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Abstract 

Shrinkage estimation of Poisson means is considered when observations are given in the 
form of a two-way contingency table. Assuming a multiplicative Poisson model, estimators 
which shrink to the specified values or an order statistic in one dimension and in two 
dimensions are considered and are shown to dominate the maximum likelihood estimator 
(MLE) under normalized squared error loss. 

1 Introduction 

Consider a two-way multiplicative model where X;j, i = 1, ... , I, j = l, ... , J, are inde­
pendent random Poisson random variables with means 

A;j = >.a;(Jj, i = 1, ... , I, j = l, ... , J, 

where a; 2: 0 and (Jj 2'. 0 satisfy I:{=1 a; = 1 and I:{=1 (Jj = 1, respectively. We denote 
the one-dimensional frequencies and the total frequency by 

J I I J 

Xi+= LXij, 'i = l, ... 'I, X+j = LXij, j = l, ... 'J, X++ = LLXij· 
j=l i=l i=l j=l 

As discussed in Hara and Takemura (2006) complete sufficient statistics are x 1 =(xi+, ... , xI+) 
and x 2 = (x+1, ... , X+J ). The MLE of A;j is 

if x++-=/ 0 

if X++ = 0. 

They have given a class of improved estimators which shrink the MLE toward the origin 
under the normalized squared error loss. The simple one is 

8:JT=Xi+X+j{l- d }, i=l, ... ,J, j=l, ... ,J,. 
X++ X++ + d 
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where dis a positive constant, 0 < d::; 2(J + J - 2) and I, J ~ 2. 
The following lemma is a special case of Lemma 2.1 of Hara and Takemura (2006) and 

is useful to evaluate the risk of the shrinkage estimators when normalized squared error 
loss is concerned. 

Lemma 1.1. If g(x 1 , x 2 ) is a real-valued function satisfying Elg(x1 , x 2 ) I < oo and 
g(x1 , x 2 ) = 0 when xi+= 0 or X+j = 0, then 

{ g(x1, x2)} { (x++ + 1) r J } 
E A;j = E (xi++ l)(x+i + 1)9(x1 + e;' X2 + ej) ' 

where e{ (ef) is Ix 1 (J x 1) unit vector with i-th (j-th) component 1. 

In Section 2 multiplicative Poisson model is assumed and shrinkage to a specified value 
or an order statistic is considered in one dimension and in two dimensions. In subsections 
2.1 and 2.2 we give improved estimators which shrink xi+ in the MLE to an order statistic 
and a given non-negative constant, respectively. Further, in subsections 2.3 and 2.4 we 
are concerned with impoved estimators which shrink xi+ and X+j simultaneously. A 
discussion is given in subsection 2.5 and simulation results which show the performance 
of the proposed estimators are given in subsection 2.6. 

2 Shrinkage estimators in the multiplicative Poisson 
model 

First, we consider one-dimensional shrinkage to an order statistic. 

2.1. One-dimensional shrinkage to an order statistic 

Let X(f)+ be the £-th smallest observation among xl+, ... , XJ+- We assume that J ~ £ + 2 
and consider the following estimator which shrinks xi+ toward X(t)+ when xi+ ~ X(t)+= 

,(l) = x+i { . _ (W) (xi+ - X(f)+)+} 
u,J X++ x,+ cp W + d , i = 1, ... , I, j = 1, ... , J, 

where W = L{=1(x;+ - X(f)+)+, a+= max(0,a) and dis a positive constant. Then we 
have the following. 

Theorem 2.1. Suppose that cp(W) is a non-decreasing function satisfying 0 :::; cp(W) :::; 
2(J - £ - 1) and that d ~ sup cp(W)/2. Then 5gl, i = 1, ... , I improves upon the MLE 

>.tf L, i = 1, ... ,I under the loss function L{=1 ( >.ii - A;j )2 / A;j for any j = 1, ... , J. 

