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ABSTRACT 
Breast cancer is the most common cancer type in women globally but is associated with a 
continuous decline in mortality rates. The improved prognosis can be partially attributed to 
effective treatments developed for subgroups of patients. However, nowadays, it remains 
challenging to optimise treatment plans for each individual. To improve disease outcome and 
to decrease the burden associated with unnecessary treatment and adverse drug effects, the 
current thesis aimed to develop artificial intelligence based tools to improve individualised 
medicine for breast cancer patients. 

In study I, we developed a deep learning based model (DeepGrade) to stratify patients that 
were associated with intermediate risks. The model was optimised with haematoxylin and eosin 
(HE) stained whole slide images (WSIs) with grade 1 and 3 tumours and applied to stratify 
grade 2 tumours into grade 1-like (DG2-low) and grade 3-like (DG2-high) subgroups. The 
efficacy of the DeepGrade model was validated using recurrence free survival where the 
dichotomised groups exhibited an adjusted hazard ratio (HR) of 2.94 (95% confidence interval 
[CI] 1.24-6.97, P = 0.015). The observation was further confirmed in the external test cohort 
with an adjusted HR of 1.91 (95% CI: 1.11-3.29, P = 0.019). 

In study II, we investigated whether deep learning models were capable of predicting gene 
expression levels using the morphological patterns from tumours. We optimised convolutional 
neural networks (CNNs) to predict mRNA expression for 17,695 genes using HE stained WSIs 
from the training set. An initial evaluation on the validation set showed that a significant 
correlation between the RNA-seq measurements and model predictions was observed for 
52.75% of the genes. The models were further tested in the internal and external test sets. 
Besides, we compared the model's efficacy in predicting RNA-seq based proliferation scores. 
Lastly, the ability of capturing spatial gene expression variations for the optimised CNNs was 
evaluated and confirmed using spatial transcriptomics profiling.  

In study III, we investigated the relationship between intra-tumour gene expression 
heterogeneity and patient survival outcomes. Deep learning models optimised from study II 
were applied to generate spatial gene expression predictions for the PAM50 gene panel. A set 
of 11 texture based features and one slide average gene expression feature per gene were 
extracted as input to train a Cox proportional hazards regression model with elastic net 
regularisation to predict patient risk of recurrence. Through nested cross-validation, the model 
dichotomised the training cohort into low and high risk groups with an adjusted HR of 2.1 
(95% CI: 1.30-3.30, P = 0.002). The model was further validated on two external cohorts. 

In study IV, we investigated the agreement between the Stratipath Breast, which is the 
modified, commercialised DeepGrade model developed in study I, and the Prosigna® test. 
Both tests sought to stratify patients with distinct prognosis. The outputs from Stratipath Breast 
comprise a risk score and a two-level risk stratification whereas the outputs from Prosigna® 
include the risk of recurrence score and a three-tier risk stratification. By comparing the number 
of patients assigned to ‘low’ or ‘high’ risk groups, we found an overall moderate agreement 



 

 

(76.09%) between the two tests. Besides, the risk scores by two tests also revealed a good 
correlation (Spearman's rho = 0.59, P = 1.16E-08). In addition, a good correlation was observed 
between the risk score from each test and the Ki67 index. The comparison was also carried out 
in the subgroup of patients with grade 2 tumours where similar but slightly dropped correlations 
were found. 
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1 INTRODUCTION 
The breast is an organ with a glandular structure. There are three major components inside a 
female breast, namely adipose tissue, connective tissue and glandular tissue. The glandular 
structure is also known as the mammary gland. Within the mammary gland, there are on 
average 15-20 lobes, each divides into branches of smaller lobules that comprise of clusters of 
ductules (also known as alveolar buds in organs undergoing differentiation or acinus in 
morphologically mature organs (1)) and intralobular terminal ducts. Together the lobules and 
extralobular terminal ducts form the major functional unit called ‘terminal duct lobular unit’ 
(TDLU) that produces milk during lactation. 

Breast cancer, or breast carcinoma (BC) is a malignant disease in the breast that mainly arises 
from the TDLU. Carcinomas originating from the ducts are called ductal carcinomas whereas 
those originating from the lobules are named as lobular carcinomas. Breast cancer is considered 
as a heterogeneous disease that can be grouped from various levels based on molecular profiles, 
morphological patterns or degrees of progression. To date, pathological examination is the gold 
standard for diagnosing breast cancer and for guiding treatment plans. However, the assessment 
has relatively large inter- and intra-observer variations (2–4), making it difficult to provide 
optimal clinical decision support. In addition, the heterogeneous nature of breast cancer can 
result in treatment resistance, causing long term recurrence and metastases (5)(6). Therefore, 
improving the accuracy of cancer diagnosis and deepening our knowledge in cancer subtyping 
is vital to ultimately tailor treatment regimens for each patient.    

Deep learning is a subfield of machine learning that has evolved rapidly within recent years. A 
strength of deep learning models is the ability to automatically learn representations that are 
associated with learning objectives (7). This advantage has enabled the possibility of analysing 
large volumes of image data without the need for manual feature engineering. In the healthcare 
domain, a considerable number of studies have been carried out to facilitate disease diagnosis 
and precision medicine by analysing medical data such as digitised histopathology WSIs with 
deep learning models. 

In the field of breast pathology, molecular profiling is available to assist with characterising 
tumours, estimating patient prognosis or predicting treatment efficacy. With the advent of deep 
neural networks, novel opportunities are now unveiled to strengthen precision medicine; in 
addition, these cost-effective solutions exhibit strong potential to reduce the workload for 
healthcare professionals and to relieve health economic burden globally. 
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2 LITERATURE REVIEW 
2.1 BREAST CANCER 

2.1.1 Breast cancer epidemiology 

Female breast cancer is the most common cancer type globally, with over 2.2 million new 
diagnoses, accounting for 24.5% of all new cancers in 2020 in women (8). Besides, it has the 
highest age-standardised incidence rate of 47.8 per 100,000 person-years among cancers from 
all sites. In Sweden, an increasing trend in breast cancer incidence has been observed since the 
1970s, with age adjusted rate ranging from 200.6 to 211.6 per 100,000 person-years within the 
year 2017-2019; the number dropped significantly in the year 2020, with age adjusted 
incidence rate 195.2 per 100,000 person-years and 7570 newly diagnosed cases, which could 
be partially explained by temporarily ceased screening during the COVID-19 pandemic (9). In 
contrast to this high incidence rate is a gradually declining mortality rate, with an age-
standardised mortality rate of 13.6 per 100,000 person-years worldwide in 2020，accounting 
for the second largest cause of cancer death aside from lung cancer. In Sweden, the mortality 
rate slightly declined over the past decades, and the estimated age-standardised mortality rate 
was 26.9 per 100,000 person-years in 2020. Possible explanations behind the improved patient 
prognosis include the implementation of screening programs and recent achievements in 
targeted therapies. 

The risk factors associated with BC can be divided into genetic factors and non-genetic factors. 
Genetic factors include germline mutations (i.e. hereditary BC characterised by deleterious 
mutations in anti-oncogenes BRCA1 or BRCA2), african-american ethnicity, and dense breast 
whereas the most well known non-genetic causes include hormonal risk factors such as low 
parity, late age at first birth, early menarche or late menopause (10) and environmental risk 
factors, such as alcohol consumption, tobacco smoking and a high-fat diet. 

2.1.2 Breast cancer screening and diagnosis 

Between the 1880s and 1990s, the evolution of imaging techniques prompted the wide adoption 
of mammography screening that contributed to earlier diagnosis of breast cancer and an 
effectively declined mortality rate ranging from 21% to 39% (11,12).  

Since 1997, the nationwide mammography screening for breast cancer was fully introduced 
and the National Board of Health and Welfare of Sweden recommends women between 40 and 
74 to participate in screening. In addition to mammography, magnetic resonance imaging (MRI) 
also serves as an adjunctive screening method.  

Suspected breast cancer needs to be confirmed pathologically with biopsies. The tissue 
sampling is typically performed by fine-needle aspiration biopsy (FNAB) cytology and core 
needle biopsy (CNB) technique (13).  



 

4 

FNAB is fast and minimally invasive but has limitations such as the inability in separating 
carcinoma in situ with invasive carcinoma, or providing morphological information that is 
important in planning preoperative treatment. 

CNB has the advantage of preserving morphological patterns. The tissue is typically formalin 
fixed and paraffin embedded (FFPE), subsequently sectioned and stained with HE or 
immunohistochemistry (IHC). Staining helps to reveal information such as tumour grade or the 
expression of biomarkers through pathological examination. A good grasp of tumour 
characteristics helps to predict potential benefits of certain therapeutic choices. CNB is 
therefore mandatory when neoadjuvant therapy is applicable in order to assist with treatment 
selections. 

2.1.3 Histopathological examination of breast cancer 

Once the cancer is removed during surgery, surgical resected specimens are subsequently sliced 
across the frontal or sagittal plane. A proportion of the cut slices are prepared into fresh frozen 
materials and are typically used in molecular analysis. Other slices are processed to FFPE tissue 
sections for in-depth pathological assessment.  

FFPE can preserve tissue structures for years, allowing the materials to be archived or used in 
retrospective research studies over the long term. After FFPE fixation, tissue slices are placed 
on a glass, and typically stained with two major types of methods for different diagnostic 
purposes. For the purpose of evaluating morphological patterns and tumour aggressiveness, 
HE staining is applied. Haematoxylin stains cell nuclei into blue-purple colour, whereas eosin 
stains extracellular matrix as well as cytoplasm into pink colour. Distinct colours allow clear 
separation of microscopic features that reveals essential information such as tumour’s growth 
patterns or grade. Another purpose is to study the expression level of key proteins, which are 
biomarkers that reveal crucial characteristics of tumours and serve as important indicators for 
therapeutic strategies (more detail is introduced in Section 2.1.7). IHC staining is used for this 
objective. Antibodies in the solution can bind specifically to targeting antigens (the protein 
under analysis) within the tissue, a kind of reporter molecule is then recruited or bound to the 
antibody that is either labelled with a chromogenic substrate or fluorescent dye and yields 
respective colours. Whether or to what extent does a tumour exhibit certain types of biomarkers 
can thus be assessed by quantifying the abundance of positively stained cells.  

Histopathological examination is considered the gold standard for cancer diagnosis, and 
tumour characteristics obtained via pathological assessments are pivotal in planning treatment 
and subsequent management options. 

2.1.4 Breast cancer subtypes 

BC are malignancies developed from epithelial cells. Due to its heterogeneous nature, BC can 
be divided into subtypes from various angles. For instance, when the growth of cancer cells are 
restricted in milk ducts or TDLUs, the lesion is called ductal carcinoma in situ (DCIS) or 
lobular carcinoma in situ (LCIS); in contrast, when the proliferation grows beyond the ductal 
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wall and starts to penetrate normal surrounding tissue, the tumour is considered invasive 
carcinoma; correspondingly, depending on the location where the cancer originates, there are 
invasive ductal carcinomas and invasive lobular carcinomas; molecular techniques such as 
gene expression profiling provides insights into the intrinsic differences between BC, and 
identified several molecular subtypes with distinct clinical behaviours and prognosis; clinically, 
some of these subtypes can be determined by IHC surrogates (14). In addition, standardised 
grading (Section 2.1.5) and staging systems (Section 2.1.6) have also been proposed to divide 
BC into subgroups with different degrees of aggressiveness and progression. 

2.1.5 Breast cancer grading 

Two separate grading systems are adopted to evaluate the degree of differentiation for DCIS 
and invasive breast cancer individually. Both require pathological examination of tumour 
morphological patterns from HE stained FFPE specimens. According to the European 
guidelines, DCIS are graded as low, medium or high using an integration of nuclear and 
structural features. Although widely implemented, the system lacks consistency in defining 
each grade, resulting in a moderate reproducibility for DCIS grading and hence highlighting a 
need to refine the current system with unified standards (15).  

Since cancer in situ does not necessarily predict malignancy and therefore typically remains 
untreated, the grading of invasive cancer plays a more central role in understanding tumour 
progression and establishing treatment plans. Existing recommendations suggest grading BC 
with the Nottingham (Elston-Ellis) (16) modification of the Scarff-Bloom-Richardson grading 
system.  

The grading criteria include three levels of morphological changes: mitotic count, nuclear 
pleomorphism and tubular formation. Each subcomponent is to be scored from 1 to 3 (Table 
1). Mitotic count is defined as the number of mitosis within 10 high power fields. In general, 
the scoring shall be performed in the most proliferative regions demonstrated by highest mitotic 
density such as the invasive front of a tumour. In case of a heterogeneous tumour where mitotic 
figures exhibit a distinct regional variation, carefully identified hotspots are especially 
important and it is recommended to score in areas with least differentiation (17).  

