
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Analysis and Aggregation of
Vulnerability Databases with

Code-Level Data

Pedro Leite Galvão

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: João Carlos Viegas Martins Bispo

October 31, 2022

Analysis and Aggregation of Vulnerability Databases with
Code-Level Data

Pedro Leite Galvão

Mestrado Integrado em Engenharia Informática e Computação

October 31, 2022

Abstract

The use of open source libraries and frameworks has become a widely adopted practice and many
software projects nowadays, including commercial applications, have a large portion of its source
code based on open source libraries. This practice is beneficial in terms of reducing the cost and
increasing the speed of development, but has its costs in terms of security.

Many sources indicate that the number of disclosed vulnerabilities in open source packages
is increasing every year, and attackers often target the software supply chain instead of the code
of specific applications. The OWASP Top 10 lists Vulnerable and Outdated Components as the
sixth major security risk for web applications. These problems make it necessary for software
developers to manage and maintain the security of the dependencies in the projects in which they
work.

To facilitate handling this problem, many solutions have been proposed both in academic
literature and in the form of commercial products. There are several vulnerabilities scanners that
rely on open source vulnerability databases to extract the information necessary to their operation.

Of particular interest is the case of vulnerability databases with code level information, because
this kind of information can, among other applications, allow vulnerability scanners to identify the
location of the vulnerability in the source code, or train machine learning models for recognition
of patterns in source code that usually indicate the presence of vulnerabilities.

Project-KB is one of such databases in which code level information is available. Each entry
contains a list of commits that fix the vulnerability. This enables the vulnerability scanner Eclipse
Steady to identify vulnerable portions of code and analyse if they are reachable in a particular
context. To guarantee the reliability of its data, entries in Project-KB are inserted only after manual
analysis. The integration of different datasets would be beneficial to the operation of this project
as well as for applications and studies that rely on it.

In the present study we provide an objective analysis of different vulnerability databases in
terms of features, size, scope, as well as the reliability of the information they contain and deter-
mine the possibility of expanding Project-KB using some of these sources.

Keywords: Open source software, software vulnerabilities, code-centric vulnerability analysis

i

ii

Resumo

O uso de bibliotecas e frameworks de código aberto tornou-se uma prática amplamente adotada
e muitos projetos de software atualmente, incluindo aplicações comerciais, possuem grande parte
de seu código-fonte baseado em bibliotecas de código aberto. Esta prática é benéfica em termos de
redução de custos e aumento da velocidade de desenvolvimento, mas tem seus custos em termos
de segurança.

Muitas fontes indicam que o número de vulnerabilidades divulgadas em pacotes de código
aberto está aumentando a cada ano, e os invasores geralmente visam a cadeia de suprimentos de
software em vez do código de aplicativos específicos. O OWASP Top 10 lista “Componentes
Vulneráveis e Desatualizadas” como o sexto maior risco de segurança para aplicativos da web.
Esses problemas tornam necessário que os desenvolvedores de software gerenciem e mantenham
a segurança das dependências nos projetos em que trabalham.

Para facilitar o tratamento deste problema, muitas soluções têm sido propostas tanto na liter-
atura académica quanto na forma de produtos comerciais. Existem vários scanners de vulnera-
bilidades que contam com banses de dados de vulnerabilidades de código aberto para extrair as
informações necessárias à sua operação.

De particular interesse é o caso de bases de dados de vulnerabilidades com informações a nível
de código, pois esse tipo de informação pode, entre outras aplicações, permitir que scanners de
vulnerabilidade identifiquem a localização da vulnerabilidade no código-fonte, ou treinem mode-
los de aprendizado de máquina para reconhecimento de padrões em código-fonte que geralmente
indicam a presença de vulnerabilidades.

Project-KB é uma dessas bases de dados que disponibiliza informações a nível de código.
Cada entrada contém uma lista de commits que corrigem a vulnerabilidade. Isso permite que
o scanner de vulnerabilidade Eclipse Steady identifique partes vulneráveis do código e analise
se elas podem ser alcançadas em um contexto específico. Para garantir a confiabilidade de seus
dados, as entradas no Project-KB são inseridas somente após análise manual. A integração de
diferentes conjuntos de dados seria benéfica para o funcionamento deste projeto, bem como para
aplicações e estudos que dependem dele.

No presente estudo, fornecemos uma análise objetiva de diferentes bases de dados de vulner-
abilidades em termos de recursos, tamanho, escopo, bem como a confiabilidade das informações
que elas contêm e determinamos a possibilidade de expandir o Project-KB usando algumas dessas
fontes.

Keywords: Software open source, vulnerabilidades de software, análise de vulnerabilidades baseada
em código

iii

iv

Acknowledgements

This work was developed as part of an internship in SAP Labs France, with the Open Source
Security Analysis team.

Pedro Galvão

v

vi

“Until I began to learn to draw,
I was never much interested in looking at art.”

Richard P. Feynman

vii

viii

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 2
1.3 Objectives . 2

1.3.1 Overview of the Current State of Vulnerability Databases 2
1.3.2 Expanding Project-Kb . 2
1.3.3 Improving Eclipse Steady . 3

1.4 Document Structure . 3

2 Background 5
2.1 Security Content Automation Protocol . 5

2.1.1 Common Vulnerabilities and Exposures 5
2.1.2 Common Weakness Enumeration . 5
2.1.3 Common Vulnerability Scoring System 6
2.1.4 Common Platform Enumeration . 6

2.2 Eclipse Steady . 6

3 Related Work 9
3.1 Studies Analysing and Comparing VDB’s . 9

3.1.1 Taxonomic Analysis of Classification Schemes in Vulnerability Databases 9
3.1.2 A Survey on Vulnerability Assessment Tools and Databases 9
3.1.3 Which is the Right Source for Vulnerability Studies? An Empirical Anal-

ysis on Mozilla Firefox . 10
3.2 Aggregation and Crawling of VDB’s . 10

3.2.1 FASTEN Vulnerability Producer . 10
3.2.2 Big-Vul . 12
3.2.3 CrossVul . 12
3.2.4 Patchworking . 12

3.3 Conclusion . 12

4 Databases for Publicly Known Vulnerabilities 15
4.1 Project KB . 15
4.2 National Vulnerability Database . 15
4.3 OSV . 16

4.3.1 Github Advisory Database . 16
4.3.2 Python Packaging Advisory Database 17
4.3.3 Go Vulnerability Database . 17
4.3.4 OSS-Fuzz Vulnerability Database . 17

ix

x CONTENTS

4.3.5 Rust Security Advisory Database . 17
4.3.6 Global Security Database . 18

4.4 Ruby Security Advisory Database . 18
4.5 SECBENCH . 18
4.6 Devign . 18
4.7 Commercial Databases . 19

4.7.1 Snyk Vulnerability Database . 19
4.7.2 White Source Vulnerability Database 19
4.7.3 Debricked . 19
4.7.4 PyUp Safety DB . 20

4.8 Conclusion . 20

5 Implementation 23
5.1 Pipeline . 23

5.1.1 Import Databases . 25
5.1.2 DB Analysis, Overlap and Consistency 25
5.1.3 Filter . 25
5.1.4 Merge . 25
5.1.5 Export Statements . 25

5.2 Improvements in Eclipse Steady . 28
5.2.1 Previous Architecture . 28
5.2.2 Profiling . 29
5.2.3 New Architecture . 29
5.2.4 Final Results . 30

6 Quantitative Analysis on the Existing Databases 31
6.1 Repositories . 32
6.2 Commits and Releases . 34
6.3 Vulnerabilities Languages . 34
6.4 Overlap . 37
6.5 Consistency Between Databases . 38
6.6 New Statements for Project-KB . 44

7 Conclusions and Future Work 47
7.1 Conclusions . 47
7.2 Future Work . 47

References 49

List of Figures

4.1 Sources of Data . 21

5.1 Pipeline . 24
5.2 Factories UML Diagram . 26
5.3 Project-KB Statement File . 27

6.1 Vulnerabilities’ Languages per Database . 36
6.2 Vulnerabilities’ Languages per Database (except NVD) 36
6.3 Vulnerabilities’ Languages per Database (only the smallest databases) 37
6.4 Commit Consistency Heatmap . 40
6.5 Repository Consistency Heatmap . 41
6.6 Completeness Heatmap . 42
6.7 Languages of Statements Coming from Each VDB 45
6.8 Venn Diagram . 46

xi

xii LIST OF FIGURES

List of Tables

4.1 Databases features . 20

5.1 Time to Process Vulnerabilities . 30

6.1 Vulnerabilities with Repository Links . 33
6.2 Vulnerabilities with Releases and Commit Data 35
6.3 Overlaps Between Pairs of Databases . 38
6.4 Overlaps Between Pairs of Databases . 39
6.5 Manually Curated Structured Data . 43

xiii

xiv LIST OF TABLES

Abbreviations

OSS Open Source Software
API Application Programming Interface
SCAP Security Content Automation Protocol
CVE Common Vulnerability and Exposures
CWE Common Weakness Enumeration
CPE Common Platform Enumeration
CVSS Common Vulnerability Scoring System
CNA CVE Numbering Authority
NVD National Vulnerability Database
AST Abstract Syntax Tree
CFG Control Flow Graph
DFG Data Flow Graph
SAST Static Application Security Analysis
DAST Dynamic Application Security Analysis
JVM Java Virtual Machine
PyPA Python Packaging Authority
GSD Global Security Database

xv

Chapter 1

Introduction

1.1 Context

Numerous software vulnerabilities are found and disclosed every year in open source projects.

In this context, one of the main solutions for ensuring software security, is the use of automated

vulnerability detection. Several tools were developed to respond to this necessity.

A particular area of interest is the detection of vulnerabilities in Open Source Software (OSS)

libraries. A vulnerability in a software component can become exploitable in many of the projects

that import this component. The fact that this information becomes visible to anyone makes it

easy for attackers to exploit it. Very often, in spite of patches made to fix vulnerabilities, other

projects continue to use outdated and vulnerable versions of the libraries containing them. This is

what OWASP Top 10 indicated in 2021 as being the sixth major security risk for web applications

[28].

Vulnerability Databases help with the task of identifying vulnerable dependencies and possible

remediations to security issues. In this context, many different datasets have been formulated

with different purposes, such as for feeding vulnerability scanners [30] and for training machine

learning models for vulnerability detection.

The databases we will see in this study contain instances of vulnerabilities in OSS. Each entry

of each database corresponds to a vulnerability found in a specific project and publicly disclosed.

Each database provides different features associated to the vulnerabilities such as the project to

which it belongs, the affected version, a classification, etc.

Of particular relevance for our study are the vulnerability databases that include code-level

data about the vulnerability. This means data that enables the identification of which portion of

code is vulnerable. As we will see, this kind of information can be used, among other applications,

to increase accuracy of vulnerability scanners.

