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1 ABSTRACT

Due to urban sprawling, the world’'s land-use patehave rapidly changed, leading to conflict and
competition among urban land-uses. This conflisulted in a range of inefficient land-use patteffise
negative impacts of such patterns suggest the teei@tprove the efficiency of land-use planning ®gges

to support better sustainable development. To natsaich efficiency, many researchers have adopted
algorithmic approaches perceiving land-use planrdsga multi-objective optimization problem. These
approaches allow encompassment of the numerouablesi and constraints that are introduced in the
planning process by decision makers and stakelmldierthis regard, a meta-heuristic method; the-Non
dominated Sorting Genetic Algorithm (NSGA-I1), cdyprovide an efficient decision support tool fonda

use planning through offering pareto optimal laisé-allocation alternatives.

This paper aims at adopting NSGA-II to enhanceasuable land-use planning strategies at a neigloloorh
scale in the city of Alexandria, Egypt. The reshastggests the adaptation of the Constrained Multi-
objective Optimization of Land-use Allocation mod€oMOLA) for three main objectives: (i) maximizing
the value of economic benefit, (ii) spatial compass, and (iii) land-use compatibility. Severaldarse
allocation scenarios are investigated through erative process which includes the variables otiapa
units’ number, population sizes and significancaltfcation objectives. The scenarios are then esatpto
the existing condition of land-use distribution.eTtesults show that the proposed approach usingQLeM
tool exhibits good potential to support interactlaad-use planning processes by searching overipteult
plans for optimal sets of non-dominated solutioFise optimized results could provide the scientifasis
for defining suitable interventions for improvingssainability measures and spatial optimizatioraoid-
uses at the neighborhood scale.

Keywords: Land-use allocation, Non-dominated Sgrt@enetic Algorithm (NSGA-II), Multi-objective
optimization, Constrained Multi-objective Optimizat of Land-use Allocation model (CoMOLA), Land
use planning

2 INTRODUCTION

Land-use allocation is a complex process that wekfficient arrangement of land-uses acrossianmelis
main purpose is providing the best land-use lagoahario while satisfying the demands of variouiities
(Huang & Zhang, 2014; Li & Parrott, 2016; Ligmanielthska, Church, & Jankowski, 2005; Stewart,
Janssen, & van Herwijnen, 2004; Yao, Murray, Wahghang, 2019). Land-use resources are identified i
the sustainable development definition by World Gussion on Environment and Development (WCED) in
1987. Thus, the configuration of land resourcegrifical to promote sustainable utilization of thes
resources, efficient land-uses, and plausible apdistribution of activities (Ma, He, Liu, & Yu,®1;
Mohammadi, Nastaran, & Sahebgharani, 2015). Inrdgsird, when considering macro-scale objectives of
strengthening social, economic, and environmertatacteristics of the city, sustainable land-uscation

is considered a primary policy of sustainable dgwelent (Li & Parrott, 2016; Lubida, Veysipanah eBjo,

& Mansourian, 2019; Ma et al., 2011; Yao et al.120 On the other hand, sustainable land-use pigrisi
indispensable for addressing the current populdt&Emds and urban growth that lead to conflictamgd-uses
and excessive demand on services and activities €¥al., 2019). On this account, inefficient masragnt

of land-use change, and unbalanced land-use abtlacatre the main drivers of environmental detetion,
ethnic and economic segregation, loss of heritagd, corrosion of land and habitat (Li & Parrott,180
Ligmann-Zielinska et al., 2005; Mohammadi et abD,12). The negative impacts of such occurrences are
demonstrated by the inefficient patterns of lanésug the current urban form such as low densiéegfrog
fragmentation, edge development surpassing redawelot of the inner cities and patches of singledan
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uses (Leccese & McCormick, 2000; Ligmann-Zielinskal., 2005). Thus, sustainable land-use planising
essential to mitigate such patterns and maintaig term balanced development (Yao et al., 2019).

The involvement of various conflicting factors,vasll as multiple stakeholders, defines sustainkdrid-use
allocation as a multi-objective spatial optimizatiproblem, which requires rational manipulationlarid-
uses locations and quantities by urban plannerflifBaTaber, Brown, & Day, 1999; Huang & Zhang,
2014; Li & Parrott, 2016; Lubida et al., 2019; Yaidu, Shao, & Chi, 2018). In this regard, an utgesed
exists for tools that utilizes such optimizatiorpegaches to assist planners with decision makiogailiter-
based techniques offer a potential tool, that cgapert handling unstructured, nonlinear multiplgecbves,
countless solutions, and spatial considerationth@fporoblem (Huang & Zhang, 2014; Li & Parrott, 801
Porta et al., 2013; Sharmin, Haque, & Islam, 20MN@&vertheless, conventional mathematical modelaaan
be relied upon to generate optimal solutions ieasonable timeframe. Hence, intelligent algoritlivage
been developed for multi-objective land-use allmcaMOLUA optimization (Yaolin Liu et al., 2015).

