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Resumo 

A pesquisa visual tem sido um assunto crescente no comércio eletrónico, onde as 

plataformas líderes têm vindo a fornecer vários mecanismos para pesquisar um item por 

meio de uma imagem enviada pelo utilizador. Através de modelos de deep learning, as 

empresas têm vindo a fornecer recomendações precisas para imagens de catálogo, mas 

apenas algumas foram capazes de lidar com imagens de consulta com ruído de fundo e 

padrões de qualidade mais baixos, tipicamente obtidas via smartphone. No entanto, para 

uma base de dados na escala de milhões, isso envolve o uso de infraestrutura distribuída 

e dispendiosa, frequentemente suportada por unidades de processamento gráfico para 

acelerar a pesquisa e fornecer resultados abaixo de um segundo. Isso implica um forte 

investimento das empresas, sendo apenas acessível a grandes empresas. 

 Estas duas questões têm sido estudadas há muito tempo por investigadores, dando 

origem a estruturas híbridas que combinam redes neuronais e técnicas de hashing. Esses 

métodos têm mostrado o potencial de agregar funções de discretização com os 

procedimentos de treino naturais de uma rede neural num modelo eficiente, mas eficaz, 

capaz de fornecer recomendações baseadas numa base de dados de grande escala. 

Nesta linha de trabalho, o seguinte projeto, realizado em parceria com a empresa 

ShopAI, tem como foco o estudo de redes neuronais convolucionais com treino induzido 

por triplets com camadas de quantização adicionais treinadas com o objetivo de criar um 

motor de pesquisa visual para a indústria da moda. Neste trabalho, um novo mecanismo 

de rotulagem de hierarquia foi criado para promover uma criação automatizada, porém 

detalhada, de triplets. No que diz respeito à implementação da rede neural, este projeto 

foi construído sobre versão da rede Xception do ImageNet, combinada com as técnicas 

de quantização definidas por B. Liu et al. (2019) em DTQ. 

O modelo treinado foi então analisado por meio (i) da sua precisão média com base 

no método de rotulagem de hierarquia, (ii) de um caso de uso prático com equipas de 

marcas de moda para análise de similaridade e (iii) testes A / B com um modelo Xception 

não quantizado e um sistema de recomendação baseado em regras de associação. Em 

todos eles, mostra-se que o modelo criado foi capaz de produzir resultados de qualidade 

com erro marginal de precisão nos seus resultados, mantendo um alto grau de eficiência.  
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Abstract 

Visual search has been a growing subject in the ecommerce business where high 

leading platforms are providing several mechanisms to search an item via an user 

submitted image. Through deep learning models, companies have been able to provide 

accurate recommendations for In Shop images, but only a few have been able to address 

query images with background noise and lower quality standards, typically taken via 

smartphone. Nonetheless, for a million scale database, this involves the usage of costly 

distributed infrastructure, often supported by graphical processing units to accelerate the 

search and provide results in sub second time. This implies a heavy investment from 

companies, proving to be a feature accessible only to large scale players in the fashion 

industry, capable of supporting such investment. 

 These two issues have long been studied by researchers, giving the rise of end-to-end 

deep neural hashing networks, combining both deep neural networks and hashing 

techniques. These methods have shown the potential of merging learning to hash 

functions with the training procedures of a neural network into an efficient, yet effective, 

model capable of delivering  recommendations on a large scale database. 

In this line of work, the following project, performed in partnership with the company 

ShopAI, focuses on the study of convolutional neural networks with triplet induced 

training with additional quantization layers trained for the purpose of creating a visual 

search engine for the apparel fashion industry. In this work, a new hierarchy labelling 

mechanism was created to promote an automated yet detailed creation of triplets. 

Concerning the implementation of the neural network, this project was built upon the 

ImageNet pre-trained version of Xception, merged with the quantization techniques 

defined by B. Liu et al. (2019) in DTQ. 

The model trained was then analysed via (i) its mean average precision based on the 

hierarchy labelling method, (ii) a practical use case with fashion retailers teams for 

similarity analysis and (iii) A/B Testing with a non quantized Xception model and a 

association rule-based recommender system. In all of these, it is shown that the model 

created was able to produce high quality results with marginal accuracy error on its 

results, while maintaining a high degree of efficiency. 
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1 Introduction 

This section contains the introductory segments of the proposed dissertation, 

specifically the motivation for the theme, the main objectives for the construction of the 

visual search engine, the methodology to be used and the problem description to be 

solved. 

1.1 Motivation 

Over the years there has been an accelerated emergence of e-commerce companies 

due to the democratization and easier access to the internet, allowing users to quickly 

browse and search their needs regardless of their location and time of day. While this 

emphasizes the opportunity of creating a business reachable through the internet, it also 

enables other competitors to easily compete in the same market due to low barriers to 

entry. In order to prevail in this space, companies are forced to develop strategies and 

user interface tools that enhance the customer experience, aiding the end consumer to find 

the desired products or services and thus creating more revenue (Goswami et al., 2011). 

On the fashion e-commerce segment this issue is of major concern (i) since the 

products are aesthetical in nature, thus must be appealing, (ii) the shorter attention span 

of the customer due to high supply in this field, and (iii) the retention of attention by the 

customer is mainly visually driven. Given the visual focus inherent to this environment, 

several image-based solutions have emerged where the focus relies on providing 

recommendations to the user based on visual similarity (Jing et al., 2015a). Moreover, 

companies are currently implementing image search tools where the user can submit a 

photo and look for items similar to it (Shankar et al., 2017; Y. Zhang et al., 2018).  

In these approaches, the concept being the functionality involves the usage of deep 

learning models to translate an image into a numerical array and posteriorly determine 

the most similar products to that image. These models tend to be computationally 

intensive due to (i) the high complexity intrinsic of neural network and (ii) the high 

dimensional embeddings required for this calculation. Therefore, the current focus of 

research in this area has been on the conception of a model that can accurately provide 

visually similar results with minimal infrastructure costs involved (Zhai et al., 2019). 
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1.2 Objectives 

Having convolutional neural networks as the cornerstone, the primary objective of this 

work is to create a deep learning model capable of producing accurate representation 

embeddings from images with a low memory footprint at the real-time response. The 

approach employed involves (i) the selection of a convolutional neural network 

architecture for feature extraction, (ii) defining a similarity strategy based on that model 

and (iii) implement a hashing procedure within the model to produce compact binary 

codes. The business implication of this work is the possibility of creating an image-based 

search tool scalable in practice regardless of the catalog size of an e-retailer. This model 

will be trained and tested against the fashion items data of a Portuguese company. 

As a secondary objective, this work will provide an ablation study where several 

convolutional neural networks, similarity strategies and hashing procedures will be 

benchmarked against each other. 

1.3 Questions of study 

This work will combine multiple deep learning architectures for visual feature 

encoding that will later be used for visual similarity calculation. This structure will allow 

answering the following questions: 

• What are the most appropriate CNN architectures for image feature extraction? 

• What is the most effective strategy for similarity search? 

• What is the most effective dimensionality reduction process to apply? 

 



3 

 

2 Literature review 

This chapter begins with an exposition on the evolution of deep learning technologies 

over the years and the main components that a convolutional neural network employs in 

contrast with other artificial neural networks. Moreover, the most commonly used 

architectures on image classification are also mentioned. In this section, the reader can 

find the definition of each of these architectures in addition to their main differences. 

The following section discloses the main structures used to tackle the visual similarity 

search problem. These include the use of classification-based neural networks, siamese 

neural networks and triplet neural networks - these last two involving the parallel use of 

more than one common CNN. 

Lastly, there is a review of several methods that can be applied for dimensionality 

reduction. These can be divided into three groups:  (i) the traditional and most applied 

methods, (ii) the rise of quantization hashing procedures in efficient similarity search and 

(iii) the creation and training of quantization functions as an integral part of a 

convolutional neural network. 

2.1 Convolutional Neural Networks 

Convolutional neural networks, being a branch of deep learning, use a deep graph 

structure with several processing layers responsible for multiple linear and non-linear 

transformations. These, among other deep architectures, have been achieving state-of-

the-art results on fields ranging from visual recognition and classification to object 

detection on a variety of fields (Krizhevsky et al., 2017). The image processing in a CNN 

is performed in a sequential process where the first layers learn the low-level features like 

edges and the deeper layers learn higher-level ones, like patterns  (LeCun et al., 2015). 

2.1.1 Components 

The difference of CNNs in comparison with other artificial neural networks is that the 

former makes use of specific layers that enhance the analysis of an image. In these layers, 

operations like convolution, pooling and several activation processes are used to better 

adjust the parameters during the optimization-oriented learning of the neural network in 

order to perform some visually related tasks (LeCun et al., 2015). 
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Convolution layer 

The convolution layer is the main component of a CNN and its role is to reduce the 

images into a form that enables a faster and easier process without losing essential 

features. A convolution consists of calculating the element-wise multiplication between 

the image matrix and a filter matrix, also denominated as the kernel, and sum the results 

to get the value that forms a single element of the output matrix. This is performed 

iteratively, where the filter will be applied to several submatrices of the input matrix. This 

procedure has as parameters the size of the filter and the stride, this last responsible for 

determining how many positions should the filter be shifted after each iteration.  

 

Figure 1 – Convolution with different strides and padding 

In Figure 1 there are two different examples of convolutions being presented. The 

orange example shows a matrix of 3x3 where a convolution was performed with a kernel 

of size 2x2 with stride 1x1, meaning that the filter will shift only 1 cell at a time, both 

horizontally and vertically. The blue example shows a filter with size 3x3 and stride 2x2. 

