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POPULAR SCIENCE SUMMARY OF THE THESIS 

 

Sepsis is an infectious disease that kills 11 million people globally every year. The condition, 

also referred to as blood poisoning, results in life-threatening organ damage due to a misguided 

immune system reaction. In sepsis, prompt diagnosis is crucial; delays in initiating treatment 

increases the risk of dying. Unfortunately, the signs of sepsis can be vague and unspecific, 

making it difficult to detect in time.  

A common cause of sepsis is bacterial infections that spreads through the bloodstream. Of 

particular concern is also the growing threat of bacteria with abilities to withstand commonly 

used antibiotic treatments, also known as antimicrobial resistance. As a result, the World Health 

Organization has provided a list of bacteria to prioritize for research, and has specifically 

pointed out Pseudomonas aeruginosa. These bacteria are commonly found in hospitals and 

mainly affect vulnerable patients with lung disease, ongoing cancer treatment, or patients in 

intensive care unit wards.  

The aim of this thesis was to study diagnosis and treatment of sepsis and bloodstream 

infections, partly using P. aeruginosa as an example. The thesis is based on data from more 

than 100 000 hospital encounters. In addition, comprehensive genomic data from 

approximately 800 P. aeruginosa from several hospitals in Europe and Australia has been 

collected through laboratory work. The results are summarized into five studies 

In a first study, we demonstrated an objective and scalable approach to automatically diagnose 

sepsis using electronic health records, with examples of how to continuously monitor the 

occurrence of sepsis in hospital wards. This information can be used for directing resources 

and evaluating quality-of-care interventions. We showed that breathing failure is common in 

sepsis and that this can be accurately measured with a simple and cheap method that calculates 

the percentage of oxygenated blood via a skin sensor (SpO2). This simplifies sepsis diagnosis, 

and becomes a lenient alternative to the standard method of performing an arterial blood test. 

To improve detection of sepsis, an advanced mathematical model based on machine learning 

was developed to forecast sepsis in patients admitted to the hospital. The model detected sepsis 

earlier, and with higher accuracy, compared to currently used methods, and was most useful in 

the first days of the hospital stay. Furthermore, the impact of delayed antibiotic treatment in 

bloodstream infection was studied, defined as treatment with proven activity against the 

recovered bacteria. The results demonstrated that delaying antibiotic treatment beyond 12 

hours was associated with increased risk of death, providing a timeframe for doctors to act on. 

Finally, specific bacterial traits of P. aeruginosa, determined using genomic data, seemed to 

affect disease severity and the risk of dying in bloodstream infection, but the added value of 

this prognostic information was limited.  

Together, the studies presented in this thesis contribute to a better understanding of sepsis and 

of BSI patients, and provide several suggestions aimed at improving diagnosis and treatment.





 

 

ABSTRACT 

 

Sepsis is a severe organ dysfunction triggered by infections, and a leading cause of 

hospitalization and death. Concurrent bloodstream infection (BSI) is common and around one 

third of sepsis patients have positive blood cultures. Prompt diagnosis and treatment is crucial, 

but there is a trade-off between the negative effects of over diagnosis and failure to recognize 

sepsis in time. The emerging crisis of antimicrobial resistance has made bacterial infections 

more difficult to treat, especially gram-negative pathogens such as Pseudomonas aeruginosa.  

The overall aim with this thesis was to improve diagnosis, assess the influence of time to 

antimicrobial treatment and explore prognostic bacterial virulence markers in sepsis and BSI. 

The papers are based on observational data from 7 cohorts of more than 100 000 hospital 

episodes. In addition, whole genome sequencing has been performed on approximately 800 

invasive P. aeruginosa isolates collected from centers in Europe and Australia. 

Paper I showed that automated surveillance of sepsis incidence using the Sepsis-3 criteria is 

feasible in the non-ICU setting, with examples of how implementing this model generates 

continuous epidemiological data down to the ward level. This information can be used for 

directing resources and evaluating quality-of-care interventions. In Paper II, evidence is 

provided for using peripheral oxygen saturation (SpO2) to diagnose respiratory dysfunction in 

sepsis, proposing the novel thresholds 94% and 90% to get 1 and 2 SOFA points, respectively. 

This has important implications for improving sepsis diagnosis, especially when conventional 

arterial blood gas measurements are unavailable. Paper III verified that sepsis surveillance 

data can be utilized to develop machine learning screening tools to improve early identification 

of sepsis. A Bayesian network algorithm trained on routine electronic health record data 

predicted sepsis onset within 48 hours with better discrimination and earlier than conventional 

NEWS2 outside the ICU. The results suggested that screening may primarily be suited for the 

early admission period, which have broader implications also for other sepsis screening tools. 

Paper IV demonstrated that delays in antimicrobial treatment with in vitro pathogen coverage 

in BSI were associated with increased mortality after 12 hours from blood culture collection, 

but not at 1, 3, and 6 hours. This indicates a time window where clinicians should focus on the 

diagnostic workup, and proposes a target for rapid diagnostics of blood cultures. Finally, Paper 

V showed that the virulence genotype had some influence on mortality and septic shock in P. 

aeruginosa BSI, however, it was not a major prognostic determinant.  

Together these studies contribute to better understanding of the sepsis and BSI populations, 

and provide several suggestions to improve diagnosis and timing of treatment, with 

implications for clinical practice. Future works should focus on the implementation of sepsis 

surveillance, clinical trials of time to antimicrobial treatment and evaluating the prognostic 

importance of bacterial genotype data in larger populations from diverse infection sources and 

pathogens.  
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1 INTRODUCTION 

 

Sepsis is a severe organ dysfunction triggered by infections, and a leading cause of hospital 

admission and death. It is estimated to affect approximately 50 million patients and result in 11 

million deaths globally per year 1. Concurrent bloodstream infection (BSI) is common in sepsis 

and around one third of sepsis patients have positive blood cultures 2,3. Several studies have 

shown that prompt identification and treatment are important factors to increase survival, but 

there is a difficult trade-off between over diagnosis, leading to unnecessary interventions, and 

failure to recognize sepsis in time.  

Sepsis and BSI can affect previously healthy individuals, but the vast majority of patients 

suffers from known risk factors such as underlying chronic illness, advanced age or ongoing 

medical treatment. Recently, Torisson et al. showed that, while hospitalization rates for non-

infectious diagnoses declined between 1998 to 2019 in Sweden, there was a concurrent increase 

in hospitalizations due to infections 4. Another population based study including approximately 

80 000 persons from the HUNT cohort in Norway showed that 22% of the study participants 

were admitted to the hospital at least once due to bacterial infections 5. Taken together, these 

studies highlights the large burden of severe bacterial infections, which is likely reflecting 

advances in modern healthcare, as well as a growing population of elderly patients 4. Increasing 

attention is also being drawn to the deleterious consequences of sepsis for advances in other 

medical fields where patients are made more susceptible to bacterial infections 6. Without the 

ability to rapidly detect and treat sepsis and BSI, much of modern intensive care, advanced 

surgery and novel treatments of cancer or autoimmune disease, would not be feasible.  

Another important aspect is the rapidly emerging epidemic of multidrug-resistant (MDR) 

bacteria, in particular gram-negative bacteria. Antimicrobial resistant strains of staphylococci, 

enterococci, Enterobacterales, Pseudomonas aeruginosa and Acinetobacter, have spread fast 

in hospitals worldwide calling for immediate action. In 2017, sepsis was declared a global 

health priority by the World Health Organization (WHO) 7. The same year WHO published its 

first ever list of bacteria that poses great threat to human health, for which further research is 

urgently needed 8. On this list, P. aeruginosa was given highest priority, alongside with other 

gram-negative bacteria such as resistant Acinetobacter baumannii and Escherichia coli. 

Collectively, this warrants research focused at advancing the knowledge of severe bacterial 

infections, in particular due to the increasing patient population at risk and the rapidly emerging 

epidemic of MDR pathogens. The overarching aim of this thesis was to improve diagnosis, 

assess the influence of time to antimicrobial treatment and explore prognostic bacterial 

virulence markers in sepsis and BSI. Five studies are presented, conducted during the period 

2016 to 2022 at the Department of Medicine, Solna at Karolinska Institutet and the Karolinska 

University Hospital in Stockholm, Sweden. 
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1.1 SEPSIS AND BLOODSTREAM INFECTIONS IN ADULTS 

 

Sepsis is defined as “life-threatening organ dysfunction caused by a dysregulated host response 

to infection” 9. Although sepsis traditionally was considered equivalent to BSI, this viewpoint 

was challenged with the introduction of the consensus sepsis definition in early 1990s 3. The 

definition centers around the pathophysiological response to an infection, and is not restricted 

to any type of infection or microbiological confirmation 9. BSI is still common in sepsis, but it 

can also occur in patients without the immunological response or organ dysfunction 

corresponding to sepsis (Figure 1). To this date, no single biomarker exists that correctly 

identifies sepsis, and the clinical definition is based on a syndrome, inevitably creating a more 

heterogeneous case definition.  

 

Figure 1. The relationships between infection, sepsis, septic shock and bloodstream infections. 

 

1.1.1 Microbiology of sepsis and bloodstream infections 

Although bacterial sepsis is by far the most frequent cause, also viral, fungal and parasitic 

infection can cause sepsis 10. The most common source of infection in sepsis is pneumonia, 

followed by urinary tract and intra-abdominal infections 11–14. In the large EPIC II study based 

on point prevalence surveys (PPS) performed in 1265 intensive care units (ICU) worldwide in 

2007, 51% of patients in the ICU were infected and among these microbiological cultures were 

positive in 70% 15. While not all patients had sepsis, it gives a general idea of the microbiology 

of the most severe cases of sepsis. The distribution between gram-positives, gram-negatives 

and fungi (mainly Candida spp.) in infected patients were 62%, 47% and 19% respectively. 

More recently, Rhee C. et al. considered all positive cultures in 17 430 community-onset sepsis 

episodes and reported the top three pathogens as Escherichia coli (33.7%), Staphylococcus 
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aureus (21.3%), and Streptococcus spp. (pneumococcus, beta-haemolytic streptococci and 

viridans streptococci) (13.5%), while P. aeruginosa was the sixth most common pathogen 2. 

Overall, BSI was common in sepsis and 40% of sepsis patients had positive blood cultures 2. 

A recent population-based study in Norway confirmed the findings from Rhee. et al and found 

that approximately 40% of sepsis patients had positive blood cultures during the 22-year study 

period 5. In contrast, a large portion of episodes classified as sepsis are also culture negative, 

some of which has no clear evidence of infection. One study showed that as many as 30% of 

patients did not have any positive culture from any culture site 16. Furthermore, Klouwenberg 

at al. studied 2579 patients admitted to ICU with sepsis, and found that the post-hoc likelihood 

of infection was “none” in 13% and only “possible” in 30% 17. In their study, mortality was not 

affected by the presence of infection. These findings need to be taken into consideration when 

interpreting studies of sepsis.  

The number of reported BSI in sepsis is affected by several factors such as if blood cultures 

were collected, type of blood culture (e.g. bacterial, fungal, mycobacterial), if patients received 

antimicrobial treatment before blood culture collection or if the infection caused invasion of 

the bloodstream. The most common pathogens in BSI reported from high-income countries are 

similar to the pathogens reported in sepsis: S. aureus, E. coli, Klebsiella spp., P. aeruginosa, 

Enterococcus spp, Streptococcus spp. (pneumococcus, beta-haemolytic streptococci and 

viridans streptococci) and coagulase- negative staphylococci, while Salmonella spp. is a key 

pathogen in low-resource settings 18. 

 

1.1.2 Pathophysiology of sepsis 

Risk factors for sepsis includes age (very high and low), male sex, immunosuppressive 

treatment and comorbidities such as cancer, human immunodeficiency virus (HIV) infection 

and chronic obstructive pulmonary disease 3,10. Host response in sepsis is based on a complex 

interplay between inflammatory and anti-inflammatory components (Figure 2) 3. The 

magnitude and duration of this response is determined both by pathogen factors (microbial load 

and virulence) and host factors (genotype, age, comorbidity, and medications). The 

inflammatory response classically starts with pathogen activation of innate immune cells via 

cell surface receptors (e.g. toll-like receptors and C-type lectin receptors) and intracellular 

receptors (e.g. NOD-like receptors, RIG-1-like receptors) 10. Upon activation, leukocytes (via 

cytokines, proteases, reactive oxygen species), the complement system and the coagulation 

cascade elicits cell apoptosis and tissue damage. This in turn feeds the inflammatory loop via 

damage-associated molecular patterns (DAMPs) and maintains the response 3. Organ 

dysfunction is believed to be the end result of impaired tissue oxygenation caused by 

hypotension (vasodilatation, endothelial damage/oedema and myocardial depression), 

microvascular thrombosis and mitochondrial damage 10,19. Most frequent organ dysfunctions 

occur in the lungs (acute respiratory distress syndrome, ARDS), cardiovascular system (shock), 

kidneys (oliguria or anuria, acute renal injury) and central nervous system (encephalopathy and 

delirium). Other common manifestations include impairment of hepatic function, coagulation 
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system (thrombocytopenia and disseminated intravascular coagulation), gastrointestinal tract 

(paralytic ileus and diminished intestinal barrier), bone marrow (cytopenias), endocrine 

functions (adrenal gland suppression, euthyroid sick syndrome) and critical illness 

polyneuropathy and myopathy 3,10.  

 

 

Figure 2. The host response in sepsis. Reproduced with permission from (Angus DC, van der Poll T. N Engl J 

Med 2013;369:840-851), Copyright Massachusetts Medical Society. 

 

The anti-inflammatory response is promoted by humoral regulation (neuroendocrine and 

adrenal axis inhibition of proinflammatory cytokines), impaired immune cell function 

(apoptosis of T- and B-cells, expansion of regulatory T-cells and reduced phagocytosis) and 

inhibition of proinflammatory gene transcription 3,10. When dominating, the anti-inflammatory 

response enhances susceptibility to secondary infections, especially in patients surviving the 

initial phase of sepsis 3.  

 

1.1.3 Clinical sepsis criteria 

1.1.3.1 Sepsis-1 and 2  

Although sepsis had been well known for decades, the first attempt to phrase a clinical 

consensus definition was done in 1991 20. The main purpose of the definition was to introduce 
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a similar terminology when assessing and comparing clinical trial results and novel treatments 
21. The Sepsis-1 definition introduced the term systemic inflammatory response syndrome 

(SIRS) which was based on: (1) Body temperature higher than 38°C or lower than 36°C, (2) 

Heart rate higher than 90/min, (3) Hyperventilation evidenced by respiratory rate higher than 

20/min or PaCO2 lower than 32 mmHg, and (4) White blood cell counts higher than 12,000 

cells/µl or lower than 4,000/µl 20. The definition included: “Sepsis” - infection with SIRS >2 

points, “severe sepsis”- sepsis associated with organ dysfunction, hypoperfusion or 

hypotension, and “septic shock” - sepsis with hypotension despite adequate fluid resuscitation 
20. In 2001, the sepsis definition was updated with adding additional signs and symptoms of 

sepsis, known as Sepsis-2, but the general concept was kept 22. Over the years, SIRS attracted 

a lot of criticism, mainly due to poor specificity 23. One study showed that half of admitted 

patients developed SIRS sometime during their hospital stay 24. Similar results were reported 

from ICUs where Sprung et al. noted that 93% of patients reached the 2 points threshold 

sometime during their stay 25. 

 

1.1.3.2 Sepsis-3 

In 2016 the clinical sepsis definition was revised to overcome the inaccuracy of SIRS and the 

subjectivity of organ dysfunctions assessment that was evident in prior definitions. A data 

driven approach was used to produce generalizable criteria for both “suspected infection” and 

“organ dysfunction” 26. A main goal was to create operational clinical criteria that could offer 

consistency in epidemiological studies, clinical trials, as well as be used for patient recognition 

and management 9. In Sepsis-3, the SIRS criteria were omitted, and the definition was 

simplified to include only “sepsis” and the subgroup “septic shock” 9.  

 Sepsis: Suspected infection was defined as having any microbiologically sample taken 

and receiving antimicrobial therapy within a predefined time frame. Organ dysfunction 

was measured as maximum sequential organ failure assessment (SOFA) score 48 hours 

before to 24 hours after onset of infection and compared to a baseline SOFA score 

before this time window. An increase in SOFA score by 2 or more points was set as the 

threshold for sepsis and was associated with an in-hospital mortality of approximately 

10% 26. The SOFA score had been developed previously and is based on a structured 

assessment of 6 different organ systems (cardiovascular, respiratory, coagulation, 

central nervous system, liver and renal) 27. 

 

 Septic shock: Defined as “a subset of sepsis in which underlying circulatory, cellular, 

and metabolic abnormalities are associated with a greater risk of mortality than sepsis 

alone” 28. In clinical practice, this was defined as patients that require vasopressors to 

maintain a mean arterial pressure above 65 mmHg and have a serum lactate level 

greater than 2 mmol/L in the absence of hypovolemia. Using this definition, septic 

shock was shown to be associated with an in-hospital mortality of approximately  

40% 28. 
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After the Sepsis-3 definition was presented, validation studies in both retrospective and 

prospective patient populations have supported the use of SOFA score for assessing organ 

dysfunction in infected patients to predict in-hospital mortality 29–32. However, the SOFA-score 

was originally developed for the ICU-setting, but with the introduction of the Sepsis-3 clinical 

criteria, the target population had now broadened and included more diverse settings. This 

becomes problematic when evaluating patients for sepsis in non-ICU or resource-limited 

settings. One of the primary concerns is how respiratory dysfunction is calculated using the 

SOFA score 33. The SOFA respiratory score is based on the ratio between PaO2 and FiO2, as 

well as data on ventilator support. This requires arterial blood gas analysis and reliable 

measurements of FiO2. Blood gas analysis is an invasive test which necessitates specific 

training and is associated with potential severe complications 34.  Furthermore, blood gas 

analysis requires a laboratory infrastructure and cannot be readily used for continuous 

respiratory monitoring. In the large multihospital data set used to develop the Sepsis-3 criteria, 

less than 30% of non-ICU patients had arterial blood gas measurements available, meaning that 

the respiratory function was not possible to evaluate in the majority of these patients 26.  

 

1.1.4 Epidemiology of sepsis 

In population-based studies from Europe and the US, the incidence of bloodstream infection 

ranges between 113-220 per 100,000 population, of which approximately 30-50% are 

nosocomial 35–37. Data from large Scandinavian cohorts have shown increasing incidences of 

BSI during recent years, and approximately one third of these were hospital-onset 38,39. The 

global incidence of sepsis has been more difficult to assess, mainly because of limitations of 

the Sepsis-1 and -2 definitions 40. The current estimates ranges from 30-50 million episodes 

and 6-11 million deaths globally and 1.7 million adult episodes and 250,000 deaths in the 

United States (U.S) per year 41–43. A population-based Swedish study by Mellhammar et al. 

assessed all admitted patients in two healthcare regions receiving intravenous antimicrobial 

treatment and classified them according to both Sepsis-2 (severe sepsis and septic shock) and 

Sepsis-3 definition 44. They estimated the annual incidence according to Sepsis-2 as 687 per 

100,000 persons and according to Sepsis-3 as 780 per 100,000 persons, with an in-hospital 

mortality of 19.8% and 17.4% respectively.  

