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1

A wide class of quadratic optimization problems has been discussed by Bellman and
others [1-12,23]. Dynamic programming has solved its partial class [2,17,18,26]. Further
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Abstract
We consider a dual relation between minimization (primal) problem and maxi-
mization (dual) problem from a view point of complementarity. An identity
—1

(CI) [(wr—1 — @)k + T (e — pr1)] + (Tn—1 = Tn)lin + Tnpin = Top
k=1

3

is called complementary [20,22]. We present three types of complementary identities,
which take a fundamental role in analyzing respective pairs of primal and dual.
Moreover, we show that a primal and its dual satisfy Fibonacci Complementary
Duality [18,19,21,22].

Introduction

a dual approach has been treated based upon convex-concavity [14, 16, 25].

Recently some new dual approaches

propose a complementary duality based upon an identity.

2 Complementary identities
Let @ = {xx}8, p = {ux}} be any two sequences of real number with x5 = ¢. Then an
identity
n—1
(Cl) Clr = Z[('rkfl - rk)lu’k + .Z’]g(,ltk - ,uchrl)] + (-rnfl - xn)/f(fn + T fn
k=1

holds true. This identity is called complementary [20,22]. Further we assume that p,, = 0.

Then an identity

n—1

(Co) e = Z[(rk,l — )k + T (e — Hier1)] + (Tno1 — Tn)
k=1

plus-minus method, extended Lagrangean
method, ineqlualty method and others — have been derived in [18-22]. In this paper, we
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holds true. This is a conditional complementarity.
On the other hand, we assume that x,, = 0. Then an identity

n—1

(C3) e = D [(@re1 — )k + Tulpn — prsr)] + (Tnoy — )i

holds true. This is also a conditional complementarity.

3 Three pairs

We consider three pairs of minimization (primal) problems and maximization (dual) prob-
lems, which are (Py) vs (D), (P3) vs (D2) and (P3) vs (D3). It is shown that each pair
is dual to each other. It turns out that the duality is based upon the complementary
identity and an elementary inequality with equality

2y < 2 +y* on R*; z=uy. (1)

Both the primal (P;) and the dual (D;) are unconditional. The primal (P3) is uncondi-
tional, while the dual (Ds) is conditional on p,. The primal (P3) is conditional on .,
while the dual (D3) is unconditional.

3.1 (Py) vs (Dy)
Let us consider the first pair:
n—1
minimize 3 (@t = w0 + 4] + (w01 — w0 + a2

(Pl) k=1
subject to (i) x € R", (ii) xp=c¢,

n—1

Maximize 2cp; — Z |:/l,i + (jg — /l‘k+1)2:| — =
k=1

(Dy) , .
subject to (i) pe€ R"

An identity (C;) with the elementary inequality (1) yields an inequality

n—1
2 — Y [+ (i — pvgn)?] — i — 422
k=1
n—1
< [(@ro1 — 2u)® + 23] + (Tpe1 — 20)® + 22

=~
Il

1
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for any feasible pair (z, ). Then it turns out that both are dual to each other. An
equality condition is

Tpo1 — Ty = fgy,  Tp = flk — 1 1 <k<n-—1
(ECy)
TIn—1 = Tpn = Hn, Tp = Hn.
The equality condition (EC;) is a linear system of 2n-equation on 2n-variable (z, ). Let
(@, 1) be a solution. Then both sides become a common value with five expressions.

n—1
Z Tpoy —xp)? + xi] + (Tpy — 2p)2 + 22
k=1

= c¢(c—x1)
n—1
(5V1) = 20 — Z [+ (e = pwein)?] = il — 1
n—1 =
= Z = tin)?] i
k=1
= Cl1.

Let (x, i) be a solution of (EC;). Then the primal (P;) has a minimum value

n—1
my = Z [(fk—l —m)? + xi} + (Tpoy — 20)* + ri
k=1
= clc—aq)

at x, while the dual (D;) has a maximum value

n—1

My = 2cpy — g [ui + (e — Mk+1)2] — iy —
k=1
n—1

= Z [Hi + (. — /Lk+1)2} + lti + lii
k=1
= Ccly
at p.

Lemma 1 (EC)) has indeed a unique solution:

x = (X1, Toy oy Thy ooy Ty, Tp)

= anH (Fop—1, Fops, ..., Fopn_ops1, ..., F3, F1), (2)
u: (B B2 ooy Bk ooy Moty o)

= ——(Fon, Fonay .oy Fopopyo, ..., Fy, F). (3)

F2n+1



Proof.  From (EC;), we have a pair of linear systems of n-variable on n-equation:

c= 3r; — 9 c = 2U1 — s

T1 = 3Ty — T3 1 = 3o — 3
(EQy) :

Tp—2 : 31.71—1 — Tp Hn—2 : 3Mn—l — HUn
Tp—1 = 2In Hn—1 = 3,un
The left system has a solution x in (2), while the right has a solution p in (3).

