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Abstract

In this paper, clustering methods are presented to enhance the stability of automatic volt-
age regulators using the efficient adjustment of their respective gains. The results show that
implementations of some of the clustering algorithms provide better reliability and stabil-
ity for the feedback-based voltage regulators as compared to the other methods, namely,
a model predictive controller (MPC), a gaussian mixture model (GMM), a self-organizing
mapping (SOM) and hierarchical clustering (HC) methods. Specifically, the K-Means clus-
tering approach (KM) provided superior stability but a slower rise time of the output volt-
age of the voltage regulators as compared to the other methods. Furthermore, coordination
of the clustering methods is tested for a 10 machine, 39 bus power grid system. The results
show that the clustering approach could be applied to improve the efficiency of voltage
regulation methods in smart grids and related cyber-physical systems.

1 INTRODUCTION

Automatic voltage regulators (AVRs) are employed to stabilize
the terminal voltages of medium, high, or extra high voltage
power grids. AVR systems constitute an amplifier, an exciter, a
generator, and a sensor-based feedback system. A system dia-
gram of an AVR is shown in Figure 1, where the AVR is con-
nected to a given power grid system. In the Laplace domain,
the transfer function G(s) of the PID controller is given in (1),
where the proportional, the integral, and the derivative gains are
represented by Kp, Ki, and Kd, respectively [1].

G (s) = Kp +
Ki

s
+ Kd s (1)

A major focus of modern literature is the efficiency optimiza-
tion methods for AVR systems based on proportional integral
derivative (PID) controllers. Related literature focuses on opti-
mizing PID parameters in AVR systems. This paper presents
clustering and coordination methods based on the voltage reg-
ulation variables such as the terminal voltage, the amplifier volt-
age, the exciter voltage, the generator voltage and the power grid
variables such as the bus voltage to adjust the output voltage of
the AVR system. The clustering method is proposed to identify

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the

original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
© 2021 The Authors. The Journal of Engineering published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology

related terminal voltage values and compute the gains for the
AVR system as shown in Figure 2.

The main contributions of this paper are fourfold. First, a
system equation describing the implementation of unsupervised
learning algorithms for automatic voltage regulation systems is
presented. Second, the controller gains of a selected four unsu-
pervised learning methods are computed. Third, the implemen-
tations of the four methods are presented and compared with
other types of conventional control methods. Finally, a rec-
ommendation on how to select a good unsupervised learning
method for automatic voltage regulation is presented consider-
ing a smart grid operational environment.

2 LITERATURE ON AUTOMATIC
VOLTAGE REGULATION

Voltage regulator designs have been improved significantly for
various applications in the past decade. Hardware controller
designs and software control algorithms have been applied to
optimize the voltage regulator performance [2] and new circuit
schematics have been presented to improve the performance
of various types of regulators. For medium-voltage regulation
systems, a genetic algorithm (GA) was used to obtain optimal

274 wileyonlinelibrary.com/iet-joe J. Eng. 2022;2022:274–284.
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FIGURE 2 Clustering methods for AVR coordination

PID parameters using a Sugeno fuzzy logic model in less than
one second for real-time operations [3]. A differential evolution
algorithm was used in [2]. A self-tuning PID controller using
a recursive least-square-based linearization and feedback was
implemented to find the control system parameters with 10%
error on the root mean squared (RMS) voltage in [4]. A parti-
cle swarm optimization (PSO) algorithm was used to generate
optimal three parameters for the PID controller [5] and a sim-
plified PSO algorithm and an adaptive PSO (APSO) algorithm
were proposed for optimizing PID settings in [6]. The simplified
algorithm allowed for easy tuning of behavioural parameters,
and resulted in better convergence and accuracy, with a settling
time of 0.564 s and a peak amplitude of 1.01 V [6]. A heuris-
tic method called Ziegler-Nichols was used to tune the parame-
ters of the PID controller in [7]. With a rise time of over 0.3 s,
this method was not as efficient as a PSO or a GA. However,
it simplified the testing process and was compatible with tuning
methods. Recently, learning-based approaches are being imple-
mented, including spectral clustering [8], reinforcement learning
[9] and deep learning [10–12].

Moreover, a hybrid control system for an AVR was pro-
posed using a fuzzy sliding mode control and a neural network
supervised learning procedure in [13]. The Taguchi combined
genetic algorithm (TCGA) was used to determine optimal val-
ues for PID controller parameters, where optimum values for
the two influential design variables were found using a multi-
objective GA. The TCGA produced a settling time of 0.52 s
while PSO and GA produced settling times of 0.81 and 0.86 s,
respectively.