In correspondence to the problem of inefficient amdustainable land-use patterns, and the necessity
competent tools that deals with MOLUA complex puhages, much research has attempted to examine the
possibilities of quantitative assessment and comsparof sustainability measures for different larssé
scenarios. However, the majority of existing litara disregards current land-use patterns in mbodels
initializations and proposes a hypothetical framdwnostead (Ligmann-Zielinska et al., 2005). Furthere,

it mostly tackles land cover scale, whereas onfgva research considered neighbourhood land-usés sca
such as Cao et al. (2011), Cao et al. (2020), HaadgZhang (2014), Lubida et al. (2019), Mohamneddi

al. (2015) and Sharmin et al. (2019). Lastly, thermant research works on developing MOLUA models
that serve specific objectives rather than offerangeneric decision support tool that comprehehsive
addresses urban sustainability and could be impledeby practitioners (Rahman & Szab6, 2021).

Within this context, this paper addresses the degfereliability of MOLUA models to generate spdtia
plausible solutions, when dealing with real plagramd development constraints at the neighbourkoale.

Thereby, the objectives of this research are foatedl as follows:
* To explore the possibilities of integrating spatighted objectives into MOLUA models.

e To evaluate the efficiency and applicability oflisihg NSGA-II oriented models as a decision
support tool for the local context of Egypt.

* To propose an extension to the generic COMOLA mdtat promotes spatial and economic
objectives along with ecological ones.

Therefore, this paper is organized into the follogvsections. Firstly, a literature review of rethgtudies on
multi-objective optimization problems and algorithns demonstrated. Secondly, the paper investigates
several methods to quantitatively evaluate spatlgectives and how to incorporate them in land-use
optimization models. Thereafter, it adopts a gentol for Constrained Multi-objective Optimizatiaof
Land-use Allocation (CoMOLA) to apply NSGA-II algthim to a case study area in Alexandria, Egypthsuc
that three main objectives are considered: (i) ma&ing spatial compactness, (ii) maximizing comipdity,

and (iii) maximizing economic benefits. Consequgrttie results of optimization are analyzed anduatad
according to various tests. Finally, concluded ndhaand recommendations for future research are
discussed.

3 LITERATURE REVIEW

3.1 Multi-objective Optimization problem

Land-use allocation constitutes an optimizationbfgm where predefined objectives are representea as
fitness function, to be minimized or maximized. §hénables quantitative assessment of alternative
solutions, while conferring to constraints thatedetines the feasible solution set (Porta et al1320
Multiple variables of the problem arise from theatsity of land-use categories along with numesatial
units (Li & Parrott, 2016; Porta et al., 2013).

Research has conducted two main approaches to-ohjgttive land-use allocation problems: scalaiazat
and pareto-optimum (Li & Parrott, 2016; Mohammaidale, 2015; Yang et al., 2018). Scalarization @t
multiple objectives into a single-objective problethrough techniques as weighted sum and goal
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programming (Yang et al., 2018). Some researchapgtied the weighted sum approach as Aerts, Van
Herwijnen, Janssen, and Stewart (2005); Yaolin éfual. (2015); Yang et al. (2018). However, such
approach relies much upon experts’ opinions andireg prior knowledge besides its inefficiency inan-
convex solution space(Lubida et al., 2019; Yanglet2018; Yao et al., 2019). As for goal programgyiit
was adopted by Li and Ma (2018); Li and Parrott1@0 Sahebgharani (2016). It is argued that such
approach is more convenient when different stakkdrel can identify their demands as a preset referen
goal although it may result in poor sub-objectiaues (Aerts et al., 2005; Li & Parrott, 2016; Yetoal.,
2019). On the other hand, pareto-optimum approeshblves this issue, as it supports the evaluatiail o
trade-offs of multiple objectives seeking the pargptimal set of solutions (Lubida et al., 2019nyeet al.,
2018). Gao et al. (2020) applied pareto-optimumhoes$ as well as Cao et al. (2011); Cao, Zhang, and
Wang (2019); Huang and Zhang (2014); KarakostasgRQ.ubida et al. (2019); Song and Chen (2018a). A
solution is identified as a pareto optimal providbédt no other solution is better or equivalentbod
regarding all the objective functions, besides @eire best solution in at least one objective (Haket al.,
2019; Yang et al., 2018). Although the pareto appihoholds an advantage of manageable computatibn wi
respect to the attained results, some researchsithé efficiency of the pareto approach with asréased
number of objectives (Li & Parrott, 2016; Mohammadial., 2015; Yang et al., 2018). Nonetheless, a
compromise among a set of acceptable solutioneasssary because the concept of one best solik&y |
doesn't exist in the nation of land-use planning@¥t al., 2019).

