to undetermined

constants. At four and more points, however, there are conformally-invariant variables on

which the correlator can depend, which we call conformal cross-ratios. We might wonder how

many independent cross-ratios there are for, say, four points. A simple way to determine this

is by using conformal transformations to a special frame of reference, where the number of

degrees of freedom of our system will become clearer. The steps to get to this frame are as

follows:

� Start with four points in arbitrary positions xi, i = 1, 2, 3, 4.

� Use special conformal transformations to send x4 → ∞.

� Use translations to move x1 to (0, . . . , 0).

� Use rotations around the origin and dilatations to move x3 to (1, 0, . . . , 0).

� Use the rotations that leave x3 invariant to move x2 to (x, y, 0, . . . , 0).

Now, if a function of xi is conformally invariant, as conformal correlators must be, then it can

only depend on x and y. Therefore, we have determined that the four-point function depends

on only two variables. The usual choice for these variables is

u =
x212x

2
34

x213x
2
24

, v =
x223x

2
14

x213x
2
24

(2.62)

Now that we know the four-point case, we may ask how many cross-ratios there are for �ve

or more points. We can follow the same procedure as for four points, and then add another

point at an arbitrary position x5. We have already exploited the translation, dilatation, and

special conformal symmetries, as well as part of the rotation symmetry. We can, however, still

exploit the part of the rotation group which is orthogonal to the plane we �xed before. We

can use these symmetries to �x all but 3 of the coordinates of point x5. Therefore, we will

have 5 independent cross-ratios for 5 points. We will choose them to be
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u1 =
x212x

2
35

x213x
2
25

, u2 =
x223x

2
14

x224x
2
13

, u3 =
x234x

2
25

x235x
2
24

, u4 =
x245x

2
13

x214x
2
35

, u5 =
x215x

2
24

x225x
2
14

(2.63)

Similarly, if we add another point x6, we can use the remaining rotation symmetry to �x all

but 4 of its components. Adding a point x7, we can �x all but 5 of its components, and so on.

This will continue until we add point xd+2. At this stage, we will already have used the full

rotation symmetry, and therefore we will be adding d degrees of freedom for all further points

we add. The number of independent cross-ratios for n points will therefore be given by


n(n−3)

2 if n < d+ 3

nd− (d+2)(d+1)
2 if n ≥ d+ 3

(2.64)

2.3 State-operator correspondence

In any quantum �eld theory, given a local operator O(x), we can de�ne a state on the corre-

sponding Hilbert space by:

|O(x)⟩ = O(x)|0⟩ (2.65)

In general, the opposite is not true. That is, we cannot uniquely de�ne a local operator from

a state. However, in a CFT, there is a unique correspondence between states and operators.

We will give a proof adapted from [5]. Say we have an eigenstate of the dilatation operator

|∆⟩:

D|∆⟩ = ∆|∆⟩ (2.66)

This state is de�ned on a Hilbert space a radius r from a point. We can write it as a path

integral

|∆⟩ =
ˆ
Dϕb|ϕb⟩⟨ϕb|∆⟩, (2.67)

where ϕb is a scalar �eld de�ned only on the surface where the state |∆⟩ is de�ned, and

⟨ϕb|∆⟩ =
ˆ
ϕin(r,n)=ϕb(n)

Dϕin(r
′,n)O∆(x)e

−S[ϕin] (2.68)
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Figure 2.3: Splitting of the path integral by introducing a �eld ϕin inside the sphere of radius
r. This �eld is integrated over, with boundary conditions ϕin (r,n) = ϕb (n). The �eld ϕ
outside the sphere is also integrated over, with boundary conditions ϕ (r,n) = ϕb (n). Finally,
the boundary �eld ϕb is also integrated over.

where ϕin is de�ned only inside the ball of radius r. This procedure is pictured in �gure 2.3.

Now, we want to de�ne an operator O∆(x) out of the state |∆⟩, where x is a point inside

the ball. To do so, we need to de�ne correlation functions with this operator. Correlation

functions are de�ned by path integrals. For example, for the two-point function of ϕ:

⟨ϕ(x1)ϕ(x2)⟩ =
ˆ
Dϕϕ(x1)ϕ(x2)e

−S[ϕ] (2.69)

where the �eld ϕ is de�ned on the entire space. In order to calculate, for example, the

correlation funcion

⟨ϕ(x1)ϕ(x2)O∆(x)⟩ (2.70)

we can use the auxiliary �elds ϕin and ϕb to calculate the path integral:

⟨ϕ(x1)ϕ(x2)O∆(x)⟩ =
ˆ
Dϕϕ(x1)ϕ(x2)O∆(x)e

−S[ϕ] =

=

ˆ
Dϕb

ˆ
ϕ|∂B=ϕb

Dϕ

ˆ
ϕin|∂B=ϕb

Dϕinϕ(x1)ϕ(x2)O∆(x)e
−S[ϕ] =

=

ˆ
Dϕb⟨ϕb|∆⟩

ˆ
ϕ|∂B=ϕb

Dϕϕ(x1)ϕ(x2)e
−S[ϕ] (2.71)

In the same way, for any correlation function involving O∆:
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⟨O1 (x1) . . .On (xn)O∆ (x)⟩ =
ˆ  ∏

i=1,...,n,∆

DOi

 ∏
i=1,...,n,∆

Oi

 e−S[Oi] =

=

ˆ
Dϕb⟨ϕb|∆⟩

ˆ
ϕ|∂B=ϕb

 ∏
i=1,...,n

DOi

 ∏
i=1,...,n

Oi

 e−S[Oi] (2.72)

In this way, we can express any correlator involving O∆ in terms of the state |∆⟩. Therefore,
we have de�ned correlation functions involving this operator. This is essentially the same

thing as having de�ned the operator itself, since we don't �measure� an operator by itself, we

simply understand local operators through their correlation functions.

2.4 Operator Product Expansion

Another useful property of conformal theories is the operator product expansion (OPE). This

property consists of expressing the product of two operators as a sum over conformal primaries:

O1(x1)O2(x2) =
∑

k primary

c12k(
x212
)∆1+∆2−τk

2

fi1···iJk (x12, ∂2)O
i1···iJk
k (x2) (2.73)

where f is a di�erential operator and Jk is the spin of the primary operator Ok. To prove

this, we use the state-operator correspondence. First, we foliate the space around x2. Then

consider a ball centered on x2 and containing x1. The operators will generate a state |ψ12⟩
on the surface of the ball. This state can be expressed as a linear combination of dilatation

eigenstates:

|ψ12⟩ =
∑
k

c12k|∆k⟩ (2.74)

Because of the state-operator correspondence, each state |∆k⟩ is equivalent to an operator

inserted at x2. Therefore, we have

O1(x1)O2(x2) =
∑
k

c12k(
x212
)∆1+∆2−τk

2

Ok(x2) (2.75)

The operators Ok are either conformal primaries or descendants, meaning we can turn this

sum into a sum over primaries in the following way:
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O1(x1)O2(x2) =
∑

k primary

c12k(
x212
)∆1+∆2−τk

2

fi1···iJk (x1, x2, ∂2)O
i1···iJk
k (x2) (2.76)

where τk = ∆k−Jk is the twist of the primary operatorOk. Additionally, because of translation

invariance, the only scale allowed in the function f is x12. This proves equation 2.73. So far,

we have not determined the di�erential operators f(x12, ∂2) acting on the exchanged operator

in the OPE, apart from the scaling in x12. However, we know the form of the three-point

function in a CFT (equation 2.59), and the OPE must be consistent with this form. Consider

the three-point function of identical scalars:

⟨ϕ(x1)ϕ(x2)ϕ(x3)⟩ (2.77)

Using the OPE on ϕ(x1)ϕ(x2), this is equal to:

∑
k primary

cϕϕk(
x212
) 2∆ϕ−∆k+Jk

2

fi1···iJk (x12, ∂2)⟨O
i1···iJk
k (x2)ϕ(x3)⟩ =

cϕϕϕ(
x212
)∆ϕ

2

f(x12, ∂2)
1(

x223
)∆ϕ

(2.78)

Using equation 2.59, this means that

f(x12, ∂2)
1(

x223
)∆ϕ

=
1(

x213x
2
23

)∆ϕ
2

=
1(

x223
)∆ϕ

∞∑
k=0

(
−∆ϕ/2

k

)(
x212 + 2x12 · x23

x223

)k

(2.79)

We can use this equation to determine the operator f by expanding the left-hand side in x12

and equating the coe�cients. Due to rotation invariance, we can write the operator f as:

f(x12, ∂2) =
∞∑

n,m=0

anmx
µ1
12 · · ·x

µn
12

(
x212
)m

∂µ1
2 · · · ∂µn

2

(
∂22
)m

(2.80)

We can determine the constants anm explicitly in the case of three identical scalars. We can

calculate how the Laplacians and derivatives act on powers:

(
∂22
)n 1(

x223
)α = 4n

(α)n
(
α− d

2 + 1
)
n(

x223
)α+n (2.81)
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(x12 · ∂2)n
1(

x223
)α ⌊n

2 ⌋∑
k=0

(−2)n−k(α)n−k (x12 · x23)n−2k (x212)k(
x223
)α+n−k

k−1∏
l=0

(
n− 2l

2

)
(2.82)

Expanding both sides of (2.79) in x212, we can �nd the coe�cients anm. There is another kind

of OPE we can take, where, instead of taking the coincidence limit x12 → 0, we take the

lightcone limit x212 → 0. The lightcone OPE was �rst written in [7]. It can be written in the

form [8]:

ϕ (x1)ϕ (x2) ≈
∑

c12k

ˆ 1

0
[dt]

Ok (x1 + tx12, x12)(
x212
) 2∆ϕ−τk

2

+ · · · (2.83)

where the · · · represent subleading terms in x212 and the second argument in Ok is the vector

which is contracted with the open indices of the operator. The integration measure is de�ned

by

[dt] =
Γ (∆k + Jk)

Γ2
(
∆k+Jk

2

) (t (1− t))
∆k+Jk

2
−1 dt (2.84)

where ∆k is the dimension of Ok and Jk is the spin of Ok. We will sometimes refer to the

coincidence limit OPE as the Euclidean OPE and the lightcone limit OPE as the Lorentzian

OPE. Note that in the Euclidean OPE the primaries being summed over are located at the

point around which the theory is quantized (x2 in equation 2.76), while in the case of the

Lorentzian OPE, the leading term receives contributions from operators extending along the

light-like segment between both points in the product (x1 and x2 in equation 2.83).