Remark 2.1. Theorem 2.1 can be generalized directly to the case of Poisson multiplica­
tive model for a multi-way contingency tables by using a lemma (Lemma 3.1 of Hara and 
Takemura (2006)) which is a generalization of Lemma 2.1. For example, consider the case 
of a 3-way contingency table Xijk, i = 1, ... , I, j = 1, ... , J, k = 1, ... , K where Xijk are 
independent Poisson random variables with means >.ijk· Let xi++, x+i+, x++k and X+++ 
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denote the one-dimensional marginal frequencies and the total frequency. Let j and k be 
arbitrarily fixed and consider the simultaneous estimation of Aijk, ... , AJjk under the loss 
function I:{=1 (>.ijk - A;jk)2 / A;jk· Then, by adopting similar notations and conditions on 
cp(W) and d, we see that the estimator 

X+j+X++k { _ _ (W) (xi++ - X(f)++)+} 
2 x,++ cp W + d , i = l, ... , I 

X+++ 

improves upon the MLE X;++X+i+X++k! x!++' i = 1, ... , I. 
Next we consider the estimators shrink >.ff L to a specified non-negative values, b;. 

2.2. One-dimensional shrinkage to a specified point 

Let b; 2: 0, i = 1, ... , I be given numbers and we propose the following shrinkage estimator 
which shrinks xi+ to b; when xi+ 2: b;: 

t5(2) = x+i { _ _ (N W) (xi+ - b;)+} 
'J x++ x,+ 1P ' W + d(N) ' i = 1, ... 'I, j = l, ... 'J, 

where W = I:{=1(xi+ - b;)+ and N = #{ilxi+ 2: b;}. Then we have the following. 

Theorem 2.2, Suppose that cp(N, W) is a non-decreasing function of W and satisfies 
0 :S cp(N, W) :S 2(N - 1)+ for any O :SN :SI. Suppose that d(N) 2: supw cp(N, W)/2. 
Then 8&), i = 1, ... , I improves upon the MLE >.ff L, i = 1, ... , I under the loss function 

I:{=1(>.;j - A;j)2/A;j for any j = l, ... , J. 
It may be noticed that the shrinkage is made only when N 2: 2. 

Next we consider two-dimensional shrinkage to order statistics or to a specified point. 

2.3. Two-dimensional shrinkage to order statistics 

Let X(f)+ and X+(m) be the £-th and m-th smallest observation among Xi+, ... , Xf+ and 
x+l, ... , X+J, respectively. We assume that I 2: £ + 2 and J 2: m + 2 and consider the 
estimator which shrinks xi+ toward X(t)+ when xi+ 2: X(f)+ in the first dimension and 
shrinks X+j toward X+(m) when X+j 2: X+(m) in the second dimension simultaneously. To 
improve upon the MLE >.ff L, we propose the following estimator : 

,(3) = _1_{ . _ (W) (xi+ - X(f)+)+ }{ . _ (W) (x+j - X+(m))+} 
u,1 x,+ ip1 1 W + d X+1 1P2 2 W. + d , 

X++ 1 1 2 2 

i = 1, ... , I, j = l, ... , J, 

where W1 = I:{=1(x;+-X(f)+)+ and W2 = I:f=1(x+i-X+(m))+ and d1 and d2 are positive 
constants. Then we have the following. 

Theorem 2.3. Suppose that cp1(W1) and cp2(W2) are non-decreasing functions sat­
isfying O :S cp1 (W1) :S I - £ - l and O :S cp2(W2) :S J - m - 1, respectively. If 
d1 2: (J-£-1)/(J-£)supcp1(W1) andd2 2: (J-m-1)/(J-m)supcp2(W2). Then 
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Jt), i = 1, ... , I, j = 1, .. . , J improves upon the MLE 5.ff L under the loss function 

I:{=1 I:f=l().ij - A;j)2/>...ij· 

Remark 2.3. Theorem 2.3 is directly generalized to the case of multi-way contingency 
tables. Since the notations and conditions are essentially the same, we only give a sketch 
of the result for the case of 3-way contingency table. We shrink xi++ toward X(e)++ when 
xi++ 2'.'. X(e)++ in the first dimension and shrink x+i+ toward X+(m)+ when x+i+ 2'.'. X+(m)+ 
in the second dimension. Under the loss function 

