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A B S T R A C T

This paper investigates the impact of investment in automation- and AI-related goods on within-firm wage
inequality in the French economy during the 2002–2017 period. We document that most wage inequality in
France is accounted for by differences among workers belonging to the same firm rather than by differences
between sectors, firms, and occupations. Using an event-study approach on a sample of firms importing
automation- and AI-related goods, we find that spike events related to the adoption of automation- and
AI-related capital goods are not followed by an increase in within-firm wage inequality or in gender wage
inequality. Instead, wages increase by 1% three years after the events at different percentiles of the distribution.
Our findings are not linked to the rent-sharing behavior of firms obtaining productivity gains from automation
and AI adoption. Instead, if wage gains do not differ across workers along the wage distribution, worker
heterogeneity will still be present. Indeed, in agreement with the framework in Abowd et al. (1999b), most
of the overall wage increase is due to the hiring of new employees. This adds to previous findings presenting
a picture of a ‘labor friendly’ effect of the latest wave of new technologies within adopting firms.
1. Introduction

Since the 1980s, France has experienced an increase in top incomes
(both capital and labor incomes), in line with a general trend (Mishel
and Bivens, 2021), and a high, though slightly decreasing, gender labor
income gap (Garbinti et al., 2018). New evidence has uncovered the
role of firms in driving income inequality, both due to expanding
differences in wages between firms (i.e., wage premia related to size,
trade, or productivity), as well as within firms and establishments
(changes in relative wages between workers at different levels of the
wage distribution or changes in worker composition, see Card et al.,
2013 and Song et al., 2019).

In this respect, the current advent of new technologies belonging to
the so-called ‘Fourth Industrial Revolution’, notably including robots
and AI, is expected to produce a significant impact and potentially
expand already existing inequalities or create new ones. First, on the
one hand, such technologies could speed up the process of polarization
in the labor market so that workers at the top and at the bottom of

∗ Correspondence to: Macroeconomics, International and Labour Economics department, Maastricht University, School of Business and Economics, P.O. Box
616, 6200 MD Maastricht, The Netherlands.

E-mail address: t.treibich@maastrichtuniversity.nl (T. Treibich).
1 All authors contributed equally to the various stages of the work.
2 For a similar concern, see Hunt and Nunn (2019) and van der Velde (2020).

the wage and skill distributions are expected to benefit more from the
productivity increase disclosed by the new wave of innovations (see
among others Autor et al., 2006; Autor and Dorn, 2013; Goos et al.,
2014; Autor, 2015). As put forth in Freeman et al. (2020), such recent
changes in the nature of work depended more on changes in work
within occupations than on changes due to the shifting distribution
of employment among occupations.2 As such, the wage gap could also
increase within firms and within occupations, depending on the ability
of the employee to become familiar with the new technologies or,
through a process of hiring, on widening the gap between ‘incumbent’
workers with a long tenure and recently hired employees. Second,
although most societies are focusing increasing attention on the gender
wage gap, such pay differences continue to be very relevant and are
particularly large in the upper tail of the wage distribution (Blau and
Kahn, 2017; Garbinti et al., 2018). However, the interplay between
gender and technology could affect the gender wage gap, as we observe
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a decrease in the share of women in routine tasks (Black and Spitz-
Oener, 2010). As a consequence, there exist rising concerns about how
new technologies are expected to affect the gender wage gap, even
within the same firm, and to date, there exists very little evidence to
support policy making.3

In this work, we address such questions by employing matched
mployer–employee data for France over the 2002–2017 period. We
dentify relevant investment episodes in AI and automation through
urchases of selected categories of imported capital goods, adapting
taxonomy developed by Acemoglu and Restrepo (2022). As shown

n Domini et al. (2021), acquisitions of such goods display the typical
piky nature that characterizes investment in capital goods (Nilsen
t al., 2009; Grazzi et al., 2016).

We combine such data on automation- and AI-related investment
pikes at the firm level with detailed information on firms’ employees
o investigate the effects of the adoption of AI and automation on wage
nequality within and across firms. The descriptive evidence that we
rovide suggests that most wage inequality occurs within firms, occupa-
ions and sectors. Such a finding further corroborates a pattern already
hown for Brazil and Sweden (Akerman et al., 2013; Helpman et al.,
017). This suggests that France is no exception and that a thorough
nalysis of the impact associated with the adoption of automation and
I on wage inequality must focus on the different within components.

Employing an event study methodology, we focus on the observed
rend in wages and on some measures of wage inequality around a
pike of investment in automation and AI. We find that employees at
irms adopting these new technologies enjoy a small wage increase
nd that such a positive effect is detectable at most of the wage
istribution percentiles. This effect is mostly driven by the fact that
irms pay a higher wage to newly hired workers after an automation/AI
pike,4 compared to incumbents. Overall, firm wage inequality is sub-
tantially unaffected. Focusing on the gender pay difference, we find
hat investments in automation and AI do not appear to be associated
ith a change in the gender wage gap. Within our methodological

ramework, we do check that our results are not driven by pre-spike
rends in dependent variables. However, we cannot rule out that other
ontemporaneous shocks (for example, demand shocks) are endogenous
o the decision to automate. For this reason, and following Bessen et al.
2020b), we will interpret the coefficients mostly as describing the
volution of firm outcomes around the spike.

Our work builds upon several streams of literature to which we
im to contribute new empirical evidence. First, we contribute to the
iscussion on wage inequality due to job polarization (see, among
any, Autor et al., 2008) and, relatedly, on the effects of automation

nd AI technologies on labor market outcomes. Among the theoretical
rameworks on which this literature builds is the model developed
y Acemoglu and Restrepo (2019), which provides a rationale for both
ifferences in wages between and within firms due to automation.
n addition to the known displacement effect, according to which
utomation replaces human tasks, they describe productivity and a
eepening effect, according to which automation makes labor and
apital more productive and raises the demand for labor. The net
mpact on the overall wage level from these different forces becomes
n empirical question. It may also depend on the specific types of
echnology, whereby AI and robots might have a more pronounced
isplacement effect than other automated machines, which require
omplementary labor to be operated (think, for example, of industrial
obots in the car industry versus machines that streamline assembly but

3 In this regard, Pavlenkova et al. (2021) document a slight negative impact
f automation on the gender pay gap in Estonian manufacturing firms.

4 Here, we use the ‘‘automation/AI’’ expression for conciseness, but a more
omplete label would be ‘‘automation- and/or AI-related’’ or ‘‘embedding
utomation and/or AI technologies’’. We will use these different expressions
2

n an interchangeable way in the text. c
require hand sorting of pieces). Instead, provided automation changes
the relative demand for workers performing different tasks, both types
of mechanisms exert a positive pressure on wage inequality, on the one
hand by displacing some workers more than others, and on the other
hand by making some workers more productive than others.

At the firm level, other explanations can also apply. If the produc-
tivity effect of automation is large, we can also expect to observe rent
sharing, whereby the firms’ higher profitability leads to a higher wage
for all workers in the firm (Blanchflower et al., 1996). The wage profile
in more productive firms can also be driven by a sorting mechanism,
according to which they attract high-wage workers (Abowd et al.,
1999b). In this framework (labeled AKM in the related literature), both
firm characteristics (productivity, size) and individual characteristics
(observable, such as seniority and education) explain wage differences
across and within firms. Following such a sorting and matching ap-
proach, the authors also highlight competition among firms to hire the
best employees, as well as the role of wage bargaining in explaining ob-
served outcomes (Cahuc et al., 2006). Against this framework, changes
in firm technology, productivity or size might modify the profile of the
new hires and, through this channel, the wage distribution within firms.

In recent years, the empirical evaluation of the labor market ef-
fects of automation, particularly robots, has attracted much attention.
Initially, much effort was exerted to predict the potential loss of em-
ployment associated with automation and AI technologies; see, among
others, Brynjolfsson and McAfee (2014), and Frey and Osborne (2017).
Thus far, the empirical evidence has been quite reassuring in suggest-
ing a complementary, more than replacement, effect of automation.
While aggregate-level studies have failed to find a consensus (the
effect of automation on aggregate employment is negative according
to Acemoglu and Restrepo 2020 and Acemoglu et al. 2020, neutral
according to Graetz and Michaels 2018 and Dauth et al. 2018, and
positive according to Klenert et al. 2020), firm-level evidence has
been more consistent in showing a positive effect on employment
in firms that adopt automation (Domini et al., 2021; Koch et al.,
2019; Acemoglu et al., 2020; Bonfiglioli et al., 2020; Aghion et al.,
2020).5 Some studies, together with employment, consider the impact
f robot adoption (Koch et al., 2019; Humlum, 2020) or automation
ntensity (Dinlersoz et al., 2018a; Aghion et al., 2020) on the average
irm wage. Humlum (2020) and Dinlersoz et al. (2018a) find a positive
mpact, while Aghion et al. (2020) and Koch et al. (2019) do not
eport a significant effect. Finally, Bessen et al. (2020a) focus on
ndividual workers’ outcomes in the Netherlands and show that after
n automation cost spike, daily wages increase, although days of work
ecrease.

However, much less investigated is the potential impact of automa-
ion and AI on wage inequality within firms. Humlum (2020) uses an
vent study and a structural model (controlling for selection effects)
o measure the impact of the adoption of industrial robots in Danish
irms. He identifies that the overall positive effect on wages is driven by
he impact on tech workers, while production workers observe a wage
oss. In a study of Norwegian firms in the manufacturing sector, Barth
t al. (2020) find that robots increase wages for high-skilled workers
nd managerial occupations, thus positively affecting wage inequality.
s explained below, we focus on firm (instead of occupation)-level

nequality as identified through the wage distribution; in addition,
ur measure includes but is not confined to robots; hence, it is much
roader. Finally, using survey data from France, Fana and Giangrego-
io (2021) highlight the role of tasks and institutions in shaping the
volution of wage inequality.

5 Note that there are some potential caveats to this conclusion. It could
ndeed be that the effects of automation technologies are not yet fully visible
n the data or that a mild increase in employment registered at adopting
irms is more than compensated by a decrease in employment in non-adopting
ompeting firms via a spillover effect, as shown by Acemoglu et al. (2020).



Research Policy 51 (2022) 104533G. Domini et al.

s

t
‘
2
w
a
d

Second, while there already exists extensive evidence reporting the
ubiquitous presence of a gender wage gap (among the recent reviews
we refer to Blau and Kahn, 2017), much less is known about the
impact of the newest technologies on such a wage gap and on the job
flows as broken down by gender. Among the existing works, Brussevich
et al. (2019) investigate differential gender exposure to automation
by referring to the routine task intensity of the occupation. On this
basis, since women tend to be more represented in such tasks, they
face a higher risk of displacement than men. This is also the conclusion
reached by Sorgner et al. (2017), who take a broader perspective into
consideration by noting several dimensions of the gender equality issue.
Focusing more specifically on the gender pay gap, Aksoy et al. (2020)
employ country–industry level data and report that a 10% increase in
robot-related investments (data being sourced from the International
Federation of Robotics) is associated with a 1.8% increment in the
gender wage gap. As a common limitation of many contributions in
this stream of literature, the authors cannot directly observe the effect
on employment and wage associated with an investment within the
firm, as data are available at the country, industry and demographic
levels. Still, at the aggregate level, employing data from US commuting
zones, Ge and Zhou (2020) report contrasting evidence on the change
observed in the gender wage gap following investments in robots versus
computers. While the former decreases the wage of male workers more
than that of female workers, thus reducing the gap, the latter increases
the gap. In our work, the data and the empirical setting enable us to
investigate what happens to the gender pay gap both across adopting
and non-adopting firms and, more specifically, within adopting firms.