In a 2016 meta-analysis by Fleischmann et al., data from 27 population-based studies between 

1979 to 2005 were used to estimate a global hospital-treated population incidence rate of 288 

sepsis cases per 100,000 person-years and 148 severe sepsis cases per 100,000 person-years 42. 

When restricting the inclusion to only the last 10-years, the incidence rate increased to 437 for 

sepsis and 270 for severe sepsis per 100,000 person-years respectively. In-hospital mortality 

was 17% for sepsis and 26% for severe sepsis. The included studies had predominately used  
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Figure 3. The global burden of sepsis. The figure is reproduced from (Rudd KE, Johnson SC, Agesa KM, et al. 

Lancet. 2020 Jan 18;395(10219):200-211), which is published under a Creative Commons Attribution 4.0 

International (CC BY 4.0) license. 

 

International Classification of Diseases (ICD) codes to classify sepsis cases. A recognized 

major limitation of the Fleischmann study is that it did not include estimates from low- or 

middle-income countries. In 2020 Rudd et al. published the most comprehensive sepsis 

incidence study to date based on the Global Burden of Disease Study of more than 100 million 

individuals, addressing the previous limitations of the Fleischmann study 43. They reported an 

almost doubled estimate of incident sepsis cases compared to previous estimations, largely 

attributed to people living in areas with lower Socio-demographic index, and estimated that 
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approximately 20% of all global deaths may be sepsis-related (Figure 3). Another prospective 

study focusing on a multinational ICU population found that 29.5% of patients hospitalized in 

the ICU for longer than 24 hours, suffered from sepsis with an in-hospital mortality rate of 

25.8% 45. Mortality in the ICU population increased substantially with lower national income, 

suggesting association of ICU resources and sepsis outcome. 

 

1.1.5 Healthcare-associated infections: providing a case for surveillance 

WHO defines healthcare-associated infections (HAI) as “An infection occurring in a patient 

during the process of care in a hospital or other health care facility, which was not present or 

incubating at the time of admission. Health care-associated infections can also appear after 

discharge” 46. In older literature, the term “nosocomial” is commonly used to describe what 

today is known as healthcare-associated, hospital-acquired, or hospital-onset infection. In 

contrast, infections that do not fulfil the HAI definition are typically described as present on 

admission, community-acquired or community-onset. Unfortunately, all of these are terms are 

overlapping and have been used to describe different patient populations in the literature. 

A rational for considering HAI as a separate entity is the spectrum of pathogens. Distribution 

of microorganisms differ according to source of infection, but overall the most frequently 

isolated pathogens reported from the latest European center for disease prevention and control 

(ECDC) point prevalence surveys (PPS) were: E. coli (16.1%), S. aureus (11.6%), Klebsiella 

spp. (10.4%), Enterococcus spp. (9.7%), P. aeruginosa (8.0%) and Clostridoides difficile 

(7.3%) 47. In U.S, similar microorganisms are reported but notably, the ratio of C. difficile 

(12.1%) is higher and the ratio of E. coli (9.3%) is lower 48. In several of these microorganisms, 

emerging resistance is a critical problem, especially carbapenem-resistant P. aeruginosa, 

carbapenem-resistant and third-generation cephalosporin-resistant Enterobacterales, 

vancomycin-resistant Enterococcus faecium and methicillin-resistant S. aureus 8,49,50. 

The risk of HAI is dependent on factors associated either with the risk of colonization or 

impaired host defense 51. A large part of HAIs are also considered preventable if compliance 

to evidence based guidelines are good, especially for catheter-associated BSI 52–55. HAI is 

associated with substantial individual and economic cost attributed to increased length of stay, 

re-admissions, increased morbidity and increased mortality 56. In Sweden the cost of HAI has 

been estimated to SEK 6.5 billion 57. According to a study from the U.S, the annual costs for 

the 5 major HAIs were estimated to approximately $9.8 billion between 2011 to 2013 58. 

Surgical site infections contributed to the largest overall cost, but catheter-associated BSI had 

the highest cost per-case, approximately $45,814 58. Similar data from Europe, based on the 

ECDC PPS in 2011 to 2012, showed that pneumonia and primary BSI accounted for the highest 

burden of HAI (approximately 60% of the total burden) 59. This was mainly due to the severity 

of pneumonia and BSI compared to the other infections. In U.S hospitals, healthcare-associated 

sepsis after invasive surgery had an attributable length of stay of 10.9 days and costs of $32,900 
60. For healthcare-associated sepsis not related with surgery the attributable length of stay was 
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1.9 to 6.0 days and the cost was $5,800 to $12,700. Recent data have also reported an 

approximately doubled mortality in hospital-onset sepsis compared with community-onset 

sepsis 61. 

When calculating the burden of HAI, there is also a need to account for the cost of antimicrobial 

resistance. In 2018, Cassini et al. estimated the incidence of infections with 16 bacteria with 

antimicrobial resistance (AMR) based on data from European Antimicrobial Resistance 

Surveillance Network (EARS-Net), and ECDC PPS and a systematic review of the literature 
62. They estimated that in 2015, a total number of 671,689 infections due to AMR bacteria 

occurred in Europe of which 63.5% were healthcare-associated, and resulted in 33,110 

attributable deaths. In 2022, a comprehensive study of the global burden of antimicrobial 

resistance (AMR) was published 63. The study estimated that, in 2019, almost 5 million deaths 

was associated with AMR, and approximately 1.3 million deaths was attributed to AMR, with 

the highest burden in low-resource settings. 

 

1.1.5.1 Epidemiological surveillance of healthcare-associated infections 

Surveillance of HAI, combined with feedback to healthcare personnel and policy makers, is 

central to identify areas of improvement and to guide interventions in infection control 

programs 64. In general, incidence surveillance is preferred over prevalence data to enable better 

comparisons of infection rates between hospitals. Incidence surveillance requires classification 

of both the HAI (numerator), usually as binary classifier, and relevant denominator data from 

the entire screening population 65. For surveillance purposes HAIs have traditionally been 

defined according to the infectious source. The Both the CDC/National healthcare safety 

network and ECDC provides detailed HAI definitions 66–68. In Sweden, similar definitions have 

been developed by the Swedish association of local authorities and regions 69. A general 

concept in all definitions is a time criterion requiring that onset of infection must occur at 

calendar day 3 or later after admission to hospital. However, as more advanced care is moved 

from the hospital setting to the patients’ home, the concept of HAI gets more complicated 70,71. 

As a consequence, all HAI criteria include predefined exceptions to the time criterion and 

present on admission infections can often be categorized as HAI. Such exceptions are patients 

that where discharged from acute care hospitals in the preceding 48 hours, patients that had a 

relevant device inserted just before onset of infection or patients with infections clearly related 

to prior surgery. Data from PPS in acute care hospitals has shown an overall HAI prevalence 

of 5.9% in Europe, 4% in the U.S. and 8.9% in Sweden 47,48,72. In EU/EES, the yearly HAI 

incidence was estimated to 3,758,014 patients during the period 2016 to 2017 47. The 

prevalence was higher in European tertiary care hospitals (7.1%) compared to primary care 

hospitals (4.4%) and the prevalence was highest among patients admitted to intensive care units 

(19.2% of patients). BSI accounted for 10.8% of HAIs in Europe and 9.9% of HAIs in the U.S. 

Sweden lacks a specific definition of BSI, but includes primary sepsis as source of infections, 

which during 2018 accounted for 6% of all HAIs 72. 
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1.1.5.2 Definitions of healthcare-associated sepsis and bloodstream infections 

Healthcare-associated sepsis is poorly defined since the HAI criteria focus mostly on specific 

sites of infections or microbiologically confirmed infections. The ECDC has defined criteria 

for treated unidentified severe infection in adults and children, but refer to it as a last-resort 

definition not intended for use unless absolutely needed 67. The CDC/NHSN, on the other hand, 

has not issued a distinct HAI definition for sepsis at all 68. In contrast, the concept of BSI is 

well defined in both the CDC/NHSN and ECDC documents, but contains some key differences 

necessary to acknowledge. The CDC/HNSN labels infections of the bloodstream as laboratory 

confirmed BSI (LCBI), while ECDC simply uses the label BSI. In both definitions, a LCBI or 

BSI is evident if a recognized pathogen is isolated from a blood culture, or if a predefined skin 

contaminant is isolated from 2 or more blood cultures collected within a certain time frame. In 

CDC/NHSN the criteria of LCBI is fulfilled only if no other source of infection was identified. 

LCBI are further categorized as either CLABSI (Central line-associated BSI) or non-CLABSI 
73. On the contrary, the ECDC BSI definition includes also BSI secondary to other sites of 

infections as well as BSI related to vascular catheters. In addition, the ECDC definitions 

includes a separate category for microbiologically confirmed central-venous catheter and 

peripheral-venous catheter related BSI, which is not present in the CDC/NHSN document. The 

differences between the definitions have to be considered when comparing surveillance data 

from different countries, as well as within countries that have switched between the definitions. 

This was demonstrated by Djuric et al. who compared the CDC/NHSN and ECDC criteria for 

BSI and found perfect agreement (kappa=1) if studying BSI with no other source of infection, 

but only substantial agreement when considering “overall BSI” (kappa=0.79) 74. 

 

1.1.5.3  Clinical concepts of healthcare-associated infections 

In parallel with the definitions of healthcare-associated BSI developed by CDC/NHSN and 

ECDC for surveillance, other simpler classifications have been proposed for clinical purposes, 

such as guiding treatment decisions. Traditionally, BSI had only been distinguished as 

community-acquired (onset of BSI <48 hours after hospital admission) or nosocomial (onset 

of BSI >48 hours after hospital admission), based on pathogen distribution. A study by 

Weinstein et al. in 1997 noted a change in the epidemiology of BSI in their own hospital during 

a 20-year period 75. Compared to the mid-1970s, the proportion of BSI classified as nosocomial 

changed from two thirds to approximately half in the mid-1990s 75,76. In 2002, first Siegman-

Igra et al. and then Friedman et al. suspected that changes in healthcare utility required new 

BSI definitions 77,78. Friedman et al. performed a prospective observational study including all 

patients admitted with BSI and introduced a new classification scheme that distinguished 

between community-acquired, healthcare-associated, and hospital-acquired BSI. The new 

concept of healthcare-associated BSI included patients with BSI present on admission, but who 

had: (1) received intravenous therapy, wound care, or specialized nursing care within 30 days, 
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(2) received hemodialysis within 30 days, (3) had been hospitalized in an acute care hospital 

for 2 days or more in the last 90 days, or (4) resided in a nursing home or long-term care facility 
78. Their results showed a clear similarity between healthcare-associated BSI and nosocomial 

BSI, with regards to causing pathogens, antimicrobial resistance, and mortality. The definition 

has had a substantial impact on classification of BSI in epidemiological studies, clinical care 

of BSI patients and affected recommendations for empirical antimicrobial therapy 79–84. In the 

study by Friedman et al., 28% of BSI was classified as community-acquired, 37% as health 

care–associated and 35% as hospital-acquired. However, in sepsis, the spectrum is different. In 

a study of 307,491 sepsis cases, 62.8% were community-acquired, 25.9% were healthcare-

associated and 11.3% were hospital-acquired severe sepsis 6. 

 

1.1.6 Methods to monitor sepsis incidence 

The most common data source in sepsis surveillance has been administrative hospital data, that 

is discharge diagnosis, or mandatory reporting to specific databases 85,86. However, this 

approach carries risk of bias and make comparison between hospitals difficult 41,87. It has been 

shown both in Swedish and international reports, that the use of diagnosis codes was associated 

with considerable variability in reporting 88,89. Studies have suggested that reports of increased 

sepsis incidence during later years can partly be attributed to changes in coding rather than a 

true rise in incidence 90–95. For sepsis mortality trends, on the other hand, claims data seems to 

better reflect a true decline 96. 

As seen by the differences in sepsis incidence by Fleischmann et al. and Mellhammar et al., 

ICD-coding tend to underestimates the incidence of sepsis in comparison to using clinical data 
42,44. Similar results have been seen in other studies where medical record review was compared 

to ICD-codes 97,98. However, medical record review to classify if patients have sepsis or not is 

both resource intensive and associated with high levels of subjectivity and variations between 

different clinicians 99,100. With the increasing use of electronic health records (EHR), the new 

Sepsis-3 definition has enabled a more objective sepsis incidence surveillance based on clinical 

data. Recently, a case definition, denoted Adult Sepsis Event, was developed by the CDC to 

simplify automatic sepsis surveillance using EHR data 101. Rhee et al. used this method to study 

incidence trends in 409 U.S hospitals and compared the results to claims data based on ICD-

codes 102. They found that sepsis occurred in 6% of all adult hospital admission and in-hospital 

mortality in these patients was 15%. Although ICD-codes indicated a rising trend in sepsis 

incidence during the study period, objective classification of clinical data failed to demonstrate 

any changes in neither incidence nor in-hospital death. In addition, the EHR-based 

classification was more sensitive in diagnosing sepsis (69.7% for EHR-based vs 32.3% for 

ICD-codes), when using physician review as the reference standard. Furthermore, Page et al. 

showed that the criteria identified several serious nosocomial infections missed by currently 

reportable HAIs in a U.S setting 103. The major limitation of the CDC-definition is that it varies 

form Sepsis-3 clinical criteria by not assessing organ dysfunction according to SOFA-score. 

The definition is dependent on treatment interventions for 2 organ dysfunction criteria 
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(cardiovascular and respiratory). This biases sepsis surveillance based on access to ICU care 

and towards patients qualifying for aggressive treatment, which limits generalizability to all 

hospitalized patients. 

 

1.1.7 Early sepsis recognition 

In sepsis, timely recognition and treatment is key for survival, warranting structured approaches 

to guarantee early identification 104. The 2016 Surviving Sepsis Campaign Guidelines 

recommend hospitals to have sepsis screening for all acutely ill, high risk patients, but it does 

not specify which method to use 105. To succeed with sepsis screening programs, it is necessary 

to begin with educational efforts, building new routines and generating behavioral changes 106–

109. Such programs require multi-professional involvement of nurses, clinicians, administrative 

staff and policy makers 105. Most acute care hospitals have implemented triage systems at 

admission, followed by continuously or intermittent monitoring of patients during the 

remaining of the care episode until discharge 110. Both triage and monitoring systems are built 

on clinical decision rules, such as National Early Warning Score (NEWS2), Modified Early 

Warning Score (MEWS) and the Swedish Rapid Emergency Triage and Treatment System 

(RETTS) 110–113. These scores are general in scope and developed to detect deteriorating 

patients independently of cause. The major scores aimed specifically for sepsis in clinical use 

are based on SIRS or the quickSOFA (qSOFA) 114–116. In addition, the surviving sepsis 

campaign website have collected locally developed sepsis screening scores, most of them based 

on SIRS 117.  

The effectiveness of automated alerting systems compared to standard of care for sepsis 

management was evaluated in a meta-analysis from 2022 118. A total of 36 studies were 

included of which only 6 were randomized control trials (RCTs) 118. The meta-analysis 

concluded a favorable effect of using automated alerts for identifying sepsis and suggested that 

machine learning monitoring systems combined with clinical interventions may be a way 

forward, especially for the non-ICU setting. 

 

1.1.7.1 Basic principles of screening tools 

The demands of a sepsis screening tools differ depending on the screening population, both 

with regards to data availability (high-resolution or low-resolution) and screening frequency 

(single, intermittent, or continuously). In hospitals, the three major screening populations are 

located at the Emergency department (ED), the wards and the ICU 119. The majority of 

published sepsis screening tools are based on simple heuristic scoring systems, which are either 

calculated manually on paper or automatically from EHR data. Harrison et al. has listed key 

features that needs to be addressed before successfully implementing automated sepsis alert 

systems 115. Most important, screening algorithms needs availability of real-time patient data. 

Second, screening algorithms must perform well, with a particular focus on the positive 
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predictive value (PPV) to decrease information overload and alert fatigue. Third, the alert 

system must be integrated in the clinical workflow and elicit a meaningful response to the alert 

that improves patient care.  

Evolution of wearable patient monitoring systems, machine learning models and novel alert 

delivery systems all have the potential to improve early sepsis recognition further 115. In 

particular, machine learning methods have gained increasing interest due to their ability to 

classify (diagnosing) and predict (prognosis) 120–123. Although the models per se are not novel, 

the advances in processor speed and digitalization of healthcare data has boosted the field 124. 

Chen et al. have described some key concepts of machine learning in healthcare, which are 

important to consider also for sepsis screening tools based on these techniques (Table 1) 125. It 

is worth mentioning that the well-established practice of dividing data into development and 

test data sets have been challenged and Riley et al. argued for resampling methods such as 

bootstrapping or repeated cross-validation instead, especially when using regression methods 

and smaller data sets 126. 

 

Table 1. Development of machine learning models in healthcare based on Chen et al.125
 

Development steps Key concepts 

Problem Choose a suitable task where high quality data is available 

Data processing 

If an external validation data set is not available, divide the data into two 
separated datasets, a development set (for training and tuning parameters) 
and a hold-out validation set (for evaluating model performance). Assure 
good label quality. Acknowledge that a random split can have impact on 
model performance, especially in small data sets 126 

Model building  

Use only the development set for model building. Choose between 
supervised or unsupervised models and train it with sufficient amounts of 
data. Decide on a strategy for feature selection, pre-processing of variables 
and how to handle missing data and class imbalance. Control hyper 
parameter optimization. Avoid underfitting by choosing a model with 
appropriate capacity in relation to the data complexity. Avoid overfitting by 
using a tuning set (or cross validation) within the development set and/or 
different regularization techniques 

Evaluation 

Assess performance in one or several external validations set with 
discrimination metrics (threshold-free: area under the receiver operating 
characteristic curve, area under the precision recall curve, c-statistics, and 
threshold-dependent: sensitivity, specificity, positive predictive value) and/or 
calibration metrics (matching between predicted probabilities and actual 
probabilities, such as Hosmer-Lemeshow statistics). Acknowledge that the 
generalizability of the model is dependent on the heterogeneity of the 
validation set. Compare the model with a relevant baseline 

Pre-implementation 
Evaluate user interaction, workflow integration, alert burden and potential 
clinical impact in real world scenarios 
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1.1.7.2 SIRS-based screening 

SIRS was initially developed as part of the sepsis definition, but has been evaluated as a 

screening score in several studies 116. When applied as such, it has usually been modified, such 

as adding measures of lactate, blood pressure, signs of infection or organ dysfunction 127–129. 

Several studies have evaluated models based on automated scoring with alerts transmitted via 

paging or the EHR system 130–137, but paper based nurse-driven screening tools have also been 

reported 138,139. Most of these screening systems have been combined with other interventions 

such as educational efforts and sepsis response teams, hence, the direct effect of the sepsis 

screening tool is difficult to evaluate. Many studies have showed improved adherence to sepsis 

process measurements, but data on mortality improvement is elusive 116,140. A study by Torsvik 

et al. showed that development of organ failure and mortality decreased after implementing a 

structured nurse-led sepsis identification tool based on SIRS in a Norwegian hospital 141. 

However, this was a before-and-after study of a defined BSI population, but data from RCTs 

including general hospital populations have failed to show a similar impact of specific sepsis 

screening. Three RCTs evaluating automated sepsis screening systems compared to standard 

care (2 from ICU, 1 from ward setting) have been published 133,136,137,142. None of them showed 

significant differences in time to antimicrobial treatment, length of stay or in-hospital mortality. 