Moreover, in this example, there is also padding applied to the matrix, in which case the 

input matrix is considered as a 5x5 matrix with the additional cells having value 0. This 

is mainly used to maintain the original matrix size after convolution and should consider 

the stride size used. A convolution could also be applied to several matrices in conjunction 

as, for example, when processing the RGB representation of an image. In this case, 

convolution is performed on all 3 matrixes and the output matrices are summed into one, 

resulting in the green example. The values of the filters are learned across the training of 

the neural network in order to best detect dimensions as color, texture, and shape, among 

others, by optimizing the values through the backpropagation method (Wan et al., 2014). 
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Pooling layer 

The pooling layer is similar to the convolutional layer but, in this case, the purpose is 

solely to reduce the spatial size of the convolved features to decrease the computational 

requirements to further process the data. The concept behind pooling is to extract the 

dominant features from the previous layers, while acting a noise suppressant of low 

importance values (LeCun et al., 2015). In order to perform this operation, there is also a 

kernel that is applied to an input matrix with a predefined size, stride and padding just 

like the convolution layer. In this case, the kernel is not a matrix of values but rather a 

selection matrix where a specific strategy is employed to extract the dominant features. 

 

Figure 2 – Max and avg pooling on the same input matrix 

In Figure 2 there are two examples of different pooling mechanisms, while both use a 

kernel with size 2x2, stride 1x1 and no padding. The orange example represents the case 

of average pooling where, for every slide the kernel performs over the input matrix, an 

average value is calculated. This exemplifies the case of max pooling since, instead of the 

mean value, only the maximum one is selected. Though there are other functions that can 

be applied to pooling, such as the selection of the minimum value, these two functions 

are the most commonly used. Moreover, depending on the task at hand, different pooling 

methods should be applied, mainly because each of them has a different impact on image 

analysis and variance reduction (Boureau et al., 2010). Max pooling is characteristically 

used to extract the most important and visually intense features like edges, whereas 

average pooling extracts features in a smoother approach. Depending on how deep the 

pooling layer is within the network, different pooling mechanisms could be applied to 

better fit the task being performed. Additionally, pooling is a static method where no 

values are subject to change, thus no training is performed. 
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Activation functions 

An activation function, also known as transfer functions, is used to determine the 

output of a node of a neural network, mapping the results between -1 and 1 or even 0 and 

1 depending on the function. This mapping occurs by summing the products of inputs and 

their weights and applying a function to get the output of that layer. 

Despite several linear and nonlinear functions can be used, the rectified linear unit – 

ReLU -  is one of the most commonly used techniques, in which if the input value is 

negative then the corresponding output is zero, and if it is positive, then the output is equal 

to the input (Wan et al., 2014). This is an example of the concept of activation in the 

context of an artificial neural network - since for negative values the output is nullified or 

deactivated, and for positive values, the output is activated, in this case with the same 

value as the input.  

Fully Connected layer 

The fully connected layers are the last components, except for the output layers, of a 

convolutional neural network and its objective is to perform the computations for the class 

scores. This is the equivalent to have a normal artificial neural network at the end of the 

convolutional or pooling steps, so that each neuron in this layer will be connected to all 

the neurons of the previous layer (Wan et al., 2014). 

These layers, being the end of the neural network, finalize the end-to-end structure, 

right before the classification layer where, through softmax or other functions, a final 

class is returned as the end result.  During the training of these networks, the process is 

executed both forward and backwards. First, an image is fed forwarded through the 

convnet, suffering several convolutions and pooling processes until the last layer, where 

the final score is obtained and compared with the label given for that same image. In this 

comparison, the minimization of the error between the expected result and the obtained 

one is achieved via gradient descent or other methods - through which the learning 

parameters of that layer are adjusted. Consequently, by way of the backpropagation 

method, these modifications are propagated to the previous layer in order to also optimize 

its parameters in an iterative manner until the primary layers are reached (Wan et al., 

2014).  
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2.1.2 Architectures 

Over the years, several architectures have been designed, especially concerning image 

recognition, employing different implementations of convolution and pooling modules as 

well as distinct activation functions to achieve greater accuracy. This section covers the 

main CNN modules, that have been created and that enable the creation of several 

investigation courses to create more capable networks. In this field, ImageNet has been 

considered the main benchmarking baseline through which several algorithms have been 

tested due to its size and data variety (Deng et al., 2009).  

VGG networks 

In the last decade, several deep learning algorithms have been setting progressively 

higher results. Some algorithms that first showed the advantage of the depth of the 

network as a factor of importance towards accuracy were the VGG networks, one 

implemented with 16 weight layers, as seen on Figure 3, and the other with 19, created 

by the University of Oxford (Simonyan & Zisserman, 2014).  

 

Figure 3 – VGG16 network design 

Being still only a deep sequential feed-forward neural network and to achieve its level 

of accuracy, the VGG networks are characterized as having a high number of parameters 

due to large convolution operations, which affects training times and thus its applicability 

in most modern-day use cases. Different modules have since been created that enhance 

the ability to go wider and deeper, as well as making it more accurate and efficient, both 

from a memory and performance stance. 
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Inception Networks 

The inception module, first introduced in Inception v1, also referred to as GoogLeNet, 

is a unit where the goal is to obtain wider networks instead of deeper ones (Szegedy et 

al., 2014). The starting point towards the inception branch of networks concerns the 

variability of the salient parts of an image, where the same object can occupy all the area 

within an image or just a small portion of it. Therefore, the proposal of the inception 

model is that the analysis of the image should take into consideration this variability, 

which means that the convolution should not only consider the learning of the kernel 

values but also which kernel size is the best for each convolutional stage.  

In practice, and as seen in Figure 4, this proposal defends the implementation of three 

convolutional layers, one of 1x1, another of 3x3 and another of 5x5, in parallel with 

different kernel sizes, as well as a pooling procedure and then pass the concatenated result 

of these operations to the proceeding layer. However, since deepening the network further 

extends the computational effort, a dimension reduction of the inputs is performed with 

an extra 1x1 convolution being added before each convolution of size higher than 1. 

 

Figure 4 – Inception v1 module 

During the training of these networks, not only the kernel values are adjusted, but also 

the weight of each convolutional layer of the inception module. This means that, on each 

stage of the network, there is the possibility to highlight the most appropriate 

convolutions, in order to better represent the relevant features at each stage, granting more 

flexibility regarding the processing of an image.  
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Nonetheless, this inception module would later be improved with Inception v2, in 

which it would be simplified on several stances to reduce representational bottlenecks 

(Szegedy et al., 2015). The hypothesis was that neural networks perform better when the 

convolutions involved do not drastically change the dimensions of the input. The first 

simplification would be the factorization of the 5x5 convolutional layer to 2 sequential 

3x3. The second step was to redefine every nxn convolution to a stacked combination of 

1xn and nx1. Both these modifications significantly improved the performance of the 

inception module. The third and last modification concerns the stacking of these 1xn and 

nx1 layers on a parallel disposition instead of the sequential one, using the same premise 

as the one defined on Inception v1 where different convolutional processes could have 

more importance than others on the convolutional process. These processes can be seen 

in Figure 5, left to right. 

 

Figure 5 – (a) Simplification of 5x5, (b) 1xn nx1 reduction, (c) filter widening 

After the creation of Inception v2, several other inception networks were also created, 

albeit not with such significant changes to the inception module as in these two previous 

works. Inception v3 focused on the optimization of the network as a whole towards the 

classification problem by factorizing 7x7 convolutions, changing the optimization 

process and introducing batch normalization, to name a few (Szegedy et al., 2015). 

Inception v4 would focus on the uniformization of the network, specifically on the initial 

set of operations performed before the inception blocks (Szegedy et al., 2016). The 

Xception network, instead, performs the modified depthwise separable convolution first 

with a 1x1 convolution and then channel-wise spatial convolution (Chollet, 2016). Other 

works like Inception-ResNets (Szegedy et al., 2016) exploit the usage of inception 

modules and residual learning, a subject that was first introduced by the ResNet networks. 
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Residual Networks 

The start of residual learning emerged with the family of the ResNet networks, mainly 

ResNet50, where the number of layers was pushed to 50 and even higher in other 

configurations (He et al., 2015). When the hypothesis of high layer number networks 

started gaining interest with the VGGs and Inception networks, an issue that arose was 

that the deeper a network went, the training of the networks becomes more difficult since 

the accuracy started to saturate and degrade. Initially thought to be the occurrence of 

overfitting, this issue was later identified as the problem of vanishing gradient. This 

problem, present in gradient-based learning methods, occurs when the calculated gradient 

is so small that prevents the weight from changing its value (Hochreiter, 1998). In order 

to tackle this, ResNets make use of residual units to skip the training of some layers and 

feed that result in deeper ones. Another distinct module was the introduction of batch 

normalization layers, boosting the values of the weights and thus higher learning rates 

can be used to minimize this issue and help accelerate the training (He et al., 2015). 

 

Figure 6 – (a) Residual Learning (b) Aggregated Res. Learning 

In Figure 5a) the process of residual learning is illustrated where the input is not only 

fed at the start of the layer, but also after a couple of iterations to a deeper one. Thus, the 

values forwarded to the last layer of this module are the first iteration of the input and the 

input itself. Several other architectures have emerged that take this procedure as a base to 

other developments. The DenseNets apply the concept of residual learning to the extreme, 

since the output of a layer is fed forwarded to all the posterior layers (Huang et al., 2016). 