1

2 Introduction

1.2 Motivation

This study was done in the context of an internship in Security Research in SAP Labs France. The

company developed two products that are relevant for this study: Project-KB and Eclipse Steady.

Project-KB provides a set of vulnerabilities with code-level data whose reliability is assured

by a process of manual verification. However it covers a relatively small amount of vulnerabilities

when compared to some of the other databases, like NVD and OSV. The integration of other

sources would allow tools and studies based on Project-KB to benefit from a higher number of

vulnerabilities.

Eclipse Steady is a vulnerability scanner that uses static and dynamic analysis to assess reach-

ability of vulnerable sections of code[43]. As we will see in more detail in other chapters, the two

tools are closely related to each other, because Eclipse Steady uses Project-KB as source of data

about vulnerabilities, and uses the commit data to identify the vulnerable sections of code. The

expansion of the data in Project-Kb would allow Eclipse Steady to detect many vulnerabilities that

are currently not covered by the project.

However, Eclipse Steady takes a relatively long time to process the vulnerability data imported

from Project-Kb, and the expansion of the database would increase this time even more. The

company required changes to be implemented in Eclipse Steady to reduce the execution time and

improve its maintainability and architecture.

1.3 Objectives

The present study has 3 main objectives which are explained in detail in the following subsections.

1.3.1 Overview of the Current State of Vulnerability Databases

Many vulnerability databases have been formulated with different purposes, have characteristics

in common and contain overlapping information. An objective analysis can help software devel-

opers and security researchers decide which datasets are more appropriate for their specific needs.

Besides that, this analysis also helps us understand how these databases can be used to expand

Project-KB.

For this reason the first goal of this study is to provide an overview of currently available

vulnerability databases, its different features and possible applications in software security. We

also provide a set of measures that evaluate the consistency between pairs of databases, and use this

in association with the knowledge of the databases formulation processes to analyse the reliability

of each one of them.

1.3.2 Expanding Project-Kb

We developed a pipeline to adapt the entries in some databases to the format used by Project-KB,

allowing for its expansion in the future. The result is larger database

1.4 Document Structure 3

1.3.3 Improving Eclipse Steady

The final goal is to improve the efficiency of some processes in Eclipse Steady, allowing it to

import vulnerabilities in less time.

1.4 Document Structure

In chapter 2 we introduce some concepts that will be useful to understand other parts of the study.

More specifically, we will briefly explain the Security Content Automation Protocol (SCAP) and

Eclipse Steady.

In chapter 3 we present an overview other studies with closely related goals. That is on one

side studies that compare and evaluate vulnerability databases and in the other side studies that

aggregate data from different sources to build new vulnerability databases.

In chapter 4 we present an overview of the current state of vulnerability databases, with a focus

on databases that cover open source software and code-level data.

In chapter 5 we describe the implementation of the pipeline we used to achieve the two first

goals described in section 1.3 and the improvements done in Eclipse Steady to achieve the last

goal.

In chapter 6 we present the results obtained using the pipeline. We present a detailed quanti-

tative analysis on the existing databases and finish the chapter by briefly describing the database

obtained by creating statements in the Project-KB format.

Finally, in chapter 7 we present our final conclusions and possibilities for future work.

4 Introduction

Chapter 2

Background

In this chapter we explain concepts that will be relevant for understanding other parts of this study.

2.1 Security Content Automation Protocol

Security Content Automation Protocol (SCAP) is a set of standards for automated vulnerability

management that enables interoperability between tools [26]. The standards include a series of

catalogs and systems for cataloging and assessing severity of vulnerabilities. Of particular im-

portance for the present work are the Common Vulnerabilities and Exposures (CVE), Common

Weakness Enumeration (CWE), Common Vulnerability Scoring System (CVSS) and Common

Platform Enumeration (CPE).

In this section we explain these standards, as they will be relevant for understanding the content

of many vulnerability databases.

2.1.1 Common Vulnerabilities and Exposures

The CVE system provides a list of records for publicly disclosed vulnerabilities. It is a set of

entries for specific instances of vulnerabilities within software projects. Each entry in this system

includes an identification number, description and one or more public references. This system is

operated by the Mitre corporation and maintained through the collaboration of many institutions,

recognized as CVE Numbering Authorities (CNA).

2.1.2 Common Weakness Enumeration

For identifying the type of the vulnerability, the CWE system is used. This is a category system

also maintained by the Mitre corporation, and is used to identify and catalog common types of

vulnerabilities found in software systems, independently of its instantiations in specific projects.

5

6 Background

For example, CWE-787 refers to “Out-of-bounds Write” and CWE-79 refers to “Improper

Neutralization of Input During Web Page Generation (’Cross-site Scripting’)”

2.1.3 Common Vulnerability Scoring System

CVSS is a standard for assessing the severity of vulnerabilities.

It defines a set of base metrics:

• Attack Vector

• Attack Complexity

• Privileges Required

• User Interaction

• Scope

• Confidentiality Impact

• Integrity Impact

• Availability Impact

These scores are to be assigned through the analysis of an specialist following the specifica-

tions of the system [12]. They are then combined to yield a result from 0 to 10. Optional metrics

called Temporal Metrics and Environmental Metrics can also be assigned to refine the evaluation.

2.1.4 Common Platform Enumeration

Standard for assigning names to IT products and platforms. The CPE identifier is divided in the

following parts:

cpe:<cpe_version>:<part>:<vendor>:<product>:<version>:<update>

:<edition>:<language>:<sw_edition>:<target_sw>:<target_hw>:<other>

The component part indicates whether the product is hardware (h), application (a) or oper-

ating system (o). This information will be useful later in this study, since the hardware vulnerabil-

ities are not relevant for us and can be filtered.

2.2 Eclipse Steady

As previously mentioned, code-level vulnerability data can be useful to increase accuracy of vul-

nerability scanners. Some vulnerability scanners, like npm audit [27], do not use this kind of

data and are only able to determine the presence of vulnerable dependencies, without verifying

the reachability of the vulnerable code. This can lead to false positives since in many cases the

vulnerable functions of the libraries are never used in the context of the application that imports it.

2.2 Eclipse Steady 7

False positives are a significant problem for software developers since there are costs in treating

potential threats and it is important to know what should be prioritized.

A study published in 2015 [29] demonstrated the use of dynamic analysis for determining

reachability of vulnerable code. This paper explores the use of known patches for the vulnerabili-

ties and uses them to determine what is the vulnerable part of the source code. This approach was

used to develop the Vulas tool and later used to develop an Eclipse plugin called Eclipse Steady.

The architecture implemented includes a Patch Analyzer, whose function is to interact with a

versioning system to compare the constructs in the source code before and after the commits that

fix the vulnerability. The constructs changed by the commits are considered to be vulnerable.

A Runtime Tracer is responsible for collecting the trace for each executed programming con-

struct. Then, it is possible to verify if any of the executed constructs are contained in the set of

vulnerable constructs.

This approach is not able to completely avoid false positives and false negatives. False posi-

tives can be reported because vulnerability exploitability may depend on factors such as the pres-

ence of sanitization techniques, which are not analyzed in this approach. False negatives may

happen mainly for insufficient coverage by the dynamic analysis.

The problem of false negatives can be mitigated by adding well written tests that ensure good

coverage, but it is not possible to ensure that all dangerous paths are analysed. Often a few corner

cases can be of particular importance to the attackers.

The article concludes that this approach using dynamic analysis provides strong evidence that

a vulnerability is reachable in the context of an application, but not as much strong evidence in the

complementary case, when the vulnerability is unreachable. In the latter case, static analysis can

more safely assure that the constructs are unreachable.

Considering this point, the research was further developed in [31] adding the use of static

analysis. A call graph is built allowing to search for execution paths to the vulnerable constructs.

The call graph however is only an approximation and the static analysis struggles to deal with some

Java features such as reflection, and service loaders. This difficulty can lead to false negatives, but

in many cases can be overcome by the dynamic analysis.

The researchers point that static and dynamic analysis act complementary to each other, be-

cause each one has different limitations. In this new version of the tool, it is possible to start the

static analysis from methods executed by the dynamic analysis. This feature allows to expand the

set of found constructs, often reaching vulnerabilities that would not be found by any of the two

types of analysis alone.

8 Background

Chapter 3

Related Work

In this chapter we present other studies aimed at comparing or aggregating information from Vul-

nerability Databases.

3.1 Studies Analysing and Comparing VDB’s

Other studies presented overviews of vulnerabilities databases analysing its data quality, features

or applications. In the following subsections we present some of these studies.

3.1.1 Taxonomic Analysis of Classification Schemes in Vulnerability Databases

[48] provides a comparative study of information contents in prominent vulnerability information

sources. The study compares the features and information present in IBM ISS X-Force, NVD,

Security Focus, OSVDB, Secunia, US-CERT, VNDB and CVE. The focus of this study is on

classification schemes used by different databases to determine cause, impact and severity of vul-

nerabilities. The authors provide an overview of the features and classification schemes used in

each of these databases, and argues for the necessity of a common classification scheme.

3.1.2 A Survey on Vulnerability Assessment Tools and Databases

The study in [21] presents an analysis on open-source databases with the purpose of enabling

developers to make informed decision on which ones to select. The authors determine a set of

criteria to be taken into consideration when making this decision.

The first set of criteria is the information covered by the databases regarding the vulnerabilities.

Ideally, each entry of the database should include information about the scope, impact & risk,

resolution, affected products and their vendors, exploit, categorisation and relations with other

vulnerabilities.

9

10 Related Work

The second set of criteria is based to the main capabilities of the VDB in terms of interfacing,

standards support, information freshness and user support.

Twenty databases are considered in the study, including not only databases for instances of

vulnerabilities (e.g. CVE and NVD), but also other kinds of data, like classification schemes (e.g.

CWE) and rankings (e.g. OWASP Top 10). An overview is provided on the evaluation of these

databases according to the mentioned criteria.

3.1.3 Which is the Right Source for Vulnerability Studies? An Empirical Analysis
on Mozilla Firefox

This study presents an analysis of the impact of data quality on vulnerability studies. It presents

an overview of features of different databases and their applications to other studies. A total of 14

databases are included.

The study presents an analysis on the data quality of Mozilla Firefox Security Advisories, and

concludes that many papers based on it potentially have compromised results because the data is

incomplete and biased, partially due to the fact that this database only includes fixed vulnerabili-

ties.

3.2 Aggregation and Crawling of VDB’s

We found four other works that, like ours, aim at extracting information from one or more VDB’s

to obtain a database with code level data. The database most commonly used for this is NVD.

Each study presents its own methods to extract data from it and small differences in imple-

mentation lead to different results even when using the same data sources. For example they may

consider different repository domains, such as Github, Google Android or Mercurial.

In the following subsections we provide a brief description of each these studies and their

methods.