The primal (P;) has a minimum value m; = ¢(c — 1) = ———c? at a path
2n+1
T = (jjla j?v ceey j?ka ceey jjnfla jn)
c
= ﬁ(Fanlv F2n737 "'7F2n72k?+17 ey F37 Fl)
n+
The dual (D;) has a maximum value M; = cu} = ———¢* at a path
2n+1

O I 1 A O (P 19

c

- B (Fony Fongy ooy Fonopya, ooy Fuy Fy)

n+

where {F,} is the Fibonacci sequence [13,15,24,27]. This is defined as the solution to the

second-order linear difference equation

Tpio — Tpi1 — Ty = 0, r1 =1, xo=0.
n|-- =2 -1 01 2 3 4 5 6 7 8 9 10 11
F,|{--- -1 1 0 1 1 2 3 5 8 13 21 34 55 &9
n |12 13 14 15 16 17 18 19 20
F, | 144 233 377 610 987 1597 2584 4181 6765

Table 1  Fibonacci sequence {F,}

Hence both optimal values are identical:

F2n 2

m1:M1 Cc.

B F2n+1
An alternate contexture of both optimal points p*,  is Fibonacci backward:

(4)

* A x4 x4 * A * A
(/1’17 Ty, Mo, T2, ..., /ulm Tp -.. Iunfh LTn—1, :U‘nv In)
C
- F (F27l7 F2n—17 FQTL—27 F?n—37 -"7F2n—2k+27 F2n—2k+17 ey F47 F37 FQa Fl)
2n+1

Thus Fibonacci Complementary Duality (FCD) [18,19, 21, 22] holds between (P;) and

(D1).
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3.2 (PQ) VS (DQ)

Let us consider the second:

n—1
minimize Z [(@ro1 — z)® 4+ 37) + (Tpo1 — 20)°
(Py) k=1
subject to (i) x € R", (ii) xy=c
n—1
Maximize 2cp — »  [pf + (i — ptis1)?] — o2
k=1
(D2)

subject to (i) we€ R", (il) p,=0.

An identity (Cy) with the elementary inequality (1) yields an inequality
n—1

2ep1 — Y [k + (e — psn)?] — 422
k=1

3

-1
S I:(kal - -rk)Q + Ii} + (Infl - In)2
k=1
for any feasible pair (x, ). Then both are dual to each other. An equality condition is
Thot — T = fly, T = P — fhp1 1 <k<n—1
(EC,)
Tn—-1— Tp = Hp.

The equality condition (ECy) is a linear system of (2n — 1)-equation on 2n-variable
(x, ). Let (EC}) be an augmentation of the system (ECy) with the additional constraint
(ii) pp =0:

Tho1 — T = Hg, Tk = flp — fpe1 1 <hk<n—1
(EC3)
LTp—1 = Tn = Mn, Hn = 0.
Then (EC}) is of 2n-equation on 2n-variable.
Let (z, 1) be a solution of (EC}). Then both sides become a common value with five

expressions.

n

Z [(xk—l - xk)z + xﬂ + (Tp-1 — xn)2

k=1
= c(c—x1)
n—1
(5V2) = 2 — Y [+ (e — )] — 41l
k=
n—1 '
= Z (i + (ke — prrsn)?] +
k=1

= Cllr.



The primal (Py) has a minimum value

n

me = Z [(@h-1 — 2x)? + 23] + (Tn-1 — 20)°
k=1

= c¢(c—x1)

at x, while the dual (D) has a maximum value

n—1

2 — Y [/ti + (e — Mk+1)2} — 1y
k=1

M;

[

n—

= > (i + (e — pei)’] +
1

= C

=
Il

at p.

Lemma 2 The system (EC)) has indeed a unique solution:

xr = (.Z‘l, L2y vy Ty ooy Tp_1, J)n)
C
= (F2n737 F2n757 "'7F2n72k717 ey Fl7 Ffl)u
F2n—1
B = (Mla M2y vovy HEs oy Hn—1, ,U/n)
C
- F—(F2n727 F2n747 "'5F2n721€a ceey F2a FO)
2n—1

Proof.  From (EC)), we have a pair of linear systems of n-variable on n-equation:

¢ = 311 — 12 ¢ = 2p1 — o

3Ty — 3 = 3pe — s
(EQQ) Tn-3 : 31‘7172 —Tn Hn—3 : 3/”7172 — Hn-1
= 31.7171 — Tp, Hn—2 = 3Mnfl — Hn

Tpo1 = Tp fn = 0.

The left system has a solution x in (5), while the right has a solution p in (6).