3.2 Multi-objective Optimization Algorithms

Researchers have run against several limitationsnwdpplying exact optimization models in MOLUA
including: the inability to handle spatial interiacts due to their nonlinear characteristics, thetéd spatial
area handled by the models, and the necessityenfifging a single objective (Aerts, Heuvelink, &%art,
2018; Aerts et al., 2005; Huang & Zhang, 2014; LiP&rrott, 2016). To overcome these limitationseaesh
has suggested several non-deterministic approdkbhesely on iterative heuristics for examining gearch
spaces in search for near optimal solutions (Pettal., 2013). The meta-heuristic algorithms arénipa
Swarm Intelligence (Sl), Simulated Annealing (Sayd Evolutionary Algorithms (EA) (Aerts et al., 200
Yaolin Liu et al., 2015; Lubida et al., 2019; Yaagal., 2018). Particle Swarm Optimization (PSOpt A
Colony Optimization (ACO) and Artificial Bee ColorABC) are argued as the most successful among S,
however, Genetic Algorithms is considered the nooshmon evolutionary algorithm (Lubida et al., 2019;
Mohammadi et al., 2015; Yao et al., 2019).

Since the 1970s, numerous studies have appliedtiGedgorithms in the urban field (Huang & Zhang,
2014). The algorithm relies on the theories of ratwevolution and genetics to solve large complex
computational problems. It is a global optimizatialgorithm that undergoes an iterative processrof a
operational sequence in order to produce highdgrhild solutions from the parent individuals (&eat al.,
2005; Porta et al., 2013; Yao et al., 2019). ldébated whether the evolutionary mechanism of the G
provides better convergericer in fact affects genetic diversity leading tdl optimal solutions (Li &
Parrott, 2016; Yang et al., 2018). Among the sduechniques developed from the GA is the elitisinN
dominated Sorting Genetic Algorithm (NSGAII) whialill be adopted in this research and further exaei

in section 4.2. (Lubida et al., 2019; Yao et a)19).

4 METHODS AND TOOLS

4.1 Objective Functions

Objectives of land-use allocation can be divide itwo main categories: additive objectives andiapa
objectives (Li & Parrott, 2016). According to Statydanssen, & Van Herwingen, additive objectivas be
calculated through the attribute values of each(lzld parcel), while spatial objectives attendte spatial
characteristics of land-use patterns e.g., convisgticontiguity, ... etc. (Li & Parrott, 2016; Rahmak
Szabd, 2021). With respect to sustainable landplaening, the spatial arrangements and interrelatio
among land parcels are of primary significancenglaith socioeconomic and environmental objectives

! Convergence refers to the stable point found atethd of a sequence of solutions via an iteratjvémization
algorithm. Premature convergence refers to a stabiet found too soon, perhaps close to the snpioint of the
search, and with a worse evaluation than expected.
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(Yao et al., 2019). Within this context, two sphthjectives have been selected for this paperimiaig
spatial compactness and maximizing compatibility. dddition to one additive objective which is
maximizing economic benefits.

4.1.1 Spatial Compactness

Spatial compactness is an expression of the degfrdeagmentation or connectedness of land-uses. It
encourages allocation of the same land-uses insiess and in the vicinity of each other to maxamike
assets of land-uses (Aerts et al., 2005; Li & Ryr2016; Rahman & Szabd, 2021; Yao et al., 2019).
Compact forms are sought in sustainable land-ugsenpig as they contribute to environmental quality,
energy efficiency, and social equity (Aerts et @D05; Ligmann-Zielinska et al., 2005; X. Liu, L$hi,
Huang, & Liu, 2012; Rahman & Szabd, 2021; Yao et 2019). Indicators of spatial compactness would
involve cluster shape indices as: perimeter, agd,area to perimeter ratio. Therefore, when qtadiviely
evaluating compactness, four main strategies haga bommonly used:

(i) Maximizing the number of land parcels in eaghd-use cluster,

(i) Minimizing the land-use cluster perimeter,

(iif) Minimization of the number of clusters of daland-use type, and

(iv) Maximizing the area of the largest cluster (&eet al., 2005; Yao et al., 2019).