2.5 Conformal blocks

The OPE has a very useful application. Consider, for example, a four-point function of scalar

operators:

⟨O1 (x1)O2 (x2)O3 (x3)O4 (x4)⟩ (2.85)

Using the OPE, we can write this as

⟨O1 (x1)O2 (x2)O3 (x3)O4 (x4)⟩ =
∑
O
c12Oc34OWO (x1, x2, x3, x4) , (2.86)
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where

WO = fi1...iJk (x12, ∂2) fj1...jJl (x34, ∂4)
〈
Oi1...iJk

k (x2)O
j1...jJl
l (x4)

〉
. (2.87)

are called conformal partial waves. By conformal symmetry, these functions can be written as

WO =

(
x224
x214

)∆12
2
(
x214
x213

)∆34
2 GO (z, z̄)(

x212
) 1

2
(∆1+∆2) (x234) 1

2
(∆3+∆4)

(2.88)

These functions GO are called conformal blocks. For d = 4 dimensions, they are given by [6]:

GO (z, z̄) =
1

(−2)ℓ
zz̄

z − z̄
[k∆+ℓ(z)k∆−ℓ−2(z̄)− k∆+ℓ(z̄)k∆−ℓ−2(z)] ,

kβ(x) ≡ xβ/22F1

(
β −∆12

2
,
β +∆34

2
, β;x

)
,

(2.89)

where 2F1 is the hypergeometric function

2F1 (a, b, c; z) =
∞∑
n=0

(a)n(b)n
(c)nn!

zn, (2.90)

(a)n is the Pochhammer symbol

(a)n ≡ Γ (a+ n)

Γ (a)
, (2.91)

and the variables z, z̄ are related to the cross-ratios u, v by

u = zz̄, v = (1− z)(1− z̄) (2.92)

We will also need to expand �ve-point functions in conformal blocks:

G = ⟨O1 (x1)O2 (x2)O3 (x3)O4 (x4)O5 (x5)⟩ (2.93)

We can do a light-cone OPE in (12) and another in (34), as depicted in �gure 2.4. We will

assume O1 = O2 and O3 = O4, because we will only calculate correlators of this kind. This

also allows us to use equation (2.83). Because we will only consider correlators of scalars, we

further assume that all Oi are scalars. Using (2.83), the correlator G will then be given in
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Figure 2.4: OPE decomposition of the �ve-point function.

terms of three-point functions of spinning operators:

G =
∑
k,j

c12kc34j(
x212
) 2∆1−τk

2
(
x234
) 2∆3−τk

2

ˆ 1

0
[dt1]

ˆ 1

0
[dt2] ⟨Ok (x1 + t1x12, x12)Oj (x3 + t2x34, x34)O5 (x5)⟩ (2.94)

Using the result for the three-point function of spinning operators, equation (2.60), we can

write

⟨Ok (x1 + t1x12, x12)Oj (x3 + t2x34, x34)O5 (x5)⟩ =

=

min{Jk,Jj}∑
l=0

clkj5V
Jk−l
k,j5 V

Jj−l
j,5k H l

kj(
x2kj

)hj+hk−h5
2 (

x2k5
)hk+h5−hj

2

(
x2j5

)hj+h5−hk
2

(2.95)

where

xj = x1 + t1x12, x12, xk = x3 + t2x34, x34 (2.96)

Therefore, we can express the correlator G as

G =
1(

x212
)∆1

(
x234
)∆3

(
x213

x215x
2
35

)∆5
2 ∑

k,j

min{Jk,Jj}∑
l=0

pkjlGkjl (ui) (2.97)

where pkjl = c12kc34jc
l
kj5, and Gkjl are the �ve-point light-cone conformal blocks



CHAPTER 2. CONFORMAL FIELD THEORY 39

Gkjl =
(
x212
) τk

2
(
x234
) τj

2

(
x215x

2
35

x213

)∆5
2

ˆ 1

0
[dt1]

ˆ 1

0
[dt2]

V Jk−l
k,j5 V

Jj−l
j,5k H l

kj(
x2kj

)hj+hk−h5
2 (

x2k5
)hk+h5−hj

2

(
x2j5

)hj+h5−hk
2

(2.98)

2.6 Bootstrap equations

Now, if we consider identical operators:

⟨ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)⟩ (2.99)

and perform the OPE between ϕ(x1) and ϕ(x2), then this function can be written as:

1(
x212x

2
34

)∆ϕ

∑
k

c12kc34kG∆k,Jk(u, v) (2.100)

We could, however, have chosen to perform the OPE between ϕ(x1) and ϕ(x3) instead, and

we would necessarily obtain the same result. This leads to the equality

∑
k

c12kc34kG∆k,Jk(u, v) = u∆ϕ
∑
k

c13kc24kG∆k,Jk

(
1

u
,
v

u

)
(2.101)

In the same way, performing the OPE between ϕ(x1) and ϕ(x4) must also yield the same

result. This leads to the equality

∑
k

c12kc34kG∆k,Jk(u, v) =
(u
v

)∆ϕ∑
k

c14kc23kG∆k,Jk(v, u) (2.102)

These are the bootstrap equations. They follow from the symmetry only, and can be used to

�nd restrictions on OPE data of possible conformal theories. We will not be analysing these

equations in this thesis, but an introduction to this topic can be found, for example, in [5].
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How to calculate integrals

In order to verify the duality (1.7) we need to calculate the correlation functions in the null-

polygon limit, as well as the corresponding Wilson loops. When calculating correlators in

perturbation theory, we frequently encounter spacetime integrals of the form:

1

π
dl
2

ˆ
ddxp+1 · · · ddxp+l

D
(3.1)

where D is a product of powers x2ij , where i = 1, . . . , p+ l and j = p+1, . . . , p+ l. Therefore,

we are interested in calculating these kinds of integrals. In this section we will explain how

to do this using the method of asymptotic expansions. For p = 4, l = 2, the most general

integral of the form (3.1) would be:

1

πd

ˆ
ddx5d

dx6(
x215
)a15 (x225)a25 (x235)a35 (x245)a45 (x216)a16 (x226)a26 (x236)a36 (x246)a46 (x256)a56 (3.2)

Because N = 4 SYM is a CFT, the integrals we will encounter must be conformally invariant.

This means that the integrand must have weight d in each integration point, i.e.

p+l∑
i=1
i ̸=j

aij = d, j = p+ 1, . . . p+ l (3.3)

Consider the following integral for d = 4 spacetime dimensions:

I =
1

π2

ˆ
d4x5

x215x
2
25x

2
35x

2
45

(3.4)

41
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We can use translations to send x1 → 0. Then we use a special conformal transformation to

send x4 → ∞. We can also use rotations to put x3 on a coordinate axis, and put x2 in a

coordinate plane. Finally, with a dilatation, we can put x23 = 1. This simpli�es the integral

(3.4):

1

π2

ˆ
d4x5

x215x
2
25x

2
35x

2
45

→ 1

π2

ˆ
d4x5

x25x
2
25x

2
35

(3.5)

These transformations also simplify the cross-ratios u and v:

u→ x22, v → x223 (3.6)

We will now explain the method of asymptotic expansions and give an example by calculating

the integral I.

3.1 Asymptotic Expansions

Each of the integrals in xi, i ≥ 5 is taken over the whole space. However, there are two special

regions of integration when one of the external points is �small� compared to the others (say,

x2 ≪ x3, for example). We will make this notion of smallness precise in a moment. In region

1 we have xi ∼ x2, which implies xi ≪ x3, and in region 2 we have xi ∼ x3, which implies

xi ≫ x2. We can expand some of the propagators in the integrals in these regions, which

simpli�es the analysis. In region 1 we can expand:

1(
x23i
)c =

∞∑
n=0

(
−c
n

)(
x2i − 2x3 · xi

)n(
x23
)c+n (3.7)

Likewise, in region 2 we have the expansion:

1(
x22i
)c =

∞∑
n=0

(
−c
n

)(
x22 − 2x2 · xi

)n(
x2i
)c+n (3.8)

There are two ways that the vector x2 can be small compared to x3. The �rst is |xµ2 | ≪ |xµ3 |
for all µ. This happens if we take the Euclidean OPE limit xµ2 → 0. If this is true, then

powers of x22 and x2 · x3 will both be subleading. The other way x2 can be small is x22 ≪ x23,

which corresponds to the Lorentzian OPE limit x22 → 0. In this case, powers of x22 will be

subleading, but the same will not happen for powers of x2 · x3. Therefore, in the Lorentzian

limit, higher powers of n in (3.7,3.8) will not necessarily be subleading. In practice, however,
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one can expand in powers of x2 · x3 as well. Now, each of the expansions (3.7,3.8) has a

�nite radius of convergence, so divergences will appear if we integrate the sums over the entire

space. However, these divergences will cancel out if we sum over all possible regions. The

usefulness in this procedure lies in the fact that, by doing these expansions, we are expresing

an n-point integral as a sum of a 2-point integral and an (n− 1)-point integral, which are

easier to compute. Consider, for example, expanding the integral (3.5) in region 1, using (3.7):

I(1) =
1

πd/2

∞∑
n=0

ˆ
ddx5

(
2x3 · x5 − x25

)n
x25x

2
25

(
x23
)n+1 (3.9)

Because this integral diverges in 4 dimensions, we integrate in d = 4 − 2ϵ dimensions. For

simplicity, we can truncate the sum at n = 0, keeping in mind that there will be corrections

in x22 and x2 · x3:

I(1) =
1

πd/2x23

ˆ
ddx5
x25x

2
25

+O (x2 · x3) +O
(
x22
)

(3.10)

We can see that this integral no longer depends on x35, which is a considerable simpli�cation.