3.2.1 FASTEN Vulnerability Producer

The goal of the FASTEN project is to use software package management more intelligent to make

software ecosystems more robust [10]. The project relies on the creation of Fine-Grained Call

Graphs (FGCG) at function level to assess risk posed by vulnerable code.

In order to create the FGCG’s it needs to gather information from vulnerability databases

containing code level data. For this purpose the FASTEN Vulnerability Producer was developed.

It aggregates and enriches information from the following sources:

• NVD JSON Feed

• GitHub Advisories

• MSR 20191

3.2 Aggregation and Crawling of VDB’s 11

• MSR 20202 (Big-Vul)

• Safety DB

• cvedb (by fabric8-analytics)

• victims-cve-db

• Debian Security Tracker

• SAP project-kb

For this purpose, a parser was created for each these databases.

The references that are found to be associated to each vulnerability are handled by the program

to figure out whether it is possible to use them to extract patch diffs, that is the lines of code

changed from the vulnerable version to the patched version of the project. The following sources

are considered in order to obtain this information:

• GitHub Commits

• GitHub Pull Requests

• GitHub Issues

• GitLab Commits

• GitLab Merge Requests

• GitLab Issues

• BitBucket Commits

• BitBucket Pull Requests

• BitBucket Issues

• Bugzilla bugs

• JIRA tickets

• Git Trackers Commits

• SVN Revisions

• Mercurial Revisions

• Apache Mailing List

12 Related Work

3.2.2 Big-Vul

Obtained crawling from NVD and looking for paths to commits [9]. CVE entries that have refer-

ences to repository paths are selected and the crawler looks for traversal paths to code commits.

The work was focused on Github repositories and a few products with their own Git server, such

as Google Android. It looks for additional information in https://www.cvedetails.com/.

The entries include the following features: CVE identifier, CWE, description, publish and

update dates, list of commit links, changed files and metrics associated to the vulnerability severity

and impact.

3.2.3 CrossVul

Similarly to Big-Vul, this dataset was built by crawling the NVD for Github repository links [24].

The references to commits found in the entries are kept as they are and references to Pull Requests

are used to collect sets of commits. They also filter invalid links and links that do not point to pull

requests or commits. The files modified in the commits are retrieved using the git-diff command

and the test files are filtered.

This dataset contains CVE identifiers, CWE, commit links and changed files.

3.2.4 Patchworking

The goal of the study is to analyse vulnerability patches according to its classification and verify if

vulnerabilities of the same type are solved by applying the same kind of code transformations [4].

For achieving this goal, the authors used entries from Project-KB and expanded the dataset by

mining NVD. They used NVD entries from 2002 to 2018 and filtered out entries already included

in Project-KB. To obtain links to repositories and fix commits they extracted URL’s containing the

substrings git, svn, cvs, hg or mercurial, and reverse-engineered them to obtain commit ids.

Their analysis was focused on Java projects, so they removed URL’s that pointed to repositories

that did not contain any Java files.

This dataset includes fields for repository links, commit identifiers, CVE’s, CWE’s, CWE

descriptions and repository type (which can be git, svn, mercurial or cvs).

3.3 Conclusion

In relation to the other studies that analyse and compare VDB’s, we present the following new

contributions:

• We focus on databases that are useful for open source security and analyse the presence of

code-level information in each database.

• We analyse a different set of databases, including some that have been developed more

recently and databases developed for academic studies.

https://www.cvedetails.com/

3.3 Conclusion 13

• We present an update on the state of the main Vulnerability Databases. Some of the men-

tioned studies were performed years ago and contain outdated information.

• We provide a more detailed quantitative analysis which was not present in these studies,

measuring languages of the affected projects, overlaps between databases, and other useful

information.

• We present a method to measure the completeness and consistency of each database with

relation to the others, as well as the conclusions obtained by measuring it.

Compared to Big-Vul, CrossVul and Patchworking, our study presents similar methods for

extracting information from NVD, but also aggregates information from multiple other sources,

and our implementation is easily extensible to include even more sources.

FASTEN is the work whose goals are most similar to ours, since it also aims at aggregating

vulnerability data from several sources with the final objective of enabling code-level analysis.

Our project covers a different set of databases and the final format obtained is different because it

is specifically targeted to Project-KB.

14 Related Work

Chapter 4

Databases for Publicly Known
Vulnerabilities

In this chapter we provide several examples of databases of disclosed open source vulnerabilities.

Some of the datasets are obtained by automatic processes, others are manually curated. Different

datasets contain different kinds of metadata related to such vulnerabilities and allow vulnerability

scanners to implement different approaches to its assessment and mitigation.

We analyze the purposes, sources, formulation process and features of each of them. Particu-

larly interesting for our study is whether the databases include fields for representing fix commits

in a structured way. This allows us to more easily and reliably adapt the data to the format used in

Project-KB.

4.1 Project KB

Project-KB was created at SAP with the main purpose of feeding the vulnerability scanner Eclipse

Steady, but also to provide data to enable research in security [30].

The main source for the data in Project-KB was the NVD particularly focusing on Java projects

used at SAP products or internal tools.

The project is open source and is maintained by SAP security researchers.

Includes for each vulnerability the corresponding CVE or other identifier. Can contain a list

of fix commits or a list of affected and unaffected artifacts or both.

4.2 National Vulnerability Database

NVD is the U.S. government repository of vulnerability data. Content of NVD is based on anal-

ysis of the entries published to the CVE Dictionary. NVD relies on vendors, third party security

15

16 Databases for Publicly Known Vulnerabilities

researchers and vulnerability coordinators to provide information about vulnerabilities which are

then analyzed by NVD staff and used to associate more data to each CVE using SCAP.

Each entry contains data about one vulnerability, identified by one CVE, to which a CVSS

score and one more CWE’s and CPE’s may be associated. A text description is also provided for

each vulnerability.

NVD does not contain any field specifically for listing code-level information, like fix com-

mits. However, the entries usually contain also URL’s to related resources. This resources may

include advisories pages, software repositories, fix commits, pull requests issues, etc. NVD does

not provide any guarantees regarding these references. As stated in their website: “No inferences

should be drawn on account of other sites being referenced, or not, from this page.”

4.3 OSV

Created by Google with the main goal of providing information about when security vulnera-

bilities were introduced and fixed. Provides a common schema for representing Open Source

Vulnerabilty data. The schema provided by OSV is one of the most complete in terms of features

provided. Besides the data included by NVD, the OSV also provides fields for affected packages,

the ranges of affected versions, commits that introduced and fixed the vulnerabilities, list of aliases

(for vulnerabilities that have different id’s in different databases) and credits field, which specifies

the person or entity responsible for the discovery, patch or other event in the vulnerability life

cycle. However, these fields are not necessarily present for all the vulnerabilities. Also contains

a field for severity score, which can be given using CVSS. The schema not support other metrics

but may be extended for this purpose.

OSV database includes vulnerability data aggregated from different sources:

• Github Advisory Database

• Python Packaging Advisory Database

• Go Vulnerability Database

• Rust Advisory Database

• OSS-Fuzz

• Global Security Database (GSD)

In the following sections we see each of them in more detail.

4.3.1 Github Advisory Database

Public database maintained by Github [?]. Any person with admin permissions in a Github repos-

itory can create an advisory and request Github to review it. Github does not explain in detail how

the review process works.

4.3 OSV 17

The database contains more than 170,000 vulnerability reports, of which more than 9,000 were

reviewed [15]. The reviewed entries normally include references to affected and patched versions.

There is no field for fix commits, but sometimes contains reference links to them.

4.3.2 Python Packaging Advisory Database

Entries are created or edited by creating Pull Requests in a Github repository [33]. Many of the

existing entries were discovered automatically using a tool called Vuln feeds. This tool uses a

set of heuristics to match CVE’s with corresponding packages and versions. It can yield false

positives, and sometimes human action is required to decide on how to proceed.

The repository belongs to Python Packaging Authority (PyPA) It is a working group that main-

tains a core set of software projects used in Python packaging [33]. PyPA goals include: “To

provide a relatively easy to use software distribution infrastructure that is also fast, reliable and

reasonably secure.” [34]

4.3.3 Go Vulnerability Database

Vulnerabilities reports are curated by the Go Security team. The data comes directly from Go

package maintainers or sources such as MITRE and GitHub [16].

4.3.4 OSS-Fuzz Vulnerability Database

OSS-Fuzz is a fuzzing tool developed by Google [17]. Fuzzing is a kind of testing technique

that consists in providing many different inputs to a program and monitoring it for unexpected

behaviors.

This tool is continually used for testing open source projects and its findings are published in

an open repository in Github.

The analysis performed by the tool allows to determine the commit ranges and versions in

which the vulnerabilities affect the project. The resulting data is then automatically imported to

the repository, without reviews by humans. The entries are regularly updated by an automated

process, but can also be manually updated by users, via Pull Requests.

4.3.5 Rust Security Advisory Database

Maintained by the Rust Secure Code Working Group based on security advisories filed against

Rust crates published in https://crates.io [41]. Security bugs are reported in pull requests

in an open repository.

The repository is available in markdown format, with a set of fields that are specific to this

database, and also in json format, following the OSV schema.

Sometimes the entries include a list of affected functions, which is an information that is

normally not available in other databases that use the OSV format.

https://crates.io

18 Databases for Publicly Known Vulnerabilities

4.3.6 Global Security Database

Created by the Cloud Security Alliance, a nonprofit organization, with the goal of addressing

gaps between the vulnerability identifiers space and the current needs of industry [2]. The project

follows an open source model.

4.4 Ruby Security Advisory Database

Open source database maintained by the users community in a Github repository [39]. New entries

are introduced by users via Pull Requests.

There is a script created for synchronizing this with Github Advisory Database, verifying if

there are vulnerabilities that were still not commit to the Ruby database. However this process

is not completely automated, and this script requires a user to complete the vulnerability data

afterwards.

The database does not include fix commits, but includes lists of patched and unaffected ver-

sions.

4.5 SECBENCH

Database created mainly for the purpose of testing static analysis tools [38]. Results from mining

248 projects from Github for 16 different patterns of security vulnerabilities and attacks.

The repositories were selected in a way to ensure the presence of different programming lan-

guages, principally the 5 most popular languages in Github at this time: JavaScript, Java, Python,

Ruby and PHP. The authors also ensured the presence of repositories of different sizes. Their goal

by doing this is not to ensure a good coverage of the most relevant projects, but rather to have

a dataset that is representative of the whole Github. That involves the inclusion of projects of

different sizes, which are maintained by developers with different skill levels.

The mining was done in two steps, first looking for a set of patterns in commit messages and

then manually verifying the commits, including the source code. Most vulnerabilities do not have

CVE’s or any other identifier.

4.6 Devign

Manually collected dataset used to train a machine learning model [53]. Collected from only 4

projects: FFmpeg, Qemu, Linux, Wireshark [52].