The paper is organized as follows. Section 2 first presents the data
sources and the variables that are used in the paper and then illustrates
the construction of the different samples used in the analysis. In Sec-
tion 3, we provide descriptive statistics on wage distribution, including
an analysis of variance that decomposes overall wage inequality into
different components. We also show trends in wage inequality and
introduce our measure of investment in automation- and AI-related
goods. Section 4 presents the event study framework and discusses the
results. Section 5 concludes.

2. Data and variables

2.1. Sources

Our dataset contains data from all French firms with employees
over the 2002–2017 period, obtained by merging different admin-
istrative sources, using the unique identification number of French
firms (SIREN). The first source is the Déclaration Annuelle des Donnés
Sociales (DADS), a confidential database provided by the French na-
tional statistical office (INSEE) and based on the mandatory forms that
all establishments with employees must submit to the social security
authorities. To be more precise, we use the DADS Postes dataset, in
which the unit of observation is the ‘job’ (poste), defined as a worker–
establishment pair.6 We extract from DADS the following worker-level
variables: gross yearly remuneration, number of hours worked, age,
gender, and occupation,7 as well as the sector of the firm defined

6 Note that DADS Postes does not allow the tracking of workers over time,
ince the worker identification number is not constant across years.

7 The occupation variable is the Catégorie Socio-professionelle, which reflects
he hierarchical structure within firms and the levels of management or
production hierarchies’ (see also Caliendo et al., 2015; Guillou and Treibich,
019). We also retrieve worker-level variables on the ‘type of job’ from DADS,
hich allows us to identify apprentices and clean them out, and on the start
nd end dates of job posts, necessary to identify workers present on a specific
3

ate (see Section 2.3).
according to NAF rev. 2 classification (corresponding to the European
NACE rev. 2).8

The second source is the transaction-level international trade
dataset by the French customs office (Direction Générale des Douanes et
des Droits Indirects, DGDDI), containing detailed information on import
and export flows, among which are found trade value, country of
origin/destination, and an 8-digit product code, expressed in terms
of the European Union’s Combined Nomenclature, an extension of
the international Harmonized System (HS) trade classification. From
this source, we retrieve firm-level information on the value of yearly
imports that are related to automation and AI (see below in this
section), as well as on the total value of yearly imports per product
category.

In addition to our two main sources, we also use FICUS and FARE,
two private datasets provided by INSEE, which are based on the fiscal
statements that all French firms must make to the tax authorities
and which contain detailed balance sheet and revenue account data.
FARE has succeeded FICUS since 2008 and collects data from a larger
set of tax regimes than FICUS. We use this source to extract firm-
level information on value added, which is then used to construct our
labor productivity measure, as valued added over the number of hours
worked.9

2.2. Variables

Wage-related variables
The outcome variables of our analysis are firm-level wage mea-

sures based on worker-level variables extracted from DADS.10 For each
worker, we divide the gross yearly remuneration by the number of
worked hours to obtain hourly wage.11 This information is then com-
bined at the firm level as well as at the level of specific categories
of workers within the firm. First, we construct each firm’s wage dis-
tribution moments, in particular the mean and standard deviation, as
well as percentiles (p10, p50, p90). In the regressions, we use the log
transformation of the level variables (mean wage and wage percentiles)
to obtain comparative measures of the effect of automation at different
locations of the wage distribution. As measures of within-firm wage
inequality, we consider the standard deviation and the p90/p10 ratio.
The p90/p10 ratio is a standard measure of wage inequality used in
both macro- and microeconomic literature (see Cirillo et al., 2017;
Mueller et al., 2017); the standard deviation is also chosen because it
reflects an overall measure of the dispersion of wages within a firm.

Furthermore, wage information can also be constructed for specific
categories of workers within a firm (hence, measures of wage inequality
between categories can be constructed). In particular, we are interested
in comparing the wages of females vis-à-vis males. We calculate a firm’s
gender ratio (corresponding to the gender pay gap) as the mean hourly
wage of female workers divided by the mean hourly wage of male
workers. Likewise, we calculate gender ratios at various percentiles,
that is, the ratio between a certain percentile of the female hourly wage
distribution and the same percentile of the male distribution.

An important note must be made here on our definition of gender
wage inequality. Since we normalize the wage by the number of hours

8 In fact, the sector code (Activité Principale Exercée, APE) is expressed
in DADS in terms of the NAF rev. 1 classification until 2007. To ensure
consistency over the observed time span, we establish a mapping between 4-
digit NAF rev. 1 and NAF rev. 2 codes, as explained in Domini et al. (2021,
fn. 7). Furthermore, as a firm’s APE may vary across years, we assign each
firm a permanent 2-digit sector based on the most frequent APE occurrence.

9 Information from FICUS/FARE is not available for 4.42% of the firms in
Sample 2 (see below for a definition of the sample).

10 Note that while plant-level information is available in DADS, we need to
focus on the firm level to match DADS data with firm-level customs data.

11 We deflate wages (as well as imports; see below) using yearly value-added
deflators for 2-digit NAF divisions provided by the INSEE.
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worked and only consider employed persons, two important sources
of inequality in earnings between men and women are removed. In
France, females are most affected by part-time work, yielding lower
monthly wages: based on the ILOSTAT data, approximately 50% of
female work during our period of study is part-time, while only 30%
of male work is, ILO (2020). As a consequence, if the gender wage per
hour gap in France is estimated at 15.5%, right at the EU-27 average,
the overall gender earnings gap is exactly double, at 31% (EUROSTAT,
2015).

Adoption of automation- and AI-related technologies
To date, there is a lack of systematic firm-level information on

the adoption of digital and automation technologies at the firm level,
which has only recently started to be collected by national statistical
offices. Exceptions are the Netherlands, where (Bessen et al., 2020a) use
information on automation costs included in the national survey from
the Dutch statistical office (CBS), and the U.S., where (Dinlersoz et al.,
2018b) obtain a proxy of automation intensity via a technology index
from a U.S. Census Bureau survey. Nevertheless, trade flows reported
by firms to customs offices offer a useful solution to this, as fine
product-level decomposition allows identifying the adoption of specific
technologies via the import of related goods. We construct a measure of
firm-level adoption of technologies related to automation and AI based
on product-firm-level customs data. This approach has been employed
by several recent studies on the effect of robotization (Dixon et al.,
2019; Bonfiglioli et al., 2020; Acemoglu et al., 2020; Aghion et al.,
2020) and automation in general at the firm level (Domini et al.,
2021). Note, with regard to the French context, that Aghion et al.
(2020) instead choose two broader measures (industrial equipment and
machines and change in electric motive power) that can be applied to
all manufacturing firms, including domestic firms.

More specifically, we identify imports of goods that embed
automation- and AI-related technologies based on their 6-digit Har-
monized System (HS) product code. Automation-related imports are
identified by using a taxonomy presented by Acemoglu and Restrepo
(2022), partitioning all HS codes referring to capital goods (divisions
82, 84, 85, 87, and 90) into several categories of automated and non-
automated goods. Imports embedding automation technologies include,
among others, industrial robots, dedicated machinery, numerically
controlled machines, and a number of other automated capital goods.12

o the automation-related categories listed by Acemoglu and Restrepo
2022), we add 3-D printers, the HS code of which is identified
y Abeliansky et al. (2020). In addition to these automation-related cat-
gories, we identify some other categories of imports that are expected
o be related to AI, namely, automatic data processing machines and
lectronic calculating machines.13

Considering AI-related imports, in addition to automation-related
mports, is important for ensuring our measure is representative of the
doption of new technologies in the whole economy. Indeed, the former
end to be less concentrated than the latter in the manufacturing sector:
ne-fifth of all AI-related imports are accounted for by manufacturing
irms vis-à-vis one-half of automation-related imports.14

Some potential limitations of our import-based measure of adoption
f automation- and AI-related technologies must be acknowledged and
iscussed. First, firms might purchase automation- and AI-related goods

12 For a full list, including the specific 6-digit HS codes falling under each
f the above-mentioned categories, see Table A.1.
13 As an additional check that these are in fact relevant categories for
ur analysis, we use the USPC-to-HS ‘Algorithmic Links with Probabilities’
ALP) concordance by Lybbert and Zolas (2014) to see whether their codes
atch to the US patent classification (USPC) code 706 (‘Data processing -
rtificial Intelligence’). This is the case for four out of seven of these additional
ategories.
14 Based on our calculations using DGDDI data for the year 2017. Detailed
4

igures are available upon request.
domestically instead of internationally; thus, they may be wrongly
labeled as non-adopters in our analysis. With respect to this, notice that
France has a comparative disadvantage (cf. Balassa 1965) and a neg-
ative trade balance for the goods that compose our measure;15 hence,
imports are likely to be the most important source of automation- and
AI-related goods for French firms. Second, the import-based nature of
our measure restricts the scope of our analysis to firms involved in
international trade: this restriction decreases the probability that we
wrongly label firms in our sample as non-adopters; however, we do not
consider firms that are only active in the domestic market and that may
buy automation- and AI-related technologies from domestic suppliers
(though unlikely, as argued above). Moreover, the impact on the wage
dynamics of these firms may be different, as they tend to be smaller and
less productive on average than firms involved in international trade.
Third, there exists the possibility that firms resort to an intermediary
rather than import goods themselves (Ahn et al., 2011; Bernard et al.,
2010; Blum et al., 2010); however, this is less likely for more complex
goods (Bernard et al., 2015) that are highly relation-specific, such as the
ones that compose our measure. Finally, firms that import automation-
and AI-related goods may re-sell them, either in the domestic market or
abroad. We will address the possibility of resellers with two different
robustness checks in Section 4.4, showing that the main results are
largely unchanged.

2.3. Data cleaning and sample construction

To construct the dataset employed in our analysis, we perform some
cleaning at the worker level; then, we create firm-level variables by
aggregating information on workers present in each firm on a specific
date of each year (December 31st).16 We want to make sure that we
only include workers that are really attached to a particular firm. In
the DADS data, these correspond to workers related to jobs labeled
as ‘principal’ (non-annexes) by INSEE, which exceed some duration,
working-time, and/or salary thresholds.17 These can be seen as the
‘true’ jobs that contribute to the production process (see e.g. INSEE
2010, p. 17), and account for the large majority (three-fourths) of
total jobs.18 We also remove apprentice workers, which represent ap-
proximately 3.5% of observations, who are workers with less than

15 Based on calculations by the authors using COMTRADE data (results are
available upon request). This is true on aggregate, as well as for most of the
subcomponents of the measures shown in Table A.1 in Appendix A. A notable
exception is the category of robots, as well as that of regulating instruments,
which, however, represent a minority of the measure.