In general, going to higher orders in the expansion will not add dependences in the denom-

inator. It will, at most, introduce powers of x2 · x3 in the numerator, which we will handle

next. However, let's �rst consider the e�ect of this expansion on an integral depending on

more points. Consider a general �ve-point, one-loop integral

I =
1

π
d
2

ˆ
ddx6(

x216
)a16 (x226)a26 (x236)a36 (x246)a46 (x256)a56 (3.11)

If the integral is conformally invariant, we can send x5 → ∞ and set x1 = (0, . . . , 0):

I =
1

π
d
2

ˆ
ddx6(

x26
)a16 (x226)a26 (x236)a36 (x246)a46 (3.12)

In the same way as before, we can expand in region 1:

I(1) =
1(

x23
)a36 (x24)a46

ˆ
ddx6(

x26
)a16 (x226)a26 +O (x2 · x3) +O (x2 · x4) +O

(
x22
)

(3.13)

We have actually removed two external point dependences in the integral. However, if we

expand in region 2 (using (3.8)) we get

I(2) =

ˆ
ddx6(

x26
)a16+a26 (x236)a36 (x246)a46 +O (x2 · x3) +O (x2 · x4) +O

(
x22
)

(3.14)
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In this region, the integral still depends on three external points. In general, in the region where

all the integration points are large, an integral depending on n external points will originate

integrals with n − 1 external points. Likewise, when all integration points are small, there

will only be integrals with two external points. In the mixed regions, where some integration

points are large and some are small, we will get products of lower-loop integrals. The most

complicated case we'll have to consider is a product of integrals depending on 2 and (n − 2)

points, respectively.

This procedure can yield integrals which depend on fewer than two external points. These

integrals evaluate to zero, as we can see by taking the general result for one-loop integrals,

equation (3.38), and analytically continuing it to a1 = 0 or a2 = 0.

3.2 Tensor reduction

Because we can perform successive asymptotic expansions until we have a product of two-point

integrals, we will only need to evaluate integrals of the form:

ˆ
ddx5

xµ1
5 · · ·xµJ

5(
x25
)a1 (x2α5)a2 , (3.15)

where xα is an external vector. By rotation covariance, we can write this integral as:

ˆ
ddx5

xµ1
5 · · ·xµJ

5(
x25
)a1 (x2α5)a2 =

J/2∑
k=0

IkH
µ1···µJ

k (3.16)

where

Hµ1···µJ

k = δµ1µ2 · · · δµ2k−1µ2kx
µ2k+1
α · · ·xµJ

α (3.17)

and Ik is a scalar quantity, which we can determine by contracting both sides of equation

(3.16) with the Hµ1···µJ

k . This gives a set of linear equations for the Ik which we can solve

straightforwardly, for example using matrix methods. The answer will be given in terms of

integrals with xα · x5 in the numerator, but we can rewrite this as 1
2

(
x2α + x25 − x2α5

)
and pull

x2α out of the integrals, so that, in the end, we only need to evaluate integrals of the form

Ia1,a2(xα) =
1

πd/2

ˆ
ddx5(

x25
)a1 (x2α5)a2 . (3.18)

This procedure is known as �tensor reduction� of integrals, and it works similarly at higher

loops. For the case where a1 = a2 = 1 in (3.15) there is a simple expression for the integral:
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ˆ
ddx5 (x5 · xi)J

x25x
2
25

=
(1)J

2J (d− 2)J
C

d/2−1
J

(
x2 · xi(
x22x

2
i

)1/2
)(

x22x
2
i

)J/2 ˆ ddx5
x25x

2
25

(3.19)

where xi is an external vector and Cν
n (x) are Gegenbauer polynomials. If we are interested

only in the leading order term as x22 → 0 or x2i → 0, we can take the limit in the Gegenbauer

polynomial to obtain

ˆ
ddx5 (x5 · xi)J

x25x
2
25

∼
(
d
2 − 1

)
J

(d− 2)J
(x2 · xi)J

ˆ
ddx5
x25x

2
25

(3.20)

3.3 IBP identities

3.3.1 1 loop

We can evaluate integrals of the form (3.18) for general a1, a2. However, for higher loops - i.e.

l ≥ 2 in (3.1) - this is still complicated. We can, however, simplify the problem even further

by using integration-by-parts (IBP) identities. We can derive these identities by acting on the

integrand of (3.18) with ∂5 · xα and ∂5 · x5. Acting with ∂5 · xα:

1

π
d
2

ˆ
ddx5 xα · ∂5

(
1(

x25
)a1 (x2α5)a2

)
=

=
1

π
d
2

ˆ
ddx5

[
−2a1xα · x5(
x25
)a1+1 (

x2α5
)a2 +

2a2xα · xα5(
x25
)a1 (x2α5)a2+1

]
=

=
1

π
d
2

ˆ
ddx5

[
a1(x

2
α5 − x2α − x25)(

x25
)a1+1 (

x2α5
)a2 +

a2(x
2
α5 − x25 + x2α)(

x25
)a1 (x2α5)a2+1

]
=

= a1
(
Ia1+1,a2−1(xα)− x2αIa1+1,a2(xα)− Ia1,a2(xα)

)
+

+ a2
(
Ia1,a2(xα)− Ia1−1,a2+1(xα)− x2αIa1,a2+1(xα)

)
Because the original integral is the integral of a total derivative and the boundary terms vanish

at in�nity, it equals zero. Using this fact, we are left with the identity:

a1
(
Ia1+1,a2−1(xα)− x2αIa1+1,a2(xα)− Ia1,a2(xα)

)
+

+ a2
(
Ia1,a2(xα)− Ia1−1,a2+1(xα)− x2αIa1,a2+1(xα)

)
= 0



CHAPTER 3. HOW TO CALCULATE INTEGRALS 46

Likewise, acting with ∂5 · x5 = δµν∂
ν
5x

µ
5 :

δµν

π
d
2

ˆ
ddx5 ∂

ν
5

(
xµ5(

x25
)a1 (x2α5)a2

)
=

= (d− 2a1 − a2) Ia1,a2 (xα)− a2Ia1−1,a2+1 (xα) + a2x
2
αIa1,a2+1 (xα)

Again, the original integral equals zero, so we get the identity

(d− 2a1 − a2) Ia1,a2 (xα)− a2Ia1−1,a2+1 (xα) + a2x
2
αIa1,a2+1 (xα) = 0 (3.21)

As discussed before, we also know that scaleless integrals vanish, which yield the boundary

conditions:

I0,a2 = Ia1,0 = 0 (3.22)

Using these identities, we can greatly reduce the number of integrals we need to evaluate.

Because these equations are linear in the integrals, we can use matrix methods to solve them

and determine their values in terms of a smaller set of so-called master integrals. In practice,

however, the number of equations can get quite large and is very tedious to do by hand,

especially for higher loops. There are, however, some publicly available codes which we can

use to �nd and solve the relations between integrals. Two such codes are LiteRed [9] and

FIRE [10]. In this work we used LiteRed. At one loop, it tells us that there is only one master

integral, which we choose to be I1,1. This is only one possible choice for the master integral,

because we could simply use the relations to rewrite everything in terms of another integral.

3.3.2 2 loops

At two loops, we can still perform asymptotic expansions and tensor reductions, so that we

only need to evaluate scalar integrals depending on a single external vector. The most general

form of these integrals is:

Ia1,a2,a3,a4,a5
(
x2α
)
=

1

πd

ˆ
ddx5d

dx6(
x25
)a1 (x26)a2 (x2α5)a3 (x2α6)a4 (x256)a5 , (3.23)

where xα is an external vector. We can again generate the IBP identities by acting with ∂i ·xj
on the integrand, where i = 5, 6 and j = α, 5, 6. This gives us 6 identities. The boundary

conditions this time are determined by the fact that the integral is zero if two out of a1, a3, a5
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are zero, or two out of a2, a4, a5 are zero. At two loops, LiteRed tells us that there are two

master integrals. We will choose the integrals I0,1,1,0,1 and I1,1,1,1,0 as our masters.