Their process was composed of two main steps: first the commits are checked by a group

of bachelor security researchers and labels are assigned to it, then, if there is an inconsistency

between them, a senior researcher verifies it. If the group is not sure about a commit, it remains

out of the dataset.

4.7 Commercial Databases 19

The dataset includes fix commits and code of the affected functions for all the entries. Each

entry contains exactly one fix commit. It does not contain any vulnerability Identifiers, CWE,

CVSS or any other metrics.

4.7 Commercial Databases

Some companies develop their own vulnerability databases for the purpose of feeding their vul-

nerability scanners. Each of these is collected in a different way and contains features that are

appropriate to the needs of their products. The databases presented here are not necessarily in

public domain, but their data is accessible in the respective websites or API’s.

4.7.1 Snyk Vulnerability Database

Maintained by Snyk Intelligence Security based on multiple sources. The database is publicly

available and contains 1166 vulnerabilities disclosed by Snyk Security Researchers [46].

Like NVD, Skyk database provides CWE, CVSS and a list of reference links. Not all the

vulnerabilities in the database have an associated CVE, because the data comes from multiple

sources. It also provides information about affected packages and versions, but not using CPE.

Each entry contains a text field describing how to fix it, which in many cases indicates the patched

version to which the affected package can be updated.

Besides the CVSS, it also includes scores to attack complexity, and potential damages to con-

fidentiality, availability and integrity of the system [46]. This scores helps the developer evaluate

the severity.

All the entries also include a credits field for the entity that disclosed the vulnerability.

4.7.2 White Source Vulnerability Database

Maintained by White Source by aggregating data from multiple sources [50]. Does not contain

references to commits in a structured format, but has a text field for fixes. This field often contain

a reference to a fixed release. Also provides CVE, CWE and CVSS. Does not contain any field

specifically for listing affected versions.

4.7.3 Debricked

Debricked collects vulnerability data from NVD Database, NPM, C# Announcement, FriendsOf-

PHP’s security advisories, Go Vulnerability Database, PyPA Python Advisory Database, GitHub

Issues, GitHub Security Advisory, and others [7]. The process is fully automated, and involves

steps to clean the data, but the methods are not explained in the documentation.

The entries include identifiers, CVSS scores and lists of affected and safe dependencies [8].

Also contains a field with suggested fixes, indicating the lines of code that need to be changed.

However all this information is not necessarily available for every vulnerability.

20 Databases for Publicly Known Vulnerabilities

Database Fix Com-
mits

Affected
Versions

Patched
Versions

CVE CWE Assessment
Metrics

NVD N Y N Y Y CVSS
Project-KB Y Y Y Y N N
OSV Y Y Y Y Y CVSS
Ruby N Y Y Y N CVSS
SECBENCH Y N N Y Y CVSS
Devign Y N N N N N
Big-Vul Y N N Y Y Several
CrossVul Y N N Y Y N
Patchworking Y N N Y Y N
Snyk Y Y Y Y Y Several
Whitesource Y N Y Y Y CVSS
Debricked Y Y Y Y Y CVSS
Safety DB N Y N Y N N

Table 4.1: Databases features

4.7.4 PyUp Safety DB

Maintained by PyUp Cyberintelligence Team which monitors Python packages for security vul-

nerabilities [37]. These database is used to feed their vulnerability scanner [36].

The entries include CVE’s or identifiers following their own enumeration system, a description

of each vulnerability and an indication of what are the affected versions. There are no fields for

repositories or fix commits, but this information can often be found in the description.

This database is under the license CC BY-NC-SA 4.0 which allows for copy, redistribution and

transformation of the material under certain conditions for non commercial purposes.

4.8 Conclusion

We list in table 4.1 what features are covered by the format provided by each vulnerability database.

We only analyse here whether the feature can be present in a structured way, meaning that there is

a field dedicated to this information in the database. Notice that the format used by OSV is also

implemented by other databases (PyPA, Go, RustSec, Github, GSD), so they can have the same

features.

The databases that include fix commit data in a structured way are specially interesting for the

present study, since they can be easily adapted to Project-kb’s format. Databases which do not

include a field for this information can still be used for this purpose because the fix commit can in

some cases be extracted from other fields (e.g. the description).

We noticed there are many database whose formulation process include an automated impor-

tation of entries from other databases. To help understand the sources of data of each one of them

we show these relations in figure 4.1. In this diagram we represent these relations using arrows

pointing from data sources to the databases to which they are imported. This figure illustrates only

4.8 Conclusion 21

Figure 4.1: Sources of Data

the existence of automated processes integrating the databases and is not necessarily complete,

some sources are left out of this diagram. Notice also that the existence of an automated process

connecting two databases does not necessarily imply that all of the entries of one of them are im-

ported to the other. In this diagram are not included the databases that don’t have any connection

of this kind to the other databases.

22 Databases for Publicly Known Vulnerabilities

Chapter 5

Implementation

Some of our main goals are the quantitative analysis of a set of Vulnerability Databases, extraction

of code-level data from them and the creation of statements in Project-KB’s format.

These goals are achieved by the same program, which is described in detail in this chapter.

5.1 Pipeline

In figure 5.1 we see the pipeline created to achieve our goals. The steps in this process are the

following:

1. Import data from the different databases

2. Extract statistics from the objects obtained from the Import step.

3. Overlap between each pair of databases is measured and organized in a matrix.

4. Consistency between datasets is measured

5. Merge all the databases in a single one

6. Filter vulnerabilities that can not be used by Project-KB, either because they lack informa-

tion or because they do not affect open source software.

7. Export statements in the format used by Project-KB

The last 2 steps are performed both for all VDB’s separately and for the merged VDB.

In the next section we explain in detail all these steps as well as the program architecture.

23

24 Implementation

Figure 5.1: Pipeline

5.1 Pipeline 25

5.1.1 Import Databases

Each of the presented vulnerability databases stores its data in a different format. For this reason

it was necessary to develop scripts for extracting the necessary data from each of them. The

architecture used in the implementation includes an abstract superclass determining the interface

for importing the databases and one subclass for each database format.

This architecture is intended to facilitate the extension of the program to include new databases.

That also allows us to store all the required data in a unified format, defined by the classes Vdb and

Vulnerability. We see in figure 5.2 a UML diagram representing the architecture for the factories

responsible for importing the vulnerabilities.

5.1.2 DB Analysis, Overlap and Consistency

This part of the pipeline is used to characterize the data from the different databases. The methods

and results are explained in detail in chapter 6.

5.1.3 Filter

There are two criteria for excluding vulnerabilities:

• We filter out vulnerabilities that only affect hardware components, because our work is

targeted on software vulnerabilities

• We filter out vulnerabilities that do not have enough information to generate a statement.

Each vulnerability needs the URL to a repository and at least one commit id

5.1.4 Merge

All the data from the VDB’s is put together in a single data structure. When a vulnerability is

present in more than one database, the information of all the entries is merged. This means the

resulting entry will have all the aliases (identifiers) and commits from the previous ones.

In case two entries corresponding to the same vulnerability have different sets of commits, the

union between these sets is calculated to form the new entry. When applied to the reachability

analysis in a vulnerability scanner, this approach means a higher number of constructs or lines

of code will be flagged as vulnerable, therefore decreasing the chance of a false negative but

increasing the chances of a false positive in case one the VDB’s actually had inaccurate data. We

prefer to follow this approach because false negatives could present risks to a project, letting a

vulnerability pass undetected, while false positives may be inconvenient for the developers but

would would not cause security problems.

5.1.5 Export Statements

After filtering and merging the databases we proceed to the export step. The goal of this step is the

creation of YAML files with the fields required by Project-KB. A complete statement will have the

26 Implementation

Figure 5.2: Factories UML Diagram

5.1 Pipeline 27

Figure 5.3: Project-KB Statement File

vulnerability identifier, a description, a list of fixes containing the repository, branch and commit

hashes, and a list of affected artifacts. For Project-KB’s format, it is not necessary to have both

the commits and affected artifacts, but at least one of them. In figure 5.3 we see an example of file

in this format. However, we decided to focus exclusively on the exportation of statements with fix

commits, because it enables code-level analysis such as the one described in section 2.2.

This step is performed for both the separated databases and the merged one.

By applying it to each VDB separately, we obtain different sets of statements coming from

different data sources and the developers can choose which one to use according to their needs.

28 Implementation

A developer can for example choose to use only databases that he considers to be more reliable,

or only the databases that potentially contain vulnerabilities that affect components used in his

project.

5.2 Improvements in Eclipse Steady

When installed for the first time, Steady imports vulnerabilities from Project-KB and performs

an analysis that determines the language constructs affected by each vulnerability. The results

of this analysis are then uploaded to the backend of the tool and are periodically updated. This

process may take 2 to 3 hours to import, analyse and upload 729 vulnerabilities. It is desirable

to reduce this execution time, principally considering the fact that, as a result of this study, more

vulnerabilities can be imported and the process would take even more time.

In this chapter we describe the improvements made in Eclipse Steady to reduce this processing

time and the modifications in architecture to improve its maintainability.

5.2.1 Previous Architecture

Kb-importer is the module of Eclipse Steady responsible for importing and processing data from

Project-KB. Here we focus on the architecture of this module, because this is the component

responsible for the processes that have to be optimized.

When installing Eclipse Steady, a Docker container is created for kb-importer and a few files

are downloaded inside this container:

• kaybee — Binary file from Project-KB

• kaybeeconf.yaml — Configuration used by kaybee

• kb-importer.jar — Jar file for the

The kaybee binary reads the configuration specified in kaybeeconf.yaml and use it to

determine what sources to use to get vulnerability metadata. After pulling this data, it will generate

a shell script file containing commands to be executed for each vulnerability. This file contains

commands for the following tasks:

1. Cloning git repositories containing the vulnerabilities.

2. Using git diff to get the modifications from the fix commits and create files containing

them.

3. Call for each vulnerability a command to use kb-importer.jar to import it.

Then the part of the program written in Java is responsible for:

1. Sending the results of the git diff command to the component patch-lib-analyzer to

extract the changed constructs.

5.2 Improvements in Eclipse Steady 29

2. Sending the final results of this analysis to the backend.

3. Send a list of affected artifacts to the backend.

5.2.2 Profiling

The first step in this work was to use profiling to measure the bottlenecks of the program.

We found that a large percentage of the processing time was used to send requests between

kb-importer and two other containers: the backend and rest-lib-utils. These requests were not

asynchronous and took around 60% of the time.

We found that there are two for loops in which these requests are sent. One of them is the

a loop that gets information about libraries affected by the vulnerabilities and uploads lists of

affected artifacts to the backend. The other loop is used to analyze contruct changes from the

commits. These loops take respectively around 60 %, and 20 % of the processing time.