X. Liu et al. (2012); Porta et al. (2013); Yangaét(2018) adopted the second strategy througleaheept

of circularity (Yao, Murray, Wang, & Zhang, 201%loreover, Ma et al. (2011) applied the third stgste
through calculating the length of the public edgadjacent similar cells. Meanwhile, the first &gy is the
most common one among researchers, either thropglyieg a summation equation for all land parcels
with the exact land-use, or through the eight-nieigin method (Gharaibeh, Ali, Abo-Hammour, & Al
Saaideh, 2021; Li & Ma, 2018; Masoumi, Coello Coel Mansourian, 2019; Sahebgharani, 2016; Song &
Chen, 2018b; Yang, Sun, Peng, Shao, & Chi, 201&¢réfore, in this paper the eight-neighbour metisod
adopted and formulated as expressed in Eq. (1)ewnhigk is the land use of the core cell. If thedause of
the core cell and the neighbouring cell (m,n) isaéghen neig(m,n) =1, if not neig(m,n)=0 (Li & Pait,
2016; Song & Chen, 2018b).

i+1  J+1

w355(3. 5 )

m=i—1ln=j—-1

HM

1 Xijk = Xmnk

neig(m,n) =
9( ) {0 otherwise

4.1.2 Compatibility

Compatibility indicates the coexistence among vaitand-use types of an area without inducing asver
and undesirable impacts on one another (Cao eR@20Q; Lubida et al., 2019; Masoumi et al., 2019;
Mohammadi et al., 2015; Rahman & Szabo, 2021; Maal.e 2019). The majority of published research
follows the same approach for quantitatively evahga compatibility, which is the sum of the conflic
degrees for each pair of adjacent land unit, whieeehigher the sum, the more compatible the lamd-us
scenario is (Cao et al., 2020; Cao et al., 2019ak@stas, 2016; Ligmann-Zielinska et al., 2005; ilatet

al.,, 2019; Sahebgharani, 2016; Sharmin et al., R0C®mpatibility indices are demonstrated in a
compatibility matrix, which is developed throughthygring the opinions of experts, stakeholders, @nhdn
practitioners using the Delphi method or Analyticetdrchy Process (AHP) method (Cao et al., 2011,
Masoumi et al., 2019; Mohammadi et al., 2015; Skt al., 2019; Yao et al., 2019).In this regafe
compatibility indices in this paper are adoptedrfrohammadi et al. (2015) and illustrated in Table
Compatibility is addressed in sustainable urbammileg as it promotes accessibility, enhanced social
interactions, liveability and overall, a healthienvironment (Cao et al., 2019; Lubida et al., 2019)
Furthermore, higher compatibility rates indicatenpetent use of land and reduces the social ancdbagon
burdens of conflict, which reflects economic profipeand stable communities (Y. Liu, Wang, Ji, L&,
Zhao, 2012; Rahman & Szab0o, 2021). For each larakpé,j), it has neighbours (m,n) . Kij, Kmn resent

the land-uses of cells (i,j)) and (m,n) respectn/(:is'?;ﬁ;,;l Knn 1S the compatibility value between Kij, Kmn

(Mohammadi et al., 2015). Hence the compatibilityective is formulated as follows:
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R € i+1 J+1

maxzz Z Z Cox, ik, @

i=1 j=1m=i—-1n=j-1

Mixed Residential . L. . . Public High densi
Arid Recreational -Commercial Medical Rel, Ed I Commercial Amenities Rfs iden tiatly Offices
1] 2] 3] 4] 51 (6] 7] 18] 9] [10]
Arid 1 0.8 0.4 0.8 0.6 0.8 0.8 0.6 0.4 0.6
Recreational 0.8 1 0.8 0.6 0.8 0.8 1 0.8 1 0.8
Mixed Residential -Commercial 0.4 0.8 1 0.6 0.8 0.6 1 0.6 1 0.6
Medical 0.8 0.6 0.6 1 0.6 0.8 0.4 0.6 0.6 0.8
Religious 0.6 0.8 0.8 0.6 1 1 1 0.8 0.6 0.6
Educational 0.8 0.8 0.6 0.8 1.0 1 1 0.8 0.8 0.8
Commercial 0.8 1.0 1.0 0.4 1.0 1.0 1 1 1 0.8
Public Amenities 0.6 0.8 0.6 0.6 0.8 0.8 1.0 1 0.4 0.8
High density Residential 04 1.0 1.0 0.6 0.6 0.8 1.0 0.4 1 1
Offices 0.6 0.8 0.6 0.8 0.6 0.8 0.8 0.8 1 1

Table 1: Land-uses Compatibility Matrix (source: arts adopted from Mohammadi et al. (2015))

4.1.3 Maximizing Economic Benefits

Researchers followed multiple approaches to evaleednomic benefits for land-use scenarios, bemegod
the three dimensions of sustainability. Some retiedomparing development costs for each land-Asgg
et al., 2005). Others used conversion costs, whetha@n independent objective or a sub-objectiviarad-
use

suitability (Aerts et al., 2005; Li & Parrott, 20L6Another common strategy is evaluating the ecaoom
benefit of each land-use category and how theyriborie to the Gross Domestic Product GDP. In this
regard, some land-uses provide to GDP in a diregt such as commercial and industrial land-useslewnhi
others support in an indirect way as hotels, bsseg, ... etc. (Cao et al.,, 2019; Li & Parrott, 2016;
Mohammadi et al., 2015). On another account, Shaenhial. (2019) has computed the economic factor
through the values of employment capacity per laseltype. Based on the previous attempts, theadgil
data sources, and the analogy that industrial lesad- are incompatible for neighbourhood scale,gafser
considers maximizing the area of commercial largsuBr better economic benefits. Hence, the third
objective equation is formulated as follows:

R
max Z ﬂijxgpmmercial (3)
=1

Where Bij is the area of land parcel (i,j) and xij commatds a binary variable equals 1 if (i,j) unit is
assigned a commercial land-use and ‘zero’ other(ds#ammadi et al., 2015).