 

1.1.7.3 qSOFA-based screening 

In the Sepsis-3 definition, a new simpler scoring system was proposed called qSOFA 26. The 

score is based on assessment of 3 organ system: altered mental status, respiratory rate more 

than 22 breaths per minute and low systolic blood pressure of 100 mmHg or less 26. It is 

important to acknowledge that qSOFA was not developed as a screening score for sepsis, but 

rather as a prognostic score in patients with sepsis 140,143. When assessed in patients outside of 

the ICU, a qSOFA score of 2 or more points performed well in predicting poorer sepsis 

outcomes such as in-hospital death and organ failure in several different patient populations 
26,144–147. However, qSOFA has several limitations when assessed as a sepsis screening score, 

such as long time to trigger and low sensitivity 144,148–153. qSOFA also performed generally 

worse when compared to existing systems, such as NEWS or MEWS 154. Based on these data, 

the qSOFA is considered insufficient to use as alone for sepsis screening and was not 

recommended in the 2021 Surviving Sepsis Campaign guidelines 23,105,155. 

 

1.1.7.4 NEWS2-based screening 

The NEWS score was first presented in 2012 by the Royal College of Physicians in United 

Kingdom to standardize clinical monitoring 110. Since then the score has been implemented in 

many hospitals around the world, including Sweden. In 2017 an updated version was released, 

NEWS2, which had been optimized specifically for sepsis recognition. The NEWS score is 

based on measurements of respiratory rate, peripheral oxygen saturation (SpO2), oxygen 
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treatment, systolic blood pressure, pulse, consciousness, and temperature. NEWS have been 

applied as an automated score for sepsis screening 156. In a recent study NEWS outperformed 

both SIRS and qSOFA in predicting meaningful outcomes such as in-hospital mortality and 

ICU-admission 116,157. These results were later confirmed by Usman et al. who showed better 

accuracy for sepsis detection (area under receiver operating characteristics curves [AUROC] 

for NEWS=0.91, SIRS=0.88 and qSOFA=0.81) and sepsis-related mortality (AUROC for 

NEWS=0.95, SIRS=0.89 and qSOFA=0.87) when applied in the ED 158. For sepsis detection 

NEWS had sensitivity 84.2% and specificity 85.0%, compared to SIRS (sensitivity 86.1% and 

specificity 79.1%) and qSOFA (sensitivity 28.5% and specificity 98.9%). 

 

1.1.7.5 Screening based on machine-learning models 

As indicated by several systematic reviews published recently, the field of machine learning 

based models to predict sepsis has become increasingly popular 159–163. Studies have primarily 

used large EHR databases or the publicly available Medical Information Mart for Intensive 

Care-III (MIMIC-III) ICU database from a single center in the U.S for either development, 

validation or both 164. The latter is restricted to ICU patients. There is also substantial 

inconsistency between sepsis definitions, data pre-processing methods, feature engineering, 

models and evaluation metrics, which makes direct comparison of studies complicated 165. The 

machine learning models generally show good ability of predicting sepsis onset in retrospective 

data (AUROC between 0.80 to >0.90), and when assessed with a comparator they always 

performed better than scores such as qSOFA and MEWS. However, few studies clearly 

presented data on PPV. A number of scores have been published such as: Thiel et al. (Recursive 

Partitioning And Regression Tree, non-ICU population) 166, Risk of Sepsis score (gradient tree 

boosting, ED-population) 167, Artificial Intelligence Sepsis Expert (cox proportional hazards, 

ICU-population) 168, InSight (gradient tree boosting, ICU-population) 169–171, EWS2.0 

(random-forest, non-ICU population) 172, TREWScore (cox proportional hazards, ICU-

population) 173, and the Epic Sepsis Model (ESM) developed by the EHR-vendor Epic (logistic 

regression, non-ICU population) 174. In addition, two studies have used Bayesian network 

models to predict sepsis and organ dysfunction resulting from sepsis 175,176.  

Several of these models have also been implemented in clinical practice, all in the US, with 

mixed results (Table 2). In general, the quality of these studies is low and evaluation is mostly 

based on pre- and post-implementation designs. As an example, two studies evaluating the 

Insight algorithm only reported differences in sepsis-related outcomes between the periods and 

did not assess the direct impact of the screening, precluding interpretation of its effectiveness 
177,178. This is usually problematic since most of these implementations are coupled with 

educational efforts raising awareness of sepsis among healthcare works. Only two small single 

center RCTs have been reported, one of Insight in an ICU-setting, and one of ESM (Epic) in 

an ED-setting 174,179. The Insight study enrolled all patients admitted to the ICU and randomized 

them to surveillance with the algorithm and telephone delivered alerts, or standard of care. In 

the intervention group, there was a significant 12.4% relative risk reduction of in-hospital 
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mortality, as well as decreased length of stay 179. However, the number of sepsis cases was not 

clearly reported, and it is difficult to rule out that the effect of the algorithm came from 

increasing clinician awareness of high-risk patients rather than by predicting sepsis. The ESM 

alert was evaluated in a single ED and included an EHR-based alert combined with EHR-based 

pharmacist notification, or standard of care 174. All ED patients were screened, but only patients 

who were flagged by the algorithm were enrolled, except for patients evaluated primarily for 

trauma, stroke, cardiac ischemia rule out or acute blood loss. The intervention was only 

associated with a modestly shortened time to antibiotic administration, but no increase in other 

clinical interventions 174. However, it was not clear from the study if the patients actually had 

sepsis, or how many sepsis episodes the ESM missed, and without this information the study 

results are difficult to interpret. This is especially important since external validation of the 

EMS score previously have shown that it missed 67% of patients with sepsis and generated a 

large burden of false positive alarms in 18% of all hospitalized patients 180. 

 

1.1.7.6 Screening scores for bloodstream infection 

Most screening tools for BSI are also based on heuristic scores derived from regression models 

to predict blood culture positivity 181–186. Much focus has been on developing scores for specific 

pathogens in BSI, such as extended-spectrum β-lactamase (ESBL)-producing 

Enterobacterales 187,188. Few more advanced screening tools for BSI prediction have been 

published, but one model based on a Bayesian network (TREAT) have shown good ability to 

stratify patients according to risk of BSI as well as predicting specific BSI pathogen 189–191. The 

TREAT model was also evaluated in a multicenter cluster randomized trial and showed 

improved rates of appropriate empirical antimicrobial treatment while reducing the use of 

broad-spectrum therapy 192. Studies based on other machine learning methods, such as deep 

neural networks or decision trees, have been reported with high AUROC, but low area under 

precision-recall curve (APR) and insufficient performance in external data sets 193–195. A 

research group in the Netherlands used an opposite approach and aimed at developing a 

machine learned prediction tool integrated in the EHR to identify patients with low risk of 

having positive blood cultures 196. Their model performed well (AUROC 0.76 [95% CI, 0.71-

0.81]) in a multicenter prospective validation cohort and the authors suggested that blood 

cultures could be safely withhold in 30% of patients in the ED when using their model 197. For 

prediction of mortality in BSI, the Pitt bacteremia score was developed to predict mortality in 

gram-negative bacteremia 198. A quick Pitt (qPitt) score has also been developed, showing 

better discriminative performance for mortality than both qSOFA and SIRS 199. 
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Table 2. Publications of implemented machine-learning based sepsis screening tools 

Algorithm Year Method Study design 
Setting 
(Country) 

Sample 
size 

Conclusion 

Thiel et al.200 2011 RPART 

Prospective trial, single 
center, of 2 intervention 
wards and 4 control 
wards. Patients were 
screened and included if 
a positive alert was 
triggered 

Non-ICU 
(US) 

300 

Increase in sepsis process 
measures in the intervention 
group, but no difference in 
ICU-admission, LOS or in-
hospital mortality compared 
to the non-intervention group 

Insight177 2020 
Gradient 
tree 
boosting 

Pre-post study, multi-
site, of a telephone 
delivered alert. Patients 
were included if SIRS 
>2p and >1 organ 
dysfunction criteria 

All wards 
(US) 

17 758 

Reduction in sepsis-related 
in-hospital mortality, LOS 
and 30-day readmission 
rate. No data on the direct 
impact of the alerts 

Insight178 2017 
Gradient 
tree 
boosting 

Pre-post study, single 
center, step-wise tuning 
of a telephone delivered 
alert. Patients were 
included if they fulfilled 
sepsis criteria 

All wards 
(US) 

1328 

Reduction in sepsis-related 
in-hospital mortality, LOS 
and 30-day readmission 
rate. No data on the direct 
impact of the alerts 

Insight179 2017 
Gradient 
tree 
boosting 

RCT, single center. All 
patients admitted to the 
ICU were enrolled and 
randomized to 
surveillance with the 
algorithm and telephone 
delivered alerts or 
standard of care 

ICU (US) 142 
Reduction in in-hospital 
mortality (1.25% absolute 
reduction) and LOS 

EWS2.0172 2019 
Random-
forest 

Pre-post study, single 
center, comparing a 
period of silenced alerts 
with a period of 
combined EHR and text 
messages based alerts 

Non-ICU 
(US) 

54 464 

The alert had a real-world 
sensitivity of 26%, specificity 
of 98% and PPV of 29%. It 
resulted in a small increase 
in lactate testing and 
intravenous fluid 
administration, but no 
difference in mortality, 
discharge disposition, or 
transfer to ICU 

TREWScore201 2022 
Cox 
proportional 
hazards 

Prospective, multi-site. 
Only patients with sepsis 
who were identified 
before initiation of 
antimicrobial treatment 
were included in the 
primary analysis 

All wards 
(US) 

6877 

Patients with alerts 
confirmed by a clinician 
within 3h had reduced in-
hospital mortality (3.3% [CI 
1.7-5.1%] absolute 
reduction), organ failure and 
LOS 

ESM (Epic)174 2021 
Logistic 
regression 

RCT, single center. All 
patients admitted to the 
ED were screened and 
randomized to an EHR-
based alert combined 
with EHR-based 
pharmacist notification or 
standard of care if an 
alert was triggered 

ED (US) 598 

The intervention was 
associated with a modestly 
shortened time to antibiotic 
administration. Patients 
evaluated primarily for 
trauma, stroke, cardiac 
ischemia rule out or acute 
blood loss were excluded 

Abbreviations: recursive partitioning and regression tree (RPART), systemic inflammatory response syndrome (SIRS), 
randomized controlled trial (RCT), electronic heath record (EHR), intensive care unit (ICU), length of stay (LOS), positive 
predictive value (PPV) and confidence interval (CI) 
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1.2 CLINICAL SEPSIS MANAGEMENT 

 

The Surviving Sepsis Campaign Guidelines have published evidence-based recommendations 

since 2004 105. As opposed to the 2016 version of the guidelines, the updated 2021 version have 

also been endorsed by the Infectious Diseases Society of America (IDSA) 202. In addition, local 

sepsis guidelines are published by Swedish Infectious Diseases Society 203. Based on the studies 

supporting these guidelines, a brief summary of the key aspects in clinical management of 

sepsis is presented below.  

 

1.2.1 Sepsis bundles 

Educational efforts and the introduction of care bundles in sepsis have previously shown to 

increase both guideline compliance and reduce in-hospital mortality 107,204–206. Stakeholders 

such as the Surviving Sepsis Campaign Guidelines and the US Centers for Medicare & 

Medicaid Services, have issued sepsis bundles to be performed within 1 to 3 hours after sepsis 

recognition 105,207,208. They require clinicians to collect blood cultures, measure lactate, initiate 

broad-spectrum intravenous antimicrobials and administer 30 mL/kg of intravenous crystalloid 

fluid for hypotension or lactate ≥ 4 mmol/L. Additionally, if hypotension persists during or 

after fluid resuscitation, initiation of vasopressors are recommended to maintain mean arterial 

pressure ≥ 65 mm Hg. Similar bundles have also been adopted by the national Swedish sepsis 

guidelines 203. Reporting adherence to the SEP-1 bundle became mandatory for US hospitals 

in 2015, however, the beneficial impact of this mandate on the quality of sepsis care has been 

an area of debate 209. In a cohort study evaluating 117 510 patients with suspected sepsis from 

114 hospitals in the US, the SEP-1 implementation was associated with increased lactate testing 

rates, but no change in broad-spectrum antibiotic use or mortality rates 210. Conversely, a sepsis 

triage system in a Swedish ED which include mandatory support of an Infectious Diseases (ID) 

physician, reduced time to antimicrobial treatment and length of stay, as well as improved 

diagnostic procedures and supportive care 211,212. The beneficial effect of an ID-physician 

attending sepsis patients in the ED was confirmed by an Italian study that showed both 

increased guideline adherence and decreased mortality 213. Furthermore, studies of both sepsis 

and BSI in general, and S. aureus bacteremia in particular, have shown decreased mortality and 

healthcare cost when involving ID-physicians in the patient care 214–216. 

 

1.2.2 Anti-infectious treatment 

There is broad consensus that treatment in sepsis and suspected BSI should be initiated 

empirically before culture results are available. Estimations are that inappropriate empirical 

treatment, defined as treatment without in vitro activity against the causing bacteria or fungus, 

occurs in approximately 20-30% of severe infections 217. Retrospective studies have also shown 

an association between discordant treatment and higher mortality, in particularly in  
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hospital-onset BSI 2,218,219. In 2021, Kadri et al. included 21,608 BSI episodes from 131 

hospitals in the US, which is the largest retrospective cohort study to date 220. They showed an 

increased mortality risk with inappropriate treatment at 24 hours, irrespectively of 

antimicrobial resistance or critical illness, but did not assess hourly estimates.  

The timing of empirical antimicrobial treatment has been an area of debate for many years221–

223. Several retrospective studies and meta-analysis have shown better survival with early 

treatment within 1-3 hours, especially for septic shock 223–229, while other studies have failed 

to show a benefit 230–234. The only randomized trial of early antimicrobial treatment in a pre-

hospital setting showed no difference in mortality between groups despite a time gain of 96 

minutes 235. A secondary analysis of another RCT evaluating different resuscitation protocols 

in three US EDs also failed to show an increase in mortality with hourly delays of antibiotics 

after triage 236. However, the risk associated with mortality increased if antibiotics were delayed 

to the time period after shock was recognized. Hranjec et al. performed a before and after 

investigation of patients with suspected infection and blood cultures collected in a surgical ICU, 

comparing a strategy consisting of aggressive early antimicrobial treatment, with a 

conservative policy where antimicrobial treatment was withheld until there was 

microbiological evidence of infection 237. They found that changing to a conservative policy 

was associated with more favorable patient outcomes without increased mortality. The primary 

argument for not showing an effect of giving prompt antimicrobial treatment is that onset time 

zero is a vague measure, which may vary greatly even among patients in the same setting, 

especially in the ED 222. Naturally, the effect of these differences weakens the longer patients 

are followed after admission. Another important limitation is that studies of sepsis in general 

have not accounted for appropriateness of treatment based on in vitro pathogen-drug coverage 

which may have affected the results.  

Empirical combination therapy with antibiotics is generally not recommended in sepsis, unless 

the risk of MDR pathogens are high 105,238,239. Studies have shown that antimicrobial therapy 

safely can be narrowed when culture results are known 240,241, and that combination therapy is 

not warranted as definitive therapy except for specific situations with highly resistant 

organisms 105,242,243. Routine use of empirical anti-fungal treatment is probably not necessary 

in sepsis acquired at the ICU, unless patients have higher risk for fungal infection 105,244. 

Furthermore, most guidelines highlight adequate source control as an important intervention in 

sepsis management 105. This was supported by a retrospective cohort study by Reitz, et al. 

which showed that source control within 6 hours of sepsis onset was associated with an 

approximately 30% reduction in the mortality risk 245. Other studies, especially in S. aureus 

BSI, have shown similar benefit of adequate source control 246,247. 

 

 



 

20 

1.2.3 Treatment of organ dysfunction 

A recent meta-analysis including patients from three RTCs (ProCESS, ARISE, and ProMISe) 

concluded that patients with septic shock should receive standard intensive care, without the 

need for sepsis specific early goal-directed treatment 11,12,248,249. Treatment of circulatory failure 

with balanced crystalloid fluids are associated with a mortality benefit compared to normal 

saline and HES-solutions 250. In a large RCT (CLASSIC), restrictions in intravenous fluid 

volumes did not affect patient outcome 251. If colloids are considered, albumin is the preferred 

choice 250. Among vasopressors, norepinephrine is the most beneficial and should be preferred 

as first line treatment 252,253. Vasopressin can be added if insufficient hemodynamic treatment 

response despite norepinephrine 105. In the most recent Surviving Sepsis Campaign Guidelines, 

intravenous corticosteroid treatment is now recommended for all adults with septic shock and 

ongoing vasopressor treatment based on three recent RCTs (ADRENAL, APROCCHSS and 

VANISH) 254–257. Corticosteroids has primarily been associated with faster shock resolution 

and increased number of vasopressor free days, but no clear effect on mortality has been shown 
105. For red blood cell transfusion, results from the TRISS-trial found no difference between a 

restrictive compared to a liberal transfusion strategy 258,259.  

In non-hypercapnic hypoxic respiratory failure, high-flow nasal oxygen is recommended, but 

there is insufficient evidence to state any oxygen targets or recommend non-invasive 

ventilation 260–263. These recommendations are mainly based on heterogeneous ICU-

populations and large studies of specific sepsis populations are sparse. If patients require 

mechanical ventilations due to sepsis induced ARDS, protective ventilation strategies with low 

tidal volumes of 6 mL/kg predicted body weight has been show beneficial and are strongly 

recommended 105. Prone positioning is recommended in moderate to severe ARDS. In sepsis 

induced acute kidney injury requiring renal-replacement therapy, there is no difference 

between continuous (CRRT) versus intermittent hemodialysis (IHD) 264,265. More recently, the 

IDEAL-ICU and STARRT-AKI trials did not find any evidence in favor of an early renal-

replacement strategy compared to standard or delayed strategy 266,267. Blood purification 

strategies, vitamin C, immunoglobulins or sodium bicarbonate therapy are not recommended, 

except for sodium bicarbonate therapy in severe metabolic academia and acute kidney injury 
105. 
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1.3 CHALLENGING PATHOGENS IN SEPSIS AND BLOODSTREAM 
INFECTION 

 

Some pathogens causing sepsis have been shown to be particularly challenging. Data from the 

SENTRY program, which performs global surveillance and monitor pathogens from 

consecutive BSI episodes, has shown a decreasing trend of S. aureus and increasing trend of 

E. coli during the last two decades 268. S. pneumoniae has decreased from 4% during the years 

1997-2000 to 1.9% during the years 2013-2016. Importantly, the SENTRY program noticed a 

stable or declining trend in resistance among gram-positive bacteria, whereas the prevalence of 

multi-drug resistant (MDR) gram-negative bacteria increased continuously during the 20-year 

period. This fast spread of MDR gram-negative bacteria in hospitals worldwide has triggered 

a call for action 49. Especially infections caused by ESBL-producing Enterobacterales, MDR 

P. aeruginosa and carbapenem-resistant Acinetobacter spp. have been linked to longer hospital 

stay, increased costs and higher mortality 269. Mauldin et al. further quantified the attributable 

length of stay and hospital cost for HAI caused by AMR gram-negative infections compared 

to HAI caused by susceptible gram-negatives as an additional 23.8% and 29.3% respectively 
270. Due to this emerging crisis, WHO issued a statement in 2017 calling for more research on 

problematic bacteria, giving highest priority to resistant P. aeruginosa, A. baumannii and E. 

coli 8. In this thesis, we focused on P. aeruginosa as model since it is one of the most 

challenging pathogen in the clinic, both due to high virulence and antibiotic resistance. 