Furthermore, the maximum per cent overshoot produced by
the TCGA was just 0.36% of that produced by the PSO [1]. A
fuzzy logic controller-based AVR design was presented in [14].
The fuzzy controller showed a four-second settling time, which
was faster than all the compared PID controller variants, also
proved to be much better than the other controllers in terms of
overshoot, albeit a slower response. In addition, a grasshopper
optimization algorithm (GOA) was recently presented for this
purpose. The results showed that the algorithm outperforms the
previously proposed control methods in maximum overshoot,
settling time, rise time, and peak time [15].

For high voltage systems, an algorithm was presented to com-
pute the optimal allocation and configuration of voltage regula-
tors and capacitor banks in power distribution systems in [16].
The algorithm first determined the power flow using a current
sum method and then used a genetic algorithm for the allocation
and configuration of equipment. An adaptation function was
used to evaluate the fitness of each member of the GA based
on a weighted criterion. SCADA and control algorithms were
used in integrated modules to control the voltage levels inside
the regulation area [17].

The need for smart voltage regulators was also highlighted
by researchers to the auto-correct voltage on lines [18]. A new
operating mode for voltage regulators in a smart grid system was
presented by tap changing between different control operations
to handle reverse power flow in [19]. Parallel computing was
used to reduce computational time and improve optimization
parameters of voltage regulators in [20]. Big data analytics of
smart meter data showed a prediction accuracy of 84.02% with a
minimum prediction accuracy of 64.71% in [21]. Adaptive hier-
archal voltage control methods for distributed voltage control
were presented in [22, 23]. At a local level, the voltage regulator
hardware processed load data, source voltage data, and tap posi-
tion adjustment data to determine the best set of adjustments to
the equipment in any operating condition. A fuzzy controller
then sets the optimal parameters and sends the configuration to
the centralized controller for hierarchal processing. The central
controller took each voltage regulator parameter into account
once it set its settings.

Comparisons of the recent developments of AVR systems
in the medium, high, and ultra-high voltage ranges are pre-
sented in Table 1. The voltage and current efficiency, perfor-
mance, and stability comparisons are shown in radar charts in
Figure 3. AVR at the medium and high voltage levels could pro-
cess, define, and adjust terminal voltages. However, coordina-
tion of multiple AVRs requires clustering methods that are not
yet fully addressed in the literature. Such an approach would
require learning and coordination with other voltage regulators
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276 ABEGAZ

TABLE 1 Efficiency comparison of AVR system controllers

Comparison

variable

Genetic algorithm and

fuzzy logic [3]

Adaptive particle swarm

optimization [6]

Genetic algorithm and

Taguchi fuzzy logic [1]

Fuzzy logic

controller [15]

Grasshopper

optimization [16]

Year 2009 2013 2013 2017 2018

Controller PID PID PID Fuzzy logic PID

Algorithm GA, Sugeno fuzzy logic APSO GA, Taguchi fuzzy logic Fuzzy logic GOA

Overshoot 0.084% 1% 0.006% 0% 20.50%

Rise time 0.765–1.33 s 0.346 s 0.63 s – 0.13 s

Settling
time

0.765–1.80 s 0.564 s 0.52 s 4s 0.971 s

GA GAFuzzy PSO Fuzzy GHO

FIGURE 3 Stability comparison of smart AVR controllers

in the network. This is addressed in this work using coordina-
tion approaches for the voltage clusters.

3 CLUSTERING METHODS FOR
VOLTAGE REGULATION

The implementation of clustering methods for classification,
regression and clustering of voltage regulator data is a new
research area [24, 25, 26]. Rather than a supervised approach,
this paper focuses on the unsupervised clustering methods,
which do not require any labelling or training resources. The
methods include a k-means clustering-based controller (KM),
a hierarchical clustering controller (HIE), a Gaussian mixture
model-based controller (GMM) and a self-organizing mapping-
based controller (SOM). The implementations are compared to
a model predictive controller (MPC), a fuzzy logic controller
(Fuzzy), and a proportional integral derivative controller (PID).
The KM divided data into five categories based on model data
generated by the user and updated the proportional gain of the
controller according to the terminal voltage of the regulator.
The MPC is added in parallel with the PID controller and gets
tuned. The fuzzy system replaced the PID and MPC blocks in
the AVR system, and the voltage profiles were obtained. The
fuzzy logic controller used five triangular membership functions
to classify the terminal voltages of the regulator. The transfer
functions for each unsupervised machine learning method are
calculated from the step response of the implemented system.
The corresponding proportional, integral, and derivative gains

TABLE 2 Ziegler Nichols method of calculating gains

Method Kp Ti Td

P T/L ∞ 0

PI 0.9T/L L/0.3 0

PID 1.2T/L 2L 0.5L

were calculated from the time delay, the overshoot, the settling
time, and the steady-state error of the step response using the
Ziegler Nichols method as given in (2) to (9) and Table 2. The
time delay is represented by L, the time constant is T, and the
gain is K. As an example, the proposed Gaussian Mixture Model
for AVR coordination is given in Figure 4.