Although, the ResNeXts also use residual units, a parameter of cardinality is introduced 

where this unit is repeated several times – Figure 5b) (Xie et al., 2016). 
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2.2 Similarity Search 

Several studies have shown the impact of neural networks regarding visual tasks like 

object detection and classification. Based on these technologies, several companies have 

been trying to develop solutions to create visual search engines. With these engines, the 

concept is to allow an end-user to search for an item by just submitting a photo and the 

engine returns the most visually similar items. Therefore, this section provides an 

overview of the main approaches to tackle the similarity search problem. 

2.2.1 Category Based 

The first and most common approach regarding visual similarity with deep learning 

was to train a convolutional neural network towards image classification. The principle 

was to establish a dense detail on the classification tree of training data such that the 

network would specialize in performing specific classification tasks.  

To achieve this, publicly available models pre-trained on the ImageNet dataset are 

typically used, upon which a training refinement process takes place (Deng et al., 2009). 

Being thoroughly optimized to extract important features over a variety of different 

classes, these models are considered good base models to avoid the training of a neural 

network from scratch. The process of transfer learning can then be applied to these 

models, in which the main objective is to fine-tune the parameters to another task (Zhuang 

et al., 2019). The process of transfer learning can also be partial or complete. In the first 

case, only some layers are subject to modifications, while on the latter all the layers are 

refined. After achieving a satisfactory classification accuracy, the feature array of the last 

fully connected layers would then be retrieved, being regarded as the numeric 

representation of the image (Machado, 2017). The idea was that if the network was able 

to successfully discriminate and classify different images, then the embeddings preceding 

that classification would depict the most important features of the image, in order to 

compare them through a distance metric and retrieve the most similar ones. Pinterest, 

among others, developed a framework to obtain a numeric representation of every image. 

With these arrays stored in a distributed database, the retrieval process was performed 

through a KNN algorithm whose distance metric - Euclidean, Minkowski or Hamming, 

to name a few – would represent the similarity between images (Jing et al., 2015b). 
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2.2.2 Siamese Networks 

The similarity approach based on classification has several assumptions and 

requirements that could be prejudicial both from an application and accuracy perspective. 

It implies the processing of large amounts of image and labels to train a neural network 

with a purpose that is not the end goal, withholding several inaccuracies since the training 

process does not consider the subsequent actions. 

To tackle this issue, one approach was to oppose convolutional neural networks with 

the same composition and weights, in a twin format, also known as the siamese network 

(Koch et al., 2015). The objective of this structure is to feed two images at the same time 

to the network, one being labeled the anchor and the other being either the positive or the 

negative of the anchor. At the end of this structure lies a merging distance layer that will 

apply a distance function to the extracted features of these two images to perform pairwise 

similarity assessment between features. The concept, as seen in figure 6, is that the neural 

network training will already evolve towards the approximation between positive-anchor 

pairs of embeddings and the separation of negative-anchor ones.  

In this manner, the neural network is effectively trained regarding the similarity of 

features and the demand for large volumes of data is diminished, having been used in 

several domains. Koch et al. (2015) and Rao et al. (2017) have applied it for one-shot 

learning, exceeding other state-of-the-art method. Maheshwary & Misra (2018) also used 

them to determine the semantic similarity between job postings and resumes and (Dey et 

al. (2017) proposed one to detect similar signatures and even identify the forged ones. 

 

Figure 7 – Siamese network 



13 

 

2.2.3 Triplet Networks 

The last multi-CNN structure to arise in the similarity search field was the triplet 

network, as seen in Figure 7, and it considers examples with an anchor, a positive and a 

negative image in the same input and enables relative similarity (Jiang Wang et al., 2014). 

In a siamese network, the relationships created are either (i) related or (ii) non-related 

pairs of images, making it difficult to structure a ranking method between several images 

(Hoffer & Ailon, 2014). In this network, the concept of “the positive (A) is more similar 

to the anchor (X) than the negative (B)” allows another input as “the positive (B), 

previously a negative, is more similar to the anchor (X) then (C)”. With this structure, 

one could create a ranking A>B>C relationship, allowing a more detailed structure 

regarding similarity and thus achieving better results than the previous methods (Hoffer 

& Ailon, 2014; Kumar B G et al., 2016). Concerning training datasets, for N images, the 

category-based methods have up to N examples, the siamese has N(N-1) distinct pairs 

and the triplet ones have N(N-1)(N-2) examples, generating a greater dataset out of all. 

 

Figure 8 – Triplet network 

This method has been successfully implemented in several use cases achieving state-

of-the-art results, such as face recognition (Schroff et al., 2015) or, as the case of this 

work, applied to the fashion industry to provide accurate recommendations of same style 

items (Shankar et al., 2017).  Nonetheless, and also concluded by Shankar et al. (2017), 

though accurate image similarity is already possible for normal applications, the 

computational efforts of providing triplet based solutions still require access and 

maintenance of distributed and high-performance infrastructure.  
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2.3 Dimensionality Reduction 

Due to the exponential increase in data collection experienced over the years, 

companies and researchers have no access to greater datasets to empower the training of 

learning algorithms by providing more data. While this leads to more opportunities for 

improvement, it also leads to the hazard of having excess variables, having an impact on 

both the performance and accuracy of a model. This is particularly present in the KNN 

problem, in which a higher the number of variables leads to a higher need for more data, 

commonly known as the curse of dimensionality (Indyk & Motwani, 1998). Thus, the 

process of dimensionality reduction has gained relevance as an effort to reduce the high-

dimensionality of data into a lower one, while preserving the maximum information 

possible (Van Der Maaten et al., 2009).  

In this section, a description of the most traditional and commonly used methods is 

performed concerning the major advantages and drawbacks, as well as an analysis of the 

evolution of hashing functions. 

2.3.1 Traditional Methods 

The application of main dimensionality reduction methods, specifically on the 

similarity search context, has progressed in several directions. Among the first, there is 

the principal component analysis (Wold et al., 1987) where an orthogonal transformation 

is performed to convert the observations into linearly uncorrelated variables. This 

procedure, and resulting variations (McNames, 2001), ensures a synthetization oriented 

towards preserving most variance, but has the drawback of losing context of the variables.  

Other approximative methods, more focused on efficient KNN searches, such as the 

K-DTree (Bentley, 1975) and Ball Tree (T. Liu et al., 2006) use space partitioning data 

structure to organize points in multidimensional space to expedite the nearest neighbor 

search queries. The concept of both algorithms is to use the tree properties to avoid 

computing large portions of the search space, thus making the search more efficient.  

Locality Sensitive Hashing functions (Indyk & Motwani, 1998) have also been 

implemented to accelerate the search, where data points are hashed into buckets so that 

points that are close are located in the same buckets with higher probability. Nevertheless, 

this method has been proven to lack for real-world applications (Shankar et al., 2017).  
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2.3.2 Learning Hash Functions 

All the previous methods took into consideration a generic function that, once applied 

to a dataset, would produce a partitioning scheme that would speed the search query on 

the nearest neighbor problem. Another approach concerns the learning of personalized 

hashing functions to generate a compact code, aiming to obtain a result of the nearest 

neighbor search as close as possible to the original result (Jingdong Wang et al., 2014).  

Concept and Families 

Since these functions cannot be applied in a static manner like other methods 

previously mentioned, a framework must be followed to guarantee the creation and 

improvement of the function, thus becoming an optimization process. Therefore, the 

methodology of learning functions involves (i)  the creation of a hash function to be 

adapted, (ii) the similarity measure to apply to the codes (iii) the definition of the loss 

function and (iv) the optimization technique adopted (Jingdong Wang et al., 2016). 

This area of research currently holds four different families of learning-to-hash 

functions: pairwise, multiwise, implicit and quantization. The pairwise functions progress 

through the minimization of distances obtained via pairwise input mechanism. In 

multiwise functions, each observation possesses several labels and the evolution of the 

function is dictated by the maximization of the number of correct labels given to the 

observations. The implicit one focuses on learning the hash function without the explicit 

evaluation of distances at the input level or at the code space. The quantization process 

constrains a set of values, such as the real number, to a discrete set where the minimization 

of the distance difference - also denominated as quantization error - is performed both at 

the input and code level (Jingdong Wang et al., 2016).  

Of these families, this study will focus on the quantization processes. The formulation 

of a quantization hashing process differs from the remaining processes in its approach, in 

which distance measures can be applied just like in a normal nearest neighbor search. 

Additionally, it could also be regarded as an integral part of pairwise and multiwise 

functions, thought capable of better results, since the input mechanism of a quantization 

process can also be performed considering pairs or triplets of data (Li et al., 2015; 

Jingdong Wang et al., 2016; X. Wang et al., 2016).  
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Quantization 

The first model to successfully implement a quantization process for an approximative 

nearest neighbor search was the Product Quantization (PQ). This process involves using 

a set of codewords to divide the space into a cartesian product of lower-dimensional 

subspaces and the respective quantization of each of them separately. A vector is then 

represented by a compact code that features its subspace quantization indices (Jégou et 

al., 2011). This offers a lot of improvement over other ANN methods, since, both 

performance and memory wise, the data structure of the index is lower than other 

conventional methods. With a different approach, Gong et al. (2012) introduced the 

iterative quantization process (ITQ) in which, firstly, a dimension reducing mechanism 

takes place, like PCA, followed by an iterative minimization of the quantization error. 

This minimization is achieved by iteratively rotating the axes in order to find the rotation 

that explains most of the variance, thus minimizing the quantization error. Norouzi & 

Fleet (2013) would later develop two models, the Orthogonal k-means and Cartesian k-

means, being both extensions of k-means while closely related with ITQ and PQ and 

performing even better than these. Ge et al.  (2014) would also improve the work of PQ 

by using the quantization distortion as an objective function to analyze the optimality of 

the product quantizer. In this, both the parametric solution - assuming the data follows a 

Gaussian distribution - and the non-parametric solution were able to achieve better results 

than PQ. T. Zhang et al. (2014) proposed a variation of PQ, the composite quantization 

(CQ) where the orthogonality constraint of the space partitioning is relaxed, allowing a 

more flexible structure to form, performing better than all above since the previous ones 

are restrained versions of CQ. On Figure 8 it is observable how the partioning of data 

points is performed on several methods, highlighting the flexibility of the CQ. 