Also, the fact that the Java program was called once for each vulnerability made it necessary

to initialize the JVM multiple times. We considered the possibility that this could be taking a

significant time, but the profiling results showed that only a very small percentage of the time was

used in this process (less than 1%).

Based on this information, we concluded the performance could be improved by reducing the

number of requests and processing vulnerabilities in parallel.

5.2.3 New Architecture

The improvements to performance were achieved with two main modifications:

The first modification is to check if a vulnerability is already present in the backend before

importing it. If the vulnerability is already present, it is not necessary to perform any analysis

and no more requests are sent. However, we also decided to provide the user with the option

to overwrite the vulnerabilities in the backend, in case it is necessary to modify the data for any

reason.

The second modification is the parallelization of the processes in kb-importer. Each vulnera-

bility can be imported in a separate thread. The repositories required for analyzing the fix commits

now can be cloned and accessed in parallel. Locks were created to avoid simultaneous access to

the same cloned repositories, because it could cause conflicts.

Besides these modifications, we also modified the following aspects to make the software

easier to debug and maintain:

• We implemented a REST API in kb-importer. This allows the user to send requests to

initiate or stop processes and to check the current state of the program. This also makes the

architecture of kb-importer more similar to that of other components of the project.

• All the processes previously implemented in shell script were passed to Java.

30 Implementation

Configuration Previous Architecture New Architecture
1 N/A 10s
2 2h 25min
3 3h -

Table 5.1: Time to Process Vulnerabilities

As a consequence of this modifications, the program only needs to be called once to pro-

cess all the vulnerabilities. Execution options previously specified by environment variables or as

arguments to the Java program are now specified as arguments in the requests to the API.

5.2.4 Final Results

We measured the total execution time for a set of N vulnerabilities using different configurations:

1. Using the option overwite=false and having all the vulnerabilities already in the backend.

That means the program only has to send requests to the backend to check the presence of

the vulnerabilities, but will not have to analyze and upload them.

2. Using the options overwite=true and skipClone=true. All the vulnerabilities have to be

analyzed and uploaded to the backend, except for the ones that would require cloning a

repository.

3. Using the options overwite=true and skipClone=false. All the vulnerabilities have to be

analyzed and uploaded to the backend and some repositories have to be cloned to allow the

execution of git diff for some vulnerabilities.

All the experiments were performed in a Ubuntu virtual machine with 8 Gb of RAM and 4

processor cores. The processor used was an Intel Core i5 vPro 8th Gen. Table 5.1 shows the

approximate results obtained for each configuration. The first configuration was not relevant in

the previous architecture since the program did not check the presence of vulnerabilities in the

backend

Chapter 6

Quantitative Analysis on the Existing
Databases

In this chapter we present quantitative results obtained from analysis performed on each database.

These results help us characterize the data that can be added to Project-KB and can also assist

software developers and security specialists with objective information to make a decision on

which databases to use.

We measured the size of each database, the distribution of programming languages of the

repositories containing their vulnerabilities, number of entries containing repositories and com-

mits, and the overlaps between databases. We will see the results in detail in the next sections. All

the results were obtained based on the state of the databases in September 16th, 2022.

Of the databases previously mentioned in chapters 3 and 4, we excluded some of them for the

following reasons:

• Snyk, Whitesource and Debricked are commercial databases and that brings potential prob-

lems with their licences or availability of the data. Their licenses would not necessarily

allow for the use in Project-Kb, and even if they did, they were not available for download

or accessible via free API’s.

• Devign does not include identifiers associated to the vulnerabilities, and that would compli-

cate some of the analysis done in this study.

• Due to time limitations we could not analyse and write importers to some of the databases

referenced in the related work such as Debian Security Tracker.

• Also due to limited time, we decided to not develop an importer specifically for GSD, which

was available in a format which is not exactly compatible with the OSV schema. However,

since OSV imports data from GSD, the vulnerabilities in GSD are included in the results we

present regarding OSV.

31

32 Quantitative Analysis on the Existing Databases

• A few databases mentioned in other studies do not exist anymore. That is the case for

example for OSVDB, which was shutdown in 2016 [20].

6.1 Repositories

For each Database we developed methods to look for project repositories in the entries. As al-

ready described, in some databases the repository is listed in a structured way, with fields reserved

for this, while others contain text fields or URL fields that sometimes contain a reference to the

repository.

We used the following methods to extract repository links from the entries in the databases:

• NVD — We first check the list of references to verify if any of them is a list to a git reposi-

tory. If no references are found, we check if there are URL’s in the description field.

• OSV — The field affected.ranges is used to indicate ranges of versions affected by

the vulnerability. When the type of range is indicated as GIT, the range is given in the form

of commit hashes and a subfield is used to indicate the repository. However, this field is

not present for all the entries. Another field that can contain the repository link is the list

of references. If the reference type is indicated as FIX, the field contains a URL to the

repository.

• Ruby — The entries usually contain a url field which contains a link to a repository. If

this field is not present, or the URL is not valid, we check the URL’s listed in the list of

references, the same way as for the NVD.

• Project-KB — When a vulnerability contains commit information, the repository URL is

always present.

• Secbench and Patchworking — Both systematically list the repository name or link for all

the vulnerabilities

• Safety DB — There are no fields for URL’s, so we look for it in the vulnerability description

in the field advisory.

In the cases where the field is not guaranteed to contain a repository URL we perform 3

verifications to filter URL’s that are not linking the repository of the vulnerable project:

1. We check if the URL is in a set of known domains. We consider the following domains for

the repository of the vulnerable project:

• github.com

• gitlab.com

• git.kernel.org

6.1 Repositories 33

Database No. Entries With Repos-
itory

github.com git.kernel.org others

Patchworking 471 471 339 0 132
Secbench 662 662 662 0 0
CrossVul 5131 5131 5131 0 0
Project-KB 729 647 587 0 60
PyPA 1579 1278 1275 0 3
Ruby 639 266 264 0 2
Big-Vul 3977 3977 3977 0 0
OSS-Fuzz 2430 2423 1864 0 559
OSV 27783 19872 8852 10079 941
Github 6622 5517 5496 0 21
SafetyDB 3643 924 920 0 4
RustSec 434 389 381 0 8
NVD 195571 27752 25539 1660 553
Go 251 243 162 0 84
Total 203716 43340 30420 10577 2343

Table 6.1: Vulnerabilities with Repository Links

• googlesource.com

• git.apache.org

• git-wip-us.apache.org

Repositories in other domains are not considered. In any case, we noticed most repositories

are contained in this set of domains, mainly in Github.

2. Check if the name of the repository a contains substrings like CVE or Advisory, be-

cause they normally are repositories for exploits or advisories. The following substrings

are used to filter the repository names: cve, advisories, advisory, vulnerability

and vulnerabilities. Any repository that contains one of these substrings in its name

is excluded. These strings were selected based on the results obtained before adding this

step to our process. We manually verified that the results contained a large amount of false

positives containing these substrings. The comparison done in this step is case insensitive.

3. If the repository is in Github, check the languages of the repository by using Github’s API.

If the repository does not contain any language, it is probably not the project that contains

the vulnerability (can also be an exploit or advisory). In some cases the URL is broken and

we get error 404. These links are also discarded.

In table 6.1 we indicate the number of vulnerabilities in each database to which we were able

to identify the corresponding repositories using the methods described above.

Notice that the numbers above may still include some false positives. The rules described

above are enough to filter the most common cases of false positives, but do not guarantee that all

the repositories found are correctly associated to the vulnerabilities.

34 Quantitative Analysis on the Existing Databases

6.2 Commits and Releases

As explained, one of the most important aspects for this study is the presence of code-level in-

formation in the databases. For this reason, we determined the number of vulnerabilities in each

database for which it was possible to extract lists of commits and lists of patched versions.

As seen in the previous chapter, some of the databases and entries contain fields specifically

dedicated to this information, while others don’t. However, in the cases where there is no specific

field for this data, it is often possible to find this information in other fields, such as references,

description or summary.

We use the following methods to obtain fix commits from each database:

• NVD — We check the references field for commits and pull requests URL’s. Then we filter

the information the same way as described in the previous section

• OSV — In the field affected.ranges, when the type is GIT, the values of commit

hashes are given. In each range there are objects called events and when an event is marked

as limit or fixed it determines the commit after which the software is no longer affected

by the vulnerability. We take these commits as fix commits. We also search for fix commits

and pull requests in the list of references.

• Ruby — We look for commits or pull requests in the url and references fields.

• Project-KB, Secbench, Patchworking, Big-Vul and CrossVul — All of these list the links

to commits pull requests or commit hashes systematically in dedicated fields.

• Safety DB — The description field often contains a link to a commit or pull request.

As previously explained in chapter 4, some databases also include fields for fixed releases. In

these cases, we counted the vulnerabilities with this information.

Table 6.2 shows the number of vulnerabilities to which fix commits and fixed versions were

found in each database.

6.3 Vulnerabilities Languages

An interesting information for the developers using the databases is the language of the projects

affected by the vulnerabilities. Having this information, the developer can choose to use databases

with vulnerabilities that affect projects in the same language used is his own projects. To get

this information we separated the vulnerabilities to which Github repositories were found and

used Github’s API to get the repositories languages. Then we counted the main language for the

repository of each vulnerability, i.e. the language with more lines of code.

The chart in figure 6.1 shows the number of vulnerabilities extracted from each database in

each of the main languages. For the vulnerabilities that do not have a Github repository associated,

we could not determine the languages, so they are listed as undefined and represented by the

6.3 Vulnerabilities Languages 35

Database No. Entries With Commits With Fix Re-
leases

With Commit
or Fix Releases

Patchworking 471 471 0 471
Secbench 662 662 0 662
CrossVul 5131 5131 0 5131
Project-KB 729 647 511 729
PyPA 1579 648 1519 1524
Ruby 639 135 571 574
Big-Vul 3977 3949 0 3949
OSS-Fuzz 2430 2283 0 2283
OSV 27783 16225 13101 25602
Github 6622 2509 5283 5368
SafetyDB 3643 841 3643 3643
RustSec 434 19 298 306
NVD 195571 10863 0 10863
Go 251 243 240 249
Total 200234 24787 3241 27163

Table 6.2: Vulnerabilities with Releases and Commit Data

black bars. In figures 6.2 and 6.3 we show the same chart, but excluding the largest databases to

facilitate visualization of the small databases.

The black bars are either explained by the absence of links to repositories or cases in which

the repositories are not in Github. In the case of NVD, the main explanation is the fact that most

vulnerabilities do not have any repository associated. Meanwhile in the case of OSV, we verified,

as shown in table 6.1, that there is a large number of repositories in git.kernel.org.

The presence of vulnerabilities to which the language was not identified does not invalidate

the results of this study, as it is not necessary for us to get this information for all the entries. Fur-

thermore, as we will see, most of the vulnerabilities which contain fix commit data have also links

to Github repositories and we were able to obtain the main language for most of these repositories.