I J 

Ll)5.ijk -Aijk)2/>...ijk, 
i=l j=l 

where k = l, · · ·, K is arbitrarily fixed, the improved estimator is given by 

2.4. Two-dimensional shrinkage to a specified point 

Let b; 2'.'. 0, i = 1, ... , I and Cj 2'.'. 0,j = 1, ... , J be given numbers. Assuming that 
I, J 2'.'. 2, we shrink xi+ to b; when X;+ 2'.'. b; and X+j to Cj when X+j 2'.'. Cj. To improve 
upon the MLE 5.f!L, we propose the following estimator 

where W1 = I:{=1(x;+ - b;)+, W2 = I:f=1(x+i - ci)+, N1 = #{ilxi+ 2:'. b;,i = 1, ... ,I} 
and N2 = #{Jlx+i 2:'. c;,j = 1, ... , J}. Although it may be natural to put the condition 
I:{=1 b; = I:f =l Cj, we do not need it in the following. 

Theorem 2.4. Suppose that cpe(Ne, We) is a non-decreasing function of Wt and satisfies 
0 :S: <f!t(Nt, Wt) :S: (Nt-1)+ for any Nt 2'.'. 0, and that dt(Nt) 2'.'. (Ne-l)+ / Nt SUPwe <f!t(Nt, Wt), 

for any Ne 2'.'. 0, £ = 1, 2. Then J&) improves upon the MLE 5.ff L under the loss function 
I J ' 2 

Li=l Lj=l(>...ij - A;j) />...ij· 
It may be noticed that the shrinkage in the £-th dimension is made only when Nt 2'.'. 2. 

2.5. A discussion 

Here we mention the possibility of the two-dimensional shrinkage estimators other than 
Jt) and J&) given in subsections 2.3 and 2.4, respectively. We only give two alternative 

estimators for J&). The following estimator is the simple average of the one-dimensional 
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shrinkage estimator 8g) and its counterpart which makes shrinkage in the second dimen­
sion: 

xi+X+j 'P1(N1, W1) X+j (xi+ - bi)+ 'P2(N2, W2) xi+ (x+j - cj)+ 
----

x++ 2 x++ W1 +d1(N1) 2 x++ W2 + d2(N2)' 

where Wiand Ni, i = 1, 2, are defined in 2.4. It is easily shown that this estimator improves 
upon the MLE when <p(Ni, Wi) and di(Ni), i = 1, 2, satisfy the similar conditions as given 
in Theorem 2.2. 

We may pool W1 and W2 and consider the following estimator 

xi+x+j _ <p(N, W) X+j(xi+ - bi)++ xi+(x+j - cj)+ 

x++ 2 x++{W + d(N)} 

where W = (W1 + W2)/2 and N = N1 + N2 . Although this estimator will dominate the 
MLE under suitable conditions on <p(N, W) and d(N), we do not pursue it here further. 

Unfortunately, these two estimators do not give the estimates which belong to the 
parameter space of the multiplicative Poisson models, whereas the estimators 8i) and 8i~) 
do. 

2.6. Simulation study 

Through simulation study we evaluate the risk performance of the following estimators: 

8?j=Xi+X+j{1- d }, i=l, ... ,1,j=l, ... ,.l, 
X++ X++ + d 

s:min - X+j { - - d (xi+ - X(I)+)+ } uij - x,+ 1 , i = 1, ... , I, j = 1, ... , J, 
x++ ~k=l (xk+ - X(l)+) + d 

s:,bJ_ = X+j {x,·+ - d(N) I (xi+ - bi)+ } ' u i = 1, ... , I, j = 1, ... , J. 
x++ ~k=l (xk+ - bk)++ d(N) 

For an estimator 8ij of Aij, i = 1, ... , I, j = 1, ... J, let 8 j = ( 81j, ... , 8 I j), j = 1, ... , J 
and 8 = ( 81 , ... , 8 J). When we estimate Aij by 8ij, the expected loss is given by 