The evaluation of nuclear pleomorphism is also recommended in peripheral regions or less 
differentiated areas, and the scoring is based on the extent of nuclear atypia by comparing the 
size, shape, vesicularity and the presence of nucleoli with normal breast epithelium. This 
subcomponent often exhibits less intra-observer variability compared to mitosis counts (18).  

The examination of tubular formation is performed by assessing the entire region of a WSI 
with a low power field. Tubular structures are defined by clear central lumens with polarised 
surrounding cancer cells. The scoring is based on the proportion of identified structures 
composing a tumour. 

The overall histological grade (Nottingham histologic grade, NHG) is calculated by summing 
up scores from the above three components, which also ranges from grade 1 to 3 (Figure 1). It 
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is a well-established independent prognostic factor in previous studies (19),(20),(21). Tumours 
with lower grade are typically associated with a lower risk of disease recurrence and are 
therefore often treated conservatively; in contrast, tumours with higher grade grow more 
aggressively, and may be benefited from adjuvant chemotherapy. 

The estimated ratio for these three grades are 2:3:5 (16), however, huge discrepancies have 
been observed with grade 2 tumours of up to 62% (22), implying noticeable inconsistencies 
among observers (23),(24), which is more common on judgements between NHG 1 and 2 
tumours (25). It is worth noting that although the histological grades are assigned as discrete 
values, the corresponding morphological changes are associated with a continuous spectrum of 
differentiation, hence, cancers with grade 1 or 3 lesions normally exhibit more homogeneous 
growth patterns whereas grade 2 tumours often pertain to heterogeneous characteristics that 
can be reflected from both molecular profiles (26) and morphological features (27). A 
comprehensive and in-depth understanding of diagnosis warrants appropriate treatment, it is 
therefore more challenging to select optimal treatment regimens for patients with grade 2 
tumours. Aside from the substantial variance in tumour appearance, the subjectivity in manual 
assessments further poses challenges towards a good adherence to agreed protocols. Taken 
together, these phenomena emphasise the need in developing quantitative methods that 
increase the reproducibility of BC grading. 

Table 1. Breast cancer grading criteria by subcomponents. 

Score Tubular formation Nuclear 
poleomorphism 

mitotic count a 
 (field diameter 0.40 mm) 

1 Tubular structures can be 
found in >75% of the 
entire tumour 

Nuclei appears with <1.5 times 
larger in size compared with 
normal epithelium, only minor 
variation in shape can be observed 

<=4 

2 Tubular structures can be 
found in 10–75% of the 
entire tumour 

Nuclei is 1.5–2 times larger than 
normal epithelium, with visible 
vesicular, nucleoli, and moderate 
variation in shape 

5 to 9 

3 Tubular structures can be 
found in <10% of the 
entire tumour  

Vesicular nuclei is > 2 times larger 
in size, with prominent nucleoli 
and distinct variation in shape  
  

>=10 

a. The threshold varies with different choices of field diameter 
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Figure 1. Examples of grade 1, 2 and 3 breast tumours. Left, NHG 1 tumour with clear tubular 
structures. The polarised cells surrounding each lumen are preserved with regular shapes and sizes 
with non-discernable nucleoli. Middle, NHG 2 tumour. The normal lumens are not observable, 
tumour cells start to grow in varied shapes and sizes, nucleoli become discernible. Right, NHG 3 
tumour. Tubular structure is missing, and tumour cells exhibit bizarre forms. Images were taken from 
regions of HE stained FFPE tissue sections, under the 20X magnification.  

2.1.6 The TNM staging system 

The TNM staging system evaluates the growth and spread behaviour of tumours, and consists 
of three aspects: tumour size (T), lymph node metastasis (N) and distance metastasis (M).  

Tumour size is measured by the longest diameter of the entire tumour. It has been indicated by 
many studies as a powerful predictor for patient prognosis (28),(29). However, studies showed 
that for the basal-like subtype, tumour size no longer carries significant prognostic value (30), 
especially with respect to long-term survival (31).  

The number of axillary lymph node metastasis is another important factor relating to patient 
outcome. With effective detection of early stage BC, total axillary dissection is no longer 
favoured as the large proportion of patients tend to have clear axillary lymph nodes (32); this 
has urged the need for alternative examination of the sentinel lymph nodes. Sentinel lymph 
nodes are the first to receive lymphatic fluid from the cancer site, thus, cancer cells are likely 
to be detected first from these nodes (33) and in theory, negative findings in sentinel lymph 
nodes predict negative axillary lymph nodes. It was also confirmed from a study that the 
number of cancer cells in the sentinel lymph node is in high concordance (96.8%) with the 
status of axillary lymph nodes (34). Hence, nowadays, a primary assessment of the sentinel 
lymph nodes is recommended, sparing the unnecessary axillary lymph node dissection and 
accompanying side effects (35). In case of positive findings that suggest cancer spread, axillary 
lymph node dissection is then performed to allow for exhaustive assessment (36). The number 
of positive nodes is also highly correlated with tumour size (37), but the relationship diminishes 
in basal-like tumours (30), indicating evident dissimilarities between these subtypes. 

Distant metastasis is the third component of the TNM system. M0 denotes no observed distant 
metastasis in other organs, BC with this stage accounts for more than 95% of cancer cases in 
different populations (38,39),(40);  M1 indicates the presence of metastatic breast cancer and 
is an indication of worse prognosis (41). 
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2.1.7 Breast cancer biomarkers 

The expression level of several proteins is also required to characterise breast tumours. These 
biomarkers include estrogen receptor (ER), progesterone receptor (PR), human epidermal 
growth factor receptor 2 (HER2), and Ki67. The assessment is carried out mainly with IHC 
staining, and sometimes in conjunction with in situ hybridization (ISH) to confirm the 
abundance of HER2. 

ER consists of two types, ER-α,and ER-β, both are nuclear transcription factors. The major 
type that is expressed in mammary glands is ER-α, encoded by ESR1. ER-α acts to regulate 
cell proliferation and differentiation and typically has an abundant expression in early stage 
breast cancers, whereas ER-β exerts an anti-proliferative effect with only low or no expression 
in both early stage and advanced breast cancers (42). Therefore, the expression of ER-α is a 
vital indicator for the applicability of endocrine therapy. Clinical evaluation of ER status relies 
on IHC staining and counting the percentage of positively stained nuclei among cells within 
the invasive cancer regions. If no cancer cells are immunoreactive, it is considered an ER 
negative tumour, otherwise positive. However, the cutoff in determining ER positivity varies 
across sites, and a tumour with 1%-10% positive cancer cells is typically considered as ER low 
positive (43). Due to limited understanding towards biological behaviours and prognosis of ER 
low positive tumours, the planning of personalised therapy for this subgroup often requires 
additional information such as the intensity level and the existence of other biomarkers. In 
comparison, the cutoff of 10% for defining ER positivity from Swedish guidelines is less 
ambiguous and also commonly chosen in research (44),(45). ER positive cases account for up 
to 84% of all BCs (46), and this subgroup is typically associated with better prognosis 
compared with ER negative groups for women diagnosed after age 40 (47).  

PR is encoded by the gene PGR. In BC, PR has been recognised to regulate expression of target 
genes that mediate cell proliferation (48) but whether the existence of PR is predictive to 
treatment outcomes remains unclear (49)(50). In Sweden, PR status is also determined via IHC 
staining with the same threshold of 10% (51). 

HER2 is encoded by ERBB2, and its expression is primarily evaluated by IHC. In cases where 
no immunoreactive cells or more than 10% of the epithelial cells exhibit incomplete membrane 
staining, the tumour is regarded as HER2 negative; in comparison, a tumour is defined as HER2 
positive if more than 10% of cells are completely and intensively stained positive. For 
borderline cases with only weak to moderate stains in >10% of cells or with =<10% of cells 
with complete staining, the tumour is further examined with the ISH test. HER2 positive cases 
account for 9%-16% of all BC and a positive biomarker status is an indicator of worse 
prognosis in node-positive patients (4,52). 

Tumours devoid of ER, PR and HER2 are referred to as triple-negative breast cancer (TNBC). 
The subgroup constitutes around 10-20% breast cancers (53) and exhibits worse prognosis.  

Ki67 is a crucial biomarker reflecting cell proliferation activity and is encoded by the MKI67 
gene. It is examined by IHC assay and reported as the proportion of immunoreactive cells with 
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a range between 0 to 100%. Due to recognised discrepancies in preparation and calibration 
procedures, there are no globally applied cutoffs for Ki67, instead, the threshold is defined 
individually across sites and regions. Apart from the lack of unified cutoffs, there’s no 
consensus regarding how the Ki67 shall be quantified either. In Sweden, the guideline used to 
suggest scoring Ki67 by counting 200 cells within a hotspot region, but the latest update 
suggests to perform global scoring (54). The insufficient consensus on scoring protocols and 
considerable inter-observer variability (55) have largely restricted the clinical utility of Ki67. 
As a consequence, although it has been reported that the Ki67 index correlates with tumour 
aggressiveness and predicts patient prognosis (56), no consensus is reached regarding its 
clinical value. 

2.1.8 Breast cancer treatment 

A careful and comprehensive examination of tumour grade, stage, subtype and the status of 
biomarkers make up the basic workflow in clinical decision making. 

For primary early-stage tumours, surgical removal is typically the main type of treatment and 
is performed with either breast-conserving surgery or mastectomy. 

Postoperative adjuvant radiotherapy is another standard treatment modality for primary 
tumours to kill cancer cells in the remaining cancer region by targeting the cells’ DNA. It is 
also an effective palliative therapy for metastatic breast tumours (57).  

After surgery, systemic treatment such as chemotherapy is often prescribed to eradicate 
remaining cancer cells, facilitating prolonged survival. The current guideline suggests that the 
chemotherapy shall be administered for HER2-positive, triple-negative and luminal B-like 
tumours (58). Due to its unpleasant short-term side effects such as causing hair loss, vomiting, 
diarrhoea and peripheral neuropathy, as well as the considerable long-term side effects that 
increase the risk of heart failure, mental dysfunction or leukaemia (57), the administration of 
chemotherapy shall be motivated with efficacy outweighing the accompanied risks. It is 
therefore also of special importance to seek for less toxic alternatives, such as targeted therapies 
for subgroups of BC. In addition, novel molecular or imaging diagnostic tools that are capable 
of assisting with de-escalation or escalation of chemotherapy are also desirable elements 
constituting personalised modern BC management. 

Endocrine therapy is an alternative systemic therapy for hormone receptor positive patients. 
The mainstream treatments consist of two subtypes, one is Tamoxifen that functions as an ER 
antagonist to block the effect of estrogen on ER positive cells; The other is aromatase inhibitors 
(AIs) that function by inhibiting the synthesis of estrogen. Co-administration of adjuvant 
chemotherapy and Tamoxifen is also used in treating ER positive patients, to further reduce the 
risk of treatment resistance (59). 

Targeted therapy is another class of treatments that works by targeting specific molecules or 
pathways. For instance, Trastuzumab, which targets the HER2-protein, is applied to treat HER2 
positive patients. Poly(ADP-ribose) polymerase (PARP) inhibitors that induce apoptosis 
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among cancer cells with BRCA1 or BRCA2 mutation (60) are currently approved to treat BRCA 
mutated breast cancers (61). Furthermore, immune checkpoint inhibitors such as the inhibitor 
for the programmed death-ligand 1 (PD-L1), atezolizumab, can bind to PD-L1 and inhibit its 
interaction with PD-1 and B7-1, enhancing the T cell-induced cytotoxicity (62,63). The 
concurrent administration of nab-paclitaxel and atezolizumab has also demonstrated 
favourable survival outcomes (63) and has been used for treating PD-L1 positive TNBC 
patients (64).  

Preoperative systemic therapy, regardless of the type of the choices that are covered above, is 
referred to as neoadjuvant therapy, and is recommended in the presence of advanced tumours 
without metastasis or inoperable inflammatory tumours (65) to shrink the tumour size. The 
pathological response to neoadjuvant therapy not only enables less invasive surgical strategies 
but also serves as a critical indicator on how tumours react to therapeutic agents, hence, 
providing a unique prognostic value to further guide subsequent treatment decisions. 

2.1.9 Prognostic markers  

Modern techniques have assisted with the development of novel prognostic factors that 
facilitate refined BC subtyping and individualised clinical decision making. One widely 
adopted assay is the Prosigna® test (NanoString Technologies, Seattle, USA) which was 
developed based on the expression profiling of 50 genes (PAM50)(66) and works to classify 
BC into four intrinsic subtypes, namely Luminal-A, Luminal-B, HER2-enriched and basal-like. 
In Sweden, the test is recommended to assess the recurrence risk for patients that are 
postmenopausal, with ER-positive, HER2-negative and node-negative breast cancer, in an 
attempt to determine the applicability of adjuvant chemotherapy (67). Oncotype DX® (Exact 
Sciences Corp., Madison, USA) is a 21-gene signature assay that also computes a risk of 
recurrence score, besides, the test provides insights to potential benefit of adjuvant 
chemotherapy (68). Aside from global classification models, improved stratification of NHG 
2 tumours have received special attention due to the noticeable heterogeneous morphology and 
biological behaviour among cancers in this subgroup. Using RNA sequencing, a molecular tool 
developed by Wang et.al integrated 34 genes and dichotomised NHG 2 tumours into two levels 
with distinct recurrence free survival (69). Albeit a plethora of subtyping criteria that have been 
introduced in practice, it is widely acknowledged that the development of malignancy as a 
continuous and heterogeneous process poses a challenge to effective personalised medicine, 
highlighting the need for novel approaches that improve tumour stratification. 