We also considered the possibility of cloning the repositories to identify the languages instead

of using an API. This would enable us to analyse repositories in other domains and even identify

the specific languages used in the fix commits. However, that would require more development

and would highly increase the processing time, since it would be necessary to clone thousands of

repositories. We decided that for our goals, the precision and coverage of the data obtained using

Github API is enough.

As we can see in the charts, some of the databases have one or two predominant language,

while others, like OSV and NVD, are more diverse. Some databases, like RustSec and PyPA, are

focused in only one language each, because they were specifically made to cover projects in the

scope of these languages. Other Databases, like NVD and OSV, have a more broad scope covering

vulnerabilities in many languages. The OSS-Fuzz tool supports C/C++, Rust, Go, Python and

Java, but the database contains mostly C and C++ projects.

The data presented in this section can help choosing the databases to be used in the context

36 Quantitative Analysis on the Existing Databases

Figure 6.1: Vulnerabilities’ Languages per Database

Figure 6.2: Vulnerabilities’ Languages per Database (except NVD)

6.4 Overlap 37

Figure 6.3: Vulnerabilities’ Languages per Database (only the smallest databases)

of a specific project. For example, for Java projects, Patchworking, Project-KB, OSV and NVD

cover almost all the vulnerabilities. Github Advisories also contains Java vulnerabilities, but they

are also imported to OSV.

6.4 Overlap

We measured the overlaps between the databases by comparing vulnerability ids present in each

of them. We do this by comparing the Id’s in different databases. Some of the databases often

have multiple identifiers for the same vulnerability. We use this information to conclude that two

vulnerabilities that have one or more aliases in common are the same.

We present the overlap between the pairs of databases in the form of a matrix presented in

tables 6.3 and 6.4.

Notice that the matrix is not symmetric because our method of comparison can lead to small

inconsistencies: sometimes a vulnerability is represented by two different identifiers in one system

and only one in another system. This leads our program to count a different number of overlapping

vulnerabilities in each side. We decided to keep it this way because this variation is relatively small

and we do not have solid criteria to decide which of the databases should be considered correct.

With the exception of OSS-Fuzz, many of the databases have a high number of entries in

common with others. This is true principally in the cases in which a database uses the other as

data source or has a data source in common. The few cases in which the overlap is close to 0

38 Quantitative Analysis on the Existing Databases

N
V

D

C
ro

ss
V

ul

B
ig

-V
ul

O
SV

R
us

tS
ec

Py
PA G
o

NVD 195571 5131 3977 22716 317 1572 236
CrossVul 5131 5131 3699 2108 5 205 32
Big-Vul 3977 3699 3977 1539 0 103 18
OSV 13423 1358 850 27783 464 1481 249
RustSec 275 5 0 434 434 4 0
PyPA 1572 205 103 1578 6 1579 1
Go 220 30 17 251 0 1 251
OSS-Fuzz 0 0 0 2430 0 0 0
Github 5492 658 270 6505 291 927 98
Ruby 558 117 84 494 0 2 0
Project-KB 725 79 57 545 0 20 2
Patchworking 471 87 83 303 0 0 0
Secbench 170 60 63 94 0 4 0
SafetyDB 1796 239 116 1566 12 1088 7

Table 6.3: Overlaps Between Pairs of Databases

happen when we compare databases that focus on different languages, like Patchworking (focused

on Java) and RustSec (focused on Rust).

The existence of overlapping entries is interesting for because we will use them to calculate a

few measurements in section 6.5 and merge the entries in the intersections of the databases to get

more complete data.

6.5 Consistency Between Databases

A concern regarding the data in all databases is whether it is possible to rely on them for identifying

vulnerable code. One problem that might be present is that the commits referenced by the database

might not be fixing the vulnerability, leading to false positives, that is, code is incorrectly identified

as vulnerable. Another possible problem is that the entry may not reference all the commits that

were necessary to fix the vulnerability, which leads to false negatives.

It is impossible to know with certainty what databases are more accurate without manually

verifying all the commits. However, as a way to help understanding the reliability and complete-

ness of the data in each database, we developed specific measurements that compare data of pairs

of databases.

The first measure is what we call consistency. When two databases have entries in common

and the entries in both databases have commit information, it is possible to compare them to check

if they have consistent information. To measure the consistency between a pair of databases, we

count the number of entries for which the commit data is exactly the same and divide it by the total

number of entries that contain commit data in both databases. The results for commit consistency

are presented in figure 6.4.

6.5 Consistency Between Databases 39

O
SS

-F
uz

z

G
ith

ub

R
ub

y

Pr
oj

ec
t-

K
B

Pa
tc

hw
or

ki
ng

Se
cb

en
ch

Sa
fe

ty
D

B

NVD 0 5492 557 725 471 170 1796
CrossVul 0 658 116 79 87 60 239
Big-Vul 0 270 83 57 83 63 116
OSV 2430 6307 439 485 246 79 1370
RustSec 0 252 0 0 0 0 10
PyPA 0 920 2 20 0 4 1089
Go 0 90 0 1 0 0 7
OSS-Fuzz 2430 0 0 0 0 0 0
Github 0 6622 371 414 104 28 1005
Ruby 0 370 637 1 0 27 16
Project-KB 0 414 1 729 206 0 61
Patchworking 0 104 0 206 471 2 4
Secbench 0 28 27 0 2 662 4
SafetyDB 0 1005 16 61 4 4 3643

Table 6.4: Overlaps Between Pairs of Databases

In the following heatmaps, in figures 6.4, 6.5 and 6.6, we display the results for our measure-

ments in the following way: in each square the first number is the numerator (number of consistent

entries), the second is the denominator (number of overlapping entries) and the third is the value

represented as percentage.

A question that arises from these results is whether the inconsistencies come from entries that

point to different commits in the same repositories or commits in different repositories. To answer

this question we also measured in the overlap between the databases how many entries pointed to

the same repositories or different repositories. The results of this measurements are displayed in

figure 6.5.

The last measure is what we call completeness. Similarly to the previous one, in this measure

we use the intersection between a pair of databases, but in this case we count the number of entries

in which the set of commits in one of them is contained in the other. The entry that contains all the

commits referenced in the other database is considered complete. A higher value in completeness

may indicate that for most entries a database contains all the relevant commits. A lower value

may indicate that the database lacks relevant commit data, but may also indicate that it is being

compared to a database that contains irrelevant commits. We see the results in figure 6.6

To help comparing the reliability of the databases we display in table 6.5 whether the databases

are manually curated by humans, and whether they have structured commit data. We use Y, N and

P representing Yes, No and Partially The manually curated ones are presumably more reliable. The

ones that do not have structured data about commits may present problems because we relied on

extraction of URL’s from fields that are not necessarily always dedicated to fix commits. However

it is hard to draw conclusions from it since even the databases that contain manually curated and

40 Quantitative Analysis on the Existing Databases

Figure 6.4: Commit Consistency Heatmap

6.5 Consistency Between Databases 41

Figure 6.5: Repository Consistency Heatmap

42 Quantitative Analysis on the Existing Databases

Figure 6.6: Completeness Heatmap

6.5 Consistency Between Databases 43

structured data present some significant inconsistencies between each other.

N
V

D

O
SV

G
ith

ub

Pr
oj

ec
t-

K
b

C
ro

ss
V

ul

B
ig

-V
ul

O
SS

-F
uz

z

G
o

R
us

tS
ec

R
ub

y

Sa
fe

ty
D

B

Se
cb

en
ch

Pa
tc

hw
or

ki
ng

Py
PA

Manually Curated Y P Y Y N N N Y Y Y Y Y N P
Structured Commit Data N Y Y Y Y Y Y Y Y Y N Y Y Y

Table 6.5: Manually Curated Structured Data

In the heatmaps we represent the measurements as fractions, with absolute values of the num-

ber of entries, as well as the percentages. Notice that in all of these heatmaps there are pairs of

databases that do not have any overlap, and in these cases it was not possible to calculate the

consistency or completeness. For example, OSS-Fuzz only had overlap with OSV, therefore it

was not possible to calculate the measurements for this database. There are also cases in which

there is overlap between the databases but it is just a very small number of entries, and the overlap

can be calculated, but is not a very significant measurement. For example, there is an overlap

of only 2 vulnerabilities with commits between Secbench and Patchworking. We calculated 50%

of consistency, but since this value is based on just 2 entries, we can not be sure whether this is

representative of the reliability of these databases.

The databases that are imported by OSV had in general high values of consistency with it. The

small inconsistencies can be explained either by delays in OSV to incorporate the updates from

other databases, or by the fact that OSV considers multiple sources, and consequently may have

entries that inconsistent data in different sources.

Since Big-Vul, CrossVul and our work present similar methods for extracting information

from NVD, it is interesting to look at the values of consistency and completeness between these 3

databases. Notice that the values displayed here for NVD are relative to the commits and reposi-

tories obtained using our method.

Unsurprisingly, since the methods are similar, the values are relatively high, with at least 97%

of consistency between all the pairs. The small inconsistencies between them are explained by

implementation details, such as the consideration of pull request and issues links and repositories

in other domains besides Github. We found that our method yields higher values in completeness

and lower values in consistency. By manually looking at samples of inconsistent entries, we found

that this happens mostly due to pull request links that are included in our database and not in the

others. We manually verified some of these pull requests and confirmed that many of them have

relevant security fixes, so we decided to keep them. This difference in our method can lead to

more false negatives, as the pull requests may have irrelevant commits, but harnesses a higher part

of the information available in NVD, leading to less false negatives.

Safety DB is a database with particularly low values in consistency. Examining the entries

in this database we verified that many of them have links to commits or pull requests that do not

44 Quantitative Analysis on the Existing Databases

directly fix a vulnerability, but change a dependency in project that imports the one that contains

the vulnerability. That also causes Safety DB to have the lowest values in repository consistency.

When comparing Project-KB to the 3 databases obtained from NVD (CrossVul, Big-Vul and

our own approach) we see that Project-KB presents lower values in completeness. For example

when compared to the entries we obtained from NVD, Project-KB has completeness of 52% and

NVD has 70%. We found a few cases in which this is explained by the fact that we extracted

all commits from pull request links in the NVD and Project-KB had only the commits that were

relevant to the vulnerability. That may indicate a higher number of false negatives in the automated

approaches, but we can not guarantee that this is always the case.

Curiously, we found that Project-KB and OSV have only 43% of consistency with each other

in spite of both having fields for fix commits and being at least partially curated by humans.

The vulnerabilities in the overlap between OSV and Project-KB come from Github Advisory

Database and GSD. In this comparison, OSV presents 73% of completeness and Project-KB only

43%, meaning that there are many cases in which OSV lists more commits than Project-KB. We

do not know which one is more accurate. OSV has approximately the same consistency with

the 3 automated approaches as Project-KB, but with higher values of completeness. The higher

completeness in OSV may be partially explained by the fact that some entries in OSV have more

than one CVE, therefore representing more than one entry in NVD or Project-KB.