4.2 Constraints

For land-use allocation, constraints control thedmamity of the attained scenarios and qualify nrat@nal
ones by including regulatory knowledge to the mjation process (Cao et al., 2019; Yaolin Liu ket a
2015). According to Yaolin Liu et al. (2015), comghts of land-use allocation may be divided intm t
types: (i) area constraints, and (ii) spatial caists. The area constraints are of the most frettyuapplied
constraints, which are accounted for managing aoreble land-use structure in a given area without
exploiting land resources or violating land-useigie$ (Yaolin Liu et al., 2015; Rahman & Szab6, 202
Moreover, these constraints coincide with sustalitylconcerns of urbanization and urban expansierit
limits the built-up land growth (Cao et al., 200Rahman & Szabd, 2021). On the other hand, spatial
constraints reflect the regional perspective ofdtaee planning into the equation (Li & Parrott, 801
Meanwhile, some additional constraints may be @erisiue to computational complexities. In this rdgar
most authors disregarded mixed uses for the samdepiarcel despite being an impractical assumptanté

et al., 2005; Li & Parrott, 2016; Ligmann-Zielinskaal., 2005; Rahman & Szabdo, 2021). Accordintilis
paper considers minimum and maximum land-use aga8) area constraint, where the Per capita demand
for land-use types should be acquired. Eq. (5)(@&hdlustrate that the area of land-use type k)(8kould

be within an upper and lower limit expressed asabilt Lk respectively, where aij is the area of @g)l. In
addition, transition rules that guide land-use ¢feaof different categories are applied as a spetiastraint.

As per the optimization algorithm, one and only arse is allowed to be located in each cell in otder
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alleviate the computational complexity, as illustdhin Eq. (4), where the binary variable xijk mhetO or 1
(Aerts et al., 2005).

=

Xijk @

=
il

1

Vi=1Rj= 1. Coxiy €101}

L <A = Uy &)
where,

R C
Z x[-jka,-}- = Ak vK=1,,,,, K (6}

i=1i=j

4.3 NSGA-II

NSGA-Il is a variant of Genetic Algorithms that @rat providing a set of equally distributed non-duated
solutions to a multi-objective optimization probléMasoumi et al., 2019; Song & Chen, 2018b). Actad

to the basic concept of genetic algorithms, NSGAwidergoes a sequential iterative process, which is
illustrated in Fig. 1. It initiates with creatingp anitial population of solutions Pt, also callegndidates or
individuals. Secondly, parents selection takes gldiased on fitness function evaluation, to crehge
offspring population Qt through the primary GA ogters: crossover and mutation. Thereafter, the @# |

IS repeated until the termination criteria is dagts(Gao et al., 2020; Mohammadi et al., 2015)c@xding to
GA, parents are selected randomly by means oftsmtestrategies as tournament selection or roulelieel
selection. As per NSGA-II, an elitist approach ppléed to maintain diversity and pareto optimald
generated solutions. This approach consists ofdooninated sorting method followed by crowding dist
method, that are used to rank population Rt, sbtkieefittest are selected (Cao et al., 2011; Ga. £2020;
Lubida et al., 2019; Masoumi et al., 2019; Song Bef, 2018b). Furthermore, the crowding distance
method generates a well distributed diverse sabhitions through calculations of the density dfisons
around a specific solution i in the population (DE&atap, Agarwal, & Meyarivan, 2002; Masoumi et al
2019).

4.3.1 Elements of NSGA-II

With respect to the land-use optimization problerach land-use arrangement scenario is regarded as a
solution or an individual which is encoded into N&@ in the form of a chromosome (Mohammadi et al.,
2015). The definition of a chromosome within théimjzation model has varied in literature, depegdim
whether spatial data are expressed in a rastel) (grivector format. It is argued that vector fotradds to
the algorithm complexity (Cao et al., 2011). Heribe, prominent one relies on a grid representéatiamn
constitutes the chromosome of genes or cells, wiephesent different land units, each with an amsig
value that represents the land-use type in this(bEsoumi et al., 2019; Mohammadi et al., 2013)isT
paper adopts a generic tool for Constrained Mudjective Optimization of Land use Allocation
(CoMOLA), that applies NSGA-II to optimize rasteraps proceeding from python “inspyred” library
(Strauch et al., 2019). In the following sectiopemtors of NSGA-II according to CoMOLA procedusss
illustrated.