 

Figure 9 – (a) PC, (b) Cartesian k-means, (c) CQ 
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2.3.3 Neural Hashing 

All the previous methods, static and learning ones, take into account representation of 

a vector into a smaller code that enables faster and accurate nearest neighbors but does 

not consider the quality of the initial vector by itself before the hashing process. 

Therefore, the maximum accuracy of these methods is bounded by the quality of the initial 

vector representation, whose computation involves a distinct process. 

To address this issue, several studies have been made on how to merge (i) the feature 

extraction component of a convolutional neural network and (ii) a hashing mechanism, 

all integrated into a unique training process from image input to compact code generation. 

To address this, Guo & Li (2015) proposed a two-stage convolutional neural network 

(CNNH) where the codes are learned from pairs of labels and then the hash function and 

feature extraction process are learned based on the codes. This, however, does not allow 

the simultaneous learning of both processes.  

Lai et al. (2015) offer a deep hashing method (NINH) based on triplet labeling, 

successfully achieving a fully integrated learning process from end-to-end. Li et al. (2015) 

would also propose an end-to-end learning method (DPSH), but whose training method 

was based on pairwise labels, beating other state-of-the-art methods at that time. Bringing 

the quantization methods into the deep neural hashing learning process, Cao et al. (2016) 

present a siamese network (DQN), with similar results to DPSH, with a hashing function 

based on quantization of the codes, achieving similar performance at the prior.  

Contrary to both DPSH and DQN siamese structure, X. Wang et al. (2016) make use 

of supervised triplet training and following hashing (DTSH), achieving yet better results 

than these two methods. Combining the quantization nature of DQN and the triplet 

structure of DTSH, Yu et al. (2018) PQnet, beating all previous state-of-the-art and 

further enforcing the importance of relative similarity achieved through triplet based 

learning. Still regarding deep triplet quantization learning, Song et al. (2019) present a 

structure (DRQ) where the learning of the codebooks used for product quantization is 

performed in a recurrent manner. By making use of this recurrent process, the same 

codebook used in product quantization can be used iteratively to achieve different code 

lengths, reducing the training time when evaluating different code lengths. Moreover, due 
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to this iterative process over the same module, the number of parameters of the network 

does not increase linearly with the code sizes, contrary to the previous networks. When 

comparing with PQnet, DRQ loses in the mean average precision score on CIFAR-10 

dataset by 0.3% to 0.5% but wins on the NUS-WIDE dataset on all but the 12 bits code 

size results. However, while being one of the best models on CIFAR-10 and NUS-WIDE, 

DRQ loses to DTQ (B. Liu et al., 2019) on the ImageNet dataset on all code size, by 9.8% 

to 14% (Song et al., 2019). 

 The DTQ structure can be seen as an improvement over DQN since the quantization 

process being applied relaxes the orthogonality constraint, and thus can be viewed as a 

variation of both product quantization and composite quantization (B. Liu et al., 2019; T. 

Zhang et al., 2014). By transposing the orthogonality constraint to the objective function, 

the model evolves towards a flexible partitioning structure that allows the best 

representation of the vector into a compact code while also trying to maintain the degree 

of orthogonality. When opposing DRQ to DTQ regarding the number of parameters of 

the hashing process, the DRQ possesses an inferior number. However, this is does not 

include the number of parameters involved on the convolutional neural network, which 

on most neural networks is 2 to 3 orders of magnitude higher than the number of 

parameters in the hashing layers (He et al., 2015; Simonyan & Zisserman, 2014; Song et 

al., 2019). 
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2.4 Critic Analysis 

After the analysis of (i) convolutional neural networks, (ii) similarity search 

approaches and (iii) dimensionality reduction, this section offers the evaluation of the 

author concerning the desired areas of study and the subjects through which the following 

work focuses. 

Concerning convolutional neural networks per se, it is clear that it is a field where 

research has already produced algorithms capable of thoroughly analyzing an image and 

identify several classes of images better than a human being since 2015 (He et al., 2015). 

Therefore, little focus will be given regarding the formulation of a novel convolutional 

neural network, but rather an analysis and selection of the currently available ones. This 

should take into account (i) accuracy results on publicly available datasets, (ii) number of 

parameters and floating-point operations, affecting performance, (iii) publicly available 

networks that have already been pre-trained on ImageNet. The reason for the third aspect 

is driven by time and computational restraint, since performing a parameter optimization 

of these networks in these datasets involves strong computational power and time to do 

so. The first two guidelines are due to the objective of creating a solution whose feasibility 

on real-world applications is a must, especially considering the goal of providing a real-

time response. The following chapters will include the benchmark of available CNNs 

(Bianco et al., 2018) according to these guidelines and selection of the most appropriate. 

Furthermore, on similarity search approaches, it has been shown that the triplet method 

is the most capable of producing accurate results concerning similar products. This has 

even been proven in real scenarios as on the fashion e-commerce industry, where robust 

and accurate, though computationally expensive, results are already being produced by 

several companies (Shankar et al., 2017; Zhai et al., 2019; Y. Zhang et al., 2018). 

Therefore, the approach that will be further explored is the triplet based one. 

Finally, on dimensionality reduction, several benchmarks indicate that both traditional 

and isolated learning hash functions perform worse than integrating a learning hash 

function in a convolutional neural network to produce compact codes. Thus, the focus 

will rely on the construction of a model following the work on DTQ and comparison with 

a non-hashing triplet network. 
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3 Methodology 

The following chapter defines the methodology employed to create a deep learning 

model based on existing convolutional neural networks architectures tested on several 

public datasets of image recognition. From this basis, how to adapt these networks into a 

feature extractor module capable of producing compact binary codes, a development 

workflow is defined that will be the guideline for the sections of chapter 4 and 5. Given 

the objective of reproducibility of this model towards a practical business solution for 

ecommerce retailers, a high level architecture is presented, both for online and offline 

image similarity recommendations. As a final section, a summary of the technology stack 

used in this project, both software and hardware wise, is also provided due to its relevant 

impact for real world replication of the system developed. 

3.1 Development Workflow 

As previously referred, several image analysis tools currently developed have been 

using deep learning models and transforming the classical classification of images into a 

similarity approach. On the similarity challenge, the evolution from classification tasks, 

to siamese networks and finally triplet based similarity has provided increasingly better 

results, hence why this work focuses on the implementation of a triplet network. 

To address the goal of achieving a deep triplet neural network capable of producing 

high quality and compat binary representation of images, there are four main stages that 

must be defined and carefully adjusted. As seen in figure 9, there are four components 

regarding the creation and training process of the model, all of them with the main topics 

included. 

 

Figure 10 - Main stages for the implementation of the model 
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The first concerns the creation of the training dataset. On one hand, this dataset must 

include several images across several dimensions to ensure that the model is robust 

enough to be able to react to both high-end catalog produced images but also user 

submitted images. On the other hand, given the exponential generation of triplet 

combinations, a selection strategy is of paramount importance to balance this trade-off 

between quality and efficiency of the training.  

The second concerns the base convolutional neural network being used as the core 

module of the neural network. Though the objective is to train a similarity network, this 

is only possible if the model is also capable of distinguishably analise broad and fine 

grained details in images. On fashion items, this ranges from assessing which items are 

shown in an image to the patterns in the item itself. Moreover, even within the pattern, 

the model should be able to recognize distinct elements – e.g. a t-shirt bearing a skate or 

a general view as a beach.  

The third component regards the hashing process, in this case quantization. The 

integration of a CNN with a quantization method is not a direct process, given the distinct 

nature of the two – one improves by continuous differentiation, while the other concerns 

a discrete optimization problem. Therefore, the layers to introduce must consider the core 

steps of a quantization process, whilst adequating it to the training framework of a neural 

network. To do so, the objective function is a minimization of both the similarity function 

between the triplets and the quantization error induced by the quantization layers created. 

The final step within these layers is to define the retrieval of nearest neighbors after 

having the database populated with the catalog images processed and quantized. 

The fourth and last component concerns the objective function and how the model will 

iterate to improve while training. For the objective function, the two main components of 

analysis are the specification of the triplet loss function and of the quantization error. The 

first is the main driver towards better similarity searches and the second towards a more 

effective representation of the binary codes to be produced. Though explained in a 

separate section, an orthogonality constraint is also applied to the code generating 

codebook with the goal of generating codes with less redundancy on the codewords. 
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3.2 Solution Architecture 

The design for a scalable and responsive architecture from a Software-as-a-Service 

(SaaS) point of view should consider both online and offline recommendations. First, to 

address these two use cases, the retailer’s catalog is fully analysed by the proposed model 

and the codes that are produced will be stored in an external database. Moreover, and 

according to a specified frequency, the retailer will also have readily available a set of N 

neighbors for each of the items in its own catalog. This will support the offline 

recommendations and increases the frequency at which these pre-computed neighbors 

should be updated, alongside with the degree of new items present in the catalog. In this 

manner, the proposed architecture is able to respond to both online and offline 

recommendations, as seen in figure 10. The distinction between online and offline is, for 

the former, the computation of the nearet neighbors is performed in a synchronous real-

time request, where every picture submitted is processed and compared with the binary 

code database. On the offline, the objective is to provide similar products between items 

in the same catalog – thus the input image is known at the start and can be precomputed 

and saved to accelerate the supply of recommendations. 