Ey,
The primal (Py) has a minimum value my = c¢(c — &) = #CQ at a path
2n—1
T = (T, &ay ooy Ty vy Tpot, Tn)
¢
- —(F2n737 F27L75; ey F2n72k717 R Fl7 F71>'

FQTL*I

61
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Fy,
The dual (Dy) has a maximum value My = cuj = L path

2n—1

W= (U, 1y ey s ey fqs )

c
= (F2n72a F2n747 "'7F2n72ka LR FQa FO)
F2n71
Hence both optimal values are identical:
F2n72 2
my = My = ——=c¢~.
E ’ FZn—l

An alternate contexture of both optimal points p*, Z is Fibonacci backward:

* A PN * oA * A PN
(/’Lla L1, Moy T2, ooy Hpy Thovovy Mp_15 Tn—1, Hp, In)
C
- F (FQ’n,an F2n737 F2n74’ F2n757 "'7F2n72k7 F2n72k:711 ceey F27 F17 E)7 Ffl)'
2n—1

Thus FCD holds between (P3) and (Ds).

3.3 (P3) vs (D3)

Let us consider the third:

n—1
minimize Z [(@ro1 — z)® + 73] + (Tpo1 — 20)°
(Py) k=1
subject to (1) x € R", (i) xo=1¢, 2, =0
n—1
Maximize 2cp — »  [pf + (i — pis1)?] — o2
k=1
(Ds)

subject to (i) pe€ R"

An identity (C3) with the elementary inequality (1) yields an inequality

n—1
2cp — Z i+ (e = pesn)?] = il
k=1

n—1
< [(Ik—l — fL'k)2 + ma + (xn—l - mn>2
k=1

for any feasible pair (z, ). Then both are dual to each other. An equality condition is
Thot — T = [k, Tp = P —fler1 1 <k<n—1

(ECsy)

Tp—1 — Tn = Mn-.



The equality condition (ECj) is a linear system of (2n — 1)-equation on 2n-variable
(z,p1). Let (EC}) be an augmentation of the system (EC3) with the additional constraint
(ii) 2, =0

The1 — Ty = My Thp = fl — g1 L <k <n—1
(EC3)
Tp1— Ty = Hp, Tn=0.
Then (ECj) is of 2n-equation on 2n-variable.

Let (z, 1) be a solution of (EC}). Then both sides become a common value with five

expressions.

n

D [@hor — a)? + 23] + (21 — 20)°

k=1
= c(c—x1)
n—1
(5Vs) = 20— > [k + (e — g0 — o
f=1
n—1
= > [+ = )] + 422
k=1
= Clq-

The primal (P3) has a minimum value

n

ms = Z [(Tho1 — 2)* + 23] + (Tn1 — 20)°
P

= c¢(c—x1)

at x, while the dual (D3) has a maximum value

n—1
My = 2cp = [Hi + (b — /lk+1)2} —
k=1
n—1
= Z (i + (e — pesn)®] + 2
k=1
= Cl1

at p.

Lemma 3 The system (EC}) has indeed a unique solution:

T = (1'1, T2y ooy Thy vy Tp—1, xn)
C
= F—(FQ'ana F2n747 "'7F2n72/€7 ey FQa FO)a (7)
2n
H = (/'Ll', B2y ey My ooy Hn—1, /'l"n,)
C
= = {2n-1y, 2p-3, -+ L2n—2k+1, ..., L3, L'1).
(Fyp_y, F. E B, ) (8)

FZn
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Proof.  From (ECj), we have a pair of linear systems of n-variable on n-equation:

c= 3x; — 19 c = 211 — o

r1 = 3Ty — T3 p1 = 3o — p3

(EQS) Tp—3 : 3Z'n_2 — Tp—1 Hn—3 : 3/14n—2 — Hn-1

Tp_g = 3Tp_1 — Ty Hn—2 = 3/‘7171 — Hn
Ty, =0 Hn—1 = 2Mn
The left system has a solution x in (7), while the right has a solution p in (8). O
. .. o - o F2n71 2
The primal (P3) has a minimum value my = ¢(c — ;) = ——¢° at a path
2n
i‘ == (.@1, .’2'2, ceey (i’k, ceey .IA?”,h i’n)
c
= (Fon—2, Fonay ooy Fonoop, ooy Fo, Fp).
F2n
Fy,
The dual (D3) has a maximum value Mz = cuj = 20712 at a path
2n
W= (/f{, Koy wovs Mhs wvvs Hpots M:L)
c
= ﬁ(Fanh F27L737 ey F27L72k+17 ceey F3a Fl)
Hence both optimal values are identical:
F2nfl 2
ms3 = M3 = ——C.
F2n

An alternate contexture of both optimal points p*, Z is Fibonacci backward:

x4 * A x4 * A x4
(:U’la L1, Moy T2y ooy Mgy Thovvvy p_1s Tn-1y Hp, In)
C
= F—(FQTLfla F2n727 F2n737 F2n74a "‘aF2n*2k+1> F2n72k7 HE) F37 F2a Fl7 FO)
2n

Thus FCD holds between (P3) and (Dj).
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