4.3.2 |Initialization

The selection of initial feasible population infhees how fast the algorithm would attain the pafetat

(Cao et al., 2011; Mohammadi et al., 2015; Straatcal., 2019). Therefore, COMOLA adheres to Problem
Based Initialization Operators, which include thates quo of land-use arrangement into the itezativ
process (Cao et al., 2011; Masoumi et al., 201@)ufther guarantee the feasibility of the inifiadlividuals,
constraint-controlled genome generation CG is egdpli.e., the genome expresses the chromosomee of th
initial individual). CG generates a genome genagbge, where at each point the generated sequence of
genes is tested for satisfying the algorithm camsts, so that it proceeds to the next gene,isrégarded as

an infeasible solution (Strauch et al., 2019).

4.3.3 Constraint Handling Methods

Integrating real world constraints into optimizatimodels has commonly followed three strategies. firbt
is feasibility operators which allow only generatiof solutions satisfying all constraints. The swto
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strategy is to convert the constrained problemmtairzconstrained one using Penalty Functions ordragg
Multipliers (Mohammadi et al., 2015). The third atggy, and the one adopted by CoMOLA, is repair
mechanisms. In this regard, constrained-controllegair mutation is developed to repair infeasible
individuals into feasible ones provided that thpaieed ones are as close as possible to the dhgina
suggested individuals by NSGA-II (Strauch et e012).

R, Non-dominated Crowding Distance P.,
Sorting Sorting
| | e 3 (-
| | e 3 -
p(

F§

= =1

<_»I_{_ej ected

Fig. 1: lllustration of NSGA-II Algorithm procedear(source: Deb et al., 2002).
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Fig.2: Location of the Study Area of Jumruk Didtisource: Authors)

4.4 Study Area

Al-Jumruk district is located in the centre of Afedria city, Egypt as illustrated in Fig. 2. It ey an area
of 4.7 Km2 and has 6083 plots of 409,329 populatiooording to 2017 statistics by Central Agency for
Public Mobilization and Statistics CAPMAS. It cogefour main zones: Al-Jumruk, Al-Mansheyya, Al-
Labban and

Alexandria’s port. It accommodates a variety ofwaiieés and land-uses including administrative,teral,
educational, workshops, religious, public servidesristic, healthcare, residential, mixed-useselvauses,
and industrial services. Since this district issidared the oldest district of the city, in additio its unique
history, multiple stakeholders are concerned w#tdevelopment plans. Moreover, several revitabraand
rehabilitation projects have been suggested foatba by researchers, urban practitioners, andigmesntal
planning sectors (GOPP,2022). However, the distti€ters from some challenges concerning its las®l-u
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urban structure, unsustainable conditions, and coeding. Hence, this paper recommends supporting
urban planners with a design tool as illustrateddation 4.3., that could promote plausible intetieas for
managing the area in the future.

4.4.1 Data Collection and Preparation

Data required for land-use allocation optimizatsach as governmental guidelines, maps and statistata
were obtained from the General Organization forsRial Planning of Egypt (GOPP) and the National
Organization for Urban Harmony. In addition, GlSalaf the district including layers of land-usemsvices,
roads, infrastructure, transport, ... etc. was gathend adapted for the current research. Followlieg
predominant course of sustainable development;Uaedoptimization for the study area aims at pramgot
sustainable land-use arrangements whilst presehéritage and maintaining proper mix of land-uses.

4.4.2 Model Implementation

A study area of Al-Jumruk zone of an area 1 Km ® Km is selected for optimization, where the input
variables are arranged as follows. CoOMOLA modeleat$ three categories of input variables: (1) Mode
Variables, (2) Map variables, and (3) Algorithm Mdtes. The model variables are expressed in thgeraf
land-use classes to be optimized and the exterpdel® of objective functions. Concerning the lasd-u
classes, the existing land-uses were re-categoiizied the fundamental uses at a district level hil
maintaining an adequate percentage of mixed-usesgMmadi et al., 2015). Thus, ten classes of |aed-u
are considered in the model as shown in Table 2péksobjective functions models, the three objedtiv
illustrated in section 4.1. are formulated intoydhpn code and integrated into CoMOLA. Concerning t
third objective, both commercial and mixed residdrtommercial land-uses are promoted.