 

1.3.1 Pseudomonas aeruginosa bloodstream infection 

Population-based studies have shown a P. aeruginosa BSI incidence rate of 2.3-6.6/100,000 

depending on study 271–273. Although P. aeruginosa is among the top pathogens in gram-

negative BSI, it is still an uncommon cause of BSI with reported incidence of roughly 5 cases 

per 10,000 hospital admissions 274,275. Mortality is high ranging between 20-40% 271,276. P. 

aeruginosa has traditionally been associated with hospital-onset BSI, with a peak incidence 

around the third week of hospitalization 277. Strictly community-acquired P. aeruginosa BSI is 

rare, but among community-onset healthcare-associated BSI, P. aeruginosa is recognized as 

an important pathogen 84,278. Main risk factors derived from population-based studies are: 

increasing age, male sex, diabetes, solid organ transplantation, cancer, hemodialysis, HIV-

infection and underlying chronic lung disease 271–273. MDR P. aeruginosa is defined as 

resistance to at least one antibiotic in at least three of the following antibiotic categories: anti-

pseudomonal penicillins + β-lactamase inhibitors, anti-pseudomonal cephalosporins, anti-

pseudomonal fluoroquinolones, anti-pseudomonal carbapenems, aminoglycosides, 

monobactams, phosphonic acids or polymyxins 279. Extensively drug-resistant (XDR) P. 

aeruginosa is defined as resistance to at least one agent in all but two or fewer of the 

antimicrobial categories above 279. It is worth noting that these definitions are currently 

undergoing revision by the Transatlantic Task Force on Antimicrobial Resistance (TATFAR) 

(personal communication with Christian Giske). Studies addressing risk factors for  



 

22 

MDR P. aeruginosa BSI have recognized important features such as locally emerging bacterial 

clones, prior hospital/ICU-stay and prior antibiotic use, especially fluoroquinolones and 

carbapenems 280–283. Among healthy individuals, colonization of P. aeruginosa is rare, but 

increases with length of hospital stay 284–286. Severe P. aeruginosa infections are most often 

associated with vulnerable hosts such as neutropenic, cystic fibrosis, bronchiectasis and 

mechanically ventilated patients (ventilator associated pneumonia) 287. In addition, patients 

with extensive skin barrier disruption such as burn or pressure wounds are at increased risk of 

P. aeruginosa infection, as well as infections of the eye (keratitis) and ears (external otitis). An 

unusual, but important clinical presentation is ecthyma gangrenosum, a cutaneous 

manifestation associated with P. aeruginosa BSI 288. 

 

1.3.2 Treatment of Pseudomonas aeruginosa 

P. aeruginosa is a difficult to treat pathogen with intrinsic resistance to many broad-spectrum 

antimicrobials. Inappropriate empirical treatment has been shown to correlate to increased 

mortality, particularly if patients are presenting with more severe disease, but the evidence is 

not overwhelming and generally of low quality 276,289–291. Commonly active agents are shown 

in Table 3 279. For MDR isolates, a few novel as β-lactam/β-lactamase inhibitors and a new 

siderophore cephalosporin agent have recently been introduced 292,293. Available data suggest 

that among the novel agents, meropenem-vaborbactam has limited activity against meropenem 

resistant P. aeruginosa 294. Even though fosfomycin has been suggested as single treatment for 

uncomplicated urinary tract infection or combination treatment in more severe MDR P. 

aeruginosa infections 295, this is generally not recommended due to widespread prevalence of 

the fosA gene and an unfavorable relation between minimal inhibitory concentrations and drug 

exposure 296,297. For most antimicrobials in P. aeruginosa infection, higher dosing is usually 

required to reach adequate effect 298. In uncomplicated P. aeruginosa BSI, recent studies 

suggest short course treatment (7-11 days) to be safe 299,300. 

Although commonly used, there is no agreement regarding the superiority of any specific 

monotherapy 301. One larger study from the PA BSI cohort, and three smaller observational 

studies from other cohorts, have compared different monotherapies (manly different β-lactams) 

as definite treatment for P. aeruginosa BSI. None of the studies reported any differences 

between treatments 302–305. An old controversy is the use of combination- versus monotherapy. 

Rationale for combination therapy includes increased probability of appropriate empirical 

coverage, possible synergistic activity, and the possibility to prevent emerging antimicrobial 

resistance. Disadvantages of combination therapy are mainly nephrotoxicity, adverse events, 

drug-interactions and C. difficile infection 306. Combination therapy usually involves a β-

lactam and either an aminoglycoside or a fluoroquinolone 306. However, the evidence is 

scattered and several observational studies have failed to present convincing proof that using 

two active agents offers a survival benefit 307–309, while others have shown effect on mortality 
310,311. Evidence supporting effect on combination therapy on emerging resistance is also 

scarce, although this is difficult to study in the clinical setting and systematic studies of 



 

 23 

especially combinations of different β-lactams are missing 312. In summary, based on available 

data, combination therapy should only be considered for P. aeruginosa BSI in specific 

situations, such as empirical therapy in septic shock 301,306. Also selected cases infected with 

MDR isolates, in particular when colistin is used, can be considered for combination therapy313. 

 

Table 3. Overview of common antimicrobial agents with activity against P. aeruginosa, 
modified from Magiorakos et al. 279

 

Antimicrobial category Mode of action Antimicrobial agent 

Antipseudomonal 
cephalosporins 

Cell membrane synthesis inhibitor 
via penicillin-binding proteins 

Ceftazidime 

Cefepime 

Antipseudomonal penicillins + 
β-lactamase inhibitors 

Cell membrane synthesis inhibitor 
via penicillin-binding proteins 

Ticarcillin-clavulanic acid 

Piperacillin-tazobactam 

Antipseudomonal carbapenems Cell membrane synthesis inhibitor 
via penicillin-binding proteins 

Meropenem 

Imipenem 

  Doripenem 

Monobactams Cell membrane synthesis inhibitor 
via penicillin-binding proteins 

Aztreonam 

Aminoglycosides Protein synthesis inhibitors Tobramycin 

Amikacin 

Polymyxins Disrupts cell membrane integrity 
via lipid A 

Colistin 

Polymyxin B 

Antipseudomonal 
fluoroquinolones 

Inhibits bacterial DNA replication 
and transcription 

Ciprofloxacin 

Levofloxacin 

Novel β-lactam + β-lactamase 
inhibitors 

Cell membrane synthesis inhibitor 
via penicillin-binding proteins 

Ceftazidime-avibactam 

Ceftolozane-tazobactam 

Imipenem-cilastatin-relebactam 

  Meropenem-vaborbactam* 

Siderophore cephalosporin Cell membrane synthesis inhibitor 
via penicillin-binding proteins 

Cefiderocol 

*Only in certain circumstances with carbapenemases 
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1.3.2.1 Future treatments and vaccinations 

The clinical development pipeline for treatment of P. aeruginosa infections includes 

monoclonal antibodies, phages, iron metabolism disruptors, antibiotics with new modes of 

actions, polymyxin derivates and new combinations of β-lactam/β-lactamase inhibitors 314. In 

addition, treatments aimed at virulence factors, such as biofilm formation or the Type-III 

secretion system (T3SS), could be promising as adjuvant therapy in P. aeruginosa infections, 

but their role in BSI is elusive 315–317. Since the 2017 WHO alert, few new treatments have 

reached late stages of the clinical development 8,314. Of the 32 novel agents reported in 

December 2021, 5 had reached phase III stage and 9 had been terminated due to not meeting 

study endpoints or safety concerns. In particular, trials of P. aeruginosa-specific monoclonal 

antibodies have so far been disappointing, but also one trial of a topical bacteriophage cocktail 

in burn patients failed to meet its endpoint in phase I/II 314,318. There are currently ongoing trials 

of bacteriophages for chronic otitis media (topical treatment), burns (topical treatment), 

pressure wounds (topical treatment) and pneumonia (inhaled therapy) 314,319. In addition, one 

phase II trial of Ftortiazinon, a T3SS inhibitor, in combination with cefepime is currently 

recruiting patients in Russia (ClinicalTrials.gov Identifier: NCT03638830) 320. Preventive 

strategies such as vaccines have been tested, mainly in cystic fibrosis patient, with so far 

disappointing results 321,322. However, as pointed out by Hart et al., vaccine development has 

mainly been directed towards pulmonary infections and only 11 out of 159 vaccine studies 

evaluated protections against P. aeruginosa BSI, which may hold better promise 323.    

 

1.3.3 Microbiological aspects of Pseudomonas aeruginosa 

P. aeruginosa is an aerobic gram negative rod and a common opportunistic pathogen 

particularly found in the hospital environment 324. In the laboratory, P. aeruginosa is 

characterized by a sweet fruity odour, pearlescent appearance, distinct green-blue color (due to 

pyocyanin and pyoverdin) and of being oxidase positive and lactose non-fermenting. The P. 

aeruginosa genome consists of a large circular chromosome with 5.5-7 million base pairs (bp) 

and a high G+C content of 65-67%, as well as a shifting number of plasmids 325. Approximately 

90% of its chromosome is highly conserved between strains (core genome), and 10% is made 

up of an accessory gene pool containing elements that can be horizontally transferred and thus 

vary among strains (accessory genome) 326. These accessory genomic elements, also known as 

P. aeruginosa genomic islands (PAGI) or P. aeruginosa pathogenicity islands (PAPI), offers a 

unique phenotypic plasticity and ability to adapt to different environments. PAGI/PAPI can 

contain both virulence factors and resistance mechanisms 326. To date, 42 different genomic 

islands have been described in P. aeruginosa 327. The accessory genome appears as blocks of 

at least four adjacent open reading frames (ORFs) scattered in regions of genome plasticity 

(RPGs) within the conserved core genome in a mosaic structure 325. The core genome consists 

of approximately 5000 protein-coding genes, of which 321 has been suggested as essential, 

while the accessory gene pole ranges between 600-1400 protein-coding genes 328.  
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P. aeruginosa demonstrates a non-clonal epidemic population structure, sometimes disrupted 

by emerging successful clones 329–331. In addition, Ozer et al. found that majority of P. 

aeruginosa isolates segregate into two genetically distinctive groups with little intergroup 

recombination in the core genome, and more accessory gene flow within than between groups 
332. The two groups were highly separated by the exoS and exoU genes of the T3SS. There is a 

global surge of healthcare-associated infections caused by MDR or XDR P. aeruginosa often 

belonging to one of the high risk-clones, commonly ST111, ST175 and ST235 (Figure 4) 
282,331,333. In addition, MDR/XDR clonal complexes have been shown to share similar 

biological traits such as increased biofilm formation and mutant frequency but also reduced 

motility, fitness and virulence 334–336.  

 

 

Figure 4. Global spread of epidemic P. aeruginosa high-risk clones. Reproduced with permission from (Oliver A, 

et al. Drug Resist Updat. 2015 Jul-Aug;21-22:41-59), Copyright Elsevier. 
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1.3.3.1 Resistance mechanisms 

Intrinsic resistance mechanisms in P. aeruginosa is mainly due to efflux pumps, such as 

MexAB-OprM, and an outer membrane that has lower permeability than in other gram-

negative bacteria 287,337. Most P. aeruginosa carries the chromosomally coded inducible β-

lactamase AmpC, affecting resistance against aminopenicillins and cephalosporins through 

selection of AmpC-depressed mutants 333. Like any gram-negative bacteria, P. aeruginosa can 

acquire additional resistance mechanisms through horizontal gene transfer or chromosomal 

mutations. Acquired ESBL such as PER-1, OXA and metallo-β-lactamases IMP, NDM and 

VIM confer resistance through hydrolysis to many of the β-lactams, including carbapenems 

(IMP, NDM and VIM) 337,338. Loss of the porin OprD decreases permeability and is the most 

common mechanism of carbapenem resistance in P. aeruginosa. Rare phenotypes include 

imipenem resistant but meropenem susceptible strains, which is primarily caused by mutations 

in oprD, and meropenem resistant but imipenem susceptible strains, which is caused by over 

expression of MexAB-OprM efflux pumps 339. Aminoglycoside resistance is generally caused 

by aminoglycoside-modifying enzymes, rRNA methylases and efflux 338. Fluoroquinolone 

resistance is mediated through target site mutations 338. Upregulation of efflux pumps is a 

common mechanism and mediates resistance to both β-lactams, aminoglycosides and 

fluoroquinolones 337,338. 

 

1.3.3.2 Virulence factors 

P. aeruginosa usually grows in the extracellular space and bacterial clearance depends mainly 

on neutrophils 340. The bacteria have developed several mechanisms to evade the host and 

obtain nutrients, and evolution of specific virulence traits seems to be associated with clinical 

infection. Fenner et al. showed that P. aeruginosa collected from clinical respiratory samples 

was more virulent than environmental strains 341. Ledizet et al. also showed that the T3SS were 

more common in clinical samples collected from infections than samples deemed to be 

colonization 342. Main virulence traits of P. aeruginosa are single flagella (motility and 

attachment), type IV cell surface pilli (adherence), lipopolysaccaride (LPS), polysaccharide 

alginate secretion (mucoid), planktonic growth (biofilm), quorum sensing 

(communication/biofilm), T3SS (contact dependent exotoxins) and other secreted exotoxins 

(ExoA, proteases, pyocyanin, pyoverdin, hemolysins, elastase) (Table 4) 287,343,344. In particular 

quorum sensing, a sophisticated way of communication with signal molecules to control 

bacterial population densities, has been acknowledged as an important mechanism for retained 

virulence 345,346. It is likely that some virulence features require a complex interplay between 

several genomic islands and it has also been shown that more virulent P. aeruginosa strains 

carries PAGIs that are not found in less virulent counterpart 347.  

In particular, secretion systems are important virulence determinants in gram-negative bacteria 

and 6 different types have been identified in P. aeruginosa 343.  Thought to have evolved as a 

protection against environmental predators, the T3SS has attracted much attention because of 

its association with human infection and increased resistance 344,348. When activated, the T3SS 
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secrets any of the effector proteins exoS, exoT, exoU and exoY, which facilitates invading of 

epithelial cells and provokes an immune response. It is important to note that all P. aeruginosa 

strains carrying the T3SS does not necessarily have genes coding for all the effector proteins. 

Studies have shown prevalence of exoS (poly-substrate toxin) in 2/3 and exoU (phospholipase) 

in 1/3 of isolates from clinical infections, but never both of them in the same isolate which may 

indicate different subspecies 332,344. P. aeruginosa strains shown to secrete any of the T3SS 

effector proteins (mainly exoS and exoU) have been associated with worse clinical outcome in 

ventilator associated pneumonia and BSI 349,350. The exoU genotype has also been linked to 

increased exacerbations in patients with bronchiectasis 351. A study by Peña et al. characterized 

a large number of Spanish P. aeruginosa BSI cases and found an association between the exoU 

genotype with mortality within 5 days 352. Building on the same cohort, Sánchez-Diener et al. 

further classified the P. aeruginosa isolates according to virulence phenotype in a 

Caenorhabditis elegans infection model, but found that it was a poor predictor of mortality in 

BSI, despite being well correlated with T3SS genotype 353. Using genotype to predict 

pathogenicity in P. aeruginosa has recently been questioned by Panayidou et al. whom argued 

that strain-to-strain virulence variation could not be correctly determined at the genome level, 

but rather by using functional transcriptomics at the pathway level 354. Pincus et al., on the other 

hand, showed that a genome-based machine learning model was able to predict P. aeruginosa 

virulence in 115 clinical isolates (mainly from BSI), but only via a diffuse genomic signature 

and not based on individual genes 355. 

 

Table 4. Virulence features in P. aeruginosa described in the Virulence Factor Database 356 

Pathogenicity Virulence factor 

Adherens and motility Flagella, lipopolysaccarid (LPS), type IV pili, hemagglutinin, elongation factor-Tu 

Antiphagocytosis Alginate (mucus) 

Biosurfactant Rhamnolipid (rhlA, rhlB, rhlL) 

Siderophores - Iron 
uptake 

Pyochelin, pyoverdine 

Pigment Pyocyanin, pyoverdine 

Protease Alkaline protease, LasA, LasB (elastase) 

Quorum sensing lasI, lasR, rhlI, rhlR, phenazines 

Secretion system 
One-step secretion system: T1SS, T3SS, T6SS (also known as HSI-I). Two-step 
secretion systems: T2SS, T5SS. 

Toxin exoA, exoS, exoT, exoU, exoU, exolysin (exlA, exlB), phospholipase C (hemolysin) 
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1.3.3.3 Whole genome sequencing 

In 2000, the complete P. aeruginosa (PAO1) genome was sequenced for the first time 357. 

Recently high-throughput whole genome sequencing (WGS) techniques have become 

economically feasible as a rapid routine tool for molecular characterization 358,359. Most 

established next-generation genome sequencing (NGS) platforms, such as the HiSeq 3000 

(Illumina), uses short reads (2x150 bp), but third generation sequencers (Oxford Nanopore) 

can generate long reads up to 300,000 bp. By using open source international databases, 

information on clones, resistance- and virulence genes can be readily extracted from genomic 

data 360. In the clinical setting, the main usage area for WGS is outbreak management and 

pathogen surveillance. However, as knowledge on the importance of specific bacterial 

genotypes in human infection increases, the method has potential to be used as detailed 

molecular diagnosis tool in daily practice 361,362. 
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2 RESEARCH AIMS 

 

Overall aim:  

To improve diagnosis, assess the influence of time to antimicrobial treatment and 

explore prognostic bacterial virulence markers in sepsis and bloodstream infection. 

 

Specific aims were to: 

 

 
Paper I 
Develop and validate an automated sepsis surveillance algorithm using 

electronic health record data, and demonstrate utility by determining the 

burden of hospital-onset sepsis and variations between wards. 

 

 Paper II 
Evaluate the use of non-invasive respiratory assessement in the Sepsis-3 

cirteria by studying the association between worst SpO2 during onset of 

suspected infection and mortality. 

 

 Paper III 
Develop a machine learning sepsis prediction model based on electronic 

health record data, and evaluate the score in a clinically realistic use-case with 

comparison to conventional screening methods outside the ICU setting. 

 

 Paper IV 
Study the association of time to appropriate antimicrobial treatment and 30-

day mortality in bloodstream infection. 

  

 Paper V 
Assess the association of Pseudomonas aeruginosa virulence genotype with 

patient characteristics, septic shock and mortality in bloodstream infection. 
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3 MATERIALS AND METHODS 

 

3.1 STUDY DESIGN, SETTING AND PARTICIPANTS 

This thesis is based on observational data from 7 different cohorts of patients presenting to 

hospitals in Europe, Australia, and Canada (Table 5). All papers are cohort studies, with 

participants entering the study at either a hospital encounter (Paper I-III), or at blood culture 

collection (Paper IV-V), and then followed for a specified time frame. The cohorts are 

analyzed per episode basis, except for Paper V, where participants could be included only 

once. The majority of participant were collected from the Karolinska University Hospital, 

which is a large academic center divided between two hospitals and has a catchment area of 

approximately 2.3 million inhabitants.  