2.1.10 Spatial heterogeneity  

Spatial intra-tumour heterogeneity is a reflection of cell-subpopulations that carry distinct 
molecular phenotypes. The dynamic yet closely interlinked gene expression can be regulated 
at different levels and stages by events such as genetic mutation, epigenetic changes, alterations 
in mRNA synthesis, processing and translation. These factors give rise to clonal heterogeneity 
and variations in expression pattern within a tumour. Such spatial intra-tumor heterogeneity 
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has been regarded as one major reason for treatment resistance (70) and a prognostic factor in 
various types of cancers (71)(72)(73).  

Spatial transcriptomics (ST) accounts for a major genre of techniques for quantifying gene 
expression while preserving spatial information. There are three ways to recover spatial 
coordinates, by using ligate oligonucleotide barcodes that are attached to RNA molecules, by 
in situ hybridization or by in situ sequencing (74). Leveraging these techniques enables an in-
depth understanding for depicting the evolutionary pattern of tumour cells. It provides insights 
into how tumour subpopulations started from genomic subclones within the in situ cancer 
obtain invasiveness and grow into neighbouring regions (75). In addition, the spatial expression 
proximity can also be exploited to study gene-gene or cell-cell interactions, making it possible 
to picture a transcriptome-wide network of cellular communications (76). Enriched 
information acquired with spatial constraints effectively facilitates research into the tumour 
microenvironment (77)(78).  

Deep learning models have also been used to predict molecular phenotypes from medical 
image data such as HE stained WSIs (79,80)(81)(82), constituting a novel alternative to spatial 
transcriptomics (83)(84). Although intra-tumour heterogeneity and its consequence in patient 
prognosis remains to be an intricate problem, modern technologies have brought about a wealth 
of technical solutions that foster novel research opportunities in this domain. 

2.2 COMPUTATIONAL PATHOLOGY 

The past twenty years have witnessed a rapid evolution of scanning technology that enabled 
the speedy digitisation of WSIs with a very high resolution. Besides, the accompanying 
development in image archiving and communication systems further strengthen the image 
management process (85). Together, these advances in computer and electronic technology 
have prepared modern pathology to be gradually migrated from traditional microscope-based 
examination to digital-based practice where pathologists can perform the assessment in front 
of the computer. The digitisation facilitates efficient remote image transfer and review not only 
for diagnosis but also for research or educational purposes. Moreover, it spawned a novel 
research field: computational pathology. 

The definition of computational pathology is not necessarily confined with computer-aided 
pathologic diagnostic tools, rather, it includes the entire framework that comprises 
experimental design, image analysis and statistical and computational modelling to address 
scientific problems that can be answered with pathological data (86). WSIs, either stained with, 
for example, IHC or HE serve as the main image modality that is analysed in computational 
pathology, and the analyses often include image processing, segmentation, object detection or 
identification, and prediction of histopathology characteristics as well as clinical outcomes. A 
common goal shared among research in this field can be summarised as to deliver decision 
support for pathologists and other clinicians with respect to, for example, pathological 
diagnosis or patient risk stratification.  
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The quantitative modelling approaches have the favourable property to not only potentially 
reduce inter- or intra-observation variabilities, but also to extract clinically relevant information 
beyond current routine pathology. Moreover, with the abundance of multi-‘omics’ data and 
other imaging modalities such as computed tomography (CT) and MRI, it is believed that 
computational pathology can serve to bridge the information gap, providing a more 
comprehensive understanding to individual tumours for improved precision medicine (87).   

2.3 MACHINE LEARNING 

While the term ‘artificial intelligence’ covers a broad concept of disciplines where human 
intelligence can be formalised and learned by machines, ‘machine learning’ as one of its 
subfields focuses mainly on training models with training data sets and generating accurate 
predictions on unseen test data (88). Many research topics in the medical image analysis 
domain fall within the scope of supervised learning, where the training data comprises images 
that serve as input together with their labels as ground truth. The model optimisation process 
therefore aims to learn the model parameters from the input feature representations and 
minimise the prediction error in comparison with the ground truth targets.  

Before the explosion of scientific interest in deep learning, traditional machine learning 
techniques that utilise hand-crafted features dominated the domain of medical image analysis 
(89)(90). Later, the introduction of deep learning models, in particular CNNs, aided in 
overcoming the necessity for manual feature selection and has yielded superior performance in 
various image analysis contexts (91). 

2.3.1 Artificial neural network 

The development of the perceptron marks a milestone in the history of deep learning. It was 
mainly inspired by two findings, one was the McCulloch-Pitts Neuron (92) in mimicking the 
biological activation of a neuron that triggers an impulse to connected neurons when a given 
stimulus surpasses a threshold; the other was the theory in learning, proposed by Donald Hebb 
(93), which stated that the connection between neurons increases if one continuously 
participates in activating the other. 

A perceptron equation with a vector of N inputs (x) takes the following form: 

 𝑦 = 𝑓 $%𝑤!𝑥!

"

#$%

+ 𝜃* (2-1) 

Where w is the vector of coefficients. For a binary classification problem, if the sum of the 
linear combinations of inputs with coefficients has a higher value than the threshold, θ, the 
function f(·) outputs 1, otherwise 0. The basic structure can only be applied for linear separable 
scenarios, which largely limited its use in advanced and complex requirements. The problem 
was solved later with the introduction of the multi-layer perceptron (MLP) (94).  
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The MLP shares the basic structure of the perceptron but with more layers of neurons inserted 
between the input and output layer, as shown in Figure 2. 

 

Figure 2. The architecture of a multi-layer perceptron with two hidden layers. 

The model is a 3-layer neural network as there are three layers of weights that are adaptable 
during training and it contains two hidden layers. 

Linear combination from the first layer is computed with the following formula where x1, …, 
xn are the inputs. Note that to illustrate the bias term, x0 = 1 was added to the figure. The 
learnable parameters wji are often referred to as weights with wj0 as biases, where j = 1…m: 

 𝑎#
(%) =%𝑤#!

(%)𝑥!

"

!$%

+𝑤#(
(%) (2-2) 

Next, a(1)j go through an activation function f(·) to form the output of the jth neuron in the hidden 
layer 1, u(1)j, where f(·) is designed to be non-linear and differentiable: 

 𝑢#
(%) = 𝑓-𝑎#

(%). (2-3) 

In the same manner, u(1)j contributes to compute the input for hidden layer 2. The output 
neurons from the hidden layer 2 provide an input a(3)l for the last layer, where l denotes the 
number of neurons (classes) in the output layer. 

Finally, an activation function is applied to each output in generating the final prediction such 
that: 

 𝑦) = σ-𝑎)
(*). (2-4) 

For regression objectives, the activation function is an identity function so that yl = al, whereas 
for binary classification objectives, the activation function is either the sigmoid (2-5) or the 
softmax function (2-6) for binary or multiclass problem, respectively: 
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 σ(𝑎) =
1

1 + exp	(−𝑎) (2-5) 

 𝜎(𝒂)! =
exp	(𝑎!)

% exp9𝑎#:
+

#$%

	 
(2-6) 

A deep neural network often contains several hidden layers, and by combining the above 
components together, the model can be expressed with the formula below and is regarded as 
the forward propagation of input information: 

𝑦;)(𝐱,𝐰)	= σ(% 𝑤),
(+)

,
𝑓(% 𝑤,-

(+.%)

-
 𝑓(…𝑓(% 𝑤#!

(%)𝑥𝑖 + w#(
(%))+…)+ w,(

(+.%))+ w)(
(+)) 

!
 

(2-7) 

2.3.2 Error function 

To compare model predictions with the ground truth, an error function (also known as loss 
function, or cost function) is designed to suit specific needs from different learning objectives. 
For regression models, given a set of N inputs X={x1…xn} and associated continuous values 
Y={y1…yn} with model prediction Ŷ, the commonly used mean square error (MSE) loss can 
be used: 

 𝐿/01 =
1
𝑁%

(𝑦! − 𝑦;!)2
"

!$%

 (2-8) 

Whereas for binary classification tasks, a cross-entropy (CE) loss is used where yi ∈ {0, 1}, 
denoting the class label and pi is the model prediction: 

 𝐿31 = 	 −%{𝑦!log	(𝑝!)	 + (1 − 𝑦!)𝑙𝑜𝑔(1 − 𝑝!)}
"

!$%

 (2-9) 

The function can be written in a generalised form that also applies to multiclass problems and 
here yci is a vector with length l, only the entry corresponding to the specific class label takes 
the value 1 and the rest are 0s: 

 𝐿31 = −∑ 	"
!$%  ∑ 𝑦4! log(𝑝𝑐!)+

4$%  (2-10) 

2.3.3 Gradient descent and backpropagation 

For ANNs, training a model implies the procedure of feeding batches of inputs into the model 
and updating the weights in an iterative manner by minimising the errors within each batch. 
The most efficient way to achieve this is to take a small step towards the direction where the 
error decreases at its fastest speed, and this is accomplished by updating the weights to the 
opposite of the local gradient (derivative) with regard to the loss function: −∇L(w), such that: 

 wnew = wold − η∇L(wold) (2-11) 

Here, the η (learning rate) controls the strength of the updates and the optimisation strategy is 
called gradient descent. 
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The gradient of the error message is computed efficiently backward to each layer through a 
technique called backpropagation (95). Let Ln be the error associated with the nth input. 
Suppose the aim is to update weight w(2)dm, given Ln,  we hence need to compute the derivative 
of error function with respect to w(2)dm: 

 ∂Ln/(∂w(2)dm) (2-12) 

To process is illustrated in Figure 3: 

 

Figure 3. Error backpropagation process for a subset of the network in Figure 2. 

It can be seen from the forward pass that the w(2)dm contributes to the error through the 
calculation of a(2)nd. For simplicity, the subscription n is omitted from the equation. Based on 
the chain rule, the derivative can be decomposed into the following term: 

 
𝜕𝐿𝑛
𝜕𝑤,-

(2) =
𝜕𝐿𝑛
𝜕𝑎,

(2)  
𝜕𝑎,

(2)

𝜕𝑤,-
(2) (2-13) 

And by defining: 

 𝛿,
(2) =

𝜕𝐿𝑛
𝜕𝑎,

(2) (2-14) 

Equation 2-13 can be re-written as: 

 
𝜕𝐿𝑛
𝜕𝑤,-

(2) = 𝛿,
(2)𝑢-

(%) (2-15) 

In this way, the gradient with regard to a given weight can be expressed as the product of the 
error signal at the output end of that weight (indicated by the red neuron in Figure 3) and the 
input signal that connects to the other side of the weight (96). 

The error 𝛿(2)d can be calculated using the chain rule again, by summing up the partial 
derivatives computed from all units that accept inputs from the current unit d during the forward 
pass: 
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 𝛿,
(2) =S

𝜕𝐿𝑛
𝜕𝑎)

(*)

)

𝜕𝑎)
(*)

𝜕𝑎,
(2) (2-16) 

Rearranging the formula with equations 2-2, 2-3 and 2-16, the	𝛿(2)d can be formulated as: 

 𝛿,
(2)	= 𝑓5-𝑎,

(2). %𝑤),
(*)

)
𝛿)
(*) (2-17) 

And the error signal for the output layer can be calculated with: 

 𝛿)
(*) =	

𝜕𝐿𝑛
𝜕𝑦;)

𝜕𝑦;)
𝜕𝑎)

(*) (2-18) 

Where ŷl is the model prediction of nth input. 

Once the errors are calculated for each neuron, the weights can thus be updated using the 
gradient descent technique introduced above. 

2.3.4 Stochastic gradient descent 

In practice, updating the weights with the gradients that are calculated over the entire dataset is 
often not feasible, due to the large memory consumption and long processing time. Instead, 
computing the gradients with randomly sampled small batches (mini-batch) of data is a 
preferable choice, this is the technique called ‘stochastic gradient descent’ (SGD). With SGD, 
the model is optimised against the loss in an iterative process, performing the updates based on 
every mini-batch, enabling a local optima to be reached. 