E{~(8 ->..--) 2 } =R(.X 8-) 
\ . . '] '] - ' '] ' 
/\iJ 

where A= {>..ij, i = 1, ... , I, j = 1, ... , .!}. The total risk is 

I J 

R( .X, 8) = L L R( .X, 8ij). 
i=l j=l 

We are also concerned with the columnwise risks 

I 

R(.X, 8j) = L R(.X, 8iJ, j = 1, ... , J. 
i=l 
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Before describing the details of our simulation study, we state some fundamental 
properties of the total risk function. We consider a class of estimators 6ij of the form 
7Pi(x 1)x+j/x++, i = 1, ... , I,j = 1, ... , J, where x 1 = (x1+, ... , XJ+)- We notice that all 
the estimators considered here are of this form. Applying Lemma 1.1, we have 

where e{ is the I x 1 unit vector with i-th component 1. Thus we have 

which is a function of (>.1+, ... , AJ+) and is independent of (/31 , ... , f3J). Therefore we see 
that the total risk R(>.., c5) is independent of (/31, ... , f3J ). Further, if 7Pi(x1) is of the form 
¢(x++)xi+, we have 

Therefore the total risk depends only on>.=>-++· We may notice here that the total risk 
of 5,.ML (¢(x++ = 1) is expressed as 

which is a decreasing function of >.. 
Now we describe the details of the estimators used in our simulation study. We only 

consider the case I = 5 and J = 4. The constant din c5min is chosen as 2(5- 2) = 6, which 
is an upper bound of cp(W) given in Theorem 2.1. Although simulation experiments are 
performed also for the cased= 3, the performance for the cased= 6 is generally better. 
Similarly, d(N) in c5b is chosen as 2(N-1)+. The constant din c5° is set d = 2(5+4-2) = 14, 
since it is of interest and does not show largely different performance compared with the 
choice of d = 7. We have tried two choices of bin c5b: 

Although these choices use the true values of >.i+'s, it will make clear how much improve­
ment is possible by choosing t5b pertinently. 

To evaluate the risk improvement we use the (total) relative improvement rate 

and also the columnwise relative improvement rate 

In Tables 2.1 and 2.2, based on 100,000 replications, the total relative improvement rates 
and the columnwise relative improvement rates are given respectively for the four estima­
tors. 
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a(l) = (0.2, 0.2, 0.2, 0.2, 0.2), /3(l) = (0.25, 0.25, 0.25, 0.25), 

a(2) = (0.3, 0.2, 0.2, 0.15, 0.15), 13(2) = (0.4, 0.3, 0.15, 0.15), 

a(3l = (0.4, 0.3, 0.1, 0.1, 0.1), 13(3) = (0.6, 0.2, 0.1, 0.1), 

9 multiplicative models are considered in Table 2.1, where >. = 10, 50, 100 and a= 
a(1), a(2), a(3) (/3 = 13(1) is fixed for convenience). In Table 2.2, 9 multiplicative mod­
els are considered, where >. = 10, 50, 100 and 

We summarize the simulation results as follows. 
1. When we are concerned with the total risk, the relative improvement rate of Jmin is 
larger than that of JD for the case where a; = 0.2, i = 1, 2, ... , 5 which seems to be the 
most favorable case for Jmin. Although the relative improvement rate of Jmin gets smaller 
when the values of a;'s are more imbalanced, especially for larger values of >., it is still 
nearly identical to that of JD. 
2. The relative improvement rate of JbC2J is the largest among those of all the estimators 
for all cases. This implies that if we choose b;, i = 1, ... , I pertinently based on the prior 
information on >.i+, i = 1, ... , I, then we are able to get large improvement. However, 
the choice b?) = >.i+, i = 1, ... , I is not pertinent and choosing smaller values such as 
max(0, >.i+ - A+), i = 1, ... , I is preferable. 
3. The value of >. largely affects the performance of not only JD but also Jmin and Jb_ 

When the value of>. gets larger, the improvement rate of the estimators gets smaller. 
4. When f31 = · · · = fJJ, the columnwise risks are all the same and the columnwise relative 
improvement rates are equal to the total relative improvement rate for any estimator. 
The imbalance among the values of fJj 's affects the columnwise risk performance of JD 
the most as we see from Tables 2.2. For the columns with relatively larger values of fJj, 
the columnwise relative improvement rates of JD get smaller and are sometimes negative. 
This implies that JD will not dominate the MLE in terms of the columnwise risks for large 
values of d. 
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Table 2.1 Total risks and relative improvement rates 