The Health Bank, used in Paper I-III, is a big data archive consisting of all EHRs from patients 

at Karolinska University Hospital between 2006 and 2014. The database is located at the 

Department of Computer and Systems Sciences at Stockholm University. Due to better 

recordings in the EHR system during the later time period, we restricted our analyses to July 

2012 until December 2013, with the exception of prior ICD-codes to estimate co-morbidity 

which were retrieved up to 5 years before inclusion. In the Health Bank cohort, included 

patients were followed until discharge or death, but in Paper III, episodes were also truncated 

at ICU-admission. The Health Bank only included data on in-hospital mortality. Four external 

validation cohorts (KH, HERO, Impressed and SepsisAlarm), originally collected for other 

studies, were also analyzed in Paper II. In these validation cohorts, included patients were 

followed for up to 30 days, except for 36 patients where only data on in-hospital mortality was 

available.  

The 2SPARE database is another big data archive located at the Division of Clinical 

Epidemiology, Karolinska University Hospital. The database includes EHRs from all patients 

at Karolinska University Hospital between January 2010 until August 2021. In Paper IV, all 

significant BSI episodes from January 2012 until December 2019 were included. We did not 

include patients from 2020 or 2021 to avoid substantial population differences due to the 

SARS-CoV-2 pandemic. All included patients were followed for up to 30 days. 

The PA BSI network is an international research network including consecutive adult patients 

with monobacterial P. aeruginosa BSI between years 2009-2015 305,363,364. The database 

consists of a retrospective cohort of 2396 patients collected at 25 centers from 9 Countries in 

Europe and Australia. Centers who routinely saved their P. aeruginosa isolates were eligible 

for participation in the Paper V, and 6 sites were finally included (Seville, Santander, 

Heraklion, Ljubljana, Stockholm and Brisbane). In Stockholm, only patients presenting to the 

Karolinska University Hospital were included.   
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Table 5. Included cohorts 

Cohort Setting Inclusion criteria Exclusion criteria 
Sample 
size 

Study 

Health 
Bank365 

Karolinska 
University 
Hospital 

All patients >18 years 
admitted for 24h or longer 
between July 2012 until 
December 2013 

Patients were excluded if 
admitted to an obstetric 
ward and censored during 
ICU-care, due to lack of 
data on vital parameters 
and medications for these 
wards 

82 852 
(19479 with 
suspected 
infection) 

Paper I-III 

KH 
Karolinska 
University 
Hospital 

All patients >18 years with 
suspected infection at the ED 
between October 2015 and 
November 2018 

None 9190 Paper II 

HERO 

Skåne 
University 
Hospital in 
Lund, 
Helsingborg 
Hospital and St 
Paul’s Hospital 
Vancouver 
(Canada) 

ED patients >18 years with 
suspected infection and at 
least one of: respiratory rate 
>25 breaths/minute, heart 
rate >120 beats/minute, 
altered mental awareness, 
systolic blood pressure below 
100 mmHg, SpO2 <90%, or 
<93% if ongoing oxygen 
treatment. Patients were 
enrolled between February 
2015 and March 2016 

No informed consent 241 Paper II 

Impressed 

Skåne 
University 
Hospital in 
Lund and 
Malmö, Örebro 
University 
Hospital and 
Linköping 
University 
Hospital 

ED patients >18 years with 
suspected infection and at 
least one of Systemic 
Inflammatory Response 
Syndrome criteria or self-
reported fever or chills. 
Suspected infection was 
determined at inclusion by 
the attending physician. 
Patients were enrolled 
between March and 
November 2011 

No informed consent 649 Paper II 

SepsisAlarm 

Skåne 
University 
Hospital in 
Lund 

ED patients >18 years with 
fever or history of fever and 
highest priority according to 
Rapid Emergency Triage 
System or lactate >3.5 mmol. 
Patients were enrolled 
consecutively as part of a 
prospective study between 
April 2017 and February 
2018 

Opt-out 506 Paper II 

2SPARE 
Karolinska 
University 
Hospital 

All patients >18 years with 
significant BSI admitted 
between January 2012 to 
December 2019 

BSI onset at the ICU or 
obstetrical wards, or if 
patients received 
appropriate treatment prior 
to BSI, or if not receiving 
any antibiotics within 24h 

10 628 Paper IV 

PA BSI 
network 
305,363,364 

Stockholm 
(Karolinska), 
Seville, 
Santander, 
Heraklion, 
Ljubljana, 
Brisbane  

Consecutive patients >18 
years with monobacterial P. 
aeruginosa BSI between 
January 2009 to October 
2015. Centers whom 
routinely saved their isolates 
were eligible for participation 

Polymicrobial BSI or no 
available P. aeruginosa 
isolate 

773 Paper V 

Abbreviations: emergency department (ED), electronic health records (EHR), intensive care unit (ICU), peripheral oxygen 
saturation (SpO2), Pseudomonas aeruginosa (PA), bloodstream infection (BSI) 
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3.2 DATA COLLECTION AND DEFINITIONS 

3.2.1 Clinical data 

The definitions used throughout this thesis are presented in Table 6. Paper I-IV are mainly 

based on structured clinical data collected retrospectively from EHRs, except for 3 of the 

validation cohorts in Paper II where data had previously been collected prospectively by study 

investigators 366,367. Data collection included demographics, hospital administrative data, vital 

parameters, laboratory findings, microbiological data, medications, and mortality. In Paper I 

and Paper IV, manual medical record review was also performed to collect specific 

information from unstructured medical free text notes. This had two main purposes: In Paper 

I, the sepsis surveillance algorithm was evaluated using a physician reviewed reference 

standard where patients were classified as either fulfilling the Sepsis-3 criteria or not. This 

involved a stratified sampling of 2 validation sets including 1000 hospital admissions from the 

entire hospital cohort. The first validation set included 674 hospital episodes sampled randomly 

form patients with suspected infections, where the likelihood of sepsis was greater. The second 

validation set included 326 hospital episodes sampled randomly from patients without 

suspected infections, where sepsis was less likely. In Paper IV, medical record review was 

performed for patients that were admitted to the ICU without appropriate therapy within 72 

hours of BSI onset (n=181). This was done to avoid misclassification of antimicrobial treatment 

because of missing structured data on medications from ICU. The clinical data collected in 

Paper V is entirely based on review of medical records at each participating center according 

to a common electronic case report form (eCRF). The collected parameters included patient 

characteristics, details of the infection, treatment data, and outcomes. Data on septic shock was 

not available from Seville (n=134). 

 

3.2.2 Laboratory data  

In Paper V, available bacterial isolates were identified from the clinical microbiological 

laboratories at each participating center. Retrieved isolates were sent to Karolinska University 

Hospital, using Amies transport medium in room temperature for European samples and 

glycerol transport medium in frozen temperature (-80 degree Celsius) for the Australian 

samples. Directly upon arrival, bacterial samples were incubated overnight on Cystine-

Lactose-Electrolyte-Deficient (CLED) agar, and fresh colonies were collected and stored in a 

biobank at -80 degree Celsius. Antimicrobial susceptibility testing (AST) was performed 

according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST) disk 

diffusion method using Mueller-Hinton agar plates and disks from Oxoid (Basingstoke, UK). 

Interpretation of susceptibility was based on EUCAST clinical breakpoint tables version 10.0.   
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Table 6. Definitions used in the thesis and papers 

Subject Definition 

Suspected infection 

Having any culture taken and at least 2 doses of antimicrobials administered. If the patient 
was admitted to the ICU prior to 24h, or died prior to 48h from the first dose of antimicrobials, 
they were deemed to have a suspected infection despite only being given 1 dose. Cultures 
had to be performed within 24h after the start of antimicrobial treatment. Antimicrobial 
treatment had to be started within 72h after culture. Onset of infection was determined based 
on which of these events occurred first 

Sepsis 

A suspected infection in combination with an increase in SOFA score by >2 points compared 
to the baseline. Organ dysfunction was measured as the maximum SOFA score 48h before 
to 24h after onset of infection and compared to a baseline SOFA score measured 
separately. Some adaptations to the original SOFA score were made in order to deal with 
common missing data outside of the ICU-setting, which are further described in detail in 
Paper I. Onset of sepsis was when the patient fulfilled the organ dysfunction criteria 

Septic shock 

Defined in Paper IV as, within 24h of BSI onset, receiving vasopressor treatment or ICU 
admission with septic shock as the main reason for admission. In Paper V, septic shock was 
defined as sustained hypotension despite adequate fluid replacement and need for starting 
or increasing dosing of vasopressor drugs 

Hospital-onset sepsis 
Suspected infection and organ dysfunction 48h after admission, or readmission with sepsis 
within 48h of discharge 

Hospital-onset bloodstream Blood culture collection 48h after admission 

Significant bloodstream 
infection 

Defined as positive blood cultures. This excluded pre-defined contaminants isolated in only 
one culture bottle or only one set (1 anaerobe and 1 aerobe blood culture bottle) if more than 
one set of blood cultures were collected within 24h. Identification of contaminants were 
based on the CDC/National Healthcare Safety Network Patient Safety Component Manual 

Appropriate antimicrobial 
therapy 

Receiving at least one antimicrobial agent for which the identified pathogen was found to be 
susceptible in vitro. In polymicrobial infection, all identified pathogens needed to be covered 
by at least one antimicrobial agent to be classified as appropriate therapy. In all studies, 
antimicrobial susceptibility was inferred from disk diffusion methods. In Paper IV, surrogate 
antibiograms with imputed susceptibilities were created for drugs not directly registered in 
the susceptibility report based on: reported susceptibilities, known intrinsic resistance, expert 
rules and breakpoint tables from the EUCAST, similar to previously described methods 2,220 

Inappropriate antimicrobial 
therapy 

Receiving treatment without in vitro pathogen coverage or no treatment 

Source of infection 

Defined in Paper I during medical record review according to previously validated criteria 
based on CDC and The International Sepsis Forum definitions 66,368,369. In addition, episodes 
were divided by source and classified on a 4-graded scale according to likelihood of infection 
as: no infection, possible infection, probable infection and definite infection 17. In Paper II and 
IV, source of infection was defined according to ICD-10 codes registered during the 
admission. In Paper V, source of infection was determined by the reviewing physician 
guided by the CDC criteria 66 

Immunosuppression 

Defined in Paper IV based on ICD-10 codes registered in the year prior to admission until 
24h after admission. In Paper V, immunosuppression was defined as either chemotherapy 
during the last 30 days, systemic corticosteroid treatment (>10 milligrams of prednisone for 
>29 days), neutropenia (absolute neutrophil count <0.5x109/liter), solid organ transplant, 
bone marrow transplant and/or chronic dialysis treatment 

Multidrug-resistance 

Phenotypic resistance to three or more antimicrobial drugs from different drug classes 279. In 
Paper IV, findings of Methicillin-resistant S. aureus, Enterobacterales with extended-
spectrum beta-lactamases production or vancomycin-resistant enterococcus were 
considered antimicrobial-resistant phenotypes 

Charlson comorbidity index Generally defined based on ICD-10 codes available from 5 years before admission 370 

Abbreviations: Centers for Disease Control and Prevention (CDC), intensive care unit (ICU), International classification of 
diseases (ICD), bloodstream infection (BSI) and European committee on antimicrobial susceptibility testing (EUCAST) 
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To perform WGS, bacterial colonies were collected from overnight cultures for DNA 

extraction with the EZ1 Advanced XL system (Qiagen). The quantity of the extracted DNA 

was measured using a Qubit double-stranded DNA (dsDNA) assay kit (Life Technologies 

Europe). Extracted DNA was diluted to an approximate target sample concentration of 10 

nanogram/microliters and a target sample volume of 50 microliters before sequenced on 

Illumina HiSeq sequencer (San Diego, CA, USA) at Science for Life laboratory (SciLifeLab, 

Solna, Sweden), producing 2 × 150 bp paired-end sequences.  

WGS data were then processed through an in-house bioinformatics pipeline which was set up 

specifically for the study. In short, the quality of the reads was first assessed using FastQC and 

the short reads were trimmed and filtered using Trim Galore. Reads were then assembled de 

novo into longer contigs using SPAdes. Multi Locus Sequence types (MLST) were determined 

in silico using the BLAST+ package and reference sequences from the pubMLST database. 

The phylogenetic tree was constructed using MAFFT and the maximum-likelihood algorithm 

in FastTree. Open reading frames (ORFs) on contigs were predicted using Prodigal, and 

Diamond BLASTx was used to searching ORFs against reference proteins in the Virulence 

Factor Database (VFDB) and Victor database 356,371. The coverage and identity thresholds were 

set at 80% to be considered a match. 

 

3.3 STATISTICAL ANALYSES 

In general, results were presented as frequencies and percentages, mean and standard deviation 

(SD) or median and interquartile range (IQR) as appropriate. The difference between 

independent categorical variables was assessed using Chi-square test if the expected cell count 

was above 5, otherwise the Fisher exact test was used. The difference between non-normally 

distributed continuous variables was assessed with Mann-Whitney U or Kruskal-Wallis tests, 

depending on the number of groups compared. Confidence intervals (CI) were presented as the 

interval between the 2.5th and 97.5th confidence levels. Two-sided P-values <0.05 were 

considered statistically significant. The analyses were performed in STATA, R and Python. 

 

3.3.1 Application of statistical methods in each paper 

3.3.1.1 Paper I 

A rule-based classification algorithm was developed based on the Sepsis-3 clinical criteria 

(Table 6). To assess algorithm performance, we used a method previously described by Rhee 

et al. 102. A 2x2 confusion matrix was constructed for each of the validation sets with the 

medical record review as reference standard. Sensitivity, specificity, positive predictive value 

(PPV) and negative predictive value (NPV) were then calculated by generalizing the 

proportions from the validation set to the entire source population. CIs were obtained from 

point estimates of the 2.5th and the 97.5th percentiles of bootstrap sampling of the 2x2 confusion 
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matrixes derived from the validation. The probability of hospital-onset sepsis was calculated 

using the cumulative incidence function (CIF), accounting for competing risks: ICU admission, 

discharge or death. The CIF provides the accumulated risk of the event of interest (or the 

competing event) up to a given time t. The comparison of CIF between wards was estimated 

based on the subdistribution hazard model by Fine and Gray. 

3.3.1.2 Paper II 

SpO2 was categorized a priori as: 100-97% (reference), 96%, 95%, 94%, 93%, 92%, 91%, 

90%, 89-88%, 87-86%, 85-84%, 83-82% and 81-50%. We then used multivariable logistic 

regression to evaluate the association between our predictor of interest, SpO2 category, and 

mortality. The exponentiated β-coefficients of SpO2 estimates the odds ratios (OR), which can 

be interpreted as the relative risk of death compared to the reference category SpO2 100-97%. 

The model was adjusted for possible confounders, which were determined a priori as: age, sex, 

Charlson comorbidity index (CCI) group and SOFA score (respiration component omitted). 

Analyses were performed both in the main cohort and in the validation data sets. To account 

for dependency of data when pooling episodes in the validation set, cohort was added as 

random effect variable. Furthermore, the SOFA score was originally developed for mortality 

prediction, but the impact of including SpO2 in the SOFA score had not been systematically 

assessed. Using main cohort data, we fitted several logistic regression models including 

baseline predictors (age, sex and comorbidities) alone and baseline predictors plus SOFA score 

with and without adding SpO2 measurements. Model fit was assessed with the Akaike 

Information Criterion (AIC). Based on these models, the probability of death was predicted in 

both the main and pooled validation cohorts, respectively. Model predictions were compared 

with AUROC using the method by Delong 372. 

3.3.1.3 Paper III 

The cohort was divided into a training and tuning data set (July 2012 – June 2013) and a 

validation data set (July 2013 – December 2013). The split was based on calendar time to 

ensure algorithm performance over time. Sepsis onset was determined according to the 

validated rule-based Sepsis-3 classification algorithm developed in Paper I. A machine 

learning model based on a Bayesian network (SepsisFinder) was trained to predict sepsis onset 

within 48 hours using routine measurements of vital parameters, laboratory variables and 

hospital administrative data. The Bayesian network model, also known as a causal probabilistic 

network (CPN)/graphical model, is constructed of predefined random variables (nodes) linked 

together with arrows representing conditional probabilities 373. Furthermore, it is possible to 

state variables that are conditionally independent from each other and to add hidden variables 

– i.e. variables that are not observed but encode a concept such as severity of disease. This 

creates a web of a cause and effect relationships between variables, e.g. vital parameters and 

laboratory test results, but also concepts like SIRS. In Paper III, both the structure of the CPN 

and the probabilities were specified using a combination of manual curation and automated 

learning 191. The joint probability of sepsis was estimated based on all variables of the CPN, 

including information from missing variables 191. 
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To simulate a clinically realistic use-case, a score was generated hourly on all admission, 

providing a new variable was registered. In addition, the alarm was silenced for 48 hours after 

each positive trigger, to mimic a situation where healthcare providers are thought to act on a 

threshold-based warning system. We used a “soft window” approach where we allowed a 

trigger to happen at any time during the 48-hour window prior to sepsis, but assumed that a 

negative screen was a true negative because the patient had not yet started to show signs of 

sepsis (Figure 5). This was done to prevent bias in model training, by punishing the model for 

what in many instances would be a correct negative screen. Hence, each sepsis patient was only 

considered as false negative if they were never detected during the 48-hour time window. 

 

Figure 5. Schematic overview of the method used when calculating the discriminatory performance of 

SepsisFinder and NEWS2. The colors represent the different screening windows.  

 

Discrimination was assessed by summary metrics AUROC and APR based on individual 

screens, with bootstrapped CIs. The ROC curve describes the relationship between true positive 

subjects (sensitivity or recall) and false positive subjects (1-specificity) for all discriminatory 

thresholds of the algorithm predictions. The PR curve is based on the same logic as ROC, but 

describes the relationship between sensitivity and the PPV. The APR is especially informative 

in data sets with high class-imbalance. Model performance was compared to the discriminatory 

performance of NEWS2, and assessed in subgroups in the validation set to identify areas for 

potential applicability. Finally, 3 operating points for SepsisFinder were chosen to match that 

of the standard clinical decision-making thresholds for NEWS2: NEWS2=5 and NEWS2=7, 

and the threshold that gave closest to 85% sensitivity. Timeliness of the true positive alert, 

defined as hours before sepsis onset, was assessed for each threshold in the true positive cases, 

and compared to NEWS2. 
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3.3.1.4 Paper IV 

We evaluated the association between inappropriate therapy and 30-day mortality using 

multivariable logistic regression, with and without stratification based on disease severity (high 

SOFA score >2 points or low SOFA score <2 points). The analyses were adjusted for possible 

confounders identified a priori as: age, sex, CCI, immunosuppression, SOFA score, 

polymicrobial BSI, source of infection, calendar year and hospital-onset of BSI. Since we 

studied a time dependent exposure, patients with inappropriate treatment had to be alive to be 

switched to appropriate treatment, leading to immortal time bias. To handle this in the analyses, 

we used the landmark method where deceased patients, as well as those with undetermined 

drug-bug combinations, were excluded at each pre-defined time point (1, 3, 6, 12, 24, 48 and 

72 hours). As a consequence, results could only be generalized to patients surviving to each 

landmark. The subgroup of patients with septic shock was analyzed separately. 