Arid  Recreational Mixed Rcslde.nrml Medical Religious Educational Commercial P"blfti I{,Igh f"'"’.'"f’ Offices

-Commercial A
Minimum Area 0 116,446 704,118 2,183 86,715 36,681 472 1997 133300 7312
Maximum Area 625 241,626 977,668 15,720 151,380 641,911 1348 2439 152100 8938

Table 2: Minimum and Maximum Areas Required for Larsg Classes (source: Authors, adapted from GOPB),202

The map variables deal with the land-use map amd dbnstraint-related input data. For land-use
optimization problems, the study area is defined dgo-dimensional array of R rows and C columriseng

K land-use categories need to be assigned (Li &RaR016; Porta et al., 2013; Yang et al., 20T8jus,
using GIS, a raster map with resolution (cell siadER5 m was created from the available databagbeof
study area. The resolution is identified experirantto best reflect the land-use categories of dhea,
besides following the recommended number of spatias advised by Strauch et al. (2019). The rasisy

is thereafter introduced

into the model in ASCII format, where land-use s&ssare assigned consecutive integers startinglwiis
discussed by Porta et al. (2013), it is adviseddigere to the existing legal boundaries of landglarwhen
dealing with spatial allocation. Therefore, a paliohmap is generated for the study area, that grdbp
neighbouring raster cells of the same land plai mtpatch or a cluster (Porta et al., 2013; Straaichl.,
2019). The patch ID doesn’t only serve planningopses, but also alleviates the computational lbealigh
reducing the number of spatial units, where 252Es are computed instead of 470 plots. Furthermore
patch ID map is supplied by the indices of stagtisc(i.e., cells that aren't allowed to changeimgithe
optimization process). This serves the conservaifamportant touristic and heritage sites suctbg-Al
abbas Complex, that is located in the far eashefgstudy area. As for the constraint-related imgait,
conversions between all land-use classes are pednit the transition matrix aside from the stalements
defined in the patch ID map. Additionally, the nmmim and maximum demanded area for the ten land-use
classes is deduced and presented in Table 2. $nréigiard, economic activities, represented in effic
category, as well as public amenities are keptiwithe limits of the current areas. On the othemdha
according to the analogy that already developed lan't converted to undeveloped ones, arid categor
prohibited from growth. Furthermore, the ratio oiked-use plots is preserved and expressed int@uriee
calculations. Since the CoMOLA model perceivesatesa limits as an absolute constraint, a variaticthe
current land-use distribution is developed to duals the first individual of the first generatidBontextual
constraints of allocating land-use categories ppdied to this variation using GIS buffer tools.
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Finally, the algorithm variables represent the peters of the different iterations and directly anpthe
computation time and efficiency (Strauch et al.120 Required parameters of the algorithm include
maximum number of generations, population sizessweer rate and mutation rate. Based on the rule of
thumb crossover rate is set to 0.9, while mutatiate is set to 0.01. Multiple runs of the algoritlame
executed to reach the optimum number of generatiodgopulation size.

5 RESULTS AND DISCUSSION

In this section, results from CoMOLA model implertetion are discussed in detail. As a result of sdve
trials, the model was executed for a populatiog siz20 and 400 iterations. Execution of the mddesuch
parameters for the three identified objectiveshia study area takes 17 hours on a laptop with &i(IR)
Core(TM) i7-7700HQ CPU @ 2.80GHz and 16 GB RAM..RBgRight) illustrates the values of objective
functions throughout the different iterations. Tiesults show how the solutions gradually enhancetha
iterations proceeded during optimization, which@zhtes the abundant literature assertions.
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Fig. 5: (Left) The Evolutionary Process of Searghime Solution Space of Objectives and (Right) TheuRieg Pareto Front
Solutions generated by NSGA-II. The colour barnefe the order of iterations (source: Authors)

Objectives Status Quo Pareto 1 % of Improvement Pareto 2 % of Improvement  Pareto 3 % of Improvement
Spatial Compactness 7242 7394 2.10 7376 1.85 7318 1.05
Compatibility 7599 7581 -0.24 7615 0.21 7626 0.36
Economic Benefits 528125 526875 -0.24 535000 1.30 528125 0.00

Table 3: Comparison of Objective Functions ValueRafeto Solutions with Status quo (source: Authors)

The spatial compactness value ranges from 67633d.7The compatibility objective ranges from 7385 t
7626, while the economic benefits objective insesafrom 450000 to 535000. However, it is notideat t
the speed of generating solutions significantlyreases with each new generation. Different trafe-of
among the objectives have been tested. Fig. 3)(defnonstrates the compared objective values &ethr
different scenarios. Firstly, when spatial objeesivare coupled together, secondly, when the additiv
objective is coupled with one spatial objective dastly, when all objectives are pursued simultaisgo
The results show that the spatial compactness tblgelues are enhanced when coupled with thectitage

of maximizing economic benefits. On the other hgm@mature convergence is noticed when only spatial
objectives are selected for optimization. In addifithe finest economic objective values are obthwwhen
coupled with spatial compactness objective, wheitsasean values significantly deteriorate whenpted
with compatibility. Finally, the results obviousbepict that the least values are achieved whethede
objectives are combined. The solution space fomatherithm run, along with the resulting paretousioins,
are plotted in Fig.5.