16 Referring to a consistent date across years ensures consistency in the
computation of our variables of interest, as a firm’s employment varies over
the year due to new hires and separations, which may be partly driven by
short-term and/or seasonal dynamics. This causes variables related to the
within-firm distribution of wages to also change. Furthermore, referring to
a specific date is necessary to consistently identify the flows of newly hired
and separated workers (and the variables on their wage distribution), as it
allows ignoring short-term jobs and temporary fluctuations in employment.
Note that this approach is followed in other papers constructing gross worker
flows (Domini et al., 2021; Abowd et al., 1999a; Bassanini and Garnero, 2013;
Davis et al., 2006; Golan et al., 2007).

17 See the definition in Section 3.2.1 (pp. 17–18) of the DADS 2010 Guide
méthodologique. To be classified as non-annexe, a job should last more than
30 days and involve more than 120 worked hours, with more than 1.5 h
worked per day; or the net salary should be more than three times the monthly
minimum salary; otherwise, it is classified as annexe.

18 Non-principal (annex) jobs represent 22% of all observations in DADS,
and 43% of new hires; 50% of them are full-time (vs 72% of principal jobs),
12% part-time, and 24% small part-time (faible temps partiel); 43% have a
permanent contract (Contrat à Durée Indéterminée); vs 61% of principal jobs,
29% have a fixed-term contract (Contrat à Durée Déterminée) vs 24% with
a temporary or placement contract (mission). After one year, 18% of them
become principal, 26% stay annexes, and the rest (56%) leave the firm.
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Table 1
Samples’ composition and relative size, 2002–2017.
Source: Our elaborations on DADS and DGDDI data.

Nb. Nb. Share in Share in
obs firms nb. of firms employment

All firms 20,010,009 3,131,425 1 1
Sample 1 2,703,157 287,901 9.19 54.50
Sample 2 1,111,741 91,593 2.92 51.66
Sample 3 501,667 39,295 1.25 37.24

Notes: Sample 1: All importing firms; Sample 2: Importing firms with at least 10
employees. Sample 3: Firms importing automation- and AI-related goods at least once,
with at least 10 employees.

120 h worked in the year,19 and workers with wages below half of
the minimum wage, which represent less than 1% of observations.20

Fig. A.1 in the Appendix shows that this bottom threshold to the wage
per hour variable truly eliminates outliers, as the minimum wage in
France has a very strong impact on the shape of the wage distribution.
Overall, and analogously to what has been done in the related literature
(see, for example, Song et al., 2019), these choices exclude workers who
are not strongly attached to the firm and/or the labor market.

We consider workers employed in the entire economy, except for
the primary sector (NAF/NACE rev. 2 divisions 01 to 09). We also
remove firms labeled as ‘household employers’ (particuliers employeurs)
and those engaged in public administration (fonction publique) between
2009–2017, since they are not available in earlier years. These criteria
yield a sample of more than 20 million firm–year observations over the
period 2002–2017, or 3 million unique firms (see Table 1, row 1, ‘All
firms’).

However, in our analysis, we need to restrict the sample for the
following reasons. First, we can construct our measure of adoption of
automation- and AI-related technologies only for importing firms (see
Section 2.2), which we label as Sample 1 in Table 1. This sample repre-
sents 9% of observations in the overall data, but accounts for more than
half of total employment. Second, to ensure that within-firm statistics
on the wage distribution are meaningful, we restrict our attention to
importing firms with at least 10 employees (Sample 2). This threshold
excludes ‘micro-firms’, according to the Eurostat definition. Note that
this further restriction reduces to a large degree the number of firms
included in the analysis (which represent 3% of all firms present in the
DADS dataset), but it only marginally reduces aggregate employment
representativeness (cf. Table 1, row 3). Finally, as the event study
carried out in Section 4 will compare the impact of automation- and
AI-related investment exploiting the timing of the latter, we will focus
on those firms in Sample 2 that import automation- and AI-related
goods at least once over 2002–2017 (Sample 3).21 This final sample
includes only approximately 40 thousand firms; nevertheless, this still

19 This matches one of the thresholds used for defining non-annexe workers.
ote that this also removes workers with zero hours.
20 The existence of a wage below the legal minimum (SMIC in French)

s not per se surprising as documented in the literature, see among the
thers (Gautier, 2017; Delahaie and Vincent, 2021). For instance, in 2016
he share of sectors fulfilling the minimum wage was only 86%, and within
pecific sectors the share can get as low as 38% (Dares, 2018). According
o the literature this is mostly due to delays in keeping up with increases in
he minimum wage, and as a result it should be of a limited amount. Even
f the ‘‘jump’’ at the level of the minimum wage is very clear (see Fig. A.1
n the Appendix), the number of observations below the minimum is non-
egligible and it may be due to misreporting of the number of hours for
xample. Anyway, since we focus on the 10th percentile of the distribution for
ne of the two measures of inequality, we believe this issue does not impact
ur results.
21 A potential issue related to the sample construction is due to a change

n the reporting threshold over the period of observation. In particular, since
011, product codes for imports from EU countries have been reported only
or firms with more than 460,000 euros of imports in a given year; see
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accounts for 7.5 million workers.22 In the following section, which
presents descriptive statistics, we will refer to different samples, while
in the regression analysis (Section 4), we will only keep firms with a
spike (Sample 3).

3. Descriptive statistics

3.1. From the wage distribution of workers to the wage distribution within
firms

In what follows, we present some descriptive statistics to direct
our approach. We start from an aggregate view and decompose wage
inequality among all workers into its between (differences across firms,
related to sector or structural change dynamics) and within components
(changes within firms, which is the focus of our empirical analysis).
Then, we discuss the characteristics of our measure of adoption of
automation- and AI-related technologies. Finally, we dig deeper into
the study of firm-level wage distributions and inequality and provide
some prima facie evidence for the differences between adopting and
non-adopting firms.

The wage distribution of workers
Fig. 1 shows the distribution of the deflated wage per hour variable

across workers in the entire economy for one year (sample ‘All firms’),
i.e., around 16 million workers. The wage distribution in France is
heavily impacted by the minimum wage of approximately 10 euros
per hour and is therefore very positively skewed with high kurtosis.
Note that wage inequality among all workers can be driven by differ-
ences across firms (reflecting their relative productivity, profitability, or
aggregate sector and institutional dynamics) or within firms (reflecting
changes in the labor organization of the firm and remuneration of value
across workers). To direct our study of within-firm wage inequality,
we perform a decomposition exercise that compares the contribution
of both dimensions to the overall wage inequality among workers, as
shown in Fig. 1.

Decomposing wage inequality
In this section, we decompose the overall wage inequality among

all workers into differences between and within components. More
specifically, we leverage worker-level information on hourly wages
and their occupation (managers and white-collars; supervisors and
technicians; clerks; skilled production workers; unskilled production

also Acemoglu et al. (2020), Bergounhon et al. (2018). We cannot directly
measure the bias generated by such a change, but the indirect evidence that
we collected is very reassuring. First, as reported below in Table 5, within the
subsample of importing firms larger than 10 employees (Sample 2), importers
of automation technologies (Sample 3) are much larger and hence are less
likely to be affected by the changing threshold. Second, the number of adopters
(Sample 3) shows only a very marginal decrease in 2011 (from 72,049 in
2011 to 69,849 in 2012). Finally, within our sample of importing firms, we
find that there is no discontinuity in 2011 in the share of firms that import
automation- and AI-related imports per our measure and of the related spikes
(see Table A.2).

22 It is worth noting that the sample of our analysis is larger than that of
other studies on robotization and automation using French data. Acemoglu
et al. (2020) use a sample of 55,390 manufacturing firms between 2010 and
2015, of which 598 are robot adopters. Bonfiglioli et al. (2020) use a sample
of 103,771 manufacturing firms between 1994 and 2013, of which approxi-
mately 800 are robot adopters. Aghion et al. (2020) use a sample of 16,227
manufacturing firms between 1994 and 2015. These figures are compared to
the 91,593 manufacturing and service-sector firms (Sample 2) that we observe
over 2002–2017, of which 39,295 are importers of automation- and AI-related
goods (Sample 3). Such differences are due to including different sectors (firms
in manufacturing account for approximately 42% in 2017) and employing
a measure of automation that is broader than the implementation of robots
alone.
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Fig. 1. Distribution of wages per hour among all workers, 2017.
Source: Our elaboration on DADS data.

workers; residual workers),23 the firm where the worker is employed,
and the sector of that firm (defined at the 2-digit level of the NAF
classification) to estimate a set of equations as follows:

𝑤𝑖 = 𝛿𝑗 + 𝜀𝑖 (1)

where 𝑤 is the logarithm of hourly wage, 𝑖 indexes workers, and 𝛿𝑗 is
a set of fixed effects, which represent, depending on the specification,
sectors, occupations, sector-occupations, or firms. Using the estimates
from Eq. (1), we decompose the overall wage inequality among all
workers into a between and a within component using the following
equality:

𝑣𝑎𝑟(𝑤𝑖) = 𝑣𝑎𝑟(𝛿𝑗 ) + 𝑣𝑎𝑟(𝜀̂𝑖) (2)

where 𝑣𝑎𝑟(𝑤𝑖) is total variance (𝑇 ), 𝑣𝑎𝑟(𝛿𝑗 ) is the between component
(𝐵), and 𝑣𝑎𝑟(𝜀̂𝑖) is the within component (𝑊 ). Note that the residual
term is orthogonal to the other term by construction. In the following
tables, we report the share of total variance accounted for by the within
component, i.e., 𝑊𝑡∕𝑇𝑡.

Table 2 shows the share of the overall wage inequality accounted for
by the within component at different levels of disaggregation (i.e., using
different sets of fixed effects), namely, within sectors, within occupa-
tions and within sector occupations. Note that the between component
(wage inequality due to differences across sectors, occupations, and
sector-occupations groups), though not shown, is the mirror image of
the values reported in the table. The within sector and within occupa-
tion components account for the majority of wage inequality in France
in 2017 in all samples, whereas the within-sector-occupation is slightly
below 50%. For example, looking at the values for all firms (first row),
only 22% of overall wage inequality can be explained by differences in
wages between different sectors (e.g., wages in textile manufacturing
vs. wages in retail trade) – the remaining 78% being accounted for by
differences among workers belonging to the same sector. Furthermore,
approximately half of wage inequality occurs among workers belonging
to the same occupational category (even within the same sector).

This is consistent among the different samples we defined in the pre-
vious section; hence, in the sample that will be used in our regression
analysis (Sample 3), the main forces driving wage inequality are the
same as those across the entire population of firms. This result confirms

23 The first three categories are defined at the 1-digit level of the French tax-
onomy of occupations (Catégories Socio-professionelles) using codes beginning
with 3, 4, and 5, respectively, while skilled and unskilled production workers
are defined at the 2-digit level using codes beginning with 61–65 and 66–68,
respectively.
6

Table 2
Within-sector, within-occupation, and within-sector-occupation shares of wage
inequality, 2017.
Source: Our elaborations on DADS and DGDDI data.