GPID (s) = Kp

(
1 +

1
TI s

+ TDs

)
(2)

OS =
VPEAK −VREF

VREF
× 100% (3)

KUML,GMM = 0.291 +
0.182

s
+ 0.728s (4)

KUML,SOM = 0.282 +
0.176

s
+ 0.705s (5)

KUML,HIE = 0.132 +
0.083

s
+ 0.33s (6)

KOverall =

1

(0.1s+1)(0.4s+1)(s+1)
(KUML )

1 +
(

1

(0.1s+1)(0.4s+1)(s+1)

)
(KUML )

(7)

Sys =
50s + 5000

2s4 + 227s3 + 2775s2 + 7550s + 1000
(8)

SysGMM

=
1000s (s + 1000)

40s5 + 4540s4 + 56228s3 + 224091s2 + 229282s + 18200

(9)
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ABEGAZ 277

FIGURE 4 Gaussian mixture model

4 RESULTS AND DISCUSSION

The terminal voltages of the individual AVR systems with a
fixed reference voltage are shown in Figure 5. The terminal volt-
ages of the individual AVR systems with a dynamic reference
voltage are shown in Figure 6. Rise time is the time required for
the voltage to rise from 10% to 90% of its steady value. Set-
tling time is the time taken for the voltage to converge within
5% of the reference voltage VREF . The overshoot is calculated
from the peak voltage value (VPEAK ) and the settling value. The
error, amplifier, and exciter voltage comparisons are shown in
Figures 7, 8, and 9. Moreover, using a dynamic three pulsed
input as a reference voltage, the error, amplifier, and exciter volt-
age comparisons are shown in Figures 10, 11, and 12.

The strengths and weaknesses of the different controllers for
individual AVR systems are evaluated in this paper. The MPC
yielded the fastest response time of 0.182 s. Furthermore, the
overshoot produced by the MPC is more stable than both the

FIGURE 5 Terminal voltages stability comparison

FIGURE 6 Terminal voltages using dynamic reference voltages

FIGURE 7 Error voltages comparison
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278 ABEGAZ

FIGURE 8 Amplifier voltages comparison

FIGURE 9 Exciter voltages comparison

FIGURE 10 Error voltages using dynamic reference voltages

FIGURE 11 Amplifier voltages using dynamic reference voltages

FIGURE 12 Exciter voltages using dynamic reference voltages

FIGURE 13 Derivative of rotor angles using no coordination

PID and Fuzzy logic by 0.2% and 3%, respectively. However,
the PID has a faster settling time than the MPC by 1.293 s.
The K-means controlled AVR system is far superior to the other
smart AVR systems in terms of stability. The maximum per cent
overshoot is only 1.2% and therefore the settling time is 0 sec-
onds since the peak value is within 5% of the reference voltage.
The downside of the K-means controller is a slow rise time of
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ABEGAZ 279

FIGURE 14 Derivative of rotor angles using GMM based coordination

FIGURE 15 Derivative of rotor speeds using no coordination

FIGURE 16 Derivative of rotor speeds using clustered coordination

FIGURE 17 Field excitation using no coordination

FIGURE 18 Field excitation using clustered coordination

FIGURE 19 Machine angles using no coordination

0.42 s. This rise time is 0.238 s slower than the rise time of the
MPC controller.

The simulations of AVR systems with dynamic reference
voltages provide evidence that the rise time of the K-means
algorithm-based learning system can compete with the rise
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280 ABEGAZ

FIGURE 20 Rotor speeds using no coordination

FIGURE 21 Machine angles using clustered coordination

FIGURE 22 Rotor Speeds using clustered coordination

times of the other controllers. The average rise time of the K-
means controller over 3 pulse waves is 0.209 s. This rise time
is only 0.005 s slower than that of the MPC and faster than
both the PID and Fuzzy Logic controllers by 0.022 and 0.103
s, respectively. The settling time of the K-means controller is
the fastest of the four controllers with an average of 0.221 s.
The K-means controller continues to perform the best in terms
of stability with an average overshoot of 6.33%. These results

illustrate a K-means algorithm-based learning system provides
superior stability in automatic voltage regulator-based systems.
Furthermore, integrating multiple controllers in AVR-based
systems could provide the most efficient energy conversion
operation.