2.3.5 Introduction to CNN 

For histopathological images, the arrangement of pixels in 2D directions contains crucial 
information of how tumour forms and grows. Therefore, it is desirable to retain the spatial 
relationships when learning representations from the images; in comparison, the orientation 
does not carry important information. The convolution operation enables processing of both 
centering and neighbouring pixels, which is suitable for this scenario, hence has gained great 
attention in computational pathology. A basic CNN mainly consists of the following units: 
convolution layer, pooling layer, fully-connected layer and output layer (97). 

2.3.5.1 Convolutional layer 

A convolutional layer is typically referred to as a kernel, it is a matrix with randomly initialised 
‘weights’, these weights will be constantly adjusted during training. For images, the kernel 
typically has 2 dimensions (i.e. 5 × 5), and for histopathological images with 3 colour channels 
(red, green and blue), the kernel will have an additional dimension (i.e. 5 × 5 × 3) so that the 
kernel and image match in shape during matrix multiplication. The convolution procedure 
starts by sliding the kernel across an image. At each sliding location, the element-wise product 
between kernel and input signal is computed and summed up, forming the output of the current 
receptive field. The same procedure is performed repeatedly until the kernel scans through the 
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entire image. In general, a sliding stride is primarily defined to determine the amount of shift 
in pixels between each convolution operation.  

The kernel is also referred to as a filter for its ability in returning higher value when the feature 
within a receptive field correlates with the shape that the set of kernel weights stands for.  For 
instance, a kernel with larger weights diagonally has the capacity in detecting slash patterns 
( \ ). Hence, in comparison to input devoid of any pattern, it tends to generate higher value 
through the convolution step when the input also contains a slash pattern. 

2.3.5.2 Activation layer 

The output within each receptive field is subsequently passed through an activation layer, for 
example a rectified linear unit (ReLU) (98). The layer functions by mapping the input with a 
simple rule: ReLU = max(0, x) where x is the input of the activation function. The activation 
layer serves to gain non-linearity, therefore expanding the capacity of CNN models to learn 
non-linear patterns. Outputs from this layer are concatenated with their spatial coordinates and 
regarded as feature maps, as they reflect the mapping of where a desired feature is detected in 
the previous layer. 

2.3.5.3 Pooling layer 

A pooling layer refers to the step where output feature maps are further reduced in size, 
retaining only one value within each prespecified window size (i.e. 2 × 2). The value is 
computed based on different pooling functions, and is typically the maximum or average of 
pixel values within the receptive field for max pooling or average pooling, respectively. This 
step improves the model's tolerance towards small transitions in input signals and reduces the 
required parameters by shrinking the output features; together, it renders the model a simpler 
and more robust property. 

2.3.5.4 The deep structure 

Before the output layer, a CNN model is configured by repeatedly stacking the three 
aforementioned layers in a sequential manner.  

Information revealed from an image possesses a hierarchical structure: the intricate shapes are 
constructed on top of basic elements. Accordingly, simpler features learned by earlier layers 
become inputs for later layers, and are in turn combined through convolution to facilitate the 
detection of more complex features. As the information passes by more layers, the kernels 
gradually acquire the power to recognise objects with an increased complexity.  

Models with deeper configurations can possess more capacity for learning complicated patterns, 
i.e. morphological features in the case of histopathology, especially when the dataset has few 
classes but is rich in image data, and hence may be more suitable for modelling 
histopathological features (99)(100). On the other hand, high similarities can be found between 
representations generated from consecutive intermediate layers, and the observations become 
more profound with deeper or wider networks, suggesting that some layers can be pruned 
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without sacrificing model performance (101). But this phenomenon can be attenuated with 
large training data, hence, its influence on histopathological datasets with millions of inputs 
remains unknown. 

2.3.5.5 Fully connected layer 

Towards the final layers of the CNN, a set of features with various degrees of complexity have 
been extracted. To link the information with training objectives, an integration of learned 
features is required. The fully connected layer is designed to provide an extensive combination 
of all features from the convolutional part of the model. Therefore, one or more fully connected 
layers are typically inserted between the last convolutional unit and the output layer. 

2.3.6 Applications of deep CNN models in the medical domain 

The past decade has witnessed a soaring trend in the application of CNNs for histopathological 
analysis in a large variety of prediction tasks (82)(102), some have demonstrated promising 
outcomes. Campanella, G. et al designed a CNN based framework for the prediction of prostate 
cancer and skin basal cell carcinoma on HE stained images that achieved outstanding 
performance (AUC higher than 0.98). The model is expected to help preclude over 75% slides 
that do not carry valuable information for cancer diagnosis without diminishing the sensitivity 
for cancer detection on patient level (103). Another study showed that CNN can both detect 
prostate cancer with core needle biopsies with an AUC of 0.997 and perform Gleason grading 
with performance comparable to specialists (104).  

Apart from performing routine diagnostic tasks, the strong ability to learn features from data 
has rendered CNNs the potential to distinguish refined tumour characteristics that are not 
currently achievable through pathological assessment. One application scenario is to predict 
disease outcome and improve patient risk stratification (105). For example, using features 
extracted from HE stained TMA tissues by CNN models, Bychkov et al. stratified colorectal 
cancer patients into two risk groups that exhibited distinct survival outcomes (105); 
alternatively, pathological data can be combined with genetic and clinical data, accounting for 
more relevant biological mechanisms to facilitate the prediction of patient prognosis (106)(107).  

The detection of somatic mutations with lung cancer WSIs by Coudray et al uncovered an 
innovative finding that CNNs can potentially link morphological appearance to their 
underlying molecular changes. This discovery soon received increased attention and fueled 
similar research in other cancer types such as liver cancer (108), colon cancer (109) and breast 
cancer (110). Two studies successfully predict genetic alterations in a pan-cancer manner, 
indicating a shared association between genetic and morphology phenotypes across different 
cancer types and can be captured by deep learning models (111),(112). Apart from mutations, 
prediction of gene expression and molecular subtypes are also achievable (111),(112),(79),(84). 
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3 RESEARCH AIMS 
The overall aim of the doctoral thesis was to develop and validate deep learning models for the 
purpose of improved prognostic risk stratification of breast cancer patients, and for prediction 
of molecular characteristics of breast tumours, using digital histopathological WSIs. 

The specific aims for each study are listed below: 

• Study I aimed to improve risk stratification of grade 2 tumours by training deep 
learning models on morphological patterns in histopathology images of grade 1 and 3 
tumours. 

• Study II aimed to develop and validate deep learning models for the ability to predict 
tumour average level mRNA expression of individual genes, and to predict intra-
tumour spatial gene expression values.  

• Study III extends the results from study II by quantifying multiple metrics of intra-
tumour gene expression heterogeneity and assessing the prognostic value through 
survival analysis. 

• Study IV aimed to compare the agreements in prognostic risk stratification between 
Stratipath Breast, a product developed for clinical use based on the concept proposed 
in study I, and the Prosigna® gene signature assay, a product for clinical use based on 
molecular profiling.
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4 MATERIALS AND METHODS 
4.1 DATA SOURCES 

Patients and study materials used in the current thesis were collected from four studies. For 
each enrolled patient, demographic information was extracted from health records and the HE 
stained tissue slides were retained, digitised into WSIs. The information of data sources is 
summarised below: 

The Clinseq study 

The Clinseq study (Clinical Sequencing of Cancer in Sweden) consists of female participants 
that were included in two cohorts: Libro-1 and Karma. Libro-1 (113) recruited patients 
retrospectively in 2009 who were younger than 80 years old by the age of diagnosis, and 
received surgery between 2001 to 2008 at the Karolinska University Hospital. Karma (114) 
enrolled patients who were diagnosed with breast cancer at the South General Hospital in 2012. 
Clinical characteristics and follow-up information were retrieved from the Stockholm-Gotland 
Regional Breast Cancer quality register and the Information Network for Cancer Care (INCA) 
(115) respectively. INCA includes  detailed records for patients with primary invasive or in situ 
breast cancer from 2007 to 2018, whereas the Stockholm-Gotland Regional Breast Cancer 
quality register contains historical data for INCA up to 2007. RNA-seq data were extracted 
according to the protocols outlined in the previous study (69) and were originally retrieved with 
fresh frozen tumour tissues from surgery excision. HE stained FFPE slides were digitised with 
a combination of Hamamatsu XR and S360 scanners. The Clinseq cohort was used extensively 
as the training and internal test sets for study I-III. 

The Cancer Genome Atlas (TCGA) breast cancer study 

The study comprises patients that were diagnosed with invasive breast cancer and underwent 
surgical resection. No adjuvant therapy was applied prior to surgery. The demographic and 
follow-up information was retrieved from previous publications while the histological grading 
and individual subcomponent scores were manually extracted from the pathological reports. 
The RNA-seq data were acquired from http://cancergenome.nih.gov/ in June 2014, under the 
approval from the TCGA data access committee (dbGAP project ID 5621). The digitised 
diagnostic slides were downloaded from the official portal https://portal.gdc.cancer.gov. The 
slides were scanned by Aperio scanners. The TCGA dataset served as the training and internal 
test sets for study I-III. 

The SöS-BC-1 study 

The SöS-breast cancer batch 1 (SöS-BC-1) cohort contains retrospectively enrolled patients 
that were diagnosed of breast cancer at the Stockholm South General Hospital between April 
2012 to October 2014, and between October 2015 and May 2018. All clinical information was 
retrieved from the national quality registry for breast cancer (NKBC) (116). NKBC is a 
reconstructed INCA register established in 2019, with detailed records regarding patient 
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demographics, tumour characteristics, treatments and follow-up information. The slides were 
collected and digitised in-house using a Hamamatsu Nanozoomer XR scanner. In study I, SöS-
BC-1 was assigned as the training and internal test set for the development and evaluation of 
the DeepGrade model in distinguishing NHG 1 and 3 tumours. In study III, it acted as an 
external test set to validate the prognostic significance of the proposed risk stratification model. 

The SCAN-B-Lund study 

The SCAN-B-Lund cohort (Sweden Cancerome Analysis Network - Breast) prospectively 
enrolled patients that were diagnosed of primary invasive breast cancer in Lund from 2010 to 
2019 (117). Basic tumour characteristics such as biomarker status, tumour grade, treatment and 
follow-up information were retrieved from INCA. The slides were scanned on a Hamamatsu 
Nanozoomer XR scanner. The cohort was used as an external test set to evaluate the prognostic 
significance of the proposed risk stratification models for study I and III. A subset of patients 
with the RNA-seq data available from the NCBI Gene Expression Omnibus (Accession Nos. 
GSE81538) formed the external test set (ABiM cohort) for study II (118).  

The Prosigna cohort 

The Prosigna cohort consists of patients that were diagnosed of invasive breast cancer from 
March 2020 to March 2022 at the Karolinska University Hospital or Södersjukhuset, and also 
subjected to molecular diagnostics using the Prosigna® test. Participants shared the 
characteristics of being postmenopausal with ER positive, HER2 negative and node negative 
tumours. Clinical information regarding crucial tumour characteristics were extracted from the 
clinical records; a pair of FFPE sections originating from surgical specimens were either 
analysed with the Prosigna® test at Karolinska University Hospital or stained with HE and 
underwent the Stratipath breast test at Karolinska Institutet. The cohort composed the study 
material for study IV. 

4.2 WHOLE SLIDE IMAGES 

The HE stained FFPE slides from Swedish cohorts were scanned locally with Hammamastu 
Nanozoomer digital scanners of model XR or S360 at 40X, whereas slides from TCGA were 
downloaded from the digital portal as previously described.  

The digitised slides are referred to as WSIs, each consisting of billions of pixels with several 
gigabytes in size. To facilitate data visualisation at different magnification levels, in the scanner 
native output image files, a set of lower resolution images are computed sequentially and 
stacked on top of the full resolution originals, forming an image pyramid, with the lowest 
resolution on top. This structure facilitates a smooth loading procedure as it is often necessary 
to examine the image under various magnification levels, such as during pathological 
examination. The image with the highest resolution forms the bottom of the image pyramid 
and the size is reduced sequentially forming the subsequent levels (Figure 4A). 
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Images are matrices of pixels. A pixel is composed of red, green and blue (RGB) colour 
channels with each digit ranging from 0 to 255. In this format, an image is analysed by the 
computer vision model as 3D tensors of pixel values with the dimension of Nrows × Ncolumns × 3 
as is shown in Figure 4B. It is worth noting that there is a variation for representing an image 
across different programming libraries, hence, the order of these three components can differ. 

 
Figure 4. Demonstration of image pyramid and digitised HE stained WSIs. 