(%) Within (%) Within (%) Within
sector occupation sector-occupation

All firms 78 55 46
Sample 1 80 53 46
Sample 2 80 52 45
Sample 3 80 52 45

Notes: Sample 1: All importing firms; Sample 2: Importing firms with at least 10
employees; Sample 3: Firms importing automation- and AI-related goods at least once
with at least 10 employees.

Table 3
Within-firm share of wage inequality, 2017.
Source: Our elaborations on DADS and DGDDI data.

(%) Within firm (%) Within firm
(sector level) (sector-occupation level)

All firms 67 58
Sample 1 75 68
Sample 2 76 70
Sample 3 76 70

Notes: Sample 1: All importing firms; Sample 2: Importing firms with at least 10
employees; Sample 3: Firms importing automation- and AI-related goods at least once
with at least 10 employees. The within components are first computed for each
sector/sector-occupation separately and then aggregated by taking an employment
weighted average.

that within-sector determinants are key to understanding the sources of
wage inequality and is in agreement with evidence from other countries
(see, for example, Helpman et al., 2017 for Brazil). Finally, it shows that
a great amount of wage variance happens not just within sectors but
also within occupations. This informs our approach of using measures
of inequality based on the whole firm’s wage distribution (90/10 ratio
and standard deviation) instead of measures based on occupational
means (wage of managers vs. wage of production workers).

In Table 3, we report results from a second decomposition exercise
in which the within component refers to the share of wage inequality
that, within each sector (column 1) and within each sector-occupation
(column 2), is accounted for by the within-firm component vs. the
between-firm component. In this case, we first solve Eq. (1) for each
sector and sector-occupation, where 𝛿𝑗 is a set of firm-level fixed effects,
and then leverage equality (2) to compute the within component for
each sector and sector-occupation. In Table 3, we report the employ-
ment weighted average of these components across the different sectors
(and sector-occupations).

Among the population of workers within each sector, on average,
68% of wage inequality is explained by the within-firm component.
This means that the wage of a worker in a particular sector is not
primarily defined by different characteristics among firms (e.g., firm
size). In the other samples that consider importing firms (samples 1–3),
this percentage is even greater, approximately 75%: the reason is that
within-firm dispersion of wages is larger in large firms. Within-firm dis-
persion may be driven by the different occupational structures of firms.
To account for this, in column 2, we perform the same decomposition
for each sector occupation. The within-firm share slightly decreases, but
it is still dominant with respect to the between component: in Sample
3, it is as high as 70%.

Overall, this analysis is a further motivation for our focus on within-
firm wage inequality. Indeed, the position of the worker within the firm
has more impact on his/her wage than the characteristics of the firm,
the sector, or the occupation in which he/she is employed.24

24 The within-firm component has also been found to be a sizable factor
underlying wage inequality in other studies. See, for instance, Helpman et al.
(2017) for Brazil and Song et al. (2019) for the U.S.
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Fig. 2. Evolution of wage characteristics over time, Sample 3, 2002–2017. Note: Sample 3: Firms importing automation- and AI-related goods at least once, with at least 10
employees.
Source: Our elaborations on DADS and DGDDI data.
Trends in wage inequality within firms
Having determined that the within-firm dimension is crucial for

understanding overall wage inequality, we now can analyze trends in
firm-level wage inequality. Fig. 2 shows the evolution of our most
important dependent variables over our period of analysis, namely,
the (deflated) wage per hour and the gender wage ratio, for the firms
belonging to Sample 3. If the mean wage level increases from 18 euros
per hour in 2002 to 23 euros in 2017, the average firm-level wage
inequality measures (standard deviation and 90/10 ratio) do not show
any trend, except for a bump in the standard deviation variable in the
last two years of study. Regarding the gender wage ratio (female/male)
at different locations of the wage distribution, we see that in our data,
at the bottom of the distribution, it is extremely stable at approximately
1 (no gender wage inequality, which is a positive consequence of the
minimum wage). Instead, it starts at 80% at the mean and below 70%
at the 95th percentile in 2002 and increases to almost 90% and 80%,
respectively, over the period of study. It should be noticed that these
impressive dynamics regarding Sample 3 do not reflect the national
trend in the mean gender wage per hour gap, which shows no evolution
since 2002 (also see EUROSTAT, 2015).25

3.2. Automation and AI imports

We provide here some information to characterize our measure
of firm-level adoption of automation- and AI-related technologies,
namely, the sectors where it is prevalent and its lumpy statistical
properties.

Sectoral distribution of automation investments
We report in Table 4 the list of 2-digit sectors (NAF rev. 2, A88 clas-

sification) that are most active in buying automation- and AI-intensive
goods in our trade data. This is measured by comparing the share for
which a sector accounts with regard to total French automation and
AI imports (central column) and the same sector’s share in aggregate
employment (last column). The electronics (NAF rev. 2 division 26),
machinery (28), and automotive sectors (29) are disproportionally
represented in automation- and AI-related imports compared to their
employment share. The retail sector (46) is a noteworthy case with

25 Part of the explanation has to do with the subset of workers in our sample:
in our sample of importers, and even more so in our sample of importers of
automation and AI products, wages are higher than in the rest of the economy.
At low levels of the wage distribution in our sample (which better mirror the
overall wage level in French firms), the gender wage gap is quite stable over
time, thus acting similarly to the aggregate dynamics (cf. https://ec.europa.
eu/eurostat/databrowser/view/sdg_05_20/default/table?lang=en).
7

Table 4
Sectors with an automation and AI share larger than their employment share, Sample
3, 2017.
Source: Our elaborations on DADS and DGDDI data.

Sector A88 Automation and AI Employment
share (%) share (%)

Electronics 26 3.7 2.1
Machinery 28 3.4 2.6
Automotive 29 3.7 3.0
Retail 46 59.5 9.7
IT 62 5.4 3.2

55.1% of those investments, more than six times its share in total
employment (9.3%).26

The statistical properties of automation
When looking at the statistical properties of automation- and AI-

related imports, it can be observed, as already seen with automation
alone in Domini et al. (2021) and Bessen et al. (2020a), that they
display the typical spiky behavior of an investment variable (Asphjell
et al., 2014; Letterie et al., 2004; Grazzi et al., 2016). This means
that, first, such imports are rare across firms: approximately 14% of
importers import automation- and AI-related goods per year, and fewer
than half of them do so at least once over the 2002–2017 period.
Second, such imports are rare within firms: among firms that import
such capital goods at least once, close to 30% do it only once, and
the frequency decreases smoothly with higher values, except for a
small group of firms that import AI or automated goods in all years.
Finally, the largest yearly event of imports of such goods represents a
significantly high share of a firm’s total across years: when ranking the
shares of each year’s imports (out of all years) from largest to smallest,
it is apparent that the top-ranked import event displays a predominant
share (approximately 70%), while the shares of lower ranks rapidly
decrease in value.27 As discussed in Domini et al. (2021), there are
two possible explanations for automation adoption being lumpy, and
this also applies to AI-related goods. First, the products we select are
a subset of capital goods that are automated in nature. As such, they
should share similar characteristics as the larger category of physical
investment goods (Nilsen and Schiantarelli, 2003). Second, Bessen
et al. (2020a) point out that even other dimensions of the adoption

26 Although the relevance of automation technologies in service sectors is
largely acknowledged (see among others Sostero, 2020), to account for such
an important outlier, we also run the regressions separating manufacturing
and services. They are not included in the results due to space constraints but
are available from the authors upon request.

27 These statements are based on Fig. A.2 in Appendix A.

https://ec.europa.eu/eurostat/databrowser/view/sdg_05_20/default/table?lang=en
https://ec.europa.eu/eurostat/databrowser/view/sdg_05_20/default/table?lang=en
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of automation technologies, for example, automation costs, share the
same characteristics that make investment lumpy: they are irreversible,
as they bring about idiosyncratic changes in the production process,
and indivisible, as they cannot be carried out in small chunks over time.
Because of the very skewed nature of this variable within firms, we
define the largest event for each firm as an automation/AI spike. As a ro-
ustness exercise, we also compare results with alternative definitions
f these spikes by first separating automation and AI products,28 and
hen adopting the spike definition provided in Bessen et al. (2020a,b)
ith a condition on the value of the imports (see Section 4.4).29

.3. Firm-level wage inequality and automation

What are the characteristics of the firms that invest in automation
nd AI-related goods? In Table 5, we compare, within our sample of
mporting firms above 10 employees (Sample 2), the group of firms that
ever automate (column ‘No spike’) to that of those who import such
oods at least once, and for which we can construct the automation/AI
pike variable (column ‘Spike’, corresponding to Sample 3). We also
eport in the last column the significance level of the mean-difference
est comparing those two groups.

In line with previous descriptions from the literature (Koch et al.,
019; Deng et al., 2021; Domini et al., 2021), firms adopting automa-
ion and AI are larger, more productive, and pay higher wages than
on-adopting firms. Such a difference in the wage level is present at
ll levels of the wage distribution and is more pronounced at higher
evels. We also show that adopting firms have higher within-firm wage
nequality according to the two measures used in our exercise (standard
eviation of the within-firm wage per hour distribution and 90/10
ercentile ratio). Finally, they are more unequal in terms of gender pay,
howing a lower female-to-male wage per hour ratio at all locations of
he wage distribution.

The static differences highlighted in Table 5 could be due to the im-
act of automation and AI on wage and employment characteristics, but
hey might also reflect self-selection into automation and AI adoption.
uch a selection effect will be addressed in our empirical strategy by
onsidering only firms that automate (i.e., Sample 3) in our event-study
nalysis.

The next step is to consider a dynamic approach by evaluating how
irm-level wage characteristics evolve around an automation/AI spike.

e start with a descriptive exercise in a balanced panel of firms that
ave an automation/AI spike at time 𝑡 = 0 and that we also observe
n the three years before and three years after. Within this subgroup of
7,266 firms, and not controlling for other sectoral, time or firm-level
ffects (which will be done in the regression analysis), the picture that
merges is that of an increase in wages at all the levels tested here,
hile the correlation between the spike event and wage inequality is
mbiguous (the two measures of wage inequality yield opposite trends).
inally, the gender pay gap seems to slightly decrease, especially at the
0th percentile of the wage distribution (see Table 6).

. The effect of automation and AI on wages: an event study
nalysis

.1. Empirical approach

Automation/AI spikes represent single, major events that we ob-
erve for French importing firms during the 2002–2017 period (see
ection 3.2). This characteristic makes it suitable to investigate the
elationship between automation and wages within an event-study

28 See the distinction in Table A.1.
29 For a more detailed discussion of the statistical properties of automation-
elated imports, including a comparison to general physical investment,
ee Domini et al. (2021, Section 3).
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Table 5
Comparing firms with and without an automation/AI spike, Sample 2, all years
(2002–2017).
Source: Our elaborations on DADS and DGDDI data.