Total risk 1 - R(>.., 6)/ R(>.., >,.ML) 
a Estimators d/d(N) >. = 10 >. = 50 >. = 100 >. = 10 >. = 50 >. = 100 

>,.ML 9.181 8.237 8.123 
60 14 5.219 7.721 7.966 0.432 0.063 0.019 

a(ll 6min 6 5.055 6.370 6.752 0.449 0.227 0.169 
6b(l) 2(N - 1)+ 5.816 6.630 6.934 0.367 0.195 0.146 
6b(2) 2(N - 1)+ 4.898 6.168 6.620 0.466 0.251 0.185 
>,.ML 9.174 8.238 8.121 

60 14 5.217 7.720 7.963 0.431 0.063 0.019 
a(2) 6min 6 5.161 6.747 7.223 0.437 0.181 0.111 

6b(l) 2(N - 1)+ 5.988 6.688 6.922 0.347 0.188 0.148 
6b(2) 2(N - 1)+ 4.970 6.180 6.626 0.458 0.250 0.184 
>,.ML 9.180 8.258 8.107 

60 14 5.222 7.735 7.951 0.431 0.063 0.019 
a(3) 6min 6 5.429 7.249 7.577 0.409 0.122 0.065 

6b(l) 2(N - 1)+ 5.675 6.571 6.853 0.382 0.204 0.155 
6b(2) 2(N - 1)+ 4.598 6.165 6.540 0.499 0.253 0.193 
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Table 2.2 Columnwise relative improvements rates 

a,(3 ,x_ Estimator 1st column 2nd column 3rd column 4th column total risk 
10 50 0.316 0.388 0.541 0.544 0.431 

t5min 0.415 0.436 0.482 0.483 0.449 
Jb(l) 0.387 0.375 0.347 0.348 0.367 
t:5b(2) 0.431 0.452 0.500 0.502 0.466 

50 JU -0.020 0.031 0.147 0.150 0.063 
a=a(ll t5min 0.237 0.230 0.216 0.216 0.226 
(3=(3(2) Jb(l) 0.220 0.205 0.168 0.169 0.195 

t:5b(2) 0.264 0.257 0.237 0.237 0.251 
100 5u -0.033 -0.001 0.073 0.075 0.019 

t5min 0.185 0.175 0.152 0.152 0.169 
Ob(l) 0.169 0.155 0.122 0.122 0.146 
t:5b(2) 0.204 0.193 0.165 0.165 0.185 

10 50 0.218 0.480 0.615 0.616 0.431 
t5min 0.386 0.463 0.503 0.504 0.449 
t5b;1) 0.403 0.358 0.336 0.336 0.367 
t:5b(2) 0.400 0.480 0.523 0.524 0.466 

50 5u -0.083 0.100 0.205 0.208 0.062 
a=a(ll t5min 0.246 0.221 0.207 0.208 0.226 
(3=(3(3) Ob(l) 0.241 0.183 0.149 0.150 0.195 

t:5b(2) 0.276 0.244 0.226 0.227 0.251 
100 JU -0.069 0.044 0.111 0.111 0.020 

t5min 0.199 0.161 0.139 0.140 0.169 
Ob(l) 0.187 0.135 0.104 0.105 0.146 
t:5b(2) 0.220 0.176 0.150 0.151 0.185 

10 50 0.316 0.386 0.543 0.545 0.431 
t5min 0.359 0.389 0.457 0.459 0.409 
Ob(l) 0.404 0.390 0.360 0.360 0.382 
t:5b(2) 0.466 0.486 0.531 0.533 0.499 

50 JU -0.020 0.030 0.149 0.150 0.062 
a=a.(3) t5min 0.103 0.114 0.142 0.142 0.122 
(3=(3(2) Ob(l) 0.231 0.216 0.175 0.176 0.204 

t:5b(2) 0.267 0.259 0.238 0.238 0.253 
100 5u -0.030 -0.001 0.072 0.074 0.020 

t5min 0.056 0.061 0.075 0.076 0.065 
Ob(l) 0.179 0.164 0.128 0.128 0.154 
t:5b(2) 0.214 0.200 0.170 0.171 0.193 
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