3.3.1.5 Paper V 

The association of virulence genotype with mortality and septic shock was assessed using 3 

different data driven approaches to define exposure, all accounting for different levels of 

aggregation of virulence genotype data: (I) based on common bacterial clones, (II) based on 

distinguishable virulence gene clusters, and (III) based on individual virulence genes. Epidemic 

clones were categorized as sequence types (STs) occurring >10 times in the cohort (n=11 

different STs). After annotation of virulence genes, there were 247 sequences matching 

reference proteins in the VFDB and 91 sequences matching reference proteins in the Victors 

database, but several genes were overlapping between the databases. Since a large portion of 

virulence genes were either match or no match in most of the bacterial isolates, they were 

filtered based on frequency to enable meaningful downstream analyses of individual genes. A 

threshold of virulence gene match in between 2% to 98% of the isolates was chosen, and genes 

with high collinearity were also grouped. The final dataset consisted of 26 gene variables. 

To explore clusters of virulence genotypes in the cohort, Principal Coordinate Analysis (PCoA) 

was performed. PCoA is a method of visualizing (dis)similarities between subjects based on 

large sets of variables in a spatial representation 374. The PCoA requires transformation of data 

into a distance matrix in a Euclidean space with Cartesian Coordinates. In Paper V, the PCoA 

was based on a Euclidean distance matrix of the binary match/no match of all annotated 

virulence genes from the VFDB. The spatial matrix was then rotated so that a new axis could 

be drawn without changing the relative distance between each bacterial isolate. A second axis 

was drawn orthogonal to the first. The axes were ordered hierarchically and display the 

maximum variation in the data using two dimensions. Hence, most variation was described by 

the first axis and second most variation was described by the second axis. 

Furthermore, we assessed the relationship between patient characteristics and infection by the 

epidemic clones, as well as the virulence clusters derived from the PCoA. The purpose of these 

analyses was to explore indirect signs of invasive potential of specific clones. In the next step, 

we evaluated the association of ST, virulence clusters, T3SS and individual virulence genes 
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with patient outcome. Each virulence trait was first assessed in a univariable logistic regression 

model, and then selected variables were further assessed in a multivariable logistic regression 

model. Adjustments were made for: geographical site, age group, gender, CCI group, 

immunosuppression, department of hospitalization and hospital-onset BSI. Finally, to evaluate 

if virulence genotype carried important information to predict patient outcome, we trained and 

tested several prediction models based on a random forest classifier, where each model 

included baseline patient variables and a different set of virulence genotype data (Figure 6). 

The random forest method was chosen since there was a large number of predictors in relation 

to the sample size, as well as to account for complex interactions between variables. The cohort 

was randomly split 80/20 into a training set for model development and tuning, and a test set 

for model evaluation. To account for variability of the random 80/20 data set split, this process 

was repeated 20 times using different seeds generated from random integer numbers. 

Discrimination was compared using the distribution of AUROC for the 20 different splits. In 

addition, the difference in AUROC between the models including virulence data and the 

reference model for each of the 20 splits were calculated.  

 

 

 

Figure 6. Schematic overview of the method used when fitting the random forest model. To account for variability 

of the random 80/20 data set split, this process was repeated 20 times. Patient factors were: age, gender, 

comorbidity, department of hospitalization, immunosuppressed state and nosocomial infection. Model 2 included 

all filtered virulence genes (n=26). Mtry means number of variables randomly sampled at each split. 

Abbreviations: synthetic minority oversampling technique (SMOTE). 
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The Random forest model is based on multiple independently grown decision trees, but 

generates the final classification based on the majority vote, hence, the forest 375. The model is 

able to pick up complex non-linear interactions between predictors, and handles situations 

where predictors dominates the number of samples, since not all predictors are used 

simultaneously. To prevent from overfitting, each tree is built on a subset bootstrap sample 

from the training data, which randomly leaves out approximately 1/3 of the observations, 

known as the out-of-bag (OOB) sample 376. The OOB sample is used for model predictions 

during training to improve the learning. Each decision tree is built by splitting observations 

into nodes until a decision on class membership has been made for all observations. The node 

size determines the minimum number of cases allowed in each terminal node. At each node 

split, a number of randomly selected predictors (defined as mtry in Figure 6) are considered, 

and the one that produces the most separation between the observations is picked. The split rule 

determines how the value of the predictor is separated at each split. This process is then 

repeated for n trees.  

In addition, one of the models included a feature selection step using a Boruta algorithm in the 

training set 377. The Boruta is designed to create a permuted copy of each predictor variable 

called a “random shadow feature”. To determine which predictors are more associated with the 

outcome than chance, it then fits a random forest classifier and iteratively removes independent 

variables which are less important than the random features based on statistical testing. 

 

3.4 ETHICAL CONSIDERATIONS 

All studies were approved by the regional ethical review boards at each center where data was 

collected. Since the studies are based on retrospective data from a large number of participants, 

with incidence or mortality as an outcome of interest, informed consent was not possible to 

collect without biasing the results. Hence, the ethical review boards gave their approval to the 

studies with a waiver of consent from participants. The primary ethical consideration was lack 

of autonomy, and breach of privacy, since we had to collect data from patients’ medical records. 

To minimize the impact on individual participants, several measures were taken. First, the 

majority of data was collected from pseudo-anonymized research databases with no available 

key for the researchers and, hence, no possibility to identify individual patients. Second, only 

the minimal necessity of data was collected and all data was kept in secure storage. Only 

responsible researchers had access to the data. Finally, results were presented on an aggregated 

level to further avoid the possibility to identify any individual participants. None of the studies 

had direct impact on the care of the individual patients. Collectively, it was judged that the 

beneficial impact of these studies would outweigh the potential harm subjected to any 

participant.  
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RESULTS 

 

3.5 AUTOMATED SEPSIS DIAGNOSIS TO ENABLE EPIDEMIOLOGICAL 
SURVEILLANCE 

The rule-based sepsis algorithm was developed to classify onset of sepsis in non-ICU wards 

using EHR data (see Paper I for detailed description of the algorithm). To validate the 

algorithm performance and estimate the burden of sepsis in the hospital, we included 82 653 

hospital episodes (54 884 patients). Among these episodes, 19 479 (23.6%) contained a 

suspected infection. The median patient age was 64 years and 50.9% were women. After 

physician medical record review, 343 out of 1000 subjects fulfilled the organ dysfunction 

criteria in Sepsis-3. Among these episodes, 109/343 (31.8%) had possible infection, 87/343 

(25.4%) had probable infection, 117/343 (34.1%) had definite infection and 30/343 (8.7%) had 

no infection. After excluding patients with no infection, a total of 313 out of 1000 reviewed 

subjects were finally considered as true sepsis by reviewers. Ranking the source of infection in 

confirmed sepsis episodes gave the following result: respiratory (n=119/313, 38.0%), 

urogenital (n=54/313, 17.3%), unknown source (n=42/313, 13.4%), bloodstream (35/313, 

11.2%), skin, bone and joint (30/313, 9.6%), abdominal (n=26/313, 8.3%) and other infectious 

sources (7/313, 2.2%). 

Algorithm performance against the physician reference is shown in Table 7. Reduced algorithm 

sensitivity was mainly caused by respiratory dysfunction or altered mental status only being 

mentioned in free text, overestimation of pre-existing organ dysfunction or sepsis-related organ 

failure not captured within the stated timeframe. Imperfect algorithm specificity was usually 

due patients being judged as not having an infection by reviewers, misclassification of baseline 

SOFA score or obvious measurement errors of vital parameters in the EHR. 

 

 

When applying the surveillance algorithm in the entire study population, 8599 sepsis episodes 

were identified, and only 13.4% of these had a corresponding ICD-code indicative of sepsis. 

Among the sepsis episodes, 7493 (87.1%) and 1106 (12.9%) were classified as community-

onset and hospital-onset sepsis, respectively. The most frequent organ dysfunction registered 

Table 7. Algorithm performance against the medical record reviewed reference in the entire 
hospital cohort (n=82 653) 

Sensitivity  

(95% CI) 

Specificity  

(95% CI) 

PPV  

(95% CI) 

NPV  

(95% CI) 

0.887  

(95% CI: 0.799-0.964) 

0.985  

(95% CI: 0.978-0.991) 

0.881  

(95% CI: 0.833-0.926) 

0.986  

(95% CI: 0.973-0.996) 

Abbreviations: confidence interval (CI), positive predictive value (PPV) and negative predictive value (NPV) 
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by the algorithm in sepsis episodes were respiratory and renal dysfunction (Figure 7). The 

probability of acquiring hospital-onset sepsis with longer hospital stay differed significantly 

depending on type of hospital ward. Transplant (CIF 0.078 at day 30) and hematology (CIF 

0.061 at day 30) wards were associated with the highest risk, while orthopedic (CIF 0.004 at 

day 30) wards were associated with the lowest risk. 

 

 

Figure 7. The proportion of sepsis episodes where the SOFA score component contributed to the sepsis 

classification. 

 

3.6 PERIPHERAL OXYGEN SATURATION TO DIAGNOSE RESPIRATORY 
DYSFUNCTION IN SEPSIS 

The findings in Paper I showed that the majority of sepsis diagnoses were triggered by 

respiratory dysfunction (Figure 7). However, to adapt the SOFA score to a non-ICU setting, 

the respiratory assessment was based on peripheral oxygen saturation (SpO2), which had 

previously not been validated in the Sepsis-3 criteria. To assess the use of SpO2 to diagnose 

sepsis, we revisited the group of suspected infections which also had an SpO2 measurement 

(17 738 episodes) from the Health Bank cohort (median age 67.0 [53.0-77.0]; 9007 [46.4%] 

women; 1044 [5.4%] died), as well as including 4 external validation cohorts: KH, HERO, 

Impressed and SepsisAlarm (n=10 486 with SpO2 measurements). The validation cohorts had 

a range of; median age 61.0-76.0; proportion of women 42.1-50.2%; and mortality rate 2.3-

13.3%. Compared to reference SpO2 100-97%, SpO2 96% or 95% were not significantly 
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associated with increased mortality, but the risk of death increased gradually starting from 

SpO2 94% (Figure 8). In the validation cohorts, the odds ratios (ORs) were smaller and 

displayed more variation, but followed a similar trend with a significantly increased mortality 

risk at SpO2 94% (Figure 8). 

 

 

Figure 8. Association of SpO2 at onset of suspected infection and mortality. The odds ratios are adjusted for age, 

sex, comorbidity and organ dysfunction other than respiratory failure. Cohort was also added as random effect 

when analyzing the pooled validation cohorts (orange line). 

 

When adding SpO2 to the SOFA score in the main cohort, the discrimination of mortality 

improved from AUROC 0.75 (95% CI, 0.74-0.77) without respiratory assessment, to AUROC 

0.78 (95% CI, 0.77-0.80, P<0.001) with respiratory assessment. Since decreasing SpO2 was 

clearly associated with mortality in patients with suspected infections, we also wanted to apply 

operational thresholds of SpO2 in the SOFA score. The original SOFA score is based on arterial 

blood gas measurements of PaO2/FiO2 ratio to assess respiratory function. Using validated 

converting tables, SpO2 can be transformed to the equivalent PaO2 value. Based on this 

conversion, SpO2 levels of 95% and 91% without oxygen treatment equals 1 and 2 SOFA 

points respectively 378. As seen from Figure 8, the mortality increased significantly at SpO2 

94%, and at SpO2 90% the CIs did not overlap in the main cohort. A post-hoc explorative 
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analysis was performed where SpO2 94% and 90% were operationalized to generate 1 and 2 

SOFA points respectively. A logistic regression model based on the new thresholds showed 

similar predictive performance as the original thresholds (SpO2 95% and 91%). However, with 

the new thresholds, the number of patients classified according to the Sepsis-3 criteria 

decreased by 7-10% in both the main and pooled validation cohorts, with similar or slightly 

increased mortality (Table 8). 

 

 

3.7 EARLY IDENTIFICATION OF SEPSIS USING A MACHINE LEARNED 
BAYESIAN NETWORK MODEL 

Using the sepsis algorithm developed in Paper I, we were now able to generate an objective 

assessment of sepsis onset in a large set of hospitalized patients. This enabled further studies 

of early sepsis identification using a machine learned prediction model, which generally 

requires large data sets to make meaningful evaluations. Using the Health Bank cohort, 8038 

(9.7%) sepsis episodes, were included in Paper III. Since hospital episodes were truncated at 

ICU-admission, the number of sepsis cases are slightly lower than in Paper I (n=8599). Among 

the sepsis episodes, 6889 (8.3%) were classified as community-onset and 1149 (1.4%) were 

classified as hospital-onset. After dividing the data into two time periods, the training set (July 

2012 – June 2013) comprised 56 302 (67.9%) admissions with 5436 (9.7%) sepsis episodes, 

and the validation set (July 2013 – December 2013) comprised 26 550 (32.2%) admissions 

with 2602 (9.8%) sepsis episodes. A Bayesian network model (SepsisFinder) was trained 

according to a process described in Paper III. Algorithm performance and timeliness of true 

positive alarms before sepsis onset are shown in Table 9. SepsisFinder had good discriminative 

ability and outperformed NEWS2 in terms of AUROC and APR. In addition, SepsisFinder 

predicted sepsis onset (organ dysfunction) significantly earlier than NEWS2 for all tested alarm 

thresholds. Antibiotic administration usually occurred after onset of sepsis related organ 

dysfunction. With a sensitivity threshold close to 85%, SepsisFinder triggered median 5.5h 

(IQR 1.9-22.8h) before antibiotic administration in sepsis patients.  

In subgroup analyses of SepsisFinder performance, the AUROC was robust to changes in the 

population screened and timing of screening, except for patients who died (AUROC 0.872). 

Table 8. Changes of sepsis classification depending on SpO2 threshold in the SOFA score 

 Main cohort Validation cohorts (pooled) 

Sepsis-3 
classification 

Original thresholds 
(SpO2 95% and 91%) 

New thresholds 
(SpO2 94% and 90%) 

Original thresholds 
(SpO2 95% and 91%) 

New thresholds 
(SpO2 94% and 90%) 

Number of 
episodes 

7267 6788 4160 3735 

Mortality (%) 8.5 9.2 12.0 12.6 

Abbreviations: peripheral oxygen saturation (SpO2) and sequential organ failure assessment (SOFA) 
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On the contrary, the APR changed substantially in different subgroups of patients, with higher 

APR of 0.595 in 2-day long episodes and lower APR of 0.021 in hospital-onset sepsis episodes. 

The APR also decreased with more hospital days screened. These results indicate better clinical 

applicability of the SepsisFinder earlier on during the hospitalization period, as well as less 

pronounced applicability for longer hospital episodes or predictions of very rare events such as 

hospital-onset sepsis. The APR was high in episodes with confirmed BSI (APR 0.350), i.e. 

culture positive sepsis, compared to episodes with no BSI (APR 0.164), i.e. culture negative 

sepsis. In addition, APR was higher in risk periods prior to surgery (APR 0.231) compared to 

risk periods post-surgery (APR 0.126), indicating superior performance in non-surgical 

episodes or in episodes before surgery. 

 

Table 9. Comparison of the predictive performance between SepsisFinder and NEWS2 

Variable SepsisFinder NEWS2 

AUROC (95% CI) 0.950 (0.946 – 0.954) 0.871 (0.858 – 0.877) 

APR (95% CI) 0.189 (0.173 – 0.201) 0.149 (0.138 – 0.161) 

Timeliness at sensitivity 20%,  
median (IQR)a 1.0 (0.0-8.0)b 0.0 (0.0-2.0)b 

Timeliness at sensitivity 42%,  
median (IQR)a 1.0 (0.0-8.0)c 0.0 (0.0-4.0)c 

Timeliness at sensitivity 85%,  
median (IQR)a 2.0 (0.0-11.0) Not avaliable 

aTimeliness defined as hours between alarm trigger and sepsis onset in true positive patients. Sensitivity 20% matches that 

of NEWS=7 points. Sensitivity 42% matches that of NEWS=5 points. 
bP<0.0001 for comparison 
cP<0.0001 for comparison 

 

3.8 IMPACT OF TIME TO APPROPRIATE ANTIMICROBIAL TREATMENT IN 
BLOODSTREAM INFECTION 

The main reason to identify sepsis early is to enable initiation of prompt antimicrobial 

treatment. However, the urgency of antimicrobials is an area of debate and the impact of timing 

of appropriate antimicrobial therapy with in vitro coverage of the cultured pathogens remains 

unclear. To study this question, we used the 2SPARE database and focused on bloodstream 

infections (Paper IV). After applying inclusion and exclusion criteria, the cohort comprised 

10 628 BSI-episodes, occurring in 9192 unique patients. The study population had a median 

age of 69 years, 56.8% were females and 30-day mortality was 11.8%. The vast majority of 

BSIs were community-onset (85.3%), and the most prevalent pathogens were E. coli, S. aureus 

and viridans streptococci. Polymicrobial BSI was uncommon (11.5%), and few episodes 

included possible skin contaminants (9.9%) or antimicrobial-resistant strains (4.0%). Based on 

high SOFA-scores and a high proportion of combination therapy, the patients who received 

appropriate therapy within 1 hour seemed to suffer from more severe illness. Furthermore, in 
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the group of patients receiving appropriate therapy after 24 hours, the proportions of 

antimicrobial-resistant pathogens, polymicrobial infections and potential contaminants were 

high. Septic shock at blood culture collection occurred in 608 of 10 628 (5.7%) episodes, and 

the majority of these had received appropriate treatment within the first hours. At the 12-hour 

landmark time, only 77 of the 608 (12.6%) septic shock episodes still had inappropriate 

treatment.  

 

 

Figure 9. Association of inappropriate therapy and mortality stratified by all episodes, episodes with low SOFA 

score <2 and episodes with high SOFA score >2. The odds ratios are adjusted for age, sex, CCI, 

immunosuppression, SOFA-score, polymicrobial bloodstream infection, source of infection, admission year and 

community vs. hospital-onset. 

 

In Figure 9, the association between appropriate therapy and 30-day mortality is presented for 

each landmark time. At the 1-hour landmark, inappropriate treatment was associated with 

lower risk of death (OR 0.83 [95% CI, 0.72-0.95]), indicating some residual indication bias 

despite controlling for several factors associated with disease severity. At the 12-hour 

landmark, inappropriate treatment was associated with significantly increased mortality (OR 

1.17 [95% CI, 1.01-1.37)]), and the risk was increased also at the later time points. The point 

estimates were not affected by stratifying on disease severity to any large degree, but the 

precision decreased. In episodes with septic shock, we did not have sufficient power to make 

any conclusions, and there was no clear trend in any direction. 
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3.9 ASSOCIATION OF BACTERIAL VIRULENCE GENOTYPE WITH PATIENT 
CHARACTERISTICS, SEPTIC SHOCK AND MORTALITY IN P. 
AERUGINOSA BLOODSTREAM INFECTION 

As shown in Paper IV, appropriate antimicrobial treatment is a crucial prognostic factor in 

BSI. However, we also noticed heterogeneity when looking into subgroups of different BSI 

pathogens suggesting that other bacterial factors may play a role in determining patient 

outcomes (Paper IV, Supplement Figure 6). In BSI, P. aeruginosa is one of the most 

challenging pathogens, commonly found in hospital-onset infections. Several laboratory 

studies have suggested that bacterial virulence genotypes may influence infection outcome, and 

that virulence could be targeted by interventions or novel adjuvant treatments in addition to 

antibiotics, but data from clinical infections are sparse. From the PA BSI network, we recruited 

centers which routinely saved their bacterial isolates (Paper V). In total, 773 patients were 

included with median age 68 years (IQR 57-78 years) and 267 of 773 (34.5%) females. 