No spike Spike T-test

Number of observations 622,506 509,547
Number of firms 52,298 39,295

Number of employees 55.63 175.76 ***
Value added per hour 75.30 344.95 *

Wage per hour (mean) 18.13 20.42 ***
Wage per hour (p10) 11.77 12.59 ***
Wage per hour (p50) 15.63 17.45 ***
Wage per hour (p90) 28.02 31.96 ***

Wage standard deviation 8.62 10.66 ***
90-10 wage ratio 2.37 2.52 ***

Female-to-male wage ratio (aggregate) 0.88 0.84 ***
Female-to-male wage ratio (p10) 1.01 0.98 ***
Female-to-male wage ratio (p50) 0.95 0.91 ***
Female-to-male wage ratio (p90) 0.83 0.79 ***

Notes: ***: significant difference at 1% level; Sample 2: Importing firms above 10
employees.

Table 6
Wage characteristics around an automation/AI spike, balanced panel within Sample 3.
Source: Our elaborations on DADS and DGDDI data.

Years
since spike

Wage per
hour

Wage standard
deviation

90/10
wage ratio

−3 19.573 10.585 2.571
−2 19.679 10.565 2.549
−1 19.885 10.601 2.522
0 20.133 10.646 2.493
1 20.326 10.579 2.477
2 20.598 10.720 2.477
3 21.029 10.838 2.467

Years
since spike

Wage per hour
(p10)

Wage per hour
(p50)

Wage per hour
(p90)

−3 11.891 16.524 31.018
−2 11.997 16.624 31.091
−1 12.207 16.813 31.311
0 12.411 17.066 31.452
1 12.605 17.328 31.626
2 12.761 17.576 32.060
3 13.088 18.051 32.466

Years
since spike

Gender wage
ratio (p10)

Gender wage ratio
(p50)

Gender wage
ratio (p90)

−3 0.982 0.903 0.773
−2 0.981 0.906 0.782
−1 0.985 0.910 0.787
0 0.984 0.915 0.797
1 0.987 0.918 0.805
2 0.987 0.920 0.809
3 0.988 0.922 0.814

Notes: The sample includes firms belonging to Sample 3 observed for at least three
years before and three years after an automation/AI spike, representing a balanced
sample of 17,266 firms; Sample 3: Firms importing automation- and AI-related goods
at least once, with at least 10 employees.

framework. Such a methodology was used by Bessen et al. (2020b) to
study the effect of automation on firm-level outcomes as well as in other
contexts to explore differences around a main firm-level event (Bala-
subramanian and Sivadasan, 2011; Miller, 2017; see also Duggan et al.,
2016; Lafortune et al., 2018 for other, non-firm-level, applications).

Given an index 𝑡 that indicates the difference between the current
year and the year in which the automation/AI spike happens for firm
𝑖, our main event study specification reads as follows:

𝑦𝑖𝑗𝑡 =
𝑘𝑚𝑎𝑥
∑

𝛽𝑘𝐷𝑘𝑖𝑡 + 𝛿𝑖 + 𝜁𝑗𝑡 + 𝜀𝑖𝑡 (3)

𝑘≠−1;𝑘𝑚𝑖𝑛
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Fig. 3. Automation/AI spikes and within-firm wage inequality. Note: The solid line represents coefficients 𝛽−3 to 𝛽3 from the estimation of Eq. (3), while the dotted line represents
the confidence interval at the 5% significance level.
Fig. 4. Automation/AI spikes and the within-firm wage distribution. Note: The solid line represents coefficients 𝛽−3 to 𝛽3 from the estimation of Eq. (3), while the dotted line
represents the confidence interval at the 5% significance level.
where 𝑦𝑖𝑗𝑡 is the dependent variable of interest for firm 𝑖 at time 𝑡 in
sector 𝑗; 𝐷𝑘𝑖𝑡 is a dummy = 1 if index= 𝑘 for firm 𝑖 in year 𝑡; 𝛿𝑖 and 𝜁𝑗𝑡
are a set of firm and sector–year fixed effects, respectively, and finally,
𝜀𝑖𝑡 is the error term.

𝛽𝑘 represents the effect of the automation/AI event on outcome 𝑦,
𝑘 years after the event (or before if 𝑘 < 0). These effects are measured
relative to a baseline year, in this case, 𝑘 = −1, which is excluded.
9

The values at which the index is censored (i.e., 𝑘𝑚𝑖𝑛 and 𝑘𝑚𝑎𝑥) usually
depend on the type of data available. We set 𝑘𝑚𝑖𝑛 = −4 and 𝑘𝑚𝑎𝑥 = 4
so that 𝛽−4 (𝛽4) represent average outcomes four or more years prior
(later) to the event relative to those at 𝑘 = −1. Eq. (3) is thus a flexible
tool with which to study the timing of the effects of automation/AI.
To focus on short-term effects of automation/AI, which can be more
directly attributed to the spike event, we will focus on coefficients



Research Policy 51 (2022) 104533G. Domini et al.

s

O
i
s
r
i

P
b
2
n
S
w
8
r
i
6

t
l
t
w
i
t
u
i
f
t

e
j
p
I
e
f

from 𝛽−3 to 𝛽3 when displaying the results, although other years are
controlled for in the regressions.

We perform our main regressions on the sample of spiking firms
(Sample 3, see Table 1), including a rich set of firm and sector–year
fixed effects. In this way, the coefficients 𝛽𝑘 are identified using the
variation in the timing of the spike across firms, and they represent the
difference between the value of the dependent variable one year before
the spike and 𝑘 years after (or before), net of sector-specific time trends.

It is important to note that in order to provide a causal interpre-
tation of the coefficients, one should assume a counterfactual scenario
in which, absent the event, the spiking firm would not experience the
observed change. This is similar to the parallel trend assumption of
a difference-in-differences regression to which our research design is
closely related: in our case, there are only treated firms, but they are
treated in different time periods, as in Bessen et al. (2020a,b). Keeping
only treated firms makes it more likely that they are following parallel
trends, especially given the large differences observed between the
groups of firms with and without a spike (see Table 5). On the other
hand, a useful characteristic of our event study is that it has built-
in placebo tests (Lafortune et al., 2018) that should tell us how far
we are from this assumption. In practice, we will check whether the
variable of interest shows any specific trend before the spike. Absent
that, it is more plausible to assume that the results are not driven by
pre-spike differences across firms. In any case, given the non-random
nature of an automation/AI spike, one should still be cautious about
causal interpretation of our results. In particular, demand or supply
shocks that occur the same year of a spike may be endogenous to the
decision to automate. For this reason, we will interpret the coefficients
mostly as describing the evolution of firm outcomes around the spike,
as in Bessen et al. (2020b).

4.2. Results

We will now discuss the results of the estimation of Eq. (3), as
displayed in Figs. 3 to 5. In all of these figures, we plot the coefficients
𝛽𝑘 from 𝛽−3 to 𝛽3, and the dashed lines represent confidence intervals
at the 5% significance level. All of the regressions are performed on the
number of observations and firms of Sample 3, as reported in Table 1. In
this Section 4.2, we report the main results of our analysis, focusing on
wage inequality, wages at different locations of the wage distribution,
and the gender wage gap. In the next section, we will report findings
aimed at explaining those results and uncovering the mechanisms at
play (Section 4.3). Then, in Section 4.4, we perform some robustness
checks on our findings.

Wage inequality within firms
In Fig. 3, we investigate the impact of automation/AI spikes on

within-firm measures of wage inequality, using as proxies of inequality
the 90∕10 ratio of wages per hour (left) and the standard deviation of
hourly wages (right) within a firm. For both investigated measures,
the 𝛽𝑘 coefficients are not significant, with the exception of a barely
significant and positive effect on the 90/10 ratio two years after the
spike and on the standard deviation three years after the spike. Note
that these coefficients, though significant, are small in size: the increase
in the 90/10 two years after a spike is estimated as 0.13, compared to
a mean value of 2.52 for firms in Sample 3; and the increase in the
standard deviation three years after a spike is 0.20, compared to a mean
of 10.66 (see Table 5). Furthermore, these increases are not persistent,
as they revert to nonsignificant afterwards in any case, and they are
not always found to be robust after our further tests (see Section 4.4).

Our result adds further evidence on the scant literature on technol-
ogy and within-firm wage inequality.30 A positive correlation between

30 For a review on the link between technology and overall wage inequality,
ee Acemoglu and Autor (2011).
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innovation and within-firm wage inequality is found in Cirillo et al.
(2017) in European countries, where, however, a general R&D inno-
vation proxy is considered. Our result conveys a different message. By
focusing on adoption rather than innovation, we find that inequality
is substantially unaffected by an automation/AI spike. One possible
explanation is that adoption did not increase wages to begin with in our
case; however, we will see below that this hypothesis is not supported.

Wage increase by percentiles
Having established that within-firm wage inequality does not in-

crease following an automation/AI spike, the question remains whether
this is simply the effect of a disconnect between automation and wage
dynamics or whether wages increase following an automation spike in a
fairly equal way across workers. In that case, differences in wages across
firms would be affected by technological adoption. We try to settle this
question in Fig. 4. There, we report results where 𝑦𝑖𝑗𝑡 represents the
mean and different percentiles of the within-firm wage distribution.
Variables are log-transformed so that coefficients can be interpreted as
percentage changes with respect to the value of 𝑦𝑖𝑗𝑡 one year before the
spike.

The first plot of Fig. 4 (top, left) shows the effect of an automa-
tion/AI spike on the (log) mean hourly wage of the firm. Following
a spike, there is an increase in the mean wage that is, at first, not
significant (in the year of the spike) but then reaches significance with
an increasing trend. Overall, the effect is precisely estimated to be
small: three years after the spike, the mean wage is 1.1% higher than
before the spike.

Such an increase in hourly wages seems to be due to positive
changes at different percentiles of the distribution. In Fig. 4, the 10th,
50th, and 90th percentiles are respectively 1.1%, 1.3%, and 1.0%
higher three years after the spike than before it happened (𝑡 − 1).

verall, we can conclude that following an automation/AI spike, there
s a general increase in workers’ wages three years after the event;
uch an increase is equally distributed across the wage percentiles,
einforcing the message coming from the previous exercises that there
s no change in within-firm inequality after such an event.

How do these results compare to other estimates from the literature?
recise estimates of the relation between automation and wages can
e found in the case of the adoption of industrial robots (Koch et al.,
019; Barth et al., 2020; Humlum, 2020). Koch et al. (2019) find
o significant effect of robot adoption on the average firm wage in
pain; Barth et al. (2020) find a 4% increase in the average log hourly
age in manufacturing firms in Norway, and Humlum (2020) report an
% increase in the wage bill in the case of Denmark. Finally, a modest
elationship between hourly wage and robot adoption is observed
n Acemoglu et al. (2020) in a smaller sample including approximately
00 French robot adopters.