 

Figure 11 - Overall product architecture and use cases 
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3.3 Use Cases 

For online recommendations, the typical use case is of a person submitting an image 

in search of a particular item. This can be done from the photography collection in the 

smartphone or directly from the camera. On this picture, the user has the option to crop 

the image and then submit it, finally receiving the most similar items – figure 11.  

 

Figure 12– Online case: image submission process left to right 

However, the most common case is of a user just browsing a retailers ecommerce 

website looking for items. For this case, when the user clicks in a product, the product 

page should load with a set of similar items -  Figure 12, the recommendations in red. The 

objective here is to capitalize on the attention the user gave to a specific product and show 

an array of slightly different items that could be better fitting to its taste. The number of 

requests in this type of recommendations is higher than the previous, hence why the 

precomputation of results is essential to scale the service to several users at the same time.  

 

Figure 13 - Offline use case: webpage on the left, product page on the right 
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3.4 Technology Stack 

The main programming language to be used in this report will be Python since this is 

the main language being used on most projects. Within this programming language, the 

following libraries will also be the main ones to be used: 

• Tensorflow for neural network design and training, 

• Pandas and NumPy for data treatment and KNN implementation, 

• SQL on BigQuery and PostgreSQL databases for data storage/retrieval, 

• FlaskAPI for real-world scenario evaluation. 

Still concerning real-world scenarios, the benchmark of the final solution will involve 

testing how the solution will perform regarding (i) latency of each request and (ii) the 

maximum number of requests per second. To do so, both Gunicorn and Nginx will be 

used to deploy the solution from a development environment into a fully operational 

production HTTP server. 

The training of the models, and to make use of the advantages of graphic computer 

units, will involve the implementation and configuration of Nvidia drivers, along with the 

installation of the Cuda and cuDNN drivers to maximize the utilization of resources for 

deep learning training. This computation will be performed in a server with the following 

characteristics: 

• Intel Core i7-9700K Octa-Core 3.6GHz, Turbo 4.9GHz 12 MB Skt1151 

• Nvidia GeForce RTX2080Ti Triple Fan 11GB GDDR6 

• SSD M.2 2280 Samsung 970 Evo Plus 500GB MLC V-NAND NVMe 

• RAM 32 GB DDR4-3000MHz CL15 

• Motherboard ATX MSI Z390-A Pro 

The data for this project will be provided by ShopAI, a company operating in the field 

of image similarity for fashion e-commerce, with data obtained from in conjunction with 

its customers – both store and street photos of items – previously labeled. These labels 

include the category established for each item. The process of mining a triplet based 

dataset will be performed during the data preparation process of this work. 
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4 Implementation 

The following sections will describe the creation and development of the similarity 

model, starting from the data preparation, moving to the core CNN selection and ending 

with the implementation of the quantization layers and the training process of the model. 

4.1 Data Preparation 

In this regard, the dataset preparation involves the gathering of several images on 

different conditions, in order to maximize the accuracy of the model across different kinds 

of apparel items. Afterwards, a triplet definition and selection takes place, in which a set 

of criteria were defined to allow a hierarchy of similarity to be drawn. Based on this 

hierarchy, only the best fitting triplets will be used during the training of the model. 

4.1.1 Data gathering 

As with any machine learning algorithm, the most essential part concerns the gathering 

of data, promoting the balance between the amount of samples from each kind of 

examples. In this case, the images must consider different scenarios and conditions to 

assure that the model is robust yet variable enough to provide good recommendations. 

To do so, the first challenge concerns the differentiation between studio produced 

images from retailers’ catalog and normal pictures taken by the average person. While 

the first pertains high resolution pictures of apparel items in the most distinguishable 

angles in perfect lighting conditions, the second is typically affected by inferior quality 

and thus noisier images. Additionally, the number of items in the fashion and apparel 

business grows from clothing and footwear to accessories and other wearables - not to 

mention the distinction between genders and adult versus child items. Lastly, and on top 

of the previous one, for each set of these categories, the variety of patterns present in a 

piece of clothing is virtually unlimited. Anything from simple stripes and squares to 

complex images as beaches or skylines must be considered. Consequently, a wide variety 

must be included for each category. 

For this project, the data gathering was enabled by ShopAI, a company operating on 

the visual search industry for ecommerce fashion, where several images from different 

retailers have been collected meeting the standards mentioned above. 
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4.1.2 Triplet Generation 

One of the major issues regarding deep neural network training is the access to high 

volume of data to effectively train the model. However, when creating triplet based data, 

the generation of new samples suffers from a combinatorial explosion. For a set of N 

images, the total amount of distinct triplets capable of being generated is approximately 

N3. In this case, the challenge is to select only the best triplets combinations in order to 

maintain high quality samples and avoid lower quality ones. 

Previous works on triplet based systems have defined a multi category dataset for the 

images being used: distinction between shirts, shoes, jackets, among others. While it is 

true that a shirt is different from a jacket, the same can be said between two jackets or 

even that a shirt and a jacket are similar, because they possess the same pattern on the 

front. This highlights the relativity that is inherent to similarity and the shortcomings of 

just classifying an item into just one specific category. 

B. Liu et al. (2019) propose a technique defined as Group Hard where, for every 

anchor-positive pair concerning same category images, a negative is selected out of a 

different category, considered to be the hardest one to distinguish from the positive. This 

is performed by computing a distance metric between them and only a fraction of the 

most similar negative images is selected. This approach, nonetheless, contemplates 

assumptions that could undermine the accuracy of the model. If the model is going to be 

trained using these triplets to produce more accurate embeddings, then what embeddings 

are going to be used at the start and are they good enough to perform this selection? 

Moreover, this study performs relatively well when tackling wide category challenges, 

such as the ImageNet competition, but how well is it certain to perform in a narrower 

universe of analysis such as online apparel images as in this project? Finally, as stated, 

two items might be from different categories and yet be similar enough through a very 

specific pattern or belong to the same category but with completely different style and 

thus not very similar. The assumption that same category items are always the most 

similar may restrict the generalization of the algorithm. Thus, though based on this 

strategy, a new approach was developed where the selection of triplets is performed 

considering a hierarchy of similarity between images. 
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Starting from the Group Hard strategy, and represented in figure 13, the first division 

to be performed is to distinguish the different categories among the initial image dataset. 

This involves categorizing the items into common fashion categories such as shoes and 

trousers, since this is the most obvious and direct differentiation between items a person 

can make. From this, another characteristic of the fashion industry is the launching of 

products in sets/collections – those that typically possesses the same design or pattern. 

Taking advantage of this, the items are then grouped into same collection/pattern sets 

where the similarity among them is expected to be higher than between same category 

items but belonging to different collections. It is in this second level that the 

differentiation of items within the same category is enforced and where the inner-category 

similarity analysis is further pushed to allow a finer separability of positive/negative cases 

to occur. Finally, a third level of classification is performed – green in figure 13 - where 

the goal is to associate different images of the same item. The focus is to collect (i) catalog 

images but in different perspectives and (ii) traditional in street photographs from the 

same product and index them all in the same ID. By introducing noisier street images and 

indexing it to the images from studio conditions, the objective is to allow the model to 

process both high and low quality images as different representations of the same product. 

Given the entropy of street photos, the matching with in shop images of different 

perspectives aims to fortify the matching of a user submitted image to the correct item.  

 
Figure 14 – Triplet selection strategy 
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4.2 CNN selection  

The core component of this model involves creating a feature extractor network upon 

which the hashing layers will be built upon. However, to train a neural network from 

scratch involves heavy commitment of resources, both computational and time wise. Such 

task, in the current day and age, could be surpassed by performing transfer learning on 

pre-trained models and consulting several benchmarks to select the best choices. In this 

sense, this chapter shows the walkthrough procedure to select the core architecture. 

4.2.1 Keras Applications 

In this case, the pre-trained models that will be analysed to integrate the core extractor 

module of the network were developed for the ImageNet challenge, given its wide 

category variety and data volume, and are available on the Keras library. On Table 1 there 

is a representation of the benchmarks and main characteristics of the neural networks 

available on Keras at the day of this writing. Nonetheless, to aid in the selection of the 

model, additional benchmarks have been considered to expand the analysis of the models. 

Table 1- Keras pre-trained models on ImageNet 

Model Size Top-1 Accuracy Top-5 Accuracy Parameters Depth 

Xception 88 MB 0.790 0.945 22,910,480 126 

VGG16 528 MB 0.713 0.901 138,357,544 23 

VGG19 549 MB 0.713 0.900 143,667,240 26 

ResNet50 98 MB 0.749 0.921 25,636,712 - 

ResNet101 171 MB 0.764 0.928 44,707,176 - 

ResNet152 232 MB 0.766 0.931 60,419,944 - 

ResNet50V2 98 MB 0.760 0.930 25,613,800 - 

ResNet101V2 171 MB 0.772 0.938 44,675,560 - 

ResNet152V2 232 MB 0.780 0.942 60,380,648 - 

InceptionV3 92 MB 0.779 0.937 23,851,784 159 

InceptionResNetV2 215 MB 0.803 0.953 55,873,736 572 

MobileNet 16 MB 0.704 0.895 4,253,864 88 

MobileNetV2 14 MB 0.713 0.901 3,538,984 88 

DenseNet121 33 MB 0.750 0.923 8,062,504 121 

DenseNet169 57 MB 0.762 0.932 14,307,880 169 

DenseNet201 80 MB 0.773 0.936 20,242,984 201 

NASNetMobile 23 MB 0.744 0.919 5,326,716 - 

NASNetLarge 343 MB 0.825 0.960 88,949,818 - 
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4.2.2 Benchmark & Analysis 

While the Keras library provides several state-of-the-art pre-trained convolutional 

neural networks, to choose between them is not only a matter of comparing top 

accuracies. They must have a good accuracy but should also provide a good response time 

and low memory footprint, particularly for the online recommendations part where the 

mobile factor takes the center stage. Therefore, and using the benchmark provided by 

Bianco et al. (2018) on figure 14, one can see that NASNet-A-Large achieves the highest 

accuracy but with a heavy toll concerning G-FLOPs and number of parameters. Other 

networks that have a good performance, with low G-FLOPs and number of parameters, 

are the SE-RexNeXts, who take the residual learning with cardinality to another front by 

adding a Squeeze and Excitation modules. However, these networks are not covered by 

the Keras library and therefore are not subject of study in this work. 