3.4 Calculating master integrals

3.4.1 1 loop

As was previously said, there is only one master integral at 1 loop. However, it is just as easy

to calculate the general one-loop scalar integral (3.18), so we will go through the general case

here. We start by using the Schwinger parametrization. Using the fact that

1

yn
=

1

Γ(n)

ˆ ∞

0
du un−1e−uy (3.24)

we can rewrite the integral in expression (3.18) as:

1

π
d
2Γ(a1)Γ(a2)

ˆ
ddx5

ˆ ∞

0
du

ˆ ∞

0
dv ua1−1va2−1e−ux2

5−vx2
i5 (3.25)

We can now easily complete the square in the exponent and perform the Gaussian integral in

position space, yielding:

1

Γ(a1)Γ(a2)

ˆ ∞

0
du

ˆ ∞

0
dv

ua1−1va2−1

(u+ v)
d
2

e−
uv
u+v

x2
i (3.26)

We can simplify this expression further using the identity

1 =

ˆ ∞

0
dλ δ(λ− u− v) (3.27)

Inserting this in expression (3.26), we get

1

Γ(a1)Γ(a2)

ˆ ∞

0
du

ˆ ∞

0
dv

ˆ ∞

0
dλ δ(λ− u− v)

ua1−1va2−1

(u+ v)
d
2

e−
uv
u+v

x2
i (3.28)

Rescaling the Schwinger parameters:

u→ λu, v → λv (3.29)

and using the delta function property
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δ(cx) =
1

|c|
δ(x) (3.30)

we get:

1

Γ(a1)Γ(a2)

ˆ ∞

0
du

ˆ ∞

0
dv

ˆ ∞

0
dλ λa1+a2− d

2
−1δ (1− u− v)

ua1−1va2−1

(u+ v)
d
2

e−λ uv
u+v

x2
i (3.31)

We can now rescale λ→
(

uv
u+vx

2
i

)−1
λ and perform the integral in λ:

Γ
(
a1 + a2 − d

2

)
Γ(a1)Γ(a2)

(
x2i
)a1+a2− d

2

ˆ ∞

0
du

ˆ ∞

0
dv

(
uv

u+ v

)−a1−a2+
d
2

δ (1− u− v)
ua1−1va2−1

(u+ v)
d
2

(3.32)

Finally, taking advantage of the delta to perform the integral in v, we get:

Γ
(
a1 + a2 − d

2

)
Γ(a1)Γ(a2)

(
x2i
)a1+a2− d

2

ˆ 1

0
du (u(1− u))−a1−a2+

d
2 ua1−1(1− u)a2−1 (3.33)

The integral in u now runs only form 0 to 1, because for u > 1we have 1−u < 0 and therefore

the integral in v vanishes in that region. Simplifying, we obtain:

Γ
(
a1 + a2 − d

2

)
Γ(a1)Γ(a2)

(
x2i
)−a1−a2+

d
2

ˆ 1

0
du u−a2+

d
2
−1(1− u)−a1+

d
2
−1 (3.34)

We can use integration by parts to calculate integrals of the form

ˆ 1

0
du uα(1− u)β (3.35)

Integrating by parts we get:

ˆ 1

0
du uα(1− u)β =

β

α+ 1

ˆ
du uα+1(1− u)β−1 =

β

α+ 1

ˆ
du uα+1(1− u)β−1 (3.36)

We can use successive integrations by parts, and we get:

ˆ 1

0
du uα(1− u)β =

β(β − 1) · · · 1
α(α+ 1) · · · (α+ β + 1)

=
Γ(α+ 1)Γ(β + 1)

Γ(α+ β + 2)
(3.37)
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Using this result in expression (3.34), we get the �nal result

1

πd/2

ˆ
ddx5

1(
x25
)a1 (x2i5)a2 =

(
x2i
)−a1−a2+

d
2 G (a1, a2) (3.38)

where

G (a1, a2) =
Γ
(
a1 + a2 − d

2

)
Γ
(
d
2 − a1

)
Γ
(
d
2 − a2

)
Γ(a1)Γ(a2)Γ (d− a1 − a2)

(3.39)

Note that the RHS diverges for some values of a1, a2. To deal with this, we set d = 4−2ϵ and

expand in powers of ϵ. The result will, naturally, still be divergent as ϵ → 0 - i.e, there will

be poles in ϵ - but, when we sum over all the asymptotic regions, these poles will remarkably

cancel out.

3.4.2 2 loops

At two loops, our master integrals are:

I0,1,1,0,1
(
x2α
)
=

1

πd

ˆ
ddx5d

dx6
x26x

2
α5x

2
56

(3.40)

I1,1,1,1,0
(
x2α
)
=

1

πd

ˆ
ddx5d

dx6
x25x

2
6x

2
α5x

2
α6

(3.41)

Both of these can be calculated using the one-loop result (3.38). We start with the �rst one:

1

πd

ˆ
ddx5d

dx6
x26x

2
α5x

2
56

=
G (1, 1)

π
d
2

ˆ
ddx5(

x25
)2− d

2 x2α5

=
(
x2α
)d−3

G (1, 1)G

(
2− d

2
, 1

)
(3.42)

As for the second one:

1

πd

ˆ
ddx5d

dx6
x25x

2
6x

2
α5x

2
α6

=
(
x2α
) d

2
−2
G (1, 1)

1

π
d
2

ˆ
ddx5
x25x

2
α5

=
(
x2α
)d−4

G (1, 1)2 (3.43)

So we have determined the master integrals at two loops. Together with the IBP identities,

we can determine all two-loop integrals.
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3.5 An example at one loop

We are �nally ready to calculate the original integral (3.5). We include a prefactor x23 for

convenience:

I =
x23

π
d
2

ˆ
ddx5

x25x
2
25x

2
35

(3.44)

Because our goal will be to test the duality (1.7) in the limit where separations between points

are null, we only need to calculate the integral to leading order in x22. The �rst step is to

do asymptotic expansions in this limit. Since this is a one-loop integral, there are only two

regions:

R1 : x
2
5 ≪ x23, R2 : x

2
5 ≫ x22 (3.45)

We also need to truncate the sums (3.7) and (3.8) at some �nite order in x2. For simplicity,

we will keep only the �rst order terms. This lets us rewrite I as:

I = I(1) + I(2) (3.46)

where

I(1) =
1

π
d
2

∞∑
k=0

1(
x23
)k ˆ ddx5

(
2x3 · x5 − x25

)k
x25x

2
25

I(2) =
x23

π
d
2

∞∑
k=0

ˆ
ddx5

(
2x2 · x5 − x22

)k(
x25
)k+2

x235

To leading order in x22, we can neglect the squares in the numerator:

I(1) ∼ 1

π
d
2

∞∑
k=0

1(
x23
)k ˆ ddx5 (2x3 · x5)k

x25x
2
25

I(2) ∼ x23

π
d
2

∞∑
k=0

ˆ
ddx5 (2x2 · x5)k(

x25
)k+2

x235

We can use equation (3.19) to do the tensor reduction in region 1:
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I(1) ∼ 1

π
d
2

∞∑
k=0

(
d
2 − 1

)
k(

x23
)k

(d− 2)k

(2x2 · x3)k
ˆ

ddx5
x25x

2
25

+O
(
x22
)

(3.47)

Substituting 2x2 ·x3 → x23−x223 in the numerator (we are neglecting powers of x22), expanding,

and doing the integral in x5, we get:

I(1) ∼
∞∑
k=0

k∑
l=0

(
k

l

)(d
2 − 1

)
k

(d− 2)k

(
−x223
x23

)l (
x22
) d

2
−2
G (1, 1) (3.48)

For region 2, we can restore point x1 and rewrite the expression as:

I(2) ∼ x213

π
d
2

∞∑
k=0

(−y · ∂1)k

(k + 1)!

ˆ
ddx5(

x215
)2
x235

∣∣∣∣∣
y=x12

(3.49)

Evaluating the integral, we get

I(2) ∼ x213

∞∑
k=0

(−y · ∂1)k

(k + 1)!

(
x213
) d

2
−3
G (1, 2)

∣∣∣∣∣
y=x12

(3.50)

Acting with the derivatives on the power and restoring the point x1 to zero, we get

I(2) ∼
∞∑
k=0

k∑
l=0

(
k

l

)
(−1)k−l (d

2 − k − 2
)
k

Γ (k + 2)

(
x23
) d

2
−2−l (

x223
)l
G (1, 2) (3.51)

In practice, these sums must be evaluated up to a given value of k, but since we have an

expression for any k this cuto� is arbitrary. As an example, we can set k = 1. Additionally,

setting d = 4− 2ϵ and expanding to order O
(
ϵ0
)
, we obtain:

I(1) ∼
(
1 +

Y

2

)
1

ϵ
+
(
2− γe − log u− log x23

)
+ Y

(
1− γe

2
− 1

2
log u− 1

2
log x23

)
+O

(
Y 2
)

I(2) ∼ −
(
1 +

Y

2

)
1

ϵ
+
(
γe + log x23

)
+ Y

(
−1

2
+
γe
2

+
1

2
log x23

)
+O

(
Y 2
)

where Y = 1 − v and γe is Euler's constant. It is now apparent that when we sum over the

two regions, the divergences in ϵ cancel out. The �nal result is:

I ∼ 2 +
Y

2
−
(
1 +

Y

2

)
log u+O

(
Y 2
)

(3.52)
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The integral I is actually known analytically [11]:

I = Φ(1) (u, v) , (3.53)

where the functions Φ(L) (u, v) are the multi-ladder functions [12], which can be written in

terms of z, z̄ as

Φ(L) (u, v) =
1

z − z̄
f (L) (z, z̄) (3.54)

where

f (L) (x, x̄) =
L∑

k=0

(−1)k(2L− k)!

k!(L− k)!L!
logk (xx̄) (Li2L−k (x)− Li2L−k (x̄)) (3.55)

Our result agrees with the analytical result up to the given order.