For automation, measures of automation intensity (instead of adop-
ion) are used by Dinlersoz et al. (2018b) and Aghion et al. (2020). Din-
ersoz et al. (2018b) show a positive relationship between automa-
ion intensity (using a technology index) and wages in U.S. plants,
hile Aghion et al. (2020) do not find any significant effect of changes

n electric motive power and average wages at the firm level. Finally,
he study by Bessen et al. (2020a) in the case of the Netherlands
ses both automation cost spikes and information about automation
mporters using trade data. Using an event-study methodology, they
ind an increase in daily wages and the wage bill for importers, while
he wage bill decreases among non-importers.

Another element of comparison is the heterogeneity of the wage
ffect across workers within firms. The study by Webb (2019), using
ob task descriptions and patents, highlights differences between the
redicted labor impact of robots and AI technologies across skill levels.
f both Barth et al. (2020) and Humlum (2020) find heterogeneous
ffects across worker groups, whereby skilled or tech workers benefit
rom wage gains while unskilled or production workers lose wages after
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the adoption of industrial robots, this is not a case supporting automa-
tion adoption. Indeed, neither (Aghion et al., 2020) nor (Bessen et al.,
2020a) report differences across skill or wage quartile groups. Aghion
et al. (2020) conclude that, in the case of France, ‘‘the distributional
effects of automation in the labor market are subtle’’ . They attribute
this difference to international competition pressure, which is lower in
the U.S. (Acemoglu and Restrepo, 2018).

Gender wage gap
While we report an increase in wages per hour at different levels

of the wage distribution in adopting firms, an interesting question is
whether, within a given percentile of the wage distribution, there is
a change in the gender wage gap. Available evidence and theoretical
models suggest that intra-firm gender wage gaps may relate to firm-
specific characteristics, such as size and bargaining regimes (Oi and
Idson, 1999; Heinze and Wolf, 2010; Card et al., 2016), as well as, more
generally, the extent to which firms reward job-related characteristics
such as temporal flexibility (Goldin, 2014). Only preliminary empirical
evidence is available on the direct effect of automation on this gender
gap. In a sample of Estonian manufacturing firms, Pavlenkova et al.
(2021) show that automation benefits the wages of male workers more
than female workers.

We now test this hypothesis by separately estimating Eq. (3) for
our gender wage gap measure (the ratio of female-to-male wages)
computed at different percentiles of the wage distribution. This takes
into account the evidence shown in Table 5, according to which the
gender gap does change along the wage distribution, as well as ev-
idence coming from other countries (see, for example, Gardeazabal
and Ugidos, 2005 on wage discrimination at quantiles in Spain). The
results of this analysis are reported in Fig. 5. We plot the 𝛽𝑘 coefficients
from Eq. (3), where the dependent variable is the ratio between the
female and male wages at the 10th, 50th and 90th percentiles, as well
as at the mean. In general, the ratio does not significantly change after
a spike, although a larger and more consistent positive increase (though
insignificant) emerges for the 90th percentile. This result suggests that
the increase in wages following an automation/AI spike is equally
distributed not only across the wage percentiles but also within them,
across male and female workers.

4.3. Investigating the mechanisms

The exercises above, together with the evidence on a similar dataset
in Domini et al. (2021), go against the view that automation/AI adop-
tion affects the relative demand for labor within firms. Indeed, neither
the distribution of occupations nor the wage at different percentiles
of the distribution appear to change after such an event. Instead, we
observe a firm-level effect on wages. Not only is there a between-firm
effect (firms that adopt automation- and AI-related capital goods pay
higher wages are larger and have higher productivity and profitability
than firms that do not; see Table 5) but also, in the sample of firms that
have a spike in the period of analysis, we observe higher wages after
the event. As discussed in the introduction, several mechanisms may
explain the role of automation/AI adoption in wage inequality across
firms.

We explore below the different channels according to which au-
tomation/AI can lead to higher wages at the firm level: (i) technology
adoption has a positive productivity effect (in line with Acemoglu and
Restrepo, 2019), and together with such productivity increase, the
firm would share its higher profits with its employees in the form of
higher wages (according to the rent-seeking behavior in Blanchflower
et al., 1996); and (ii) the firm also changes the profile of its newly
hired employees through a sorting and matching effect of technological
change (Abowd et al., 1999b; Cahuc et al., 2006; Song et al., 2019).
11

d

The productivity channel
One simple explanation for the wage increases at all levels of the

distribution would be that it reflects a higher productivity and prof-
itability of the firm, then passed through to wages via a rent-sharing
process (Blanchflower et al., 1996). On this basis, we would expect
a positive impact of an automation/AI spike on productivity, with a
higher coefficient than that found for wages. Fig. 6 shows the change
in productivity (value added per hour worked) after an automation/AI
spike. Contrary to what we expect from our economic intuition, as well
as what is predicted from the model of Acemoglu and Restrepo (2019),
we find a negative impact on productivity, which is approximately 3%
lower three years after the spike than it was before the spike.

A closer look into the literature on the relation between investment
and productivity on the one hand (Power, 1998; Grazzi et al., 2016)
and on the impact of productivity shocks on wages on the other
hand (Harris and Holmstrom, 1982; Carlsson et al., 2016) provides an
economic framework through which to interpret these results.

First, the empirical literature on productivity growth after an in-
vestment spike shows that the short-term effect is negative (Power,
1998; Huggett and Ospina, 2001; Grazzi et al., 2016). The learning-
by-doing mechanism would explain this and suggest that productivity
growth should then turn positive after employees adjust to the new
technology and obtain returns from it. However, it is very difficult
to observe this positive effect of capital investment on productivity
within the firm, even when accounting for a long lag in time after the
investment (Power, 1998; Grazzi et al., 2016).

Second, what do we know about the response of wages to produc-
tivity shocks? In the model by Harris and Holmstrom (1982), the effect
depends on the sign of the productivity shock and is asymmetric: only
positive shocks are passed on to wages, while negative shocks are not.
Such downward wage rigidity is in particular expected in countries such
as France with collective wage bargaining and a large emphasis on the
minimum wage and permanent contracts (Babeckỳ et al., 2010; Avouyi-
Dovi et al., 2013). In addition, according to Carlsson et al. (2016),
in the case of Swedish firms, wages respond much more to sector-
level changes in productivity than to firm-specific characteristics due to
mobility within sectors. Relatedly, Montornès and Sauner-Leroy (2015)
show that in the French context, wage changes are mostly explained
by new hires. From this exercise, we conclude that the productivity
channel does not explain the increase in wages observed after an
automation/AI spike.

The employee-matching channel
In the exercises above, we focused on heterogeneous effects across

workers at different levels of the wage distribution as a way to form a
proxy for changes in labor demand linked to skills or tasks. However,
other sources of heterogeneity in the wage dynamics across workers
within the firm should be accounted for. In addition to firm character-
istics, individual or ‘‘personal’’ unobservable effects matter greatly in
explaining wage dynamics in the French context (Abowd et al., 1999b).
We explore this channel by decomposing the overall wage effect into
new hires and incumbents, and by specifically looking at the wage of
workers who leave the firm, i.e., separated workers.

Newly hired workers
The relevant literature highlights how workers with ‘‘good’’ charac-

teristics get matched with ‘‘better’’ firms, i.e., those firms better able to
compete in the labor market and attract the best workers (Cahuc et al.,
2006). From this, and from the French institutional context described
above, we expect that wage dynamics in the firm could be mainly
driven by a change in the profile of new hires relative to incumbents.

To test this possibility, we investigate the effects of automation
focusing on the ratio between the hourly wage of newly hired workers
per year 𝑡, defined as those that are not present in the firm on December
31st of year 𝑡 − 1 but are employed on December 31st of year 𝑡, with
espect to the wage of incumbents, defined as workers present at both

ates.
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Fig. 5. Automation/AI spikes and the gender wage gap. Note: The solid line represents coefficients 𝛽−3 to 𝛽3 from the estimation of Eq. (3), while the dotted line represents the
confidence interval at the 5% significance level.
Fig. 6. Automation/AI spikes and productivity. Notes: The plot reports the impact of
automation/AI on the log-transformed value of value added per hour worked; The solid
line represents coefficients 𝛽−3 to 𝛽3 from the estimation of Eq. (3), while the dotted
line represents the confidence interval at the 5% significance level.

Results are reported in Fig. 7. We find that, three years after a spike,
the ratio between the mean wage of new hires and that of incumbent
workers is one percentage point higher, with respect to one year before
the spike. The effect is quite similar at the 50th percentile and slightly
larger at the 10th percentile, but it is less prevalent and not significant
at the 90th percentile, where the error in the estimation is larger. Note
12
that, similar to the effect found for all workers (see Fig. 4), the change
in the relative wage of new hires and incumbents is slightly delayed, as
it starts to be observed at 𝑡 + 1.31 Additionally, in this case, there is no
evidence that pre-spike trends are significant, suggesting that workers
with different wages do not select into the firm before the spike.32 These
results suggest that after adopting automation/AI, the profile of new
hires changes: one possible explanation, consistent with the employee
matching channel, is that automating firms look for workers with more
experience and education, including knowledge of the new technology
being adopted.

Separated workers
In this final exercise, we compare the wages of separated workers,

defined as those that are present in the firm on December 31st of
year 𝑡 − 1 but are not present on December 31st of year 𝑡, to that
of incumbents after the automation/AI investment spike. While the
sorting and matching literature focuses on workers’ entry into the
firm, some empirical works on the employment effects of automation
also discuss the characteristics of the workers leaving it. In particu-
lar, Bessen et al. (2020a), investigating workers’ probability of leaving
after an automation spike, find that it does not depend on workers’
characteristics such as wage, age or gender.

31 Note that not all firms hire new workers each year, so the sample of
firms and observations on which the equation for newly hired workers is
estimated is slightly smaller, consisting of 473,976 observations (vs. 506,374
of the full sample) and 38,942 firms (vs. 39,580 of the full sample). We have
also performed our previous estimations using this smaller sample, and our
results remain unchanged.

32 For a similar concern, see Bessen et al. (2020a).
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Fig. 7. Automation/AI spikes and newly hired workers’ wages relative to incumbent workers’ wages. Note: The solid line represents coefficients 𝛽−3 to 𝛽3 from the estimation
of Eq. (3), while the dotted line represents the confidence interval at the 5% significance level.
In our case, we restrict the comparison to the difference in wages
between incumbent and separated workers.33 Similar to our new hire
vs. incumbent wage ratio, we compute the ratio of wages of the
separated workers over wages of incumbents at different percentiles
of the distribution and track the evolution of this ratio around an
automation/AI spike.

We find some heterogeneity across wage percentiles. Indeed, the
relative wage of separating workers at the 90th percentile slightly
increases after the event and is 1.3 percentage points higher two years
later; conversely, we do not find significant differences at the other
percentiles of the wage distribution. This result implies that the workers
who leave the automating firm have slightly higher wage profiles than
workers who stay, but only at the top of the distribution. Those who
leave might be those with longer tenures and who therefore do not
match as well with the new technology of the firm. Note that at
this level of the wage distribution in our sample, almost all workers
have a permanent contract (close to 97%), so the decision to separate
might be driven by the worker, who may have relatively good re-
employment prospects compared to workers at lower levels of the skill
distribution (Berson et al., 2020) (see Fig. 8).