 
Figure 15 – Top1 Accuracy vs G-FLOPs vs Number of Parameters 
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Apart from these networks, others that also provide good results are the Xception, the 

Inception-ResNet-v2 and the Inception-v4, among others that are absent from Keras. In 

fact, when considering the networks that are present, Inception-v4 is still not fully 

supported by Keras at the moment of this writing. Narrowing the response times provided 

by  Bianco et al. (2018) into the list available from Keras one can analyse the different 

response times for a Nvidia Jetson TX1 on Table 2. The focus of comparison is mainly 

on the batch size 1 because the use case where speed is paramount is the online 

recommendations since the request and delivery of the recommendations is performed in 

a synchronous method – the neighbors are computed after the input image is received. At 

the start, one should discard the VGGs due to their low accuracy levels and high number 

of parameters and G-FLOPs. The DenseNets and the Resnets, though with sub 100ms 

results, provide inferior results when compared with Xception and Inception-ResNet-v2. 

Out of these two, the lastest has double the number of parameters, G-FLOPs  and response 

time than the former, while only slightly improving the overall accuracy. Thus, and being 

its author the creator of Keras, this network was considered the best fitting case in the 

trade-off of Accuracy vs Response Time vs G-FLOPS and Parameters. Another network 

that has been performing well across all these dimensions is the EfficientNet (Tan & Le, 

2019), and although is still not fully supported by Keras at this moment, it is an 

architecture that will be further analysed and tested in future works. 

Table 2- Benchmark times for different batch sizes on Nvidia Jetson TX1 (ms) 

DNN 1 2 4 8 16 32 64 

DenseNet-169 137.96 130.27 110.82 100.56 92.97 88.94  

DenseNet-201 84.57 61.71 62.62 53.73 49.28 46.26  

Inception-ResNet-v2 198.95 141.29 127.97 130.25 117.99 116.47  

Inception-v3 79.39 59.04 56.46 51.79 47.6 46.85  

MobileNet-v1 15.06 11.94 11.34 11.03 10.82 10.58 10.55 

MobileNet-v2 20.51 14.58 13.67 13.56 13.18 13.1 12.72 

NASNet-A-Large 437.2 399.99 385.75 383.55 389.67   

NASNet-A-Mobile 133.87 62.91 33.72 30.62 29.72 28.92 28.55 

ResNet-101 84.52 77.9 71.23 67.14 58.11   

ResNet-152 124.67 113.65 101.41 96.76 82.35   

ResNet-50 53.09 44.84 41.2 38.79 35.72   

Xception 98.96 93.4 90.49 87.65 86.89   
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4.3 Quantization layers 

As aforementioned, the inclusion of hash functions within the training of the neural 

network as a whole produces better results when opposed to separating them into two 

different stages. The reason is that integrating both the improvement of the quantization 

error and the triplet error within the same unified end-to-end framework enables the 

propagation of the error across the whole structure. With this, both the quantization layers 

and the feature extractor ones are aligned and will be having adjustments every step of 

the training, since one change on one of the layers could affect the others. 

In this sense, the creation of additional layers were also included, following the work 

of B. Liu et al.(2019) on how to implement product quantization layers on top of neural 

networks. The proceding sections will describe the main layers and concepts used to 

effectively perform this process, as well as its definition through which binary codes are 

created. 

4.3.1 Codebook, Subspaces and Subcenters 

The main idea of product quantization is to split a vector of size D into smaller sub-

vectors, each of them being quantized into a reference of the nearest codeword. This 

division occurs by specifying both the number of subspaces M onto which divide the 

vector into M parcels of size D/M and the number of codewords K each of these subspaces 

has. It should be noted that the parameter M is used to control the trade-off between 

accuracy and memory-cost, as higher values of M  can achieve a finer and more accurate 

quantization, despite the higher memory usage. For K, each of the codewords is a vector 

of size D/M and a common value to be defined is 256 since the binary representation of 

this value only requires 8 bites (= 1 byte). The resulting vector, the binary code, as a result 

of the decomposition and subsequent quantization of each m subvectors will have a 

memory footprint of just 𝑀 ∗ log2 𝐾 bits. 

To produce this binary codes, however, the number of subspaces and subcenters is 

used to create what is known as the codebook C. This is essentially a matrix composed of 

all the codewords K for all the subspaces M. Figure 15 shows a practical example of how 

this process is achieved. 
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At the start of the process it is shown an input vector whose embedding is of a 

continuous nature, just like the one obtained from the feature extractor layers, with size 

D=8. In this case, the number of subspaces considered was 4 and the number of 

codewords is 2, consequently the embedding is then divided into 4 smaller components, 

each of them highlighted in different color. Afterwards, there is the codebook, which in 

this case, and also in the model itself, the matrix was compacted into a single wider matrix 

to shorten the number of operations to perform. Each subspace is restricted to a dimension 

of 2x2 since K=2 and the size of each codeword is D/M = 2, being each column of the 

highlighted areas a codeword of 2 centers. 

When comparing each of the subvectors with the specific subspace in the codebook, 

the subcenters with the nearest values to the ones in the subvector are then indexed in the 

binary code. As an example, for each of the subspaces, the corresponding codeword 

selected as the nearest centers is specified by a red box. Considering the embedding as z, 

the codebook as C  and the binary code as b, then for the example shown is it seen that 

this binary code is the one where the vectorial product of C and b is the most similar to z. 

The difference between z and C*b is denominated as the quantization error and this is one 

of the components subject to minimization in the objective function – described in detail 

in chapter 4.4. Another form of storing the binary codes is to convert them into the integer 

format, shown as well as integer code in figure 15. 

 

Figure 16 – Product Quantization of Embedding 
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4.3.2 Retrieval of Neighbors 

One subject that is primarily focused on the productization of the model is the manner 

of retrieval of neighbors after the input image has been provided. Since the catalog of a 

retailer is going to be fully processed beforehand, the codes of every image for each 

product will be stored in a database. 

 The idea of compacting into a binary code is advantageous on the nearest neighbor 

search due to its low memory footprint when compared with the embeddings and the 

speed of computing the nearest neighbors. Jégou et al. (2011) propose two different 

approaches based on the distance computation between the query vector x and the 

quantized codes on the database q(y) for the computation of the nearest neighbors.  

 

Figure 17 – Symmetric and asymmetric distance computation 

The symmetric distance computation performs the quantization of the query vector 

q(x) and calculates the similarity between the quantized query and the quantized codes – 

represented in the left image of Figure 16. The Asymmetric distance computation 

computes the same without quantizing the query vector. The authors argue that, while 

slightly more costly than the symmetric computation, the asymmetric one achieves lower 

quantization distortion – reason why the main focus for retrieval results on chapter 5 will 

go for the asymmetric one. For both cases, the similarity calculation is executed by 

applying the inner-product between the query vector, quantized or not depending on the 

metric, and the quantized database codes. 
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4.4 Objective Function & Training 

The last step of the implementation concerns the definition of the objective function 

of the model, where the network will iteratively train in order to minimize the function. 

For this case, the objective function can be divided into triplet loss - which translates the 

separability between positive and negative embeddings from the anchor - the quantization 

error - where the error associated with the synthetization of the embeddings is reduced - 

and the orthogonality constraint. After the definition of this function, the training stages 

and process is defined. In this section, the same notation as the one present in DTQ (B. 

Liu et al., 2019) is used since this formulation was based on this work. 

4.4.1 Triplet loss 

At the preparation stage, numerous triplet samples, Nt, were created, where each 

sample is composed of a positive, a negative and an anchor. Considering each sample 

from i to Nt, and each of the three components, each sample is then respectively 

represented as 𝑧𝑖
𝑝, 𝑧𝑖

𝑛 and 𝑧𝑖
𝑎, where z refers to the embeddings of the image to be 

processed obtained  at the last stage before the quantization layers.  

For this project, the relative similarity measure is defined by computing the Euclidean 

distance between the positive and negative images and the anchor one, where positive-

anchor (p-a) distance should be smaller than the negative-anchor (n-a) one. To avoid an 

absolute similarity relation between samples, a parameter δ is also introduced as a 

relaxation, where the positive example is only required to be more similar than the 

negative by a specific margin, enforcing the case of a relative similarity process instead 

of an absolute similarity relation.  

The formulation described is present in Equation 1, this being the first component of 

the overall objective function, represented by L. The application of the difference margin 

is applied by retaining the maximum value between 0 and the overall triplet distances, 

where if the value is below 0 then it is not considered. 

 

𝐿 =  ∑ 𝐿𝑖

𝑁𝑡

𝑖=1

= ∑ max (0, 𝛿 − ‖𝑧𝑖
𝑎 − 𝑧𝑖

𝑛‖2  + ‖𝑧𝑖
𝑎 − 𝑧𝑖

𝑝‖
2

)

𝑁𝑡

𝑖=1

 (1) 
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4.4.2 Quantization error  

When performing an hashing process, the main trade-off is to reduce the size of the 

data while losing the least information possible from data. In quantization, this is 

described as the quantization error, being this the part approached by the second term of 

the objective function here described on Equation 2. 