4.3 IMAGE PREPROCESSING 

As an initial step, a standardised preprocessing pipeline was applied to each WSI. The entire 
workflow was summarised in Figure 5 and consisted of tissue region identification, tiling, 
quality control, colour normalisation and tumour region segmentation. Tissue regions were 
extracted from downsampled WSIs from the image pyramid. For slides scanned in-house with 
the Hamamatsu scanners, a downsampling factor 32 was used consistently across all slides; 
For TCGA slides that were scanned with Aperio scanners of multiple prototypes, when the 
same downsampling factor was not available, a lower resolution image with the compression 
level closest to 32 was used. The extracted low resolution image was transformed to HSV (hue, 
saturation, and value) colour space where a mask was generated with Otsu’s thresholding (119) 
on the saturation channel to detect tissue components; In order to filter out pen marks, another 
binary mask was generated to exclude pixels with a hue value less than 0.75; The tissue region 
was retained with logical intersection of the two masks, followed by removing small holes or 
noises that have a radius of up to 10 pixels.  

Next, we sequentially tiled the image at full resolution into smaller image patches of size 1196 
× 1196, followed by a 2X downsampling, so that the final output has the shape of 598 × 598 
pixels and represents the magnification of 20X. This granularity was chosen to ensure that the 
images are composed of tubular structures while details such as cellular patterns can be 
retained. Another reason to scale tiles to 20X resolution was to mitigate the blurry artefacts that 
were prominent under full resolution. Slides from the SöS-BC-1 cohort were tiled with 25% 
overlap to balance the total number of tiles, while 50% overlap was chosen for the other 
cohorts. 
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Figure 5. Illustration of the preprocessing workflow. Adapted from Wang et al. 2022 (120), with 
permission from Elsevier [author’s material]. 

4.4 QUALITY CONTROL 

Although downsampling from 40X to 20X can significantly reduce blurry artefacts, tissues 
containing subregions that are out of focus remain problematic; furthermore, images composed 
of adipose tissue and devoid of epithelial cells provide limited value for prediction objectives, 
hence, a quality control measure was adopted to remove blurry images by computing the 
variance of pixel values by convolving with a Laplacian operator (121). It generates the second 
order derivative of a given image, enabling the detection of edges with fast transition in 
grayscale intensity. In-focus images can be dominated by sharp edges with a high value in the 
variance whereas the out-of-focus images are characterised by a slow transition in grey values 
that is associated with a low variance. 

T
0 1 0
1 −4 1
0 1 0

W (4-1) 

  

The calculated focus measurement was thus compared with an empirically chosen threshold of 
500, and tiles with a value lower than the threshold were considered as blurred and were 
excluded from subsequent analysis. 

4.5 COLOUR NORMALISATION 

Tissues possess a diverse capacity in absorbing stains and such intrinsic difference is exploited 
in assessing lesions. However, slides prepared under divergent protocols, such as scanned by 
different scanners, typically exhibit noticeable colour variations that could confound model 
predictions. To alleviate this, we employed and modified the colour normalisation following 
Macenko’s method (122).  

The basic idea is to firstly transfer images from RGB colour space into optical density (OD) 
space (123), making the colour components linearly separable as in (4.2), where Ic denotes the 
RGB colour vector. Secondly, a slide level stain vector was estimated with Macenko’s method. 
Thirdly, pixel level concentration coefficients were computed using the slide level stain vector 
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and the pixel level OD values (124). Lastly, the normalised OD value was obtained by 
multiplying a reference stain vector and the pixel level concentration value. 

OD = (-1 * log(IC /255) (4-2) 

In practice, it is advisable to adjust the brightness of each incoming image before the colour 
normalisation step. This was achieved with a slide level luminosity reference. In brief, 100 
randomly sampled tiles from one WSI were concatenated and transformed from the RGB to 
CIELAB colour space. The 95th percentile of the L* channel value was chosen as the slide 
reference. Using this reference, the pixel values within each tile were adjusted by either linearly 
scaled between 0 to 255 according to the reference, or setting to 255 if the value exceeded the 
given reference. Lastly, we transformed the image back to RGB profiles for colour 
normalisation. 

The next step was to estimate stain vectors. Two types of stain vectors were needed. One was 
the reference vector as a standard to normalise all images to, which was estimated with 3000 
random gathered tiles within the pool of all available WSIs in the training set; the other was 
the slide level stain vector for each WSI and was computed with 100 randomly sampled tiles 
from the WSI under study. To estimate a stain vector, luminosity adjusted image tiles in OD 
space were first randomly sampled and concatenated. Secondly, singular value decomposition 
(SVD) was performed using the concatenated images in the previous step. Next, each pixel was 
projected onto the plane that was spanned by the two vectors corresponding to the two largest 
singular values. After this, the vectors that have 99th percentile or 1st percentile among all angles 
with respect to the first vector were regarded as the H and E vectors, respectively. The 
percentiles were chosen empirically to allow for more robust estimation. 

4.6 CANCER DETECTION MODEL 

For slides from the Clinseq cohort, the tumour region was annotated by experienced 
pathologists. For slides from the rest of the cohorts, tumour masks were generated from a deep 
learning based tumour detection model. The model was trained with tiles from the Clinseq 
cohort where the annotations were used as ground truth labels.  

The binary cancer detection model was trained with WSIs from the Clinseq data. Patients were 
split into training (N = 149), validation (N = 36) and test (N = 47) sets. Within the training set, 
80% were used to train the model and 20% as the tuning set to monitor model performance. 
An Inception V3 model (125) with ‘ImageNet’ (126) pretrained weights was optimised with 
the Adam (127) optimiser. The learning rate was set to 1e-4, with β1 = 0.9, β2 = 0.999, ε = 
None, decay = 0. Each mini-batch contained 24 cancer tiles and 24 non-cancer tiles. The model 
was evaluated on the tuning set after every 50 iterations. Model predictions were compared 
with ground truth annotations with the cross-entropy loss function. We employed early 
stopping with a patience of 10 and the criteria of non-improvement was considered as having 
less than 0.003 change in the tuning set loss. Data augmentations with random flips and 90° 
rotations were applied to the training samples. 
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Model performance was evaluated with the Receiver Operating Characteristic (ROC) curves 
and a threshold to dichotomise output probabilities was chosen using the validation set with 
Youden's index (128) on the ROC curve.  

For cohorts without invasive cancer annotations, the trained model was applied to each tile and 
by using the same cut-off threshold, a tile was predicted as cancer or non-cancer. To mimic 
manual annotation with a coarse boundary, post-processing was performed by first mapping 
tiles with their binary predicted labels back to the original location, and then using 
morphological closing and opening operations to remove holes or objects with a size less than 
405 pixels. The output was a binary tumour mask that was eventually employed to label image 
tiles. We retained the tiles within the region labelled as ‘tumour’ by the model for subsequent 
analysis.  

4.7 APPLICATION OF MACHINE LEARNING MODELS 

4.7.1 Training deep CNN models with a classification objective 

In study I, an ensemble of 20 deep learning models with the Inception V3 architecture were 
trained to classify NHG 1 and NHG 3 cases. The training (N = 674), tuning set (N = 170) and 
internal test sets (N = 351) comprised a combination of WSIs from the Clinseq, TCGA and 
SöS-BC-1 cohort. The models were initiated with the weights pre-optimised using the 
‘ImageNet’ dataset. Models were trained with the SGD optimiser and a learning rate of 1e-3. 
A mini-batch with balanced sampling of 32 tiles from two classes were used and the model 
performance was evaluated on the tuning set for every 250 iterations. The learning rate was set 
to reduce by 50% if the model did not improve for 10 epochs. The same loss function, early 
stopping criteria and data augmentation were applied as depicted in section 4.6. In the test sets, 
the predicted probability of NHG 3 for each tile was averaged across all 20 predictions and the 
slide level probability was obtained using the upper quantile across all tile level predictions 
within that slide. ROC curves were generated to evaluate model performance. 

4.7.2 Training deep CNN models with a regression objective  

In study II, tiled images were used as input to optimise the Inception V3 models with slide 
level gene expression as the outcomes. The regression models were configured by switching 
the last layer with one neuron followed by a linear activation. Models were initiated with the 
‘ImageNet’ weights and were trained for each individual gene separately. Adam optimiser was 
used together with a learning rate of 1e-6 and default parameters including β1 = 0.9，β2 = 
0.999, ε = None, decay = 0. Mean squared error was used as the loss function. 

Clinseq and TCGA datasets were merged and split on patient level to form the training (N = 
558), tuning (N = 139), validation (N = 122) and internal test sets (N = 172).  

The models were trained on the training data with a mini-batch of 32 tiles, and evaluated on 
the tuning set every 150 iterations (partial epoch). Early stopping was employed with the 
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patience set to 80 partial epochs and the minimum change in loss set to 0.003. Data 
augmentation was applied as previously described. 

4.7.3 Regularisation 

Regularisation is often applied in an attempt to prevent overfitting in many machine learning 
scenarios. Depending on whether a regularisation term is explicitly added to the optimisation 
function, the technique can be further divided as explicit or implicit regularisation. 

4.7.3.1 implicit regularisation 

Early stopping (129) techniques in optimising a CNN model is an implicit regularisation, the 
method stops the training process when model performance plateaus with a predefined criteria 
on the tuning set, thus, avoiding overfitting on the training data. 

Batch normalisation (130) is added before the activation layer with an aim to normalise input 
values so that each mini-batch has 0 mean and unit standard deviation. The normalised mini-
batches then pass through a scale and shift operation with two learnable parameters 
respectively, and eventually forming the input for the activation layer. Although study 
demonstrated that this regularisation only marginally improves generalisability, we can 
potentially benefit from a more stable learning curve and less computation time (131). 

Dropout (132) works as another implicit regularisation technique by randomly setting 0 to the 
neurons within a layer with a probability of p during training time. Only the rest of the neurons 
contribute to computing the outputs and accept error signals from the backpropagation 
procedure for each iteration. Dropout is not used during inference time, hence, for testing the 
model, the weights associated to each neuron are scaled by a factor of (1-p), adjusting for 
additional activations compared with the training time. 

4.7.3.2 explicit regularisation 

In model optimisation, a regularisation term can be added to the loss function. It is also regarded 
as a penalty term since its presence enforces a constraint on learned parameters. 

Given N samples with d predictors, a training loss can be defined with the following formula 
where Φ(·) is a mapping function applied on each input xn, θ is the coefficient vector and R(θ) 
denotes the regularisation term: 

Ltrain(𝜃) =Y ("
6$% 𝑦6 − Y 𝛷7

,
7$%
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The two commonly used terms are L1-regularisation (Least Absolute Shrinkage and Selection 
Operator, LASSO) (133) where: 

𝑅(𝜃) = %|
,

7$%

𝜃7| (4-4) 
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And L2-regularisation (Ridge) (134) where: 

𝑅(𝜃) = %𝜃82
,

7$%

 (4-5) 

L1-regularisation encourages sparse solutions where only a subset of features have a non-zero 
coefficient while L2-regularisation addresses the multicollinearity problems when working 
with high-dimensional data. 

A linear combination of these two methods forms the so-called elastic net regularisation with 
the following formula (135): 
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Where an additional parameter α was introduced to control the ratio of L1-regularisation.  

In study III, we applied elastic net penalty while optimising the partial likelihood function of 
a Cox proportional hazard model; more details regarding the Cox model are provided in section 
4.8.3.2. 

4.8 STATISTICAL ANALYSIS 

4.8.1 Assessment of classification performance 

In a classification context (study I), the model performance was primarily evaluated with the 
Area Under the ROC Curve (AUC). The curve serves a reflection on the model’s overall 
capacity in separating positive and negative cases. During inference time, a set of probabilities 
are generated on all input data and by setting an output probability as the cut-off threshold, test 
data can be dichotomised into two predicted classes; Next, by comparing the predicted labels 
with the associated ground truths, a pair of true positive rate (sensitivity) and false positive rate 
(1-specificity) can be computed. Following the same manner, each threshold would contribute 
with a different pair of sensitivity and specificity. The ROC is then constructed by plotting all 
ranked measurements with y-axis being the sensitivity and x-axis as the (1-specificity). In case 
when a model is completely devoid of discriminative capacity, the ROC curve is a diagonal 
line as it always separates data with 50% sensitivity and specificity, the associated AUC is 
equal to 0.5. On the contrary, a best performing model with 100% sensitivity and specificity 
has an AUC of 1. In between, a larger AUC indicates better model performance. 

4.8.2 Statistical association analysis 

4.8.2.1 Spearman correlation 

In study II, we studied the association between RNA-seq measured and model predicted gene 
expression levels without assuming an underlined linear dependency, hence, the Spearman’s 
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rank correlation was chosen. Instead of measuring directly to what extent two variables change 
their values together, Spearman's method evaluates the correlation of ranks of the values.  

For n pairs of samples from  x = [x1,...,xn]T  y = [y1,...,yn]T , assuming R(·) being the rank of a 
variable and let di denotes the difference between the ranks of two observations (di = R(xi) - 
R(yi)), the coefficient rho (ρ) can be calculated as: 

𝑟ℎ𝑜 = 1 −
6𝛴 d!2

𝑛(𝑛2 − 1) (4-7) 

The coefficient ranges from -1 to 1, with a higher absolute value indicating a stronger 
monotonic association whereas 0 means no identified association. Meanwhile, the direction of 
the association is reflected by the positivity or negativity. 