Overall it is hard to take final conclusions since there are many cases in which databases

present relatively low values of consistency in spite of being manually curated. We can not tell

which database is more reliable. It is important to notice that the manual verification process will

yield different results when performed by different organisations with different methodologies.

However, we can at least notice that, with the exception of Safety DB, most databases have values

higher than 50% in almost all the significant comparisons.

6.6 New Statements for Project-KB

As described in section 4.1 Project-KB requires each of its entries to contain information about fix

commits or artifacts affected by the vulnerability. The information presented in table 6.2 allows us

to conclude that the data we extracted would be enough to generate 27163 statements. However,

we decided to focus only on the ones with commit data, reducing this number to 24787.

In figure 6.7 we see the distribution of languages of the repositories affected by the vulnera-

bilities corresponding to the statements coming from each repository. MergedVDB represents the

database obtained by joining all the others.

Since the resulting database aggregates data from all the others, the values of completeness

is always 100%. Since it includes all the commits in the other databases, it contains more false

positives and less false negatives than the all others.

We made a Venn diagram, displayed in figure 6.8 to compare CrossVul, Big-Vul and the entries

we obtained from NVD. We can see that we were able to extract more vulnerabilities with commits

from NVD than CrossVul and Big-Vul. This is mostly explained by the fact that our study is more

6.6 New Statements for Project-KB 45

Figure 6.7: Languages of Statements Coming from Each VDB

recent and now the NVD contains more entries with commit data. Other explanation is that each

of the 3 approaches implements slightly different methods for extracting data from NVD. For

example, they may consider only commit links, or also pull requests, and look for URL’s in other

domains besides Github.

46 Quantitative Analysis on the Existing Databases

Figure 6.8: Venn Diagram

Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this study we presented an overview of the current state of vulnerability databases for open

source software focusing on the presence of code-level data. Our analysis allowed us to have

insights on the scope, size and reliability of each of them, and provides objective information that

can be used by software developers and security researchers to determine which databases are

more suited for each use case.

We also developed a pipeline to aggregate data from many of these source in a single database

with fix commits for each vulnerability. The final result is, as far as we know, the largest vulnera-

bility database with fix commit data, and its pipeline allows us to continue to expand it as its data

sources are updated. We generated a total of N entries that can potentially be used by Project-Kb

and Eclipse Steady.

Furthermore, we developed improvements in Eclipse Steady which greatly reduce its process-

ing time, making it easier to import a larger number of vulnerabilities, in case the new entries are

used.

7.2 Future Work

Other heuristics can be developed in the program to decrease the number of false positives and

increase the number of identified commits. For example, an alternative strategy for detecting

fix commits would be to look for them directly in the git repositories instead of using only the

information available in the databases. Then the fix commits could be identified with the help of

other heuristics, such as looking for the vulnerability identifier in the commit messages. Heuristics

like this can be found in works such as Patch-Finder [18], and in Prospector [42], a tool that uses

the description of a vulnerability in natural language to identify and rank commits that potentially

fix it.

47

48 Conclusions and Future Work

Another possible improvement would be to to scrap web pages with vulnerability fix informa-

tion. We found in the databases many links that contain relevant commit data but were not used

by our program. 1

Due to time limitations, some databases were not included in the pipeline that could be con-

sidered in the future. Some examples include GSD, Friends Of PHP Security Advisories [13] and

Mozilla Foundation Security Advisories [22].

1One example of link that potentially contains information about a vulnerability fix is https://go-review.
googlesource.com/c/go/+/417062/

https://go-review.googlesource.com/c/go/+/417062/
https://go-review.googlesource.com/c/go/+/417062/

References

[1] Mahmoud Alfadel, Diego Elias Costa, and Emad Shihab. Empirical analysis of security
vulnerabilities in python packages. In 2021 IEEE International Conference on Software
Analysis, Evolution and Reengineering (SANER), 2021.

[2] Cloud Security Alliance. GlobalSecurityDatabase. Available at https://
globalsecuritydatabase.org/, Accessed last time in September 2022. Last accessed
18 September 2022.

[3] Rocío Cabrera Lozoya, Arnaud Baumann, Antonino Sabetta, and Michele Bezzi. Com-
mit2vec: Learning distributed representations of code changes. In SN Computer Science,
volume 2, 2021.

[4] Gerardo Canfora, Andrea Di Sorbo, Sara Forootani, Matias Martinez, and Corrado A. Vis-
aggio. Patchworking: Exploring the code changes induced by vulnerability fixing activities.
Information and Software Technology, 142:106745, 2022.

[5] Bodin Chinthanet, Serena Elisa Ponta, Henrik Plate, Antonino Sabetta, Raula Gaikovina
Kula, Takashi Ishio, and Kenichi Matsumoto. Code-Based Vulnerability Detection in Node.Js
Applications: How Far Are We?, page 1199–1203. Association for Computing Machinery,
New York, NY, USA, 2020.

[6] Andreas Dann, Henrik Plate, Ben Hermann, Serena Elisa Ponta, and Eric Bodden. Identify-
ing challenges for oss vulnerability scanners - a study amp; test suite. IEEE Transactions on
Software Engineering, pages 1–1, 2021.

[7] Debricked. About Security | Documentation | Debricked. Available at https://
debricked.com/docs/security/security-about.html#data-sources, Ac-
cessed last time in September 2022. Last accessed 18 September 2022.

[8] Debricked. Vulnerability Database. Available at https://debricked.com/
vulnerability-database/, Accessed last time in September 2022. Last accessed 18
September 2022.

[9] Jiahao Fan, Yi Li, Shaohua Wang, and Tien N. Nguyen. A c/c++ code vulnerability dataset
with code changes and cve summaries. In Proceedings of the 17th International Conference
on Mining Software Repositories, MSR ’20, page 508–512, New York, NY, USA, 2020.
Association for Computing Machinery.

[10] FASTEN. Main -XWiki. Available at https://www.fasten-project.eu/view/
Main, Accessed last time in September 2022. Last accessed 18 September 2022.

49

https://globalsecuritydatabase.org/
https://globalsecuritydatabase.org/
https://debricked.com/docs/security/security-about.html#data-sources
https://debricked.com/docs/security/security-about.html#data-sources
https://debricked.com/vulnerability-database/
https://debricked.com/vulnerability-database/
https://www.fasten-project.eu/view/Main
https://www.fasten-project.eu/view/Main

50 REFERENCES

[11] fasten project. Vulnerability Plugin. Available at https://github.com/
fasten-project/vulnerability-producer/blob/develop/docs/
documentation.md, Accessed last time in September 2022. Last accessed 18 September
2022.

[12] FIRST. CVSS v3.1 Specification Document. Available at https://www.first.org/
cvss/v3.1/specification-document, Accessed last time in March 2022. Last ac-
cessed 6 March 2022.

[13] FriendsOfPHP. PHP Security Advisories Database. Available at https://github.com/
FriendsOfPHP/security-advisories, Accessed last time in September 2022. Last
accessed 18 September 2022.

[14] GitHub. Browsing security advisories in the GitHub Ad-
visory Database. Available at https://docs.github.
com/en/code-security/dependabot/dependabot-alerts/
browsing-security-advisories-in-the-github-advisory-database#
about-the-github-advisory-database, Accessed last time in June 2022. Last
accessed 18 June 2022.

[15] GitHub. GitHub Advisory Database. Available at https://github.com/advisories,
Accessed last time in September 2022. Last accessed 18 September 2022.

[16] Google. Go Vulnerability Management - The Go Programming Language. Available at
https://go.dev/security/vulndb/, Accessed last time in June 2022. Last accessed
22 June 2022.

[17] Google. OSS-Fuzz: Continuous Fuzzing for Open Source Software. Available at https://
github.com/google/oss-fuzz, Accessed last time in September 2022. Last accessed
18 September 2022.

[18] Daan Hommersom, Antonino Sabetta, Bonaventura Coppola, and Damian A. Tamburri. Au-
tomated mapping of vulnerability advisories onto their fix commits in open source reposito-
ries, March 2021.

[19] Arvinder Kaur and Ruchikaa Nayyar. A comparative study of static code analysis tools
for vulnerability detection in c/c++ and java source code. Procedia Computer Science,
171:2023–2029, 2020. Third International Conference on Computing and Network Com-
munications (CoCoNet’19).

[20] Eduard Kovaks. OSVDB Shut Down Permanently. Available at https://
www.securityweek.com/osvdb-shut-down-permanently, Accessed last time in
September 2022. Last accessed 18 September 2022.

[21] Kyriakos Kritikos, Kostas Magoutis, Manos Papoutsakis, and Sotiris Ioannidis. A survey
on vulnerability assessment tools and databases for cloud-based web applications. Array,
3-4:100011, 2019.

[22] Mozilla. Mozilla Foundation Security Advisories. Available at https://www.mozilla.
org/en-US/security/advisories/, Accessed last time in September 2022. Last ac-
cessed 18 September 2022.

https://github.com/fasten-project/vulnerability-producer/blob/develop/docs/documentation.md
https://github.com/fasten-project/vulnerability-producer/blob/develop/docs/documentation.md
https://github.com/fasten-project/vulnerability-producer/blob/develop/docs/documentation.md
https://www.first.org/cvss/v3.1/specification-document
https://www.first.org/cvss/v3.1/specification-document
https://github.com/FriendsOfPHP/security-advisories
https://github.com/FriendsOfPHP/security-advisories
https://docs.github.com/en/code-security/dependabot/dependabot-alerts/browsing-security-advisories-in-the-github-advisory-database#about-the-github-advisory-database
https://docs.github.com/en/code-security/dependabot/dependabot-alerts/browsing-security-advisories-in-the-github-advisory-database#about-the-github-advisory-database
https://docs.github.com/en/code-security/dependabot/dependabot-alerts/browsing-security-advisories-in-the-github-advisory-database#about-the-github-advisory-database
https://docs.github.com/en/code-security/dependabot/dependabot-alerts/browsing-security-advisories-in-the-github-advisory-database#about-the-github-advisory-database
https://github.com/advisories
https://go.dev/security/vulndb/
https://github.com/google/oss-fuzz
https://github.com/google/oss-fuzz
https://www.securityweek.com/osvdb-shut-down-permanently
https://www.securityweek.com/osvdb-shut-down-permanently
https://www.mozilla.org/en-US/security/advisories/
https://www.mozilla.org/en-US/security/advisories/

REFERENCES 51

[23] Benjamin Barslev Nielsen, Martin Toldam Torp, and Anders Møller. Modular call graph
construction for security scanning of node.js applications. In Proceedings of the 30th ACM
SIGSOFT International Symposium on Software Testing and Analysis, ISSTA 2021, page
29–41, New York, NY, USA, 2021. Association for Computing Machinery.