3.6 An example at two loops

To calculate correlation functions up to two loops, we need to consider integrals with l = 2 in

(3.1). In this section we give an example of one such integral:

I2 =
x23
πd

ˆ
ddx5d

dx6
x25x

2
25x

2
56x

2
6x

2
36

(3.56)

At two loops, there are four asymptotic regions:

R1 : x
2
5, x

2
6 ≪ x23; R2 : x

2
5 ≪ x23, x

2
6 ≫ x22

R3 : x
2
5 ≫ x22, x

2
6 ≪ x23; R4 : x

2
5, x

2
6 ≫ x22

This allows us to express the integral I2 as a sum over regions:

I2 = I
(1)
2 + I

(2)
2 + I

(3)
2 + I

(4)
2 (3.57)

where
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I
(1)
2 =

1

πd

∞∑
k=0

1(
x23
)k ˆ ddx5d

dx6
(
2x3 · x6 − x26

)k
x25x

2
6x

2
25x

2
56

I
(2)
2 =

x23
πd

∞∑
k=0

ˆ
ddx5d

dx6
(
2x6 · x5 − x25

)k
x25x

2
25

(
x26
)k+2

x236

I
(3)
2 = 0

I
(4)
2 =

x23
πd

∞∑
k=0

ˆ
ddx5d

dx6
(
2x5 · x2 − x22

)k(
x25
)k+2

x256x
2
6x

2
36

The asymptotic expansion in region R3 yields only scaleless inegrals, so I3 = 0. To leading

order in x22:

I
(1)
2 ∼ 1

πd

∞∑
k=0

1(
x23
)k ˆ ddx5d

dx6 (2x3 · x6)k

x25x
2
6x

2
25x

2
56

I
(2)
2 ∼ x23

πd

∞∑
k=0

ˆ
ddx5d

dx6 (2x5 · x6)k

x25
(
x26
)k+2

x225x
2
36

I
(4)
2 ∼ x23

πd

∞∑
k=0

ˆ
ddx5d

dx6 (2x2 · x5)k(
x25
)k+2

x26x
2
36x

2
56

This case is more complicated than the one-loop one. However, some tensor reduction formulas

can be deduced for general k if we neglect traces. We tested the following patterns up to k = 10

in Mathematica:

ˆ
ddx5d

dx6 (x3 · x6)k

x25x
2
6x

2
25x

2
56

∼
(x2 · x3)k (d− 3) (d− 2)

(
d
2

)
k−1

x22 (d− 4) (d+ k − 3)
(
3d
2 − 3

)
k−1

ˆ
ddx5d

dx6
x26x

2
25x

2
56

(3.58)

ˆ
ddx5d

dx6 (x5 · x6)k

x25
(
x26
)k+2

x225x
2
36

∼
(d− 6) (d− 3)

(
4− d

2

)
k−1

(
d
2

)
k−1

(x2 · x3)k

8 (3)k−1 (d− 1)k−1

(
x23
)k+1

ˆ
ddx5d

dx6
x25x

2
6x

2
25x

2
36

(3.59)
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ˆ
ddx5d

dx6 (x2 · x5)k(
x25
)k+2

x26x
2
36x

2
56

∼

(d− 5) (d− 3) (3d− 10) (3d− 8) (6− d)k−1

(
4− d

2

)
k−1

(x2 · x3)k

2 (d− 8) (d− 4) (3)k−1

(
5− d

2

)
k−1

(
x23
)k+2

ˆ
ddx5d

dx6
x26x

2
35x

2
56

(3.60)

Using these results and the expression (3.42) and (3.43) for the 2-loop master integrals, we get

the results

I
(1)
2 ∼

∞∑
k=0

2k (x2 · x3)k (d− 3) (d− 2)
(
d
2

)
k−1

(x2)
d−4(

x23
)k

(d− 4) (d+ k − 3)
(
3d
2 − 3

)
k−1

G (1, 1)G

(
2− d

2
, 1

)

I
(2)
2 ∼

∞∑
k=0

2k (d− 6) (d− 3)
(
4− d

2

)
k−1

(
d
2

)
k−1

(
x22
)d/2−2

(x2 · x3)k

8 (3)k−1 (d− 1)k−1

(
x23
)k−d/2+2

G (1, 1)2

I
(4)
2 ∼

∞∑
k=0

2k (d− 5) (d− 3) (3d− 10) (3d− 8) (6− d)k−1

(
4− d

2

)
k−1

(x2 · x3)k

2 (d− 8) (d− 4) (3)k−1

(
5− d

2

)
k−1

(
x23
)k−d+4

G (1, 1)G

(
2− d

2
, 1

)

These sums can now be calculated up to a given value of k. Plugging in d = 4− 2ϵ and taking

the limit ϵ→ 0, we get, up to k = 1:

I2 ∼ 6 +
3Y

8
−
(
3 +

3Y

8

)
log u+

(
1

2
+
Y

8

)
log2 u+O

(
Y 2
)

(3.61)

The integral I2 is also known analytically:

I2 =
1

x212x
2
34

Φ(2) (u, v) (3.62)

This result agrees with ours up to the given order.

3.7 A �ve-point example

Some of the integrals we will have to calculate will depend on �ve external points. In this

section we will give an example of one such integral:
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I =
1

πd

ˆ
ddx6 d

dx7 x
2
36

x216x
2
26x

2
27x

2
37x

2
46x

2
47x

2
56x

2
67

(3.63)

Again, we can simplify the integral by sending a point to in�nity. In this case, we choose x5:

I =
1

πd

ˆ
ddx6 d

dx7 x
2
36

x216x
2
26x

2
27x

2
37x

2
46x

2
47x

2
67

(3.64)

We will start by doing an asymptotic expansion in the limit x212 → 0:

I = I(1) + I(2) + I(3) + I(4), (3.65)

where, to leading order in x212:

I(1) ∼ 1

πd

∑
ki

ˆ
ddx5 d

dx6 (−2x13 · x16)k1 (2x17 · x13)k2 (2x17 · x14)k3(
x213
)k1+k2 (x214)k3+2

x216x
2
26x

2
27x

2
67

(3.66)

I(2) ∼ 1

πd

∑
ki

ˆ
ddx6 d

dx7 (−2x13 · x16)k1 (2x17 · x12)k2 (2x17 · x16)k3(
x213
)k1−1

x214x
2
16

(
x217
)k2+k3+2

x226x
2
37x

2
47

(3.67)

I(3) = 0 (3.68)

I(4) ∼ 1

πd

∑
ki

ˆ
ddx6 d

dx7 x
2
36 (2x16 · x12)

k1 (2x17 · x12)k2(
x216
)k1+2 (

x217
)k2+1

x237x
2
46x

2
47x

2
67

(3.69)

Now we will expand these leading integrals in the limit x234 → 0. We will not need to expand

in region 1, because the integral in that region already depends on only two points. We must,

however, take the limit x234 → 0 in that region at the end of the calculation as well, for

consistency. The expansion for these integrals is

I(i) = I(i,1) + I(i,2) + I(i,3) + I(i,4), i = 2, 3, 4 (3.70)

The integrals I(i,j) are, to leading order in x212 and x234:
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I(2,3) ∼
∑
ki

β
(2,3)
ki

πd

ˆ
ddx6 d

dx7 (−x13 · x16)k1 (x17 · x12)k2 (x17 · x16)k3 (x37 · x13)k4

x214
(
x213
)k1+k2+k3+k4+1

x216x
2
26x

2
37x

2
47

I(2,4) ∼
∑
ki

ˆ
ddx6 d

dx7 (−x13 · x16)k1 (x17 · x12)k2 (x17 · x16)k3 (−x34 · x37)k4(
x213
)k1−1

x214x
2
16x

2
26

(
x217
)k2+k3+2 (

x237
)k4+2

I(4,1) ∼
∑
ki

β
(4,1)
ki

πd

ˆ
ddx6 d

dx7 x
2
36 (x16 · x12)

k1 (x17 · x12)k2 (x13 · x36)k3 (x13 · x37)k4(
x213
)k1+k2+k3+k4+3

x237x
2
46x

2
47x

2
67

I(4,3) ∼
∑
ki

β
(4,3)
ki

πd

ˆ
ddx6 d

dx7 (x16 · x12)k1 (x17 · x12)k2 (x13 · x37)k3 (x36 · x34)k4 (x36 · x37)k5(
x216
)k1+2 (

x213
)k2+k3+1

x237
(
x236
)k4+k5+1

x247

I(4,4) ∼
∑
ki

ˆ
ddx6 d

dx7 (x16 · x12)k1 (x17 · x12)k2 (x36 · x34)k3 (x37 · x34)k4(
x216
)k1+2 (

x217
)k2+1 (

x236
)k3 (x237)k4+2

x267

where

β
(2,3)
ki

= 2
∑

i ki
(−k2−k3−2

k4

)
, β

(4,1)
ki

= 2
∑

i ki
(−k1−2

k3

)(−k2−1
k4

)
, β

(4,3)
ki

= 2
∑

i ki
(−k2−1

k3

)
and all other integrals are zero. Now we need to do tensor reductions on the scalar products,

for which we need to derive new expressions, or do them �by hand�, contracting with external

vectors and solving the linear system of equations. For the purposes of this example, however,

we will simply keep the leading term (ki = 0).