4.4. Robustness tests

Here, we discuss a series of robustness exercises as well as the moti-
vation behind performing them. First, we focus on different definitions

33 The type of data and worker-level information in the paper by Bessen et al.
(2020a) allows them to control for more person-specific dimensions, which are
not available in our data, such as tenure in the firm as well as information on
income and status after separation.
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of the spikes, namely: (i) separately identifying automation spikes and
AI spikes; and (ii) introducing a size threshold for the identification
of an automation/AI spike. Then, we modify the sample of analysis
in different ways: we separate manufacturing from services sectors
to control for sectoral heterogeneity; we remove firms that import
these products but may not change their production processes; and
we focus on a balanced sample of firms that are present throughout
the years 2002–2017, to assess whether our results are influenced by
firm entry and exit. Finally, we address a potential concern regarding
a discontinuity in our customs data source, by showing results for
the subperiod 2002–2010; and we check whether our interpretations
depend on the specific time window we have used for our analysis
(from three years before to three years after a spike), by showing results
for a larger time window (from five years before to five years after a
spike).

In the rest of this section, for the sake of conciseness, we will
limit our comments to mentioning whether remarkable differences arise
between each robustness test and the baseline results shown so far.
Results on our main variables of interests (namely, the 90/10 wage
ratio, the gender wage gap, productivity, the mean wage, and the
wages of newly hired and separated workers, relative to incumbents)
are shown in Appendix B. Full results are available upon request.

Changing the definition of spikes
AI- versus automation-only spikes In our main analysis, we employed
spikes based on imports of automation- and AI-related goods. Our spike
variable may therefore identify episodes of investment in automation
technologies only, AI technologies only, or both at the same time.
However, there are reasons to believe that the impact of these two
groups of technologies on employment and wages may be different, as
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Fig. 8. Automation/AI spikes and separated workers’ wages relative to incumbent workers’ wages. Note: The solid line represents coefficients 𝛽−3 to 𝛽3 from the estimation
of Eq. (3), while the dotted line represents the confidence interval at the 5% significance level.
they serve different purposes and replace/complement different types
of workers. Webb (2019) observes that while software and robots
impact mostly low-skilled workers, AI is directed at high-skill tasks.
A further reason for separately analyzing automation and AI is that
some previous literature focuses on only one of them. Hence, separate
analyzes should enhance the comparability of our findings.

As a consequence, we rerun our analysis using spike variables
defined on automation only and on AI only. Table A.1 shows which
technologies belong to each group, and Table A.2 shows how many
firms import (and have a spike in) goods of either group. We observe
that importing automation products is more common than AI products,
but the gap is smaller in terms of spikes, especially at the end of the
period.

In Figs. B.1 to B.2, we show the results for automation-only and AI-
only spikes, respectively. No qualitative differences are detected, except
for AI significantly increasing the gender wage gap three years after a
spike, although with a negligible magnitude, while automation does
not. A general consistency can be observed for other variables (not
displayed in Figs. B.1 and B.2) as well.34

More restrictive spike definition We also test the robustness of our
findings by setting a size threshold for identifying an automation/AI
spike, following the investment spike literature (Nilsen et al., 2009;
Grazzi et al., 2016). In our main analysis, we define a spike as the main
episode of imports of such technologies, without any restrictions. For
this robustness test, we adopt a more stringent definition of spikes as
the main episode of imports of automation/AI products that is at least
three times larger than the average value of imports by the same firm

34 Note that the AI results have larger error bands.
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in other years (at constant prices). This is similar to the spike definition
adopted by Bessen et al. (2020a,b); hence, this robustness test allows
use to increase the comparability of our results to theirs.35 Adopting this
alternative definition of a spike restricts the sample of spiking firms we
use for our regressions (Sample 3) since it causes us to drop spikes that
do not meet the relative size threshold mentioned above. The number
of observations used in regressions is reduced by approximately one
fourth, as a similar (though slightly larger) share of spikes as per our
main definition are discarded.

The results from this robustness check, shown in Fig. B.3, con-
vey a substantially unchanged picture, the only noticeable differ-
ence being that the post-spike coefficients for the 90th-percentile new
hires/incumbents wage ratio (as per Fig. 7, bottom right) and for all
percentiles of the separated/incumbents ratios are not significant.

Changing the sample of analysis
Manufacturing vs. Services Our main analysis encompasses the entire
French economy, with the exceptions of the primary sector (NAF rev.
2 divisions 01 to 09). However, there are reasons for performing
separate analyzes on the manufacturing and service sectors. First, Mon-
tobbio et al. (2020) show that labor-saving technologies may challenge
different activities in different sectors. Hence, the effect of such tech-
nologies on the wage distribution may be different across sectors.
Second, restricting the analysis to the manufacturing sector enhances
comparability with previous research on the effects of automation,

35 They identify automation spikes in year t if automation costs, as a share
of a firm’s total costs, are at least three times the average firm-level cost share.
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which has mainly focused on manufacturing firms.36 Finally, focusing
on manufacturing is one possible way of dealing with the issue of resale
of imported automation- and AI-related goods, which will be explained
below.

We therefore rerun our analysis separately for the manufacturing
sector (NAF rev. 2 divisions 10 to 33) and for services (NAF rev. 2
divisions 35 to 96). These subsamples account for 44% and 56% of all
observations in Sample 3, respectively. To be more precise, in 2017,
manufacturing divisions jointly accounted for 42% of firms, 20% of the
value of automation/AI imports, and 33% of employment.

In Figs. B.4 and B.5, we show results for manufacturing only and
for services only, respectively. When observing the 90/10 wage ratio,
which measures within-firm wage inequality, the results for services
appear very close to our baseline results, while the results for man-
ufacturing share the general lack of significance (except for a barely
significant and positive coefficient one year after a spike). Likewise,
for the gender wage gap, we do not find a significant effect of our
automation/AI measure on the mean wage gap within either of the two
sectors. The effects of automation/AI spikes on wages are qualitatively
similar but of a lower magnitude for manufacturing: three years after
a spike, the mean wage is 0.8% higher in manufacturing firms vs 1.3%
in services firms.

Some differences appear, however, when looking at the new hires/
incumbents wage ratio and the separated/incumbents wage ratio. The
former shows stronger and more persistent increases after a spike
in manufacturing firms. In contrast, the latter shows nonsignificant
dynamics for manufacturing firms but a significant increase after a
spike for services. The interpretation of this increase in wages after a
spike that we provided above, as due to a sorting mechanism whereby
firms adopting automation/AI hire new, better-paid workers, seems to
hold particularly well for the manufacturing sector. Conversely, in the
services sector, the increase in the new hires/incumbents ratio is less
sizeable, while an important role seems to be played by the separation
of relatively well-paid workers after a spike.

Excluding potential resellers of automation/AI products A potential
drawback of our import-based measure of automation/AI adoption is
that some firms that import goods related to these technologies may
not use them themselves but instead resell them, either in the domestic
market or abroad. When this happens, then our measure identifies
firms that in fact are not adopters. This can be expected to be a
particularly important issue in industries related to trade; remarkably,
Table 4 shows that more than half of the value of automation imports
from firms in Sample 3 is accounted for by NAF division 46 (Retail),
while this division only accounts for approximately one tenth of the
total employment in the same sample. As mentioned above, restricting
the sample to the manufacturing sector is one way of dealing with
this issue, as such a mismatch between the relevance of the sector
in terms of automation/AI imports and in terms of employment and
number of firms cannot be detected. However, manufacturing firms
are also known to be involved in the (re)export of goods they do not
produce, engaging in so-called Carry Along Trade (CAT). The next two
robustness checks will address the possibility of re-exporting (by firms
in any sector) in two different ways.

First, we exclude from our regressions re-exporting firms, defined as
firms that, at least once, import and export automation- and AI-related
goods in the same year. This restricts Sample 3 by one fourth.37 We
show the results on this smaller sample in Fig. B.6. The results on wage
inequality are very similar: we find a positive impact on the 90/10

36 Note that separating manufacturing and non-manufacturing industries al-
ows aligning our results on the gender wage gap with the study by Pavlenkova
t al. (2021).
37 Notice that this robustness test is likely to fall short of capturing all resale
ctivities, since we can only observe sales abroad (i.e., exports) but not sales
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ccurring in the domestic market.
wage gap but only (barely) significant after two years and no effect
on the gender wage gap. The effect at the mean and at different levels
of the wage distribution are unchanged: after three years, there is a 1%
increase in wages at all levels of the wage distribution. Finally, this is
also the case for the ratio of new hires to incumbent wages. We can
conclude that although excluding re-exporters modifies the sample of
analysis in a significant way, the results are unchanged.

Another way to deal with the issue of the potential resale of im-
ported automation- and AI-related goods is to exclude firms that import
such goods every year, since these firms are more likely to be resellers
than firms that import only once. Note that in this robustness check,
firms that are identified as resellers can be assumed to resell not only
in the export market but also in the domestic market. Again, this does
not change the results qualitatively, as shown in Fig. B.7.

Balanced sample In our main analysis, we use an unbalanced panel,
therefore including firms present for the whole period (2002–2017) as
well as others that enter and exit. In what follows, we check the role of
incumbent firms versus entering and exiting firms by running our anal-
ysis on a balanced sample. This sample counts 345,216 observations
(68% of Sample 3), corresponding to 21,576 unique firms (55%).

Results are shown in Fig. B.8 and are qualitatively in tune with
our main findings, although their magnitude is generally smaller. The
only difference is that when testing the effect of automation on the
new hires/incumbents and separated/incumbents wage ratios, the re-
sults are no longer significant. This happens also when rerunning our
analysis on the subperiod 2002–2010 (see below): in both cases, we
are employing a smaller sample, which is likely to affect statistical
significance.

Additional checks
Subperiod 2002–2010 Another potential concern stems from a discon-
tinuity in the import data, which we use to build the firm-level measure
of automation/AI adoption. In particular, since 2011, product codes
only have to be reported by firms with more than 460,000 euros of
imports in a given year within the EU (Bergounhon et al., 2018).38 This
exposes our sample to the risk of excluding those smaller importers.

In order to evaluate the importance of this reporting change, we first
look at the general trends in our data. In this regard, a first reassurance
comes from the fact that we do not observe any discontinuity in 2011
in the share of firms that import automation- and AI-related imports,
nor in that of firms characterized by a spike (see Table A.2). To provide
further evidence, we rerun our analysis on the subperiod 2002–2010.
Notice that this implies re-identifying the spikes, as they must now be
based on the maximum value of automation- and AI-related imports
within a shorter time period. For example, consider a firm that, when
looking at the entire 2002–2017 period, has a spike in 2014: once we
restrict the focus to the subperiod 2002–2010, the same firm may either
have a spike in a different year (i.e. with a lower import value than
the one initially identified in 2014), or no spike at all. The latter case
causes our sample to shrink, over and above the simple restriction in
the number of years. The resulting number of observations is 231,677,
corresponding to 45% of sample 3. Results from this analysis, shown
in Fig. B.9, are substantially in line with our main results. The only
difference in this smaller sample is that automation and AI events no
longer have a significant relation with the ratios between the wages
of new hires and incumbents, and between separating workers and
incumbents.