4.8.2.2 coefficient of determination 

To evaluate how well the feature representations (i.e. input image data) that have been learned 
by the model predict outcomes such as gene expression, we calculated the proportion of 
variance explained (known as Coefficient of determination). 

𝑅2 = 1 −
Y (𝑦! − 𝑦;!)2

6
!$%

∑ (𝑦! − 𝑦h)26
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 (4-8) 

Where yi stands for the ground truth for the ith input, ŷi is its model predicted value, and ȳ is the 
mean among all input data. It can be seen from the formula that the better the model is, the 
closer the score is to 1; On the other hand, if a model constantly outputs the ȳ, the score then 
becomes zero. It is also not uncommon to have a negative R2 when the model generates 
predictions that are seriously wrong. 

4.8.2.3 Linear mixed effects model 

If the data has a hierarchical structure, such as multiple measurements from the same patients, 
then, there is a dependency among observations. Linear mixed effects (LME) (136) models 
account for this by a model parametrised by fixed effects and random effects terms in the 
model. The model takes the following form: 

𝒚 = 𝑿𝜷 + 𝒁𝒖 + 𝜺 (4-9) 

Where y is the outcome variable, X is the design matrix of explanatory variables whose fixed 
effect coefficients are expressed as a vector β; Z is the matrix for random effects whereas the 
random effect coefficients are expression with u which follows a normal distribution and the 
variance was estimated; finally, the ε denotes the error term. 

For instance, in study II, we applied LME to examine the relationship between gene expression 
estimate from ST measurements and from model predictions, 22 tumours were included in the 
study with 12 regions of interest each, resulting in a total of 264 observations per gene. The 
outcome can then be expressed with a vector y with a shape of 264 × 1, and model predictions 
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as well as fixed intercept forms the design matrix X with a shape of 264 × 2; in addition, the 
tumour index was added to the model as the random effect term, therefore, Z had the shape of 
264 × 22; lastly, the residual was also a 264 × 1 column vector. A p-value examines whether 
the null hypothesis of zero coefficient can be rejected. 

4.8.2.4 Multiple testing 

Statistical inference is accompanied with the risk of rejecting a true null hypothesis, which is 
known as the type I error. With the widely adopted threshold of 0.05, performing 1000 tests 
when the null hypothesis is true will still generate 50 significant results on average. It is 
therefore necessary to control for the inflation of false positives by correcting for multiple 
testing. 

One way is to apply the Benjamini-Hochberg (BH) method (137) in controlling the false 
discovery rate, which is the expected proportion of committing a type I error. The procedure 
starts from ranking all p-values from each comparison, and then calculates the BH critical value 
per test with the equation below: 

Critical Value = (k ⁄ N)*α (4-10) 

Where k is the rank for pk, N is the total number of tests and α is the significant level defined 
by the user. Next, find the largest p-value that is smaller than the corresponding critical value, 
the null hypothesis is then rejected for the current test and all the other tests with rankings prior 
to this test. Equivalently, one can compute a FDR-adjusted p-value, and compare with the 
prespecified significant level, with the following function (138): 

𝑝BH(𝑖) = min{min𝑗≥𝑖{N𝑝j/𝑗}, 1} (4-11) 

While the FDR is the expected ratio of false discoveries, another similar concept named the 
family-wise error rate (FWER) depicts the probability of making at least one type I error. This 
couples with a more stringent controlling method – the Bonferroni correction (139). The 
method rejects a null hypothesis if p < α/N, where α is the significant level and N is the total 
number of tests. 

4.8.3 Survival analysis 

Survival analysis refers to the type of statistical modelling of time-to-event data. It is widely 
used in medical research to investigate patient prognosis. An event is defined prior to the 
analysis, and is often chosen as recurrence of disease or death in the context of cancer studies. 
We performed survival analysis in study I and study III. 

In both studies, the follow-up time was defined as the date of diagnosis with breast cancer to 
the date of experiencing an event or loss of follow-up. The event was defined as the recurrence, 
metastasis of breast cancer or death. A participant didn’t experience an event before 
withdrawing from the study or by the end of the study was censored (right censoring). 
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4.8.3.1 Kaplan-Meier (KM) curve 

The proportion of patients that remains to be event-free per interval at each event time can be 
depicted by the Kaplan-Meier curves. The y-axis of the curve is the probability of survival past 
time t, the x-axis is the time. A log-rank test is performed to assess whether there are statistical 
differences in survival between different groups of patients. The test is non-parametric, as it 
does not rely on any parametric assumptions. The test statistics is obtained by firstly comparing 
the observed number of events to the expected number of events at each event time and then 
sum the values up across the entire study period, for k groups of patients, the output follows 
approximately a chi-square distribution: 

Χ² = % (9:"#.91"#)²
91"#

<

!$%
 (4-12) 

4.8.3.2 Cox proportional hazards regression analysis 

When evaluating the effect of multiple risk factors that simultaneously influence patients 
survival, we performed Cox proportional hazards regression. The model provides the 
estimation of HR and has the form: 

h(t|X) = h0(t)exp(β1X1 + β2X2 + … + βkXk) (4-13) 

Where h0(t) denotes the baseline hazard when all the variables are set to zero and h(t|X) is the 
hazard at time t. Thus, the HR between two values of a predictor X1 can be calculated as: 

HR = h0(t)exp(β1X1=a) / h0(t)exp(β1X1=b) = exp(β1(a-b)) (4-14) 

It describes the increase or decrease in risk of experiencing the event, in the group under study 
compared with the reference group. The ratio is widely used to describe the prognostic value 
for risk factors.  

The Cox model is regarded as semi-parametric for the fact that it does not make assumptions 
on the distribution of the baseline hazard, rather, it assumes proportional hazards over time, 
which entails a constant HR between subgroups of patients regardless of time. In violation of 
the proportional hazard assumption, stratified Cox regression was considered as an alternative 
approach. By stratifying upon the variable that violates the assumption, it models different 
baseline hazard functions for each stratum of the variable. 

4.9 ETHICAL CONSIDERATIONS 

The research projects shared a common focus in developing deep learning based approaches 
for improved precision medicine in breast cancer, and the models were optimised with HE 
stained FFPE slides towards prediction of histological grade, gene expression as well as patient 
prognosis. For this purpose, HE stained FFPE slides, clinical characteristics and follow-up 
information were collected to evaluate model efficacy. All participants provided signed 
information consent voluntarily, and no intervention was included in any of the studies. These 
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retrospective research studies therefore posed no additional harm that would lead to increased 
patients' disease burden.  

Data that involves identifiable information are considered sensitive and were handled with 
special care to comply with the General Data Protection Regulation (GDPR) together with the 
Swedish Data Protection Act.  

All data were stored and analysed on password protected systems at the Department of Medical 
Epidemiology and Biostatistics. When the computation needed to be performed in the 
computer clusters in Finland, both patient ID and gene names were ensured to be anonymised 
prior to data transfer, and the transfer process was also conducted in an encrypted manner. All 
access to data was restricted to study specific use.
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5 RESULTS 
5.1 STUDY I 

The Nottingham histological grading system provides a standardised manner in assessing 
tumour aggressiveness and serves as an independent prognostic factor that can guide clinical 
decision making. However, as tumorigenesis denotes a gradual loss of normal function or 
organisation, the malignant change often appears with a continuous spectrum of morphological 
abnormality, making it hard to classify tumours into discrete stratum. This difficulty has led to 
the profound phenomenon of inter-assessor variability when grading tumours, especially for 
the intermediate class (NHG 2). The current study aims to train a binary classification model 
with NHG 1 and 3 tumours, and then use the model to dichotomise NHG 2 tumours into 2 
groups with Grade 1-like or Grade 3-like appearances, respectively.  

Clinseq, TCGA and SÖS-BC-1 were combined and split into training, test 1 and test 2 groups. 
An ensemble of 20 Inception V3 models (DeepGrade) were optimised separately using the 
training set and evaluated using test sets. The model achieved an AUC of 0.927, 0.937 and 
0.919 on the combined test 1 and test 2 data per cohort respectively (Figure 6A-C), suggesting 
a good separation between the two grade groups which possess relatively extreme and 
homogenous morphological changes. 

 

Figure 6. ROC curves for discriminating NHG 1 and NHG 3 tumours. A. Results on the Clinseq data. 
B.  Results on the TCGA data. C.  Results on the SÖS-BC-1 data. D. Results from the external test 
cohort SCAN-B-Lund. Modified from Wang et al. 2022 (120), with permission from Elsevier [author’s 
material]. 
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Next, we applied the DeepGrade model to stratify patients with NHG 2 tumours and obtained 
two groups representing NHG 2 with low risk (DG2-low, N = 242, 65.0%) and NHG 2 with 
high risk (DG2-high, N = 130, 35.0%) which showed a significant difference in recurrence free 
survival, reflected by KM curves (P = 0.0016, log-rank test, Figure 7A). A Cox regression 
analysis was also performed to study the HR while adjusting for other covariates including age, 
tumour size, lymph node status, ER status, HER2 status, and the results suggested that the 
DeepGrade risk stratification was an independent prognostic factor with a HR of 2.94 (95% 
CI: 1.24-6.97, P = 0.015, Figure 7B). 

 

Figure 7. Risk stratification in the training cohort. A. Results from the Kaplan-Meier estimator. B. 
Results from the multivariable Cox regression analysis. Modified from Wang et al. 2022 (120), with 
permission from Elsevier [author’s material]. 

The performance of the DeepGrade model on unseen data was validated using the SCAN-B-Lund 
cohort that involves 1,262 patients. For the classification of NHG 1 and NHG 3, the model yielded a 
slightly dropped performance with an AUC of 0.907 (Figure 6D). 

 

Figure 8. Validation on the external test cohort. Results displayed in the same manner as in Figure 7.  
Modified from Wang et al. 2022 (120), with permission from Elsevier [author’s material]. 

Among the 608 NHG 2 patients, 376 (61.8%) were stratified as DG2-low, whereas 232 (38.2%) as 
DG2-high. A significant difference in survival probabilities were revealed from the KM curve (P = 
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0.0045, log-rank test, Figure 8A) and the adjusted HR between low and high risk groups was 1.91 (95% 
CI: 1.11-3.29, P = 0.019, Figure 8B). Modified from Wang et al. 2022 (120), with permission from 
Elsevier [author’s material]. 

5.2 STUDY II 

In study II, we employed deep learning based models (EMO) as a scalable approach to predict 
tumour average gene expression values for the whole transcriptome; In addition, the developed 
models were further applied to generate spatial gene expression estimations within each WSI, 
whose efficacy was validated through spatial transcriptomics.  

The models were trained and initially evaluated using the Clinseq and TCGA cohorts. Prior to 
the analysis, patients were split into training, validation and internal test sets with 697, 122 and 
172 patients each. The ABiM cohort (N = 350) was selected as an external test set. Inception 
V3 model was applied to predict gene expression from image tiles for a total of 17,695 genes. 
The trained models were first applied to the validation set and assessed by Spearman’s 
correlation as well as the coefficient of determination (R2pred). In brief, regarding the monotonic 
association, 9,334 (52.75%) genes showed significant correlations with the RNA-seq 
measurements revealed by a FDR-adjusted P < 0.05 (Spearman’s correlation).  With respect to 
the proportion of variance explained, 1,026 (5.80%) genes had R2pred higher than 0.2, among 
which, 196 had a R2pred more than 0.3 and less than 0.4; Another 26 genes had a R2pred higher 
than 0.4 (Figure 9A). 

 

Figure 9. Barplot showing the number of genes within each coefficient of determination  interval. A. 
Results in the training set. B. Results in the internal test set. Regenerated from Wang & Kartasalo et 
al. 2021 (140). 

The models were filtered by the criteria of R2pred > 0.2 and FDR-adjusted P <0.001 (Spearman’s 
correlation) for final assessment in the internal and external test sets which resulted in a total 
of 1,011 models.  

In the internal test set, 876 out of 1,011 (86.65%) genes can be successfully validated under the 
criteria of Bonferroni-adjusted P value <0.05 (Spearman’s correlation). In the external test set, 
among the 995 available genes, 908 (91.26%) demonstrated significant relations. 
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To account for variations in scale, the coefficient of determination was only computed in the 
internal test set. 333 and 46 models had R2pred between [0.2, 0.3) and between [0.3, 0.4) 
intervals, respectively, constituting 479 models with R2pred > 0.2 in the internal test set (Figure 
9B). 