 

𝑄1 =  ∑ ∑ ‖𝑧𝑖
∗ − ∑ 𝐶𝑚𝑏𝑚𝑖

∗

𝑀

𝑚=1

‖

2

∗∈{𝑎,𝑝,𝑛}

𝑁𝑡

𝑖=1

 (2) 

As seen in chapter 4.3, the generation of binary codes is performed by performing the 

Euclidean distance on the difference between the embeddings from the last layer of the 

core CNN, 𝑧𝑖
∗, and the vectorial product between the codebook and the code to be 

generated, 𝐶𝑚𝑏𝑚𝑖
∗ . This is transposed into the objective function, where the minimization 

of the norm grants the convergence of the generation of binary codes into more fitting 

representation of the extracted embeddings.  

4.4.3 Weak-Orthogonality Constraint 

While the triplet strategy is performed in an effort to perform effective similarity 

searches, the efficiency of the network to generate binary codes is dependent on the 

codebook used to generate them. As seen, several authors have directly imposed an 

orthogonality constraint to avoid code redundancy and improve the code compactability. 

To enable a more flexible structure to be created, B. Liu et al. (2019) modify this 

constraint into a quantifiable component of the objective function by transforming the 

orthogonality relationship where ATA = I, being A a general matrix and I the identity 

matrix. In this transformation, if A is orthogonal then ‖A𝑇A −  I‖2 is added into the 

objective function. The minimization process will converge this component into the 

lowest possible value, but in this case, one can control the degree of orthogonality, with 

the parameter 𝛾 to impose rather than being a binary decision. Therefore, the model 

evolves in the direction of maximizing the orthogonality of the codebook and thus its 

efficiency, without restricting it to be entirely orthogonal – Equation 3. 

 

𝑄2 =  𝛾 ∑ ∑ ‖𝐶𝑚
𝑇 𝐶𝑚′ − 𝐼‖2

𝑁

𝑚′=1

𝑀

𝑚=1

 (3) 
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4.4.4 Training process 

Combining all the components of the objective function, the function to be minimized, 

in Equation 4, is then composed by the triplet loss and the quantization loss which, by 

itself, includes the quantization error and the orthogonality constraint and is affected by 

an hyper-parameter 𝜆. Please note that Q = Q1 + Q2. 

 𝑚𝑖𝑛
𝜃, 𝐶, 𝐵∗ 𝐿 +  𝜆𝑄 (4) 

From this, the training of the model is then divided into three main sets of variables 

that will be updated iteratively - during the update process of each of them, the remaining 

ones are static. The first concerns the deep convolutional parameters, 𝜃,  and it will be  

optimized  via  back-propagation. The second  involves updating the codebook, C, 

through the adoption of the gradient descent. In this case,   𝐶 = 𝐶 −  𝜂
𝜕𝑄(𝐶)

𝜕𝐶
,  where 𝜂  is 

a learning rate.  The third and last component regards the update of the binary codes  B*. 

However, this process is not straightforward to implement on a gradient descent method, 

because the generation of binary codes implies a discrete optimization to be performed, 

instead of a continuous one. Therefore, given that each code of each image is independent 

of the remaining ones, the problem is analysed as a high-order Markov Random Field 

problem. As these problems tend to be an NP-hard one, this is addressed by applying the 

Iterated Conditional Modes algorithm that solves each of the subspaces in M alternatively, 

guaranteeing the convergence to local optimum and thus an effective binary code to be 

created.  
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5 Results & Analysis 

The following chapter describes the results after training the model and the 

corresponding analysis between the triplet quantization method, named TQ, and the triplet 

based without quantization, named as TNQ – using Xception as the same common feature 

extractor. Both these models were created under the same resources, training datasets and 

common parameters to best reflect the loss in information from the quantization process. 

For TQ, the nearest neighbors search is performed via ADC and SDC as described in 

chapter 4.3.2. For the TNQ, given that the embeddings are used directly has obtained by 

the second to last layer, the computation of neighbors is performed via Euclidean distance 

using FAISS (Johnson et al., 2019) enabling fast, GPU based, nearest neighbor search for 

large scale data retrieval. 

The settings of the parameters referred along this document are the same as the ones 

specified in DTQ (B. Liu et al., 2019) with the exception of the number of epochs – set 

to 20 due to time constraints – and the number of subspaces – here tested for M=4,6,8.  

Due to the subjective nature of similarity and that the challenge at hand concerns a 

more specific niche of analysis - the fashion apparel industry - the scope of analysis of 

this project was divided into three main subjects. The first, the most objective yet restrict 

one, concerns the mean average precision on the recommendations provided by the 

algorithm for the first result obtained by the nearest neighbor search. The second refers 

to the creation of a practical use case with a retailer, where a human sample and 

recommendations provided by the algorithm were both subject to external analysis by 

other people regarding the quality of the recommendations.  The third comparison is the 

A/B testing the algorithm in ecommerce platforms of retailers to assess (i) the variation 

of results versus the non-quantized model and (ii) how both of these compare with a 

different kind of recommendations system. 

Apart from the first benchmark, this analysis was performed in association with 

ShopAI, the company that provided the data for the training of this model, and with 

several retailers that are customers of it. Therefore, the last two components will only 

reflect the variations in comparison with a baseline in order to maintain the anonymity 

and data protection of business metrics both from ShopAI and its customers. 
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5.1 Accuracy Analysis 

In order for TQ to be evaluated, the conditions of analysis must contemplate the 

scenarios of online and offline recommendations. For the first, the metric can be divided 

into recommendations (i) having the same category at the input query, (ii) having the 

same category and pattern of the input query and (iii) finding the exact product in store. 

For the second, the same conditions apply with the exception of the same product 

analysis, since the offline case is not supposed to recommend the same product. 

Analysing Table 3, it can be concluded that the SDC performs worse than ADC for all 

the conditions defined, following the behaviour described by Jégou et al. (2011), where 

the quantization distortion is higher in the SDC. Additionally, it is also observable that 

TNQ is better than TQ – 64 bits by an average of 3.6 and 7.3 p.p for ADC and SDC 

respectively, as a result of the quantization distortion produced by the additional layers. 

From another perspective, it is also seen that, for both TNQ and TQ the precision is 

lower on the Street query images than on the In Shop – explainable by the fact that street 

images have more noise. Nonetheless, it is seen that higher number of subspaces increases 

the precision across all conditions, though with a maximum difference of just 0.8 and 0.2 

p.p. for ADC for both Street and In Shop conditions respectively, from 32 bits to 64 bits.  

Since the remaining tests were performed on real life conditions with human teams 

and ecommerce platforms from retailers working closely with ShopAI, only the ADC will 

be continued to be analysed since it performed best in this benchmark. 

Table 3- SDC mAP of TQ vs TNQ (%) 

Conditions Metric TQ - 32 bits TQ - 48 bits TQ - 64 bits TNQ 

In Shop - Category SDC 90.5 90.9 91.6 96.5 

In Shop - Pattern SDC 80.7 82.8 84.1 87.5 

Street - Category SDC 69.4 73.1 75.5 82.5 

Street - Pattern SDC 58.9 61.4 63.6 72.1 

Street - Exact product SDC 45.7 47.3 49.5 62.3 

In Shop - Category ADC 93.0 93.1 93.2 96.5 

In Shop - Pattern ADC 85.5 85.6 85.8 87.5 

Street - Category ADC 78.5 78.9 79.3 82.5 

Street - Pattern ADC 68.1 68.3 68.6 72.1 

Street - Exact product ADC 55.2 55.5 56.0 62.3 
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5.2 Practical Use Case 

 To better reflect human perspective, 4 samples of 1000 images each - 750 from In 

Shop images and 250 from Street view -  was gathered, identified and subject to the 

nearest neighbors search by the 3 configurations of TQ and TNQ. With the same 

distribution, 1000 manually curated recommendations were also produced by retailers 

belonging to ShopAI customer base. Afterwards, these sets of recommendations were 

evaluated by an additional team, whom it was asked to classify the quality of the 

recommendations from Very Poor to Very Good, as shown in Table 4. It can be concluded 

that no significant deviation occurs between the different configurations of TQ, 

improving only from Medium cases to Good. Additionally, TQ -64 bits for Very Good 

achieves 93.8%, 2.9 p.p behind TNQ and 4.6 p.p behind Human Team.  

Table 4- Human evaluation of TQ vs TNQ vs Human Team (%) 

Classification TQ - 32 bits TQ - 48 bits TQ - 64 bits TNQ Human Team 

Very Poor 0.2 0.2 0.2 0.0 0.0 

Poor 0.0 0.0 0.0 0.0 0.0 

Medium 2.4 1.9 1.6 0 0.1 

Good 3.7 4.2 4.4 3.3 1.5 

Very Good 93.7 93.8 93.8 96.7 98.4 

While the results support the quality of the model at the level of human perception, 

the overall value of 96.7% of Very Good for TNQ is intriguing, since TNQ achieved only 

96.5% for In Shop and 62.3% for Street images of the same category – the minimum 

baseline considered for similarity. Upon further examination on the dataset, several 

examples emerged where images belonging to different categories were classified as Very 

Good – Figure 16 (a) as example. This occurred because many images were cropped, 

cutting essential details on the images that would otherwise seem more different if 

analysed as a whole. This enforces the case of relative similarity and is in fact desired to 

strengthen the robustness of the model regarding lower quality or defective query images. 