Coordination of the clustering methods was also considered
using 10 AVR systems interfacing 10 generators in the IEEE 39-
bus system. The system is commonly called the New England
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ABEGAZ 281

FIGURE 23 System voltages using no coordination

FIGURE 24 System real power using no coordination

FIGURE 25 System voltages using clustered coordination

power grid system since it is a simplified model of the power
grid in the New England area. The variables that are used for
coordinating the operation of the AVR systems include the rotor
angles, the rotor speeds, the stator voltages, the field excitation,
the machine angles, and the machine frequencies. Results of the
implementation indicate better stability of each of the variables
due to the coordinated control of the AVR systems. The deriva-
tives of the rotor angles using no coordination and GMM based

coordination are shown in Figures 13 and 14. The derivatives of
the rotor speeds using no coordination and GMM based coor-
dination are shown in Figures 15 and 16. The field excitation
using no coordination and GMM based coordination are shown
in Figures 17 and 18. The machine angles and frequencies using
no coordination and GMM based coordination are shown in
Figures 19 and 21. The rotor speeds using no coordination and
GMM based coordination are shown in Figures 20 and 22. The
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282 ABEGAZ

FIGURE 26 System real power using clustered coordination

FIGURE 27 Stator voltages using no coordination

FIGURE 28 Stator voltages using clustered coordination

system voltages and powers using no coordination and GMM
based coordination as shown in Figures 23 and 25. The system’s
real power using no coordination and GMM based coordination
are shown in Figure 26. The stator voltages using no coordina-
tion and GMM based coordination are shown in Figures 27 and
28. The turbine real and reactive power values using no coor-
dination and GMM based coordination are shown in Figures
29, 30, 31, and 32, respectively. In real-world systems, the data
from the clustering methods implemented in distributed AVRs
could be communicated via the internet for better stability and
efficiency of generator parameters such as rotor angles, speeds,

FIGURE 29 Turbine real power using no coordination

FIGURE 30 Turbine real power using clustered coordination

field excitation voltages, stator voltages, and real and reactive
powers of the machines.

5 DISCUSSION

The novelty and contribution of this work includes the applica-
tion of clustering methods for automatic voltage regulation for
smart grids application. The approach is scalable to large-scale
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ABEGAZ 283

FIGURE 31 Turbine reactive power using no coordination

FIGURE 32 Turbine reactive power using clustered coordination

smart grid systems having more than thousands of voltage ter-
minals interfaced with automatic voltage regulators.

6 CONCLUSION AND FUTURE WORK

A voltage regulator is a circuit that maintains the output voltage
at a stable potential difference despite input voltage changes,
load differences, and operational irregularities. The paper pre-
sented clustering methods for the efficiency of automatic volt-
age regulation. In the actual operation, different factors affect
how fast a voltage regulator returns to steady-state conditions
after changes in load conditions, and therefore, coordination
methods are necessary to ensure the stability of the overall sys-
tem. In the future, the clustering methods could be applied to
other components of a power grid to result in further improve-
ments in the efficiency and stability of the interconnected sys-
tem. Although clustering methods have been presented in this
work, other types of methods could also be applied to AVR
systems. Those implementations would be considered as future
work.

Nomenclature

GPID (s) PID gain
KOverall Overall gain

KUML,GMM Gain of GMM

KUML,HIE Gain of HIE
KUML,SOM Gain of SOM

VPEAK Peak voltage
VREF Reference voltage
APSO Adaptive PSO

AVR Automatic voltage regulator
G(s) Transfer function of the PID controller
GA Genetic algorithm

GMM Gaussian mixture model
GOA Grasshopper optimization algorithm

HC Hierarchical clustering
KM K-means clustering

Kp, Ki, Kd Proportional, integral, derivative (PID) gains
MPC Model predictive controller
PSO Particle swarm optimization
RMS Root-mean square

SCADA Supervisory control and data acquisition
SOM Self-organizing mapping

TCGA Taguchi Combined Genetic Algorithm
UML Unsupervised machine learning

OS Overshoot
Sys Transfer function of the system

SysGMM Overall transfer function of the GMM
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