I(1) ∼ 1

πd
(
x214
)2 ˆ ddx5 d

dx6
x216x

2
26x

2
27x

2
67

I(2,3) ∼ 1

πdx214x
2
13

ˆ
ddx6 d

dx7
x216x

2
26x

2
37x

2
47

I(2,4) ∼ x213
πdx214

ˆ
ddx6 d

dx7

x216x
2
26

(
x217
)2 (

x237
)2

I(4,1) ∼ 1

πd
(
x213
)3 ˆ ddx6 d

dx7 x
2
36

x237x
2
46x

2
47x

2
67

I(4,3) ∼ 1

πdx213

ˆ
ddx6 d

dx7(
x216
)2
x237x

2
36x

2
47

I(4,4) ∼ 1

πd

ˆ
ddx6 d

dx7(
x216
)2
x217
(
x237
)2
x267
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The integrals coming from I(2,3), I(2,4), and I(4,3) are products of one-loop integrals, which we

know how to evaluate for general exponents. Using IBP identities, we can express the two-loop

integrals as:

I(1) ∼ (3d− 8)

πd (d− 4)x212
(
x214
)2 ˆ ddx5 d

dx6
x217x

2
26x

2
67

I(4,1) ∼ (d− 2)

πd (d− 4)
(
x213
)3 ˆ ddx6 d

dx7
x237x

2
46x

2
67

I(4,4) ∼ 3 (d− 5) (d− 3) (3d− 10) (3d− 8)

πd (d− 6) (d− 4)
(
x213
)3 ˆ

ddx6 d
dx7

x217x
2
36x

2
67

Evaluating the integrals:

I(1) ∼
(3d− 8)

(
x212
)d−4

(d− 4)
(
x214
)2 G (1, 1)G

(
2− d

2
, 1

)

I(2,3) ∼
(
x212
) d

2
−2 (

x234
) d

2
−2

x214x
2
13

G (1, 1)2

I(2,4) ∼
(
x212
) d

2
−2 (

x213
) d

2
−3

x214
G (1, 1)G (2, 2)

I(4,1) ∼
(d− 2)

(
x234
)d−3

(d− 4)
(
x213
)3 G (1, 1)G

(
2− d

2
, 1

)
I(4,3) ∼

(
x213
) d

2
−4 (

x212
) d

2
−2
G (1, 1)G (1, 2)

I(4,4) ∼
3 (d− 5) (d− 3) (3d− 10) (3d− 8)

(
x213
)d−6

(d− 6) (d− 4)
G (1, 1)G

(
2− d

2
, 1

)

Setting d = 4− 2ϵ and expanding around ϵ = 0 we get:

x213I ∼ 4− 3 log u1 +
1

2
(log u1)

2 − 2 log u3 + log u1 log u3, (3.71)

to leading order in ui, i = 1, 3 and 1− uj , j = 2, 4, 5.





Chapter 4

Extracting CFT data

In this section we will use the previously described methods to calculate the four-point function

of half-BPS operators O

G4 = ⟨O (x1)O (x2)O (x3)O (x4)⟩ , (4.1)

their �ve-point function

G5 = ⟨O (x1)O (x2)O (x3)O (x4) (x5)⟩ , (4.2)

and the correlator of four half-BPS operators and one Lagrangian

G4;1 = ⟨O (x1)O (x2)O (x3)O (x4)L (x5)⟩ (4.3)

The functions G4 and G5 are dual via (1.7) to the null square and pentagon Wilson loops,

respectively:

lim
x2
i,i+1→0

G4 (x1, x2, x3, x4) ∝W4 (x1, x2, x3, x4) (4.4)

lim
x2
i,i+1→0

G5 (x1, x2, x3, x4, x5) ∝W5 (x1, x2, x3, x4, x5) (4.5)

These limits are depicted in �gure 4.1. The function G4;1 is dual to the null square Wilson

loop with a Lagrangian insertion, in the limit

lim
x2
12,x

2
23,x

2
34,x

2
14→0

G4;1 (x1, x2, x3, x4) ∝
⟨W4 (x1, x2, x3, x4)L (x5)⟩

⟨W4 (x1, x2, x3, x4)⟩
, (4.6)

59
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Figure 4.1: A diagram of the null square and null pentagon con�gurations. Dashed lines
symbolize null separations between points.

Figure 4.2: A diagram of the null square con�guration with a Lagrangian inserted at a point
x5. Dashed lines symbolize null separations between points.

which is depicted in �gure 4.2. These functions have expansions in the coupling, and the

integrands of some of the loop contributions are known [13, 14]. We will calculate these

loop contributions to the correlation functions and, by comparison with the conformal block

expansion, we will extract the loop contributions to the CFT data.

4.1 20' operators

We will consider operators of the form

OIJ
20′ = tr

(
ΦIΦJ

)
− 1

6
tr
(
ΦKΦK

)
δIJ (4.7)

These operators belong to the 20' representation of SO(6) ≃ SU(4). These operators are

interesting because they are protected, meaning both their scaling dimension and the coe�cient

of their three-point function have no perturbative corrections. We introduce null polarization
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vectors to take care of the tensor structure:

O(x, y) = yIyJOIJ
20′(x) = yIyJtr

(
ΦIΦJ

)
, (4.8)

where y2 = 0. We also introduce the following de�nitions:

Z = Φ1 + iΦ2, Z̄ = Φ1 − iΦ2 (4.9)

X = Φ3 + iΦ4, X̄ = Φ3 − iΦ4 (4.10)

Y = Φ5 + iΦ6, Ȳ = Φ5 − iΦ6 (4.11)

Now consider, for example, the polarization vector

y1 = (1, i, α1, i α1, 0, 0) (4.12)

This is a null vector, since y21 = 0. If we choose this polarization for the 20' operator (4.8), we

get

O(x1, y1) = tr ((Z + α1X) (Z + α1X)) (4.13)

If we then take a derivative with respect to α1 and then set α1 = 0, we get

∂

∂α1
O(x1, y1)

∣∣∣∣
α1=0

= (tr (XZ) + tr (ZX)) (4.14)

In this way, we can select speci�c external operators that will be useful later. We can now

further de�ne

y2 = (1, i, α2,−i α2, 0, 0), y3 = (1,−i, 0, 0, α3, i α3)

y4 = (1,−i, 0, 0, α4,−i α4)

By considering a four-point function of operators with these polarizations and taking a deriva-

tive in each of the αi at αi = 0 we select the operators
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Figure 4.3: Wick contractions between the four operators selected with the polarization vec-
tors. The dashed lines represent contractions between X and Y �elds, while solid lines repre-
sent contractions between Z �elds. In this example the exchanged operators are of the form
tr(ZZ), but the general exchanged operator is more generally given by equation (4.15).

O1 = tr (XZ) + tr (ZX) O2 = tr
(
X̄Z

)
+ tr

(
ZX̄

)
O3 = tr

(
Y Z̄
)
+ tr

(
Z̄Y
)

O4 = tr
(
Ȳ Z̄
)
+ tr

(
Z̄Ȳ
)

Because each of the �elds X,Y, Z only has a non-vanishing contraction with its conjugate, the

X �elds in O1 and O2 will be contracted, as will the Y �elds in O3 and O4. The leftover Z

�elds will then necessarily contract with the exchanged operator, as shown in �gure 4.3.

In this way, by selecting the external operators, we are restricting the operators which appear

in the OPE. With this choice, the exchanged operators in the (12) OPE must have the form

OJ,k (x) = tr
(
D̂kZ̄D̂J−kZ̄

)
(4.15)

where

D̂ = zµ∂µ, (4.16)

and the operators exchanged in the (34) OPE will simply be their conjugates. These operators

have twist τ = 2 and spin J . However, they will not, in general, be conformal primaries. The

exchanged primary operator for spin J and twist 2 is given by a linear combination[15]

OJ (x) =
J∑

k=0

ak,J tr
(
D̂kZ̄D̂J−kZ̄

)
(4.17)
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where the coe�cients ak,J are determined by

J∑
k=0

ak,Jx
kyJ−k = (x+ y)JC

d−3
2

J

(
x− y

x+ y

)
(4.18)

4.2 Four-point integrands

We start by reviewing some results about the correlation function of four of these operators

[13]:

G4(xi, yi) =
∞∑
l=0

alG
(l)
4 (xi, yi) (4.19)

In the last equality G4 is expanded in powers of the t'Hooft coupling a = g2Nc/(4π
2) and

Nc is the number of colors in the theory - or, equivalently, the dimension of the matrices

ΦIappearing in the Lagrangian.

The tree-level contribution is given by:

G
(0)
4 (xi, yj) =

(
N2

c − 1
)2

4 (4π2)4

[(
y212
x212

y234
x234

)2

+

(
y213
x213

y224
x224

)2

+

(
y241
x241

y223
x223

)2
]

+
N2

c − 1

(4π2)4

(
y212
x212

y223
x223

y234
x234

y241
x241

+
y212
x212

y224
x224

y234
x234

y213
x213

+
y213
x213

y223
x223

y224
x224

y241
x241

) (4.20)

Using superconformal symmetry, the loop corrections G
(l)
4 (xi, yi) take the form

G(l)(xi, yj) =
2(N2

c − 1)

(4π2)4
R(xi, yj) F

(l)(xi) (4.21)

where the function R(xi, YJ) is given by

R(xi, yj) =
y212y

2
23y

2
34y

2
14

x212x
2
23x

2
34x

2
14

(
x213x

2
24 − x212x

2
34 − x214x

2
23

)
+
y212y

2
13y

2
24y

2
34

x212x
2
13x

2
24x

2
34

(
x214x

2
23 − x212x

2
34 − x213x

2
24

)
+
y213y

2
14y

2
23y

2
24

x213x
2
14x

2
23x

2
24

(
x212x

2
34 − x214x

2
23 − x213x

2
24

)
+
y412y

4
34

x212x
2
34

+
y413y

4
24

x213x
2
24

+
y414y

4
23

x214x
2
23

(4.22)

This allows us to extract all dependence on the polarization vectors YJ in the multiplicative

factor R(xi, YJ). Additionally, this function has no dependence on the coupling, so the problem

is signi�cantly simpli�ed. It is convenient to write the functions F (l) as
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F (ℓ) (x1, x2, x3, x4) =
x212x

2
13x

2
14x

2
23x

2
24x

2
34

ℓ! (−4π2)ℓ

ˆ
d4x5 . . . d

4x4+ℓf
(ℓ) (x1, . . . , x4+ℓ) (4.23)

Because F (l) is conformally invariant, the integrand functions f (l) obey a few symmetries. It

was shown in [13] that these symmetries are satis�ed by functions of the form

f (ℓ) (x1, . . . , x4+l) =
P (ℓ) (x1, . . . , x4+ℓ)∏

1≤i<j≤4+ℓ x
2
ij

, (4.24)

where P (ℓ) is a polynomial in x2ij , which must be symmetric under the permutations of all

4 + ℓ points and have appropriate conformal weights in each one. Using these properties, we

can determine the functions f (ℓ). The corresponding integrals can then be performed using

asymptotic expansions. The polynomials P (ℓ) up to three loops are given by

P (1) = 1 (4.25)

P (2) = x212x
2
34x

2
56 + permutations (4.26)

P (3) =
(
x212x

2
23x

2
34x

2
45x

2
15

) (
x267
)2

+ permutations (4.27)

We can use these results to calculate the functions F (ℓ) up to three loops.