A group of 11 genes (BIRC5, CCNB1, CDC20, CDCA1, CEP55, KNTC2, MKI67, PTTG1, 
RRM2, TYMS, UBE2C) from the PAM50 gene panel was previously described as the 
proliferation signature, whose average expression estimates carry prognostic value in 
predicting patient survival outcomes (141,142). We therefore incorporated the panel to study 
the efficacy of predicting proliferation scores with EMO models compared with RNA-seq 
measurements. A significant and good correlation was revealed in each of the three datasets, 
with Spearman’s ρ ranging from 0.55 to 0.67 (Figure 10A-C). A high proliferation score can 
be an indicator of more proliferative cell activity, as suggested by visual similarity between the 
heatmaps of predicted proliferation score over WSIs, and the IHC stained Ki67 levels (Figure 
10D). 

 

Figure 10. Validation of EMO predicted proliferation score. A. Correlation between EMO predictions 
and RNAseq measurements in the validation set. B. Same analysis as in A, with results from the internal 
test set. C. Same analysis as in A, with results from the external test set. D. Visual similarity between 
the IHC stained Ki67 abundance and EMO prediction. Three sample images were displayed with respect 
to each intrinsic molecular subtype. Modified from Wang & Kartasalo et al. 2021 (140). 

Aside from visual inspection, the ability to predict spatial gene expression value was further 
validated stringently with ST technique on the Nanostring GeoMX DSP platform (NanoString 
Technologies). The analysis consisted of a panel of 76 genes, and was performed on 22 
tumours. For each tumour, a pair of FFPE sections were retained, with 12 ROIs preselected on 
both sections. Next, the ST estimation per gene was carried out within individual regions of 
interest on one section, while the corresponding EMO model was applied to predict the gene 
expression in the same regions using the other HE stained section. In the end, for each gene, 
the intra-tumour expression prediction performance by EMO (EMO-spatial) was evaluated 
with a LME. The model predicted ST estimates by incorporating both EMO-spatial predictions 
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as fixed effect and slide ID as random effect. A significant association between ST and EMO-
spatial was retained for 59 genes (77.63%) (FDR-adjusted P < 0.05, likelihood ratio test). 

Taken together, the results supported our hypothesis that EMO models can serve as an 
alternative method in quantifying tumour average gene expression and spatial gene expression 
variability for a large number of genes. 

5.3 STUDY III 

Intra-tumour heterogeneity has been widely studied as a risk factor for the prognosis of breast 
cancer, it is therefore vital to identify patients with higher degree of heterogeneity with 
implication of treatment resistance. In the current study, we extracted texture based features 
from spatial gene expression patterns to model the association between intra-tumour gene 
expression heterogeneity and patient risk of recurrence.  

Using a nested cross validation procedure, a Cox proportional hazards regression model with 
elastic net regularisation was optimised, including the hyperparameters, which enabled 
intrinsic variable selection and interpretation (non-zero coefficient) and calculation of a risk 
score per patient. By stratifying patients with the median of risk scores across the training 
cohort, we demonstrated that the proposed model enabled a separation of patients with distinct 
risk of recurrence (P = 7.5E-09, log-rank test, Figure 11A). When adjusted for age, tumour 
size, lymph node status, ER status, HER2 status and grade, the prognostic value remained to 
be significant with an adjusted HR of 2.1 (95% CI 1.3-3.30, P = 0.002, Figure 11B). 
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Figure 11. Summary of results in the training set. A. Distinct survival probabilities revealed by the 
Kaplan-Meier curves. B. Model risk stratification exhibited an independent prognostic value, via 
multivariable Cox proportional hazards regression analysis. C. Included features and associated 
coefficients by the optimised model.  

Next, in an attempt to investigate the generalisability of the risk stratification model, the model 
was retrained with all training data and applied to two external test cohorts. A total of 90 
features from 45 genes were included by the final model (Figure 11C). The predicted 
expression level of ORC6 within a WSI was assigned the largest coefficient, indicating a strong 
predictive effect towards risk of recurrence. The contribution to hazard was not only related to 
genes but also to specific textures. For instance, the spatial expression pattern of MKI67 
(LongRunEmphasis) was an important factor for patient outcome, but not the expression level 
MKI67, according to the model; Similar importance was observed for the Busyness value of 
SLC39A6. On the other hand, the LongAreaEmphasis of EGFR together with the slide level 
prediction of EXO1 as well as TYMS were also among the most important features but with 
protective effect towards patient prognosis. 

 

Figure 12. External validation of proposed risk stratification model. A. KM curves for SöS-BC-1 data. 
B. Multivariable Cox proportional hazards regression analysis for SöS-BC-1 data. C. Same analysis as 
in A, with SCAN-B-Lund data. D. Same analysis as in B, with SCAN-B-Lund data. 
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Results from the SöS-BC-1 dataset provided a strong support for the independent prognostic 
significance of the proposed model, where dichotomised risk groups demonstrated distinctive 
survival probabilities (P = 0.00075, log-rank test, Figure 12A) with an adjusted HR of 1.84 
(95% CI: 1.03-3.3, P = 0.04, Figure 12B). In the SCAN-B-Lund cohort, the same trend was 
observed with KM curves (P = 0.017, log-rank test, Figure 12C), but the risk factor became 
insignificant, after adjusting for other covariates (HR: 1.19; 95% CI: 0.81-1.7, P = 0.375, 
Figure 12D). Nevertheless, the point estimate indicated an increased risk of experiencing 
disease recurrence in the high risk group. 

5.4 STUDY IV 

In study IV, we compared the agreement of two risk stratification tools, one is the Prosigna® 
test which was developed with integrated information of PAM50 gene panel and tumour size, 
and aims to provide intrinsic subtypes as well as recurrence risk predictions; The other is the 
Stratipath Breast model, which is a modified, commercialised product based on the DeepGrade 
model that was developed in study I.  

A total of 122 primary breast cancer patients who shared the charactersitics of being 
postmenopausal, ER-positive, HER2-negative and node negative were included in the study, 
88 patients had a valid test results generated from both tools. The tools reached an agreement 
on 20 and 15 cases, with the assigned risk classes of low and high, respectively (Table 2). This 
resulted in an agreement of 76.09% with a kappa of 0.51, between the low and high groups. 
Among the Prosigna® test low risk group, six patients were escalated as high risk by Stratipath 
Breast, while among the high risk group by Prosigna® test, five patients were de-escalated as 
low risk by Stratipath Breast. 

Table 2. Number of patients assigned to each risk group by two tests. 
 Prosigna risk group 

Stratipath Breast Low Intermediate High Not available All 

 N (%) N (%) N (%) N (%) N (%) 

Low 20 (16.39) 24 (19.67) 5 (4.10) 1 (0.82) 50 (40.98) 

High 6 (4.92) 18 (14.75) 15 (12.30) 1 (0.82) 40 (32.79) 

Not available 11 (9.02) 17 (13.93) 4 (3.28) 0 (0.00) 32 (26.23) 

All 37 (30.33) 59 (48.36) 24 (19.67) 2 (1.64) 122 (100.00) 

The Spearman’s coefficient of 0.59 between the risk of recurrence (ROR) score from the 
Prosigna® test and risk score from the Stratipath Breast indicated a good association (Figure 
13A); the coefficient was 0.47 between Ki67-index and risk score from Stratipath Breast, which 
also suggested a good correlation (Figure 13B). A significantly different distribution of Ki67 
index was observed between low and intermediate (P = 2.19E-04, Mann–Whitney test), as well 
as between low and high risk groups (P = 5.15E-04, Mann–Whitney test) by Prosigna® test but 
not between intermediate and high risk groups (P = 0.769, Mann–Whitney test, Figure 13C); 
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In comparison, Ki67 was significantly higher in the high risk group, compared with that in low 
risk group, by Stratipath Breast (P = 2.64E-04, Mann–Whitney test, Figure 13D). 

 

Figure 13. Comparison of risk scores and Ki67 index. A. The correlation between risk scores by 
Prosigna® and Stratipath Breast. B. The correlation between Ki67 index and Stratipath Breast risk 
scores. C. Distribution of Ki67 index by Prosigna® risk groups. D. Distribution of Ki67 index by 
Stratipath Breast risk groups. 

As grade 2 tumours exhibit larger variation in terms of growth patterns, a risk stratification is therefore 
considered to be more valuable in this subgroup. Hence, we performed the same comparisons within 
the NHG2 subgroup. Results indicated a similar association with slight decreases both between two risk 
scores (Spearman’s ρ = 0.45, Figure 14A), and between Ki67 index with Stratipath risk score 
(Spearman’s  ρ = 0.37, Figure 14B). The distribution of Ki67 index between low and intermediate risk 
group and between low and high risk groups for Prosigna® test continued to be significant, with p-value 
of 0.02044 and 0.04014 respectively; On the contrary, no difference was found between intermediate 
and high risk group (P = 0.953, Mann–Whitney test, Figure 14C). The distribution of Ki67 was similar 
between low and high risk groups identified by Stratiapth breast (P = 0.07, Mann–Whitney test, Figure 
14D). 

 

Figure 14. Same analysis as in Figure 13, but only included patients with NHG2 tumours.  
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6 DISCUSSION 
Histopathological examination of HE stained FFPE slides has been playing a pivotal role in 
diagnosing cancer and designing therapeutic strategies. With the advances in target therapies, 
it is now possible for patients characterised with special subtypes of breast cancers to be spared 
from chemotherapy and the concomitant toxical side effects. An optimal management of breast 
cancer relies on an accurate and comprehensive evaluation of tumour characteristics. 

The blooming field of machine learning techniques for medical image analysis has made 
encouraging achievements in the past decade not only in assisting with cancer diagnosis but 
also in discovering novel biomarkers for refined patient stratifications. The current thesis sits 
amid the wide variety of deep learning based applications on HE stained images, with the 
shared aim to improve precision medicine for breast cancer patients. 

6.1 INTERPRETATIONS AND CLINICAL IMPLICATIONS 

According to the presence of biomarkers, ER+ breast cancer is the largest subgroup, accounting 
for 84% of the patient population (4). To date, owing to the introduction of hormone therapy, 
a considerably improved disease outcome has been observed in this subgroup. However, 
partially due to intra-tumour heterogeneity that arise from the genetic or epigenetic changes, 
up to one third of ER+ cases can develop treatment resistance to endocrine therapy (143). These 
observations formulate two critical difficulties in achieving precision medicine, one relates to 
how to better identify lower risk patients that could be spared from cytotoxic chemotherapy; 
The other states the importance of discerning patients that are more prone to develop treatment 
resistance. 

For the first aspect, an abundance of patient risk stratification approaches have been developed. 
OncotypeDX® and Prosigna® are two sequencing based assays that have been made available 
In Sweden for clinical use to assist with determining the additional benefit of chemotherapy 
for post-menopausal women with ER+ HER2- tumours without axillary node metastases. Both 
of the methods have been evaluated with large clinical trials (144) and are endorsed in the 
international guidelines including American Society of Clinical Oncology (ASCO) (145), and 
the European Society for Medical Oncology (ECMO) (146). For both neoadjuvant and post 
operative treatment, the use of chemotherapy in conjunction with either endocrine or anti-
HER2 therapy have to be evaluated by cancer intrinsic subtypes and the chemotherapy can be 
spared for the majority of the cases for Luminal A-like tumours. The Swedish guideline (146) 
recommends the use of surrogate subtypes for determining luminal cancers which incorporate 
information including histological grade, IHC measured biomarkers and gene expression 
profiles. Based on IHC staining, ER+HER2- breast cancers shall be further divided into 
Luminal A-like and Luminal B-like subtypes, conditioning on tumour grade. Specifically, for 
the most indecisive grade 2 cases, Ki67 index shall be evaluated. Quantification of Ki67 has 
been a time consuming task and is associated with marked inter-observer variability that 
requires scrupulous calibration across sites. As a consequence, the cut-off to discretise Ki67 
levels has been under continuous discussion (147)(148) and the current guideline suggests the 
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use of gene expression profiles to confirm the need of chemotherapy in Ki67 intermediate 
patients. In study I, we proposed a model (DeepGrade) to facilitate with restratification of 
grade 2 tumours, and its efficacy is validated with an external population based cohort. In 
addition, in study IV, we compared the risk assignments between the Prosigna® test and the 
commercialised DeepGrade model (Stratipath Breast). In both studies, the Ki67 distribution 
was not significantly different between two model stratified grade 2 risk groups, indicating that 
the model was capable of extracting morphological features unrelated to Ki67 expression. The 
results suggested that on one hand, our proposed model alleviates the influence of inconcordant 
Ki67 scoring when making the judgement, on the other hand, it provides additional information 
while predicting patient recurrence risk. Compared to multigene assays, another strength of the 
proposed model is its convenient application. Unlike genomic tests, the model requires no 
additional tissue sampling or processing step as it was developed solely with diagnostic HE 
slides, the effort to train technicians can then be spared. Furthermore, the model is a software 
that can be easily integrated into a digital pathological system, enabling a scalable and flexible 
deployment in clinical settings. 