 
Figure 18 – (a) Cropped images, (b) Unedited images 
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5.3 A/B Testing 

Another benchmark performed to assess the results of TQ concerned the direct 

application of it in a business ecommerce platform and test how it performed on the level 

of (i) seeking the customer’s attention and (ii) converting the attention to a sale, 

generating revenue. For the first, the metric created was the Session to Click and it is the 

ratio between the number of times a customer clicks on an item from the 

recommendations provided by the model after landing on a product page and the number 

of times a user lands on said page – this is shown chapter 3.3, Figure 13. For the second, 

the metric defined was Click to Purchase and it is the ratio between the number of times 

a sale is made after clicking in a recommendation and the number of times a customer 

clicked on a recommendation. The product of these two metrics translates the number of 

sales a customer buys an item generated by the model after landing in a product page. 

The test was performed by randomly generating two sets of recommendations, one 

provided by either TNQ or TQ – 64 bits and another provided by a typical recommender 

system as a Baseline Recommender. For this system, the principle is to show items that 

people bought together with the item present in the product page. These two sets are then 

displayed in the product page in a specific order – either TQ or TNQ first and the Baseline 

Recommender second or vice-versa, as seen in Figure 19. This reversion in the order is 

due to the fact that customer attention is highly subjective and volatile, therefore the place 

of exposure of the recommendations highly influences its success. By mixing the order 

of the recommendations, the goal is to maintain a fair comparison of the metrics 

described. 

 

Figure 19 – Product Page with different recommender systems 
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For this A/B testing, four different fashion retailers were considered, each of them 

with an apparel style different from the others, as well as the respective geographical 

markets – for example, smart-casual retailer in South Africa vs. boutique fashion in 

England. Consequently, the benchmark analysis is broader and more robust, since several 

retailers are considered with different cultural and sociological standards.  

These tests were executed directly on the production website of these retailers, hence 

the belowmentioned results report actual business results from said brands over a period 

of 3 months. As such, for the sake of anonymity and disclosure protection, the results 

were modified into relative terms - the Baseline Recommender will be regarded and the 

standard and results of TNQ and TQ are a multiplicative over the baseline. 

It can be seen on Figure 20 that both TNQ and TQ gather more attention from the end 

user when compared with the baseline. Retailer C is where this difference is more 

pronounced, with both TQ and TNQ performing 45% and 49% better than the baseline 

and D is the least significant case where the increase is only 4% and 5% respectively. 

Nonetheless, A and B are the larger size catalog retailers with a more distinct number of 

products in their range as opposed to C and D, suggesting that a conservative average 

increase of +17% is a more realistic conclusion to be drawn concerning the performance 

of the model on the Session to Click. Between TQ and TNQ, it can also be observed that 

the maximum difference is 4 p.p. for case C, but only 2-3 p.p for the higher sized catalog 

A and B - averaging 2.5 p.p. - suggesting that the addition of the quantization process 

only marginally decreases the results obtained by the model. 

 
Figure 20 – A/B Testing – Session to Click results 
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Concerning the Click to Purchase metric displayed in Figure 21, the results again point 

towards similarity based recommendations having a better performance than shopping 

pattern association rules, with TQ and TNQ performing, at the minimum, 10 p.p. better 

than the baseline. Brand C continues to demonstrate the highest variation but on brand D, 

previously the least prone towards similarity recommendations, the increase is of 33% for 

TNQ and 36% for TQ model. An interesting observation is that brand A, the largest 

retailer, now stands out at 31% and 32% increase for TNQ and TQ respectively.  

Contrary to the previous results, this testing shows that TQ only performs worse than 

TNQ for brand B, with an average variation of +0.5p.p. over TNQ across all brands. 

Given that the addition of quantization layers should not improve the overall similarity 

accuracy of the model and that TNQ is basically the core extractor of TQ, the hypothesis 

is that this slight edge by the TQ should not be regarded as an advantage over TNQ, but 

rather as a consequence of particular observations on the buying pattern on the users. 

Therefore, additional A/B testing for longer periods could strengthen the evidence shown 

in the results, since the variation is so small it was not deemed necessary. 

Concerning the notoriously higher results of TNQ and TQ over the baseline, the 

hypothesis discussed with the retailers is that while browsing a specific product page, the 

user is still focusing on which item to buy instead of searching for additional items to add 

to the shopping bag. Therefore, delivering similar results would prove useful on this 

search while providing other bought together items could add entropy to the decision 

process of the user and thus producing lower results than similarity based methods. 

 
Figure 21 – A/B Testing – Click to Purchase results 
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6 Conclusions & Future Works 

At the start of this project it was mentioned that the subject of visual search has been 

improving to the point that several ecommerce platforms already provide some kind of 

interface to allow their users to submit a photo and retrieve similar results to the ones 

provided. It was also seen that the quality of these results has already been developed to 

a level where, even for images with noisy background, the similarity engines are robust 

enough to provide useful recommendations. This has been achieved thanks to deep neural 

networks whose image representation onto an array of values through which a distance 

metric can be applied to effectively find the best matching images. In this sense, the 

challenge is to be able to maintain or improve the quality of these engines, while 

minimizing the memory footprint of the embeddings and, consequently, reduce 

computational necessities and its associated high infrastructural costs. 

In this sense, three main questions were defined as the main guidelines for this report, 

all of which were approached and analysed in detail. Concerning the selection of the most 

appropriate CNN architecture for image feature extraction, the selection relied on 

Xception. The reasoning behind this decision was the overall satisfactory results of this 

network regarding mean average precision on ImageNet, number of  parametes, floating 

point operations, memory consumption and response time. However, the main driver of 

this decision was its inclusion in the Keras library due to the objective of capitalizing on 

pre-existing models to perform transfer learning for similarity purposes. This enabled a 

faster development and testing at the expense of not being able to use other models who 

perform better, such as de Squeeze and Excitation networks and the ResNeXts. 

Regarding the most effective strategy for similarity search, no further analysis was 

performed in this project since several authors have already thoroughly investigated that 

triplet based training currently enables the best results on relative similarity across several 

fields. Nonetheless, a triplet based model, with and without quantization, were analysed 

in this report concerning the human evaluation of its results – instead of just comparing 

numerical metrics as mean average precision – and the overall status is Very Good as seen 

in chapter 5.2. This was further highlighted with the business analysis of applying these 

models in production environments of real retailers to analyse its impact regarding 
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customer’s retention and conversion. This could be considered the paramount analysis 

since the main objective of visual search engine in ecommerce is to enable another 

channel of revenue. If a customer proactively searchs for an item, obtains a set of similar 

products and ends up buying one of the recommended items - though it is not proof of 

being the most similar item in all cases - it can be considered as a successful outcome. In 

this comparison, it was also observable that triplet similarity based recommendations 

achieved better results both on customer retention and conversion rates. 

On a analogous approach, the analysis of the most effective dimensionality reduction 

process was also performed by studying several techniques in literature. Several studies 

have shown that learning to hash functions perform better than offline reduction methods. 

This methodology is further strengthen by the implementation of learning to hash 

functions directly on a neural network to combine the optimization of both the 

quantization error and the similarity/classification task. In this line of thought, and due to 

the reported state-of-the-art results concerning quantization processes, the model 

described in this document included a relaxed quantization process with weak 

orthogonality constraint. Though not targeted in this work, other works concerning triplet 

similarity in fashion (Shankar et al., 2017) have implemented other methods such as LSH 

and observed an accuracy drop of over 10 p.p., much worse than the results obtained. 

Here again, the results observed in chapter 5.1 for asymmetric distance calculation show 

that the overall loss in accuracy due to quantization distortion averages only 2.5 p.p. for 

offline recommendations and 4.3 p.p. for online ones - for a code size of 64 bits. 

Nonetheless, on chapter 5.2, it was seen that the variation of the binary code size has 

marginal effect on the overall similarity evaluation. Moreover, considering an embedding 

size D = 1024 - each element being a 32 bit representation - the memory footprint of the 

quantized codes is 512 times lower than the embedding for a 64 bit representation and 

1024 for  32 bit representation – the latter only marginally worse than the first. Therefore, 

the model managed to significant lower the memory consumption of data by several 

orders of magnitude while minimizing the similarity quality of the recommendations.  

This being stated, it can be concluded that a successful implementation of a similarity 

based model was executed, capable of producing high quality and compact image codes. 
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Lastly, regarding fututre developments, there are two main areas to address. The first, 

already mentioned in this chapter, concerns the application of better pre-trained networks 

for the core of the model. Both Squeeze and Excitation networks and ResNeXts have 

shown to perform better than other models both on accuracy and efficiency terms. 

Moreover, the latest results obtained from EfficientNet – achieving state-of-the-art results 

both performance and accuracy wise – have drawn the attention of several researchers 

concerning its process of iteratively analysing its depth, width, and resolution. This goes 

against the commonly developed approaches where the architectures are defined at the 

start and then trained to obtain better results via parameter tuning. Additionally, this 

model is currently being implemented in Keras - easing its testing in the framework 

described in this work - thus sparkling interest in using it in future works. 

The second concerns the dimensionality reduction analysis of this report. The main 

goal of achieving a more efficient method with minimal distortion in the results was 

successfully achieved but only one neural quantization process was effectively created 

for this project. While traditional methods have shown to produce inferior results, and 

thus the importance of comparing them in this dissertation is minimal, other neural 

quantization methods are available that could also produce satisfactory results. Moreover, 

the model had to be trained for every subspace configuration, which greatly occupied the 

computational and time resources available for this project. In conclusion, more neural 

hashing architectures could be implemented and compared in the future, with particular 

focus on the DRQ, in which several subspace configurations can be performed in the same 

training stage.  
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