4.3 Four 20' operators

So far, we have discussed how to obtain the integrands for the four-point function, as well

as how to calculate the integrals themselves using asymptotic expansions. This gives us an

expression for the four-point function in the OPE limit. By comparing with the conformal

block expression, we can read o� some OPE coe�cients and anomalous dimensions. The

conformal block expansion of the four-point function is given by

G4 =
1(

x212x
2
34

)2 ∑
k

c2OOkG∆k,Jk(z, z̄) (4.28)

where the conformal blocks G∆k,Jk are given by (2.89). The loop dependence in this expression

comes from the OPE coe�cients cOOk and from the dimensions∆k of the exchanged operators.

These can be expressed as
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cijk (a) =

∞∑
ℓ=0

aℓc
(ℓ)
ijk (4.29)

∆k (a) =∆
(0)
k +

∞∑
ℓ=1

aℓγ
(ℓ)
k (4.30)

Our goal now is to determine the coe�cients c
(ℓ)
ijk and γ

(ℓ)
k . Due to the structure of the

conformal block expansion, it is more straightforward to determine the loop corrections of

some product pijk of OPE coe�cients. In the case of the four-point function, a natural choice

would be pOOk = c2OOk. Using the explicit expression for the four-point conformal block in

four dimensions, equation (2.89), we can expand in the coupling a and obtain expressions for

the loop corrections G
(ℓ)
4 in terms of the CFT data. If we take the sequential light-cone limits

z̄ → 0, z → 0, we can determine from the explicit expression that the conformal block behaves

as

G∆,J (z, z̄) ∼
1

(−2)J
(zz̄)

τ
2 zJ 2F1

(
∆+ J

2
,
∆+ J

2
,∆+ J, z

)
(4.31)

We can see that contributions from higher-twist operators are subleading. Therefore, to leading

order in z̄, we can consider only the operators with the lowest twist, τ = 2. By equating the

expressions obtained this way to the ones we obtained earlier by doing the integrals, we can

determine the CFT data.

4.3.1 Tree level

We begin by studying the tree-level part of the correlator, which is given by equation (4.20).

Using the special polarization detailed earlier, this expression simpli�es to

G
(0)
4 =

(
N2

c − 1
)
u(1 + v)

16π8
(
x212x

2
34

)2
v

(4.32)

Taking the same limits in the conformal block, we can determine the CFT data at tree-level.

Some results are displayed in Table 4.1.

These results �t the pattern

p
(0)
J =

2J(J)!2

(2J)!
(4.33)

which agrees with the results in the literature ([16, 17], for example).
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J p
(0)
J

0 1

2 2
3

4 8
35

6 16
231

J p
(0)
J

8 128
6435

10 256
46189

12 1024
676039

14 2048
5014575

Table 4.1: CFT data obtained from the four-point function at tree level. The coe�cients p

are de�ned by pJ =
8π8c2OOJ
N2

c−1
, where cOOJ is the OPE coe�cient associated with the exchange

of an operator with twist τ = 2 and spin J .

4.3.2 One loop

The one-loop integrand is given by

f (1) =
P (1) (x1, . . . , x5)∏

1≤i<j≤5 x
2
ij

=
1

x212x
2
13x

2
14x

2
15x

2
23x

2
24x

2
25x

2
34x

2
35x

2
45

(4.34)

Therefore, the function F (1) is given by

F (1) = −g(1, 2, 3, 4) = −1

4π2

ˆ
d4x5

x215x
2
25x

2
35x

2
45

(4.35)

We have already calculated the integral g using asymptotic expansions. Using the explicit

form for the function F (1), we obtain the result

G(1) = −N
2
c − 1

8 (4π2)
R(1, 2, 3, 4)Φ(1) (z, z̄) (4.36)

Expanding the analytical result in powers of z and z̄ and comparing it with the conformal block

expansion, we can extract the OPE data at one loop. This data can be found in Table 4.2 for

twist-two operators up to spin 14. In principle, however, since we have an explicit expression,

we could determine the data up to arbitrary spin and higher twist using this method.

These results are also in agreement with [16].

4.3.3 Two loops

At two loops, the integrand is given by
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J p
(1)
J γ

(1)
J

0 0 0

2 −2 3

4 −410
441

25
6

6 − 8848
27225

49
10

J p
(1)
J γ

(1)
J

8 − 115040456
1127251125

761
140

10 − 53014438928
1749495609225

7381
1260

12 − 40330200644864
4638368350036575

86021
13860

14 − 2764313720840484608
1133832577565190628125

1171733
180180

Table 4.2: CFT data obtained from the four-point function at one loop. The coe�cients p are

de�ned by pJ =
8π8c2OOJ
N2

c−1
, where cOOJ is the OPE coe�cient associated with the exchange of

an operator with twist τ = 2 and spin J .

f (2) =
P (2) (x1, . . . , x6)∏

1≤i<j≤6 x
2
ij

=
1

x213x
2
14x

2
15x

2
16x

2
23x

2
24x

2
25x

2
26x

2
35x

2
36x

2
45x

2
46

+ permutations (4.37)

Using asymptotic expansions, we can obtain the result

F (2) =
1

42x213x
2
24

(
28− 16 log u+ 3 (log u)2 + 12 ζ(3)

)
+O (u) +O (Y ) (4.38)

This function can also be determined analytically. We can write it as

F (2) =
1

2
g(1, 2, 3, 4)2(x212x

2
34 + x213x

2
24 + x214x

2
23) + 2(h(1, 2; 3, 4) + h(1, 3; 2, 4) + h(1, 4; 2, 3))

(4.39)

where g(1, 2, 3, 4) was previously de�ned and

h(1, 2; 3, 4) =
x234

(4π2)2

ˆ
d4x5d

4x6
(x215x

2
35x

2
45)x

2
56(x

2
26x

2
36x

2
46)

=
1

16

1

x212x
2
34

Φ(2) (u, v) (4.40)

Once again, the analytic expression agrees with our result up to the given order. By comparing

with the conformal block expansion, we can determine the CFT data displayed in Table 4.3.

This data is also in agreement with the results in [16].

4.4 Five 20' operators

We now turn our attention to the �ve-point function of 20' operators:
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J p
(2)
J γ

(2)
J

0 0 0

2 7 + 3ζ3 −3

4 76393
18522 + 10

7 ζ3 −925
216

6 880821373
539055000 + 28

55ζ3 −45619
9000

8 5944825782678337
10663175654381250 + 12176

75075ζ3 −138989861
24696000

10 171050793565932326659
971893271952863032500 + 21472

440895ζ3 −12120281899
2000376000

12 14615179364935008540244231
275810510299034275520051250 + 846976

60063465ζ3 −17061829801679
2662500456000

14 566041205925631272638053216892969
36623992887821258804467129812890625 + 299963648

75293843625ζ3 −39197535449025593
5849513501832000

Table 4.3: CFT data obtained from the four-point function at two loops. The coe�cients p

are de�ned by pJ =
8π8c2OOJ
N2

c−1
, where cOOJ is the OPE coe�cient associated with the exchange

of an operator with twist τ = 2 and spin J .

G = ⟨O (x1, y1)O (x2, y2)O (x3, y3)O (x4, y4)O (x5, y5)⟩ (4.41)

Just like the four-point function, we can decompose this correlator in conformal blocks. For

�ve points, these are given by equation (2.98) with ∆5 = 2. Using this result, we can extract

OPE coe�cients.

4.4.1 Tree level

The tree-level contribution to this correlator is given by

G
(0)
5 ∝ y223y

2
24y

2
34y

4
15

x415x
2
23x

2
24x

2
34

+
y212y

2
23y

2
34y

2
45y

2
15

x212x
2
23x

2
34x

2
45x

2
15

+ permutations (4.42)

where the permutations being summed over are all the di�erent ways to arrange the points

into the con�gurations displayed in �gure 4.4.

Using the same special polarization as before for yi, i = 1, . . . , 4, this simpli�es to

G
(0)
5 =

8u1u3x
2
13(

x212x
2
34

)2
x215x

2
35[

ω1,2

(
1 +

1

u2u4
+ u5 +

u5
u4

)
+ ω3,4

(
u1 +

u1
u2

)
+ ω5,6

(
u3u5
u4

+
u3u5
u2u4

)]
, (4.43)
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Figure 4.4: The con�gurations contributing to the tree-level part of the �ve-point function.

(J1, J2, ℓ) p
(0)
J1J2ℓ

(0, 0, 0) 1
32

(2, 0, 0) 1
48

(2, 2, 0) 1
72

(2, 2, 1) 1
18

(2, 2, 2) 1
72

(4, 0, 0) 1
140

(4, 2, 0) 1
210

(J1, J2, ℓ) p
(0)
J1J2ℓ

(4, 2, 1) 4
105

(4, 2, 2) 1
35

(4, 4, 0) 2
1225

(4, 4, 1) 32
1225

(4, 4, 2) 72
1225

(4, 4, 3) 32
1225

(4, 4, 4) 2
1225

Table 4.4: OPE coe�cients obtained from the �ve-point function at tree level. The coe�cients
p are de�ned by pJ1J2ℓ = cOOJ1cOOJ2c

ℓ
J1J2O.

where

ωi,j = (yi5)
2 + (yj5)

2 (4.44)

and yi5 is the i-th component of the polarization vector y5. Because we will be taking the

limits x212, x
2
34 → 0, we will keep only the leading terms in this limit:

G
(0)
5 =

8ω1,2u1u3x
2
13(

x212x
2
34

)2
x215x

2
35

(
1 +

1

u2u4
+ u5 +

u5
u4

)
(4.45)

Because the dependence in y5 is contained in the simple prefactor ω1,2, we can study the cor-

relator without specifying a polarization for O (x5). Using the conformal block decomposition,

we can determine the tree-level OPE coe�cients. Some of these coe�cients are displayed in

table 4.4.