Treatment resistance for both endocrine therapy and HER2-target therapy can be ascribed to 
genetic or epigenetic changes that lead to lowered affinity to drug binding, altered signalling 
pathways and interfered immune response (143). Extensive studies have pointed out that inter- 
and intra-tumour heterogeneity play a key role behind the treatment failure (149). It is therefore 
of central importance to recognise heterogeneous tumours with strong invasive potential. In 
study II, we developed deep learning based models (EMO) to enable a cost-efficient 
measurement of the spatial resolved gene expression for the whole transcriptome and through 
various validation modalities, we demonstrated that the models can be applied to evaluate intra-
tumour gene expression heterogeneity. We continued to design a machine learning based 
workflow for this objective in study IV, and assessed the value of intra-tumour heterogeneity 
measurements with patient survival outcome. Through external validation, we showed that the 
model stratification served as an independent prognostic factor in dichotomising ER+ and 
HER2-subgroups, suggesting a potential utility to assist with clinical decisions for the 
application of aggressive therapeutic choices. 

6.2 METHODOLOGICAL CONSIDERATIONS 

6.2.1 Generalisability 

All studies included in the thesis involved training of machine learning models with an 
abundance of labelled data and providing predictions on samples that were not engaged in the 
training process. A common emphasis and difficulty in this regime is to ensure the 
generalisability of the optimised model when applied on unseen data. To address this, in all of 
the four studies, we employed the optimised model on external test datasets and we showed 
that in study I, the classification performance between grade 1 vs grade 3 remained high with 
an AUC of 0.907 (95%CI: 0.885-0.930) in the external test set SCAN-B-Lund; more 
importantly, the efficacy of proposed risk stratification model on grade 2 patients was 
confirmed in the SCAN-B-Lund cohort, with an adjusted HR of 1.91(95% CI: 1.11-3.29, P = 
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0.019). In study II, the validation of tumour average gene expression prediction performance 
was carefully conducted in a sequential manner that involves validation, internal and external 
test data; An orthogonal evaluation of the spatial gene expression variations was also carried 
out using the spatial transcriptomic technique to demonstrate that CNN models can predict 
molecular phenotypes with learned morphological patterns from WSIs. In study III, we 
leveraged the study outcome from study II and built a risk stratification model on top of intra-
tumoural heterogeneity measurements, and the model was also tested in two external cohorts 
(SöS-BC-1 and SCAN-B-Lund) which both demonstrated superior survival rates in identified 
low risk groups; In study IV, the risk stratification outputs by the commercialised version of 
DeepGrade model (Stratipath Breast) were compared against the Prosigna® test, without model 
retraining, this comparison is a direct reflection on the performance of Stratipath Breast in real-
world settings. A moderate agreement was found between the two tests, as in concordance with 
previous studies evaluating different multi-gene risk stratification assays (150)(151), the results 
suggested that Stratipath Breast as a more cost-effective alternative has the potential to be 
applied in assessing the applicability of chemotherapy for primary breast cancer patients. 

6.2.2 Handling of domain shift and outliers 

Deep learning models possess distinctive capacity in memorising feature representations from 
the training data which guarantees superb learning outcomes in the training set. However, this 
property may lead to catastrophic failures on unseen data that exhibit different appearances 
since the latter are likely to have been generated from a distinct origin. Having dissimilar 
distributions between source data and target data is defined as domain shift, this phenomenon 
poses considerable challenge towards the deployment of machine learning models in clinical 
settings. There are several common causes behind the domain shift that are particularly 
associated with the analysis of histopathological images, including the change of colour 
profiles, both during slide preparation and WSI digitalisation; the shift in intensity and contrast 
(152), the existence of disparity between ethnic groups (153)(154). 

To address the above issues, it is necessary to train deep NNs with large datasets. However, it 
takes extraneous efforts to collect, label and process images in extending the datasets, hence, 
standardisation and augmentation techniques are typically considered during model training to 
suppress the dissimilarity in distributions between training and test sets and to increase data 
variations that the model sees. To achieve the above goals, we applied colour normalisation 
prior to training and data augmentation including rotation and flip during training in the current 
thesis. 

Colour normalisation has been an important aspect in histopathological image analysis with 
abundance methods proposed ranging from histogram matching to deep learning based models. 
We employed Macenko's approach in the current thesis as the algorithm is straightforward and 
easy to compute. Because it is reasonable to assume a single stain matrix is shared within a 
whole slide image, we slightly modified the algorithm to compute the stain matrix on whole 
slide level instead of tile level. But the method has drawbacks such as abnormal colour profiles 
resulting from negative coefficients in the SVD computation. In comparison, spectral 
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decomposition proposed by Rabinovich and Agarwal (155) made use of non-matrix 
factorization (NMF) which has the strength to only output positive coefficients, but suffer from 
inconsistent solutions due to no closed-form solutions. To address this issue, Vahadane (156) 
developed a method with sparse NMF, by imposing sparseness that effectively reduced the 
solution space but is computationally expensive. 

Furthermore, colour shift is not the only one source of variation, the use of  scanners from 
different manufactures can also result in changes in contrast or brightness. It is therefore 
worthwhile considering directly minimising discrepancies between domains. Generative 
Adversarial Networks (GANs) (157) are an example for this objective, but training such a 
network often requires paired samples such as a slide being scanned by different scanners. An 
extension to this is the cycleGANs (158)(159) that overcome the limitation and have reached 
state-of-the-art performance, however, its applicability in clinical settings is still questionable 
since the algorithm is not transparent and often referred to as a ‘blackbox’. More 
comprehensive comparisons can be found in the review paper (160). A study comparing 
different colour normalisation methods as a preprocessing step reached the conclusion that 
methods yielded comparable performance in subsequent analysis, and the choice of evaluation 
metrics could largely affect the conclusion in selecting a winning method. The results also 
indicated that, aside from choosing a colour normalisation approach in the preprocessing step, 
selecting an appropriate model architecture for solving subsequent learning objectives seems 
to play a more important role (161). 

Effective detection of out of distribution (OOD) observations is expected to largely secure a 
stable performance in real world application. Several methods have been proposed for this 
purpose, including imposing a confidence measurement mechanism such as adding a separate 
confidence branch (162); enabling model uncertainty measurement (163); post hoc temperature 
scaling on the output softmax score that sought to maximise the separation between inliers and 
outliers (164). In addition, distance based methods targeting either the data or feature space 
have also been widely adopted such as measuring the Mahalanobis-distance to class centroids 
in the latent space (165) or comparing the residual distance to the hyperplane spanned by 
principal directions in the embedding space (166). 

Working with histopathology images typically allows for less OOD observation as the inputs 
are typically confined to HE stained tissue sections. However, bad practice or mistakes in 
sample preparation can generate artefacts such as bubbles, glues, or abnormal staining artefacts 
that interfere with model performance. The tissue mask generation and quality control steps 
integrated in our preprocessing pipeline can largely reduce the influence of such problems, but 
in practice, we also observed that tissues stained with cytokeratins (Ck5/Ck8-18) by IHC 
staining revealed a redish colour and the quality control algorithms failed to detect this OOD 
sample. To increase the robustness of the model, it is worthwhile to incorporate the above 
mentioned methods in the future. 
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6.2.3 Model calibration 

Another challenge pertains to the calibration of modern neural networks. In a classification 
setting where the output denotes the probability of belonging to a certain class, training towards 
a reduced cross entropy loss amounts to minimising the negative log likelihood, or 
equivalently, maximising the likelihood of the data. It is possible that even if the accuracy 
remains unchanged, the loss can be further decreased by imposing higher output probabilities. 
Therefore, it should be noted that overfitting doesn’t necessarily appear with decreased 
accuracy, rather, it can also be associated with less accurate recovering of ground truth 
distributions. This observation was further supported by experiments that, on the test set, when 
the model started to overfit to loss, it exhibited a slightly increased classification accuracy at 
the same time (167). 

To address the insufficient calibration of output probabilities, in study I, the cutoff for 
dichotomising NHG 1 and 3 was selected using the Youden’s index on an AUC curve to 
maximise sensitivity and specificity. This method was chosen because the ultimate goal was to 
provide good restratification of NHG 2 cases with the binary classification model that had been 
trained against NHG 1 and 3 cases. Alternative methods have been proposed such as binning 
the predicted probabilities and replacing the outputs within each bin with the average number 
of positive samples (168), or a generalised form of binning with isotonic regression (169). 
Alternatively, it is also feasible to calibrate the output probabilities by passing CNN outputs 
through a sigmoid function, which is referred to as Platt scaling (170),(171). 

6.2.4 The choice of modelling 

In both study I and II, the context falls within the scope of weakly supervised learning, where 
all tiles within one WSI share a class label. During inference, the predictions were generated 
for each tile, and we obtained the slide level estimation by taking the upper quantile (study I) 
or the mean (study II) of tile level predictions. 

The tile-to-slide mapping can be achieved with more sophisticated approaches. For instance, 
with an attention based multiple instance learning, the slide level scores are calculated with 
weighted average of tile level representations, where the weights are learned with an additional 
neural network (172). It is however unclear if the network guarantees superior performance 
(173). Besides, the training is computationally demanding, so studies typically chose to 
generate feature representations with pre-trained weights from a commonly used benchmarking 
dataset such as ‘ImageNet’. Since the dataset only contains images from unrelated domains, it 
is then unclear if models learn enough clinically relevant representations.  

In the current thesis, the CNNs were trained with randomly sampled tiles, where the spatial 
relationships across tiles were not considered. Previous studies suggested treating consecutive 
tiles as a temporal sequence, and training the model with a recurrence neural network (103) or 
the extended long short-term memory network (174)(105). Likewise, tiles can also be regarded 
as nodes and connected based on spatial coordinates or similarities. The learning process can 
then be formulated with a graph-based approach, such as graph convolutional network (175).
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7 CONCLUSIONS 
We developed deep learning models to stratify breast cancer patients with the aim of facilitating 
personalised treatment regimens. Models were optimised using HE stained WSIs that are 
routinely collected for diagnosis purposes, no additional tissue sampling was needed, providing 
a potential cost-efficient solution compared to molecular diagnosis.  

In study I, we developed a deep learning based model to further stratify patients with NHG 2 
tumours, the findings were validated in external cohorts. The methodology provides additional 
value that is expected to lower the over- or undertreatment rates for patients with intermediate 
risks.  

In study II, we trained deep learning models to estimate gene expressions using HE stained 
WSIs for the whole transcriptome and verified that over half of the genes can be successfully 
predicted. We further validated that the model has the capacity to generate spatial gene 
expression predictions, allowing for large scale studies on intra-tumour heterogeneity with 
higher efficiency and lower cost.  

In study III, we quantified intra-tumour gene expression heterogeneity with the models 
optimised in study II. In addition, we developed a Cox proportional hazards regression model 
to predict patient survival outcome with the integrated heterogeneity measurements. We 
demonstrated that the model stratification was an independent risk factor for breast cancer 
prognosis.  

In study IV, we compared the risk stratification results between the Prosigna® test and the 
Stratipath Breast, the latter is a commercialised version of the risk stratification model that was 
developed in study I. A moderate agreement was observed, and the results indicated a need for 
further pathological examination with a larger study population to better compare the risk 
assessment tools. 
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8 POINTS OF PERSPECTIVE 
As deep learning based models have demonstrated their utility in wide ranges of medical 
applications, there remains a great deal of unsolved questions that can be potentially 
investigated with a deep learning model. In addition, more studies are required to ensure the 
safety of adopting these models in real-world settings. There are several aspects that can be 
investigated: 

From the technical perspective, to better learn both cellular and tubular morphologies that 
appear under different magnifications, a multi-scale modelling approach shall be adopted to 
generate more accurate replicates with respect to each subcomponent that constitute the final 
histological grading score. Training an end-to-end multi-scale model is a desirable approach. 
Alternatively, one can also imitate the clinical workflow by starting with a single-scale model 
for coarse slide evaluations and gradually employ other models that correspond to higher 
magnifications to predict on most suspicious, zoomed in regions. This can be achieved by 
imposing a model uncertainty measurement.   

To ensure the model can be transferred on real-world dataset, it is preferable to integrate outlier 
detection and model calibration so that domain shift or batch effect can be effectively captured 
and controlled.  

Besides, the model performance shall be further validated on larger cohorts while the efficacy 
shall be confirmed with randomised controlled trials. 

From the clinical perspective, while the patient prognosis has been studied from different 
aspects, it is now attempting to investigate the potential benefit of adjuvant chemotherapy, 
adding more powerful evidence to guide clinical decision making.  

Furthermore, there are several critical questions that are expected to be tackled with the 
assistance of computational pathology, such as to identify what characteristics are shared with 
those in situ cancers that are prone to gain invasiveness. Similarly, deep learning based image 
analysis can be exploited to study the epithelial-mesenchymal transition that relates to tumour 
progression and metastasis, the gene expression prediction models that have been developed in 
the current thesis can be employed for this purpose. Another future research area is to obtain a 
more comprehensive understanding about each individual tumour by effectively integrating 
radiological and histopathological image data. 
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