The model suggests three different scenarios dmpt ones for the study area. Each scenario offers
possible intervention that would improve a certaifective value. Table 3 shows the values of thjeative
functions of the pareto solutions compared to theent state. The comparison reveals slight degogées
improvement for both spatial compactness and ecmnobjectives. However, the compatibility objective
values are minimally improved as a trade-off toi@et better comprehensive values.

Fig.6 shows the three pareto land-use maps suggbgtéhe algorithm. The three maps present difteren
objectives preferences, such that the first pagetotion offers the highest spatial compactnessevathile
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the third one best supports maximizing compatipilih addition, the second pareto solution displays
balanced improvement of all three objectives witkimum economic values.
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Fig. 3: (Left) Result Values for Trade-offs amongj&itive Functions and (Right) Maximum, Mean and Minim Values for the
Objective Functions at Each Iteration (source: Atgh

Updated Land-use Map
Land-uses

Fig.6: Optimized arrangements of land-uses uniffarent objective preferences as suggested by N8Ggource: Authors)

It is noticed in pareto 1 that high density restddniots are promoted into clusters, also religicand
healthcare land-uses are distributed in close prityxi With respect to pareto 2, it is observed ttie
percentage of mixed-use parcels is enlarged. Lastéy third pareto proposes minimal adjustmenthi t
second one concerning the educational land-usasgament, in order to promote better compatibilitlye
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proposed land-use structures are generally moinedtthan status quo land-uses regarding theildligiton

of different land-use categories. The proposedrietgtion implies an increase in the areas of médica
recreational and religious land-uses by 12%,4826é280% respectively. These rates can be justifiedtd
the low per-capita demand for such uses in the dieaillustrated solution can be regarded as Engrery
step to support decision makers with general gundglon how to pursue with the study area futua@gl

Nevertheless, a number of plots can be observedingisfrom the pareto solutions due to raster
representation of the study area map. Due to ltrarta in transferring maps into raster format, sqicgs
might be ignored for their size or orientationthis regard, different cell sizes might presentdsanclusion

of plots, however, it may cost the optimizationgess additional running time and complexity. Thalygsis

of results reveals the extensive time needed bynibel to run a couple of hundred iterations witah be
traced back to the constraint handling logic of algorithm. In this respect, the area constrairtsagpplied

in an absolute manner, where all individuals that'dsatisfy the minimum and maximum boundaries are
completely neglected by the algorithm. This procasssumes a large amount of time and imposes greate
challenges for each generation to generate feasillletions. Incorporation of such constraints ithe
selection procedures as penalty functions migtd teamore diverse solutions in a better time fraftds
would enable the algorithm execution with higharation values to attain better improvement results
Additionally, this approach is more rational whesaling with optimizing current land-use distribuitjo
where it is expected to work on several scenari@gen constraints violations. On the other hahe study
area is regarded as a very dense residential regigch limits the flexibility of land-use changestimout
compromising the per-capita demand of the regidmerdfore, considering a less dense area with more
vacant lots might result in better interventionrsmgos. Finally, the spatial compactness approdoptad in

this paper, can be observed in the results thatinotes adjacency of similar uses even for senand-
uses.This might contradict the general urban ptapguidelines for land-uses distribution where eewv as
educational, medical, religious, etc. should becalted within a maximum distance of served resident
units. Hence, additional contextual constraintdate incorporated when developing objective fumtdi

6 CONCLUSION

Land-use allocation is one of the practices of asd planning that involves arrangement of land-us®
different spatial units of land. It is a compleopess as it is constrained by, as well as influgnoin, the
economic, social, and environmental conditionshef ¢ity. Hence, it is an important policy for suisédble
development. Due to the numerity of the variabbdgectives and constraints involved in the prockssl-
use allocation is considered a multi-objective ispatptimization problem. This paper addressesutbe of
land-use optimization models in real contexts thfoemploying an NSGA-II optimization model to the
local neighborhood of Aljumruk in Alexandria. Itsal provides an approach of integrating spatial and
economic objectives into a generic CoOMOLA modeleventhey are interpreted into a set of quantitative
evaluation operations. GIS software was used tgalie the exports of the algorithm and comparenthe
the status quo land-uses. The application of theeindepicted its potential to interactively suppietision
making processes through generating numerous aliees and offering a multitude of near optimal
solutions for land-use distributions. It also destosted the capacity of models to accommodate adpati
objectives through mathematical expression. Nee&tls, the paper highlights a set of limitatiorat tould

be the scope of future work including the needafdramework that employs vector representatioranéi
use maps without adding further complexities. Tdosld provide improved optimization for real cortgex
scenarios. Moreover, it is recommended to applyhéur tests to investigate the interrelation between
constraint handling techniques and the algorithmrming time. Finally, only three objectives were go@pe

of this research. Thus, incorporating more objestivin the future could give better insights for
comprehensive sustainable land-use planning.
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