We can now try to �nd a pattern in this sequence of OPE coe�cients. In fact, the data we

found matches the expression
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p
(0)
J1J2ℓ

=
2J1+J2−8 (J1!)

3 (J2!)
3

(ℓ!)2 (2J1)! (2J2)! (J1 − ℓ)! (J2 − ℓ)!
(4.46)

4.4.2 One loop

At one loop, the integrand is given, for example, in [18]:

G
(1)
5 ∝ (F1234,5 + F1324,5 + F1243,5) + (5 ↔ 1) + (5 ↔ 2) + (5 ↔ 3) + (5 ↔ 4) , (4.47)

where

F1234,5 = D1234

(
y215y

2
25y

2
34

x215x
2
25x

2
34

+
y212y

2
35y

2
45

x212x
2
35x

2
45

)
(4.48)

D1234 =
1

x212x
2
34

Φ(1) (u, v)
(
2uy213y

2
24 + (u− 1− v)

u

v
y214y

2
23 + (v − 1− u) y212x

2
34

)
, (4.49)

where u and v are the four-point cross-ratios and the remaining terms are obtained by per-

muting the indices. Note that, when applying the permutations, one must also permute the

hidden indices in u and v. For example, when permuting 1 ↔ 3:

u =
x212x

2
34

x213x
2
24

→ x223x
2
14

x213x
2
24

= v, (4.50)

and, similarly, v → u. Because there are many such permutations, the de�nition of Φ(1) in

terms of z, z̄ , eq. (3.54) is clearly inconvenient to work with in this case. Although this

function has an explicit expression, we can derive a simpler expression from the previous

de�nition if we keep only the leading order in the �rst argument. First, note that taking the

sequential limits u→ 0, v → 1 is equivalent to taking the limits z̄ → 0, z → 0. Now, if we look

at eq. (3.54) and take the limit z̄ → 0, we get

Φ(L) (u, v) ∼
L∑

k=0

(−1)k(2L− k)!

k!(L− k)!L!
logk (zz̄)Li2L−k (z) (4.51)

If we take the same limit in the cross-ratios, we get

u→ zz̄, v → 1− z (4.52)
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(J1, J2, ℓ) p
(1)
J1J2ℓ

/p
(0)
J1J2ℓ

(0, 0, 0) 0

(2, 0, 0) −9
2

(2, 2, 0) −9

(2, 2, 1) −27
4

(2, 2, 2) −9
4

(4, 0, 0) −1025
168

(4, 2, 0) −1781
168

(J1, J2, ℓ) p
(1)
J1J2ℓ

/p
(0)
J1J2ℓ

(4, 2, 1) −11707
1344

(4, 2, 2) −1651
336

(4, 4, 0) −1025
84

(4, 4, 1) −14825
1344

(4, 4, 2) −1525
168

(4, 4, 3) −3125
672

(4, 4, 4) −17900
63

J γ
(1)
J

0 0

2 −3

4 −925
216

Table 4.5: OPE coe�cients obtained from the �ve-point function at one loop. The coe�cients
p are de�ned by pJ1J2ℓ = cOOJ1cOOJ2c

ℓ
J1J2O.

Therefore, we can rewrite the previous limit as

Φ(L) (u, v) ∼
L∑

k=0

(−1)k(2L− k)!

k!(L− k)!L!
logk (u)Li2L−k (1− v) (4.53)

For the speci�c case L = 1, we get

Φ(1) (u, v) ∼ 2Li2 (1− v)− log (u) log (1− v) (4.54)

This expression is valid to leading order as the �rst argument approaches zero. Fortunately,

the functions Φ(1) (x, y) we will have to evaluate can all be brought to a form in which this

limit is valid using the identities

Φ(1) (x, y) = Φ(1) (y, x) (4.55)

Φ(1) (x, y) =
1

x
Φ(1)

(
1

x
,
y

x

)
(4.56)

Now, using these results and the conformal block expression, we can determine some one-loop

OPE coe�cients and anomalous dimensions. These results are displayed in Table 4.5.

Note that the anomalous dimensions γ
(1)
J have already been determined from the four-point

function. Comparing the results, we can see that they are consistent. The OPE coe�cients

are in agreement with the closed expression found in [2].
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4.5 Four 20' and one Lagrangian

We now move on to the correlator of four 20' operators and one Lagrangian

G4;1 = ⟨O (x1, y1)O (x2, y2)O (x3, y3)O (x4, y4)L (x5)⟩ (4.57)

This correlator is useful because, using the Lagrangian insertion procedure, one can show that:

G4 = ⟨O1O2O3O4⟩ =
∞∑
l=0

g2lG(l)
n (4.58)

where

G(l)
n =

ˆ
ddx5 · · · ddxn+l ⟨O1O2O3O4L5 · · · Ln+4⟩|Born (4.59)

and Oi ≡ O (xi, yi), Li ≡ L (xi). The subscript �Born� indicates that we are evaluating the

correlator at the lowest nontrivial loop order. The integrands of the correlator G4;1 are known

for arbitrary positions xi [14], and we want to calculate the corresponding integrals in the

null-square limit. We will also expand the correlator in conformal blocks. The conformal

blocks for this correlator are similar to the �ve-point function:

G4;1 =
1(

x212
)2 (

x234
)2 ( x213

x215x
2
35

)2∑
k,j,l

pkjlGkjl (ui) (4.60)

where the conformal blocks are again given by 2.98, but in this case ∆5 = 4.

4.5.1 Tree level

We now move on to calculating the loop contributions to the correlation function. We start

with the tree level, which corresponds to the Born-level approximation in this case. Therefore,

the tree-level contribution can be read o� directly from the one-loop integrand of the four-point

function using (4.58):

G
(0)
4;1 =

−2(N2
c − 1)

(4π2)5
R (1, 2, 3, 4)

1

x215x
2
25x

2
35x

2
45

(4.61)

Comparing this with the conformal block expansion, we obtain the CFT data in table 4.6.
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(J1, J2, ℓ) p
(0)
J1J2ℓ

(0, 0, 0) 0

(2, 0, 0) 0

(2, 2, 0) 0

(2, 2, 1) 0

(J1, J2, ℓ) p
(0)
J1J2ℓ

(2, 2, 2) 18a

(4, 0, 0) 0

(4, 2, 2) 5a

(4, 4, 4) 250a

Table 4.6: OPE coe�cients obtained from the correlator G4;1 at tree level. The coe�cients
p are de�ned by pJ1J2ℓ = cOOJ1cOOJ2c

ℓ
J1J2L. The data is determined up to a normalization

constant a.

(J1, J2, ℓ) p
(1)
J1J2ℓ

(0, 0, 0) 0

(2, 0, 0) 0

(2, 2, 0) 0

(2, 2, 1) 0

(J1, J2, ℓ) p
(1)
J1J2ℓ

(2, 2, 2) 90a

(4, 0, 0) 0

(4, 2, 2) 7855
252 a

(4, 4, 4) 387725
252 a

J γ
(1)
J

0 0

2 −3

4 −925
216

Table 4.7: CFT data obtained from the correlator G4;1 at one loop. The coe�cients p are
de�ned by pJ1J2ℓ = cOOJ1cOOJ2c

ℓ
J1J2L. The data is determined up to a normalization constant

a.

4.5.2 One loop

At one loop, we only need to evaluate four-point integrals, which we already calculated previ-

ously. Evaluating the correlator to leading order in the cross-ratios u1 and u3and comparing

with the conformal block expansion, we can extract the CFT data.

Because these coe�cients are di�erent from those in the �ve-point function, we unable to �x

the constant a by comparison.





Chapter 5

Conclusion and outlook

In this thesis, we endeavoured to calculate correlation functions in N = 4 SYM theory, in

order to verify the duality with Wilson loops.

We started from the integrands of some of the loop contributions to these functions. We

described the method of asymptotic expansions, which can be used to evaluate those integrals

in the OPE limit. The integrals we encountered can be calculated exactly, however, and so

this method will be more useful for higher loop order, or when we consider more points.

By comparing the correlation functions with their conformal block expansions, we extracted

the loop contributions to the OPE coe�cients and anomalous dimensions from the four-point

function of 20' operators up to two loops, from the �ve-point function up to one loop, and

from the correlator of four 20' and one Lagrangian up to one loop.

To verify the duality (1.7) using this data, we would also need to calculate the relevant Wilson

loops, so this work is ongoing. Furthermore, as the procedure used here is easily extended

to higher loop orders - as well as di�erent correlators - interesting continuations of this work

would be calculating CFT data for the six-point function of half-BPS operators for higher

loops, and comparing the data with the dual Wilson loops.

Another possible avenue of research would be to study the properties of the loop contributions

to the �ve- and six-point functions of operators of the form

Ok = YI1 · · ·YIktr
(
ΦI1 · · ·ΦIk

)
(5.1)

For four points and large k, it was found [19] that imposing that the correlator have certain

properties at all loops, it is possible to determine it uniquely. It would be interesting to

examine higher-point functions to try to �nd out if this is possible for more than four points.
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