Comorbidity was common and 571 of 773 (73.8%) patients had a CCI index of 2 points or 

more. In total, 138 of 773 (17.9%) patients had chronic lung disease, 577 of 773 (47.1%) 

patients were immunocompromised and 131 of 773 (16.9%) patients had no underlying 

comorbidities registered. Overall, 120 of 773 (15.5%) patients died within 7 days and 182 of 

773 patients (23.5%) died within 30 days of blood culture. Septic shock at BSI onset occurred 

in 115 of 639 (18.0%, Seville excluded due to missing data) patients and the mortality rate was 

44.4% (51 of 115 patients) day 7 and 53.9% (62 of 115 patients) day 30. 

 

 

The most common ST was ST244 (n=36), followed by ST111 (n=34), ST235 (n=31) and 

ST175 (n=28). The proportion of MDR phenotype differed depending on ST (p=0.0001), with 

85.3% of ST111, 71.4% of ST175 and 64.5% of ST235 isolates exhibiting such resistance. In 

total, 83 of 112 (74.1%) MDR isolates belonged to one of the epidemic clones. There was a 

significant age difference between patients depending on epidemic clone (p=0.009). Patients 

with ST175 (median 60 years [IQR 50-67 years]) and ST446 (median 55 years [QR 47-58 

Table 10. Association of virulence cluster with sequence type and antimicrobial resistance 

Variable Virulence cluster 

 A B C D E F 

Size, No.      
(% of total 
cohort) 

36 (4.6) 51 (6.6) 72 (9.3) 134 (17.3) 220 (28.5) 237 (30.7) 

MDR 
phenotypes, 
No. (%) 

2 (5.6) 0 (0.0) 2 (2.7) 32 (23.9) 36 (16.4) 39 (16.5) 

Dominating 
sequence 
type 

ST253 ST274 ST244 ST111 

ST175, 
ST313, 

ST395 and 
ST446 

ST235, 
ST179 and 

ST17 

 
Abbreviations: multi-drug resistance (MDR) and numbers (No) 
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years]) were younger, while patients with ST313 (median 71 years [IQR 68-84 years]) were 

older. Chronic lung disease was common in patients infected with ST175 (11 of 28 patients 

[39%]), but not in patients infected with ST235 (1 of 31 patients [3%]) (p=0.01). None of the 

patients with ST313 had chronic lung disease. Hosts with immunosuppression or absence of 

underlying comorbidities were not associated with epidemic clones (p=0.50 and 0.24). Using 

PCoA on a matrix of all annotated genes in the VFDB, we made a novel discovery of 6 large 

genotypic virulence clusters including more than 20 isolates (Cluster A-F). Each cluster was 

present in several geographical locations and was dominated by different STs (Table 10), but 

was not associated with specific patient phenotypes. 

In further analyses, we focused on the association between virulence genotype with mortality 

and septic shock. ST235 and ST175 were associated with increased 7-day and 30-day mortality 

after adjusting for confounding factors. None of the STs were significantly associated with 

septic shock at onset of BSI. Similar findings were seen for virulence clusters, which were 

neither associated with mortality nor septic shock. Similarity between query nucleotide 

sequence with reference genes involved in rhamnolipid biosynthesis were negatively 

associated with 7- and 30-day mortality (OR 0.36 [95% CI, 0.13-0.98], p<0.05; and OR 0.33 

[95% CI, 0.13-0.83], p=0.02, respectively). In addition, flagella (flaG, fleP, flg, fliC, fliD, fliS) 

and gene reference homology were negatively associated with 7-day mortality (OR 0.56 [95% 

CI, 0.35-0.90], p=0.02; and OR 0.36 [95% CI, 0.13-0.98], p=0.05, respectively). Presence of 

the exoU genotype and homology in Elongation factor Tu (tufA) with gene reference were 

associated with septic shock (OR 1.99 [95% CI, 1.08-3.64], p=0.03; and OR 2.96 [95% CI, 

1.38-6.34], p=0.005, respectively), but not with mortality. The exoS and exoY genotypes were 

negatively associated with septic shock (OR 0.52 [95% CI, 0.29-0.95], p=0.03; and OR 0.41 

[95% CI, 0.21-0.81], p=0.01, respectively). 

In the next step, we used a random forest classifier to assess if virulence genotype added any 

predictive information compared to using only information on readily available patient factors. 

In Model 1, the virulence genotype was based on features selected using the Boruta algorithm, 

but it is worth noticing that the algorithm does not focus on the direction of the association. 

Figure 10 shows the distribution of selected variables after the Boruta was run 20 times using 

different random 80/20 splits of data. For predicting 7-day mortality, the variables most often 

deemed important by the Boruta were related to pyoverdine (fpvA, pvdD, pvdI, pvdJ) and 

rhamnolipid (rhlA, rhlB and rhlI) synthesis. For predicting 30-day mortality, rhamnolipid was 

selected by the algorithm every time. In septic shock, the T3SS related effector proteins exoS 

and exoU were most often selected. Predictions of mortality and septic shock using the random 

forest model generally performed slightly better when adding virulence genotype data 

compared to using patient variables alone (Table 11). When predicting mortality, the prediction 

models had higher AUROC than the reference model in 14 to 19 of the 20 algorithm runs (70-

95%) depending on model. For prediction of septic shock, Model 1 performed better than the 

reference model in 15 of 20 (75%) algorithm runs. Overall, the differences in AUROC between 

the models using virulence data compared to the reference model were small. 
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Figure 10. Results from running the Boruta feature selection algorithm on the training set, repeated for each of 

the 20 random splits of data. The color scale represents the proportion of algorithm runs in which the feature was 

selected. The figure only includes virulence features selected a minimum of once and white color represents 

feature that where never selected for that specific outcome. 

 

Table 11. Prediction model outputs with and without virulence genotype data 

Model 
Mortality day 7 

Median AUROC (IQR) 
Mortality day 30 

Median AUROC (IQR) 
Septic Shock* 

Median AUROC (IQR) 

Reference model – Patient 
factors 

0.743 (0.715-0.763) 0.706 (0.681-0.734) 0.803 (0.761-0.832) 

Model 1 – Patient factors  
and Boruta features 

0.756 (0.711-0.795) 0.725 (0.697-0.747) 0.816 (0.789-0.842) 

Model 2 – Patient factors  
and all virulence features 

0.731 (0.707-0.786) 0.713 (0.685-0.742) 0.791 (0.771-0.821) 

Model 3 – Patient factors  
and virulence clusters 

0.757 (0.715-0.789) 0.731 (0.702-0.750) 0.803 (0.758-0.828) 

Model 4 – Patient factors  
and epidemic clones 

0.761 (0.728-0.804) 0.736 (0.717-0.768) 0.775 (0.755-0.793) 

Abbreviation: area under receiver operating characteristics (AUROC) and interquartile range (IQR) 

*Seville was excluded from the training an testing data due to missing data on septic shock 

 

  



 

 49 

4 DISCUSSION AND PERSPECTIVES 

 

In this thesis, several findings with implications for diagnosing and treating sepsis and BSI are 

presented. The results are based on observational data from 7 cohorts of more than 100 000 

hospital episodes, as well as WGS data from approximately 800 invasive P. aeruginosa isolates 

collected from several centers in Europe and Australia.  

In Paper I, we demonstrated that fully automatic surveillance of sepsis incidence using the 

Sepsis-3 case definition is feasible outside an ICU setting, with examples of how implementing 

this model generates continuous high quality epidemiological data down to individual ward 

level. In Paper II, evidence is provided for using non-invasive measurements of SpO2 to 

diagnose respiratory dysfunction in the Sepsis-3 criteria, proposing the novel cut-offs SpO2 

94% and 90% to generate 1 and 2 SOFA respiratory points, respectively. This has important 

implications for improving sepsis diagnosis, especially when conventional arterial blood gas 

measurements are not available in epidemiological surveillance and research, but also in 

clinical situations such as emergency practice, rapid response teams and resource-limited 

settings. In Paper III, we showed that the sepsis surveillance classification can be utilized to 

develop machine learning screening tools to improve early identification of sepsis. A Bayesian 

network algorithm (SepsisFinder) trained on sparse routine EHR data was able to predict sepsis 

onset within 48h with better discriminatory performance and earlier in the clinical course than 

conventional NEWS2 outside the ICU-setting. Based on the results, screening may primarily 

be suited for the period directly following admission when the pre-test probability of sepsis is 

higher, which have implications also for other sepsis screening tools. In Paper IV, we 

demonstrated that receiving appropriate antimicrobial treatment after 12 hours in BSI were 

associated with increased mortality, but not if treatment were delayed for only 1, 3, or 6 hours. 

This indicates a time window where clinicians should focus on the diagnostic workup, and 

proposes a benchmark for developing rapid diagnostics of blood cultures. Finally, in Paper V, 

we showed that the bacterial virulence genotype has some impact on mortality and septic shock 

in P. aeruginosa BSI, but that the added value of including virulence data in the prognostic 

assessment of these patients was minor. 

Educational efforts and the introduction of sepsis care bundles have been associated with 

decreased mortality, justifying structured management of sepsis in hospitals 107,204–206. A 

cornerstone of most quality improvement programs are disease surveillance with feedback to 

healthcare providers 64. Using objective clinical data for surveillance have been shown in 

several studies to offer an unbiased estimate over administrative diagnosis codes 102. In Paper 

I, and the related editorial, the first ever report of a validated fully automated surveillance 

algorithm built on the Sepsis-3 criteria is presented 379. The algorithm correctly captured almost 

90% of sepsis patients, while only 13.4% had ICD-10 codes corresponding to sepsis, 

confirming findings from previous studies comparing medical record review to ICD-codes 97,98. 

By using a physician reviewed gold standard, we could also show that the Sepsis-3 clinical 

criteria in 91% of cases captured patients where clinicians continue to maintain infection as a 
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likely diagnosis also after the initial treatment phase, when more diagnostic information is 

available. This provides an external validation of the Sepsis-3 criteria, and speaks in favor of 

applying them for epidemiological surveillance in clinical practice.  

The major strength of the developed surveillance algorithm is that it is objective, scalable and 

utilizes readily available EHR data, which enables classification of sepsis onset down to 

individual ward and patient level. The integration of surveillance data in patients’ medical 

records, may help bridging the gap between healthcare providers, data analysts and policy 

makers. As an example, the surveillance algorithm is currently being implemented in Region 

Västerbotten. The algorithm script has been adapted to prospective data and screens all 

admitted patients every 24 hours and generates daily reports into a web-based interface called 

Patient Safety Surveillance System (P3S). Between January and September 2022, the algorithm 

captured 441 sepsis episodes at Umeå University hospital, of whom 14% developed in two 

specific internal medical wards (personal communication Andreas Winroth). This information 

is now provided as feedback to wards as part of infection control measures. Similar results were 

seen in the retrospective data from Karolinska University Hospital presented in Paper I, where 

hospital-onset sepsis differed substantially between different wards, enabling targeted 

interventions.  

The main limitation of fully automated sepsis surveillance is misclassification of episodes. As 

seen in the validation, the algorithm missed approximately 10% of sepsis cases, and when 

looking specifically at patients with suspected infections, it also misclassified 10% of non-

sepsis cases as being sepsis. If using only aggregated data from longer time periods to interpret 

trends, this is usually a minor issue. However, if surveillance is integrated more closely in the 

EHR of individual patients, this may affect the credibility of the classification and such 

implementation would require close collaboration with healthcare providers to clarify the 

limitations and avoid misunderstandings. This would be required despite the fact that algorithm 

performance likely is similar to that of the general clinician. Based on this, surveillance data 

also needs to be used with caution in pay-for-performance measures, or in similar incentives. 

It is also important to emphasize that the degree of preventability of sepsis in the setting of 

surveillance is highly uncertain, which needs to be considered when communicating 

surveillance data directly to healthcare providers, but also to patients 380. 

As shown in Figure 11, surveillance of infections can be organized either centrally or locally 
381. One of the best examples of a surveillance system based on objective clinical data in current 

use is the national Healthcare-Associated Infections Database (HAIBA) in Denmark 382,383. 

HAIBA uses centrally implemented algorithms based on individual patient data to assess 

incidence of 5 healthcare-associated infections: BSI, urinary tract infections, Clostridoides 

difficile colitis and deep seated post-surgical infections after hip or knee replacements. A major 

difference between HAIBA and the sepsis surveillance algorithm in Paper I is the resolution 

of data, since HAIBA does not include information on administered medications and vital 

parameters 382,384. This has substantial implications for the precision of healthcare-associated 

infection surveillance using HAIBA 385,386. 
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Figure 11. Illustration of approaches to implementation of incidence surveillance of healthcare-associated 

infections within networks of hospitals. Abbreviations: healthcare-associated infection (HAI) and infection 

prevention and control (IPC). The figure is reproduced from (van Mourik MSM, et al. Clin Microbiol Infect. 2021 

Jul, S3-S19), created by John Karlsson Valik and Elin Abbevik, and reused with permission from Elsevier. 

 

The Sepsis-3 criteria are based on the SOFA score, which was originally developed for the 

ICU-setting 27. When building the surveillance algorithm in Paper I, it required a few 

adaptations of the Sepsis-3 criteria to better fit data from non-ICU wards. One of the major 

alterations was including SpO2 measurements in addition to directly measured PaO2 for 

assessment of the SOFA respiratory score. In the original study by Seymour et al. presenting 

the operational Sepsis-3 criteria, less than one third of non-ICU patients had PaO2/FiO2 

measurements available, but it is unclear how many of the patients classified as sepsis that 

actually had SOFA respiratory score triggers 26. In Paper I, approximately 75% of sepsis 

patients had SOFA score triggers involving respiratory dysfunction, with the majority of them 

based on SpO2. The advantages of using SpO2 over arterial blood gas measurements to assess 

respiratory function are many: it is cheap, it is widely available, it takes minimal amount of 

time to register, it can be used for continuous monitoring, it does not require any specific 

training, and most importantly, it is not an invasive procedure involving the risk of harming 

patients. However, the strength of being easy to use is also the main problem with SpO2 since 

it becomes prone to measurement errors, especially when registered widely in the EHR. SpO2 

measurements can also be inaccurate in patients with circulatory shock or darker skin colour, 

especially at Spo2 at lower saturation levels 387. The use of SpO2 had previously been validated 

in the Kigali modifications of the Berlin ARDS classification 388, as well as in pure correlation 
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studies between SpO2 and PaO2 measurements 389,390, but it was unclear if it were appropriate 

as a measurement of respiratory dysfunction in sepsis. 

In Paper II, we confirmed in patients with suspected infections, that SpO2 indeed was 

associated with mortality, except for patients with chronic pulmonary disease.  We also showed 

that the predictive performance of the SOFA score improved by including data on SpO2. These 

findings have important implications for sepsis classification, since our data suggests that 

routinely registered SpO2 measurements can be trusted, and that arterial blood gas analysis 

may be redundant in the non-ICU setting. It is also a step towards facilitating sepsis research, 

also from an ethical standpoint, since it validates respiratory assessment based on a non-

invasive strategy and strengthens the case for using the Sepsis-3 criteria in both observational 

and clinical studies in resource-limited settings. However, even though comparison of AUROC 

between SOFA score using SpO2 or PaO2 in the KH cohort showed similar AUROCs, a 

limitation of the study was that we did not have access to head-to-head comparison of PaO2 

and simultaneously measured SpO2. Unfortunately, data on oxygen delivery and mechanical 

respiratory support was usually lacking, and further studies are needed to better account for 

these factors.  

Another implication of our study was the suggestion to use specifically developed thresholds 

for SpO2 (SpO2 94% and 90%), and not the PaO2 based thresholds (SpO2 95% and 91%) to 

generate up to 2 points in the SOFA score. The new thresholds (SpO2 94% and 90%) lead to 

fewer cases being classified according to the Sepsis-3 criteria, but similar or slightly higher 

mortality. This suggests increasing specificity in sepsis classification, which are more likely to 

improve acceptance among clinicians. It was also an illustration of how seemingly small 

changes in thresholds can have substantial influence on an operationalised classification like 

the Sepsis-3 criteria, which stresses the need to perform proper validation when adapting prior 

scores to new settings. During 2021, an automated SOFA score calculator was implemented in 

the EHR system in Region Stockholm. Using the findings from Paper II, this calculator is 

currently being updated to use the novel SpO2 thresholds for respiratory assessment, if arterial 

PaO2 is not measured directly. The decision to use the new threshold reflected a general view 

among the clinicians in the implementation steering group that these cut-offs were better 

aligned with their conception of a pathological SpO2 value. A next step will be to advocate for 

the formal inclusion of these SpO2 thresholds in the SOFA score, whenever the score is applied 

in patients outside the ICU-setting. 

The sepsis surveillance algorithm developed in Paper I also provided the ability to easily, and 

with high precision, classify a large number of hospital episodes according to time of sepsis 

onset. This type of high-throughput classification is well suited to create an objective 

benchmark for sepsis prediction tools integrated with the EHR system. It is also an approach 

that captures the entire intended screening population and generates results which are easier to 

compare and more generalizable to other settings. In Paper III, this was demonstrated by using 

the surveillance data to train and validate a machine learning prediction model. Our score was 

based on a supervised Bayesian network model, which is especially suited for capturing 
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dynamic uncertainty relevant for decision-making and has superior learning properties 

compared to machine learning methods based on merely mimicking historical data 391,392. The 

model principle is similar to that of clinical reasoning, providing a more straight forward 

concept for clinicians 393. This may improve the users trust in model predictions, which has 

been acknowledge as a major barrier in implementation 115,125. 

In Paper III, we aimed to simulate the algorithm as it would be implemented in a clinical 

setting. Sepsis related organ dysfunction was used as the main outcome to better reflect the 

pathophysiological onset of sepsis, rather than predicting the time of clinical identification 

based on cultures or antibiotic administration. In addition, we evaluated the score in all patients 

admitted to the hospital, which would be the intended screening population. The AUROC of 

SepsisFinder was within a similar range, or higher, than reports of sepsis prediction models 

based on other machine learning techniques 160. Many studies report a cumulative maximum 

score, meaning no limit on how early sepsis is detected, which has low clinical applicability 

since the positive alarm can be unrelated in time to the actual sepsis episode 167,173. In Paper 

III, to ensure correlation with the sepsis event, we only considered alarms within 48 hours of 

a sepsis case as true positive.  

When dealing with unusual outcomes and high-class imbalance in prediction modelling, 

presenting AUROC alone can be misleading. In Paper III, sepsis was uncommon with 9.8% 

of patients in the validation set experiencing a sepsis event, which is within the similar range 

of other studies. Despite this, APR curves have not been frequently reported in studies of  sepsis 

screening tools based on machine learning 167–170,173. In most circumstances, since sepsis is a 

medical emergency associated with substantial mortality, high sensitivity would likely be 

preferred. However, this comes at the expense of more false positive alarms. The proportion of 

false positive alarms among all positive alarms (PPV) are usually considered highly relevant 

in the clinical setting, especially if healthcare providers are expected to act on the alarms, or to 

avoid alarm fatigue 115. The PPV is affected by the prevalence of the outcome. In Paper III, 

the majority of sepsis events developed within the first days of admission and only 1.4% of the 

total cohort had a sepsis event occurring later during the hospitalization. This resulted in 

decreasing prevalence of sepsis with longer hospital stay, which partly explains the lower PPV. 