[24] Georgios Nikitopoulos, Konstantina Dritsa, Panos Louridas, and Dimitris Mitropoulos.
CrossVul: A Cross-Language Vulnerability Dataset with Commit Data, page 1565–1569.
Association for Computing Machinery, New York, NY, USA, 2021.

[25] NIST. NVD - Home. Available at https://nvd.nist.gov/, Accessed last time in
February 2022. Last accessed 27 February 2022.

[26] NIST. Security Content Automation Protocol | CSRC. Available at https://csrc.nist.
gov/projects/security-content-automation-protocol/, Accessed last time
in March 2022. Last accessed 4 March 2022.

[27] npm. npm Docs. Available at https://docs.npmjs.com/cli/v8/commands/
npm-audit, Accessed last time in September 2022. Last accessed 18 September 2022.

[28] Open Web Application Security Project. OWASP Top 10. Available at https://owasp.
org/www-project-top-ten/, Accessed last time in January 2022, 2021.

[29] Henrik Plate, Serena Elisa Ponta, and Antonino Sabetta. Impact assessment for vulnerabil-
ities in open-source software libraries. In 2015 IEEE International Conference on Software
Maintenance and Evolution (ICSME), pages 411–420, 2015.

[30] Serena Ponta, Henrik Plate, Antonino Sabetta, Michele Bezzi, and Cedric Dangremont. A
manually-curated dataset of fixes to vulnerabilities of open-source software. In IEEE/ACM
16th International Conference on Mining Software Repositories (MSR), 2019.

[31] Serena Elisa Ponta, Henrik Plate, and Antonino Sabetta. Beyond metadata: Code-centric
and usage-based analysis of known vulnerabilities in open-source software. In 2018 IEEE
International Conference on Software Maintenance and Evolution (ICSME), Sept 2018.

[32] Open Web Application Security Project. OWASP Dependency-Check Project. Available
at https://owasp.org/www-project-dependency-check/, Accessed last time in
February 2022. Last accessed 27 February 2022.

[33] PyPA. Advisory database for packages published on https://pypi.org. Available at https:
//github.com/pypa/advisory-database, Accessed last time in June 2022. Last
accessed 22 June 2022.

[34] PyPA. PyPA Goals - PyPA documentation. Available at https://www.pypa.io/en/
latest/future, Accessed last time in June 2022. Last accessed 22 June 2022.

[35] PyPA. Python Packaging Authority - PyPA documentation. Available at https://www.
pypa.io/en/latest/, Accessed last time in June 2022. Last accessed 22 June 2022.

[36] PyUP. Python Dependency Security. Available at https://pyup.io/, Accessed last time
in September 2022. Last accessed 18 September 2022.

[37] pyupio. Safety DB. Available at https://github.com/pyupio/safety-db, Ac-
cessed last time in September 2022. Last accessed 18 September 2022.

https://nvd.nist.gov/
https://csrc.nist.gov/projects/security-content-automation-protocol/
https://csrc.nist.gov/projects/security-content-automation-protocol/
https://docs.npmjs.com/cli/v8/commands/npm-audit
https://docs.npmjs.com/cli/v8/commands/npm-audit
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-dependency-check/
https://github.com/pypa/advisory-database
https://github.com/pypa/advisory-database
https://www.pypa.io/en/latest/future
https://www.pypa.io/en/latest/future
https://www.pypa.io/en/latest/
https://www.pypa.io/en/latest/
https://pyup.io/
https://github.com/pyupio/safety-db

52 REFERENCES

[38] Sofia Reis and Rui Abreu. SECBENCH: A database of real security vulnerabilities. In
Martin Gilje Jaatun and Daniela Soares Cruzes, editors, Proceedings of the International
Workshop on Secure Software Engineering in DevOps and Agile Development co-located
with the 22nd European Symposium on Research in Computer Security (ESORICS 2017),
Oslo, Norway, September 14, 2017, volume 1977 of CEUR Workshop Proceedings, pages
69–85. CEUR-WS.org, 2017.

[39] rubysec. Ruby Advisory Database. Available at https://github.com/rubysec/
ruby-advisory-db, Accessed last time in September 2022. Last accessed 18 Septem-
ber 2022.

[40] Rust. Security Policy - Rust Programing Language. Available at https://www.
rust-lang.org/policies/security, Accessed last time in September 2022. Last
accessed 18 September 2022.

[41] RustSec. RustSec Advisory Database. Available at https://rustsec.org/, Accessed
last time in September 2022. Last accessed 18 September 2022.

[42] SAP. Prospector. Available at https://github.com/SAP/project-kb/tree/
master/prospector, Accessed last time in September 2022. Last accessed 18 September
2022.

[43] Henrik Plate Serena Elisa Ponta and Antonino Sabetta. Detection, assessment and mitigation
of vulnerabilities in open source dependencies. Empirical Software Engineering, 2020.

[44] Snyk. Open source security management. Available at https://snyk.io/product/
open-source-security-management. Last accessed 27 February 2022.

[45] Snyk. Snyk Intelligence Security. Available at https://security.snyk.io/, Accessed
last time in March 2022. Last accessed 4 March 2022.

[46] Snyk. Snyk Vulnerability Database. Available at https://security.snyk.io/, Ac-
cessed last time in March 2022. Last accessed 4 March 2022.

[47] Snyk. State of open source security report 2020. Available at https://go.snyk.io/rs/
677-THP-415/images/State%20OfOpenSourceSecurityReport2020.pdf,
Accessed last time in January 2022, 2020.

[48] Anshu Tripathi and Umesh Kumar Singh. Taxonomic analysis of classification schemes in
vulnerability databases. In 2011 6th International Conference on Computer Sciences and
Convergence Information Technology (ICCIT), pages 686–691, 2011.

[49] WhiteSource. Dynamic Application Security Testing: DAST Basics. Avail-
able at hhttps://www.whitesourcesoftware.com/resources/blog/
dast-dynamic-application-security-testing/, Accessed last time in March
2022. Last accessed 6 March 2022.

[50] WhiteSource. Open Source Vulnerability Database. Available at https://vuln.
whitesourcesoftware.com/vulnerability-database/, Accessed last time in
June 2022. Last accessed 9 June 2022.

[51] Awad A. Younis, Yashwant K. Malaiya, and Indrajit Ray. Using attack surface entry points
and reachability analysis to assess the risk of software vulnerability exploitability. In 2014

https://github.com/rubysec/ruby-advisory-db
https://github.com/rubysec/ruby-advisory-db
https://www.rust-lang.org/policies/security
https://www.rust-lang.org/policies/security
https://rustsec.org/
https://github.com/SAP/project-kb/tree/master/prospector
https://github.com/SAP/project-kb/tree/master/prospector
https://snyk.io/product/open-source-security-management
https://snyk.io/product/open-source-security-management
https://security.snyk.io/
https://security.snyk.io/
https://go.snyk.io/rs/677-THP-415/images/State%20Of Open Source Security Report 2020.pdf
https://go.snyk.io/rs/677-THP-415/images/State%20Of Open Source Security Report 2020.pdf
hhttps://www.whitesourcesoftware.com/resources/blog/dast-dynamic-application-security-testing/
hhttps://www.whitesourcesoftware.com/resources/blog/dast-dynamic-application-security-testing/
https://vuln.whitesourcesoftware.com/vulnerability-database/
https://vuln.whitesourcesoftware.com/vulnerability-database/

REFERENCES 53

IEEE 15th International Symposium on High-Assurance Systems Engineering, pages 1–8,
2014.

[52] Yaqin Zhou, Shangqing Liu, Jing Kai Siow, Xiaoning Du, and Yang Liu 0003. Devign: Ef-
fective vulnerability identification by learning comprehensive program semantics via graph
neural networks. Available at https://sites.google.com/view/devign, Accessed
last time in September 2022.

[53] Yaqin Zhou, Shangqing Liu, Jing Kai Siow, Xiaoning Du, and Yang Liu 0003. Devign: Ef-
fective vulnerability identification by learning comprehensive program semantics via graph
neural networks. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence
d’Alché Buc, Edward A. Fox, and Roman Garnett, editors, Advances in Neural Information
Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019,
NeurIPS 2019, 8-14 December 2019, Vancouver, BC, Canada, pages 10197–10207, 2019.

https://sites.google.com/view/devign

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Objectives
	1.3.1 Overview of the Current State of Vulnerability Databases
	1.3.2 Expanding Project-Kb
	1.3.3 Improving Eclipse Steady

	1.4 Document Structure

	2 Background
	2.1 Security Content Automation Protocol
	2.1.1 Common Vulnerabilities and Exposures
	2.1.2 Common Weakness Enumeration
	2.1.3 Common Vulnerability Scoring System
	2.1.4 Common Platform Enumeration

	2.2 Eclipse Steady

	3 Related Work
	3.1 Studies Analysing and Comparing VDB's
	3.1.1 Taxonomic Analysis of Classification Schemes in Vulnerability Databases
	3.1.2 A Survey on Vulnerability Assessment Tools and Databases
	3.1.3 Which is the Right Source for Vulnerability Studies? An Empirical Analysis on Mozilla Firefox

	3.2 Aggregation and Crawling of VDB's
	3.2.1 FASTEN Vulnerability Producer
	3.2.2 Big-Vul
	3.2.3 CrossVul
	3.2.4 Patchworking

	3.3 Conclusion

	4 Databases for Publicly Known Vulnerabilities
	4.1 Project KB
	4.2 National Vulnerability Database
	4.3 OSV
	4.3.1 Github Advisory Database
	4.3.2 Python Packaging Advisory Database
	4.3.3 Go Vulnerability Database
	4.3.4 OSS-Fuzz Vulnerability Database
	4.3.5 Rust Security Advisory Database
	4.3.6 Global Security Database

	4.4 Ruby Security Advisory Database
	4.5 SECBENCH
	4.6 Devign
	4.7 Commercial Databases
	4.7.1 Snyk Vulnerability Database
	4.7.2 White Source Vulnerability Database
	4.7.3 Debricked
	4.7.4 PyUp Safety DB

	4.8 Conclusion

	5 Implementation
	5.1 Pipeline
	5.1.1 Import Databases
	5.1.2 DB Analysis, Overlap and Consistency
	5.1.3 Filter
	5.1.4 Merge
	5.1.5 Export Statements

	5.2 Improvements in Eclipse Steady
	5.2.1 Previous Architecture
	5.2.2 Profiling
	5.2.3 New Architecture
	5.2.4 Final Results

	6 Quantitative Analysis on the Existing Databases
	6.1 Repositories
	6.2 Commits and Releases
	6.3 Vulnerabilities Languages
	6.4 Overlap
	6.5 Consistency Between Databases
	6.6 New Statements for Project-KB

	7 Conclusions and Future Work
	7.1 Conclusions
	7.2 Future Work

	References