Larger time window Finally, we address the concern that the specific
time window we use in our main analysis (three years before and after
a spike) may miss important long-run dynamics. We therefore rerun
our analysis using a larger time window spanning five years before and

38 Acemoglu et al. (2020, Appendix A) estimate that this represents the price
of four or five industrial robots.
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after a spike. We do this by adding four time dummies (t − 5; t − 4;
+ 4; t + 5) and changing the long-run dummies (t< − 5 and t> + 5

nstead of t<-3 and t> + 3), not shown in the graphs. The regression
pecification is therefore changed, which may also alter results within
he original time window (t − 3 to t + 3).

Results are shown in Fig. B.10. The only noticeable changes in-
olve the flattening of wage growth, four years after a spike, and
he decreases the effects of automation and AI events on the new
ires/incumbents and separated/incumbents wage ratios. Overall, these
dditional insights confirm and further qualify (in temporal terms) the
laims made above.

. Concluding remarks

In this paper, we have shown that within-firm wage inequality is a
ervasive phenomenon in the French economy; most wage dispersion
n France is accounted for by differences among workers belonging to
he same firm rather than by differences between sectors, firms, or
ccupations. Restricting our attention to a sample of firms importing
utomation and AI-related goods, we found that major spikes in the im-
orts of such goods are not followed by an increase in wage inequality,
ut they do tend to increase wages in an equal way at different per-
entiles and across male and female workers. Indeed, contrary to what
as been found in the case of robot adoption (Humlum, 2020; Barth
t al., 2020), our study and others focusing on automation (Bessen
t al., 2020a; Aghion et al., 2020) do not observe a large distribu-
ional impact of automation across workers of different skills/wage
ercentiles. This hints at a role of the nature of technology: robot
doption displays complementarity with respect to workers at the top
f the wage distribution and substitution effects for production/low
killed workers (Webb, 2019), while automation (broadly defined)
nd AI have a more uniform effect across workers along the wage
istribution.

We also note that the magnitude of the effect is smaller than that
ound in previous studies focusing on robots in Norway and Den-
ark (respectively, Barth et al., 2016; Humlum, 2020). Adding to the

ole of the nature of technology highlighted above, the institutional
ontext, especially labor market features, as well as the level of inter-
ational competition (Aghion et al., 2020), could explain differences
cross countries. More work, especially across countries, is needed to
isentangle the sources of heterogeneity between studies on the topic.
hese findings should examined from the perspective and within the

nstitutional context of the French economy, which did not experience
ny overall significant change in within-firm wage inequality during
he examined period. Barth et al. (2020), for example, find that robots
ncrease wage inequality in a sample of Norwegian manufacturing
irms. An interesting question is to what extent future results in other
ountries will lean more towards the ‘Norwegian’ or the ‘French’ cases.

Coming to the interpretation of our results, our findings are not
inked to the rent-sharing behavior of firms obtaining productivity
ains from automation and AI adoption. Instead, we show that if
age gains do not differ across workers along the wage distribution,
orker heterogeneity will still be present. Indeed, aligned with the
KM framework putting forward a change in the profile of new hires as
response to changes in firm performance (Abowd et al., 1999b; Cahuc
t al., 2006), most of the overall wage increase is due to the hiring of
ew employees as part of the employment expansion that is generally
ssociated with an event of automation (Domini et al., 2021).

Unfortunately, we do not have data on education or other worker-
evel characteristics to test whether the higher wages of newly hired
orkers is due to different skills, experience with similar technology,
daptability, or other individual-specific effects. In particular, our un-
onditional wage ratio between female and male workers does not
ake into account systematic differences that can be correlated with
oth wages and gender. In addition, we cannot follow workers over
16

ime, which implies that we cannot control for unobservable personal a
haracteristics. The lack of this worker-level information, as well as
ull information on job tenure, is a limitation of our study that we
cknowledge. Future work could help identify the relative role of these
ifferent factors in explaining the wage impact of automation across
orkers.

There is also a complementary element to consider, still pertaining
o inequality, that is related to the very nature of this recent wave of
echnologies but is not yet explored in this work. Indeed, both AI and
elated applications greatly benefit from almost zero variable costs and
etwork externalities, which might easily generate dominant positions
r quasi-monopoly rents. This is a perspective put forth by Guellec and
aunov (2020), according to which the growing importance of digital
nnovation, products and processes based on software and data has
ncreased market rents, with benefits accruing disproportionately for
he top income groups. Although taking a more aggregate perspective
nd not explicitly referencing AI, De Loecker et al. (2020) also detect
generalized increase in market power from 18% above marginal cost

n the 1980s up to the current level of 67%. Obviously, the decision
oncerning the distribution of the returns associated with the adoption
f technologies has clear implications for within- and between-firm
age inequality. However, an exhaustive investigation of such a link

s beyond the scope of this specific work and is left for future analysis.
Overall, our findings add novel and important evidence to the

merging literature on the firm-level effects of automation. Previous
ontributions have mostly looked at the employment effects of the
doption of new technologies, usually finding a positive correlation
etween automation and employment at the firm level (Domini et al.,
021; Koch et al., 2019; Acemoglu et al., 2020). Here, we complement
his picture of a ‘labor friendly’ effect of the latest wave of new
echnologies for adopting firms by showing that it increases wages
ithout affecting within-firm wage inequality in a significant way. In
ther words, the increase in wages brought about by the adoption of
utomation and AI is enjoyed by all workers in the adopting firm,
rrespective of their initial wage or gender.
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Appendix A

See Figs. A.1, A.2 and Tables A.1, A.2.

Fig. A.1. Distribution of wages per hour among all workers before cleaning. Note: The vertical line indicates our cleaning threshold (half the minimum wage per hour in 2017).
Source: Our elaboration on DADS data.

Fig. A.2. Testing the lumpy nature of our spike variable: Number of years with automation/AI imports (left); Automation/AI investment shares by rank (right). Note: Rank 1 is
the highest yearly investment share in the firm’s timeline.
Source: Our elaborations on DGDDI data.
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Table A.1
HS-2012 product codes referring to automation- and AI-related technologies.

Label HS-2012 codes

Automation
1. Industrial robots 847950
2. Dedicated machinery 847989
3. Automatic machine tools 845600–846699, 846820–846899, 851511–851519
(incl. Numerically controlled machines)
4. Automatic welding machines 851521, 851531, 851580, 851590
5. Weaving and knitting machines 844600–844699, 844700–844799
6. Other textile dedicated machinery 844400–844590
7. Automatic conveyors 842831–842839
8. Automatic regulating instruments 903200–903299
9. 3-D printers 847780

AI
10. Automatic data processing machines 847141–847150, 847321, 847330
11. Electronic calculating machines 847010–847029

Notes: For further details on categories (1)–(8), see Acemoglu and Restrepo (2022) (A-12-A14); on (9),
see Abeliansky et al. (2020, p. 293); see also Domini et al. (2021); N.B. Codes for (1)–(8) only refer to
automation-related capital goods, while the codes indicated by Acemoglu and Restrepo (2022, A-12-A14)
also include non-automation-related capital goods (which are used as a control group in their analysis).

Table A.2
Automation and AI importers and spikes per year, as a share of Sample 2, 2002–2017.
Source: Our elaborations on DGDDI data.

Year Importers Spikes

Automation AI Either Automation AI Either
only only only only

2002 11.79 6.67 16.16 3.76 2.51 5.15
2003 11.69 6.36 15.85 2.67 1.78 3.55
2004 12.03 6.90 16.54 2.50 1.88 3.44
2005 12.24 7.09 16.88 2.48 1.87 3.45
2006 12.12 7.34 16.93 2.27 1.93 3.30
2007 12.47 7.03 16.95 2.64 1.64 3.41
2008 12.74 6.95 17.06 2.50 1.59 3.18
2009 12.12 6.44 16.16 1.92 1.23 2.42
2010 12.85 6.75 16.94 2.24 1.38 2.80
2011 12.15 8.61 17.45 1.94 1.95 2.88
2012 12.32 8.36 17.30 1.92 1.65 2.52
2013 13.00 9.60 18.79 1.99 2.08 2.92
2014 13.30 9.98 19.23 2.19 2.33 3.16
2015 13.56 10.52 19.90 2.39 2.83 3.75
2016 14.07 10.78 20.61 2.80 3.12 4.35
2017 14.46 10.71 20.74 3.92 3.68 5.55

Total 12.66 8.08 17.67 2.50 2.07 3.47
18
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Appendix B

See Figs. B.1–B.10.

Fig. B.1. Robustness check: Automation-only spikes. Note: The solid line represents coefficients 𝛽−3 to 𝛽3 from the estimation of Eq. (3), while the dotted line represents the
confidence interval at the 5% significance level.
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Fig. B.2. Robustness check: AI-only spikes. Note: The solid line represents coefficients 𝛽−3 to 𝛽3 from the estimation of Eq. (3), while the dotted line represents the confidence
interval at the 5% significance level.
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Fig. B.3. Robustness check: Alternative definition of automation/AI spike. Note: The solid line represents coefficients 𝛽−3 to 𝛽3 from the estimation of Eq. (3), while the dotted
line represents the confidence interval at the 5% significance level.
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Fig. B.4. Robustness check: Manufacturing only. Note: The solid line represents coefficients 𝛽−3 to 𝛽3 from the estimation of Eq. (3), while the dotted line represents the confidence
interval at the 5% significance level.
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Fig. B.5. Robustness check: Services only. Note: The solid line represents coefficients 𝛽−3 to 𝛽3 from the estimation of Eq. (3), while the dotted line represents the confidence
interval at the 5% significance level.
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Fig. B.6. Robustness check: Excluding re-exporters. Note: The solid line represents coefficients 𝛽−3 to 𝛽3 from the estimation of Eq. (3), while the dotted line represents the
confidence interval at the 5% significance level.
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Fig. B.7. Robustness check: Excluding firms that import automation- and AI-related technologies every year. Note: The solid line represents coefficients 𝛽−3 to 𝛽3 from the estimation
of Eq. (3), while the dotted line represents the confidence interval at the 5% significance level.
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Fig. B.8. Robustness check: Balanced sample. Note: The solid line represents coefficients 𝛽−3 to 𝛽3 from the estimation of Eq. (3), while the dotted line represents the confidence
interval at the 5% significance level.
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Fig. B.9. Robustness check: Subperiod 2002–2010. Note: The solid line represents coefficients 𝛽−3 to 𝛽3 from the estimation of Eq. (3), while the dotted line represents the
confidence interval at the 5% significance level.
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Fig. B.10. Robustness check: Larger time window. Note: The solid line represents coefficients 𝛽−5 to 𝛽5 from the estimation of Eq. (3), while the dotted line represents the
confidence interval at the 5% significance level.
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