SepsisFinder, as well as other sepsis screening tools, may thus have better applicability early 

during hospitalization, when sepsis is much more common. Furthermore, the APRs indicated 

that the SepsisFinder performed better in culture positive sepsis and risk periods prior to 

surgery, than in culture negative sepsis and risk periods after surgery. This may be reflective 

of the complexity of classifying sepsis in patients with an inflammatory response caused by 

other processes than infections and could indicate misclassification of both the reference 

surveillance classification and the SepsisFinder prediction in these episodes. 

The main limitation in Paper III is that our evaluation was based on retrospective data from 

one center, and although we trained and tested our model using different time periods (rather 

than just a random split), the SepsisFinder would need validation in external data sets to 

confirm performance. The predictions generated by SepsisFinder were calculated as a 
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continuous probability between 0-100% (similar to most prediction models). This type of 

information can be difficult to interpret in a busy clinical setting, and threshold dependent 

classifications are usually easier to act on 115. It is worth noticing that, if implemented in real-

world settings, prediction scores may modify the risk of reaching the outcome, making post-

implementation evaluations more difficult. To overcome some of these inherent problems of 

balancing thresholds between sensitivity and PPV, combining screening with other 

interventions could be a way forward. Identifying a high-risk population automatically based 

on dynamic patient factors, but accepting a higher number of false positive cases, enables 

coupled interventions such as increased surveillance, checklists, or selecting patients where 

more advanced or costly testing is warranted, and in which patients it is not. However, 

increased testing or other interventions in false positive patients may also inflict more harm 

and costs, than good. Another appealing approach could be to focus on “rule-out” instead of 

“rule-in”. An example of this strategy is provided by Boerman et al. who showed that using a 

machine learning model, blood cultures could be safely withhold in 30% of patients in the ED 

due to low probability of positive growth 196,394. Finally, further studies on implementing sepsis 

screening in a real-world clinical scenario are needed to evaluate the integration with clinical 

workflows and the potential impact on patients’ outcomes. 

The main argument to focus on early identification of sepsis is to initiate prompt treatment. In 

particular, early antimicrobial treatment has been shown to decrease mortality in large 

observational studies of sepsis. This has affected both Swedish and international guidelines to 

recommend broad-spectrum antibiotics within 1 hour of septic shock and 3 hours of sepsis 
105,203,227. However, the evidence behind these recommendations are not convincing, except for 

maybe septic shock or bacterial meningitis 223.  Additionally, very few studies have assessed 

the appropriateness of treatment based on in vitro drug-pathogen coverage.  

In Paper IV, we focused on culture positivity (i.e. BSI). Many of the included patients had 

sepsis, but the inclusion was not restricted to a sepsis population. The results showed a weaker 

association for timing of antibiotics than previous studies of sepsis have reported, which may 

have several explanations 225,226. Time zero is a rather arbitrary time point and it is not likely 

that there would be a biologically plausible effect of hourly delays in treatment, but rather the 

effect of treatment should sum up over longer time periods 222. Since we did not restrict the 

analyses to a sepsis population, it is likely that our BSI cohort had less critical illness compared 

to previous studies. It was a single center cohort from Sweden, where healthcare is easily 

accessible, which means patients may have sought care earlier in their disease trajectory. Other 

beneficial care decisions, such as fluid therapy, might also be more equally distributed among 

the groups of appropriate and inappropriate treatment, resulting in a smaller residual effect 

attributed to antimicrobials.  

Furthermore, as illustrated by the septic shock patients, the absolute majority of patients with 

critical illness had received treatment within 12 hours, and the levels of antimicrobial resistance 

was very low. This means, patients receiving the most commonly used antibiotics in our 

hospital, also has a high likelihood of receiving appropriate treatment. The fact that patients 
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receiving appropriate treatment within 1 hour of blood culture collection were more likely to 

die, is an illustration of the well-known paradox, that the sickest patients receive broad-

spectrum treatment earlier (indication bias). Despite our efforts to control for this effect, the 

analyses likely suffered from residual indication bias. Further support of this can be found in 

Supplement Figure 7 in Paper IV, where patients with resistant pathogens had higher odds 

ratios at every time thresholds, but confidence intervals were large due to the small sample size. 

On the other hand, we studied a very large cohort (the second largest study of its kind) and 

would the association between receiving immediate treatment be strong, we would most likely 

have captured it with our data. Even among patients with septic shock at onset, the groups were 

evenly distributed at the 1h landmark (n=266 with inappropriate treatment and n=317 with 

appropriate treatment), and a bit less so at the 3h landmark (n=149 with inappropriate treatment 

and n=418 with appropriate treatment), but still the risk of death were not higher in those with 

inappropriate treatment (Supplement Figure 2 in Paper IV).  

Despite a possible trend towards increased mortality also at earlier thresholds, there was a 

significantly increased mortality first at the 12-hour threshold. In terms of clinical implications, 

what does the 12-hour threshold means? The findings in Paper IV showed a clear benefit of 

adequate empirical treatment in BSI, which is similar to the largest study of appropriate 

treatment in BSI as of today, although that study could only assess adequate treatment on the 

day of blood culture compared to later treatment 220. Current practice in clinical microbiological 

laboratories rarely provides microbiological culture results earlier than after 24 hours. This 

means that antimicrobial treatment needs to be given before the culture results are available for 

many patients. Choosing appropriate treatment is not easy and studies have shown that 

unnecessary broad-spectrum or combination regiments in sepsis is associated with higher 

mortality 2. So should clinicians wait for 12 hours before giving treatment? The simple answer 

is no; there is no end in itself to wait if the suspicion of BSI is high. On the other hand, our 

findings support a slightly more nuanced approach than the “one size fits all” time limits 

provided in guidelines and should motivate clinicians to perform a more extensive diagnostic 

work up, which is often possible to achieve within 12 hours. This enables clinicians to support 

their suspicion of BSI, as well as the likely source of infection, with objective findings such as 

laboratory results or radiology. This facilitates giving targeted and individualized treatment, as 

opposed to just giving broad-spectrum treatment to all and wait for the culture results. 

Advances in faster microbiological analyses will support this approach even more. 

Antimicrobial treatment is one of few modifiable prognostic factors in sepsis and BSI. Other 

therapeutical interventions, such adjuvant anti-virulence agents have been suggested, but few 

have reached late stages of clinical development 314,316. The first anti-toxin drug to be 

introduced on the market was bezlotoxumab, a monocloncal antibody targeting Clostridoides 

difficile toxin B 316. Other anti-toxin treatments, targeting the alpha-toxin in S. aureus (e.g 

tosatoxumab) and the T3SS in P. aeruginosa (Ftortiazinon) are currently undergoing phase 2 

and 3 trials 314,316. With this ongoing therapeutic development in mind, the aim with Paper V 

was primarily to assess the impact of indirect markers of virulence on patient outcomes in P. 

aeruginosa BSI. One of the main strengths of the study was that isolates were collected 
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consecutively from all P. aeruginosa BSI during the study period. The study also presents one 

of the world’s largest cohorts of whole genome sequenced P. aeruginosa, collected from 

several different geographical sites in Europe and Australia, speaking in favor of 

generalizability of the findings.  

The data presented in Paper V provides a unique molecular epidemiological description of the 

distribution of sequence types and resistance phenotypes in P. aeruginosa BSI, which may 

have implications for vaccine development. As an example, we noted that one third of BSIs 

were caused by any of 11 most common clones, and these isolates accounted for 75% of all 

MDR phenotypes. Targeting these strains with an effective vaccine would have a major impact 

on the prevalence of antimicrobial resistance in P. aeruginosa BSI. We were also able to 

identify 6 major virulence clusters, which were associated with specific STs and differed in the 

proportion of MDR phenotypes. These results are in line with previous findings that clonal 

complexes are associated with specific virulence phenotypes 334–336. The virulence clusters 

were not associated with patient outcomes in the multivariable logistic regression model, 

however, the random forest model which combined data on patient factors and virulence cluster 

generally had a slightly higher AUROC when predicting mortality than the reference model. 

For predicting septic shock, neither data on epidemic clones, nor virulence cluster added any 

important information to the model. This indicates that the virulence clusters may have some 

importance for mortality prediction, but it is likely that this is due to the association between 

cluster and ST, rather than an independent virulence profile. 

Unlike annotation of acquired resistance genes, which are either present or not, interpreting 

results from virulence gene annotation is more complex. Most genes with a matching frequency 

of less than 98% in gene annotation (Supplement Figure 1 in Paper V) were part of the 

chromosomal accessory genome (e.g. T3SS), but some of the genes are essential and generally 

found in the core genome (e.g. Elongation factor-Tu) 326. For some of the virulence genes, a 

match/no match can be interpreted as gene presence/absence (e.g. T3SS), while for others, a 

match/no match means heterogeneity between the query nucleotide sequence and the reference 

virulence protein 326. In other words, the gene is “there”, but it is different. With this distinction 

in mind, the findings indicated both factors associated with mortality, such as rhamnolipid 

synthesis, pyoverdine and flagella function, as well as factors associated with septic shock, 

such as the T3SS effector proteins. The factors associated with mortality are all connected to 

biofilm formation, and may thus be associated with chronic infections where host adaptations 

are better tuned and virulence usually is less 395–397. The T3SS, on the other hand, has in both 

laboratory and clinical studies mainly been linked to invasiveness and disease severity, which 

is well in line with our findings of an association with septic shock 349,350,352.  

A limitation of Paper V is that we did not assess virulence phenotype and it is unclear if our 

genotype classification translates into actual virulence traits in all isolates. However, laboratory 

studies in P. aeruginosa has previously shown that virulence genotype is clearly associated 

with the T3SS virulence phenotype 353. Another caveat is that we only had access to P. 

aeruginosa recovered from blood cultures, meaning they were already capable of causing 
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invasive disease. We cannot rule out that all isolates included in this study had a more 

homologous virulence genotype and that genomic comparison with strains recovered from 

other infections, colonization, or environmental sources, would have yielded more distinct 

differences. Indeed, a comparative genomic study of P. aeruginosa recovered form 

ophthalmologic and cystic fibrosis patients generally showed high genomic diversity, but also 

clustering of specific strains in eye infections 398. 

In a previous study from the PA BSI network, risk factors for mortality were mainly 

unmodifiable patient variables such as age, gender, comorbidity, immunosuppression, hospital-

onset infection, and ICU care 364. In Paper V we sought to investigate if adding virulence 

genotype markers improved prediction of patient outcomes compared with a reference model 

using only the patient factors. This was a pragmatic evaluation aimed at assessing virulence 

data which is readily available and would be easy to implement in an analytical pipeline for the 

clinical setting. We wanted to assess WGS as a routine diagnostic tool in P. aeruginosa BSI, 

and did not take into account other genomic aspects, such as mutations, accessory genome 

determination or transcriptomics 355. A random forest model was chosen mainly because of 

sample size and to account for complex non-linear interactions between predictors. The model 

performances showed quite large variability depending on the 80/20 random splits, indicating 

limited power to draw firm conclusions. In general, the models using selected amounts of 

virulence data performed slightly better than the reference model, but the difference in AUROC 

between models were small. Based on these findings, collecting virulence genotype 

information routinely in P. aeruginosa BSI is probably not warranted for prediction of outcome 

in the clinical setting. Yet, our findings indicate that the virulence genotype contains at least 

some relevant prognostic information, and we cannot rule out a possible effect of adjuvant anti-

virulence treatments. It remains unclear if these findings can be extrapolated to other important 

BSI pathogens, and additional studies would be needed to assess the overall value of WGS in 

the diagnostics of BSI. 
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5 CONCLUSIONS 

 

The following conclusions are drawn: 

I. Using data from electronic health records, an automated surveillance algorithm based 

on the Sepsis-3 criteria had good validity compared with medical record review in 

non-ICU wards. The algorithm revealed differences in the burden of hospital-onset 

sepsis depending on ward type. 

 

II. Lower peripheral oxygen saturation (SpO2) was associated with gradually increasing 

mortality in patients with suspected infections presenting to the hospital. Mortality 

prediction improved if the SOFA score included respiratory assessment based on 

SpO2 94% to get 1 point and SpO2 90% to get 2 points, supporting its use in the 

Sepsis-3 criteria as an alternative to arterial blood gas measurement outside the ICU-

setting. 

 

III. A machine learned Bayesian network algorithm (SepsisFinder) trained on sparse 

routine electronic health record data was able to predict sepsis onset within 48 hours 

with better discrimination and earlier in the clinical course than NEWS2 outside the 

ICU. Based on the higher positive predictive value earlier during hospital stay, 

SepsisFinder may primarily be suited for the period directly following admission. 

 

IV. Delays in appropriate antimicrobial treatment for 12 hours and beyond were 

associated with increased 30-day mortality in bloodstream infection. These findings 

indicate a tagret for developing rapid diagnostics of blood cultures to guide empirical 

treatment. 

 

V. The bacterial virulence genotype was associated with increased mortality and septic 

shock in P. aeruginosa bloodstream infection. The added value of virulence genotype 

data in the prognostic assessment of P. aeruginosa bloodstream infection was minor. 

 

In summary, this thesis demonstrates an objective and scalable approach to incidence 

surveillance and early detection of sepsis outside the ICU-setting, as well as a simpler method 

to diagnose sepsis-related respiratory failure with SpO2. In BSI, evidence is provided for 

initiating appropriate antimicrobial treatment within 12 hours after blood culture collection, 

and the findings suggests that P. aeruginosa virulence genotype may affect disease severity 

and mortality, however, it was not a major prognostic determinant. 
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6 FUTURE DIRECTIONS 

 

With regards to future research and clinical implementation, this thesis provides an outlook in 

three main areas: (I) Automated epidemiological surveillance and risk assessment, (II) 

improving disease severity scores and guidelines, and (III) detailed molecular diagnostics of 

acute bacterial infections. 

 

6.1 AUTOMATED EPIDEMIOLOGICAL SURVEILLANCE AND RISK 
ASSESSMENT 

The fully automated sepsis surveillance algorithm presented in Paper I is a proof-of-concept 

for using high-resolution patient data from EHRs to monitor the incidence of severe infections. 

Further studies to apply and validate a similar model also in the ICU-setting is needed. The 

approach offers a novel, objective and accessible data source for both healthcare providers and 

policy makers, but also researchers and the public. To implement this using real-world data, 

there are several barriers to overcome, such as legal requirements, endorsement by stakeholders 

and availability of source data 381,399. However, as already mentioned, the algorithm in Paper 

I is implemented prospectively in Region Västerbotten and efforts will be concentrated on 

including additional hospitals. Future works should focus on better adapting todays 

surveillance case definitions to structured EHR data, investigate how to implement case-mix 

adjustments and validate user interfaces and trend-analysis. The PRAISE – providing a 

roadmap for automated infection surveillance in Europe – network was formed in 2019 to 

address some of these issues resulting in three guidance documents 65,381,399. The network is 

currently working with a consistent surveillance definition of hospital-onset BSI in Europe. 

Another benefit of having rule-based algorithms to classify severe infections based on objective 

clinical data (Paper I), or to classify drug-pathogen mismatch (Paper IV), is to generate 

training data sets which are large enough to enable development of better prediction models. 

Paper III provides an example of a model built using surveillance data as basis, but further 

research is needed on how such models would be integrated in the clinical work flow and if it 

impacts patient outcomes. Risk assessment tools integrated in the EHR have the potential to 

enable automated stratification of patients upon hospital admission and aid clinicians in 

decision making. This could push the development of individualized care in infectious diseases 

forward, instead of the “one size fits all” provided by guidelines, but needs verification in 

studies.  
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6.2 IMPROVING DISEASE SEVERITY SCORES AND GUIDELINES 

The study of novel SpO2 thresholds in Paper II offers a concrete suggestion on how to adapt 

the SOFA score to a broader patient population outside the ICU, which would improve the 

operational Sepsis-3 criteria. Future studies are needed to assess how to include information on 

oxygen treatment and mechanical ventilation in relation to these SpO2 thresholds, and evaluate 

if the findings are valid also in the ICU-setting. In addition, the SOFA score was developed in 

the 90s and has not been updated since. With the introduction of the Sepsis-3 criteria, the score 

became relevant for a broader setting and future studies should focus on adapting and validating 

also the other components of the score to match progress in the digitalization of healthcare data 

and medical advances. This includes, but is not restricted to, improved validation of a baseline 

SOFA score and the impact of time-varying SOFA score trajectories in hospitalized patients. 

Furthermore, the 2021 Surviving Sepsis Campaign Guidelines demonstrated a major paradigm 

shift in the recommendations of timing of antimicrobial treatment. Compared to the guideline 

from 2016, a recommendation was included to allow delayed start of antimicrobial treatment 

up to 3 hours in stable patients with suspected sepsis 105. The same recommendation was 

adopted by the national Swedish sepsis guidelines in 2022 203. Although the results from Paper 

IV needs to be verified in other cohorts of culture positive sepsis patients before changing 

guideline recommendations, it provides another piece of the puzzle. However, to finally answer 

the question of timing of appropriate empirical treatment, a RCT would be advised.  By design, 

this is not possible with the current diagnostic methods, since culture results are unavailable at 

blood culture collection. An alternative could be a trial of intensified diagnostic workup without 

empirical treatment compared to standard of care in stable patients without septic shock. Based 

on the results from Paper IV, and other data demonstrating the negative impact of 

overtreatment, this kind of study would now be ethically feasible 2. 

 

6.3 DETAILED MOLECULAR DIAGNOSTICS OF ACUTE BACTERIAL 
INFECTIONS 

WGS has become accessible and cheap enough to be used in routine diagnostics. Culture-

independent sequencing directly from patient samples is challenging, but better techniques are 

rapidly evolving 400. In Paper V, we take a first step in using virulence genotype data to 

advance the diagnostic granularity of acute infections, but we are only scratching the surface. 

Although Paper V reports one of the largest cohorts of consecutively collected P. aeruginosa 

BSI to date, sample size needs to increase to be able to assess uncommon virulence genotypes 

or bacterial clones in a meaningful way. To evaluate the full potential of WGS data in clinical 

microbiological diagnostics, future studies need to focus on analyzing more complex genomic 

pipelines using larger and more diverse bacterial cohorts also from other infectious sources and 

pathogens. This should include analyses of transcriptomics.  

 



 

 61 

Another area for future research is to focus on resistance genotype data, both from a molecular 

epidemiological perspective and as a diagnostic tool in acute infections. Studies are needed to 

assess if having information on resistance genotype impacts time to appropriate antimicrobial 

treatment compared to current phenotypical culture dependent methods. This includes 

developing better bioinformatics pipelines for assessing chromosomal resistance mechanisms. 

Other valuable applications would be prediction of phenotypic bacterial traits in silico, such as 

virulence and antimicrobial resistance, based on combinations of WGS data and state-of-the-

art machine learning techniques. Finally, with our molecular characterization of consecutively 

collected P. aeruginosa isolates, we provide a rationale for future vaccine development in BSI, 

which may curb the impact of MDR strains.  
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